
On Translative Packing Densities in E2 and E3

by

Yangyang He

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 9, 2023

Keywords: Translative packing, Lattice packing, Density, Cylinder

Copyright 2023 by Yangyang He

Approved by

András Bezdek, Chair, Professor of Mathematics and Statistics
Hannah Alpert, Assistant Professor of Mathematics and Statistics

Ziqin Feng, Associate Professor of Mathematics and Statistics
Peter Johnson, Professor of Mathematics and Statistics



Abstract

The theory of packing and covering is an essential part of discrete geometry. In this dis-

sertation we focus on and contribute to the knowledge on the densities of translative and lattice

packings in E2 and E3. dT (C) and dL(C) will be used to denote the largest translative packing

density and the largest lattice packing density of a planar disc or three dimensional body C,

and for short, we will call them the translative packing density and the lattice packing density,

respectively.

In 1892, Thue solved the problem of the densest packing of congruent circular discs in

the plane. In 1950s, Rogers proved that for any convex disc C, dT (C) = dL(C). This result

was generalized by L. Fejes Tóth in 1985 to limited semi-convex domains. Besides, Fejes Tóth

posed the question whether Rogers’s equality remains true for non-convex domains. A. Bezdek

answered this question negatively by providing a nonconvex disc, resembling a wrench. Bezdek

determined the lattice packing density of his wrench and showed a non lattice-like translative

packing of the wrench with a larger density. Note that Bezdek did not have to prove that the

later packing has the largest density among translative packings, and this is the point where I

joined this research area and proved the following:

A First, I proved what Bezdek already conjectured. Specifically, I showed that the translative

packing, which Bezdek included in his paper, is in fact a densest translative packing of

his wrench.

B Once A) was proved I could complete a new proof of Bezdek’s result. This time all I had

to prove was that lattice packings of the wrench cannot have a density equal to the largest

translative packing density of the wrench.

C As a preparation for studying lattice packings in E3, I proved a geometric property of

point lattices. The one I proved could be interesting on its own. Let us assume that a

point lattice contains all points whose position vectors are integer linear combinations
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of three independent vectors. One cannot expect that 8 of these lattice points form the

vertices of a cube whose faces are parallel to coordinate planes. But for every ε, we can

guarantee the existence of 8 lattice points which are vertices of a large parallelepiped,

so that after proper scaling it is in the ε-neighborhood of a unit cube. We call such

parallelepipeds ε-cubes.

D It would be interesting to explore translative packing densities in E3, so I revisited Rogers’s

equality dT (C) = dL(C), where C denotes a convex disc in the plane. The question

whether the same equality holds in E3 is still open today for convex bodies. I proved that

the equality holds for cylinders with convex base.

E Naturally, we would like to determine the largest translative packing density of cylinders

whose base is Bezdek’s wrench (called 3D-wrench). It was conjectured that stacking

3D-wrenches vertically over the densest planar lattice will give the densest 3D lattice.

Surprisingly, this was not the case. It turned out that there is a different lattice packing

of a single 3D-wrench, whose density is equal to the 3D-wrench’s translative packing

density.
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1.9 A star-shaped counterexample u of L. Fejes Tóth’s question. . . . . . . . . . . 8
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Chapter 1

Historical Background and Terminology

1.1 Definitions

The following two results of Thue and Kerschner planted the seeds of a new branch of geometry,

which later, mainly through the work of László Fejes Tóth, began to grow and now is known

as Discrete Geometry. Thue studied arrangements of nonoverlapping congruent circular discs

and proved in 1892 that the natural “honeycomb” arrangement maximizes the percent of the

plane covered by the discs. The honeycomb pattern refers to the tiling of the plane by regular

hexagons. The incircles of the hexagons form an arrangement which we call “honeycomb”

arrangement of the circles. The analogous result for circle coverings (i.e., the discs are not only

allowed to overlap each other, but it is required that every point of the plane belongs to the

closure of at least one disc) was considered and solved by Kershner in 1939. He showed that

circumcircles of the same hexagonal tiling attain the minimal percent of the multiple covered

parts of the plane.

The above questions motivated an array of general type questions each considering pack-

ings and coverings. Discrete geometry by its nature deals with questions which are easy to state

and explain to young students, but whose solutions often require new ideas and also advanced

techniques. The appeal of such problems attracted many young mathematicians around L. Fejes

Tóth, including I. Bárány, A. and K. Bezdek, K. Böröczky, G. Fejes Tóth, Z. Füredi, E. Makai,

J. Pach and the Hungarian school of discrete geometry born. For references about these results

and about the general state of discrete geometry, we refer to the book [20] by G. Fejes Tóth and

W. Kuperberg. This book is the English translation of the classic monograph of L. Fejes Tóth

[18] and is supplemented by extensive surveys on recent progress of the field.
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The packing problem for translates of a centrally symmetric convex body, especially in a

lattice arrangement, has strong connections to the Geometry of Numbers, a theory initiated by

H. Minkowski.

We already used couple of key terms of Discrete Geometry without formal definitions,

like packing, covering, tiling and lattice. At the same time we avoided others like density, and

instead used more intuitive phrases like “percent covered” or “most economical arrangements”.

Before going further we provide a list of precise definitions of terms we use in this dissertation.

Definition 1.1. Let C = {C1, C2, ...} be a collection of discs ( A disc is compact, connected and

has nonempty interior.) in the plane (bodies in space) and let D be a domain. If
⋃

i Ci ⊇ D, C

is called a covering of D. If
⋃

i Ci ⊆ D and no two of them have an interior point in common,

then C is called a packing in D. If
⋃

i Ci = D and the members in C have mutually disjoint

interiors, then C is called a tiling in D, and any set in C is called a tile.

Definition 1.2. If each member of C is congruent to the same disc C, then we say that C is a

packing with congruent copies of C.

Definition 1.3. If all copies of C are translates of each other, then we say that C is a packing

with translates of C, or translative packing of C.

Definition 1.4. Given two linearly independent vectors u1 and u2 in the plane E2, the lattice

Λ generated by them is defined as

Λ(u1, u2) = {m1u1 +m2u2| m1,m2 ∈ Z},

where Z is the set of integers.

The set {u1, u2} is called a basis of Λ. The parallelogram induced by vertices of the form

m1u1 +m2u2, where m1,m2 ∈ {0, 1}, is called the fundamental parallelogram of Λ.

Similarly, Λ(u1, u2, u3) = {m1u1 +m2u2 +m3u3|m1,m2,m3 ∈ Z} is called a lattice in

the 3-dimensional Euclidean space E3, where u1, u2, and u3 are linearly independent vectors in

E3. The parallelepiped induced by vertices of the form m1u1+m2u2+m3u3, where mi ∈ {0, 1}

for every i, is called the fundamental parallelepiped of Λ.
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Definition 1.5. Given a disc C and a lattice Λ, the collection of translates C = {C + u|u ∈ Λ}

is called a lattice arrangement.

In addition, if C is a packing, then it is called a lattice packing.

Definition 1.6. Let C = {C1, C2, ...} be a collection of discs in the plane and let D be a domain.

If D is a bounded domain, then the density of the collection C with respect to D is defined as

d(C, D) =

∑
i A(Ci)

A(D)
,

where the sum is taken over all i for which Ci ∩D ̸= ∅, and A(Ci) as well as A(D) represents

the area of Ci and the area of D, respectively.

If D is the whole plane, then we define the upper and lower densities , denoted by d and

d as follows.

d(C, E2) = lim sup
r→∞

d(C, D(r)) and

d(C, E2) = lim inf
r→∞

d(C, D(r)),

where D(r) denotes the circular disc of radius r centered at the origin O. Notice that d(C, E2)

and d(C, E2) are independent of the choice of the origin.

If d(C, E2) = d(C, E2), then the common value is called the density of the collection C in

the plane, and is denoted by d(C, E2).

Completely analogously, we can define the density in E3. The main difference is that the

density in E3 means the percent of the volume of the space occupied.

In the dissertation, I mainly talk about the maximum density of a translative packing of

some disc (body resp.) C and the maximum density of a lattice packing with some disc (body

resp.) C. Both densest packings exist, which can be known from a general result of H. Groemer

[6]. Let us denote them by dT (C) and dL(C), and call them the translative packing density and

lattice packing density, respectively. Evidently, dT (C) ≥ dL(C).

Definition 1.7. A set is called convex if for any two of its points, it contains the entire line

segment connecting them.
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Definition 1.8. Given a convex disc C, let S1 and S2 be opposite parallel straight lines that

support C at the points P1 and P2. Then the arc P̄1P2 is one of the two arcs into which P1 and

P2 divide the boundary of C.

A semi-convex domain is the region bounded by P̄1P2 and an arbitrary Jordan arc P̄2P1

within the disc C, see the region S in the following figure 1.1.

Figure 1.1: A semi-convex region S.

Choose any point P3 on P̄1P2 and translate P̄1P2 through the vectors
−−→
P3P1 and

−−→
P3P2. The

region enclosed by the original arc P̄1P2 and its translates is denoted by R. A domain bounded

by P̄1P2 and any Jordan arc P̄2P1 which lies in R instead of C is called a limited semi-convex,

see the domain L in Figure 1.2.

Figure 1.2: A limited semi-convex domain L.
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Definition 1.9. A set C is called star-shaped if for some point p ∈ C and all points q ∈ C, the

entire line segment pq is contained in C.

Definition 1.10. Let C = {C1, C2, . . .} be a packing in the plane, and let v be a nonzero vector.

For every i, let Si be defined as the set of those points x ∈ E2, which are either in Ci or for

which the first intersection point of the ray parallel to v and starting at x with the set C1∪C2∪. . .

belongs to Ci. Si is called the shadow cell of Ci, relative to v. See Figure 1.3.

Figure 1.3: The shadow cell Si of Ci, relative to the vector v.

Definition 1.11. Given a disc C in the plane (body in E3), the diameter of C is the maximum

distance between two points from the disc (body resp), which is denoted by diam(C).
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1.2 Introduction to the Research Problem of the Dissertation

In 1892, Thue [16] claimed that the density of any packing of equal circular discs is at most

π√
12

, which is the maximum density of any lattice packing of the circular disc.

Figure 1.4: The densest packing of equal circular discs.

Thue’s first proof had an error, but later he returned to the problem and solved it [17].

In 1951, Rogers [13] [14] proved that the densest translative packing of convex two-

dimensional domains can be attained by a lattice packing. L. Fejes Tóth [4] generalized this

result in 1985 to limited semi-convex domains (See Definition 1.8), with the proof based on an

idea used in a new proof of Rogers’s theorem. Later in 1986, Fejes Tóth [5] posed a conjecture

claiming that for the union of two convex domains with a point in common, the translative

packing density is the lattice packing density, and he proved the special case for the union of

two unit circles in this paper, based on an idea in a proof of Thue’s theorem. Heppes [9] gen-

eralized this result to more complicated regions bounded by circular arcs. And Kertész [10]

proved for the union of two translates of a convex disc, the translative packing density is the

lattice packing density.

When Fejes Tóth generalized Rogers’s result to limited semi-convex domains, he posed

the question that whether the property can be further generalized to non-convex domains.

Bezdek [1] constructed a non-convex disc in 1985, resembling a wrench and consisting of

five convex domains, illustrated in Figure 1.5. In order to prove the counterexample, Bezdek

proved two lemmas. He proved the lattice packing in Figure 1.6 is the densest lattice packing

of the wrench, while the translative packing in Figure 1.7 is denser than the densest lattice

packing.
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Figure 1.5: A counterexample of L. Fejes Tóth’s question.

Figure 1.6: The densest lattice packing of the wrench.

Figure 1.7: A denser translative packing of the wrench.
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Later on, Kertész [1] modified the construction of Bezdek to obtain a semi-convex domain

(Definition 1.8) such that the lattice packing density is less than the translative packing density.

This counterexample can be seen in Figure 1.8, and the proof came from the proof of the

wrench.

Figure 1.8: A semi-convex counterexample of L. Fejes Tóth’s question.

By modifying the wrench in Figure 1.5, Heppes [7] [8] constructed a star-shaped domain

u (Definition 1.9), shown in Figure 1.9, which is the union of three convex domains, such that

dT (u) > dL(u). See the two packings in Figures 1.10 and 1.11.

Figure 1.9: A star-shaped counterexample u of L. Fejes Tóth’s question.
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Figure 1.10: The densest lattice packing of u.

Figure 1.11: A denser translative packing of the single u.
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For counterexamples in E3, S. Szabó [15] in 1985 constructed a counterexample in space,

and A. Bezdek and W. Kuperberg [2] constructed another one, which was based on a different

idea, see Figure 1.12.

Figure 1.12: Szabó, 1985, Bezdek and Kuperberg, 1990

The above results concern the connections between the translative packing density and the

lattice packing density raised in several natural questions. For comprehensive surveys of the

theory of packing and covering, there are some books good to read, like Pach and Agarwal

[12], L. Fejes Tóth [19], Brass, Moser and Pach [3], and Pach [11].

When Bezdek explained his counterexample, he used a concrete packing which contained

translates of his planar wrench. All he needed was that its density is larger than its lattice

packing density. It was conjectured that this particular packing is the densest among packings

of translates. I will prove this conjecture in section 2.1. After we get the densest translative

packing, a new idea to explain Bezdek’s counterexample will be clear, and we will show it in

section 2.2.

In chapter 3 I will prove in point lattices how to find 8 lattice points as vertices of a large

parallelepiped based on a given ε, so that the parallelepiped is in the ε-neighbourhood of a

given cube. The result can be applied to prove the inequality in Remark 2 in Chapter 4, and we

have it as a separate chapter since it is interesting on its own.

Can one find a family of convex bodies in E3 for which a theorem analogous to Rogers’s

planar theorem holds? With other words we need a subfamily of convex bodies for which the

translative packing density is equal to the lattice packing density. In Theorem 4.1 I show that

the family of cylinders with convex base is such a family.
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It is natural to study cylinders whose base is Bezdek’s planar wrench. Does this cylinder,

called a 3D-wrench, have similar properties as its planar base? In other words, is it true that

the translative packing density of the 3D-wrench is larger than its lattice packing density? It

was expected that the answer is yes, based on the intuitive observation that stacking the 3D-

wrenches vertically, the density of the bases remains equal to the density of the 3D-wrenches.

I will answer this question negatively in Theorem 4.2. First I determine the translative packing

density of the 3D-wrench, and then I show that there is a lattice packing which has density

equal to the translative packing density.
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Chapter 2

On Translative Packing Densities in E2

In this chapter, we explore the densest translative packing of the non-convex disc constructed

by Bezdek. I will prove the densest translative packing of the wrench is the denser one shown

in the paper [1]. Then I will explain a new proof of Bezdek’s counterexample.

2.1 The Translative Packing Density of the Non-convex Disc Introduced by Bezdek

Bezdek conjectured that the denser translative packing (see Figure 1.7) is the densest translative

packing of the single wrench, and I will prove this is true. The main idea is like this. Given any

translative packing of the wrench, we first divide it into separate clusters. Then we will get the

shadow cell (see Definition 1.10) of each cluster along the vertical direction. For shadow cells

containing more than 5 pieces, we will subdivide them orderly until all clusters have length at

most 5. Therefore, there will be at most 5 kinds of shadow cells based on different lengths, and

the diameters of all shadow cells have a common upper bound. Next we find out the densest

shadow cell among all shadow cells, which is the one in Figure 2.9. Notice that from the denser

packing in Figure 2.22, we can get a tiling of the densest shadow cell. Therefore, this translative

packing is a densest translative packing of the wrench.

Theorem 2.1. The packing in Figure 2.2 is a densest packing of translates of the disc P shown

in Figure 2.1.

Proof of Theorem 2.1. Notice that each edge of P has lengths, which will be helpful when we

talk about densities, and these numbers came from the model 2.2 constructed by Bezdek. Also

notice that the packings in Figures 1.7, 2.2 and 2.22 are the same one.
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Figure 2.1: The piece P .

Figure 2.2: A densest packing with translates of P .
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We will prove the theorem with one lemma and two steps. Let’s first look at the lemma.

Lemma 2.2. Given a packing C = {C1, C2, . . .} in the plane. If there is a cell decomposition

so that each disc is contained in one cell, and the diameters of all cells have a common upper

bound, then the upper bound of densities in the cells is an upper bound of the upper density in

the plane. Furthermore, if the density in each cell achieves the upper bound, and the cells tile

the plane, then the density in the plane exists, which is the upper bound.

Lemma 2.2 is a known result, and the proof can be found in Appendix A. From the proof

we find that the lemma is also compatible with packings in E3.

Now let us work on a translative packing of the disc P with two steps. With it in mind that

that we will say one piece is overlapped by another one if they are arranged in the way shown

in the following figure.

Figure 2.3: One piece is overlapped by another one.
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Step 1. Shadow cell decomposition.

We will use the shadow cell decomposition method on a translative packing. Before this,

let’s get clusters in the packing. Cluster is an ordered list of pieces so that for any two adjacent

pieces in the cluster, one piece is overlapped by another one. See the following figure 2.4.

Figure 2.4: Clusters in the packing.

Then we get the shadow cell for each cluster along the vertical direction, which is illus-

trated in Figure 2.5.

Figure 2.5: The shadow cell of every cluster in the packing.

As we can see, there can be shadow cells containing infinitely many pieces. And we

will subdivide long shadow cells so that all shadow cells share the same upper bound for their

diameters.

After calculation we find that we can subdivide shadow cells containing more than 5

pieces. Therefore, for the cell containing more than 5 pieces, we count the pieces from left

15



to right, and subdivide the shadow area between the (5n)-th piece and the (5n+ 1)-th piece in

the way shown in Figure 2.6, until the remaining shadow contains no more than 5 pieces. Thus,

there are at most five classes of shadow cells. Let’s call them G1, G2, G3, G4, and G5, so the

shadow cells in Gi have the same length i, which means they all contain the same number of

pieces P .

Figure 2.6: Subdivision on shadow cells with more than 5 pieces contained.
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Step 2. Show that the maximum density among densities in all cells comes from the

cell including two pieces where one is “completely” overlapped by another one. The cell is

illustrated in Figure 2.9 and it is the shaded domain, where P1 and P2 are the pieces in the cell.

Before we start, let’s evaluate some areas. It’s easy to see from Figure 2.1 that the area

of the piece is A(P ) = 280, the area of the region H is A(H) = 60, and A(R1) = A(R′
1) =

A(R2) = A(R′
2) = 32.

I will prove the upper bound of the densities in each class. For each class, the discussion

will start with a table showing the results, and then we will talk about the detailed calculations.
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Case 1: Shadow cells of subclusters of a single wrench.

2 types of subclusters of length 1

and their shadow cells.

Upper bounds for the

maximum cell density

d (name of the type)

The single piece forms a complete cluster.

The end subcluster of a cluster longer than 5.

d(C1) = 280
280+92 < d(C2)

d(C1-end) = 280
280+100 < d(C2)

Type: C1

Type: C1-end

Table 2.1: The maximum densities in shadow cells from G1.

Notice there are two types of the shadow cells in G1, C1 and C1-end. C1 is obtained

directly from the cell partition, and C1-end is the remaining region after subdivision which

contains one piece.

We first work with C1 and find the smallest shadow area A(C1). As seen in Figure 2.7,

let’s assume P1 is in C1. Since C1 is from G1, A(H) must be included in A(C1). Then we

have two cases based on whether R1 is overlapped or not. If not, then at least A(R1) is added

to A(C1). If it is overlapped, only R′
2 of another piece P2 can cover it, and then A(R2 of P2)

will be added to the area A(C1), because R2 of P2 can not be covered by any piece if P2 is

invading R1 of P1. Therefore, the shadow area, A(C1), shown in Figure 2.7 is the smallest, the

density of P1, depicted by d(P1) =
A(P1)
A(C1)

= 280
280+32+60

= 280
280+92

, is the largest.

Now let’s look at the cell C1-end containing the piece P ′
1 and try to minimize the corre-

sponding shadow area A(C1-end). Let’s assume P ′
1 belongs to some original cell Ci with more

than 5 pieces, and it is the last one. Besides, the last subdivision should occur between P ′
1 and
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Figure 2.7: The smallest shadow cell in type C1.

the preceding one P ′
5n. Firstly, we have A(H) included in A(C1-end). What’s more, A(R1 of

P ′
1) is in A(C1-end). The reason is that R1 can only be covered by R′

2 of another piece P ′
2, see

Figure 2.8(1), but P ′
2 and P ′

5n will overlap when R′
2 of P ′

2 lies in R1 of P ′
1, so R1 can not be

covered and A(R1) has to be added to A(C1-end). Obviously, there are other areas added to

A(C1-end). Actually, the smallest C1-end is the shaded region in Figure 2.8(2), and

A(C1-end) = 280 + 60 + 32 + 8 > A(C1).

Therefore, the optimal density in the cell from G1 is obtained by the cell in Figure 2.7, and it is

d(P1) =
280

280+92
.

Figure 2.8: The shadow cell C1-end.
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Case 2: Shadow cells of subclusters of two wrenches.

2 types of subclusters of length 2

and their shadow cells.

Upper bounds for the

maximum cell density

d (name of the type)

The 2 pieces form a complete cluster.

The end subcluster of a cluster longer than 5.

d(C2) = 280
280+80

d(C2-end) < 280
280+86 < d(C2)

Type: C2-end

Type: C2

Table 2.2: The maximum densities in shadow cells from G2.

Now let’s move on to G2, in which each cell contains two pieces. Figure 2.9 demonstrates

a cell containing pieces P1 and P2. The area of this cell is

A = 280× 2 + 160,

so its density is

d =
280× 2

280× 2 + 160
=

280

280 + 80
.

We will show that this is the optimal density among all cells in G2.

We understand there are two kinds of cells in G2: C2 and C2-end. C2 is from the original

shadow partition, while C2-end is obtained by subdivision and it is the remaining region where

there are two pieces left. Let’s talk about densities in C2 and C2-end separately and start with

C2.
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Figure 2.9: The density of the shaded cell is 280
280+80

.

Before we start, I’d like to make a note about “the distance between two pieces”. It means

how far it is when one piece is moved close to another one until they completely touch each

other.

Figure 2.10 demonstrates a general cell C2 from G2. Denote the distance between P1 and

P2 by a, so 0 ≤ a < 6. The sum of areas of P1, P2 and the region between them is 280×2+10a,

A(S1) = (18 + 8)× 4 = 104, and A(S2) = (20 + a)× 4 = 80 + 4a.

Figure 2.10: The shadow cell C2.

What we’ll do is to pack the region right above P1 and P2 with translates of P1, and try to

get a cell with a smaller area than A = 280× 2 + 160.

Since C2 is from G2, A(H of P2) = 60 is in A(C2). R1 of P2 can not be covered, because

it can only be covered by R′
2 of some other piece P3, and the part R of P3 will overlap R′

1 of

P1 if it is covered. Therefore, A(R1 of P2) = 32 is also part of A(C2).

Let’s move to S2 of P2. It needs to be overlapped by a piece P3 in order to get a smaller cell

area than A. To be specific, it should be overlapped by R of P3. Denote the distance between
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P3 and P2 by b, so 0 ≤ b < 4, and the area added to A(C2) after S2 is overlapped by R of P3 is

4(2 + a) + 18b+ 8b = 8 + 4a+ 26b,

which is the blue area in Figure 2.11.

Figure 2.11: Investigation to obtain the optimal density of the cell C2.

Likewise, R of P4 overlaps S1 such that A(C2) can be as small as possible. Then R′
2 of P4

covers R1 of P1. Suppose the distance between P1 and P4 is c, then the area added to A(C2)

will be

32 + 18c+ 8c = 32 + 26c,

which is the area of the brown region in Figure 2.11.

Now let’s focus on the region ABCD. The area is 8(6 + c) = 48 + 8c, so it needs to be

covered by some piece so that A(C2) will not be greater than A. This can only be realised by

R′
2 of P5 in the way shown in Figure 2.11. Assume the distance between P4 and P5 is d, then

the added area is

8(2 + c+ d) = 16 + 8c+ 8d,

and that’s the area of the grey region in Figure 2.11.

22



Finally, we find the region BEFG can not be overlapped by any piece, and its area is

(2 + a)(10− 4 + b) = 12 + 6a+ 2b+ ab.

Adding these areas together, we have

A(C2) ≥ (280×2+10a)+60+32+(8+4a+26b)+(26c+32)+(16+8c+8d)+(12+6a+2b+ab),

i.e.,

A(C2) ≥ 280× 2 + 160 + 20a+ 28b+ 34c+ 8d+ ab.

Luckily, when a = b = c = d = 0, H of P5 can be overlapped by another piece such that

the total area of the cell C2 is 280 × 2 + 160, so this is the smallest area of the cell C2. The

desired cell C2 is shown in Figure 2.9 as the shaded domain.

Let’s now turn to C2-end and find the smallest area A(C2-end).

Figure 2.12: P ′
1 ∪ P ′

2 ∈ C2-end.

As shown in Figure 2.12, there is a subdivision between the piece P ′
5n and P ′

1. The cell

C2-end is the remaining region containing P ′
1 and P ′

2.

Since P ′
2 is the last piece, H and R1 of P ′

2 can not be overlapped by any piece with the

same reason as we talked about C2. R1 of P ′
1 can also not be covered so as to avoid overlapping

on R′
1 of P ′

5n.
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Now let’s look at the rectangle ABCD, which is also denoted by S1. A(S1) ≥ 4(18− 6+

8) = 80, and S1 can only be overlapped by R′
2 of another piece and at most once.

Thus,

A(C2-end) > A(P ′
1)+A(P ′

2)+A(HofP ′
2)+A(R1ofP ′

2)+A(R1ofP ′
1)+[A(S1)−A(R′

2ofP ′
3)].

That is,

A(C2-end) > 280× 2 + 60 + 32 + 32 + 48 = 280× 2 + 172 > A = 280× 2 + 160,

which means the optimal density of cells in G2 is obtained by the cell C2, and it is shown in

Figure 2.9.
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Case 3: Shadow cells of subclusters of 3 wrenches.

2 types of subclusters of length 3

and their shadow cells.

Upper bounds for the

maximum cell density

d (name of the type)

Type: C3

The 3 pieces form a complete cluster.

The end subcluster of a cluster longer than 5.

d(C3) < 280
280+244

3
< d(C2)

d(C3-end) < 280
280+244

3
< d(C2)

Type: C3-end

Table 2.3: The upper bound of densities in shadow cells from G3.

Now, let’s find out the optimal density of the cell from G3. There are two kinds of cells in

G3: C3 and C3-end. The cell C3 is from cell partition, and C3-end is obtained after subdivision

if there are three pieces left in the remaining region, then that is C3-end.

We’ll investigate whether the largest density in G3 can be smaller than that in G2, and it

suffices to see whether the smallest area of C3 or C3-end is smaller than 280× 3 + 80× 3.

Figure 2.13: P1 ∪ P2 ∪ P3 ∈ C3.

Let’s first talk about C3, and Figure 2.13 gives a general version. It’s clear that the region

H cannot be overlapped because C3 is from G3 and P3 is the last piece. The R1 region of P2

25



and P3 can not be overlapped either, otherwise the invading pieces will overlap the R′
1 region

of P1 and P2, respectively. So A(H) + A(R1 of P2) + A(R1 of P3) = 60 + 32 + 32 = 124 is

added to A(C3). For the R1 region of P1, if it’s not overlapped, then we add A(R1 of P1) = 32

to A(C3). If it’s overlapped, it can only be overlapped by R′
2 of P4, see Figure 2.14. Notice R2

of P4 will be included in the shadow of C3, and it cannot be covered by any piece, so A(R2 of

P4) will be added to A(C3). Therefore,

A(C3) > A(P1) + A(P2) + A(P3) + 124 + 32 = 280× 3 + 156.

Figure 2.14: How R1 of P1 can be covered.

Thus, the extra area added to A(C3) would be smaller than (280×3+80×3)−(280×3+156) =

84 if the optimal density in G3 is bigger than that in G2.

Now let’s look at Figure 2.15, and observe how the region S2 can be overlapped. It’s easy

to see A(S2) = (20 + b)(4) = 80 + 4b ≥ 80, and S2 can only be overlapped by R′
2 of P5 and

at most once. We also notice that R2 of P5 will be part of C3 if R′
2 of P5 overlaps S2, and it

won’t be overlapped by any piece. Therefore, at least 80 + 4b will be added to A(C3).

Now let’s turn to the region S1. The biggest area that can be covered is shown in Figure

2.16, where R of P6 overlaps S1, and the left part of S1 cannot be covered by any piece, so the

left area is at least 4(2 + a) = 8 + 4a. Combined with the case of S2, the area added to A(C3)

is at least (80+4b)+ (8+4a) = 88+4a+4b, which is bigger than 84. Therefore, the optimal

density of C3 cannot be greater than that in G2.
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Figure 2.15: How S2 can be covered.

Figure 2.16: How S1 can be covered.
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Now let’s look at C3-end and denote the area of C3-end by A(C3-end). In a similar

manner as we talked about A(C3), it’s easy to see

A(C3-end) ≥ 280× 3+ 60+ 32× 2+ 32+ (80+ 4b) + (8+ 4a) = 280× 3+ 244+ 4a+4b.

The only difference between C3-end and C3 happens on the shadow areas of P ′
1 and P1.

For R1 of P ′
1, it will never be overlapped due to the existence of the preceding piece P ′

5n, see

Figure 2.17, so A(R1 of P ′
1) = 32 will be added to A(C3-end), and this difference causes the

same lower bound of A(C3-end) and A(C3). Therefore, the best density of C3-end is also

smaller than that in G2. Thus, the optimal density in G3 can not be greater than that in G2.

Figure 2.17: P ′
1 ∪ P ′

2 ∪ P ′
3 ∈ C3-end.
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Case 4: Shadow cells of subclusters of 4 wrenches.

2 types of subclusters of length 4

and their shadow cells.

Upper bounds for the

maximum cell density

d (name of the type)

Type: C4

The 4 pieces form a complete cluster.

Type: C4-end

The end subcluster of a cluster longer than 5.

d(C4) < 280
280+89 < d(C2)

d(C4-end) < 280
280+89 < d(C2)

Table 2.4: The upper bound of densities in shadow cells from G4.

In a similar way, we can get the area of C4 and C4-end is bigger that

280× 4 + 60 + 32× 3 + 32 + 80× 2 + 8 = 280× 4 + 356,

which is greater than 280× 4 + 80× 4, and it means the optimal density in G4 is smaller than

the optimal density in G2.
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Case 5: Shadow cells of subclusters of five wrenches.

4 types of subclusters of length 5

and their shadow cells.

Upper bounds for the

maximum cell density

d (name of the type)

Type: C5

The 5 pieces form a complete cluster.

Type: C5-first

Type: C5-middle

Type: C5-end

1st subcluster of a cluster longer than 5.

Internal subcluster of a cluster longer than 10.

The end subcluster of a cluster longer than 5.

d(C5) < 280
280+93.6 < d(C2)

d(C5-first) < 280
280+81.6 < d(C2)

d(C5-middle) < 280
280+81.6 < d(C2)

d(C5-end) < 280
280+93.6 < d(C2)

Table 2.5: The upper bound of densities in shadow cells from G5.

There are four kinds of cells in G5, denoted by C5, C5-first, C5-middle, and C5-end.

C5 is from the original cell partition, see Figure 2.18. C5-first, C5-middle, and C5-end are

obtained from different positions after subdivision, and they are shown in Figures 2.19, 2.20,

2.21, respectively.

For A(C5) and A(C5-end), both are greater than

280× 5 + 60 + 32× 4 + 32 + 80× 3 + 8 = 280× 5 + 468,
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Figure 2.18:
5⋃

i=1

Pi is a C5 subcluster.

Figure 2.19:
5⋃

i=1

P ′
i is a C5-first subcluster.

Figure 2.20:
5⋃

i=1

P ′
(5n+i) is a C5-middle subcluster.

Figure 2.21:
5⋃

i=1

P ′
(5n+i) is a C5-end subcluster.
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which can be obtained in a similar manner as we talked about C3, and it is bigger than 280 ×

5 + 80× 5.

For A(C5-first) and A(C5-middle), each is greater than

280× 5 + 60 + 32× 4 + 32 + 80× 3 + 8− 60 = 280× 5 + 468− 60 = 280× 5 + 408,

and the lower bound can be realised if P ′
6 and P ′

(5n+6) overlap P ′
5 and P ′

(5n+5), totally and

respectively.

Since 280 × 5 + 408 is also bigger than 280 × 5 + 80 × 5, the optimal density in G5 is

smaller than the optimal density in G2, that is, 280
280+80

.

Therefore, the optimal density in cells among all Gi’s is realised by the pairs from G2 and

it is shown in Figure 2.9.

Figure 2.22: A densest packing with translates of the disc P .

Figure 2.22 (which is the same as Figure 2.2) illustrates a packing with translates of P .

By the shadow cell partition method used in Step 1, we can obtain a tiling in the plane, where
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the tile is the shadow cell in Figure 2.9. In other words, all shadow cells in this packing has the

optimal density. By Lemma 2.2, the density of this packing exists, which is the upper bound.

To be specific, this is a densest translative packing of the disc P .

One more observation is that the translative packing of the wrench in Figure 2.22 (also in

Figure 2.2) is a lattice packing of the union of two wrenches.
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2.2 A New Proof of Bezdek’s Counterexample

Now that we have a densest translative packing of P , in order to prove dT (P ) > dL(P ), it

suffices to prove that the density of any lattice packing of P is less than the density of the

densest translative packing of P , d(C2).

Notice that there are two classes of lattice packings of P based on whether the region H of

P (see Figure 2.1) is overlapped by another piece. Correspondingly, there are only two kinds

of clusters. Furthermore, there are two kinds of shadow cells. Figure 2.23 illustrates the lattice

packing where H is not overlapped by any other pieces, so all clusters are single, which leads

to only C1 as the cell.

Figure 2.23: A lattice packing where the region H is not overlapped.

If the region H is overlapped in a lattice packing, then each cluster will be infinite long,

see Figure 2.24. We then subdivide the corresponding shadow cells in the same way as we did

in Theorem 2.1, and the resulting shadow cells are all C5-middle.

Figure 2.24: A lattice packing where the region H is overlapped.
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Since both maximum densities in C1 and C5-middle are less than d(C2), there is no lattice

packing density equal to d(C2).
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Chapter 3

On Special Parallelepipeds in Point Lattices in E3

In this chapter I will prove a geometric property of point lattices. It is about how to get 8

lattice points which are vertices of a large parallelepiped based on a given ε (> 0), so that the

parallelepiped is in the ε-neighbourhood of a cube which is similar to the unit cube in the point

lattice. This result turns out to be useful at studying lattice packings, but we find it interesting

on its own, so we include it in a separate chapter.

Before we prove the theorem, let me first restate the large parallelepiped in a more techni-

cal form.

Definition 3.1. Given ε > 0, a cube C with edge length e, and spheres Si(i = 1, 2, . . . , 8)

with each one centered at one vertex of C and all with radii r satisfying r
e
< ε. If there is a

parallelepiped P such that each vertex lies in one sphere, then P is called ε-cube, see Figure

3.1.

Figure 3.1: The parallelepiped is ε-cube.

Note that the faces of the parallelepiped may not be parallel to the faces of the cube.
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Theorem 3.1. Given ε > 0 and a point lattice. There exist 8 lattice points as vertices of

a large parallelepiped based on ε, so that after proper scaling, the parallelepiped is in the

ε-neighbourhood of a cube which is similar to the unit cube. In other words, ε-cube exists.

Before we prove the theorem, let me first prove two lemmas, which will be helpful in the

proof of the theorem.

Lemma 3.2. For any point inside a parallelepiped with edge lengths a, b, and c, there is a

vertex of the parallelepiped such that the distance of the vertex and the point is less than a+b+c
2

.

Proof of Lemma 3.2. As shown in Figure 3.2, there is a point P inside a parallelepiped with

vertices Vi (i = 1, 2, . . . , 8) whose edge lengths are a, b, and c. We will show that there is a

vertex Vi so that |ViP | < a+b+c
2

.

Figure 3.2: Notation for Lemma 3.2.

In order to prove it, we need the following statement.

Statement 3.1. Given a point P inside a triangle CAB, either |AP | < |AC| or |BP | < |BC|.

This can be proved by extending the perpendicular line segment DP . Since the inter-

section point E can be on the edge AC or edge BC, then |AP | < |AC| or |BP | < |BC|

correspondingly.
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Figure 3.3: For P inside a triangle CAB, |AP | < |AC| or |BP | < |BC|.

Let’s go back to the parallelepiped. As we can see from Figure 3.4, the point O is the

center of the parallelepiped, so |OVi| < a+b+c
2

, i = 1, 2, . . . , 8. Since the point P will lie in one

of the pentahedra, let’s take O− V1V2V3V4 as an example. The other situations are similar if P

is in one of the other pentahedra.

Figure 3.4: Either |PV1| < a+b+c
2

or |PV4| < a+b+c
2

.

Illustrated in Figure 3.4, the line l that passes through P is perpendicular to the plane

V1V2V3V4, and it intersects the parallelogram V1V2V3V4 and the triangle OV1V4 at points O′ and

P ′, respectively. Therefore, |V1P
′| ≥ |V1P | and |V4P

′| ≥ |V4P |.
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Let’s now apply the statement 3.1 in the triangle OV1V4, so at least |V1P
′| < |V1O| or

|V4P
′| < |V4O|.

If |V1P
′| < |V1O|, then |V1P | ≤ |V1P

′| < |V1O| < a+b+c
2

, which means the vertex

V1 is the desired vertex. Likewise, if |V4P
′| < |V4O|, then by |V4P

′| ≥ |V4P |, we have

|V4P | < |V4O|, so V4 is the vertex such that |V4P | < a+b+c
2

.

Therefore, the vertex exists such that the distance between the vertex and any point in the

parallelepiped is smaller than half of the sum of the lengths of three adjacent edges.
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Lemma 3.3. Given a cube with vertices denoted by V1, V2, . . . , V8 such that vertices V2, V3 and

V4 are adjacent to the vertex V1, and a parallelepiped with vertices V ′
1 , V

′
2 , . . . , V

′
8 satisfying

V ′
2 , V ′

3 and V ′
4 are adjacent to the vertex V ′

1 . Besides, each V ′
i is in the neighborhood of Vi. If

max{|ViV
′
i | : i = 1, 2, 3, 4} < c, then max{|ViV

′
i | : i = 1, 2, 3, 4, 5, 6, 7, 8} < 5c.

Proof of Lemma 3.3. Let’s first consider a square ABDC and a parallelogram A′B′D′C ′, as

shown in Figure 3.5. We will show if |AA′| < c, |BB′| < c, and |CC ′| < c, then |DD′| < 3c

by using vector computation.

Figure 3.5: If |AA′| < c, |BB′| < c, and |CC ′| < c, then |DD′| < 3c.

Since
−−→
DD′ =

−−→
DC +

−−→
CC ′ +

−−→
C ′D′

=
−→
BA+

−−→
CC ′ +

−−→
A′B′

= (
−−→
BB′ +

−−→
B′A′ +

−−→
A′A) +

−−→
CC ′ +

−−→
A′B′

=
−−→
BB′ +

−−→
A′A+

−−→
CC ′,

then

|
−−→
DD′| = |

−−→
BB′ +

−−→
A′A+

−−→
CC ′| ≤ |

−−→
BB′|+ |

−−→
A′A|+ |

−−→
CC ′| < 3c.

Let’s now apply the planar conclusion on the cube and the parallelepiped in Figure 3.6.
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Figure 3.6: If max{|ViV
′
i | : i = 1, 2, 3, 4} < c, then max{|ViV

′
i | : i = 1, 2, 3, 4, 5, 6, 7, 8} <

7c.

First let’s consider the square V1V2V5V3 and the parallelogram V ′
1V

′
2V

′
5V

′
3 . Since |ViV

′
i | <

c, where i = 1, 2, 3, |V5V
′
5 | < 3c. Let’s then look at the front square V1V2V6V4 and the paral-

lelogram V ′
1V

′
2V

′
6V

′
4 . Since |VjV

′
j | < c, where j = 1, 2, 4, |V6V

′
6 | < 3c. Likewise, if we use the

planar result on the square V1V3V8V4 and the parallelogram V ′
1V

′
3V

′
8V

′
4 , immediately we will get

|V8V
′
8 | < 3c.

In order to obtain |V7V
′
7 |, let’s express

−−→
V7V

′
7 as follows.

−−→
V7V

′
7 =

−−→
V7V8 +

−−→
V8V

′
8 +

−−→
V ′
8V

′
7

=
−−→
V5V3 +

−−→
V8V

′
8 +

−−→
V ′
3V

′
5

= (
−−→
V5V

′
5 +

−−→
V ′
5V

′
3 +

−−→
V ′
3V3) +

−−→
V8V

′
8 +

−−→
V ′
3V

′
5

=
−−→
V5V

′
5 +

−−→
V ′
3V3 +

−−→
V8V

′
8

Since

−−→
V5V

′
5 =

−−→
V5V3 +

−−→
V3V

′
3 +

−−→
V ′
3V

′
5
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=
−−→
V2V1 +

−−→
V3V

′
3 +

−−→
V ′
1V

′
2

= (
−−→
V2V

′
2 +

−−→
V ′
2V

′
1 +

−−→
V ′
1V1) +

−−→
V3V

′
3 +

−−→
V ′
1V

′
2

=
−−→
V2V

′
2 +

−−→
V ′
1V1 +

−−→
V3V

′
3 ,

then

−−→
V7V

′
7 = (

−−→
V2V

′
2 +

−−→
V ′
1V1 +

−−→
V3V

′
3) +

−−→
V ′
3V3 +

−−→
V8V

′
8 =

−−→
V2V

′
2 +

−−→
V ′
1V1 +

−−→
V8V

′
8 .

Therefore,

|
−−→
V7V

′
7 | = |

−−→
V2V

′
2 +

−−→
V ′
1V1 +

−−→
V8V

′
8 | ≤ |

−−→
V2V

′
2 |+ |

−−→
V ′
1V1|+ |

−−→
V8V

′
8 | < c+ c+ 3c = 5c.
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Proof of Theorem 3.1.

Assume the edge lengths of the fundamental parallelepiped are a, b, and c. Let D denote

a huge (that is, much bigger than max{a, b, c}) cube with vertices V1, V2, . . ., and V8, which is

obtained from the unit cube after proper scaling. Since each vertex of D is inside one paral-

lelepiped, we can select four of them, called V1, V2, V3 and V4, labelled in the order shown in

Figure 3.6. By Lemma 3.2, there are vertices V ′
i from four fundamental parallelepipeds such

that |V ′
i Vi| < a+b+c

2
, i = 1, 2, 3, 4.

Consider the parallelepiped P generated by vectors
−−→
V ′
1V

′
2 ,
−−→
V ′
1V

′
3 and

−−→
V ′
1V

′
4 . By Lemma 3.3,

all distances |V ′
i Vi| < 5

2
(a+ b+ c), i = 1, 2, . . . , 8.

Let ε = 5
2
(a+b+c), and draw spheres centered at each vertex of the cube with radius ε, so

all vertices of the parallelepiped P lie in these spheres. By the definition 3.1, the parallelepiped

P is ε-cube, relative to the cube D.
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Chapter 4

On Translative Packing Densities in E3

In this chapter, we will talk about the translative packing densities in E3. Rogers proved that a

densest packing with translates of a convex disc can be achieved by the densest lattice packing.

We will prove that this result can be generalized in E3 to cylinders with convex bases. That

is, the translative packing density of a cylinder with convex base is equal to the lattice packing

density of such cylinders. Then we will look at the cylinder whose base is the planar wrench.

We will refer to this cylinder as a 3D-wrench. Note that we have a complete understanding of

the densest translative and the densest lattice packing of the planar wrench. Intuitively, it was

expected that the densest 3-dimensional packings in each of the two categories are obtained by

stacking the cylinders over the planar densest packings. The interesting thing is that stacking

the cylinders over the densest translative packing of the base will result a 3D lattice packing.

Besides the above results, I will introduce the relationships about the translative packing den-

sities between the cylinder and its base.

Theorem 4.1. Let C be a cylinder. If the base of C is a convex disc, then dT (C) = dL(C).

Theorem 4.2. Let C be a cylinder. If the base of C is the planar wrench of Bezdek (see Figure

2.1), then dT (C) = dL(C).

Proof of Theorem 4.1. Since any lattice packing of C is also a packing with translates of C, we

have dT (C) ≥ dL(C). Now I will prove dT (C) ≤ dL(C) in three steps.

Let B denote the convex base of the cylinder C.

Step 1. Let’s prove dT (C) ≤ dT (B), that is, the translative packing density of the cylinder

is no more than the translative packing density of the convex base.
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Given a translative packing of the cylinder C with density dT (C). At the same time, there

is a tiling with copies of a huge cube such that the base of the cube is parallel to the base of the

cylinder in the packing and also each rectangular face of the 3D-wrench is parallel to a face of

the cube.

In view of the definition of the density, there exists one cube Ui, where the density of

cylinders is at least dT (C). Otherwise, the density dT (C) couldn’t be achieved in space. Let’s

denote the density of cylinders inside Ui by di, so di ≥ dT (C). If the cube is sufficiently large,

the density of cylinders completely inside Ui can be equal to di − ε, where ε can be as small as

we wish.

Now let’s slice the cube Ui parallel to the base. By the knowledge of integration, we

understand there exists one cross-section where the density of the base B is at least di − ε.

Let’s denote the cross-section by Sj , and denote the density of B in Sj by dij . So dij ≥ di − ε.

Let’s then get a packing of translates of the base B by extending Sj face to face. So the

density of the translative packing is dij . Therefore, dij is no more than the largest translative

packing density, i.e., dij ≤ dT (B).

Combined with the above inequalities, we have dT (C) − ε ≤ dT (B), where ε can be

arbitrarily small by letting the cube sufficiently large. Thus, dT (C) ≤ dT (B).

Step 2. dT (B) = dL(B) can be immediately obtained from Rogers’s result [13].

Step 3. Now let’s prove dL(B) ≤ dL(C), i.e., the lattice packing density of the cylinder is

an upper bound of the lattice packing density of its base.

Let’s start with the densest lattice packing of B, so the density of B in the plane is dL(B).

Considering any fundamental parallelogram, we can have an edge-by-edge tiling with the fun-

damental parallelogram as the tile. All tiles are identical, so the density of the base in each tile

is dL(B).

Now if we lift each tile up to the height of the cylinder C, we will get one layer of paral-

lelepipeds. The density of the cylinder C in each parallelepiped is dL(B).

Let’s then translate congruent copies of the layer up and down such that there is no space

between adjacent layers. The space can be tiled by translates of the parallelepipeds in this way,
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and there will also be a lattice packing of the cylinder C with density dL(B), which can not

exceed the maximum lattice packing density. That is, dL(B) ≤ dL(C).

Combined with 3 steps, we get dT (C) ≤ dT (B) = dL(B) ≤ dL(C), and we already have

dT (C) ≥ dL(C), so dT (C) = dL(C).

Remark 1. From the proof we find the relationships about translative packing densities be-

tween the cylinder and its base, which are

dT (C) = dT (B), dL(C) = dL(B).

Remark 2. Notice that dL(C) ≤ dL(B) can also be proved by using the method in Step 1. We

start with the densest lattice packing of C and a tiling of an appropriate large cube, and then by

the method in Step 1 we can get dL(C) ≤ dT (B). Since B is a convex disc, dT (B) = dL(B),

therefore we have dL(C) ≤ dL(B).

Notice the large cube in Step 1 can be replaced by ε-cube introduced in Theorem 3.1 in

Chapter 3. Since the density in each ε-cube is the same, we can use any one and work on it.

The method in Step 3 cannot be directly applied to prove dT (C) ≥ dT (B), because a

bounded domain, which is the fundamental parallelepiped, is required in Step 3. For a densest

translative packing of the convex disc B, it is not clear whether there is a cell decomposition

such that the diameters of all cells have a common upper bound. But we believe dT (C) ≥

dT (B) can be proved with a method similar to the method in Step 3.

We also notice that the cylinder C with convex base can be generalized to a cylinder with

any shape as the base as long as the translative packing density of the shape is equal to the

lattice packing density of the shape.

Corollary 4.1. Let B be a disc such that dT (B) = dL(B), and let C be a cylinder with B as

the base. Then dT (C) = dL(C) = dL(B) = dT (B).
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Proof of Theorem 4.2.

Let’s first have a look at the 3D-wrench, see Figure 4.1.

Figure 4.1: The 3D-wrench.

In order to prove dT (C) = dL(C), we first have dT (C) ≥ dL(C), and I will prove dT (C) ≤

dL(C) in two steps.

The planar wrench is still denoted by P .

Step 1. I will prove dT (C) ≤ dT (P ).

This can be done with the method in Step 1 in the proof of Theorem 4.1.

Step 2. I will describe a lattice packing of the 3D-wrench with density equal to dT (P ).

Figure 4.2: A lattice packing of the 3D-wrench.
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Figure 4.2 depicts the top view and the front view of the desired lattice packing. The 3D-

wrench labeled by 1, 3 and 4 are at the same horizontal level, and they generate a horizontal

layer of the lattice packing. Then the layer is shifted up non-vertically to a height equal to

half of the height of a 3D-wrench, which can be seen from the front view. The desired lattice

packing is constructed with the 3 independent vectors.

Notice that as a result exactly half of the mouth of each 3D-wrench belongs to another

3D-wrench. Therefore, each horizontal cross-section crosses exactly two layers. Furthermore,

all top views of the cross-section are the same packing shown in Figure 2.22, which is a densest

translative packing of the planar wrench P . Therefore, the density of this lattice packing of C

is dT (P ).

Combined with Step 1 and Step 2, we have dT (C) ≤ dT (P ) ≤ dL(C). Plus, dT (C) ≥

dL(C), we get dT (C) = dL(C).

Remark 3. From the proof we can get the relationship between the translative packing density

of the 3D-wrench and the translative packing density of the planar wrench, which is

dT (C) = dT (P ).

Remark 4. Thanks to the densest translative packing of the planar wrench shown in Figure

2.22, the unproved part dT (C) ≥ dT (P ) can be proved independently by the method in Step 3

in the proof of Theorem 4.1.
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Appendix A

Appendix

A Proof of Lemma 2.2

Proof of Lemma 2.2. Figure A.1 demonstrates a packing C = {C1, C2, . . .} in the plane. Sup-

pose there is a cell decomposition T = {T1, T2, . . .} so that each disc is contained in one cell.

Without loss of generalization, we can assume Ci ∈ Ti. Furthermore, suppose diam(Ti) ≤ l

and A(Ci)
A(Ti)

≤ d0 for all i.

Figure A.1: Packing Cr = {C1, C2, . . . , Cnr} and the cell decomposition.

Since it it trivial if d0 = 1, we will talk about the case when d0 < 1.
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Let D(r) denote a circular disc with radius r, and D(r+ l) be the circular disc with radius

r + l and having the same center as D(r). Suppose discs in Cr = {C1, C2, . . . Cnr} have

common interior points with D(r). Then we have Tr ∈ D(r + l), where Tr = {T1, T2, . . . Tnr}

is the set of corresponding cells.

The reason why Tr ∈ D(r + l) is as follows.

If not, suppose Tk (∈ Tr) is not in D(r + l), which means there is a point P from Tk, but

not in D(r + l). Since Ck ⊂ Tk and Ck ∩D(r) ̸= ∅, there is a point P ′ ∈ Ck ∩D(r) such that

|PP ′| + |OP ′| ≥ |OP | > l + r. Since |OP ′| ≤ r, |PP ′| > l, which contradicts the condition

that diam(Tk) ≤ l, so Tr ⊂ D(r + l). Thus, we have
∑nr

i=1A(Ti) ≤ π(r + l)2.

Since each A(Ci)
A(Ti)

≤ d0,
∑nr

i=1A(Ci) ≤ d0 ·
∑nr

i=1A(Ti). Therefore,
∑nr

i=1A(Ci) ≤ d0 ·

π(r + l)2. Furthermore,
∑nr

i=1 A(Ci)

πr2
≤ d0·π(r+l)2

πr2
, and lim

r→∞
sup

∑nr
i=1 A(Ci)

πr2
≤ lim

r→∞
sup d0·π(r+l)2

πr2
=

d0 which means d ≤ d0.

Furthermore, if each di =
A(Ci)
A(Ti)

= d0, then ΣA(Ci) = d0 · ΣA(Ti).

Let D(r − l)(r > l) denote the circular disc with radius r − l and having the same center

as D(r). Suppose the cells tile the plane, and we have Tr ⊃ D(r − l).

If not, there would be a point N from D(r − l) and N does not belong to any tile in Tr.

Suppose N ∈ a tile Tg, so Tg /∈ Tr, and the disc Cg(⊂ Tg) /∈ Cr, which means Cg is totally

outside D(r). Let’s choose any point N ′ in Cg, and connect O and N ′, O and N , and N and N ′.

Then |ON ′| > r and |ON | ≤ r − l, therefore |NN ′| ≥ |ON ′| − |ON | > l, but diam(Tg) ≤ l,

a contradiction. Thus, Tr ⊃ D(r − l).

Therefore,
∑nr

i=1A(Ti) ≥ π(r − l)2 is obtained. And then
∑nr

i=1 A(Ci) ≥ d0 · π(r − l)2,

as well as lim
r→∞

inf
∑nr

i=1 A(Ci)

πr2
≥ lim

r→∞
inf d0·π(r−l)2

πr2
. This gives us d ≥ d0.

Now we have d0 ≤ d ≤ d ≤ d0, which means d = d = d0, and that’s the density in the

plane. Since it’s an upper bound, it is the largest density in the plane.

Remark 5. If the density in each cell is strictly less than d0, then the upper density in the plane

is strictly less than d0.
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36 (1987), pp. 93–97.

[8] A. Heppes. “On the packing density of translates of a domain”. In: Studia Sci. Math.

Hungar 25 (1990), pp. 1–2.

[9] A. Heppes. “Packing of rounded domains on a sphere of constant curvature”. In: Acta

Mathematica Hungarica 91.3 (2001), pp. 245–252.

51



[10] G. Kertész. “Packing with translates of a special domain”. In: Tagungsberrichte Math.

Forschungsinstitut Oberwolfach, Koll. Diskrete Geometrie (1987).

[11] J. Pach. New trends in discrete and computational geometry. Vol. 10. Springer Science

& Business Media, 2012.

[12] J. Pach and P. K. Agarwal. Combinatorial geometry. Wiley-Interscience, 1995.

[13] C. A. Rogers. “The closest packing of convex two-dimensional domains”. In: Acta Math-

ematica 86.1 (1951), pp. 309–321.

[14] C. A. Rogers. “The closest packing of convex two-dimensional domains, corrigendum”.

In: Acta Math. 104 (1960), pp. 305–306.
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