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Abstract

Impedance probes measure electron density (ne) and electron temperature (Te) by in-

terpreting frequency-dependent transmission or reflection spectra (S21 or S11) of ra-

diofrequency (RF) signals of low power (10−5 W). This diagnostic method is promis-

ing for use in complex plasmas because it is less disruptive to plasma and dust than

Langmuir probes, and it is easier and cheaper to implement than many common spec-

troscopic measurements, such as laser-induced fluorescence (LIF). Transmission-type

impedance probes offer some further advantages over reflection-type probes because

they can resolve plasma conditions near the probe vs farther away in the chamber,

and because they also may be used as a DC double Langmuir probe. One potential

application is to measure the charge of a dust cloud by performing RF and DC mea-

surements to measure ne and ni, and then to determine the charge on the dust via the

quasineutrality condition, ni − ne − zdnd ≈ 0.

This work explores the topic of transmission-type impedance probes in three ways.

Firstly, a theoretical model is developed to understand transmission-type impedance

probe spectra. Secondly, experiments are performed in which transmission spectra

are recorded using these probes in RF glow discharge plasmas. And lastly, a com-

puter model is developed to simulate the probe-plasma system, treating the continu-

ous plasma medium as a series of discrete circuit elements and using SPICE algorithms

to simulate the transmission of RF signals through the plasma. This computer model

is then used to determine ne and Te from experimental transmission spectra. We end

by discussing ways of implementing this diagnostic technique in dusty plasma exper-

iments, both for ground-based experiments and for microgravity experiments.
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Chapter 1

Dusty Plasmas

A dusty plasma, also called a complex plasma, is a low temperature plasma containing

a significant amount of dust. A low temperature plasma (LTP) is a partially-ionized

gas, containing three particle species: ions, electrons, and neutrals, by which we mean

non-ionized gas atoms or molecules. A dusty plasma, then, is a four-component

plasma; it consists of ions, electrons, neutrals, and dust.

Dusty plasmas are ubiquitous in astrophysical and space physics, appearing in pro-

toplanetary nebulae, comet tails, and planetary rings, to name a few [42, 37]. Closer

to Earth, meteorites and man-made objects alike ignite plasmas around themselves

as they enter Earth’s atmosphere at hypersonic speeds (u ' 5usound). Fine particles

may flake off of rocky surfaces or ceramic heat shields, which can effect these encas-

ing plasmas. One presumes that this effect is also important for hypersonic vehicles

and weapons within the atmosphere, though if such research were indeed ongoing, I

would not know about it. Here on Earth’s surface, dusty plasmas appear in lightning

strikes and campfires, and, much to the chagrin of scientists and shareholders alike,

dusty plasmas appear within the plasma processing chambers used in the manufac-

ture of silicon wafer electronics [45].

The dust component of a complex plasma significantly effects the plasma phenomena

common to all LTPs, as well as creating entirely new phenomena that only exist in

dusty plasmas. The presence of dust also complicates the use of some common LTP
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diagnostic methods, especially Langmuir probes, which perturb the dust and whose

measurements are in turn effected by the dust [28, 27]. Plasma impedance probes

(PIPs) are a promising diagnostic technique for use in dusty plasmas because these

probes, and the experiments they’re used in, may be designed in such a way as to be

less perturbing to plasma and dust than Langmuir probes.

PIPs represent one method among a class of diagnostic methods called Active Plasma

Resonance Spectroscopy (APRS). Low-power signals in the radio-frequency (RF)

range are applied to a plasma, and the plasma’s response to this signal is measured. In

the case of PIPs, this response is measured as the signal reflected off of or transmitted

through the plasma. Many PIP designs are possible for various applications. In this

work, we will focus on the PIP measurements of RF signals transmitted between two

cylindrical probe tips submerged in plasma.

Before further discussing the use of impedance probes in a dusty plasma, it is useful

to define some of the terms and concepts used in this thesis, especially because some

of these terms can have slightly different meanings in different contexts. To that end,

we will start with a discussion of dusty plasmas. We shall first discuss plasmas and

especially LTPs, and then we will discuss the impact of adding dust. We shall then

turn our attention to plasma impedance probes and their application to plasma with

and without dust.

1.1 General Plasma Concepts

This section may be considered a primer of plasma concepts, but herein I shall only

discuss those concepts relevant to this work. A more complete introduction to plasma

physics may be found in, for example, “Introduction to Plasma Physics and Controlled

Fusion,” by Francis Chen [12] or “Fundamentals of Plasma Physics,” by Paul Bellan

[5]. For dusty plasmas in particular, there is an excellent 2002 review article by Alexan-

der Piel and Andre Melzer [42], and a more conversational 2004 Physics Today article

by Bob Merlino and John Goree [37].
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1.1.1 What is a Plasma?

A plasma is a type of fully- or partially-ionized gas. Electrons around the gas

molecules are energized to the extent that some significant proportion of these elec-

trons escape their potential wells to move freely from the gas molecule. There are

competing definitions of what separates a plasma from a mundane ionized gas.

We will take the very broad definition that a plasma is any gas with significant enough

ionization fraction that plasma concepts are useful in describing the physics involved.

A neon light is a plasma. Fire is a plasma. A “plasma ball” toy contains plasma.

By some definitions of plasma, including that presented in Chen’s excellent textbook

recommended above [12], these examples are not plasmas, they are merely ionized

gases. Indeed, it can be argued that there will be no plasmas discussed in this dis-

sertation at all because, for the RF discharges in question, gas drag dominates over

long-range Coulomb forces. But it is useful to refer to these RF discharges as plasmas,

and so we shall do so with the acknowledgment that these plasmas do not meet the

definitions used in some other contexts.

1.1.2 Low Temperature Plasmas

Gas discharges are relatively diffuse, cold plasmas with small ionization fractions (∼

10−6) and plasma densities (n ∼ 10−14 to 10−16m−3). The ions are typically assumed to

be exclusively singly-ionized. The ions’ temperatures are often near room temperature

(Ti ≈ 1
40 eV), whereas the electrons tend to be warmer (Te ∼ 100eV). Gas discharges

are denser, warmer plasmas than many space plasmas, but we nevertheless categorize

them as Low Temperature Plasmas (LTPs). This categorization serves to differentiate

LTPs from other laboratory plasmas, such as fusion plasmas, which must operate at

temperatures hotter than the sun. LTP electron parameters are shown vis-a-vis other

types of plasmas in Figure 1.1.
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Figure 1.1: Plasmas are categorized according to their plasma parameters, such as
temperature and density. This diagram, reproduced from the NRL Plasma Formulary
[10], shows various types of plasmas categorized by their electron plasma parameters.
The work in this thesis pertain to RF and DC glow discharges.
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1.1.3 Quasineutrality

One of the most fundamental aspects of plasma physics is the phenomenon of

quasineutrality. That is, on a macroscopic scale, a given region of plasma tends to

maintain the condition of containing equal numbers of positive and negative charges.

Assuming singly-ionized ions, we may write this in terms of the electron and ion den-

sities, ne and ni, respectively:

ni − ne ≈ 0. (1.1)

However, at fast temporal scales and short spatial scales, these densities are constantly

undergoing small fluctuations. By “fast,” we mean that the fluctuations happen with

frequencies on the order of the plasma frequency, ωp. By “short,” we mean that they

happen on spatial scales shorter than a few Debye lengths, λD.

The quantities ωp and λD are ubiquitous in plasma physics, critical to many plasma

phenomena. There are, therefore, a number of equally-valid ways to introduce these

concepts. With an eye towards the work in this thesis, let us introduce them as the

temporal and spatial limits of quasineutrality: plasmas are quasineutral on timescales

slower than ωp and on spatial scales bigger than λD. With this context in mind, we

shall now discuss both the plasma frequency and the Debye length in more detail.

1.1.4 The Plasma Frequency

When fluctuations in plasma density occur, the nearby plasma particles rearrange

themselves so as to remove these nonuniformities in density and restore quasineu-

trality. For each charged plasma species, α, there is a characteristic frequency, ωpα,

called the plasma frequency, which is associated with this restoring motion [11]. This

restoring motion leads to self-excited oscillations which arise purely from the electro-

static equations of motion of charged particles in a plasma. We shall now demonstrate

this for electrons.
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Within a bulk plasma of uniform 0th order plasma density, n0, consider a small vol-

ume of plasma where random motion produces small fluctuations in the local electron

density,

ne = n0 + ñ (1.2)

where these 1st order fluctuations take the form,

ñ = n1eiωt, (1.3)

where n1 is the (small) amplitude of density fluctuation, ω is the frequency of this

fluctuation, and i =
√
−1 is the imaginary unit number. We could have equivalently

defined the fluctuations in terms of trigonometric functions, but this exponential form

allows for the convenient analysis of derivatives:

∂ne

∂t
=

∂

∂t
ñ = iωñ. (1.4)

The electron motion associated with the fluctuating density will be governed by the

electron continuity condition, which we express in terms of the divergence of electron

fluid velocity, u:

∇ · u =
−1
ne

∂ne

∂t
. (1.5)

The electrons will of course be subject to Gauss’s Law, which we express in a similar

manner,

∇ · E =
−ene

ε0
. (1.6)

We may describe the electron motion with the usual Momentum (conservation) Equa-

tion, which is a form of Newton’s 2nd Law:

Du
Dt

=

(
∂

∂t
+ (u · ∇)

)
u = ΣF, (1.7)
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where F are the various forces acting on the electrons and D/Dt is the so-called con-

vective derivative, which is the time derivative in the reference frame that follows the

electron flow velocity, u.

For now, we shall assume that there is no 0th order electron flow (u0 = 0), and thus the

convective derivative is equal to the partial derivative (D/Dt = ∂/∂t), at least for 0th

and 1st order terms.

As an aside, even though we have only introduced fluctuations of the 1st order of

smallness, and even though we have assumed that u0 = 0, D/Dt does nevertheless

differ from ∂/∂t in its 2nd order terms, by which we mean terms containing the multi-

plication of two quantities that are of the 1st order of smallness.

Regardless, we shall proceed by similarly assuming that E = 0 + Ẽ and writing the

acceleration of electrons due to the electric field as,

∂u
∂t

=
−e
me

Ẽ, (1.8)

With Equations 1.5 and 1.6 in mind, we consider the divergence of this motion:

∂

∂t
(∇ · u) = −e

me

(
∇ · Ẽ

)
. (1.9)

and we use these equations to rewrite Equation 1.9 as,

1
n2

e

(
∂

∂t
ne

)2

− 1
ne

∂2

∂t2 ne =
e2ñ

meε0
. (1.10)

These time derivatives may readily be evaluated using Equation 1.4 and the identity,

i2 = −1, resulting in,

ω2
(

ñ
ne
− ñ2

n2
e

)
=

e2ñ
meε0

. (1.11)

We now expand ne into n0 + ñ and solve for the value of ω which satisfies Equation

1.11. After some algebra, we my write this frequency, which we name the plasma
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frequency, in the following form:

ω2
pe ≈

e2n0

meε0
. (1.12)

This approximate solution to Equation 1.11 is valid to the 0th and 1st order of fluctu-

ations, which is also the limit of the derivation leading to Equation 1.11 anyway. For

greater precision, we would need to have written Equation 1.8 using the proper con-

vective derivative.

The derivation above considers only the self-excited motion of electrons. In Chapter

2, we shall expand on this to describe the motion of electrons driven in the near field

of a radio-frequency (RF) voltage source. In that discussion, we will see that ωpe is

critically important to the analysis of impedance probe spectra.

1.1.5 The Debye Length

In Section 1.1.3, we said that quasineutrality holds true for timescales slower than the

plasma frequency and length scales larger than the Debye length. Having introduced

ωp in the previous section, we now turn our attention to the Debye length, λD.

Consider a “small” test charge of charge q immersed in a plasma. The charge pro-

duces the usual Coulomb potential in the surrounding area, φ(r) = q/4πε0, but this

Coulomb potential rearranges the electrons and ions in the vicinity, which in turn

changes the effective potential “seen” by charges near this test charge. As it turns

out [12, 31], the resulting effective potential structure is the usual Coulomb potential

modified by an exponential screening term:

φ(r) =
q

4πε0
e−r/λD . (1.13)
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This screened Coulomb potential is sometimes called the Debye-Huckel potential, and

λD is the Debye length:

λD =

√
ε0kBTe

nee2 . (1.14)

This screening drastically diminishes the importance of electrostatic effects in plasma

from sources farther away than a few Debye lengths. Looking ahead to the case of

plasma crystals, which we shall discuss in Section 1.2.3, this screening is the reason

that the spacing between dust particles in liquid or crystalline phase tends to be about

a Debye length [31].

1.1.6 Sheathes

Large objects immersed in plasma cause much greater perturbations than those de-

scribed in the previous section. We refer to the plasma volume near a macroscopic

charged object in plasma as the “plasma sheath” [2].

Because the electrons have much higher mobility than the ions in plasma, an object in

plasma will experience a much higher rate of collisions with electrons, and this object

will typically acquire a highly negative charge. This negative charge pushes away

electrons and attracts ions, and the plasma sheath has a suppressed electron density

as a result, as shown in Figure 1.2.

Finding the electric potential, φ, and the electron and ion densities, ne and ni, in the

sheath is typically accomplished by numerically solving Poisson’s equation in the re-

gion,

∇2φ(r) =
e (ne(r)− ni(r))

ε0
. (1.15)

for ion and electron densities, ni and ne, at any point, r, in the plasma sheath. We have

here made the assumption that all ions are singly-ionized. We can solve Equation 1.15

by making some further assumptions about the behavior of ions and electrons in the

sheath.
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Figure 1.2: A numerical solution of electric potential and particle number densities in
a sheath between a (bulk) plasma and the spherical chamber wall. The wall is here
assumed to be grounded, but that need not be the case. The sheath edge is at radius,
s, and the electron and ion plasma densities at the sheath edge are both ns. Quasineu-
trality does not hold in a plasma sheath; electron density is highly suppressed in this
region. By convention, we define the bulk plasma to have electric potential φ = 0. This
means that the (grounded) chamber wall is at φ = −Vplasma. This choice is arbitrary,
as only ∇φ has physical meaning, not the value of φ.

We may immediately write an expression for ne by assuming that electron energy is

Boltzmann distributed:

ne(r) = n0 exp
(

eφ(r)
kBTe

)
. (1.16)

To find ni, we first invoke the Bohm sheath criterion, which states that ions must enter

the sheath with the ion sound speed:

|ui(sheath edge)| = uB =

(
kBTe

mi

)1/2

. (1.17)
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We note that ions do not accumulate in the sheath, and we use this Bohm criterion to

express ion continuity:

n0uB = ni(r)ui(r). (1.18)

Meanwhile, taking the bulk plasma to have potential φ = 0, and neglecting ion colli-

sions, we write ion conservation of energy as,

1
2

miu2
B =

1
2

miu2
i (r) + eφ(r). (1.19)

We use Equations 1.18 and 1.19 to construct an expression for the ion density in the

sheath as a function of only φ(r) and not ui(r):

ni(r) = n0

(
1− e

1
2 miu2

B
φ(r)

)−1/2

(1.20)

And so we rewrite Equation 1.15 using Equations 1.16 and 1.20,

∇2φ(r) =
n0e
ε0


exp

(
eφ(r)
kBTe

)
−
(

1− e
1
2 miu2

B
φ(r)

)−1/2

 . (1.21)

Given appropriate boundary conditions for the sheath in question, Equation 1.21 may

be solved numerically. For example, Figure 1.2 shows the resulting electric potential

and plasma densities for a grounded spherical chamber wall. The object need not be

grounded; the same process can be used to solve sheathes around electrically floating

objects, as well as objects with DC voltages imposed upon them by an outside voltage

source.

1.2 Dusty Plasmas

Dusty plasma effects have long been known to be important in various astrophysical

and space physics system. The field of laboratory dusty plasmas began in earnest in the

late 1980s in the silicon microchip manufacturing industry, when Selwyn accidentally

11



discovered dust electrically suspended above microchips made in a plasma processing

device [45].

In this industry, dust is a problematic contaminant, whose presence can cause shorts

between the fine components of a microchip. Much cost and effort is expended on

building advanced clean rooms to avoid dust contamination, but Selwyn discovered

that a significant source of this contamination is dust generated by the industrial pro-

cess itself, or else etched from the walls of the vacuum vessels in which these processes

are performed. Thus, much of the early focus of laboratory dusty plasma research

focused on the mitigation of dust contamination in these processing devices. These

days, dust mitigation research is ongoing, but results tend to be the closely-guarded

intellectual property of silicon manufacturing companies.

In the laboratory, dusty plasmas dynamics are a robust research topic in their own

right. Dust in plasma is typically studied by illuminating the dust with monochro-

matic laser light and observing the Mie scattering of the light from the dust. In this

way, dust particles are observed with the naked eye (so to speak – please wear eye

protection when operating lasers). More importantly, dusty plasmas may be observed

with off-the-shelf cameras and optics for use in the visible light range.

Because the dynamics of the dust particles are so easily recorded and studied, dust

particles in plasma are a convenient vehicle for studying the plasmas in which they

are immersed. Further, dusty plasmas represent a macroscopic, easily observed way

to study fully classical analogues of concepts and interactions important in the fields

of solid state physics, chemistry, statistical mechanics, and others.

1.2.1 Forces on Dust Particles

Electric and gravitational forces are typically the dominant dust forces for Earth-based

experiments. Gas drag and ion drag are also usually important. Other forces are

usually only important when intentionally introduced by the researcher, such as by
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applying heat to an electrode to introduce a thermophoretic force away from the heat

source.

As for the electric force on a dust particle, recall that bulk plasmas are quasineutral

(Section 1.1.3), whereas plasma sheaths are characterized by large potential gradients

(Section 1.1.6). A consequence of this is that, in the presence of appreciable gravita-

tional force, dust typically may only levitate in a plasma sheath, where an upwards

electric force may balance out the gravitational force.

Fg + FE = 0. (1.22)

More explicitly, the dust particle levitates at some height, y, where,

mdg + ZdeE(y) = 0, (1.23)

where md is the dust mass, g is the acceleration due to gravity, and zd is the number

of elementary charges on the dust particle. The levitation height of the dust particle,

then, is determined by the balance between the dust particle mass and the dust particle

charge.

1.2.2 Dust Charge

Dust particles immersed in plasma collect charges from various sources until a steady-

state surface potential, φd, is found, where charging currents are in equilibrium. The

primary currents determining the dust charge in laboratory plasmas are the collection

of electrons and ions. Because of the much higher electron mobility relative to ion

motion, laboratory dust typically acquire highly negative net charge. In astrophysical

plasmas, photoelectric charging and secondary electron emissions can also be impor-

tant or even dominant, and thus dust particles in space may even acquire net positive

charge.
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The OML Model

The most common method for calculating dust charge is to assume conservative po-

tentials for electron and ion motion, which is to say that electrons and ions are colli-

sionless. This charging model is called Orbital Motion Limited (OML) theory, which

was originally developed with Langmuir probes in mind [38, 60], which we shall dis-

cuss in Section 1.3. OML theory is so-named because it neglects ion currents from

decaying (collisional) ion orbits. In OML theory, the capture of such an ion is incor-

rectly identified as scattering event between the dust and ion. Regardless, OML theory

is considered to be a good model for dust particles smaller than the Debye length, λD

[32, 25, 50].

Because we have assumed collisionless motion, we may write the dust’s collection cur-

rents for electrons and ions purely in terms of kinetic energy distributions. Expressed

as a function of dust φd, the electron and ion currents for a dust particle of radius, rd,

are

Ie(φd) = −ene

√
kBTe

me
eeφd/kBTe4πr2

d (1.24)

and

Ii(φd) = eni

√
kbTi

mi

(
1− eφd

kBTi

)
4πr2

d (1.25)

where Tα is the kinetic temperature of species α (usually expressed in units of eV).

We have here assumed that electrons follow the Boltzmann distribution and that ions

obey the Bohm criterion. We find φd by requiring that the dust be in a steady state,

Ii + Ie = 0. Using the above expressions, we find that

ni

(
1− eφd

kBTi

)
= ne

√
Te
Ti

eeφd/kBTe , (1.26)

which we may solve to find φd. With dust potential in hand, dust charge is typically

found by assuming a simple capacitive relation between dust charge, Q, and potential:

Q = Cφ, (1.27)
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with the capacitance, C, of a spherical dust particle of radius, rd,

C = 4πε0rd. (1.28)

Overall, dust charge is weakly dependent on ne and ni and strongly dependent on Te

and rd. For laboratory plasmas, dust particles of radius in the range of 1− 10µm can

typically be expected to collect net charges in the range of 103 − 104 electron charges.

These absorbed charges may constitute an appreciable fraction of the available elec-

trons in the plasma, leading to a modified quasineutrality condition for dusty plasmas:

ni − ne − znd ≈ 0, (1.29)

where nα is the number density of species α. The phenomenon of electron density

being suppressed by dust charging is usually expressed using the Havnes parameter:

PH =
znd
ni

. (1.30)

Measuring Dust Charge

Dust charge is one of the most important parameters describing dusty plasma phe-

nomena [35, 42], but it is difficult to directly measure, as one cannot physically access

the dust particles without greatly perturbing the plasma around them, and therefore

changing the dust charge. However, dust charge can sometimes be determined by

observing the motion of the dust particles.

One method of determining dust charge is to observe a collision between dust particles

[29, 30]. By measuring the trajectories and deflection of the particles, one can deter-

mine the strength of their Yukawa-screened interaction, and thus measure the dust

charge. Another method of determining dust charge from dust motion is to analyze
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dust acoustic density waves (DAWs) [36]. The dispersion relations of these compres-

sional waves through a dust cloud are strongly dependent on dust particle charge,

and are a good way to measure it [52, 57, 53, 3]. Other ways of approximating dust

charge analyze the position and motion of individual particles, for example by using

the levitation condition in the sheath, qdustE = mdustg, and studying the oscillation fre-

quencies of particles in the sheath. None of these methods are without assumptions,

and they produce particle charge estimates of low accuracy.

1.2.3 Dust Crystals

The biggest watershed event in the field of dusty plasmas was the discovery of 2-

dimensional dust crystals in the mid 1990s [13, 20, 54]. First predicted by Ikezi in

the mid 1980s [23], dust crystals demonstrate that dust in plasma can exhibit collec-

tive and statistical behavior such as phase transitions. Moreover, because dust can so

easily be observed using illumination lasers and video cameras, dusty plasmas are a

particularly convenient way to study these topics.

It is natural to wonder if a dust crystal may be constructed in three dimensions. For

ground-based experiments, the answer so far seems to be “only somewhat.” Dust

bilayers may be readily constructed using dust particles of multiple sizes, and this

can be extended somewhat to several layers of dust particles, in structures sometimes

referred to as 2.5D systems. One can force monodisperse dust to form long “chains”

via tight confinement. Additionally, one can sometimes construct Yukawa balls via

long hours of trial and error. The ion drag and its associated wake force is simply too

disruptive in the sheath for a satisfying 3D extension of 2D dust crystals.

So, one might ask, how do we get out of the sheath? One way is to use very small

particles (< 1µm in diameter, say), but optically observing the dynamics of very fine

particles is often more difficult than for microparticles. Another way is to go to space.
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1.2.4 Microgravity

By removing the gravitational force effects from experiments, we can unlock the bulk

plasma for dusty plasma experiments. Microgravity conditions can be achieved in

several ways. Drop towers can achieve microgravity conditions for an experiment

lasting a few seconds. Sounding rockets can achieve hundreds of seconds, but you

only get one shot per rocket launch. Parabolic flights can achieve repeated periods of

microgravity lasting 30 to 45 seconds each, interspersed with periods of approximately

doubled gravity. More, parabolic flight experiments are typically performed with the

researchers on board, able to interact directly with the experiment to achieve the de-

sired experimental conditions. For experiments intended to last longer than this, the

best option is to conduct the experiment aboard the International Space Station (ISS).

Space station experiments present an interesting set of challenges not present in other

microgravity experiments. Perhaps the largest practical and logistical difference is

that the experimental apparatus will be sent to the ISS for a predetermined stretch

of time, and then no plasma physicist will physically interact with this experiment

until it returns to Earth. The apparatus must be designed with the understanding

that alterations or repairs are very difficult, and sometimes impossible, during the

experimental campaign.

It is primarily for this reason that no ISS or Mir dusty plasma experiment has ever

featured a Langmuir probe [39, 55, 15]. If, for example, a motor were to fail and leave

an actuated probe protruding into the plasma volume, this could seriously hamper the

rest of the (very expensive) experimental campaign.

1.3 LTP Diagnostic Methods

1.3.1 Langmuir Probes

Langmuir probes are simultaneously the gold standard for LTP diagnostics, and also

somewhat incompatible with dust. The development of these probes represent some
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of the earliest works in experimental plasma physics [58, 38] and continue to be a

ubiquitous diagnostic device for LTPs.

The basic concept of a Langmuir probe is to apply a known voltage to the probe tip

immersed in the plasma, and to record the resulting current flowing to or from the

probe. Typically, a Langmuir probe is operated by sweeping the applied voltage across

a wide span of values in the range of tens of volts positive and negative. The resulting

voltage vs current graph is analyzed to determine plasma parameters [1].

Immersing a probe tip into a plasma will intrinsically perturb the plasma as well as

any dust that plasma may contain. But the process of sweeping the voltage makes the

perturbation even stronger. This effect is especially troublesome for dusty plasmas – at

high positive voltages, the probe tips tend to collect dust particles and become contam-

inated, at high negative voltages, probe tips create very large dust voids, completely

altering the dusty plasma, whose plasma parameters one is presumably attempting to

measure [28, 27]. Much work has been done in this area to attempt to mitigate these

effects on Langmuir probe measurements [59, 6]. Much work has also been done to

characterize these probe-induced voids [56, 34, 44, 26, 19, 18, 47, 48, 16].

1.4 Impedance Probes

There are many measurement techniques that can be achieved by applying electri-

cal perturbations in various frequency ranges to langmuir probes and measuring the

plasma response [14]. Broadly speaking, we refer to such measurements utilizing

radio-frequency (RF) signals as plasma impedance probes (PIPs).

Said another way, PIPs are instruments used for performing active plasma resonance

spectroscopy, wherein a low-power RF signal is applied to a plasma, and the plasma

response to this signal is analyzed to diagnose plasma parameters. There are various

designs of impedance probe, and they are appropriate for different applications.
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1.4.1 Early Work

To the author’s knowledge, the first instance of an RF probe used in plasma was the

work of K. Takayama and H. Ikegami in 1960 [49], in which the nonlinearity of the

sheath impedance was investigated. A planar probe (2 cm diameter nickel disk) was

immersed in plasma, and an RF signal was applied to the probe, as well as a possible

DC offset. For RF voltage magnitudes ranging from 0.2 V to 0.8 V, the RF frequency

was swept across a broad frequency range, and the experimenters monitored the DC

component of the probe current. They observed three distinct frequency regimes. At

low frequency (ω << ωpe), the DC current was constant with applied frequency, but

increased with increasing RF voltage. At ω ≈ ωpe, the DC current spiked in a sharp

resonance behavior. And at ω >> ωpe, the DC current fell off towards a constant

value, independent of both RF frequency and RF voltage.

This result is interpreted in light of the motion of the electrons as they react to the

applied RF signal. The negative voltage half-cycle of the RF signal pushes electrons

away from the probe tip, but the positive voltage half-cycle cannot efficiently pull

the electrons back towards the probe because of screening effects. This results in an

electron beam directed away from the probe tip, and the measured increase in net

current into the probe. At ω << ωpe, this effect is independent of frequency, it only

depends on the magnitude of the applied RF voltage. As ω is increased towards ωpe,

the electron beam current density increases dramatically as the applied signal becomes

resonant with the natural fluctuations of the electrons. And as ω passes the resonance,

the electrons are no longer able to react at all to the RF signal, and no electron beam is

created in the plasma.

These effects become smaller for lower voltages. The voltages applied by the device

used in this dissertation work are an order of magnitude smaller than those in this

paper, and this effect is not considered in the analysis.
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Similar works in this vein were continued throughout the 1960s and 1970s [22, 17].

These days, PIPs are most commonly used for space plasmas and plasmas high in

Earth’s atmosphere [46].

1.4.2 Models

Measuring plasma parameters from PIP spectra must be done using some plasma

physics model, and many choices are available. Kinetic theory approaches [33, 40]

offer a powerful theoretical basis for PIP analysis. Lumped element models, wherein

the continuous plasma medium is modeled as a series of discrete circuit elements [8, 9],

are convenient options for their more direct analysis.

Lumped circuit models do require a great deal of measurement and/or modeling to

correctly identify the values of the circuit elements involved. The approach we will

take in this dissertation, is to geometrically solve for the relevant plasma capacitances,

and to use a plasma fluid model to interpret the electron motion as inductors and

resistors. Ions may also be taken into account, but in this work, we shall only consider

frequencies at which the ion contribution is negligable.

The inductance and resistance in such a model describe the inertia of the electrons

and the drag forces operating on those electrons, respectively. Consider the sudden

application of an electric field to a single electron at rest in an otherwise neutral gas.

The electron will not immediately be moving as the field is applied, the electron will

have to accelerate for some small time before coming up to its terminal velocity. So

current follows voltage, and this current ramps from zero up to some maximum value.

The behavior we are describing is the same behavior as the electric current passing

through an inductor in series with a resistor.

1.4.3 Probe Design

The possible designs for RF impedance measurement devices are myriad, but we shall

shortly describe several common probe designs. Figure 1.3a depicts the simplest probe
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design: a single-tipped impedance probe used for RF reflection measurements. The

probe tip may be of various geometries; dipole probes [7, 46] (depicted in Figure 1.3b),

spherical [8, 9], and planar [22, 43] probe tips are all used. These probes may also be

used as single-tipped Langmuir probes, but for RF measurements, the wire leading to

the probe tip must be adequately RF-shielded.

(a) A single-tipped cylindrical impedance probe

(b) A dipole impedance probe

Figure 1.3: RF Reflection Probes

Figure 1.4 depicts two different styles of transmission probes, which are the focus of

this dissertation. Figure 1.4a shows two single-tipped cylindrical probes, to be im-

mersed in the same plasma and used for RF transmission measurements. Figure 1.4b

shows a similar setup with both probe tips threaded through the same probe body.
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The biggest difference between these two probes is that the probe tips in Figure 1.4b

are likely to be within each other’s plasma sheathes, whereas the probe tips in Figure

1.4a are likely to be separated from each other by the bulk plasma.

These probes are functionally identical to double-tipped Langmuir probes at low fre-

quency, and may directly be used as such. As stated above, these probes are unlike

typical Langmuir probes in that they are shielded for use with radio frequency sig-

nals. They are also unlike some other RF probe designs because their RF behavior is

capacitor-like instead of wave-like; these transmission-probes operate in the near-field

limit of the applied RF signal.

In a glow discharge plasma, electrons are mobile enough that Te is expected to be ap-

proximately constant across the entire space. However, ne may vary greatly in the

plasma chamber. One advantage of transmission-type impedance probes for use these

plasmas is that the transmission spectra measured are separately sensitive to plasma

parameters near the probe tips compared to plasma parameters farther away in the

plasma. This separate sensitivity for ne will be demonstrated (in simulations) in Sec-

tion 4.3.
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(a) Two single-tipped cylindrical impedance probes

(b) A double-tipped cylindrical impedance probe

Figure 1.4: RF Transmission Probes

23



Chapter 2

Theory

2.1 Impedance Probes

Impedance probe diagnostics are a type of active plasma resonance spectroscopy use-

ful for measuring electron density and temperature in low-temperature plasmas in

laboratory environments [58, 49, 8] and in atmospheric and space environments [46].

Plasma

A1

A1S11 +A2S12

A2

A1S21 +A2S22

Figure 2.1: Reflection and transmission characteristics are often expressed with S-
parameters. A Vector Network Analyzer (VNA) measures the impedance of the device
under test by applying a known signal (A1) and measuring either the reflected signal
(A1S11) or transmitted signal (A1S21).

An impedance probe utilizes a Vector Network Analyzer (VNA), or an equivalent

measurement device, to measure the plasma’s frequency-dependent response to low-

power radio signals. Plasma parameters are determined from analysis of resonances

at or near the electron plasma frequency, ωpe. For relatively steady-state plasmas, such
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as most low temperature laboratory plasmas, the input signal is typically swept in fre-

quency, with one VNA spectrum taking a few seconds to tens of seconds to measure.

A VNA running an impedance probe measures plasma impedance by comparing the

VNA output signal (A1) to the signal reflected back from the plasma (A1S11), or the

signal transmitted through the plasma (A1S21), with S-parameters defined as shown

in Figure 2.1. Transmission-type impedance probes (Figure 2.2) may have some ad-

vantages for use with dusty plasmas, and these are the probes used in experiments

presented in this work.

Figure 2.2: A reflection-type impedance probe (left) determines plasma parameters by
analyzing reflected (S11) signal from the probe tip. A transmission-type impedance
probe (right) determines plasma parameters by analyzing transmitted (S21) signal
through the plasma chamber.

To relate the S-parameters to the electron plasma density, ne, we model the plasma

as a simple circuit composed of discrete (”lumped”) circuit elements (Figure 2.3).

These lumped circuit elements approximate the collective behavior of the continu-

ous plasma. The electron temperature, Te, may also be found from this model, but it

requires more careful analysis than does ne.

2.2 Circuit Model

Consider the case of a single-tipped probe (Figure 2.3a). The plasma sheathes are

assumed to be completely free of electrons (ne = 0), and are therefore modeled simply

as capacitors, whose values are calculated from the geometry of the probe and plasma

25



Csh

Cp

Cwall

Lp

Rp
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(a) Single-Tipped Probe

Csh
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Cwall
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Probe

Probe

(b) Double-Tipped Probe

Figure 2.3: Plasma circuit model for impedance probes operating in (a) reflection mode
with a single-tipped probe, and (b) transmission mode with either one double-tipped
probe or two single-tipped probes.
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chamber, as well as the thickness of the sheathes around the probe and at the wall.

Sheath thicknesses are calculated as described in Section 4.1.1.

For the bulk plasma, an applied signal is transmitted in two ways: via direct capacitive

coupling across the bulk volume, and via electron motion. Ion motion is neglected, be-

cause it occurs on a much slower time scale. The bulk plasma is thus modeled as a ca-

pacitance (Cp) between the relevant sheath boundaries, in parallel with an inductance

(Lp) and resistance (Rp), which together describe the collective motion of electrons. Cp

is calculated geometrically, similarly to the sheath capacitance, whereas Lp and Rp are

determined from a fluid model for the bulk plasma. In the next section, we shall show

that, these circuit element values are approximately,

Lp ≈ ω−2
pe C−1

p , (2.1a)

and

Rp ≈ νLp, (2.1b)

where ωpe is the electron plasma frequency, and ν is the frequency for electron mo-

mentum loss, which for these plasmas is simply the electron-neutral collision fre-

quency.

2.3 Fluid Model for Bulk Plasma

These expressions for Lp and Rp come from the fluid model plasma impedance, which

may be derived from the momentum equation for electrons,

DPe

Dt
= FLorentz +Fcollisions +Fpressure + . . . , (2.2)

where Pe is the electron momentum density, and F are the various force densities.

Here, we include only the Lorentz force and forces from electron-neutral collisions and

electron pressure gradients. The convective derivative, D/Dt, is the time derivative
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in the reference frame that follows the motion of the plasma fluid element. We write

Equation 2.2 in the plasma chamber’s reference frame and with explicit expressions

for the included forces:

me

[
∂

∂t
+ (u · ∇)

]
(neu) = −ene (E + u× B)− nemeνu− γkBTe∇ne, (2.3)

where me is the electron mass, u(x, t) and ne(x, t) are the electron fluid velocity and

number density, E(x, t) and B(x, t) are the electric and magnetic fields, ν is the electron-

neutral collision frequency for momentum transfer, kB is the Boltzmann constant, Te

is the electron temperature, and γ is a dimensionless constant of order unity, whose

value depends on the electron electron flux assumption. We may solve Equation 2.3 by

linearizing the fluctuating quantities; u, ne, E, and B; in terms of plane wave solutions.

2.3.1 Plane Wave Solutions

Consider some quantity, α, which is characterized by a steady-state value, α0, which is

constant in time but not necessarily space, in linear combination with a small pertur-

bation, α̃, which takes the form of a plane wave oscillation. We may write,

α(x, t) = α0(x) + α̃(x, t), (2.4a)

with

α̃(x, t) = α1ei(ωt−k·x), (2.4b)

where i is the imaginary unit, i =
√
−1. We could have equivalently defined α̃ in terms

of sines and cosines, but we have used Euler’s Identity, exp(±iθ) = cos(θ)± i sin(θ),

to write these oscillations as exponential expressions. We do this so that the spatial

and time derivatives of α̃ may be conveniently written as,

∂

∂t
α̃ = +iωα̃ (2.5a)

∇α̃ = −ikα̃ (2.5b)
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∇ · α̃ = −ik · α̃ (2.5c)

∇× α̃ = −ik× α̃ (2.5d)

The signs of the exponential term in Equation 2.4b are arbitrary and chosen for con-

venience. We choose the sign of +iωt because it will produce expressions for plasma

impedance which conform to the convention that inductive reactance is positive and

imaginary, and capacitive reactance is negative and imaginary. Meanwhile −ik · x

takes the opposite sign to conform to the convention that the +k̂ direction indicates

the plane wave’s direction of propagation.

To solve Equation 2.3, we assume that the quantities, u, ne, E, and B take the form

of Equations 2.4 and 2.5. We will further assume that there is no steady-state flow of

electrons (u0 = 0), but do not yet make any such restriction for E0, B0, or ne0:

u = ��>
0

u0 + ũ, (2.6a)

E = E0 + Ẽ, (2.6b)

B = B0 + B̃, (2.6c)

ne = ne0 + ñe. (2.6d)

2.3.2 Ohm’s Law

We may now use Equations 2.5 and 2.6 to linearize the fluid momentum equation

(Equation 2.3),

me

[
∂

∂t
+ (ũ · ∇)

]
((ne0 + ñe) ũ) =

− e (ne0 + ñe)
((

E0 + Ẽ
)
+ ũ×

(
B0 + B̃

))
− ne0meνũ− γkBTe∇ (ne0 + ñe) , (2.7)
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The 0th and 1st order fluctuations of Equation 2.7 become two separate equations. The

0th order terms of Equation 2.7 obey,

0 = −ene0E0 − γkBTe∇ne0, (2.8)

or,

E0 = −γkBTe

e
∇ne0

ne0
. (2.9)

Meanwhile, the 1st order terms of Equation 2.7 are,

iωmene0ũ = −e
(

ñeE0 + ne0Ẽ + ne0ũ× B0

)
− ne0meνũ + ikγkBTeñe. (2.10)

Regrouping terms, we write,

ũne0me(ν + iω) = −ene0

(
Ẽ + ũ× B0

)
+ ñe (ikγkBTe − eE0.) . (2.11)

We now use Equation 2.9 to eliminate the explicit dependence on the steady state

electric field from Equation 2.11, resulting in an equation of motion for the electron

fluid in the plasma,

ũne0 =
−ene0

me(ν + iω)

(
Ẽ + ũ× B0

)
+

γkbTe

me(ν + iω)

(
∇ne0

ne0
+ ik

)
ñe. (2.12)

We wish to obtain an expression for the plasma impedance by interpreting this electron

motion as a version of Ohm’s Law,

j = σE. (2.13)

To this end, we can relate ñe to Ẽ using the 1st order linearized Poisson’ Equation,

ñe =
ε0

e
ik · Ẽ, (2.14)

30



and we can write ũ as a 1st order current density fluctuation,

j̃ = −ene0ũ. (2.15)

We may now use Equations 2.14 and 2.15 to re-write Equation 2.12 into the following

rather unweildly form,

j̃ =
1

me(ν + iω)

[
ne0e2

(
Ẽ− 1

ene0
j̃× B0

)
− ε0γkBTe

(
∇ne0

ne0
+ ik

)(
ik · Ẽ

)]
. (2.16)

In Equation 2.16, we notice that several common plasma quantities have amerged: ωc,

ωpe, and λD are the electron cyclotron frequency, plasma frequency, and Debye length,

respectively:

ωc =
B0e
me

, (2.17)

ω2
pe =

ne0e2

ε0me
, (2.18)

λ2
D =

ε0kBTe

ne0e2 . (2.19)

We use these quantities to rewrite Equation 2.16 as,

j̃ +
(

ωc

ν + iω

)
j̃× b̂0 = σ0

[
Ẽ− γλ2

D

(
∇ne0

ne0
+ ik

)
(ik · Ẽ)

]
, (2.20)

where we have defined the quanitity,

σ0 =
ε0ω2

pe

ν + iω
=

ne0e2

me(ν + iω)
, (2.21)

where b̂0 is the unit vector indicating the direction of the background magnetic field,

B0, and σ0 may be interpreted as the near-field plasma conductivity.
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For the case that B0 = 0 and k||Ẽ, and we simplify Equation 2.20 to,

j̃ =
[
σ0 − iσk(n̂ · k̂)− σk2

]
Ẽ (2.22)

with

σkn̂ = σ0γλ2
Dk
∇ne0

ne0
, (2.23)

and

σk2 = σ0γλ2
Dk2, (2.24)

where k̂ and n̂ indicate the directions of wave propagation and electron density gra-

dient, respectively.

For the frequencies used in impedance probe measurements, and for the plasma con-

ditions found in RF, capacitively-coupled glow discharge plasmas, it will always be

true that,
σk2

σ0
= γ

λ2
D

λ2
w
� 1, (2.25)

where λw = 1/k is the wavelength of the fluctuation. And so we may always neglect

the effects of σk2 in this work.

The σk contribution will also be small in the plasma bulk, where ∇ne0 is small. But

σk can be important in the plasma sheath, where ∇ne0 is large. For now, we limit our

analysis to the plasma bulk, and therefore make the approximation that σ ≈ σ0.

2.3.3 Circuit Model Elements from Fluid Model

To find the total impedance related to this conductivity, we may in principal find the

electric field by solving Poisson’s Equation between the probe sheath and the wall

sheath (recall Figure 2.3a), and then integrate j = σE in this region to find the total

current flowing between the two sheathes for a given potential difference.

Zpe =
∆V

I
=

∆V
σ
‚

bulk
Ẽ · dŜ

, (2.26)
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where Zpe is the impedance due to the electrons in the bulk plasma. In the circuit

model for a single-tipped probe, it is related to the total impedance by,

Z = Zsheathes +
1

1
ZCp

+ 1
Zpe

. (2.27)

Meanwhile, the probe sheath and wall sheath also interact capacitively (Figure 2.3a).

The capacitance of Cp is found the same way, by integrating along the electric field in

the bulk region:

Cp =
Q̃

∆V
=

ε0
‚

bulk
Ẽ · dŜ

∆V
(2.28)

The particular solutions to Equations 2.26 and 2.28 will depend on geometry. But in

any geometry, we may write,

Zpe =
1
σ

ε0

Cp
=

ν + iω
ω2

pe

1
Cp

(2.29)

We may interpret the imaginary and real parts of Equation 2.29 as an inductance with

reactance, X = ω−2
pe C−1

p , in series with a resistor with resistance, R = νω−2
pe C−1

p . And

so the corresponding circuit elements in the circuit model have values given by Eqa-

tion 2.1:

Lp ≈ ω−2
pe C−1

p , (2.1a)

and

Rp ≈ νLp, (2.1b)
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Chapter 3

Experiment

3.1 Plasma Devices

The Microgravity Plasma Lab (µg Lab) at Auburn University is a laboratory for ter-

restrial low temperature plasma research and for the development of experimental

devices and techniques used in microgravity dusty plasma research. The experiments

presented in this work were performed in two different plasma chambers at µg Lab:

DODECA, which is an RF plasma device with a dodecahedral shape, and RaFyL, a

cylindrical RF plasma device created for this work.

3.1.1 DODECA

DODECA is a device developed for studying dust voids in microgravity experiments

with the design goal of creating a plasma with nearly (time-averaged) isotropic ion

motion. DODECA was designed to be operated with twelve independently-powered

electrodes in a dodecahedral formation. However, in this work, DODECA was op-

erated with only seven electrodes installed: two powered electrodes at the top and

bottom of the chamber and five grounded electrodes positioned around the bottom

electrodes to form a “bowl.” In this bowl, it was possible to create large dust clouds,

about 3 cm tall. However, the complicated geometry of this orientation makes analysis

of impedance probe data difficult, and there are often strong plasma density gradients

in the volume. In fact, as we shall see, it often happens at low RF power that there
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is only a suppressed or diffusive bulk plasma around the centrally-located impedance

probe tips, making analysis of these low-power plasmas challenging if not impossible.

Figure 3.1: DODECA

3.1.2 RaFyL

RaFyL has a much simpler geometry: circular electrodes at the top and bottom of the

chamber form a roughly cylindrical discharge. This configuration makes geometrical

analysis of impedance probe measurements easier, but it is not as conducive to creating

large dust clouds.
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Figure 3.2: RaFyL

3.2 Impedance Probe

The impedance probes (Figure 3.4) are single- or double-tipped cylindrical probes with

probe tips made of tungsten wire with a diameter 0.2 mm and a length varying be-

tween 1.5 and 2 cm. The single-tipped probes were used in conjunction – one was the

broadcasting probe, and the other was the receiving probe. The double-tipped probes

contained both probe tips within one 1/4 inch tube body. The probe tips were sep-

arated from the end of the tube body by a length of ceramic tube of length varying

between 1 and 2 cm. These insulating tubes helped to lessen the plasma-bypassing

coupling between the probe tips and the probe body. Each probe tip was connected

to an RF-shielded wire that passed through the body of the probe, through a vacuum

feedthrough, and terminating in an SMA connector. The probe wires in the body of

the double-tipped probes were shielded both from each other and from outside RF

sources and sinks.

3.3 Experimental Setup

A transmission-type impedance probe was immersed into a capacitively-coupled, RF

plasma, and frequency-dependent transmission spectra were recorded.

Typical experimental parameters are listed in Table 3.1.
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Figure 3.3: Circuit diagram for simultaneous RF and DC measurements.

These experiments were performed using automation software written as a part of

this work. The software is written in C++ and makes use of Uwe Konopka’s COPLA

(COmplex PLasma Analysis) libraries, which are written in C. This COPLA-based con-

trol software uses serial and USB communication to interface with the various devices

used; pressure transducers, mass flow controllers, RF measurement devices, and the

like. The software controls the powered electrodes by interfacing with an Arduino

Figure 3.4: Impedance Probes
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Experiments
probe type transmission

probe spacing 2..30mm
dust None

Plasma Parameters
Te ∼ 3 eV
Ti 0.025 eV
ne ∼ 1014 m−3

gas Ar or Kr
Pgas 1↔ 30 Pa

Table 3.1: Experiment Parameters

microcontroller, which in turn controls a 2-channel signal generator running off of an

AD9959, and reading the output with AD8307 and AD8302 RF power and phase me-

ters. This power supply is a prototype for an 8-channel signal generator (using two

AD9959s) in development at µg-Lab, but only the 2-channel version was required for

data collected for this work. The control software written for the Arduino makes use of

the AD9959 Arduino library written by Clifford Heath, of GitHub username, “cjheath”

[21].

3.4 Results and First Analysis

An example sweep of spectra is shown in Figure 3.5. These data were taken in the DO-

DECA plasma chamber with a switched-DC plasma created by power inverter with

oscillation frequency on the order of 10 kHz. Each vertical spectrum shows the trans-

mission power gain due to the plasma. That is to say, at each inverter power on the X

axis, the vertical spectrum shows the transmitted RF power with the plasma turned on

minus the transmitted RF power in the chamber with the plasma off. The analysis of

this dissertation focuses on the plasma resonances seen at approximately 0-200 MHz.

But standing wave resonances are also visible at higher frequencies, and it should be

noted that these resonances also contain information about the plasma.
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Figure 3.5: Example data taken in the DODECA plasma chamber with a switched-DC
plasma created by a power inverter. From low to high frequency, the visible features
in this power sweep show the plasma resonance (approx. 0-200 MHz), the chamber
standing wave resonance (approx. 300-800 MHz), and another resonance (approx.
1150 MHz), which is likely a 2nd-order resonance of the chamber standing wave.
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3.4.1 Qualitative Fitting

The experimental spectra were fit using a linear combination of two Gaussian curves,

each representing the reflection and absorption of power by the plasma near its plasma

frequency (Figure 3.6). One Gaussian curve represents the suppression of transmitted

power by plasma elements encountered along the electric field lines between the two

probe tips. The other represents the increase of power transmitted between the probe

tips because of the reflection of power between each probe tip and the grounded cham-

ber wall. This second Gaussian curve should be understood to represent the conser-

vation of energy in the system – power impeded from going to the chamber wall must

either reflect back into the transmitting probe or it must be absorbed by the receiv-

ing probe. The average plasma density will be different along the transmission paths

from probe to probe as compared to the transmission paths from probe to wall, and

therefore these curves will not be centered around the same frequency.

Figure 3.6: The experimental spectra of the gain due to plasma may be fit with two
gaussian curves, one positive and one negative. X axis: frequency in MHz. Y axis:
gain due to plasma. The blue line is an experimental transmission spectrum with no
plasma minus the same spectrum without plasma in the chamber. The yellow line is
the fit. It is a linear combination of a positive Gaussian curve (green) and a negative
Gaussian curve (red). The negative gaussian curve should be understood to represent
the plasma interfering with the probe-probe transmission near ωpe. The positive curve
represents the plasma interfering with the probe-wall transmission in the same way.
Because energy is conserved, the decrease of energy flowing to the wall must be ac-
counted for by an increase of energy being reflected back into the transmission probe
and/or being transmitted to the receiving probe.
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As shown in Figure 3.7, this method of curve fitting produces plots that visually match

the experimental data very well. Table 3.2 shows an example set of fit parameters

for the last electrode voltage plotted in Figure 3.7. Figure 3.8 shows the positive and

negative central frequencies and associated uncertainties for all spectra, plotted over

the raw data. It also shows the Full Width Half Maxima of these curves, but does not

show the related uncertainty.

Figure 3.7: Data fit with positive and negative Gaussian curves. Data taken with
double-tipped transmission PIP in DODECA plasma chamber, 6 Pa (45 mTorr), elec-
trode VRMS scan from approximately 10 to 40 V. Example fit parameters shown in Table
3.2.

Curve Parameter Value Related Plasma Params.

+
Center Freq. 180.74± 0.41 MHz ne

Width 43.13± 0.69 MHz Te and ∇ne
Scaling 24.03± 0.74 unclear

-
Center Freq. 151.49± 2.10 MHz ne

Width 92.27± 2.29 MHz Te and ∇ne
Scaling −12.52± 0.75 unclear

Table 3.2: Data fitting with two gaussian curves, one positive and one negative. DO-
DECA plasma chamber, probe separation ∼ 2 mm, neutral pressure 6 Pa (45 mTorr),
electrode VRMS

3.4.2 Fit Uncertainties

The uncertainties listed in Table 3.2 are calculated via 6-dimensional χ2 analysis that

makes no assumption as to the distribution of the errors. Assuming that all errors are

normal under-represents the error of this fit. This is demonstrated in Figure 3.9 using

41



Figure 3.8: Center frequencies of Gaussian curves used to fit the data are shown. The
large bars show the usual 2σ uncertainty limits for the center frequency values of the
Gaussian curves used to fit the data. The small bars show the full width half maxi-
mum (FWHM) widths of these curves. The error for these widths was calculated (for
example, in Table 3.2), but are not shown here. The values for the positive (teal) and
negative (purple) Gaussian curves are slightly shifted from each other in their x-axis
position for readability; the Vrms value associated with each data point is the center of
the (vertical) spectrum as plotted here.
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the 2-D error plane for positive Gaussian curve’s center frequency and width param-

eters. The left side of Figure 3.9 shows two naive ways of performing χ2 analysis.

The gray ellipses show the intervals for 1σ, 2σ, and 3σ confidence taken from varying

two fit parameters and calculating the corresponding χ2 (color plot). The blue ellipses

show the 2-D slices of the 6-D χ2 confidence ellipsoids calculated by assuming that all

errors are normal. These two methods produce almost identical confidence ellipses in

this plane. But comparison to the graph to the right shows that this naive analysis is

insufficient.

Figure 3.9: χ2 analysis between the width (MHz) and center frequency (MHz) of the
positive Gaussian fitting curve.
Left: Naive error analysis. χ2 is calculated for a span of δ values of two fit parame-
ters near the fit solution, but all other parameters are held constant. The gray ellipses
(hardly visible) show the ∆χ2 boundaries for 1σ, 2σ, and 3σ confidence intervals. The
blue ellipses are 2-D slices of the 6-D ellipsoids representing 1σ, 2σ, and 3σ confidence
intervals assuming all errors are normal.
Right: More robust error analysis. χ2 is calculated for a span of δ values of two fit
parameters near the fit solution, and all other parameters are refit to minimize χ2. The
gray ellipses show the ∆χ2 boundaries for 1σ, 2σ, and 3σ confidence intervals. The
green ellipses are 2-D maxima projections of the 6-D ellipsoids representing 1σ, 2σ, and
3σ confidence intervals assuming all errors are normal.

The right side of Figure 3.9 shows two more robust methods of performing χ2 analysis.

The gray ellipses show the intervals for 1σ, 2σ, and 3σ confidence taken from varying

two fit parameters, refitting the other parameters to minimize χ2, and then recording that

minimum χ2 value (color plot). The green ellipses show 2-D projections of the max-

ima of the 6-D confidence ellipsoids calculated by assuming normal errors. We see
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that these two methods produce similar results, but the normal error assumption still

under-represents the uncertainty in this 2-D fit parameter plane.

Let us not forget that these confidence ellipses are 6-dimensional surfaces in parameter

space relating to the maximum ∆χ2 for each level of confidence. To help us visualize

this somewhat, Figure 3.10 shows a third dimension of the ellipses shown in the plot

on the right in Figure 3.9.

We have thus far shown that we must at least perform the χ2 analysis for each fit pa-

rameter by refitting all other parameters for a range of values near the fit solution.

However, this is only sufficient if, referring to the full 6-D χ2 map near the fit solution,

the 6-D confidence interval surfaces are all convex. That is to say that, for any χ2 plane

(such as the example in Figure 3.9), if any of the confidence interval lines look like ba-

nanas instead of ellipses, our analysis might produce uncertainties that represent local

minima of χ2, not total minima, and we might therefore under-represent the related

uncertainties.

To this end, a fully 6-dimensional χ2 map was created in a region of parameter space

centered about the fitting solutions. This χ2 map was produced at low resolution due

to the computational intensity of this task. The results of this work are plotted in

Figure 3.11. The blue dots represent locations in this 2-D χ2 plane where all values

in the full 6-D χ2 space are within the 2σ confidence error limit. Also plotted is the

similar analysis performed by re-fitting values. We see that these two methods are in

good agreement.

We may now fit the data using a combination of two Gaussian curves, and we may

confidently describe the error of this fit. But the goal of this work is not to draw

pictures that look like the data, the goal is to take the data and extract real plasma

parameters such as ne and Te. We can say that the center frequency fit parameters seem

like they might correspond to ωpe for plasma between the two probe tips or between

each probe tip and the chamber wall. And we can say that the Gaussian width ought
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Figure 3.10: The error ellipsoids in Figure 3.9 represent 6-dimensional surfaces. They
are here expanded to 3-dimensions to help visualize the true object. The axis labels,
δa0, δa1, and δa2 refer to small variations in the positive Gaussian fit’s center frequency,
width, and scaling parameter, respectively. The top ellipsoid is the 3-D projection
of the green ellipses on the right side of Figure 3.9. The bottom ellipsoid is the 3-D
projection of the gray ellipses.
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Figure 3.11: 2D χ2 map relating the positive Gaussian curve’s width (MHz) to that
curve’s scaling factor (unitless). This χ2 map was created by refitting the other four
parameters, as described in Figure 3.9, and the gray ellipsoid shows the boundary for
the 2σ confidence region. The blue dots show the 2σ confidence region as determined
via the full, proper 6-D χ2 analysis. We see good agreement between these two error
analysis techniques, but the full 6-D analysis is much more computationally intensive.
This means that we may safely rely on the computationally lighter method.
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to correspond to a combination of Te and the gradient in density, ∇ne. But this does

not satisfactorily complete the goals of this thesis.

The fitting method described above starts with the shape of the data, fits it with a

curve, and then attempts to interpret the curve parameters in terms of plasma physics.

But this interpretation is somewhat hazy. Because of this, we decided to develop a

means of interpretation whose logic flows the opposite direction: starting with the

plasma physics, and then producing the model’s best guess as to what the data ought

to look like. To this end, we created a circuit simulation of the probe-plasma-chamber

system.
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Chapter 4

Circuit Simulations

The circuit model is analyzed using vna.py, a Python package I developed to perform

lumped-element circuit simulations of one or more impedance probes immersed in

plasma. Vna.py determines the values of the circuit elements based on the plasma

model described in Chapter 2. It then performs circuit simulations using PySpice and

ngspice. Vna.py can be thought of as a task-specific wrapper for PySpice. PySpice is,

in turn, a Python wrapper for ngspice. At the center of this code onion, the methods

included in ngspice perform the circuit simulations. This is depicted by the flowchart

in Figure 4.1.

Ngspice is an open-source, mixed mode, mixed level circuit simulator, which imple-

ments the functionality of the proprietary Spice circuit simulation software. PySpice

is an open-source Python package that aides in generating circuit model files, called

“netlists.” PySpice then uses ngspice to analyze these netlists and returns the output

in a numpy format, which is ubiquitous in Python-based data analysis.

The code onion can always be peeled further – ngspice is based on the Spice3f5,

Cider1b1, and Xspice packages. But for our purposes, it is sufficient to say that vna.py

runs circuit simulations using PySpice and ngspice.

There are two intended uses for vna.py: simulating a transmission spectrum for

known plasma parameters, and determining experiment plasma parameters by fitting
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Figure 4.1: vna.py plasma circuit modeling flowchart

data from a Vector Network Analyzer (VNA). The latter is achieved by repeatedly per-

forming the former, so we shall begin by describing the simulation of a transmission

spectrum.

4.1 The Simulation Object

The centerpiece of the vna.py library is the simulation class. A vna.py

simulation is given chamber geometry information, probe goemetry information,
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and plasma parameters. Before the simulation can create a PySpice circuit object,

the following quantities must be calculated:

1. Sheath thicknesses

2. Capacitances

3. Bulk plasma inductance and resistance

4.1.1 Calculating Sheath Thickness

The sheath thickness is found by numerically solving Poisson’s Equation in the sheath,

∇2φ(r) =
e
ε0
(ne − ni), (4.1)

or, written for cylindrical geometry with no ẑ or θ̂ dependence,

φ′′ =
e
ε0

(ne − ni)−
φ′

r
. (4.2)

To solve this, we must assume or determine expressions for the electron and ion densi-

ties in the sheath, ne(r) and ni(r). At the sheath edge, r = s, we assume that electrons

and ions are quasi-neutral,

ni(s) ≈ ne(s) ≈ ns, (4.3)

and we assume the electrons are Boltzmann-distributed,

ne(r) = nseeφ(r)/kBTe . (4.4)

We assume that the ions enter the plasma sheath from the bulk plasma at the Bohm

velocity,

ui(s) = uB =

(
kBTe

mi

)1/2

, (4.5)
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and assume collisionless, cold ions, such that each ion carries kinetic energy,

1
2

miu2
i (r) =

1
2

miu2
B − eφ(r). (4.6)

We also assume that ions are continuous in the sheath (no ionization or recombina-

tion),

2πrni(r)ui(r) = 2πsnsuB. (4.7)

Combining Equations 4.6 and 4.7, we may determine an expression for ion density in

the sheath,

ni(r) = ns
s
r

(
1− 2e

miu2
B

φ(r)

)−1/2

(4.8)

Finally, we use Equations 4.4 and 4.8 to rewrite Poisson’s Equation (Eqn 4.2) with all

dependence on r made explicit:

φ′′ =
nse
ε0


eφ(r)/Te − s

r

(
1− 2e

miu2
B

φ(r)

)−1/2

− φ′

r
(4.9)

To solve Equation 4.9, we use the following boundary conditions:

φsheath = 0 (4.10a)

φ′sheath = 0 (4.10b)

φsur f ace = Vf loat or Vplasma or Vbias (4.10c)

where the potential in Equation 4.10c is chosen depending on the potential of the

surface in question.

Equation 4.9 is solved numerically using the boundary conditions in Equation 4.10.

The result is shown in Figure 4.2a. As shown in Figure 4.2b, the sheath thickness

is found by calculating the potential difference across the sheath, and adjusting the
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sheath thickness until this matches the expected surface potential. In this case, φsur f ace

is the floating potential from Langmuir probe theory,

∆V =
kBTe

2e
ln
(

mi

2πme

)
. (4.11)

There are practical considerations to solving Equation 4.9 that we will not discuss in

detail here. For example, there sometimes exist mathematically valid solutions to Pois-

son’s equation that are non-physical, and the order in which the boundary conditions

are applied (Equation 4.10) can sometimes be important. For a detailed discussion of

these practical matters, see the Jupyter notebook included in Appendix A.

4.1.2 Calculating Capacitances

The simulation object then determines the capacitances between the probe tips and

the probe sheath edge (Cps), between the wall and the wall sheath edge (Cws), between

the two probe sheathes (Cpp), and between the probe sheath and the wall sheath (Cpw).

simulation has two different methods which may be used to calculate these capac-

itances: using exact solutions for drastically simplified approximations of the relevant

geometry or by numerically solving Poisson’s Equation in a more robustly modeled

chamber.

The default option for calculating these capacitances is to use exact solutions for dras-

tically simplified approximations of the geometry. Cps is modeled as the capacitance

between two concentric cylinders, ignoring edge effects:

Cps = 2πε0
l

ln( sp
rp
)

, (4.12)

where l is probe length, rp is the probe radius, and sp is the probe sheath radius.
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When simulating the DODECA chamber, Cws is modeled as the capacitance between

two concentric spheres:

Cws = 4πε0
rwsw

rw − sw
, (4.13)

where rw is the wall radius and sw is the wall sheath radius.

Cpp is modeled as the capacitance between two cylinders, ignoring edge effects:

Cpp = 2πε0
l

cosh−1
(

d2−2s2
p

2s2
p

) , (4.14)

where d is the distance between the probe tips.

Cpw is the least realistic model; it’s modeled as the capacitance between two concentric

cylinders, which does not match the true shape of the chamber:

Cpw = 2πε0
l

ln( sw
sp
)

. (4.15)

These calculations are computationally quick, and are sufficient for most situations.

However, when greater accuracy is desired, the simulation object may instead cal-

culate the mutual capacitance between these surfaces, or any other desired surfaces,

by creating a 3d grid of the plasma chamber, probes, and other objects, and then nu-

merically solving Poisson’s Equation in this volume.

The capacitance between any two conducting objects modeled may be calculated by

applying a series of voltage differences between the two objects, calculating the re-

sulting charge on each object, and fitting the results to the definition of capacitance,

Q = CV.

For each simulated voltage difference, Φ is found by solving Poisson’s Equation across

the entire chamber volume using the Gauss-Seidel method [24]. For example, Figure

4.3 shows Φ for one of many ∆Vs which must be solved in the process of determining
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(a) Finding Cprobe−probe (b) Finding Cprobe−ground

Figure 4.3: 2D Slice of Voltage in a Plasma Chamber. Poisson’s Equation is solved for
a series of arbitrary ∆Vs between two objects whose mutual capacitance we wish to
find. In both examples above, we are finding capacitance in vacuum (no plasma).

the mutual capacitance between two probe tips in a spherical plasma chamber. In

this example, ∆V between the probe tips is set to 20 V, and the probe shafts and the

chamber walls are assumed to be grounded. The non-conductive probe tip sleeves are

not simulated here.

The surface charge density on each of the two objects in question may now be

found using σ = D · N̂, where D is the electric displacement, D = −ε0∇Φ. The

simulation then integrates σ to find Q, and ∆V vs ∆Q is fit to a linear function,

where mutual capacitance, C, is the slope.

This process is computationally intensive, but may offer more accurate results than the

analytical solutions of the approximated geometries presented above. In the future,

the computation time may be significantly reduced by using adaptive grid spacings,

but this has not been implemented.
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4.1.3 Calculating Bulk Plasma Values

Recall that the goal of these calculations is to simulate a circuit such as those shown

in Figure 2.3. The simulation has now calculated sheath thicknesses, and it has

calculated the mutual capacitance between all relevant electrodes, chamber walls, and

plasma sheath surfaces. What remains is to find bulk plasma resistance and inductance

using Equations 2.1, reproduced here:

Lp ≈ ω−2
pe C−1

p , (2.1a)

and

Rp ≈ νLp. (2.1b)

The value for ωpe, Equation 2.18, is readily calculated from values already known to

the simulation , but finding the momentum transfer frequency, ν, requires values

for electron-neutral momentum transfer cross sections, σen:

ν =
Vth,e

λm f p
=

(
8kBTe

πme

)1/2

(nnσen) , (4.17)

where Vth,e is the electron thermal velocity, λm f p is the electron mean free path traveled

between collisions, me is the electron mass, and nn is the neutral density. All values

are readily available to the simulation except for σen. For this, we extrapolate from

data contained in Table I of Pack et. al. [41], which contains empirical values for σen

as a function of Te for plasmas of various noble gases. Armed with these values, the

simulation now has all information required to analyze the circuit using PySpice.

4.1.4 Basic Circuit Simulation Results

The circuit model for a single-tipped probe (Figure 2.3a) yields results (Figures 4.4a

and 4.4b) which match literature [8]. The transmitted power is suppressed at fpe,

where the natural oscillation of the electrons allows the plasma to absorb more power.

56



It also has a transmission peak at a lower frequency, which is due to a series resonance

between the sheath capacitances and the bulk plasma impedance. These resonances

correspond with a phase shift of 0 degrees.

A similar result is obtained for the double-tipped probe (Figures 4.4c and 4.4d), with

additional resonance behavior due to the more complicated circuit model (Figure

2.3b). The transmission spectrum still has the expected suppression at the plasma fre-

quency due to absorbed power, but the transmission peak is now split into two peaks,

due to additional circuit resonances in the plasma model. The higher-frequency trans-

mission peak corresponds with a phase difference of 0 degrees, similar to the transmis-

sion maximum of the single-tipped probe. The lower-frequency double-probe trans-

mission peak corresponds to a phase difference of 180 degrees.

4.1.5 Qualitative Comparison to Experiment

In Figure 4.5, we show experimental transmission spectra taken in the DODECA

plasma chamber, and compare them to simulated spectra. At the top left, we show

transmission spectra as gas pressure was increased from 10 to 20 Pa (45 to 90 mTorr).

The data features did not shift in frequency, but did shift in amplitude. This is com-

pared to the top right, where the simulation gas pressure parameter was swept in

the same range. The two plots show qualitative agreement in that the same basic be-

haviour is displayed in the experiment as in the simulation. We note that the peak in

transmission gain due to plasma (the horizontal red “stripe”) decreases by about 4 dB

in the experiment, and decreases by about 5 dB in the simulation.

On the bottom row of this figure, we see that sweeping the electrode voltage shifts the

transmission data features strongly in the frequency domain. We compare an exper-

imental sweep of the electrode V2
RMS, which goes roughly but not precisely with the

power absorbed by the plasma, with a simulated sweep of the plasma density. Again,

we mostly see qualitative agreement between the experiment and simulation.
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(a) Simulated transmission loss from a sin-
gle probe tip to the chamber wall is shown
for the probe in an empty plasma chamber
(blue) and in the same chamber with the
plasma turned on (orange). The plasma fre-
quency is approximately 200 MHz (dashed
gray).
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(b) Simulated transmission loss between
probe tips for a double-tipped transmis-
sion probe is shown for the probe in an
empty plasma chamber (blue) and in the
same chamber with the plasma turned on
(orange). The plasma frequency is approx-
imately 200 MHz (dashed gray).
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(c) Simulated transmission phase difference
between chamber wall and probe tip is
shown for the probe in an empty plasma
chamber (blue) and in the same cham-
ber with the plasma turned on (orange).
The plasma frequency is approximately 200
MHz (dashed gray).
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(d) Simulated transmission phase difference
for a double-tipped transmission probe is
shown for the probe in an empty plasma
chamber (blue) and in the same cham-
ber with the plasma turned on (orange).
The plasma frequency is approximately 200
MHz (dashed gray).

Figure 4.4: Simulated transmission loss (top row) and phase (bottom row) for a single-
tipped probe (left column) and a double-tipped probe (right column)
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We do see one issue with the simulation that needs to be addressed: the simulated

plasma does not become optically clear at frequencies well above the plasma fre-

quency, but it is well known that plasma should not strongly interact with high-

frequency electromagnetic signals. We shall now address this problem.

(a) Experiment gas pressure sweep:
Krypton gas, VRMS ≈ 56 V, probe separation
≈ 3 cm

(b) Simulated gas pressure sweep:
Krypton gas, ne = 4× 1014m−3, probe sepa-
ration = 3 cm

(c) Experiment electrode voltage sweep:
Argon gas, Pgas ≈ 6 Pa, probe separation ≈
0.3 cm

(d) Simulated ne sweep:
Argon gas, Pgas = 6 Pa, probe separation = 3
cm

Figure 4.5: Comparison of simulated and experimental gas pressure and electron den-
sity sweeps.

4.2 High Frequency Limit

In the high-frequency limit of electric signals passing through plasma (ω >> ωpe),

the plasma is optically clear, and the signal passes through unimpeded. Thus, at high

frequency, the transmitted power through the plasma should match the transmitted

power in the vacuum case. However, the circuit model does not correctly model this
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behavior. This mismatch is shown clearly for a single transmission spectrum in Figure

4.6. We need to solve this issue.

Figure 4.6: Simulated transmission power with and without plasma in the chamber
fail to match at f � 2πωpe

4.2.1 Reproducing the Mismatch in a Simplified Circuit

To investigate this further, we briefly consider a fictitious measurement of power trans-

mitted from a single probe tip to the chamber ground (Figure ??). By “fictitious,” we

mean that this is not a measurement that would be possible in any of the plasma cham-

bers used in this work because those plasma chambers are directly mounted to the

grounded optical bench.

For the probe and chamber geometries that match our experiments, a cylindrical probe

in a spherical chamber, we see this same high frequency mismatch between simulation

with and without plasma (Figure 4.7a). However, for the case of a spherical probe tip

in a spherical plasma chamber, the high frequency behavior does successfully describe

an optically clear plasma (Figure 4.7b). There are two reasons that the model fails

in this limit for high-frequency behavior. Firstly, the model’s approximations for the
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(a) Simulated transmission gain due to plasma for a single cylindrical probe tip in a
spherical plasma chamber. The high-frequency limit fails to correctly approach 0 dB.

(b) Simulated transmission gain due to plasma for a single spherical probe tip in a
spherical plasma chamber. The high-frequency limit correctly approaches 0 dB.

Figure 4.7: The high-frequency limit behaves appropriately for a spherical probe in a
spherical chamber, but behaves inappropriately in the case of a cylindrical probe in a
spherical chamber.
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capacitance between a cylindrical object in the center of a hollow sphere may be in-

sufficiently accurate. Secondly, The circuit model may fail in this extreme because,

for the case of a cylindrical probe tip in a spherical chamber, the sheath boundaries

in the plasma-on condition do not lie on equipotential lines for the plasma-off con-

dition. Therefore the capacitance of the plasma-off condition is not identical to the

total capacitance of the sheaths in series with the bulk capacitance in the plasma-on

condition.

4.2.2 Fixing the High Frequency Limit

Recall that most of the work done by the circuit simulation is in finding relevant

capacitances to describe the coupling between probes, sheath surfaces, and chamber

walls. Once the capacitances are found, it is relatively straightforward to calculate the

corresponding resistances and inductances. Moreover, the physically unrealistic part

of the simulated spectra occur at very high frequency, and all parts of the circuit but

the capacitances may be neglected in this frequency range. We thus modify the circuits

in Figure 2.3 by neglecting the bulk plasma resistances and inductances, leaving only

the parts shown in 4.8.

Probe 1

CC

Probe 2

CA

Wall

C
B

(a) Vacuum chamber circuit

Probe 1

C
s1

Probe 2

C s2

Cs3

Cc

Ca

C
b

Wall

(b) Plasma circuit for ω >> ωpe

Figure 4.8: Circuit Models for High Frequency Limit. We expect the transmission
spectra with and without plasma to converge at ω >> ωpe.
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At high frequency, the transmission spectra ought to be identical for the chamber with

and without plasma. We can achieve this result by constraining the total capacitance

between any two ports to be the same in the vacuum case and in the plasma-on (high

frequency) case. Note what a frustratingly simple solution this is to a problem that

persisted for nearly three years.

C
c

Ca

C
b

∆ shape

C1

C2
C
3

Y shape

∆ to Y Y to ∆

C1 =
CaCb+CaCc+CbCc

Ca
Ca =

C2C3
C1+C2+C3

C2 =
CaCb+CaCc+CbCc

Cb
Cb =

C1C3
C1+C2+C3

C3 =
CaCb+CaCc+CbCc

Cc
Cc =

C1C2
C1+C2+C3

Figure 4.9: ∆-Y Transform. The ∆-shaped circuit and the Y-shaped circuits are equiva-
lent. The table shows how to convert between the two.

Solving the circuits to force the high-frequency transmission with and without plasma

to match may be achieved using the ∆− Y Transform identity (Figure 4.9) to convert

the circuit in Figure 4.8b into an equivalent circuit with the same form as that shown

in Figure 4.8a. Figure 4.10 depicts how this is done: first we transform the ∆-shaped

arrangement of capacitors in the interior of Figure 4.8b into its equivalent Y-shaped

arrangement of capacitors. The resulting equivalent circuit is entirely Y-shaped, and

we may transform this entire resulting circuit into its equivalent ∆-shaped capacitor

arrangement. Using the relations in Figure 4.9, we may now determine the values of

each bulk plasma capacitance, that is Ca,b,c in Figure 4.8b, such that the high-frequency

Snm parameters match the vacuum case, Figure 4.8a.
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Figure 4.10: Using ∆−Y Transform to Find Plasma Capacitance: The top left shows the
transmission impedance probe circuit with plasma on for f >> 2πωpe. The interior ∆-
shaped triangle of this circuit is transformed to a Y-shape (in blue). Then, the resulting
circuit is transformed into a ∆-shape (in Red), which now may be directly compared
to the plasma-off circuit.
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Having forced the plasma capacitance to be equivalent to the vacuum chamber capac-

itance, the circuit simulation transmission spectra now correctly match each other at

high frequency, as shown in Figure 4.11. We have solved the high-frequency issue,

and gained the additional benefit of bypassing the computationally intensive capaci-

tance calculations described in Section 4.1.2. We are now, finally, prepared to use the

simulation object to analyze real data. However, first let us take a brief detour to

discuss a claim made in Section 1.4.3, that transmission-type impedance probes are

separately sensitive to plasma parameters near and far from the probe tips.

Figure 4.11: Simulated transmission power after forcing total capacitance with plasma
to match vacuum case. High frequency transmission power now appropriately
matches for plasma-on and plasma-off conditions

4.3 Density Near and Far

One of the benefits of the transmission-type impedance probe is that the measurement

is separately sensitive to plasma parameters near and far from the probe tips. The

RF signals passed through the plasma are transmitted as a near-field oscillation of

a compressional wave mode. We expect these compressional signals mostly travel

along the electric field lines connecting the various conducting surfaces in the plasma
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Figure 4.12: Transmission-type impedance probes are separately sensitive to ne near
the probe tips and farther away. The electron density near the probe tips is ne1, and
the density far away is ne2. This simulation shows that changing ne near the probe tips
primarily shifts the frequency of the transmission minimum.
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Figure 4.13: Transmission-type impedance probes are separately sensitive to ne near
the probe tips and farther away. The electron density near the probe tips is ne1, and
the density far away is ne2. This simulation shows that changing ne far from the probe
tips primarily shifts the frequency of transmission maximum.
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chamber, and the nature of these signals are governed by the plasma encountered along

those field lines. Because of the shape of these electric field lines, the electrons far from

the probes primarily influence the transmission of RF signal between the probe tips

and the grounded chamber wall. Conversely, the electrons near the probe tips more

strongly influence the transmission of signal from probe tip to probe tip. We then

expect that the electrons near the probe tips and the electrons far away will have, in

some sense, opposite effects on the probe tip to probe tip transmission spectra.

Recall that the basic response of plasma to RF signals can be thought of as a band-stop

filter, where signals of frequency near ωpe are met with high real and (positive) imag-

inary impedance. The primary effect of the nearby electrons (“between” the probes)

will govern a local minimum in transmission power between the probe tips, which rep-

resents the stop band of the tank circuit between the probe tips. This effect is shown

in Figure 4.12. On the other hand, electrons far from the probes (“between” probe and

grounded chamber wall) will govern a local maximum in transmission power, where

less power is allowed to go to the ground, and thus more power is transmitted be-

tween the probe tips, as shown in Figure 4.13.

4.4 Fitting Data With vna.py

In addition to modeling RF signal transmission through a plasma of defined plasma

parameters, we also wish to use vna.py to measure plasma parameters for experimen-

tal RF transmission data. The usual Python curve fitting methods may be used; we

wrote worker routines to pass fit parameters into the simulation object and com-

pare the output to the experimental data.

Figure 4.14 shows experimental data taken in the DODECA plasma chamber, and the

simulated spectra created by fitting the data using the simulation class. The re-

sulting ne and Te are shown in Figure 4.15. These values for Te are overestimates: our

model does not yet make any account for spectrum broadening due to gradients in

ne. The fit values of ne were used to calculate related ωpe values, which are plotted on
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top of the experimental data in Figure 4.16. We have not yet completed uncertainty

analysis.
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(a) Transmission spectra for a double probe immersed in a plasma in DODECA. The experi-
ments were performed in the DODECA chamber with a neutral gas pressure of 6 Pa

(b) Transmission spectra produced from the circuit simulation using plasma values determined
from fitting the data in Figure 4.14b

Figure 4.14: Experimental data were fit using vna.py objects and methods.
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(a) ne increased as electrode power increased. Especially in the area near the probe, in the
center of the chamber. For low-voltage spectra, the probe tips were not fully immersed in the
plasma, and the fits did not converge.

(b) Te appears to have declined as electrode power increased. However, these measured values
are higher than typical Te values in an RF glow discharge such as DODECA. For low-voltage
spectra, the probe tips were not fully immersed in the plasma, and the fits did not converge.

Figure 4.15: vna.py was used to determine plasma parameters from the data in Figure
4.14
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Figure 4.16: Transmission spectra for a double probe immersed in a plasma in DO-
DECA. Dots show 2πωpe calculated from the ne found by fitting this data. For low-
voltage spectra, the probe tips were not fully immersed in the plasma, and the fits did
not converge.
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Chapter 5

Conclusion and Outlook

Experiments were performed using transmission-type plasma impedance probes

(TPIPs) in capacitively-coupled, RF glow discharge plasmas (Chapter 3). The resulting

spectra were analyzed in two different ways: by fitting the data using a pair of Gaus-

sian curves (Section 3.4.1) and by creating a robust circuit model analysis and simula-

tion tool (Chapter 4). We shall compare these two analysis methods (Section 5.1), then

we shall discuss the next steps in terms of experimental and theoretical/computational

work for this topic (Sections 5.2 and 5.3).

5.1 Comparison of Analyses

Sections 3.4.1 and 4.4 present two very different methods of analyzing the same

data. The first method describes the suppression of transmission due to plasma as

a Gaussian-shaped suppression in the transmission spectrum. There are, therefore,

a negative Gaussian curve associated with probe-probe transmission, and a positive

Gaussian curve associated with the suppression of probe-wall transmissions. The sec-

ond method begins with a plasma model, develops an associated circuit model de-

scribing the probe-plasma-chamber system, and uses SPICE algorithms to simulate

the transmission in this circuit. Let us compare and contrast them here.

Figure 5.1 shows that both analysis techniques are able to qualitatively reproduce the

shape of the transmission spectra to a satisfactory degree. The double-Gaussian fitting

method more faithfully reproduces the image, especially the shapes of the frequency
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(a) We begin with the same data, from an RF transmission experiment per-
formed in the DODECA plasma chamber with an ambient pressure of 6 Pa
(45 mTorr).

(b) The spectra above were fit two Gaus-
sian curves, the resulting synthetic fit
spectra are shown here

(c) The spectra above were fit using the
vna.py package, the resulting synthetic

fit spectra are shown here

Figure 5.1: Qualitatively speaking, both fitting methods reproduce the shape of the
data to an acceptable degree, with the double-Gaussian fit method more closely re-
sembling the data than the fits produced using the vna.py package.
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ranges in which transmission was suppressed. We are nonetheless satisfied with the

qualitative agreement between the data and the spectra produced using the vna.py

package.

Turning now to quantitative analysis, Figure 5.2 tells a different story. In the regions

where each fitting routine seemes to successfully reproduce the experimental spectra,

the double-Gaussian fitting method indicates that the plasma density near the probes

is lower than the density farther away. The physics-first, vna.py approach produces

exactly the opposite result: the density near the probes is higher than the density far

away. These two analyses, then, stand in direct opposition to each other in terms of

their ability to determine plasma parameters from experimental spectra.

We trust the vna.py result more than the result from the double-Gaussian fit method

for two reasons. First, the vna.py analysis is a physics-first analysis process. It

starts with a fluid model for the electrons, develops a circuit model that reproduces

the various modeled impedances in the plasma chamber, and uses SPICE algorithms

to simulate the transmission spectra. Secondly, the result that ne is higher in the center

of the chamber agrees with the experimental observation that there is increased plasma

glow in the center of the chamber as compared to the edges.

5.2 Future Experimental Work

There are various experimental improvements we are making to the RaFyL plasma

chamber. These improvements will help in performing more robust experiments with

and without dust. We also have begun very early development of RF transmission

diagnostics in a form that might be more suitable for future microgravity experiments

in the COMPACT plasma chamber.

5.2.1 RaFyL Development

We are continuing to develop the RaFyL plasma chamber for more robust experi-

ments in this line of research. Recall (Section 3.1.2) that this plasma chamber produces
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(a) Experimental spectra are shown with double Gaussian analysis super-
imposed. The dots show the center frequencies of the positive and negative
Gaussian curves, which are assumed to represent the plasma frequency of
plasma far from the probes and near the probes, respectively. The large bars
show the usual 2σ uncertainty limits of the center frequencies. The small,
fainter bars show the full width half maximum widths of these Gaussian
curves used to fit the data.

(b) Experimental spectra are shown with vna.py analysis superimposed.
The dots show the plasma frequencies related to the plasma densities deter-
mined for plasma near the probes and plasma farther away in the chamber.

Figure 5.2: Quantitatively speaking, the results of the analyses are very different from
each other. In the regions where each fitting routine seemed to successfully reproduce
the spectra, the double-Gaussian fitting method indicates that the plasma density near
the probes is lower than the density farther away. The physics-first, vna.py approach
produces exactly the opposite result: the density near the probes is higher than the
density far away. The vna.py result agrees with the experimental observation of
increased plasma glow in the center of the chamber as compared to the edges.
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plasmas whose plasma glows, and therefore presumably plasma densities, are more

evenly distributed throughout the chamber, as compared to plasmas created in the

DODECA plasma chamber. RF transmission impedance probe measurements are ex-

pected to more accurately measure Te in this chamber, because the transmission effects

of a strong∇ne cannot yet easily be distinguished from the transmission effects of high

electron temperature.

We also are developing the probe measurement system to use the same probe tips to

perform both RF transmission measurements as well as DC Langmuir probe measure-

ments using the same probe tips (Figure 5.3). For experiments with dust, these DC

measurements can be made using voltage pulses whose timescales lie between the

reaction times of dust and ions.

Figure 5.3: The measurement circuit will be improved to perform RF transmission
measurements and DC Langmuir probe measurements using the same probe tips. The
vector network analyzer (VNA) performs RF measurements, and the voltage source
meter performs DC measurements. “HPF” and “LPF” stand for high-pass filter and
low-pass filter, respectively.

5.2.2 Future Experiments

Having developed analysis tools to use TPIPs in glow discharge plasmas, there are

several experiments we intend to perform. Firstly, we will perform experiments ex-

ploring the effect of the probe-to-probe spacing on TPIP measurements. These ex-

periments will provide interesting insight into the changing nature of transmission
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characteristics between the probes and out to the chamber wall as the capacitive cou-

pling between the probe tips changes. These experiments will also help characterize

the need for improving the model’s treatment of plasma sheathes, especially for cases

where the probes’ sheathes overlap each other.

We will also implement these TPIP techniques in dusty plasmas. A few preliminary

experiments were performed with dust, and we saw that further improvements are

needed. As we discussed in Chapter 1, PIPs are less perturbing to dust and plasma

than Langmuir probes, but that is not to say that they are non-perturbing. The probe

tips electrically pushed dust particles away, forming dust voids ( Figure 5.4).

Figure 5.4: A plasma impedance double-probe forming a void in a dust cloud in the
DODECA plasma chamber. The dust cloud is illuminated by a low-power laser spread
vertically by a cylindrical lens. The laser’s reflection off of the far electrode is clearly
visible as a bright red line. The dust is more difficult to see in this image – it appears
as a red haze left of that line.

The size of these voids may be controlled to some extent by changing the DC offset

voltage of the probe [51, 56, 34]. It is our intention in future experiments with dust to

use a DC offset to pull the dust closer to the probe tips.
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5.2.3 COMPACT

We are working on performing transmission-type active plasma resonance spec-

troscopy (APRS) using electrodes in the plasma chamber as the “probes” for our

TPIP diagnostic method (Figure 5.5). This will make the measurements truly non-

perturbing to the dust and plasma. However, this is a difficult measurement to per-

form, requiring the high-voltage, 13.56 MHz signal powering the plasma (and its asso-

ciated harmonics) to be strongly filtered out from the low-voltage signals we wish to

measure in frequency ranges only a few tens of MHz above the power frequency. The

COMPACT plasma chamber provides an opportunity to implement this measurement

technique with out needing to filter out the powering frequency.

Figure 5.5: We are working on implementing transmission APRS as an electrode-to-
electrode measurement utilizing the electrodes already present in the plasma chamber.
This will make these RF transmission measurements truly non-perturbing to dust and
plasma. However, sufficiently filtering out the power frequency is a difficult challenge.

COMPACT (Figure 5.6) is capacitively-coupled RF plasma device in development for

future microgravity experiments for dusty plasma. One key feature of COMPACT

is its innovative electrode configuration. COMPACT is a cylindrical device featuring
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four electrodes, the usual top and bottom electrodes are each divided into a central cir-

cular electrode and an outer ring electrode. Each of these four electrodes is powered

by its own individually-controllable RF voltage source. Further, each top/bottom elec-

trode pair is actuated to change the electrode spacing in the plasma chamber, allowing

for highly-configurable dust confinement characteristics.

Figure 5.6: The COMPACT plasma chamber’s advanced electrode design makes it
a perfect candidate for performing electrode-to-electrode RF transmission measure-
ments. Image courtesy of C. Knapek, DLR/University of Greifswald

We are exploring the possibility of performing APRS measurements in COMPACT by

using two electrodes to power the plasma and two electrodes to perform transmission

impedance measurements. As previously mentioned, this would allow the measure-

ment to be non-perturbing to the dust and plasma. Also, this implementation is more

conducive to space station experiments aboard the ISS, because there is no possibility

of a failure-state of the measurement that leaves a probe protruding into the plasma,

which could severely hamper experiments in COMPACT for the remainder of the cam-

paign.
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5.3 Future Modeling Work

There are two models involved with the analysis of these TPIP spectra. There is the

computer circuit model that simulates the transmission of RF signals, and there is the

plasma physics model which determines the values of elements of the circuit model.

Both need some improvements.

5.3.1 vna.py Improvements

The model used in the analysis of the transmission PIP measurements has been de-

veloped to a functional level, but various improvements are underway. This includes

streamlining the vna.py library – the library is easy to use to create simulations of

plasma given a set of desired plasma parameters. However, using the library to ana-

lyze experimental data is still a functionality under construction.

Analysis of data using vna.py is currently achieved by writing a series of fitting

algorithms that are effectively wrappers for the included vna.py objects and methods.

Implementing these analysis methods directly into the simulation objects requires

some structural changes to these objects. This improvement is underway, but is not

completed at time of publishing this dissertation.

However, the most direly-needed improvement to the analysis of data is error estima-

tion. Using the error estimation methods built into the usual scientific Python libraries

vastly under-represent the error of these analyses. A robust treatment of the error of

these methods is required, perhaps in a similar vein as the error analysis performed in

Section 3.4.1.

5.3.2 Plasma Model Improvements

The main improvement needed to the theoretical model is the treatment of plasma

sheathes. Some of the improvements may be easily made, and others are very difficult.
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The easiest improvement needed is to include electron-neutral and ion-neutral colli-

sions in the sheath width calculations. The ionization fraction in glow discharge plas-

mas is typically of the order of 10−6, only about one atom in a million is ionized. Col-

lisions with neutrals are a dominant effect in these types of plasmas, and they should

be included in the sheath calculation.

Of the next order of difficulty is to model the sheathes as lossy capacitors, not pure

capacitors. Recall that the capacitive sheath model is equivalent to the assumption

that there are no electrons in the plasma sheath. As we have shown, this is simply not

true. Firstly, if we are to make this approximation, the width of the plasma sheath is

not the best characterization of the region devoid of electrons. We should be picking a

width for our capacitance calculations based on where the electron density dips below

a carefully-chosen cutoff value. Better yet, we can include small resistive and inductive

components to the impedance of the sheath to represent the lossiness imparted by the

electrons to the capacitive coupling across the sheath.

Lastly, we would like to better understand the coupling between probe tips that are

close enough as to be within each other’s sheath widths. There should be terms de-

scribing the probe-probe coupling through the reduced electron density in the region,

the coupling between each probe and their combined sheath edge, and the coupling

between this sheath edge and the plasma. Properly treating this scenario is a very com-

plicated proposition, and threatens to turn into another dissertation worth of work.

But there are likely improved approximations that can begin to address this shortcom-

ing of the model.
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Appendix A

Sheath Width Calculation

A.1 Setup

Import sources and define useful variables:

[1]: #Standard sources:
from matplotlib import pyplot as plt
import numpy as np
import math
from scipy.integrate import odeint
from scipy.integrate import solve_bvp
from scipy.optimize import fsolve

#My sources:
import plasma_resources as pr
locals().update(pr.con) #Bring in constants as individual variables
import bdd

#Need to explicitly set the Jupyter backend to
# matplotlib so that bdd.plot_setup modifies the
# correct plot environment:
%matplotlib inline
bdd.plot_setup('presentation',1.75)

#Useful plot variables:
from matplotlib import rcParams as rc
fs = rc['font.size'] #font size
fs_sm = fs*0.9
lw = rc['lines.linewidth'] #line width
lw_sm = lw/2
fgs = rc['figure.figsize'] #figure size
fgs_stretch = fgs*np.array([1.1,1])
C0 = 'C0' #Plot color 0
C1 = 'C1' #Plot color 1
C2 = 'C2' #Plot color 2

#Global plot options:
match_axis_colors = True #If false, all axis labels will be black

#Axis colors:
if match_axis_colors:

ax_color_pot = C0
ax_color_den = C1

else:
ax_color_pot = 'Black'
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ax_color_den = 'Black'

#For bdd.save():
savedir='sheathWidth_images'
extensions = ['.png','.pdf']
save=True
#usage:
#bdd.save(fig,'test_figure',savedir,save,extensions)

Define some sample plasma parameters:

[2]: Te = 3 #eV
Ti = 1/40 #eV
P = 30 #Pa
ne = 1E16 #m**(-3)
ns = ne*0.61 #Sheath-edge density, for collisionless pre-sheath
rp = 0.0001 #(Cylindrical) probe radius, m
rw = 0.1 #(Spherical) chamber radius, m

Vf = -1*pr.v_float(Te) #Floating potential
Vp = -np.log(ne)*Te #Assume simple botzmann electrons for

↪→plasma potential
# -> ne = exp[e*phi / kb*Te], with

↪→|kb|=|e| for Te in eV

print(pr.v_float.__doc__) #Show v_float documentation string

plasma_resources.v_float(Te,gas='argon',mi=None)

Calculates v_float from Langmuir Theory

Var |dtype | Optnl | Default | Alternatives | Description

↪→---------------------------------------------------------------------------
Te | dbl | no | | | Electron

↪→temperature (eV)
| | | | |

gas | str | yes | 'argon' | 'krypton' | Will calculate mi
↪→for gas,

| | | | 'hydrogen' | unless mi is
↪→not None.

| | | | |
mi | dbl | yes | None | | Ion mass (kg)

| | | | | overrides gas
↪→input

A.2 Solving for Probe Sheath Width

We need to solve Poisson’s Equation:

∇2φ(r) = e
ε0
(ne − ni)

We assume Boltazmann electrons,
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ne(r) = nseeφ(r)/kBTe

where ns is the plasma density at the sheath edge. Noting that for Te in units of eV,

kB = 1.602× 10−19 J/eV, we will simply write,

ne(r) = nseφ(r)/Te

We assume that ions enter the sheath with the Bohm velocity and flow continuously

to the probe surface. We may then write Poisson’s Equation as:

∇2φ(r) = A
(

eφ(r)/Te − (1− Bφ(r))−1/2
)

with

A = nse
ε0

B = 2e
miu2

B
= 2

Te

Writing ∇2 explicitly for cylindrical geometry:

1
r

∂
∂r

(
r ∂φ

∂r

)
= A

(
eφ(r)/Te − s

r (1− Bφ(r))−1/2
)

φ′′ = A
(

eφ(r)/Te − s
r (1− Bφ(r))−1/2

)
− φ′

r

SciPy’s odeint() can’t directly handle 2nd-order differential equations, so we re-write

this as a system of two 1st-order ODEs with the following change of variable:

z =




z0

z1


 =




φ′

φ




z′ =




z′0

z′1


 =




A
(

ez1/Te − s
r (1− Bz1)

−1/2
)
− z0

r

z0




We know three boundary conditions for φ(r) in the sheath:

(1) φ(rsheath) = 0

(2) φ′(rsheath) = 0
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(3) φ(rprobe) = −Vf loat

We shall write a function that uses BCs (1) and (2) to solve Poisson’s Equation, then

we shall use scipy.optimize.fsolve() to find the sheath thickness for which φ conforms

to BC (3)

Solver functions:

[3]: #Redefine 2nd order ODE as system of
#1st order ODEs: z=[Phi',Phi] so z'=[Phi",Phi']
A = ns*e/e0
B = 2/Te

#dz/dr, where z=[phi',phi] and dz/dr=[phi",phi']
#odeint() repeatedly passes z and r as values
#at individual points, r
def dz(z,r,s,geometry='cylindrical'):

if 'cyl' in geometry.lower(): #Cylindrical geometry (default)
der = np.array((

#z'[0] (which is phi"):
A*(np.exp(z[1]/Te) - s/r*(1-B*z[1])**(-1/2)) - z[0]/r,
#z'[1] (which is phi'):
z[0]
))

return der
if 'sph' in geometry.lower(): #Spherical geometry

der = np.array((
#z'[0] (which is phi"):
A*(np.exp(z[1]/Te) - (s/r)**2*(1-B*z[1])**(-1/2))\

- 2*z[0]/r,
#z'[1] (which is phi'):
z[0]
))

return der
if 'pla' in geometry.lower(): #Planar geometry

der = np.array((
#z'[0] (which is phi"):
A*(np.exp(z[1]/Te) - (1-B*z[1])**(-1/2)),
#z'[1] (which is phi'):
z[0]
))

return der
print('dz(z,r,s,geometry): Unknown ODE geometry!')
return

#Function to be minimized
#diff() returns (target potential)-(sheath potential)
#for a given sheath thickness. The shathe thickness
#variable, sheath, MUST be a list but it MAY
#be a list with only one element.
def diff(sheath,z0=[0,0],surface='probe',geometry='cylindrical'):

if surface.lower() in ['probe','p']:
s = rp + sheath[0]
r = np.linspace(s,rp,200)
t = Vf #The target potential is the floating potential.

elif surface.lower() in ['wall','w','chamber','c']:
s = rw - sheath[0]
r = np.linspace(s,rw,200)
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t = Vp #Vp instead of Vf; chamber wall is grounded
else:

print('diff(sheath,Z0,surface): Unknown surface type!')
return

d_phi,phi = odeint(dz,z0,r,args=(s,geometry)).T
diff = t - (phi[-1]-z0[1])
return diff

Literature Comparison:

Basu and Sen (1973) provide an approximate expression for the sheath width for a

cylindrical probe tip:

s′2 + 4.0 = m1(ηp + 3.5)

where

m1 = 0.59 + 1.86a′0.47

s′ is the sheath thickness normalized by the Debye length:

s′ =
rsheath−rprobe

λD

and ηp is the probe’s floating potential normalized by the electron temperature:

ηp =
v f loat

Te

The sheath width expression above is valid only for ηp & 3

[4]: #Basu and Sen 1973:
def d_sheath_bs(Te,ns,r_probe=0.0001):

lambda_D = pr.lambda_D(Te,ns)
m1 = 0.59 + 1.86 * (r_probe/lambda_D)**0.47
eta = pr.v_float(Te)/Te
d = (m1*(eta+3.5)-4.0)**(1/2) * lambda_D
return d

Run the solver:

[5]: guess = 0.001 #Initial guess for sheath thickness
z0 = [0,0] #Phi and Phi' at sheath boundary
args = (z0,'probe','cylindrical')
ans = fsolve(diff,guess,args=args)[0]
print('Sheath thickness for {} {} sheath: {:.2f} mm'\

.format(args[2],args[1],ans*1000))
s_probe_IVP = ans*1000

Sheath thickness for cylindrical probe sheath: 0.58 mm
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[6]: #Draw a demonstration of how we found the width:

#Find DeltaV across sheath for range of sheath thicknesses:
sheaths = np.linspace(0.1,1,100)
DVs = np.empty(100)
for i in range(len(sheaths)):

DVs[i]=diff([sheaths[i]/1000]) + (-Vf)

#Prepare plot
fig,ax=plt.subplots()
ax.set_xlim([sheaths[0],sheaths[-1]])
ax.set_title('Probe Sheath: Potential vs Width')
ax.set_ylabel(r'$\Delta \phi$ Across Sheath (V)',\

labelpad=18)
ax.set_xlabel('Sheath Width (mm)')

#Draw and label floating potential:
ax.plot(sheaths,[-Vf]*len(sheaths),color='black',\

ls='dotted')
ax.text(0.3,-Vf+2,'Floating Potential',va='center',\

ha='center',fontsize=fs_sm)

#Draw and label DeltaV across sheath:
ax.plot(sheaths,DVs,color='C0')
ax.text(sheaths[80]+.04,DVs[80]-.04,'Sheath Potential',\

rotation=49,ha='center',va='center',\
fontsize=fs_sm,color='C0')

#Show where they intersect:
ax.axvline(x=ans*1000,color='blue',ls='dotted')
ax.text(ans*1000-0.03,35,'Numerical Solution',\

rotation=90,color='blue',\
va='center',ha='center',\
fontsize=fs_sm)

#Show Basu & Sen's approximation:
ax.axvline(x=d_sheath_bs(Te,ns)*1000,color='red',\

ls='dotted')
ax.text(d_sheath_bs(Te,ns)*1000+0.04,35,'Basu & Sen (1973)',\

rotation=90,color='red',va='center',\
ha='center',fontsize=fs_sm)

#Save:
bdd.save(fig,'probe_solution_IVP',savedir,save,extensions)

PNG Saved Successfully
PDF Saved Successfully
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[7]: #Now that we've solved it, let's draw the sheath:

#Solve for sheath:
s = rp + ans
r = np.linspace(s,rp,200)
z0=[0,0]
geometry='cylindrical'
d_phi,phi = odeint(dz,z0,r,args=(s,geometry)).T

#Useful dimensions and locations for plot:
xlim=[0,s*1250]
ylim = [-20,5] #y limits
lab_loc=ylim[0]+(ylim[1]-ylim[0])*.1
vert_space = (ylim[1]-ylim[0])*.05
horiz_space = (xlim[1]-xlim[0])*0.025
ymid = ylim[0]+(ylim[1]-ylim[0])/2
xmid = xlim[0]+(xlim[1]-xlim[0])/2
ro1,phio1 = r*1000,phi

#Set up plot:
fig,ax=plt.subplots(figsize=fgs_stretch)
ax.set_xlim(xlim)
ax.set_ylim(ylim)
ax.grid(False)
ax.tick_params(axis='y', labelcolor=ax_color_pot)
ax.set_title('Probe Sheath')
ax.set_xlabel('Radius (mm)',fontsize=fs)
ax.set_ylabel('Potential (V)',fontsize=fs,\

color=ax_color_pot,ha='center')
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#Draw and label sheath potential:
ax.plot(r*1000,phi,lw=lw,label=r'$\phi (r)$')
ax.text(r[30]*1000,phi[30]+1,r'$\phi(r)$',\

color=C0,ha='center')

#Draw probe and bulk:
ax.fill_between([xlim[0],rp*1000],[ylim[0]]*2,\

[ylim[1]]*2,color='#D3D3D3')
ax.fill_between([xlim[1], s*1000],[ylim[0]]*2,\

[ylim[1]]*2,color='#D8BFD8')
ax.axvline(x=rp*1000,color='black',ls='solid',lw=1)
ax.axvline(x=s*1000,color='black',ls='solid',lw=1)

#r=s label:
ax.text(s*1000-horiz_space,lab_loc,'r=s',\

color='gray',rotation=90,va='center',\
ha='center',fontsize=fs_sm)

#Draw and label floating potential:
ax.plot([xlim[0],rp*1000],[Vf]*2,lw=lw,\

ls='dotted',color=C0)
ax.text(rp*500+xlim[0]*0.5,Vf+1.5,r'$V_{float}$',\

va='center',ha='center',\
color=C0,fontsize=fs_sm)

#Daw and label plasma (bulk) potential:
ax.plot([s*1000,xlim[1]],[0,0],lw=lw,\

ls='dotted',color=C0)
ax.text((s*1000+(xlim[1]-s*1000)/2),1.5,\

r'$\phi = 0$',va='center',\
ha='center',color=C0,\
fontsize=fs_sm)

#Prepare density axis:
ax2 = ax.twinx()
ax2.grid(False)
ax2.tick_params(axis='y', labelcolor=ax_color_den)
ylim_ne=[1e10,1e20]
ax2.set_ylim(ylim_ne)
ax2.set_ylabel(r'Density ($m^{-3}$)',ha='center',\

fontsize=fs,color=ax_color_den)

#Draw densities:
nes = ns*np.exp(phi/Te)
nis = ns*s/r*(1-B*phi)**(-1/2)
ax2.semilogy(r*1000,nis,color=C1,ls='dashed',\

label=r'$n_i(r)$')
ax2.semilogy(r*1000,nes,color=C1,ls='solid',\

label=r'$n_e(r)$')
ax2.plot([s*1000,xlim[1]],[ns]*2,lw=lw,\

ls='dotted',color=C1)

#Label densities:
ax2.text(r[30]*1000,nes[30]*.1,r'$n_e(r)$',\

color=C1,ha='center')
ax2.text(r[30]*1000,nis[30]*3,r'$n_i(r)$',\

color=C1,ha='center')
ax2.text((s*1000+(xlim[1]-s*1000)/2),ns*0.2,\

r'$n_{e,i} = n_s$',va='center',ha='center',\
color=C1,fontsize=fs_sm)

#Stuff that goes on top needs a separate axis:
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top_ax = ax.twinx()
top_ax.set_ylim(ylim)
top_ax.grid(False)
top_ax.set_yticks([]) #Don't draw y-axis ticks
top_ax.set_yticklabels([]) #Don't draw y-axis numbers

#Label probe, sheath, and bulk:
top_ax.text(xlim[0]+(rp*1000-xlim[0])/2,lab_loc,\

'Probe',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

top_ax.text(rp*1000+(s-rp)/2*1000,lab_loc,\
'Sheath',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

top_ax.text(s*1000+(xlim[1]-s*1000)/2,lab_loc,\
'Bulk\nPlasma',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

#Draw and label Debye length:
lam=np.array([0,pr.lambda_D(Te,ne)]) + rp
top_ax.plot(lam*1000,[2]*2,color='black',marker='|',\

ms=20,markeredgewidth=lw,lw=lw)
top_ax.text(np.average(lam)*1000,3.2,r'$\lambda_{D}$',\

va='center',ha='center',fontsize=fs_sm)

#Save:
bdd.save(fig,'probe_sheath_IVP',savedir,save,extensions)

PNG Saved Successfully
PDF Saved Successfully
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A.3 Chamber wall:

We may solve for the wall sheath thickness in the same way.

However, in the case of a chamber wall, when the surface area of the object is larger

than the surface area of the plasma sheath boundary, there is one snag that must be

avoided: one possible solution to the differential equation is for bulk plasma to con-

tinue all the way to the chamber wall. One can think of this as the trivial solution

to the differential equation. However, this trivial solution is highly unstable; a small

perturbation in the electron or ion density would cause the arrangement to collapse to

a more stable density and potential structure. And therefore, this is not a physically

realistic solution, and we would like to avoid obtaining it.

One way to avoid this by cheating on the conditions for φ the sheath boundary condi-

tion. The true boundary condition is:

z0 =




φ

φ′


 =




0

0




We artifically nudge the potential donwards at the sheath edge to avoid our ODE

solver finding the trivial solution:

z0 =




φ

φ′


 =




0

−0.5 V/m




[8]: guess = 0.004 #Initial guess for sheath thickness
z0 = [0,-0.5] # artifically nudge the potential downwards
args = (z0,'chamber','spherical')
ans = fsolve(diff,guess,args=args)[0]
print('Sheath thickness for {} {} sheath: {:.2f} mm'\

.format(args[2],args[1],ans*1000))
s_wall_IVP = ans*1000

Sheath thickness for spherical chamber sheath: 3.79 mm
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[10]: #Draw a demonstration of how we found the width:

#Find DeltaV across sheath for range of sheath thicknesses:
sheaths = np.linspace(1,6,100)
DVs = np.empty(100)
for i in range(len(sheaths)):

DVs[i]=diff([sheaths[i]/1000],*args) + (-Vp)

#Prepare plot:
fig,ax=plt.subplots()
ax.set_xlim([sheaths[0],sheaths[-1]])
ax.set_title('Wall Sheath: Potential vs Width')
ax.set_ylabel(r'$\Delta \phi$ Across Sheath (V)',\

labelpad=18)
ax.set_xlabel('Sheath Width (mm)')

#Draw and label plasma potential:
ax.plot(sheaths,[-Vp]*len(sheaths),color='black',\

ls='dotted')
ax.text(2,-Vp+10,'Plasma Potential',va='center',\

ha='center',fontsize=fs_sm)

#Draw and label sheath potential:
ax.plot(sheaths,DVs,color='C0')
ax.text(sheaths[80],DVs[80]+15,'Sheath Potential',\

rotation=42,ha='center',va='center',\
fontsize=fs_sm,color='C0')

#Show where they intersect:
ax.axvline(x=ans*1000,color='blue',ls='dotted')
ax.text(ans*1000-0.12,200,'Numerical Solution',\

rotation=90,color='blue',va='center',\
ha='center',fontsize=fs_sm)

#Save:
bdd.save(fig,'wall_solution_IVP',savedir,save,extensions)

PNG Saved Successfully
PDF Saved Successfully
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[12]: #Now that we've solved it, let's draw the sheath:

#Solve for sheath:
s = rw - ans
r = np.linspace(s,rw,200)
surface='wall'
geometry='spherical'
d_phi,phi = odeint(dz,z0,r,args=(s,geometry)).T

#Useful dimensions and locations for plot:
xlim = [95,100.9]
ylim = [-150,50]
lab_loc=ylim[0]+(ylim[1]-ylim[0])*.075
vert_space = (ylim[1]-ylim[0])*0.05
horiz_space = (xlim[1]-xlim[0])*0.025
ymid = ylim[0]+(ylim[1]-ylim[0])/2
xmid = xlim[0]+(xlim[1]-xlim[0])/2
ro,phio = r*1000,phi

#Set up plot:
fig,ax=plt.subplots(figsize=fgs_stretch)
ax.set_xlim(xlim)
ax.set_ylim(ylim)
ax.grid(False)
ax.tick_params(axis='y', labelcolor=ax_color_pot)
ax.set_xlabel('Radius (mm)',fontsize=fs)
ax.set_ylabel('Potential (V)',fontsize=fs,\

color=ax_color_pot)
ax.set_title('Wall Sheath')
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#Plot sheath potential:
ax.plot(r*1000,phi,lw=lw,label=r'$\phi (r)$')

#Draw bulk and chamber wall:
ax.fill_between([xlim[0], s*1000],[ylim[0]]*2,\

[ylim[1]]*2,color='#D8BFD8')
ax.fill_between([xlim[1],rw*1000],[ylim[0]]*2,\

[ylim[1]]*2,color='#D3D3D3')
ax.axvline(x=s*1000,color='black',ls='solid',lw=1)
ax.axvline(x=rw*1000,color='black',ls='solid',lw=1)

#r=s label:
ax.text(s*1000+horiz_space,lab_loc,'r=s',\

color='gray',rotation=90,\
va='center',ha='center',\
fontsize=fs_sm)

#Draw and label V_plasma at the wall:
ax.plot([rw*1000,xlim[1]],[Vp]*2,lw=lw,\

ls='dotted',color=C0)
ax.text((rw+(xlim[1]/1000-rw)/2)*1000,\

Vp+vert_space,r'$-V_p$',va='center',\
ha='center',color=C0,fontsize=fs)

#Draw and label V_bulk:
ax.plot([xlim[0],s*1000],[0,0],lw=lw,\

ls='dotted',color='C0')
ax.text(xlim[0]+(s*1000-xlim[0])/2,\

vert_space,r'$\phi = 0$',\
va='center',ha='center',\
color=C0,fontsize=fs)

#Prepare density axis:
ax2 = ax.twinx()
ax2.tick_params(axis='y', labelcolor=ax_color_den)
ylim_ne=[1e10,1e20]
ax2.set_ylim(ylim_ne)
ax2.grid(False)
ax2.set_ylabel(r'Density ($m^{-3}$)',ha='center',\

fontsize=fs,color=ax_color_den)

#Draw densities:
nes = ns*np.exp(phi/Te)
nis = ns*s/r*(1-B*phi)**(-1/2)
ax2.semilogy(r*1000,nis,color=C1,ls='dashed',\

label=r'$n_i(r)$')
ax2.semilogy(r*1000,nes,color=C1,\

label=r'$n_e(r)$')
ax2.plot([xlim[0],s*1000],[ns]*2,lw=lw,\

ls='dotted',color=C1)

#Label densities:
ax.text(r[30]*1000,phi[30]+vert_space*.75,\

r'$\phi(r)$',color=C0,\
ha='center')

ax2.text(r[30]*1000,nes[30]*.1,r'$n_e(r)$',\
color=C1,ha='center')

ax2.text(r[30]*1000,nis[30]*3,r'$n_i(r)$',\
color=C1,ha='center')

ax2.text((xlim[0]+s*1000)*0.5,ns*.2,\
r'$n_{e,i} = n_s$'\
,va='center',ha='center',\
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color=C1,fontsize=fs_sm)

#Stuff that goes on top needs a separate axis:
top_ax = ax.twinx()
top_ax.set_ylim(ylim)
top_ax.grid(False)
top_ax.set_yticks([]) #Don't draw y-axis ticks
top_ax.set_yticklabels([]) #Don't draw y-axis numbers

#Label bulk, sheath, and chamber wall:
top_ax.text(xlim[0]+(s*1000-xlim[0])/2,lab_loc,\

'Bulk\nPlasma',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

top_ax.text(s*1000+(rw-s)/2*1000,lab_loc,\
'Sheath',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

top_ax.text(rw*1000+(xlim[1]-rw*1000)/2,lab_loc,\
'Wall',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

#Draw and label Debye Length:
lam=rw-np.array([pr.lambda_D(Te,ne),0])
top_ax.plot(lam*1000,[2]*2,color='black',\

marker='|',ms=10,\
markeredgewidth=3,lw=3)

top_ax.text(np.average(lam)*1000,1.5*vert_space,\
r'$\lambda_{D}$',va='center',\
ha='center',fontsize=fs)

#Save:
bdd.save(fig,'wall_sheath_IVP',savedir,save,extensions)

PNG Saved Successfully
PDF Saved Successfully
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A.3.1 Another way to solve the wall sheath:

But is cheating on the φ′ = 0 condition okay? Let’s solve the ODE a different way and

compare the two.

Recall the three boundary conditions we know about φ(r) in the sheath:

(1) φ(rsheath) = 0

(2) φ′(rsheath) = 0

(3) φ(rwall) = −Vplasma

We can apply these BCs in a different order. We will now write a function that uses

BCs (1) and (3) to solve Poisson’s Equation and use scipy.optimize.fsolve() to find the

sheath thickness for which φ conforms to BC (2)

So instead of solving Poisson’s Equation as an initial value problem (IVP), we are

solving it as a boundary value problem (BVP):

[13]: #Our boundary conditions now depend on geometry, unlike the IVP
↪→case where it didn't matter

#Here's a function to handle that:
def BCs_BVP(phi_l,phi_r):

if surface.lower() in ['probe','p']:
return(np.array([phi_l[1]-Vf,phi_r[1]]))

if surface.lower() in ['wall','w','chamber','c']:
return(np.array([phi_l[1],phi_r[1]-Vp]))

#solve_bvp() passes z r all at once
#as arrays (unlike odeint())
def dz_BVP(r,z):

s = r[-1]
if 'cyl' in geometry.lower():

der = np.array((
#z'[0] (which is phi"):
A*(np.exp(z[1,:]/Te) - s/r*(1-B*z[1,:])**(-1/2))\
- z[0,:]/r,
#z'[1] (which is phi'):
z[0,:]
))

return der
if 'sph' in geometry.lower():
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der = np.vstack((
#z'[0] (which is phi"):
A*(np.exp(z[1,:]/Te) - (s/r)**2*(1-B*z[1,:])**(-1/2))\
- 2*z[0,:]/r,
#z'[1] (which is phi'):
z[0,:]
))

return der
print('d(z,r,s,geometry): Unknown geometry!')
return

#Function to return (target potential')-(sheath potential')
#for a given sheath thickness. Have to supply sheath
#as a possibly-1D list.
def

↪→diff_BVP(sheath,target=0,surface='probe',geometry='cylindrical'):
if surface.lower() in ['probe','p']:

s = rp + sheath[0]/1000
r = np.linspace(rp,s,11)
phi_guess = np.zeros((2,r.size))
phi_guess[0,:] = np.array([-Vf/(r.size-1)]*r.size)
phi_guess[1,:] = np.linspace(Vf,0,r.size)
edge = -1 #array index for sheath edge

elif surface.lower() in ['wall','w','chamber','c']:
s = rw - sheath[0]/1000
r = np.linspace(s,rw,11)
phi_guess = np.zeros((2,r.size))
phi_guess[0,:] = np.array([Vp/(r.size-1)]*r.size)
phi_guess[1,:] = np.linspace(0,Vp,r.size)
edge = 0 #array index for sheath edge

else:
print('diff_BVP(sheath,Z0,surface): Unknown surface type!')
return

res = solve_bvp(dz_BVP,BCs_BVP,r,phi_guess)
phi_p = res.sol(r)[0]
diff = phi_p[edge] - target
return diff

[14]: guess = 0.01 #Initial guess for sheath thickness
args = (0,'wall','spherical')
surface='wall'
geometry='spherical'
s_wall_BVP = fsolve(diff_BVP,guess,args=args)[0]
print('Sheath thickness for {} {} sheath: {:.2f} mm'.\

format(args[2],args[1],s_wall_BVP))

<ipython-input-13-10ebab1990df>:26: RuntimeWarning: invalid value
↪→encountered in

power
A*(np.exp(z[1,:]/Te) - (s/r)**2*(1-B*z[1,:])**(-1/2))\

Sheath thickness for spherical wall sheath: 3.30 mm

[16]: #Draw a demonstration of how we found the width:

#Find DeltaV across sheath for range of sheath thicknesses:
sheaths = np.linspace(1,6,200)
EField = np.empty(sheaths.size)
for i in range(len(sheaths)):

EField[i]=diff_BVP([sheaths[i]],*args)/1000
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#Prepare plot:
fig,ax=plt.subplots()
ax.set_title('Wall Sheath: Edge E-field vs Width')
ax.set_ylabel('Sheath Edge E-field (kV/m)')
ax.set_xlabel('Sheath Width (mm)')
ax.set_ylim([-75,25])
ax.set_xlim([sheaths[0],sheaths[-1]])

#Draw target EField, which is 0 kV/m:
ax.plot(sheaths,[0]*len(sheaths),color='black',\

ls='dotted')

#Draw and label sheath edge EField:
ax.plot(sheaths,EField,color='C0')
ax.text(sheaths[40],EField[40]+10,'E(r=s)',rotation=57,\

ha='center',va='center',fontsize=fs_sm,\
color='C0')

#Draw and label BVP solution:
ax.axvline(x=s_wall_BVP,color='blue',ls='dotted')
ax.text(s_wall_BVP-0.1,-40,'BVP Solution',rotation=90,\

color='blue',va='center',\
ha='center',fontsize=fs_sm)

ax.axvline(x=s_wall_IVP,color='C1',ls='dotted')
ax.text(s_wall_IVP-0.1,-40,'IVP Solution',rotation=90,\

color='C1',va='center',\
ha='center',fontsize=fs_sm)

#Save:
bdd.save(fig,'wall_solution_BVP',savedir,save,extensions)

<ipython-input-13-10ebab1990df>:26: RuntimeWarning: invalid value
↪→encountered in

power
A*(np.exp(z[1,:]/Te) - (s/r)**2*(1-B*z[1,:])**(-1/2))\

PNG Saved Successfully
PDF Saved Successfully
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[22]: #Now that we've solved it, let's draw the sheath:

#Solve for sheath:
s=rw-s_wall_BVP/1000
r_mesh = np.linspace(s,rw,11)
phi_guess = np.zeros((2,r_mesh.size))
phi_guess[0,:] = np.array([Vp/(r_mesh.size-1)]*r_mesh.size)
phi_guess[1,:] = np.linspace(0,Vp,r_mesh.size)
res = solve_bvp(dz_BVP,BCs_BVP,r_mesh,phi_guess)
phi = res.sol(r)[1]

#Prepare plot:
colors=[C0,'gray','black',ax_color_pot]
xlim = [95,100.9]
ylim = [-150,20]
fig,ax=plt.subplots()
ax.set_xlim(xlim)
ax.set_ylim(ylim)
ax.grid(False)
plt.xlabel('Radius (mm)',fontsize=fs)
plt.ylabel('Potential (V)',fontsize=fs,\

color=colors[3])
plt.title('Wall Sheath')
ax.tick_params(axis='y', labelcolor=colors[3])

#Useful dimensions and locations for plot:
vert_space = (ylim[1]-ylim[0])*.05
horiz_space = (xlim[1]-xlim[0])*0.025
ymid = ylim[0]+(ylim[1]-ylim[0])/2
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xmid = xlim[0]+(xlim[1]-xlim[0])/2
lab_loc = ylim[0]+(ylim[1]-ylim[0])*.075
rs_loc = lab_loc

#Plot and label sheath potential:
r = np.linspace(s,rw,200)
ax.plot(r*1000,phi,lw=lw,color=colors[0])
ax.text(r[30]*1000,phi[30]+10,r'$\phi(r)$',\

color=C0,ha='center')

#Draw bulk and chamber wall:
ax.fill_between([xlim[0], s*1000],[ylim[0]]*2,\

[ylim[1]]*2,color='#D8BFD8')
ax.fill_between([xlim[1],rw*1000],[ylim[0]]*2,\

[ylim[1]]*2,color='#D3D3D3')
ax.axvline(x=s*1000,color='black',ls='solid',lw=1)
ax.axvline(x=rw*1000,color='black',ls='solid',lw=1)

#r=s label:
ax.text(s*1000+horiz_space,rs_loc,'r=s',color=colors[1],\

rotation=90,va='center',\
ha='center',fontsize=fs_sm)

#Draw V_plasma at the wall:
ax.plot([rw*1000,xlim[1]],[Vp]*2,lw=lw,\

ls='dotted',color=colors[0])
ax.text((rw+(xlim[1]/1000-rw)/2)*1000,Vp+vert_space,\

r'$-V_p$',va='center',ha='center',\
color=colors[0],fontsize=fs)

#V_bulk:
ax.plot([xlim[0],s*1000],[0,0],lw=lw,\

ls='dotted',color=colors[0])
ax.text(xlim[0]+(s*1000-xlim[0])/2,vert_space,\

r'$\phi = 0$',va='center',\
ha='center',color=colors[0],\
fontsize=fs)

#Set up density axis:
fig.set_size_inches(fgs_stretch)
ax2 = ax.twinx()
ax2.tick_params(axis='y', labelcolor=ax_color_den)
ylim_ne=[1e10,1e20]
ax2.set_ylim(ylim_ne)
ax2.grid(False)

#Plot plasma densities:
nes = ns*np.exp(phi/Te)
nis = ns*s/r*(1-B*phi)**(-1/2)
ax2.semilogy(r*1000,nis,color=C1,ls='dashed',\

label=r'$n_i(r)$')
ax2.semilogy(r*1000,nes,color=C1,label=r'$n_e(r)$')
ax2.plot([xlim[0],s*1000],[ns]*2,lw=lw,\

ls='dotted',color=C1)

#Label plasma densities:
ax2.text(r[30]*1000,nes[30]*.1,r'$n_e(r)$',\

color=C1,ha='center')
ax2.text(r[30]*1000,nis[30]*3,r'$n_i(r)$',\

color=C1,ha='center')
ax2.text((xlim[0]+s*1000)*0.5,ns*.2,r'$n_{e,i} = n_s$',\

va='center',ha='center',\
color=C1,fontsize=fs_sm)
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ax2.set_ylabel(r'Density ($m^{-3}$)',ha='center',\
fontsize=fs,\
color=ax_color_den)

#Stuff that goes on top needs its own axis:
top_ax = ax.twinx()
top_ax.set_ylim(ylim)
top_ax.grid(False)
top_ax.set_yticks([]) #Don't draw y-axis ticks
top_ax.set_yticklabels([]) #Don't draw y-axis numbers

#Label bulk, sheath, and chamber wall:
top_ax.text(xlim[0]+(s*1000-xlim[0])/2,lab_loc,\

'Bulk\nPlasma',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

top_ax.text(s*1000+(rw-s)/2*1000,lab_loc,'Sheath',\
color='black',va='center',\
ha='center',fontsize=fs_sm)

top_ax.text(rw*1000+(xlim[1]-rw*1000)/2,lab_loc,\
'Wall',color='black',\
va='center',ha='center',\
fontsize=fs_sm)

#Draw and label Debye Length:
lam=rw-np.array([pr.lambda_D(Te,ne),0])
ax.plot(lam*1000,[2]*2,color='black',marker='|',\

ms=10,markeredgewidth=3,lw=lw_sm)
ax.text(np.average(lam)*1000,1.5*vert_space,\

r'$\lambda_{D}$',va='center',\
ha='center',fontsize=fs)

#Save:
bdd.save(fig,'wall_sheath_BVP',savedir,save,extensions)

<ipython-input-13-10ebab1990df>:26: RuntimeWarning: invalid value
↪→encountered in

power
A*(np.exp(z[1,:]/Te) - (s/r)**2*(1-B*z[1,:])**(-1/2))\

PNG Saved Successfully
PDF Saved Successfully
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A.4 Conclusion

We know three boundary conditions for the electric potential in the sheath:

(1) φ(rsheath) = 0

(2) φ′(rsheath) = 0

(3) φ(rwall) = −Vplasma

To find the sheath thickness, one must write a function to solve Poisson’s Equation

with two of these three BCs, and then solve for the sheath thickness where the potential

obeys the third BC. It might matter which order you use the BCs in. In our case, the

wall sheath needs to be solved using BCs (1) and (3) to solve Poisson’s Equation, not

BCs (1) and (2), because otherwise our method could find mathematically valid, but

non-physical solutions for the potential and densities.

[ ]:
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