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Abstract

Academia and businesses have extensively studied portfolio decision-making under

uncertainty and risk. Prediction-based portfolio models usually forecast either the portfolio’s

future return or risk. On the other hand, portfolio optimization models are built upon

statistically defined risk measures or returns using historical scenarios. However, multiple

reasons are leading even advanced models away from good performance on both topics,

mainly due to the high stochastic market behaviors. However, artificial intelligence and

risk management models have the potential to interact with each other and achieve better

outcomes in making better decisions. In our study, we assumed that if portfolios can

be optimized upon profitable prediction results, the outcome will be beneficial from the

combination of machine learning prediction and risk minimization portfolio optimization. In

addition, it is believed that stock movements are predictable using various data sources. We

use open-source API and public financial databases to generate prediction data. All data

is processed through machine learning models, including SVM, Deep Neural Network, and

Long Short Term Memory. Different metrics, including accuracy, Cross Entropy Loss, etc,

are used to measure the prediction performance. The prediction results are selected and

applied to the risk optimization model to obtain an optimal asset allocation strategy. The

portfolio risk will be optimized over the conditional value at risk, which could be calculated

using either historical scenarios or predictions-based scenarios. Sets of trading simulations

have been devised to evaluate the performance of the proposed models under the condition of

dynamic asset allocation. In addition, a Broker-Investor competition problem is formulated

using bilevel architecture. The broker and investor are aligned by returns(lower level) while

competing on risk(upper level). A bilevel optimization model fits well in simulating the

situation and provides a novel view of risk and return management. From our case study, we
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achieve several conclusions: (1) the prediction accuracy has a significant impact on portfolio

outcomes; (2) the prediction system, along with the optimization model, leads to better

and more profitable portfolio outcomes. (3) bilevel portfolio risk-return framework shows its

potential to model a realistic business situation and provide novel risk-return research paths

in the future.
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Chapter 1

Dissertation Introduction

Decision-making in portfolio management occurs before the market trading opera-

tions. Market uncertainty and risk-return management are the main challenges for investors.

Academia and businesses have conducted numerous studies on portfolio management via

different objectives. In modern portfolio theory(MPT), investors are assumed to be risk

averse, meaning that a portfolio is said to dominate another if either a higher expected return

or lower risk is achieved. Indeed, investors are willing to take more risk only if compensated

by higher expected returns. Thus, an optimization framework can be modeled through a

portfolio of assets such that the expected return is maximized under a given level of risk. One

major drawback of the MPT is that it highly depends on historical data and usually produces

conservative results. Besides, it does not consider any auxiliary data, even if such indicators,

that are available during decision-making, may be predictive of future market movement.

Predictions are an important topic in decision-making under uncertainty. It projects

future insights that will generally describe how the decision environment changes while

making decisions. Predictions usually require auxiliary data and prediction models. Research

has shown that considerable auxiliary data can be used in market trend prediction. And data

mining techniques can extract and capture potential correlated features from various data

sources. In addition, artificial intelligence provides robust prediction models to process market

data. In addition, statistical models can analyze prediction results and produce mathematical

impacts on final decisions. However, prediction models usually encounter accuracy issues, and

prediction results can not be directly applied to decisions. Thus, a well-defined prescriptive

analytic model is desired to unify prediction and decision-making. This dissertation aims to
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develop a novel decision-making framework for portfolio design, that incorporates advanced

machine learning for stock movement forecasting with traditional portfolio optimization.

In Chapter 2, we propose a hybrid risk optimization and machine learning model for

portfolio risk-return management that takes into account binary classification on stock

movement only. It is motivated by the idea that binary classification (i.e., predicting whether

a particular asset will go up to down in value) is a considerably easier forecasting task (for

example, compared to predicting actual future price), and hence can be expected to achieve

higher accuracy. Specifically, we use machine learning algorithms to perform market trend

prediction, which is then used to filter the stock selection process. Finally, the portfolio

will be constructed using the conditional value at risk optimization model using machine

learning-selected stocks. This model brings new insight into risk optimization and returns

management. To the best of the author’s knowledge, this is a novel approach to portfolio

design.

In Chapter 3, we intend to use a prescriptive multi-objective approach to optimize port-

folio risk and return, this time accounting for probability estimation. In the previous model,

our single objective was the CVaR function, which focuses on portfolio risk minimization.

Although we have a return constraint in the optimization progress, this return constraint is

still built upon the historical data. In other words, our model does not optimize the returns,

and the future return expectation is not guaranteed during portfolio design. To address

these issues, we employ recently developed machine learning techniques for calibrating the

probabilistic performance of a predictive task, that enable estimation of the probability of a

particular class outcome. Although several studies have been conducted on approximating

the market trend probability distribution, most have relied on a prescriptive analysis to model

a stochastic problem, for example, to maximize the expected return. The authors believe

there is a lack of research objectives on risk-return management. Thus, a novel prescriptive

risk-return multi-objective optimization model will be proposed for portfolio design.
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For the last chapter, the authors are inspired by the Principle-Agent situation that occurs

in many cases. The Principle-Agent problem (Jensen and Meckling, 1976) describes a conflict

between the asset owners and the authorized agents who act on the owner’s behalf. The

work develops a mathematical relationship between ownership and agent, which they defined

as the separation of asset ownership and control. Given that the agent prefers to act in his

interests, the owner would like an incentive strategy that aligns the agent’s interests with his

preference. This separate control appears when the owner hires an agent, for example, an

investment trust. The owner and trust have exactly a Principle-Agent relationship, resulting

in a bilevel optimization problem. The first level focuses on profit maximization, which

is the owner’s (principle) objective. The first level is constrained by the second level, an

optimization sub-problem. Although the agent may want to act on his preference, he also

wants to avoid extreme losses. Thus, a new optimization framework can be introduced to

solve this financial problem by determining the optimal solution to this bi-level optimization.

To the authors’ best knowledge, this is a novel portfolio design approach.
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Chapter 2

Portfolio Design Through a Hybrid Risk Optimization and Machine Learning Approach

2.1 Introduction

Portfolio optimization models aim to develop effective trading strategies for managing

financial assets’ risk and return. Typical approaches in the literature begin with a set of

historical data on asset prices and then apply a combination of optimization and statistical

techniques. Traditional portfolio optimization models rely on historical data, i.e., primarily

treat the historical performance as indicative of future performance, without explicitly aiming

to predict it. Instead, they employ a correlation structure as a way to enforce diversification.

Therefore, their performance is limited due to a lack of ability to consider future market trends,

even though some indicators of future behavior may be available when the portfolio is built.

Artificial intelligence techniques are increasingly attracting attention in analyzing financial

portfolio data, specifically for constructing market prediction models. While these too rely

on historical data, a variety of studies employ various sources of auxiliary (forward-looking)

non-traditional market-related data to forecast asset behavior.

In principle, in the presence of an accurate predictive model, no additional optimization

is needed. Indeed, if an investor has access to a high-quality forecast, then the resulting

decisions are straightforward (buy assets that are predicted to go up in price, and potentially

short assets that are expected to lose value). At the same time, due to high stochastic

and multi-factor properties, even modern prediction models are not guaranteed to obtain

high accuracy. As a result, using only prediction models in trading strategy will introduce

significant risk factors to portfolios. Therefore, even in the presence of advanced machine

learning forecasting tools, an investor may still benefit from employing traditional risk-averse
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stochastic optimization techniques. The goal of this study is to investigate the best ways to

organize such an approach.

Two particular challenges can be identified. First, a significant amount of literature

is dedicated to both forecasting models and stochastic optimization for portfolio risk man-

agement, yet few existing efforts are concerned with considering a combined approach. In

other words, both streams of literature have seen significant advances in terms of improving

forecasting accuracy and better ways to improve portfolio diversification to hedge against

risks. Still, the idea of employing machine learning-based prediction within a stochastic

optimization model has not been extensively studied.

Secondly, while advanced machine learning models have been successfully employed to

forecast asset prices, accurate prediction remains an exceptionally challenging task, especially

on a time scale measured in days. One direction that has seen somewhat more promising

results is to predict asset movement rather than exact price. In this approach, a machine

learning model is trained to forecast whether a particular asset will increase or decrease in

value, i.e., the underlying task is a simple binary classification. Since such a task is simpler

than regression-like approaches required for predicting actual price, the existing models

reported in the literature have decent performance.

Therefore, the goal of the proposed approach is to construct an optimization framework

that can take advantage of both modern risk-averse stochastic optimization and advanced

asset movement prediction models. Note that the optimization step is intended to hedge the

investor against correlations both in asset prices (this is the traditional goal of diversification)

and in forecasting errors. The latter issue is unique to the proposed framework and has not

been extensively studied in the literature before.

Here we propose to design a simple approach to combining prediction and optimization.

Specifically, we surmise that the benefits of both can be attained if on the one hand, only assets

predicted to increase in value are selected. On the other hand, we will employ a popular risk-

diversification approach – mean-CVaR optimization – to hedge against prediction inaccuracy

5



as much as possible. While straightforward in construction, we show that this simple approach

can outperform both diversification-without-predictions and prediction-only portfolios.

This research aims to address these challenges and focuses on the following proposed

procedure.

1. We implement and compare three machine learning algorithms to forecast short-term

movements for a collection of U.S. stocks.

2. We propose a hybrid machine learning-informed CVaR risk optimization model to hedge

the risk of stock portfolios, that explicitly takes advantage of the the predictive models.

3. Our proposed risk optimization model is then compared in terms of returns with the

standard CVaR optimization model and purely prediction-based model to evaluate its

performance.

Note that we present the approach as explicitly aimed at financial portfolio optimization.

At the same time, similar challenges arise in other similar settings, where both machine

learning predictions and stochastic optimization are customarily employed.

2.2 Literature Review

2.2.1 Stock Market Prediction Models

Early stock market prediction approaches have largely relied on the Efficient Market

Hypothesis (EMH) (Fama, 1965) and random walk theory (RWT) (Cootner, 1964; Fama,

1965, 1991, 1995), posing that the stock market is purely stochastic, and thus, can not be

predicted with any significant accuracy (Bollen et al., 2011). However, subsequent studies

challenged this perspective (e.g. Malkiel, 2003; Smith, 2003; Nofsinger, 2005; Prechter Jr and

Parker, 2007; Bollen et al., 2011). These attempted to show that the stock market indeed

can be predicted, at least to a certain extent. Investors may derive information from various

sources to collect disparate data and correlate those with the market movements (e.g. Bollen
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et al., 2011; Mittal and Goel, 2012; Jiao et al., 2020). Some results in the literature suggest

that early trading indicators can be extracted from online sources, including Google Trends,

Wikipedia’s financially-related website traffic volume, and news sentiments (e.g. Moat et al.,

2013; Li et al., 2014; Preis et al., 2013). Further, studies performed on social media, for

example, X (Twitter) and financial blogs, indicate that these early trading signals can also

serve as valuable predictors Nguyen et al. (2015).

From the research perspective, highly correlated features and appropriate prediction

algorithms are two critical factors in stock movement prediction modeling. Most advanced

statistic models and artificial intelligence approaches have been employed in stock market

prediction with varied results (e.g. Weng et al., 2017; Ou and Wang, 2009; Angadi and

Kulkarni, 2015; Weng et al., 2017). Recently, even modern advanced deep learning algorithms,

including Deep Neural Networks, Convolutional Neural Networks (CNN), and Long Short

Term Memory (LSTM) Recurrent Neural Networks, have been explored with different data

sources for this purpose (e.g. Weng et al., 2018; Selvin et al., 2017). Finally, advances in

Natural Language Processing (NLP) have been instrumental in enabling sentiment analysis

of the auxiliary data sources, which, in turn, can then be used as early predictors (Xing

et al., 2018). In the context of stock movement prediction, the prediction accuracy varies

significantly across different research works. In general, the prediction accuracy has a range

from 45% to 87.5% (Mittal and Goel, 2012).

Note that this study does not aim to improve the existing predictive models. Instead,

our goal is to consider novel approaches to employing them in optimization. As such, for our

case study, as discussed below, we rely on some of the available models. Specifically, SVM,

NN, and LSTM are studied in more detail.

2.2.2 Models for Financial Portfolio Optimization

Decision-making and optimization under uncertainty have attracted significant interest

in operations research and management sciences communities. One fundamental principle in
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this related field is von Neumann and Morgenstern’s utility theory of choice under uncertainty

(Morgenstern and Von Neumann, 1953). Markowitz volatility risk portfolio model (Markowitz,

1952) represents the other cornerstone of the modern risk management theory. Based on the

Markowitz model, one widely known risk model is the Value-at-Risk (VaR) measure (e.g.

Jorion, 1997; Duffie and Pan, 1997). It has been adopted as the standard for measuring

risk in many financial use cases. At the same time, criticisms are accompanying its growing

popularity. Specifically, it does not take into account the extreme losses beyond the α-quantile,

and, paradoxically, VaR can be shown to, in general, be inconsistent with the fundamental

risk management principle of risk reduction via diversification (Krokhmal et al., 2013). To

overcome these drawbacks, Conditional-Value-at-Risk (CVaR) was introduced to overcome

the shortcomings of VaR. It mainly focuses on extreme losses by estimating the average loss

function exceeding a certain threshold, and, through the carefully constructed definition, is

convex and allows for efficient optimization representation (e.g. Rockafellar et al., 2000).

2.2.3 Portfolio Optimization with Predictive Models

Recent developments have seen the initiation of novel research endeavors in decision-

making, focusing on the collaboration between machine learning and portfolio optimization.

Newly proposed methods use auxiliary data and predictive models to turn the predicable

target into prescriptive decisions. Advanced data mining and deep learning algorithms are

experimented with in predicting the most profitable return on stocks. Portfolios are built

upon those predicted results that indicate the most profitable allocation. In the works (e.g.

Ma et al., 2020, 2021), the actual stock return is predicted, followed by a risk minimization

model built by integrating the predicted returns and predictive errors. Regardless of the

optimization techniques, Ma’s works define the portfolio risk directly using the prediction error

and optimize the risk in the allocation. Other research in the literature also considers stock

return prediction(Ta et al., 2020), and the predicted return is incorporated with the simple

Mean-Variance model to optimize the risk. New approaches take advantage of both return
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prediction and risk optimization. Based on their experiments, better and more profitable

outcomes can be achieved. However, accurately predicting actual stock returns is a formidable

challenge, with no assurance of precision.

2.3 Methods

In this paper, we propose a two-phase prediction-based portfolio risk optimization model.

In the first phase, we implement machine learning classification algorithms to predict one-day

stock closing price movements. Binary classification results can be obtained, indicating

market trends. These prediction results are introduced to the portfolio risk optimization

model. Since our prediction results are on a daily basis, investors can allocate their budget

through the guideline of predicted optimization results. Indeed, this two-phase model is

designed to return a daily risk-optimized allocation strategy that is supposed to be profitable

at the same time. Thus, our model can be summarized in Figure 2.1.

We next describe each component in detail. The main contribution of the approach is in

the construction of the optimization problem in Section 2.3.3. First, though, we elaborate on

the predictive models considered as well data preparation process, which serve as the basis

for the proposed approach.

2.3.1 Data Acquisition and Prepossessing

In our prediction phase, stocks may have different feature dependencies and feature space

needs to be carefully analyzed. Based on data availability, we chose 60 months period from

07/01/2015 to 06/30/2020 for all of the experiments. We employ four data sources, following

Weng et al. (e.g. 2017, 2018). All provide free Python API access for the period in question.

First, Yahoo Finance provides us with the historical stock price, including daily Open-

ing/Closing price, High/Low, Adjust Close, and volume of trades for each stock per trading

day. In addition, the Dow Jones Industrial Average and NASDAQ composite indices are
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Figure 2.1: Proposed Model Overview

also included in each data set since they are common market indicators. Further, we cal-

culate price–earnings ratio using historical quarterly Trailing Twelve Months (TTM) and

daily closing price. Recall that the price–earnings ratio can be seen as an estimator for the

fundamental health of the company (Gabrielsson and Johansson, 2015).

In our second and third data sources, we extract online data activity data from Google

Trends and Wikipedia Pageview. Google Trends analyses how frequently a given search term

is entered into Google’s search engine relative to the site’s total search volume over a given

period. It reflects search query popularity across regions and languages. Google provides

API modules to retrieve data from its server. However, Google currently sets limits on the

time resolution based on queries’ time frames. For example, a query for the last 7 days will

return hourly search trends. The Daily data is only available with a query period between

9 months and up to 36 hours before the query. Therefore, for our purposes, only monthly
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data is available. In addition, it is possible to recursively make queries in a 9-month interval

until the full time range is reached. However, this recursive method will produce inconsistent

results, and different data will be returned even in the same time interval. To overcome

this limitation and get precise daily data, data reconstruction is an option. To perform

reconstruction, we make multiple 9-month period queries with significant overlapping periods

and use the overlapped periods to have consistent scaling. Detailed implementation can be

found in https://github.com/jzy0040/Dissertation.

The third data source, Wikipedia provides website analysis and user traffic counts.

We queried the daily traffic data from their website www.wikipediatrends.com. Detailed

implementation can be found in the code as well. In both cases, it is assumed that the

potential trading signals can be extracted from financial-related user traffic in either Wikipedia

or Google. This has previously been observed in the literature, Weng et al. (e.g. 2017, 2018).

The last data source, FinSentS Web News Sentiment, offers daily media sentiment

indicators for global equities. It contains five indicators. First, the sentiment score is a

numeric measure of the bullishness/bearishness of news coverage of the stock. High/low

sentiments are the daily highest and lowest sentiment scores. News Volume is the absolute

number of news articles covering the stocks. News Buzz is a numeric measure of the change in

coverage volume for the stock. Literature suggests that a correlation does exist between news

sentiment and stock movements Mittal and Goel (e.g. 2012); Li et al. (e.g. 2014); Nguyen et al.

(e.g. 2015). We expect that news sentiment will be beneficial to prediction accuracy. However,

significant issues with missing values are present, particularly, for smaller or less popular

financial assets. In order to obtain continuous time series data we, therefore, must consider

missing data imputation. Implementation details are introduced later in the Experiment

setup section.

A summary of the data sources is given in Table 2.1. Note that, naturally, financial

trading data is only available on trading days, while the rest of the sources can be queried

every day.
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Data Sources Size Continuity Missing Values Reconstruct
Yahoo Finance 1259, 6 Trading days only No No
Google Trends 1827, 1 All No Yes

Wikipedia Pageview 1827, 1 All No No
FinSentS Sentiment 1827, 8 All Yes Yes
Note: all data are indexed by date and merged accordingly.

Table 2.1: Data Sources Summary

Additional predictors are constructed by calculating some common technical indicators,

following (Bao and Yang, 2008). In finance, technical indicator is a fundamental technical

analysis methodology that can provide insights into historical and current price trends,

volatility, and potential future price movements. A summary of indicators used in this work

is given in Table 2.2.

Indicators Yahoo Finance Google Trends Wiki Pageview FinSentS
Disparity Yes Yes Yes Yes

MA Yes Yes No Yes
EMA Yes Yes No Yes
ROC Yes Yes Yes Yes
SO Yes No No Yes

Willams R Yes No No Yes
RSI Yes Yes Yes Yes

MACD Yes Yes Yes Yes
PPO Yes Yes Yes Yes
CMO Yes Yes Yes Yes

Note: all data are indexed by date and merged accordingly.

Table 2.2: Technical Indicator Applied for Data Sources

One significant factor in our study is the prediction target. Researchers focus on different

target values in predicting stock movements. As we mentioned before, we will focus on

one-day stock movements, rather than price or return prediction. Equation (2.1) gives the
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expression that we will interpret as the prediction target.

pi =


0, if Closei+1 − Closei ≤ 0

1, else

(2.1)

Naturally, this leads to a binary classification problem.

2.3.2 Prediction Models

In the first phase, we explore three machine learning classification algorithms. All data

is prepared in time series data format and indexed by date. Meanwhile, both the non-time

series model and time series model are compared by prediction accuracy. The best model

for each stock is statistically evaluated and the best overall model will be used to generalize

on the testing set. All prediction models are introduced in the following paragraphs below.

Readers should note that we will develop all three prediction models for each stock using the

same data sets, though feature spaces may be different due to normalization or time-series

requirements.

In the context of stock market prediction, Support Vector Machine(SVM) is a basic and

commonly used classification algorithm (e.g. Kim, 2003; Nguyen et al., 2015; Weng et al.,

2017). SVM typically distinguishes the data by constructing a hyperplane in the feature space

that maximizes the margins between the support vectors. It has been widely accepted that

SVM can handle high-dimensional data for classification purposes. Due to the non-linearity

of the feature space, kernel functions could be considered and they map the original feature

space to high dimensional space, where training samples are linearly separable. As a result,

SVM is capable of performing well for high-dimensional feature space regardless of linearity.

Consequently, we will employ SVM as the baseline method.

Artificial Neural Network(ANN) aspires loosely to emulate the human brain and its

learning procedure. It was originally developed by psychologist Frank Rosenblatt (Rosenblatt,

1958) who invented the Perceptron algorithm. ANN is a universal approximating algorithm
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with many possible variations, including multi-layers Perceptron, Recurrent Neural Networks,

and Convolutional Neural Networks in deep learning, etc. In stock prediction literature,

ANNs have been extensively studied on different market indices (e.g. Kim and Han, 2000;

Atsalakis and Valavanis, 2009; Dase and Pawar, 2010; Weng et al., 2017, 2018). Because of

its universal approximating capabilities, it demonstrates satisfactory performance with both

linear and nonlinear functions. Compared with SVM, it does not require a kernel function

selection, which means it maintains the original feature spaces in training and testing. In this

paper, our ANN models are designed to be fully connected multi-layer neural networks. We

will use the Rectified Linear Unit as the activation function. Theoretically, it is non-trivial to

determine how many layers and neurons are needed in the network. These decisions must be

made through experiments. Note that both SVM and ANN are non-time-series models, i.e.,

disregard temporal dimension of the training data.

Long Short Term Memory(LSTM) is an affiliate member of Recurrent Neural Network

architecture (Hochreiter and Schmidhuber, 1997). Unlike standard feed-forward neural

networks, LSTM architecture takes advantage of feedback process that passes sample data

to the previous or the same layer. It can process not only single sample data, but also a

sequence of samples. It has been applied for both classification and regression purposes (e.g.

Selvin et al., 2017; Nelson et al., 2017) and has been able to accomplish better results on

time series problems. In our LSTM models, we have one LSTM and a dense layer designed as

our hidden layers. The output layer which is also a dense layer uses the Sigmoid activation

function. In training, we apply Binary Cross Entropy loss function. Detailed implementation

is described in the Experiments section.

2.3.3 CVaR Portfolio Optimization

Conditional-value-at-risk (CVaR) for continuous distribution is defined by taking the

weighted average of the extreme losses that exceed a certain quantile (i.e., Value-at-Risk, VaR)

of the loss distribution. It has been designed as a remedy for the drawbacks of VaR. First,
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CVaR addresses the inability of VaR to account for extreme but rare losses, by averaging the

tail of the loss distribution. Secondly, unlike VaR, CVaR is coherent, i.e., is consistent with

the principle of risk reduction through diversification. Further, CVaR can be defined as a

solution to a linear programming problem, meaning that it allows for efficient evaluation in a

portfolio optimization setting. Therefore, CVaR is widely used as the main way to account

for risk in risk-reward optimization framework. See Rockafellar et al. (2000) and Krokhmal

et al. (2013) for more details.

In a traditional mean-CVaR optimization problem, the goal is to select portfolio weights

xi, for each of n financial assets. It is assumed that m scenarios for the realization of asset

returns are given (usually obtained from historical performance). These are defined as rij.

Therefore, portfolio return under scenario j is given by
∑

j rijxi. The problem in question is

to select a portfolio that balances average return against the CVaR of negative return (i.e.,

CVaR of portfolio losses). This is a bi-objective optimization problem with the solution given

by a Pareto front (efficient frontier). It can be obtained, for example, by solving the following

optimization problem (see, for example, Krokhmal et al., 2013)

CV aRα(x) = min
η∈R

η +
1

m(1− α)

m∑
j=1

[
−

n∑
i=1

xirij − η
]+

s.t.
n∑

i=1

xi = 1

Ej

[∑
i

rijxi

]
≥ R

xi ≥ 0, i = 1, . . . , n.

Here, α is the confidence level of CVaR (i.e., CVaR measures the average in 1 − α worst

cases), R gives a target average rate of return, [t]+ = max{0, t} and η is an auxiliary variable

used in the definition of CVaR. it can be reformulated as a linear program by introducing
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variables wj as follows.

CV aRα(x) = min
η∈R

η +
1

m(1− α)

m∑
i=1

wi

s.t.
n∑

i=1

xi = 1

∑
i

r̄ixi ≥ R

wj ≥ −
n∑

i=0

xirij − η

wj ≥ 0, j = 1, . . . ,m

xi ≥ 0, i = 1, . . . , n

where r̄i is the average return on asset i.

Now, suppose that in addition to historical returns rij, asset movement prediction is

available, in the form of pi, defined above. Naturally, assets that are predicted to decrease

in value should be avoided in the portfolio. Therefore, we propose to solve the following

problem.

CV aRα(x,p) = min
η∈R

η +
1

m(1− α)

m∑
i=1

wj (2.2)

s.t.
n∑

i=1

xi = 1 (2.3)

∑
i

r̄ixi ≥ R (2.4)

wj ≥ −
n∑

i=0

xirij − η (2.5)

xi ≤ pi, i = 1, . . . , n (2.6)

wj ≥ 0, j = 1, . . . ,m (2.7)

xi ≥ 0, i = 1, . . . , n (2.8)
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Constraint 2.6 enforces that only assets predicted to increase in value are selected. On

the other hand, the rest of the problem ensures that the portfolio is still diversified. The

solution to an individual problem results in a single portfolio that is optimal for the prescribed

average return R. The Pareto front can then be constructed by varying this value.

Observe that the problem may be infeasible in two cases. First, if the target average

return is too high and is therefore unattainable. Secondly, if none of the assets are predicted

to increase in value. The former can be avoided by carefully selecting target R. In the

following experiments, we select R = R0.8, which is the 80th quantile of average return among

the assets. The latter case means that the decision maker is required to determine a trading

policy for when none of the assets are predicted to grow. In our experiments, we assume that

in this case, the decision is to withdraw from the market and hold cash.

The resulting problem is still linear, and hence can be solved efficiently with standard

off-the-shelf solvers. We next evaluate its performance base in a numerical experiment with

the data described earlier. In the next chapters, we will consider more advanced decision-

making approaches to constructing the portfolio – a bi-objective and bi-level optimization.

For the remainder of this chapter, we will concentrate on evaluating the performance of this

simple approach.

2.4 Experiments

Experiments are designed to illustrate our approach by comparing 3 different portfolio

allocation strategies. We use two baseline models to compare with our proposed model. The

first baseline model is the standard CVaR model which is well described in (Rockafellar et al.,

2000). We will refer to it as CVaR portfolio. Naturally, it ignores the predictions, and any

gains are realized through historical a combination of average performance and diversification

based on historical correlation structure. Our second baseline model is constructed as a

pure prediction portfolio, which will be referred to as Prediction+EW. Here, we build a

portfolio by assigning equal weight to each asset that is predicted to grow. This is a natural
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option, that takes full advantage of the forecast, but still attempts minimal diversification by

spreading the budget among the selected assets.

2.4.1 Experimental Setup

We selected 36 stocks for the experiment: 30 of the top Fortune 500 list and 6 additional

famous companies. Note that since our predictive models rely on news-based predictors,

more widely discussed assets can be expected to have lower forecasting errors. The four data

sources discussed earlier provide the necessary time series data. Note that two issues should

be addressed here: inconsistency between reporting frequency (trading days only vs once

a day) and missing data (particularly for FinSentS News Sentiment index on days that a

particular asset was not discssed in relevant news sources).

First, we calculate all additional features before merging different data sources. Note that

sequential inputs are needed for a number of constructed features. For example, the Relative

Strength Index indicator commonly uses 14 trading periods. If we merge data according to

the Yahoo Finance data index, and indeed we must use it because our target value is aligned

with the Yahoo Finance data index, we will lose continuity in calculating indicators for

Google Trends, Wikipedia Pageview, and FinSentS News Sentiment. Second, missing values

in FinSentS News Sentiment are randomly distributed and varied by amount. It is non-trivial

to perform data imputation for a large missing value data set. In our implementation, missing

values are imputed using a quadratic approximation function when the missing rate is lower

than 0.2. For those with missing values greater than 0.2, the FinSentS News Sentiment data

source and its additional generated features are ignored. Therefore, FinSentS News Sentiment

does not cover all target stocks. We also ignore those stocks unavailable in FinSentS News

Sentiment.

We divide our time series data into two parts: 07/01/2015 to 12/31/2019 for training

containing 1101 trading dates, and 01/01/2020 to 06/30/2020 for testing containing 125

trading dates. Experiment setups are consistent among all models. We will discuss our
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prediction model first and each strategy in detail in the following subsections. Readers should

note that all prediction experiments are conducted on each stock and optimal settings could

be different among stocks.

2.4.2 Prediction Models

SVM

Corinna Cortes and Vladimir Vapnik (Cortes and Vapnik, 1995) first introduced SVMs in

1995, which are supervised learning models that analyze data for classification and regression

purposes. SVM maps training samples to feature space to maximize the width of the two

support vectors. New samples are then considered in the same feature space and predicted

for a specific purpose. In addition to linear separable space, SVM can also efficiently apply

to non-linear space with the help of kernel function, which maps original feature space to

higher dimensional feature space. In the case of non-linearity and good generalization, our

experiment uses Radial Basis(RBF) as kernel function, which is defined in equation 2.9.

K(vi, vj) = exp(−γ ∥ vi − vj ∥2). (2.9)

Parameter γ is the kernel coefficient of RBF and vi represents the training features

in i dimensional spaces. The settings of our SVM model are listed in Table 2.3, where C

represents the regularization parameter of SVM. The shuffle function allows samples randomly

fed into the model when training SVM.

Parameters Values Description
Kernel RBF Radial basis function kernel
Gamma (Dim ·X.var())−1 Kernel Coefficient

C 1, 2, 4, 6, 8, 16 Regularization parameter
Shuffle True Sample order randomization

Table 2.3: Parameters of SVM
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ANN

ANN is a widely employed classification and regression algorithm. ANN model usually

consists of one input layer, multiple hidden layers, and one output layer. Theoretically,

more hidden layers are aimed to achieve better learning ability. In our experiments, we

consistently use 2 fully connected hidden layers. ANN has many hyperparameters to tune.

In our experiments, we use parameters in table 2.4.

Parameters Values Description
1th Hidden nodes Range(10, 100) Neurons in first hidden layer
2th Hidden nodes Range(5, 50) Neurons in second hidden layer
Learning Rate 0.0001, 0.001, 0.01, 0.1 Regularization parameter

Activation Function Relu, logistic Hidden layers activation function
Optimizer Adam Optimization algorithm

Loss Function MAE, Log Model training loss function
Shuffle True Sample order randomization

Table 2.4: Parameters of ANN

LSTM

Long Short Term Memory was first introduced by Hochreiter and Schmidhuber (Hochre-

iter and Schmidhuber, 1997). LSTM was designed to solve time series problems since it

inherited the characteristics of the Recurrent Neural Network, which extracted sequential

information by internal loops in its layer. This learning ability allows the LSTM model

to better approximate time-series problems like human activation recognition, language

recognition, and stock movement prediction. LSTM contains similar parameters to ANN. It

is the dimension of the input sequence that makes LSTM unique from other non-time series

models. We have our experiment settings for LSTM presented in Table 2.5. For the LSTM

model, overfitting is a potential issue that needs particular attention. Early stopping and

drop-out layers are good strategies to avoid overfitting. LSTM is the only time-series model
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in our experiments. We will compare it with the other two non-time series models in the

results section.

Parameters Values Description
LSTM nodes Range(10, 100) Neurons in first hidden layer
Dense nodes Range(5, 50) Neurons in second hidden layer
Learning Rate 0.0001, 0.001, 0.01, 0.1 Regularization parameter

Activation Function Relu, Logistic Hidden layers activation function
Optimizer Adam Optimization algorithm

Loss Function MAE, Log Model training loss function
Shuffle False Sample order randomization

Table 2.5: Parameters of LSTM

2.4.3 Trading Simulation

To illustrate our prediction-based portfolio optimization model, we present trading

simulation experiments by comparing three different portfolio allocation models over 125

trading days in a rolling horizon fashion. For the purposes of this experiments we will ignore

transaction fees. For generating scenarios in the CVaR optimization problems we will use

180 previous trading days. Trading simulation experiment settings are listed in 2.6.

Parameters Values Description
Time Horizon 180 days CVaR calculation historical scenarios
Test Range 125 days Trading dates between 2020-01-01 and 2020-06-30

Target Return 0.8 percentile Return constraint

Table 2.6: CVaR Model Settings

The trading is performed with a rolling horizon. For each day, 180 previous trading

days are used as scenarios for constructing the three portfolios. Next, each portfolio value is

evaluated and recorded, before moving 1 day ahead, updating the 180 scenarios by excluding

the oldest trading day and including the most recent trading outcomes.
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Our first trading simulation is performed on a standard CVaR portfolio optimization

model using settings in Table 2.6. The second strategy is to evenly allocate budgets to those

stocks that are predicted to be profitable each day. These are two benchmark models in

our experiments for comparison purposes. Finally, in our purposed approach, budgets are

allocated according to the result produced by model (2.2) per trading day. Readers should

note that all target stocks can have decreasing movement predictions on some days. This

will lead to empty inputs for Prediction+EW and Prediction+CVaR models. As mentioned

earlier, in this case, we withdraw funds from the market and continue to the next period.

Our trading simulation is described in the pseudo code below.

Algorithm 1 Prediction+CVaR Trading Simulation

Require: initialFund ≥ 0
Ensure: i = testRange
Ensure: j = stockj
currentFund← initialFund
pij ← predictionResults
cij ← stockClosePrice
profitHist = [ ]
while i ≥ 0 do

if pij is Not None then ▷ Some stocks are going up
weightij = CV aR(pijX) ▷ CVaR model in equations 2.2

currentFund = currentFund ·
n∑

j=1

weightij · (1 + pct change(ci+1j))

else if pij is None then ▷ Depression day
currentFund = currentFund

end if
profitHist.append(currentFund)
i← i− 1

end while

2.5 Results

Prediction and trading simulation results are presented in this section. We first apply

evaluation metrics to measure the prediction model performance. Then, trading simulation

results using all interesting stocks are presented to research our model performance under
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default return constraints. Finally, random sub-selections using 10, 15, and 25 stocks are

compared to evaluate the robustness of the approach.

2.5.1 Prediction Results

In the model implementation, we use the Scikit-learn machine learning library to build

our SVM and Neural Network models. LSTM models are built using the TensorFlow library.

We will train all models for each stock. By comparing their evaluation metrics, we found

that the Deep Neural network outperforms all other models. And its results are presented in

table 2.7.

Table 2.7: DNN Prediction Results

Stocks Precision Class 0 Precision Class 1 Precision Support

AAPL 70 0.65 0.73 58, 67

ABC 0.71 0.69 0.73 59, 66

AAPL 0.70 0.65 0.73 58, 67

ABC 0.71 0.69 0.73 59, 66

AMZN 0.66 0.6 0.7 51, 74

ANTM 0.64 0.62 0.66 63, 62

BAC 0.65 0.69 0.61 65, 60

BRK-A 0.7 0.75 0.65 63, 62

CAH 0.64 0.63 0.65 62, 63

CI 0.66 0.71 0.61 62, 63

CMCSA 0.67 0.60 0.72 57, 68

COST 0.67 0.66 0.69 62, 63

CVS 0.63 0.66 0.61 66, 59

Continued on next page
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Table 2.7 – continued from previous page

Stocks Precision Class 0 Precision Class 1 Precision Support

CVX 0.69 0.71 0.67 67, 58

F 0.69 0.7 0.68 76, 49

FB 0.62 0.69 0.66 53, 72

FDX 0.67 0.65 0.68 61, 64

FNMA 0.69 0.7 0.67 72, 53

GM 0.67 0.74 0.59 69, 56

GOOGL 0.68 0.55 0.76 50, 75

HD 0.66 0.68 0.64 60, 65

JNJ 0.63 0.65 0.60 68, 57

JPM 0.69 0.76 0.61 67, 58

KO 0.63 0.65 0.60 64, 61

KR 0.62 0.62 0.61 60, 65

MCK 0.62 0.62 0.61 62, 63

MPC 0.64 0.67 0.61 67, 58

MSFT 0.68 0.65 0.69 52, 73

PFE 0.61 0.65 0.55 71, 54

PSX 0.63 0.70 0.55 69, 56

T 0.61 0.57 0.64 62, 63

TM 0.63 0.64 0.62 69, 56

TSLA 0.67 0.68 0.66 56, 69

UNH 0.68 0.67 0.69 62, 63

VZ 0.7 0.76 0.63 65, 60

WBA 0.62 0.65 0.59 65, 60

Continued on next page
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Table 2.7 – continued from previous page

Stocks Precision Class 0 Precision Class 1 Precision Support

WMT 0.7 0.77 0.61 69, 56

XOM 0.72 0.85 0.54 71, 54

We will use our best prediction model Deep Neural Network to predict 125 test date

outcomes. These outcomes will be the coefficients pj in our CVaR portfolio optimization

model. Since prediction accuracy is directly correlated with prediction-based portfolio

models. The accuracy along with F1-score and confusion metrics are key indicators among

all evaluation metrics. In table 2.7, the lowest accuracy in our ANN model is 0.62. This

model performance is consistent with the theory that ANN is capable to approximateselected

a variety of problems regardless of their complexity. SVM fails to produce decent results.

Probably, it is the feature space that influences the performance. Please note that we use the

RBF kernel function to map existing feature space to a high dimensional space, which will

produce unpredictable complex problems for SVM. Considering the complexity of our feature

space and the high volatility of the stock market itself, SVM would not be our best choice. In

our LSTM studies, we use 30 days’ historical data as our time-series look-back period. The

time-series information has limitations for LSTM neural network to learn the correlations. If

we use a longer time series period, we will lose more samples for the model to learn and it is

tedious. Another possible reason for the failure of the LSTM model is that our time-series

data inevitably lose some continuity when we merge different data sources. LSTM is always

sensitive to the quality of its time-series data. Data continuity could not be ignored.

2.5.2 Trading Simulation Results

This section presents all trading simulations using the proposed Prediction+CVaR

portfolio risk optimization model, standard CVaR, and Prediction+EW models. For the first
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trading simulation, all 36 selected stocks are used across the entire simulation period. Figure

2.2 presents the portfolio value (initial value set to 100k) evolution in time, as well as daily

return distributions.

Note that, by design, the testing range contains the first phase of the Covid-19 pandemic

and the corresponding financial market downturn. In addition to generally resulting in losses

in most individual assets, it can be expected that the different performance of the market

during this period (compared to the historical experience) poses a challenge to both prediction

and diversification. First, observe that the pure CVaR model does not perform well. It is still

affected by the market crash at the beginning of the pandemic, and then, while recovering,

does not realize potential gains. On the other hand, it does exhibit the lowest volatility.

Both prediction-based models are susceptible to the initial market crash. At the same

time, both are able to quickly recover by taking advantage of the predictions. It is worth

noting that this result is somewhat surprising, given the relatively low accuracy of the

prediction models reported in the previous section. Despite that, even pure prediction model

is able to correctly identify sufficiently many growing assets to enable overall gains.

Comparing the two prediction models, the main advantage of the proposed model is the

reduced volatility (see the boxplot in Figure 2.2). It achieves significantly lower variance,

particularly avoiding the most extreme losses, while displaying higher average returns, and

higher resulting portfolio value.
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Figure 2.2: 36 Stocks Portfolio Trading Simulation

Next, we sample subsets of the assets (15, 20 or 25) in order to test model robustness. We

repeat sampling 35 times for each sample size. Figures 2.3, 2.4 and 2.5 present representative

examples for each sample size. Overall, in most cases, the same conclusions apply. We then

conduct statistical analysis to further evaluate the conclusions.
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Figure 2.3: Random 15 out of 36 Stocks Portfolio Trading Simulation

Figure 2.4: Random 20 out of 36 Stocks Portfolio Trading Simulation
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Figure 2.5: Random 25 out of 36 Stocks Portfolio Trading Simulation

The T-test is a robust technique for the assumption of normality and homogeneity of

variance when the sample size is large(≥ 30). One-tailed T-tests are performed according

to our alternative hypothesis Ha, which is that the expectation of the Prediction+CVaR

model’s return is greater than the other two baseline models. And indeed, the results in

table 2.8 provide supporting evidence for our alternative hypothesis. All our t-test results

support that the Prediction+CVaR model has the most profitable return expectation with

P-values greater than 0.05. While reader should know that all the results produced by the

CVaR model are constrained by our default return constraint in equation 2.2. Consequently,

the return distribution may lose normality due to the power of return constraints. Thus, all

returns from random subset selections will not be fully independent. It is possible to argue

that the T-test is not appropriate for this situation. However, as we announced before, T-test

studies are intended to robustly research model performance, and the results indicate our

proposed model is profitable in returns.
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Sample Size Methods T-statistic P-Value

15
CVaR 1.7520 0.9593
Pred 1.7757 0.9613

Pred+CVaR Not Apply Not Apply

20
CVaR -0.6828 0.2477
Pred -1.0477 0.1480

Pred+CVaR Not Apply Not Apply

25
CVaR -1.2544 0.1055
Pred -1.1912 0.1174

Pred+CVaR Not Apply Not Apply
Note: confidence level = 0.95

Table 2.8: Trading Simulation Results

Investors usually hedge portfolio risk by splitting their budget into multiple assets. To

verify our model results with this strategy, we conduct another set of T-tests by comparing

the daily average returns of the Prediction+CVaR model using random selection in sizes 15,

20, and 25 stocks. We assume that the model will produce more attractive results if more

assets are included in building the portfolio. The results in table 2.9 are consistent with our

expectation that the returns by using random 20 and 25 stocks are statistically higher than

using 15 random stocks.

Sample Size T-statistic P-Value
15 vs 20 0.7221 0.7637
15 vs 25 -0.9089 0.1833

Note: Confident level 0.95

Table 2.9: Pred+CVaR Model Outcomes T-test Using Multiple Sizes

2.6 Conclusions and Future Work

This paper applies three machine learning classification models to build a prediction-

based portfolio risk optimization model. We collect four open-source data sets and some

additional indicators to generate our feature spaces. SVM is designed as our baseline model.

30



We use time series and non-time series models in our prediction progress, DNN and LSTM.

Both models are frequently used in deep learning neural networks to approximate stock

market behaviors. All three models focus on binary classification for stock movements. And

prediction outcomes are compared through three evaluation metrics. Then, prediction results

are plugged into the optimization model as the coefficient described in model 2.2. To show

its superiority, this proposed model is compared with two other baseline models, CVaR and

Predition+EW.

In our prediction models, outputs are evaluated using accuracy F1 scores. We pick the

best model to generalize our prediction outcomes. Through experiments, we find DNN has

better compatibility with our collected input features. In addition, DNN achieves the best

learning abilities with the lowest prediction error. Consequently, DNN prediction results are

further fed into optimization models to build portfolios. In trading simulation experiments, we

compared three portfolio allocation strategies, CVaR, Prediction+EW, and Prediction+CVaR.

The first trading simulation uses all 36 target stocks over the entire trading simulation period.

The result shows that our proposed model produces the best profit. To better study our

model, we perform random subset selections in sizes 15, 20, and 25 among all 36 target

stocks. Our trading simulations indicate that our model performance remains tractable and

consistent in terms of risk and return management.

This research has limitations and can be extended by considering a more realistic

prediction-based portfolio risk optimization model. First, investors certainly know that

transaction fees can have crucial impacts on portfolios. It is more realistic if transaction fees

can be involved. Second, to produce decent prediction results, powerful machine learning

models and quality data sources are always highly preferred. For example, data continuity

needs to be emphasized for our LSTM model. Last but not least, stock market prediction

is still a challenging problem. In this paper, the prediction generalization accuracy still

has research opportunities to improve. From a quantitative trading analysis perspective,
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prediction accuracy can be modeled as another risk factor. Indeed, artificial intelligence and

risk management models have more potential to help decision-makers to seek better solutions.
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Chapter 3

Probability Estimated Portfolio Risk Optimization Through a Prescriptive Multi-Objective

Approach

3.1 Introduction

Portfolio risk optimization and financial forecasting problems are two data-driven decision-

making techniques that aim to address similar problems. Portfolio optimization theory heavily

emphasizes the impact of historical data in defining risk and returns to enforce decisions

to improve future performance, primarily through diversification. Unlike machine learning,

portfolio models usually do not explicitly model actual future outcomes when making decisions.

In contrast, financial forecasting studies establish approaches to learn the target patterns

from historical data as a way to describe probable future outcomes. Both streams of literature

have achieved significant results. However, good prediction results are different from optimal

decisions and vice versa. Hence, it is important to consider the best approaches to combine

the two techniques. Nowadays, data-driven decision-making based on forecasting models

increasingly draws attention in the research community. The emerging field is often referred

to as contextual optimization, and a thorough review can be found in (Sadana et al., 2023).

A general idea of combining ML and optimization, one possible consideration is that given

the prediction, an approximation of the random variable can be modeled as an optimization

problem,

ẐN(x) ∈ argmin
z∈Z

C(z, ŶN(x)) (3.1)

where ẐN is the decision vector, C is the cost function, Z is the feasible region and ŶN(x))

represents the predicted outcome given data x.
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Thus, further research can be developed by modeling risk-return as a prediction-based

stochastic optimization framework. However, since ML does not address optimal decision-

making under uncertainty, it is unclear how to make a good decision from an existing

prediction. A good decision must consider the uncertainty while balancing it with hedging

against both intrinsic uncertainty and prediction error. For example, in portfolio optimization,

solving 3.1 based on historical samples {y1, y2, ..., yn} but without market data in specifying

x would generally lead to conservative and inconsistent solutions. In addition, the waste of

good market data is even more unacceptable.

In the first chapter, the proposed Machine Learning Informed Optimization of the CVaR

model outperforms the standard CVaR and EW-prediction models. Note though, that it is

constructed to rely on binary movement prediction only, i.e., at the optimization step, the

only piece of prediction information used is a 0-1 forecast for each asset. This substantially

limits possible ways that prediction can be incorporated into decision making.

A class of machine learning models that have been receiving an increasing amount of

attention recently are models that provide both a prediction and estimation of the probability

of the correct prediction. Note that, in general, it is not the same as prediction accuracy. Such

models can either be trained specifically for this task, or a separate calibration procedure can

be constructed.

The availability of such models opens the door to more ways to incorporate predictions

in optimization. Specifically, since stochastic optimization explicitly relies on scenario

probabilities, forecast probability estimates can be employed in such problems. In this

chapter, we consider ways to enable such an approach.

This research targets the limitations and challenges by focusing on the following contri-

butions.

1. We develop and compare two machine learning algorithms to estimate the probability of

short-term market movements for 36 U.S. stocks, by calibrating the predicted probability

to match the true probability of market behavior.
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2. We propose two probability-calibrated CVaR risk optimization models to optimize the

risk and return for the stock portfolio.

3. Our proposed risk optimization model is compared in terms of returns with the standard

CVaR optimization model and Equal-Weight prediction model to ensure its performance.

3.2 Literature Review

3.2.1 Stock Market Prediction Models

The financial forecasting tasks represent a class of problems with large amounts of

historical data that we can train, validate, and test deep learning approaches on. There

has been a significant amount of literature on using deep learning models to predict stock

prices. Some literature (e.g. Xu and Cohen, 2018; Chen et al., 2023) have found the existence

of nonlinear correlations which explain the predictability of future stock prices. Many

sophisticated data mining and deep learning models have been built combining macroeconomic

data and auxiliary market information, including financial news and media sentiments (e.g.

Bollen et al., 2011; Nguyen et al., 2015; Xu and Cohen, 2018). These works have indicated

the path dependence between stock price movement and selected market information.

From a financial application perspective, robust and high-accuracy prediction models are

crucial in financial decision-making problems. Countless efforts have been made in academia

and industry to tackle this problem. Our purpose is to consider novel techniques to use less

perfect prediction models in optimization, which argues in our work, that we rely on some of

the existing algorithms, including DNN, LSTM, and BNN.

Instead of modeling stock movement prediction as a binary classification problem, as

has been attempted in the previous chapter, a reliable probability estimation of the market

behavior is crucial to many real-world financial applications with inherent uncertainty. The

problem of predicting probabilities should represent the true correctness likelihood of all

possible events (Niculescu-Mizil and Caruana, 2005). Good probability confidence estimation

35



provides more valuable information to approximate the ground truth probability using

empirical data and establishing user trustworthiness.

Deep learning can estimate probabilities (Liu et al., 2021) by training models on observed

outcomes of possible events. However, the ground-truth probabilities of the events are

usually unknown. Therefore, the problem is analogous to the classification task with the

difference that the output is the probabilities for each class rather than the specific labels.

Deep networks for classification purposes often generate probabilities, such as the Softmax

function outputs, which quantify the uncertainty for how likely the network is to classify the

sample. This uncertainty quantification has been proven to be inaccurate (e.g. Murphy, 2012;

Guo et al., 2017). For problems with high stochastic behaviors, like the stock market, it is

further complicated to evaluate the model performance without access to the ground-truth

probabilities.

To predict good probabilities, several methods have been developed to address the

limitations, including temperature scaling for probability calibration (e.g. Guo et al., 2017;

Liu et al., 2021). Temperature scaling is a robust single-parameter variant of Platt Scal-

ing(Platt et al., 1999), which is also known as logistic calibration, a methodology employed to

calibrate the output of binary classifiers with the objective of estimating probabilities. Platt

scaling serves as a post-processing procedure designed to transform these decision scores into

probability estimates. The basic idea behind Platt scaling is to fit a logistic regression model

to the decision scores produced by a binary classifier. The logistic regression model takes the

form of the sigmoid function (the logistic function), which maps values to the range 0 to 1,

representing probabilities. As temperature scaling is developed upon Platt Scaling, it extends

the calibration technique to Deep Neural Networks classification. One major advantage is

that temperature scaling does not affect the prediction accuracy, which means the binary

classification results will remain the same. In the case of calibrating the binary classification

neural network, the variation of Plat Scaling is to use a single scalar parameter T > 0 for

all classes. Given the output logits (not Softmax outputs), the new confidence prediction is
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quantified in the equation 3.2.

q̂i = max
k

σSM(zi/T )
k (3.2)

T is referred to as the temperature and is optimized with respect to loss functions using

validation data. Because of the setting, Temperature Scaling is a robust method that can

calibrate almost all neural networks.

Another consideration in probability calibration is to measure the performance of a

probability calibration model. It is crucial to assess how well it converts the model’s raw

scores (logits) into well-calibrated probability estimates. Several metrics and techniques can

be used to evaluate the performance of a calibration model.

1. Reliability Diagram: A reliability diagram (Niculescu-Mizil and Caruana, 2005), also

known as Probability Calibration Curve, is a graphical representation of observed vs.

predicted probabilities. The curve shows how predicted probabilities change with the

actual probabilities. A well-calibrated model will produce a curve that closely follows

the diagonal line.

2. Expected Calibration Error(ECE): ECE is a scalar measure of calibration accuracy. It

quantifies the difference between the observed accuracy and the predicted probability

for each prediction bin. A lower ECE indicates better calibration.

3. Cross-Entropy Loss(CEL): Logistic loss, also known as log loss or cross-entropy loss,

measures the divergence between predicted probabilities and the true classification

labels. A well-calibrated model will have a lower log loss.

A number of studies discussing portfolio optimization in the presence of predictions

exist in the literature, as reviewed in the previous chapter. Studies using machine learning

techniques in particular (e.g. Freitas et al., 2009; Ma et al., 2020, 2021), are based on

the underlying assumption that predicted future returns offer a more accurate estimation

of expected returns compared to historical returns. Naturally, these methods neglect the
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uncertain nature of the problem. This limitation is caused by the deterministic nature of the

learning models, which ignores the uncertainty in prediction results. In contrast, probabilistic

models (Abdar et al., 2021) provide prediction estimating the posterior probability as a form

of distribution. The problem uncertainty can be signified using the predicted probabilities.

Hence, probabilistic portfolio models can optimize the risk and return objectives by

considering the future risk and return simultaneously. This optimization problem can be

summarized as follows:

min λR̂(X)− (1− λ)
n∑

i=1

xiÊ(X)

s.t.
n∑
i

xi = 1

0 ≤ xi ≤ 1

(3.3)

where xi denotes the weights of portfolio assets in total of n portfolio assets; R̂(X) is some

risk measure of the portfolio given X with prediction, and Ê(X) is the future expected return

given the prediction. λ is a hyper-parameter to balance the risk and return objective. In

this work, we propose a probabilistic portfolio optimization framework that focuses on using

prediction to quantify both Ê(X) and R̂(X) for the optimization procedure in approaching

the optimal allocation.

3.3 Method

In this work, we propose a three-phase probability-calibrated portfolio risk-return op-

timization model. In the first phase, a traditional (deep-)learning prediction model is

constructed. Next, a calibration procedure is applied to obtain probability estimates. Finally,

an optimization model is proposed to employ the resulting probabilistic prediction model to

construct a portfolio. Next, we discuss each step in detail.
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3.3.1 Prediction Models

We implement deep learning algorithms to produce the logits in predicting one-day stock

movements. Formally speaking, in machine learning, logits refer to the raw, unnormalized

predictions generated by most Neural Network classification models before applying any

activation function or converting them into probabilities. Instead of constructing sophisticated

prediction models to attain high accuracy, this study focuses on utilizing two well-established

deep learning Neural Networks for a more straightforward approach. In the context of stock

market movement predictions, DNN and LSTM models have been widely applied to the

problem, with the consideration of both the non-time series and time series characteristics

inherent in the problem. Logits can be easily derived from both DNN and LSTM, where

the goal is to assign an input to one of several predefined classes. Logits can be interpreted

as a measure of the model’s confidence in each class prediction. Higher logit indicates a

stronger belief in a particular class, while lower logit suggests less confidence. After obtaining

logits, they are often transformed into probabilities using a Softmax function, which performs

normalization and converts them into values between 0 and 1 that sum up to 1. From

a probability point of view, the logits are not the predicted probability. Because of the

calibration issues, for example, a model may consistently overestimate or underestimate the

sample probabilities that are away from their true probabilities. Overconfidence can lead to

incorrect predictions, while underconfidence can result in missed opportunities. Probability

calibration aims to address these issues and improve the reliability of predicted probabilities.

To calibrate the probabilities, we consider Temperature Scaling(Guo et al., 2017), a

universal probability calibration technique for Neural Networks. In our classification model,

the Softmax function is used to convert the model’s logits into probabilities. The Softmax

function applies the exponential function to each score and then normalizes them by dividing

by the sum of all exponentiated scores. The Softmax function is defined as follows:

P (classi) =
ezi/T∑
j e

zj/T
, (3.4)
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where P (classi) is the probability of classi, zi is the logit for class i, T is the temperature

parameter, and the sum is taken over all classes. When the temperature T is set to 1, the

Softmax function behaves normally. However, by increasing or decreasing the temperature, we

can control the concentration or spread of the probabilities. Higher temperatures(> 1) cause

the probabilities to be more uniform, while lower temperatures(< 1) make the probabilities

more peaky, with the highest probability dominating. To calibrate the probabilities output

by a model, temperature parameter T is optimized with respect to Negative Log Loss to

match the model’s confidence with the observed accuracy on a validation set. This technique

assumes that the model’s confidence, as reflected in the probabilities, should be well-calibrated

and correspond to its accuracy. In other words, Temperature Scaling will calibrate the Neural

Network to be less confident without changing the prediction accuracy regarding classification.

To evaluate the calibration performance, we mainly rely on two metrics, Cross Entropy Loss

and Expected Calibration Error. They can be expressed in equation 3.5:

ECE =
M∑
k=1

Bk

N
|acc(Bk)− conf(Bk)|

CEL = − 1

N

N∑
i=1

[yilog(P̂ (yi)) + (1− yi)log(1− P̂ (yi))]

(3.5)

where M is the number of bins or intervals. Bkis the set of samples within the k − th bin.

N is the total number of samples.acc(Bk) is the accuracy within the k − th bin. conf(Bk)

is the confidence (average predicted probability) within the k − th bin. N is the number of

labels/classes. yi is the true labels. P̂ yi is the predicted probability for class yi. We expect

both loss values will be decreased after the calibration.

3.3.2 CVaR Bi-objective Portfolio Optimization

As before, in the optimization step, the goal is to select portfolio weights xi such that

the expected return is maximized, while CVaR of the negative returns is minimized. In

the traditional setting, both of these values are evaluated based on historical values. Now,
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suppose that in addition to historic returns rij, we also have access to values p+j and p−j that

give the probabilities that asset j increases or decreases in value during the next time period

respectively. Accordingly, define as r+ij and r−ij the historic (actually realized, not predicted)

scenarios corresponding to positive and negative returns.

Consequently, we can interpret the predicted probabilities as weights that can be applied

to the historical scenarios. In other words, each scenario r+ij can be interpreted to occur with

probability p+

m
, and each scenario in r−ij with probability p+

m
, where m is the total number of

scenarios. This allows us to evaluate either of the two objectives of interest based on purely

historic realizations (equal scenario probabilities), or according to predicted values (weighted

scenario probabilities). This leads to two optimization problems.(3.6) and (3.7).

First formulation:

min η +
1

m(1− α)

m∑
j=1

[
−

n∑
i=1

xirij − η
]+

max
n∑

i=1

(
p+i

m∑
j=1

xir
+
ij − p−i

m∑
j=1

xir
−
ij

)
s.t.

n∑
j=1

xj = 1,

0 ≤ xi ≤ 1, i = 1, . . . , n.

(3.6)

Second formulation:

min η +
1

m(1− α)

m∑
j=1

[
− p+i

n∑
i=1

xir
+
ij + p−i

n∑
i=1

xir
−
ij − η

]+
max

n∑
i=1

(
p+i

m∑
j=1

xir
+
ij − p−i

m∑
j=1

xir
−
ij

)
subject to

n∑
j=1

xj = 1,

0 ≤ xi ≤ 1, i = 1, . . . , n.

(3.7)
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In both formulations we consider the expected value objective to be evaluated based on

the predicted probabilities. In the first formulation CVaR is evaluated traditionally, while

in the second formulation, the predicted probabilities are used again. Note that the case

where both objectives are evaluated traditionally is the ordinary mean-CVaR problem which

will be used as the benchmark. Finally, we do not consider the remaining case (traditional

expectation and predicted CVaR), since we surmise that the expected value objective can

most benefit from the prediction, and the main purpose of the CVaR component is to ensure

diversification.

Note that both formulations can be converted to a collection of single-objective linear

programs in the same way as the similar problem in Chapter 2, and hence, the resulting

problems can be solved with standard off-the-shelf linear solvers.

3.4 Experiments and Results

The experiments are designed to illustrate and verify the feasibility and performance

of the proposed models. The new proposed model has challenging tasks that need to be

addressed in the experiments. The market trend is a less challenging target than the actual

price prediction, but it still requires careful consideration. Some possible factors for the

challenge include data availability, data quality, model availability, highly stochastic market

behavior, etc. To begin with our experiments, we first introduce the data acquisition process.

3.4.1 Data Specification

We prepare daily trading data for the same 36 US stocks as in the previous chapter

and download all stock prices from Yahoo Finance from 2015/07/01 to 2023/5/19. In all

36 assets, 30 stocks are picked from the top of the Fortune 100 company list. The other 6

stocks are picked based on the authors’ interests. As suggested by the literature (Weng et al.,

2017), we adopt the approach of using the closing price of the next day relative to the close

price the day before as the target label for each asset. To build our model, we utilize the
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adjusted closing prices up until the current date as input features. Additionally, we calculate

several widely used stock technical indicators that reflect price changes over time using open,

high, low price, and volume. Literature suggests these stock indicators are informative and

can benefit prediction accuracy. In this study, we focus on eight selected technical indicators,

which are different from the features in Chapter 2. The indicators considered in this work

are mainly concentrated on stock trends, momentum, volatility, and volume. In particular,

these indicators are suggested to be informative to stock movement, which is consistent with

the purpose of the prediction classification. A detailed summary is in Table 3.1.

Indicators Category Description
MACD Trend Reveals price change in strength and trends
PSAR Trend Indicates parabolic stop or reverse of current trend

Bollinger Bands Volatility Forms a range of prices for trading decisions
Stochastic Oscillator Momentum Overbought and oversold signals

Rate of Change Momentum Measures the percent change of the prices
On-Balance Volume Volume Volume flow to predict changes in stock price

Force Index Volume Indicates bull or bear market
MACD: Moving average convergence or divergence.
PSAR: Parabolic Stop and Reverse.

Table 3.1: Description of technical indicators

Due to the time series data quality and data availability consideration, we will only

retrieve from Yahoo Finance in this work. We removed Google trends, Wikipedia Pageview,

and Sentiment news from our consideration. Please note that the features can be either

categorical or continuous. For categorical features, we employ embedding techniques to

convert them into dense numeric vectors. On the other hand, we rescale all continuous

features to a range between 0 and 1. This scaling is necessary because neural networks are

generally challenging to train and can be sensitive to input scale (Glorot and Bengio, 2010).

Furthermore, it is important to note that data preparation is performed individually for

each stock since the prediction models are applied sequentially to one stock at a time in the

experiments.
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3.4.2 Prediction and Calibration Results

We first present prediction model configurations for both Deep Neural Network (DNN)

and Long Short-Term Memory (LSTM) models, and the specific parameters utilized in the

implementation are provided for reference. One of the model setting differences between DNN

and LSTM is that we select validation sets for DNN randomly to ensure model performance.

While using simple cross-validation would introduce bias in LSTM because of the missing

values, one-step-ahead cross-validation instead overcomes the problem. Please note that

each model is trained using the same model parameters for all stocks. It is possible to

tune the parameters for each individual stock to achieve better prediction performance, but

we choose not to consider this, since the primary objective of this work does not revolve

around maximizing the prediction performance of the models employed. In order to optimize

computational efficiency, uniform model settings are applied across all stocks in this study.

The model settings are specified in table 3.2.

As mentioned before, all stocks are processed by each prediction model individually, and

the models are evaluated by the CrossEntropy loss function. The best models are saved and

calibrated using Temperature Scaling to obtain the probability estimates. As required for

Temperature Scaling, all probabilities are calibrated using the same validation set as used in

the training processes. It is crucial to note that the calibration assumption for this setting

is the training, validation, and test sets are drawn from the same distribution. Similar to

the prediction model settings, we apply universal calibration model settings presented in

Table 3.3. Because our prediction model outputs the binary classification logits, we take

only the positive class confidence in the following discussions for simplicity. Given a test

sample xi, the prediction model outputs a non-probabilistic output pi, or the logits, the

calibrated probability of corresponding positive class (yi = 1) in terms of binary classification

can be denoted as p+i . To illustrate the calibration results and performance, we compare

the CrossEntropy loss and ECEloss (Guo et al., 2017) values before and after calibration in

Tables 3.4 and 3.5.

44



Models Parameters Values

DNN

Hidden Nodes 32, 16, 32
Learning Rate 0.001

Activation Function ReLU, Softmax
Optimizer Adam

Loss Function CrossEntropy
Train Size 0.6

Validation Size 0.2
Test Size 0.2
Batch Size 10
Epoch 300

Data Shuffle True

LSTM

Hidden Nodes 16, 32
Learning Rate 0.001

Activation Function ReLU, Softmax
Optimizer Adam

Loss Function CrossEntropy
Train Size 0.6

Validation Size 0.2
Test Size 0.2
Batch Size 10

Window Size 10
Epoch 200

Data Shuffle False

Table 3.2: Prediction Model Settings

Reliability diagram is the conventional way to evaluate probabilistic predictions. The

calibration curve is essential for quantitative analysis, as it helps visualize the calibration

of a model’s predicted probabilities. To construct a calibration curve, a series of standard

samples (fraction of positive class in each bin) with known concentrations are prepared, and

their responses (mean predicted probability in each bin) are measured using the analytical

instrument or method. In other words, each tested sample is placed into a bin based on

predicted probability, and then for each bin the proportion of the samples that are correctly

classified is calculated. The result is then plotted in the predicted vs realized probability

coordinates. An ideal calibration curve is a straigh line from (0,0) to (1,1). It is important to

note that the accuracy and reliability of the calibration curve depend on the quality of the
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Parameters Values
Number of Bins 15
Learning Rate 0.01

Epoch 50
Loss Function CE, ECE

Initial Temperature 1.5

Table 3.3: Temperature Scaling Model Settings

standard solutions, the precision of the prediction model, and the proper statistical analysis

of the data. Regularly performing calibration checks and including quality control samples

can help ensure the accuracy of the results obtained from the calibration curve. Based on

the validation accuracy, we illustrate the calibration performance by presenting the good,

fair, and poor cases in Figure 3.1. More reliability diagrams can be found in Appendix B.

Based on our results, Temperature scaling is a powerful tool for improving the reliability

and accuracy of predicted probabilities as both CrossEntropy Loss and Expected Calibration

Error are decreased after calibration. From the reliability diagrams, we conclude that the

calibrated probabilities are less confident as the line fits more closely to the diagonal line

and narrows the range on the axis. Beyond the obvious loss decrease and improvement

shown by reliability diagrams, the calibration performance is consistent and corresponds to

prediction accuracy. Generally, we conclude that the predicted probabilities are improved

with calibration and represent the best achievable true probability that will proceed to the

optimization problem.

3.4.3 Trading Simulations: Case Study for The US Stocks

We present the trading simulation to verify the performance of the proposed models.

Four predict-then-optimize models are compared in different settings. In the case of solving

the bi-objective optimization problem where both objective functions are linear, we introduce

a weight parameter λ. It is the parameter for a linear combination of both objective functions,

expressed in Equation 3.8, where Obj1 and Obj2 represent the risk and return objective in

46



(a) Good Performance 1 (b) Good Performance 2

(c) Fair Performance 1 (d) Fair Performance 2

(e) Poor Performance 1 (f) Poor Performance 2

Figure 3.1: Reliability Diagram Examples of Calibration Performance
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Stocks
CE Loss ECE Loss Validation

Before After Before After Accuracy
AAPL 0.727 0.657 0.152 0.067 0.515
ABC 0.87 0.723 0.211 0.131 0.499
AMZN 1.006 0.75 0.232 0.142 0.493
BRK-A 0.762 0.637 0.188 0.082 0.562
CAH 0.759 0.686 0.175 0.105 0.534
CI 0.992 0.793 0.239 0.159 0.519
CMCSA 0.824 0.712 0.186 0.096 0.470
CNC 0.77 0.711 0.137 0.093 0.493
COST 0.864 0.739 0.224 0.155 0.538
CVS 0.898 0.745 0.23 0.13 0.485
CVX 0.894 0.703 0.198 0.101 0.510
ELV 1.83 1.163 0.284 0.238 0.501
F 0.897 0.703 0.21 0.141 0.501
GM 0.8 0.689 0.158 0.101 0.535
GOOGL 0.986 0.758 0.266 0.157 0.478
HD 1.308 0.875 0.286 0.206 0.530
JNJ 0.826 0.702 0.183 0.093 0.513
JPM 0.833 0.694 0.179 0.101 0.494
KO 2.295 1.349 0.33 0.27 0.493
KR 0.689 0.676 0.075 0.048 0.574
MCK 0.753 0.667 0.146 0.059 0.488
META 0.723 0.651 0.161 0.068 0.549
MPC 0.706 0.632 0.156 0.061 0.531
MSFT 1.814 1.119 0.274 0.226 0.509
NKE 0.858 0.706 0.155 0.135 0.507
PFE 0.865 0.728 0.197 0.127 0.485
PSX 0.902 0.721 0.224 0.123 0.533
T 0.68 0.643 0.112 0.057 0.449
TM 2.576 1.394 0.195 0.178 0.499
TSLA 1.383 0.956 0.211 0.166 0.503
UNH 0.742 0.691 0.151 0.074 0.480
VLO 0.852 0.715 0.168 0.101 0.476
VZ 0.695 0.652 0.116 0.085 0.520
WBA 3.241 1.803 0.377 0.316 0.488
WMT 0.693 0.656 0.118 0.061 0.511
XOM 7.163 3.767 0.36 0.341 0.535

Table 3.4: DNN Calibration Performance

the formulation, respectively. The linear combination converts the bi-objective optimization

problem to a single-objective optimization problem such that the problem can be solved as
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Stocks
CE Loss ECE Loss Validation

Before After Before After Accuracy
AAPL 0.681 0.64 0.123 0.031 0.665
ABC 0.674 0.663 0.105 0.065 0.641
AMZN 0.741 0.676 0.161 0.061 0.624
BRK-A 0.734 0.659 0.163 0.065 0.657
CAH 0.711 0.683 0.116 0.079 0.603
CI 0.681 0.666 0.09 0.047 0.627
CMCSA 0.715 0.673 0.112 0.066 0.641
CNC 0.676 0.647 0.104 0.03 0.638
COST 0.699 0.673 0.095 0.035 0.611
CVS 0.69 0.668 0.108 0.065 0.635
CVX 0.758 0.632 0.169 0.095 0.719
ELV 0.662 0.645 0.089 0.02 0.654
F 0.722 0.623 0.161 0.083 0.684
GM 0.678 0.607 0.139 0.055 0.705
GOOGL 0.752 0.653 0.168 0.098 0.686
HD 0.701 0.674 0.113 0.036 0.597
JNJ 0.741 0.673 0.17 0.084 0.624
JPM 0.761 0.644 0.199 0.09 0.678
KO 0.682 0.639 0.132 0.037 0.659
KR 0.729 0.682 0.115 0.055 0.576
MCK 0.684 0.656 0.106 0.054 0.641
META 0.708 0.643 0.142 0.06 0.673
MPC 0.915 0.704 0.237 0.147 0.646
MSFT 0.768 0.672 0.164 0.089 0.659
NKE 0.717 0.621 0.154 0.064 0.705
PFE 0.768 0.66 0.17 0.092 0.670
PSX 0.714 0.648 0.159 0.056 0.657
T 0.7 0.655 0.135 0.068 0.659
TM 1.451 0.797 0.17 0.153 0.830
TSLA 0.697 0.645 0.132 0.059 0.662
UNH 0.695 0.66 0.109 0.037 0.619
VLO 0.675 0.64 0.123 0.064 0.670
VZ 0.738 0.689 0.157 0.07 0.576
WBA 0.641 0.625 0.082 0.013 0.676
WMT 1.07 0.778 0.231 0.152 0.624
XOM 0.863 0.654 0.185 0.091 0.727

Table 3.5: LSTM Calibration Performance

a single-objective LP. In general, λ can be interpreted as a representation of the investor’s

preference. If the investor is extremely risk averse, the λ value of 1 should be chosen.
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Consequently, the model is only minimizing the risk, Obj1 in Equation 3.8, to be conservative.

On the contrary, if the decision maker is seeking more returns, the model should select a

value close to 1 such that the return objective, Obj2 in Equation 3.8, is more weighted in

optimization. On the other hand, λ, a key parameter in the context of this study, may also

be construed as an integral trustworthiness parameter, signifying the degree of confidence

reposed by the decision maker towards the expected predicted returns. In other words,

if the decision maker highly trusts the prediction, less weight shall be applied to the risk

minimization objective, and more weight will be concentrated on the expected predicted

returns maximization. Many research efforts have been conducted on the topic of machine

learning trustworthiness, but this topic is beyond the scope of our work. Instead, we consider

a set of 10 values for λ evenly distributed from 0 to 1.

λ Obj1 + (1− λ) Obj2, (3.8)

We will have four combinations of the proposed models: DNN with First Formulation

(DNN+First), DNN with Second Formulation (DNN+Second), LSTM with First Formulation

(LSTM+First), and LSTM with Second Formulation (LSTM+Second). Trading simulation

settings are summarized in Table 3.6.

The trading simulation return trend lines with different lambda settings are shown

in Figure 3.2 and Table 3.7. We found that the combination of LSTM and the second

optimization formulation is generally more aggressive in seeking return and outperforms

the other with the same value of λ. The second formulation trends to return higher profits

across all λ. Regarding binary classification accuracy, LSTM dominates the DNN model in

returns since LSTM has a better prediction performance reflected by the validation accuracy.

From Figure 3.3, the first formulation turns out to be more conservative, i.e., results in lower

volatility, which can be preferable. This result is in accordance with our expectations. Indeed,

since we only use the prediction in the first formulation, reflected in the second objective

function, to maximize the return, while in the second formulation, we define both risk and
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return using prediction. As we expect, the more prediction gets involved in the decision

making, the more aggressive the model will tend to be when seeking returns. And the results

unsurprisingly match our expectations.

Parameters Values Description
Time Horizon 180 days CVaR calculation historical scenarios
Test Range 95 days Trading dates between 2023-01-01 and 2020-05-19
Benchmarks 2 CVaR and CVaR + Binary Prediction

Proposed Models 4 First+DNN, First+LSTM, Sec+DNN, Sec+LSTM
λ range(0, 1) Weight parameter for objective functions

Table 3.6: Trading Simulation Model Settings

λ
DNN+First DNN+Second LSTM+First LSTM+Second

CVaR Return CVaR Return CVaR Return CVaR Return
0.1 4.290 0.911 0.393 1.222 4.047 0.957 0.670 1.295
0.2 3.131 0.735 0.255 1.114 2.925 0.698 0.335 1.169
0.3 2.573 0.564 0.158 1.041 2.470 0.532 0.206 1.080
0.4 2.161 0.377 0.105 1.022 2.094 0.383 0.125 0.990
0.5 1.923 0.284 0.073 0.975 1.878 0.256 0.078 0.964
0.6 1.777 0.147 0.048 0.941 1.767 0.127 0.053 0.968
0.7 1.708 0.068 0.035 0.910 1.707 0.054 0.040 0.952
0.8 1.663 0.000 0.025 0.878 1.664 0.013 0.032 0.937
0.9 1.649 -0.027 0.02 0.880 1.648 -0.031 0.029 0.924

Note: CVaR and Return are the average values in percentage.

Table 3.7: Trading Simulation Numerical Results by λ
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(a) DNN First Return Trend (b) DNN Second Return Trend

(c) LSTM First Return Trend (d) LSTM Second Return Trend

Figure 3.2: Trading Simulation Return Trends
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(a) DNN First Return Box Plot (b) DNN Second Return Box Plot

(c) LSTM First Return Box Plot (d) LSTM Second Return Box Plot

Figure 3.3: Trading Simulation Return Box Plot
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Figure 3.4: Frontiers for All Models

Further, in Modern Portfolio Theory, the Efficient Frontiers is a set of optimal solutions

that find the highest possible return given a certain level of risk. The Efficient Frontiers for

all our models are shown in Figure 3.4. Technically, we cannot directly compare the risk,

measured by CVaR values, across two formulations since the risk is defined using different

CVaR calculations. The result, shown in our efficient frontier, further illustrates how the

decisions were made in accordance with risk and return trade-offs. Generally, the decision

maker will encounter more risk when seeking more returns. Consistent with Table 3.7, the

second formulation is more aggressive in seeking return, and the LSTM+Second formulation

model outperforms the others.

Next, we consider two benchmarks to make cross-comparisons with the proposed models,

including the classic CVaR optimization model and the model we presented in Chapter 2,

referred to as CVaR with Binary Prediction. All four combinations of the proposed models

are compared with the benchmarks. In our experiments, we choose the validation accuracy as

a suitable choice for λ value. We train and select the best model according to the validation
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accuracy. It already represents the confidence of trustworthiness. In this work, we consider

the average validation accuracy of DNN and LSTM as reliable values for λ in solving the

biobjective optimization problem. The trading simulations with benchmark comparison are

shown in Figures 3.5 – 3.8.

Figure 3.5: NN and First Formulation with Benchmarks
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Figure 3.6: NN and Second Formulation with Benchmarks

Figure 3.7: LSTM and First Formulation with Benchmarks
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Figure 3.8: LSTM and Second Formulation with Benchmarks

Models CVaR Average Return Return Std Final Value
CVaR 1.645 0.05154 0.7808 $9,608.44

CVaR+DNN 1.98 0.3076 0.74417 $13,436.34
CVaR+LSTM 2.017 0.2608 0.762 $12,858.22
DNN+First 1.928 0.2854 0.8158 $13,138.19

DNN+Second 0.074 0.977 1.9760 $24,501.41
LSTM+First 2.298 0.4524 0.87545 $15,392.16

LSTM+Second 0.1690 1.037 1.9294 $26,568.40
Note: CVaR, Average Return, and Return Std are average values in percentage.

Table 3.8: Trading Simulation with Benchmarks Comparison

Naturally, it cannot be considered a promising solution to our model, despite performing

well on average, since it also displays very significant volatility. Based on the results we

presented, the proposed models generally have good performance on both risk hedging and

seeking return tasks. Since we define and calculate the risk differently, the CVaR value cannot

be directly compared over all models. We evaluate the proposed model by concentrating on

the average return and final portfolio value. Obviously, the combination of LSTM and the
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second formulation with λ equals LSTM validation accuracy constantly produces the best

profits.

3.5 Conclusions and Future Work

In this work, we implement two machine learning models and one calibration technique to

estimate the probability of asset movements. We retrieve market data and construct a feature

space to maintain a suitable time series format. We followed the general rule of thumb to use

DNN as the baseline model to perform the prediction. Furthermore, LSTM is applied to get

more prediction power and match the time series property of stock movement prediction. We

selected the best model according to the validation accuracy. Then, the prediction models

proceeded with the temperature scaling calibration neural network. The calibration results

showed a consistent decrease in both CrossEntropy loss and Expected Calibration Error.

The main contribution of this work is that we establish ties among probability prediction,

calibration, and decision making. In the decision making process, the calibrated probability

was introduced to the multi-objective optimization problem with the recommended weight

parameter for solving it. It is a leap of faith to weight the objective functions using the

validation accuracy from prediction. The results verified the performance of the proposed

models in both risk hedging and return seeking tasks.

The proposed models have the potential to be applied in other applications, including but

not limited to Supply Chain Management, Power Generation, and sustainable and resilient

decision making applications – wherever both risk-averse optimization and machine learning

predictions have been considered.

Meanwhile, we observe limitations in this research mainly in three aspects. First, we

encounter many challenges in building a decent prediction model, including data availability,

data quality, prediction accuracy issues, etc. Although many efforts have been put into

improving the prediction accuracy, we could not get good prediction results compared to other

machine learning prediction tasks, like image recognition. Stock market prediction is still
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one of the challenging problems. Further, in the case of a financial application, the proposed

models do not consider the tax and other trading fees associated with the Constant-Weighting

Asset Allocation. In reality, continuously rebalancing a portfolio could lead to non-negligible

tax and transaction fees, which may cause unexpected losses. Other research efforts have

investigated these topics, including Reinforcement Learning, Bilevel Optimization, and other

financial asset allocation strategies. Finally, as we used the validation accuracy to weight

the objective function, we don’t have scientific evidence to support this implementation.

However, trustworthiness AI is attractive nowadays. We can extend the work to build a

reliable prediction-then-optimization decision making framework.

59



Chapter 4

Prescriptive Bi-level Approach for Portfolio Risk-return Management

4.1 Introduction

Artificial Intelligence has revolutionized the field of finance by enabling businesses to

make more informed and accurate decisions. One way AI is used in financial decision-making

is through predictive analytics, which allows financial institutions to forecast future market

trends more accurately and seek more returns. The previous two chapters of this dissertation

presented approaches to incorporate predictive machine learning modeling into classic portfolio

optimization problems. Next, in this chapter, we will consider a bi-level variation on portfolio

optimization and how it can interact with machine learning-based forecasts.

Consider Hedge Fund Management (Fung et al., 2008), a type of business known for

using performance-based fees. Typically, a hedge fund investment professional charges a

management fee, which is a percentage of assets under management, as well as a performance

fee, which is a percentage of the investment returns that exceed a certain benchmark. It is

important to note that performance-based fees can create an alignment of interests between

the investment professional (broker) and the client (investor) because the broker earns more

when the investor’s portfolio performs well. However, the business can also introduce conflicts

of interest, as the broker may be motivated to take on more risk to boost returns and,

consequently, their commission. Obviously, the financial broker makes decisions based on his

interests in investing in a wide range of securities, maximizing its benefits. However, with

limited market information, the investor has limited choices of securities to minimize risk

and ensure a given expected return. Hence, the market information of securities becomes a

critical business factor when a broker provides financial services to clients. Since two levels

of decision-makers are involved in this problem – the broker and the investor – who have
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imperfectly aligned incentives, it may be important to explicitly consider the two levels of

decision-making. Such hierarchical decision-making is usually modeled by multi-level (in our

case, bi-level) optimization, which is the topic of this chapter.

Bi-level optimization (Sinha et al., 2017), a class of mathematical programming, follows

a two-level hierarchical architecture, where one optimization problem is nested within the

other. It has gained significant attention due to its applications in various fields, including

finance. The upper (leader) optimization problem is commonly constrained by the lower

(follower) problem. Correspondingly, both upper and lower problems are optimized over two

classes of decisions. The lower-level problem is a parametric optimization that is solved with

respect to its feasible spaces. The lower-level problem serves as a constraint to the upper-level

optimization problem. Consequently, the overall optimizations are considered in the feasible

spaces that are lower-level optimal and also satisfy the upper-level constraints.

We consider the following version of the problem. An investor is interested in contracting

with a broker, who will, in turn, manage a financial portfolio on behalf of the investor. We

will assume that the broker acts according to modern portfolio optimization, for example,

following the model considered in Chapter 3. Naturally, the broker can still select model

hyper-parameters, most importantly selecting the securities and CVaR tail parameter (α), to

adjust to their own risk preferences and incentive structure. The investor may have a limited

view of these choices. On the other hand, due to the incentive structure, the investor can be

reasonably assured that the broker will maximize the portfolio return. What may be missing

is a more concerted effort to minimize risk, due to the mismatch in risk-aversion between the

parties.

In the absence of predictive models, this mismatch can, in principle, be overcome by

enforcing the same risk measure. The presence of the forecasts, and particularly if different

forecasting models are available to different parties, makes modeling the decision-making

even more challenging. Therefore, in this chapter, we consider this challenge and provide

some modeling and computational insights.
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The main contributions of this work are as follows: 1) we incorporate a hierarchical

bi-level approach with two-level decision-making on portfolio optimization problems (the

broker maximizes the returns, whereas the investor minimizes risk while ensuring a given

expected return; 2) the bi-level optimization model considers modern ML technology in

making decisions while performing risk hedging and seeking returns; 3) we develop a new

bi-level optimization formulation to obtain optimal solutions for the considered problems.

4.2 Review of Relevant Literature

Bi-level optimization has applications in various fields, including economics (e.g., Stack-

elberg games), transportation (e.g., traffic network design and pricing), engineering (e.g.,

supply chain optimization), and machine learning (e.g., hyperparameter tuning) (e.g. Yue

and You, 2017; Franceschi et al., 2018). Only a limited number of existing works considered

this framework for the risk-averse stochastic optimization setting. We next review two of the

most relevant papers.

In traditional portfolio optimization research (Li et al., 2019), there is only one variable

vector involved in the decisions. Recent research endeavors (Leal et al., 2020) have considered

innovative bi-level leader-follower portfolio selection problems aimed at optimizing the broker’s

(leader’s) benefits while taking into account the selection of unit transaction costs and

concurrently incorporating the definition of portfolio risk within the follower’s framework.

Hence, transaction costs become decision variables in the leader problem, and the follower

problem optimizes the risk over the portfolio allocation. Then, a general MILP can be

adapted to solve the problem with this new hierarchical structure of objectives.

With more twofold portfolio problems being studied, the broker-investor problems are

further explored in (González-Dı́az et al., 2021). In Gonz’s work, the dealer exercises authority

over the determination of transaction costs associated with diverse securities, pursuing the

objective of profit maximization, while the investor confronts the conventional portfolio risk

minimization problem concerning the allocation of capital across a spectrum of financial
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instruments. The distinguishing feature of Gonz’s work relies on the study of multiple follower

cases as the problem complexity can be exponentially increased.

Both mentioned works consider Conditional-Value-at-Risk to measure and quantify the

risk in the investor’s problem. However, in the financial industry, brokers usually have the

authority of their clients to decide the allocation. In addition, the non-alignment of interests

can also weaken the relationship between the two parties from persisting in the long run.

In this work, we study bi-level optimization modeling and machine learning techniques to

address the hierarchical broker and investor problem we previously discussed. We ensure that

the interests of both parties are aligned by the returns, given that the broker receives only

the performance fee. The conflict of interests between the two parties exists in their utility

theory towards the risk.

4.3 Methodology

Let us consider an investment over N = {1, 2, 3, ..., n} securities. There exists a subset of

B ⊆ N securities that are predicted by some reliable (but not perfectly reliable) AI technology

to be bullish during the next trading cycle. In most cases, B ̸= ∅ and B ⫋ N . First, we

assume that the broker has the full authority of his client in allocating all the capital to any

securities in N , and the broker’s goal is to maximize the portfolio returns with respect to a

certain level of risk constraint, so that their commission, denoted by Rl, is maximized. We

will denote the broker’s decision variables as xl
i, where i = 1, 2, ..., N . In other words, the

broker does not explicitly restrict the portfolio to bullish assets. On the other hand, the

market prediction results performed by the AI are shared with the investor. We assume that

the investor is more risk-averse. Denote the investor’s risk loss funciton Ru = F u(xl, xu). To

balance the incentives, suppose that the investor authorizes the broker to proceed with an

investment under the agreement that the risk of the broker’s portfolio should not exceed the

portfolio that consists only of the bullish securities, that was separately optimized by the

investor according to their preferences. Hence, the investor’s decision variables, denoted by
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xu
i , are a subset of securities, where i ∈ B. In general, this optimization problem can be

formulated as follows,

Min Ru = F (xu, xl) (4.1)

s.t. xl ∈ argmax{f(xl) | g(xl) ≥ 0} (4.2)

G(xu, xl) ≥ 0, (4.3)

where G(xu, xl) and g(xl) denotes the upper- and lower-level constraints, respectively.

In the formulation, we intend to divide the decision space using prediction to introduce

a novel view of risk. Specifically, we use machine learning to predict market movement.

The prediction results can split the decision space apart into two sub-spaces, bullish and

bearish. We assume that the investor will focus only on the bullish set of the securities,

which formulates an upper-level risk minimization problem. The broker at the lower level is

guided by the investor in seeking return, with the constraint of risk ensuring that the lower

level risk remains within acceptable bounds. Most importantly, the upper level will have a

different decision space from the lower level because the upper level uses the subset of the

entire securities set while the broker makes decisions on the entire security set. Therefore, we

propose a prediction-based bi-level optimization model below,

Upper Level:

g = min η +
1

m(1− β)

m∑
j=1

[
−
∑
i∈B

xu
i rij − η

]+
(4.4)

s.t.
∑
i∈B

xu
i = 1 (4.5)

xu
i ≥ 0, i ∈ B (4.6)
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Lower Level: (4.7)

max
n∑

i=1

(
pl+i

m∑
j=1

xl
ijr

l+
ij − pl−i

m∑
j=1

xl
ijr

l−
ij

)
(4.8)

s.t. CV aR(xl) <= g (4.9)

n∑
i=1

xl
i = 1 (4.10)

xl
i ≥ 0, i ∈ N. (4.11)

Here (pl+i and (pl−i are the probabilities predicted and calibrated by a machine learning model

(for example, the LSTM+TemperatureScaling Neural Network) analogously with Chapter 3.

Both the broker and the investor measure the risk using CVaR to avoid extreme losses.

At the lower level, the predicted expected return is maximized, which is consistent with the

broker’s interests, i.e., the performance-based fees. The broker is motivated to be risk-seeking

and maximize their interests. Note that the broker’s objective is evaluated according to the

advanced probabilistic ML model since it is the most likely to generate maximum rewards.

However, the investor at the upper level is ensuring the portfolio to be more conservative,

as it minimizes the extreme loss and constrains the risk in the lower level. In addition, the

CVaR risk objective at the upper level is aimed at enhancing diversification. Otherwise, the

model could produce some results that all capital is allocated to one security.

The proposed bi-level problem relies on the formulations from both Chapters 2 and 3.

Specifically, the upper-level problem is the model presented in Chapter 2. The lower-level

problem adopts the return objective, identified as the second objective in the bi-objective

models discussed in Chapter 3, along with an additional constraint linking the two levels.
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4.3.1 Feasibility and Solution Technique

Feasibility is a fundamental consideration in optimization and is crucial for ensuring

that the problem can be solved to achieve meaningful results. A feasible solution to a bilevel

optimization problem must satisfy all the constraints of both the upper level and lower level

problems. The feasibility of a bilevel optimization problem can be assessed in three ways:

upper level feasibility, lower level feasibility, and overall feasibility. The upper and lower level

feasibility refers to a set of decision variables that satisfy its own level without considering

the other level. The overall feasibility means that there is a combination of decision variables

for both levels’ problems that jointly satisfy all constraints and objectives. This is a more

stringent condition than just having each level individually feasible. Obviously, we have

shown the feasibility of the upper level problem in Chapter 2. The feasibility of the proposed

model mainly relies on constraint 4.9. Since the CVaR risk measure is sub-additive and

convex, the inequality in 4.12 holds,

min CV aR(xl) <= min CV aR(xu), (4.12)

where CV aR(xu) and CV aR(xl) represent the upper and lower level risk quantified by CVaR,

and g is the lower level objective value. Thus, the proposed model is guaranteed to be feasible.

Solving bilevel optimization problems can be challenging due to their hierarchical

structure, where an upper-level problem depends on the solution of a lower-level problem.

Various solution techniques and approaches are employed to address bilevel optimization

problems, including Penalty method (White and Anandalingam, 1993), Heuristic method

(Angelo and Barbosa, 2015), Transformation using Karush-Kuhn-Tucker(KKT) condition

(e.g. Sinha and Sinha, 2002; Allende and Still, 2013), etc.

In this work, we consider a reformulation using KKT condition for our bilevel optimization

problem. The KKT transformation unifies the upper-level and lower-level problems into

a single-level problem while considering the interactions between the two levels through
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Lagrange multipliers and dual variables. This transformation simplifies the problem and

enables the application of standard optimization solvers and algorithms to find optimal

solutions.

4.4 Trading Simulations: Case Study for The US Stocks

This section is dedicated to presenting the numerical results associated with a case study

based on real data extracted from the US stock market, with the aim of suggesting potential

economic insights that verify the performance of the proposed model. Although further

investigation into advanced data sources and models is valuable for enhancing the reliability

of prediction results and improving the final portfolio’s performance, it is essential to know

that enhancing prediction performance would entail separate research work.

For this case study, we use the same simulation setup as given in Chapter 3, including

selection of assets, time period, predictive models, etc. Trading settings given in Table 3.6

are used. In the meantime, we consider two benchmarks to compare the performance with

the proposed model: traditional CVaR and CVaR+BinaryPrediction (model presented in

Chapter 2).

Models CVaR Average Return Return Std Final Value
CVaR 1.645 0.05154 0.7808 $9,608.44

CVaR+LSTM 2.017 0.2608 0.762 $12,858.22
LSTM+Bilevel 3.064 0.1371 1.40 $11,516.77
Note: CVaR, Average Return, and Return Std are average values in percentage.

Table 4.1: Bilevel Trading Simulation with Benchmarks Comparison
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Figure 4.1: Bilevel Model Trading Simulation with Benchmarks

The results are summarized in Table 4.1 and Figure 4.1. There are two major observations

we made through the trading simulation. The bilevel programming framework failed to

produce attractive returns as the bi-objective and CVaR+Binary Prediction formulation.

Certainly, the broker’s problem is well constrained by the investor’s risk averse utility reflected

in the lower level objective. It further limited the broker’s motivation to seek risk. From the

upper level perspective, the portfolio generated acceptable profit, more than the standard

CVaR model, and the risk is hedged over a hierarchical setting. The model also encounters

a risk increase, compared to CVaR+Binary Prediction formulation, since return seeking at

the lower level is involved in the decision-making process. However, the bilevel programming

framework takes advantage of balancing the risk and return from the hierarchical settings

and plunder returns by having machine learning prediction involved in the decision making

process. The bilevel formulation simulates a real competing game between broker and investor,

and the solution can represent optimal decisions of both competing parties. In addition,
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the effective utilization of machine learning and bilevel programming in decision-making

constitutes a significant contribution within the context of this research.

4.5 Conclusion

This chapter proposed a single-period portfolio selection problem with two levels of

decision-making on risk and return. On the one hand, there is a broker who controls the

portfolio allocation to the different securities in order to maximize his benefit, and there

is an investor who chooses risk preference while ensuring a certain expected return. This

framework extends this topic to an implicit competition in order to boost the decision of

both parties. To verify the model performance and get close to economic insights that can be

achieved by the model, we have developed a case study based on real data from the US stock

market with a constant allocation trading simulation during 95 trading days. These results

report a comparison between the models and the benchmarks. One of the most interesting

findings of our analysis is that there seems to be some form of advantage of the Bilevel

model over the traditional CVaR model in balancing the risk and return obtained by the

two decision makers. Bilevel programming exhibits favorable characteristics in the modeling

and resolution of the competing problem. Furthermore, this study lays the groundwork for

potential future research paths, including extensions to multiple brokers and investors models,

the inclusion of discrete trading cycle scenarios, and the investigation of economic insights by

using Bilevel programming for risk-return management. It is not only the problem addressed

in this paper but also for other potential extensions. We provide our code to allow researchers

to replicate and extend our work at https://github.com/jzy0040/Dissertation.
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Chapter 5

Conclusions, Limitations and Future Work

In this dissertation, we have studied a series of prediction-then-optimization frameworks

for portfolio decision making problems. In Chapter 2, we propose a hybrid machine learning-

informed CVaR risk optimization model to hedge against risk, while simultaneously taking

advantage for binary stock price classification in order to improve return-seeking. We first

focus on building the stock movement classification model with market data and predicting

the bullish and bearish stocks. The binary classification results are introduced to the CVaR

risk optimization model and force the model to avoid the bearish predicted stocks, as zero

weight is allocated to those stocks. The primary focus of this study is not attempting

to improve the accuracy of the stock movement prediction. Instead, we are interested in

leveraging the performance of decision making models by combining the two disciplines.

The results provide evidence that the proposed model can benefit from the prediction in

seeking returns and outperforms the traditional CVaR risk model. This groundwork leads

the future research path in this dissertation, proving that the prediction-then-optimization

framework can produce attractive and meaningful results in risk hedging and return seeking.

However, the model causes issues due to its limitations. The major limitation we found is

the binary classification prediction setting. Considering the prediction accuracy, our results

further proved that the task of stock market prediction is still challenging. The average

prediction accuracy is significantly lower than the other machine learning applications, like

image and speech recolonization, E-commerce Product Recommendations, etc. Intuitively,

wrong prediction results could mislead the optimization model and cause it to make bad

decisions. In an extreme situation, if all the bullish predicted results are incorrect, the binary

classification results will force the model to make a decision among all bearish assets. By
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and large, we consider the limitation was caused by the deterministic nature of the binary

classification results, which ignore the uncertainty in prediction results.

To address this issue, we proposed a bi-objective probabilistic portfolio decision making

model in Chapter 3. In this probabilistic model, instead of binary classification on market

movement, we estimate the probability of asset movement. The proposed probabilistic

portfolio models optimize the risk and return objectives simultaneously. The risk and return

are defined and calculated using the predicted probability. Thus, the prediction uncertainty

can be signified using predicted probability. In this work, a primary challenge involves

the estimation of the true probability of stock movement based on market data. In recent

machine learning studies, probability calibration was further developed for modern neural

network classification models. In machine learning, probability calibration is a data-driven

technique that involves adjusting the output probabilities of a classification model to match

the true likelihood of the predicted outcomes. Calibrating the output probabilities of a

model is critical when deploying machine learning models in scenarios where well-calibrated

probabilities are critical for decision-making. Specifically, we apply the Temperature Scaling

probability calibration technique to calibrate the output of our stock movement classification

models. We use two metrics to measure the calibration performance, the Cross-Entropy Loss

and Expected Calibration Error. Based on our results, both metrics decrease after calibration

for NN and LSTM across 36 US stocks. Consequently, we consider our probability calibration

to be successful. In optimization modeling, we first consider maximizing the expected future

return, which was defined using predicted probability. Besides, the model can be varied by

using predicted probability to define the risk. In that case, the risk measure, conditional

Value at Risk, will be performed using positive and negative return scenarios corresponding

to the predicted probabilities. According to the trading simulation, we found that the second

formulation outperforms in seeking return. The first formulation also shows its advantage in

balancing the risk and return. However, the calibration performance has significant variations

across different assets. The temperature scaling techniques will calibrate the probability with
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respect to the prediction accuracy in the case of binary classification, but the calibration

cannot help with the accuracy. Obviously, the low prediction accuracy assets will surely have

a poor calibration performance, which means the probability will be less reliable. Thus, a

more accurate prediction model with a robust calibration technique will always be preferred.

Besides, as we mentioned before, we have less evidence in choosing λ.

In Chapter 4, we introduce a realistic broker-investor competing problem. In this problem,

the broker and investor are aligned by the portfolio returns. However, since the commission

was based on portfolio performance, the broker will tend to take more risk in seeking returns.

Thus, the investor can set a risk tolerance for the broker such that the broker’s decision

problem (lower level) follows the investor’s risk optimization problem(upper level). The

hierarchical nature of this problem must be reflected in the modeling, which indicates a

bilevel modeling framework. According to our literature review, this is a novel attempt to

use bilevel optimization to construct a portfolio where machine learning is considered in the

decision making process. Our result shows the research potential on this topic and possible

extension to multiple brokers and investor problems.

In this dissertation, we demonstrate the efficiency and effectiveness of the predict-then-

optimization framework in portfolio decision making. We discussed multiple machine learning

techniques, including classification algorithms and probability calibration techniques. Still,

there are several directions in which we can extend our research. First, when we build the

prediction model, the data quality and availability are constantly causing issues to keep

the prediction results less reliable. We would investigate more data sources to build more

informative and reliable data for market prediction, including Twitter, financial news, etc. In

addition, the evolution of machine learning algorithms is dramatically affecting academia and

industry. The Large Language Model, like ChatGPT 4.0, nowadays are widely recognized for

both research and application potentials. New attempts can be applied to market prediction in

financial applications. Meanwhile, with the development of AI trustworthiness, new techniques

can be used to explain how much we should trust the AI prediction results. Thus, the study
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will have a significant impact on decision making using the prediction-then-optimization

framework. Moreover, the bilevel multi-broker and multi-investor problem is a novel research

path, which may have modeling and computational research involved. Last but not least,

the proposed model can also be applied to other applications wherever risk is considered,

including Supply Chain, Power Management, Marketing, etc. We believe that future research

on these topics can have a significant potential.
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Appendix A

Missing Data Summary

FinSentS missing values and infinite values are summarized in the table below.

Table A.1: FinSentS Missing Values

Stocks Total Missing Missing Rate Infinite Value

AAPL 72 0.0358 False

ABC 1708 0.8493 False

AMZN 76 0.0378 False

ANTM 1389 0.6907 False

BAC 622 0.3093 False

BRK-A not available not available False

CAH 1498 0.7449 False

CI 1198 0.5957 False

CMCSA 567 0.2819 False

COST 648 0.3222 False

CVS 846 0.4207 False

CVX 494 0.2456 False

F 233 0.1159 False

FB 83 0.0413 False

FDX 789 0.3923 False

FNMA 496 0.7403 True

Continued on next page
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Table A.1 – continued from previous page

Stocks Precision Class 0 Precision Class 1 Precision

GM 339 0.1685 True

GOOGL 196 0.0975 False

HD 721 0.3585 False

JNJ 594 0.2953 False

JPM 451 0.2243 False

KO 534 0.2655 False

KR 938 0.4664 False

MCK 1379 0.6857 False

MPC 1447 0.7195 False

MSFT 126 0.0627 True

PFE 555 0.2760 False

PSX 1639 0.8150 False

T 367 0.1825 False

TM 164 0.0816 False

TSLA 122 0.0607 False

UNH 1037 0.5157 False

VZ 515 0.2561 False

WBA 972 0.4833 False

WMT 171 0.0850 False

XOM 324 0.1611 True

Note: missing rates are calculated based on all dates.
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Appendix B

Reliability Diagram of Calibration Results
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