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Abstract 

Bacterial leaf spot (BLS) is a recurring agricultural issue affecting tomatoes and peppers 

around the globe. Traditionally, Xanthomonas perforans was considered the primary pathogen of 

tomatoes, while X. euvesicatoria was associated with peppers. However, recent studies have 

indicated a notable shift towards the dominance of X. perforans in pepper plants, signifying a 

potential expansion of its host range. Our research sought to delve into the diversity of the 

endemic bacterial spot pathogen Xanthomonas and uncover the factors driving microbial 

diversity and pathogen populations. Through a culture-independent approach, we achieved a 

higher-resolution method for examining pathogen populations and survey of tomato fields 

indicated that all eight lineages of X. perforans found in the samples collected around the globe 

are also circulating throughout southeastern United States. Co-occurrence of multiple lineages 

was common among the fields. Furthermore, we employed modeling to analyze Xanthomonas 

populations and disease severity alongside climate variables, emphasizing the critical role of 

meteorological conditions in shaping disease outcomes. This knowledge is paramount for 

developing precise predictive models and early warning systems to mitigate disease outbreaks. In 

addition to studying pathogenic strains, our research delved into the diversity and evolution of 

nonpathogenic Xanthomonas strains, often found alongside their pathogenic counterparts in the 

phyllosphere. This investigation focused on co-occurrence patterns and phylogenetic 

relationships to identify genomic traits that underlie their ecological strategies, spanning from 

commensal to weakly pathogenic to fully pathogenic lifestyles. Our results suggested that the 

distinction between these lifestyles in Xanthomonas is not solely defined by the type III secretion 

system and effectors. We also identified distinct sets of cell-wall degrading enzymes that 

differentiate pathogenic from commensal or weakly pathogenic lifestyles. In contrast, pathogens 
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rely on the type III secretion system and effectors to evade host defense responses, whereas 

commensal Xanthomonas harbor genes that promote stress tolerance rather than avoidance, 

especially in the absence of the type III secretion system. 

The intricate relationships between plants and their associated microbiota, spanning 

bacteria, fungi, viruses, and protists, have evolved to form the plant microbiota over millions of 

years. Within this diverse community, only a subset of microbes act as pathogens, impacting 

specific hosts. These plant-associated microbes can be found in various niches, including the 

rhizosphere, phyllosphere, or endosphere, and play essential roles in nutrient acquisition, 

adaptation to stressors, and overall plant growth. Comprehensive comprehension of these 

complex plant-microbe interactions is vital for the effective management of plant diseases and 

the stability of ecosystems. For example, the phyllosphere microbiome, comprising 

microorganisms residing on the aboveground parts of plants, significantly influences plant 

health, productivity, and resilience to various biotic and abiotic stressors. Unlike the relatively 

stable rhizosphere, the phyllosphere represents a dynamic environment characterized by rapid 

environmental fluctuations, including temperature, humidity, UV light, and limited nutrient 

availability. In a world characterized by global changes such as shifts in climate and land use, 

these fluctuations significantly impact ecosystems and plant-microbe interactions. To shed light 

on these influences, we examined how elevated tropospheric ozone (O3) and Xanthomonas 

perforans infection impact disease outcomes and associated microbiomes in pepper plants. While 

pathogen infection significantly influenced the microbiome of susceptible cultivars, O3 stress 

exacerbated disease severity in resistant cultivars. This alteration in microbial community 

interactions in both biotic and abiotic stress suggests that microbiomes play a pivotal role in 

plant-pathogen responses under climate change. 
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Besides phyllosphere, we also utilized a culture-independent technique to scrutinize the 

influence of long-term crop management and fertility on soil microbial communities. Our study 

involved the analysis of nine cropping systems, each employing various fertilization methods 

and legume cover crops. Our results indicated that long-term balanced nitrogen (N) addition 

significantly influences fungal communities but has a lesser impact on bacterial communities. 

Lower soil pH was found to significantly affect bacterial communities, while fungal 

communities exhibited greater resilience to changes in pH levels. While applying chemical 

fertilizers has previously been associated with reduced microbial diversity and richness, our 

research showed relative stability in soil bacterial diversity and richness under standard fertilizer 

treatment. This stability implies that microbial communities can adapt to prolonged fertilizer use. 

Overall, our research provided valuable insights into the diversity, evolution, and ecology 

of BLS Xanthomonas strains and the importance of plant-microbe interactions in plant disease 

management and adaptation to climate change. These findings contribute to developing 

sustainable agricultural practices that enhance plant health, productivity, and resilience in the 

face of evolving pathogens and changing climates. 
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1. CHAPTER ONE: Introduction and literature review 

For over 400 million years, plants and their associated microorganisms, including bacteria, 

fungi, viruses, and protists, have co-evolved to form a collective entity known as a plant 

microbiota (Trivedi et al. 2020). The interactions between the plants and their associated 

microbiota range from commensal relationships with no observable effects to complex and 

mutually beneficial symbiotic associations (Javaux 2006). Among these members of microbiota, 

only a limited subset can be categorized as pathogens, causing disease in specific hosts (Badet 

and Croll 2020). These microbial communities found on plant surfaces (rhizosphere and 

phyllosphere) or within plants (endosphere) has been studied for their role in nutrient acquisition, 

adaptation to biotic and abiotic stress, and plant growth and productivity (Lindow et al. 1982; 

Arun K. et al. 2020; Miransari 2011; Teixeira et al. 2021). Along with these plant-associated 

microbes, studies have also highlighted a vital role of soil in the health of plants, animals and 

humans, the concept proposed as One Health, recognizing the interconnectedness of human, 

animal, and plant health within shared ecosystems. Various research demonstrates a systematic 

link between rhizosphere and phyllosphere microbiomes, primarily driven by the rhizosphere 

microbiome (Bai et al. 2015; de Vries and Wallenstein 2017). As plant associated microbiomes 

plays critical roles in mediation plant health and productivity, our understanding of the factors 

that mold the composition, diversity, evolution, and functional capacities of both the 

phyllosphere and rhizosphere microbial communities remains limited. 

The phyllosphere microbiome, consisting of microorganisms residing on a plant's 

aboveground parts, plays vital, yet often underestimated, roles in plant health, productivity, 

ecosystem functioning, and resilience to biotic and abiotic stress (Laforest-Lapointe et al. 2017; 

Remus-Emsermann and Schlechter 2018; Vorholt 2012; Li et al. 2022). Unlike the relatively 
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stable rhizosphere, the phyllosphere represents a dynamic and challenging habitat with rapid 

temperature, humidity, UV light fluctuations, and limited nutrient availability (Koskella 2020). 

Global changes, including climate shifts and land use, significantly impact ecosystems and plant-

microbe interactions. Understanding their effects on phyllosphere microbiomes is essential for 

bolstering ecosystem resilience and sustainable plant productivity (Vitousek 1994; Zhu et al. 

2022). While phyllosphere microbiomes are known to enhance plant resilience against pathogens 

and abiotic stress (Ehau-Taumaunu and Hockett 2022; Vannier et al. 2019), a comprehensive 

understanding of how microbial communities respond to and aid in plant adaptation to 

concurrent biotic and abiotic stressors remains elusive. Therefore, the first research objective of 

my PhD dissertation is to investigate the individual and combined effects of biotic stress 

(Xanthomonas perforans infection) and abiotic stress (elevated tropospheric ozone) on disease 

outcomes and their influence on the microbiome structure, function, and interaction networks in 

pepper. 

The soil microbiome, characterized by its vast diversity and spatial heterogeneity, also holds 

a pivotal role in maintaining plant performance and ecosystem stability (Peiffer et al. 2013; 

Bakker et al. 2018; de Vries and Wallenstein 2017; Schimel and Schaeffer 2012). These active 

microbial communities within the rhizosphere are key drivers of soil biochemical processes, 

influencing carbon and nitrogen nutrient cycling while providing essential resilience to various 

environmental stresses (Haney et al. 2008; Tardy et al. 2015; Plaza et al. 2013). Soil, as a non-

renewable resource, is highly susceptible to climate and agricultural practices that alter its 

physical and chemical characteristics, impacting microbial communities over time (Tripathi et al. 

2015; Ikoyi et al. 2020; Alvarez-Martinez et al. 2020; Lehmann et al. 2020). Fertilization, 

although enhancing crop yield, can disrupt soil attributes and adversely affect microbial 
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communities. Preserving soil biodiversity and fertility is essential for ecological balance and 

sustainable food production, given that soil nurtures microbial communities (Li et al. 2017; 

Francioli et al. 2016; Kracmarova et al. 2022). Yet, a critical knowledge gap exists in 

understanding the long-term effects of agricultural management on these communities and their 

relationship with soil productivity and sustainability. Therefore, the second research objective of 

my PhD dissertation is to comprehensively understand the impact of long-term cropping systems 

and fertility management, spanning over 110 years, on soil microbial community structures, 

interactions, and their interplay with soil characteristics and crop yields. 

Plant-microbe interactions within the phyllosphere and rhizosphere are shaped by 

environmental conditions, stress factors, host genetics, and other microorganisms, offering 

insights into the plant's role as a meta-organism (Brader et al. 2017). Understanding the roles of 

plant-associated microbes, their survival strategies, and community assembly factors deepens our 

knowledge of plant-microbe partnerships. While pathogenic microbes' impact on overall plant 

health is well-studied, recent molecular and genomic advances reveal that plants rely on resident 

microbes to suppress pathogens (Berendsen et al. 2012; Hacquard et al. 2017; Banerjee et al. 

2018). Many of these microbial taxa provide ecological benefits to plants, enhancing growth and 

fitness (Arif et al. 2020; Haney et al. 2015). These commensal bacteria can also harbor fitness-

related genes such as antibiotic resistance, with the potential to transfer to the pathogenic 

bacteria (Salyers et al. 2004; Dionisio et al. 2002). Some of these commensals belong to the 

genera that are otherwise known for pathogenic organisms. One such example is of 

nonpathogenic xanthomonads that do not cause apparent disease symptoms in their host plants 

despite their close association but have also been simultaneously isolated along with pathogenic 

relatives (Vauterin et al. 1990; Merda et al. 2017). The coexistence of nonpathogenic and 
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pathogenic xanthomonads prompts questions about their contribution to the genus's evolution, 

pathogenic potential, and plant immunity. Thus, the third research objective of this PhD 

dissertation aims to unveil the evolution of pathogenic and nonpathogenic Xanthomonas strains 

and identify genes associated with their adaptation to diverse plant and environmental lifestyles. 

As global plant disease outbreaks threaten food security, endemic bacterial diseases persist with 

moderate to severe impacts and a lack of clear control strategies complicate the management 

efforts to mitigate endemic pathogens (Strange and Scott 2005). Resistance genes are thought to 

be potential driver for disease dynamics/host-pathogen’s arms race. But continued outbreaks 

with diverse pathogen population may be due to host selection pressure, changes in 

environmental factors, interspecific hybridization, and pathogen lineage mutations (Newberry et 

al. 2019; Gladieux et al. 2016; Martin et al. 2016). While more research is focused on emerging 

diseases, understanding the ecological factors driving endemic diseases has gained importance, 

necessitating further investigation under non-outbreak conditions (Caldwell et al. 2020; 

Ghelardini et al. 2016; Makiola et al. 2022). Despite extensive documentation of bacterial plant 

pathogen-environment interactions, the specific influence of environmental factors on endemic 

bacterial pathogen diversity and disease severity regulation remains unclear. Hence, the fourth 

research objective of this PhD dissertation centers on exploring the diversity of the endemic 

bacterial spot pathogen Xanthomonas and the driving factors behind microbial diversity and 

pathogen populations in the southeastern United States. 

So, the four objectives of my PhD research are presented as four chapters: 

Chapter 2:  Xanthomonas infection and ozone stress distinctly influence the microbial 

community structure and interactions in the pepper phyllosphere. 

Note – This study was previously published with the following citation: 
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Bhandari, R., Sanz-Saez, A., Leisner, C. P., and Potnis, N. 2023. Xanthomonas infection and 

ozone stress distinctly influence the microbial community structure and interactions in the pepper 

phyllosphere. ISME Commun. 3:1–13. 

Chapter 3: Long-term fertilization and crop management affects soil bacterial communities. 

Chapter 4: Genetic and functional diversity help explain pathogenic, weakly pathogenic, and 

commensal lifestyles in the genus Xanthomonas. 

Note – This study is available as preprint (https://doi.org/10.1101/2023.05.31.543148) with the 

following citation and is currently under review for Genome Biology and Evolution: 

Pena, M*, Bhandari, R.*, Bowers, R., Weis, K., Newberry, E., Wagner, N., et al. 2023. Genetic 

and functional diversity to explain commensal and pathogenic lifestyles in the genus 

Xanthomonas. bioRxiv. 2023.05.31.543148. 

Chapter 5: Bacterial spot of tomato: strain diversity, dynamics, and environmental drivers in the 

southeastern United States 

. 
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2. CHAPTER TWO: Xanthomonas infection and ozone stress distinctly influence the 

microbial community structure and interactions in the pepper phyllosphere 

 

 

Note – This study was previously published with the following citation: 

Bhandari, R., Sanz-Saez, A., Leisner, C. P., and Potnis, N. 2023. Xanthomonas infection and 

ozone stress distinctly influence the microbial community structure and interactions in the pepper 

phyllosphere. ISME Commun. 3:1–13. 

 

 

Abstract 

While the physiological and transcriptional response of the host to biotic and abiotic 

stresses have been intensely studied, little is known about the resilience of associated 

microbiomes and their contribution towards tolerance or response to these stresses. We evaluated 

the impact of elevated tropospheric ozone (O3), individually and in combination with 

Xanthomonas perforans infection, under open-top chamber field conditions on overall disease 

outcome on resistant and susceptible pepper cultivars, and their associated microbiome structure, 

function, and interaction network across the growing season. Pathogen infection resulted in a 

distinct microbial community structure and functions on the susceptible cultivar, while 

concurrent O3 stress did not further alter the community structure, and function. However, O3 

stress exacerbated the disease severity on resistant cultivar. This altered diseased severity was 

accompanied by enhanced heterogeneity in associated Xanthomonas population counts, although 

no significant shift in overall microbiota density, microbial community structure, and function 
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was evident. Microbial co-occurrence networks under simultaneous O3 stress and pathogen 

challenge indicated a shift in the most influential taxa and a less connected network, which may 

reflect the altered stability of interactions among community members. Increased disease 

severity on resistant cultivar may be explained by such altered microbial co-occurrence network, 

indicating the altered microbiome-associated prophylactic shield against pathogens under 

elevated O3. Our findings demonstrate that microbial communities respond distinctly to 

individual and simultaneous stressors, in this case, O3 stress and pathogen infection, and can play 

a significant role in predicting how plant-pathogen interactions would change in the face of 

climate change.  

 

2.1 Introduction 

The phyllosphere (aboveground parts) of plants is a unique, nutrient-poor habitat and is 

inhabited by various prokaryotic and eukaryotic microorganisms (Lindow and Brandl 2003) that 

colonize either the leaf surface (epiphytes) or inside the leaf tissue (endophytes) (Leveau 2019; 

Remus-Emsermann and Schlechter 2018). Leaf microbial community assembly and succession 

are influenced by deterministic and stochastic processes. Although dispersal from neighboring 

plants and other demographic factors such as neighbor identity and age are contributing factors 

toward phyllosphere microbiome diversity (Meyer et al. 2022), plant host factors such as host 

genotype, developmental stage (Wagner et al. 2016), and host resistance (Karasov and Lundberg 

2022) shape the microbiome assembly. This host filtering of the microbiome is observed due to 

different resource availability on the leaf surface (van der Wal and Leveau 2011), differing 

physical properties (Hunter et al. 2015), and host defense signaling (Mendes et al. 2018; Lebeis 

et al. 2015).  



12 

Members of the phyllosphere microbiome are known to play a role in nutrient acquisition 

(Fürnkranz et al. 2008), plant growth and productivity (Abadi et al. 2020) and tolerance to 

various biotic and abiotic stresses (Li et al. 2022; Lindow et al. 1982; Rico et al. 2014; Chen et 

al. 2020; Yoshida et al. 2017).  Pathogen invasion is one of the most influential biotic stresses 

affecting the plant microbial assembly in the phyllosphere (Gao et al. 2021). Pathogens can 

modify the habitat by secretion of virulence factors, biosurfactants, or hormones, thereby 

increasing resource availability for other resident colonizers including opportunists to flourish 

(Abdullah et al. 2017; Hoek et al. 2016). Pathogens can also influence resident microflora 

through niche or resource competition (Gao et al. 2021; Abdullah et al. 2017; Chaudhry et al. 

2021; Lindow and Brandl 2003). Plant defense signaling activated in response to pathogen attack 

has also been indicated as a source of alteration of the phyllosphere community (Xin et al. 2016; 

Chen et al. 2020). Regardless of the source of change to the phyllosphere community, dominant 

members are thought to restore stability to this disturbed community (Vincent et al. 2022). 

Furthermore, increasing evidence has suggested that plants can recruit microbes in the 

phyllosphere that offer protection against pathogen (Ehau-Taumaunu and Hockett 2022; Vogel et 

al. 2021; Ritpitakphong et al. 2016), indicating disease-suppressive microbiome assembly in the 

phyllosphere in response to pathogen similar to what has been observed in the rhizosphere . 

Phyllosphere microbial community structure and composition is also shaped by host plant’s 

response to abiotic stresses, such as drought (Bechtold et al. 2021; Debray et al. 2022), increase 

in surface temperature or warming (Aydogan et al. 2018; Manching et al. 2014; Faticov et al. 

2021), elevated CO2 (Ren et al. 2015), and ultraviolet radiation (Kadivar and Stapleton 2003).  

Abiotic stressors can alter host susceptibility to pathogens by interfering with defense 

hormone signaling (Velásquez et al. 2018) and thus influence disease incidence. Exposure of 
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plants to simultaneous biotic and abiotic stressors can result in positive or negative impacts on 

plant responses depending on the timing, nature, and severity of each stress, as different defense 

signaling pathways may interact or inhibit each other (Suzuki et al. 2014; Leisner et al. 2022). 

Furthermore, recent work has demonstrated that climate change may lead to increased incidence 

of disease outbreaks due to the spread of pathogens outside their geographical range (Dudney et 

al. 2021). Taken together, there are many internal and external factors that can shape the 

phyllosphere microbiome, and work is needed to fully understand the role that phyllosphere 

microbiome plays in the plant’s response to simultaneous biotic and abiotic stressors.  

One such abiotic stressor that plants experience is elevated levels of tropospheric ozone 

(O3). Global warming caused by greenhouse gases has resulted in the increase of tropospheric O3 

due to the rise in precursors such as nitrogen oxide (NOx), CO, methane, and other volatile 

organic compounds (Lefohn et al. 2018; Vingarzan 2004). A study across the US predicted that 

the 5th - 95th percentile for daily 8-hour maximum O3 will increase from 31-79 parts per billion 

(ppb) in 2012 to 30-87 ppb in 2050 (Pfister et al. 2014). This increase in O3 level is significant as 

O3 concentrations above 40 ppb are highly phytotoxic  (Ainsworth 2017). Elevated O3 can 

negatively impact plants and many levels, including visible injury and reduction in 

photosynthesis which in turn affects plant growth, nutritional value, crop yield, and alterations to 

carbon allocation (Ashmore 2005; Ainsworth 2017; Burkart et al. 2013). As we learn more about 

how climate change associated abiotic and biotic stressors influence plant response at the 

molecular, cellular or transcriptomic level, important questions to address are how associated 

microbiome would respond to or contribute to plant’s response in the presence of individual or 

simultaneous stressors and whether critical ecological functions of phyllosphere microbial 

communities would be altered in presence of stressors.  
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To address these questions, we explicitly focused on the response of the phyllosphere 

microbiome of two pepper cultivars differing in resistance towards a foliar pathogen, 

Xanthomonas perforans, in presence of ambient and elevated O3 levels. We used an 

experimental setup in the field involving open-top chambers (OTCs) that allowed us to 

manipulate O3 levels and dissect the influence of genotype x environment (G x E) interactions on 

the overall outcome of plant disease as well as on microbiome structure and function. The two 

pepper cultivars used in this study differed in their resistance against X. perforans, an emerging 

pepper pathogen in the southeastern US: one being susceptible cultivar Early Cal Wonder and 

the other being commercial cultivar PS 09979325, largely deployed in the southeastern US and 

known to have polygenic quantitative resistance against all eleven races of the bacterial spot 

pathogen (Kemble et al. 2022). This specific host-pathosystem allowed us to not only study the 

response of the resistant variety under combined stressors, thereby, assessing its durability under 

altered climatic conditions, but also to test the response of the emerging pepper pathogenic 

species, X. perforans, (Newberry et al. 2019) on the susceptible and commercial resistant 

varieties under an altered environment. We hypothesized that phyllosphere microbial 

communities will show alterations in both taxonomic and functional profiles and altered seasonal 

dynamics in response to altered O3 levels, regardless of the cultivars. Interestingly, the influence 

of elevated O3 on plant susceptibility depends on the lifestyle of the pathogen. Such differential 

effects could stem from physiological differences, pathogen biology or differences in defense 

signaling pathways (Pellegrini et al. 2013; Tao et al. 2023; Temple and Bisessar 1979). We 

hypothesized that presence of elevated O3 will increase overall susceptibility of pepper to 

bacterial spot xanthomonads, even on the resistant cultivar. We also hypothesized that 

establishment of disease would disrupt seasonal dynamics of the phyllosphere microbiome, and 
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this effect will be stronger in the environments that support high disease pressure. Our 

experimental design allowed us to address the influence of elevated O3 on the overall disease 

outcome on cultivars differing in their resistance towards pathogen as well as facilitated 

assessment of taxonomic and functional profiles of the phyllosphere microbiome under 

simultaneous stressors. Lastly, as studies have indicated the importance of functions rather than 

species in community structure and assembly  (Burke et al. 2011), we compared functional 

profiles of microbiomes to see whether ecological functions of the community are rather 

conserved regardless of biotic or abiotic stressors.  

 

2.2 Materials and Methods 

2.2.1 Experimental site and design 

The experiment was conducted at the Atmospheric Deposition (AtDep) site at Auburn 

University (Fig. S2-1A) in the 2021 growing season (May-July), where we harnessed OTCs (Fig. 

S2-1B) that allowed us to test the effect of O3 stress on plant-pathogen-microbiome interactions 

and address the complexity of plant defense-development trade-off. We used 12 chambers for 

fumigation, where six chambers had an ambient environment, and six had elevated O3 (Fig. S2-

1A). Each elevated O3 chamber contains four O3 generators (HVAC-1100 Ozone generator, 

Ozone Technologies, Hull, IA, USA), equipped with two ultraviolet bulbs (Model 

GPH380T5VH/HO/4P, Ozone Technologies, Hull, IA, USA) to generate the O3. Generators and 

bulbs are located within the elevated O3 chamber fan boxes. To reach the desired set-point of O3 

(~100 ppb), O3 generators were controlled by 0-10V control wires, which are controlled via an 

analog output module. To fumigate the plants, the ozonated air was blown from the fan box into 

the plastic lining of the open-top chamber (Fig. S2-1B). The plastic panel on the lower portion of 

the chamber is double walled with holes on the inside panel, allowing O3 to be released over the 
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plants inside the chamber. Each chamber is connected via plastic tubing to a central gas manifold 

to which each chamber is opened sequentially by 3-way solenoid valves. A microcontroller 

cycles through the 12 solenoid valves every 24 minutes (sampling each of the 12 chambers for 2 

minutes) to monitor O3 from each chamber (Model 205 Dual Beam Ozone Monitor, 2B 

Technologies, Boulder, CO, USA) during the fumigation window (10 am to 6 pm). During this 

experiment, the average [O3] in the control chambers was around 30.6 ppb, while the fumigated 

chambers had an average [O3] of about 90.3 ppb (Fig. S2-1C). O3 levels in the elevated chambers 

were significantly higher during the growing season when compared to the ambient chambers 

(Kruskal-Wallis, p = 0.04) while the O3 levels between the elevated chambers was similar (p = 

0.62).  

Inoculation was performed on 5–6 weeks old seedlings of both cultivars. Plants were 

inoculated with a X. perforans suspension adjusted to 106 CFU/ml in MgSO4 buffer amended 

with 0.0045% (vol/vol) Silwet L-77 (PhytoTechnology Laboratories, Shawnee Mission, KS, 

USA). The control plants were dip-inoculated in MgSO4 buffer amended with 0.0045% (vol/vol) 

Silwet L-77 (Fig S2-1D). The dip-inoculated plants were transplanted into sterile 10-inch plastic 

pots (The HC Companies, OH) with soil-less potting medium (Premier Tech Horticulture, PA). 

The pots were then transferred to the above-mentioned OTCs and maintained inside the OTCs 

throughout the growing season until harvest. In each of the chambers, we had six plants, each of 

Early Cal Wonder (referred to hereafter as the susceptible cultivar) and PS 09979325 (referred 

hereafter as the resistant cultivar) (Fig S2-1E). Among the 12 chambers, plants in 6 chambers 

(three ambient and three elevated O3) were inoculated with the pathogen X. perforans while 6 

chambers (three ambient and three elevated O3) had control plants inoculated with MgSO4 buffer 

(Fig. S2-1A). 
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2.2.2 Disease severity measurements 

The overall disease development was evaluated by estimating the percentage of disease 

symptoms caused by bacterial spot after transforming the Horsfall-Barratt ratings (Horsfall and 

Barratt 1945) to the midpoint of the rating range during both the mid and end of the season 

(Chiang et al. 2020). 

2.2.3 Sample collection, DNA extraction, sequencing, and quality trimming 

Pepper leaf samples were collected from both inoculated and control samples of each 

cultivar separately after inoculation with Xanthomonas or MgSO4 buffer and before keeping the 

plants in the chambers (base samples), followed by two other time points during the growing 

season (mid and end of the season). For each timepoint, leaves from 6 plants of each cultivar grown 

inside one chamber were pooled, so we have one sample per cultivar. During sampling, leaves 

were collected randomly to avoid bias towards diseased leaves and with at least one leaf per plant 

for each cultivar. 40 grams of leaf samples were sonicated for 15 minutes in phosphate-buffered 

saline solution (50 mM) amended with 0.02% Tween 20 and the dislodged cells were pelleted 

down and processed for DNA extraction. Briefly, total DNA was extracted using Wizard® 

Genomic DNA Purification Kit (Promega, Madison, WI) as per manufacturer instructions with the 

addition of a phenol:chloroform:isoamyl alcohol (25:24:1) followed by ethanol precipitation. The 

DNA was quantified using a Qubit 3.0 fluorometer (Thermo Fischer, Waltham, MA) and the DNA 

samples were submitted to the Duke Center for Genomic and Computational Biology sequencing 

core (Duke University, Durham, NC) for library preparation, and paired end reads (2 x 150 bp) 

were sequenced on NovaSeq 6000 S1 flow cell system. The raw reads were then trimmed for 

quality using BBDuk (http://jgi.doe.gov/data-and-tools/bb-tools/) followed by host contamination 

http://jgi.doe.gov/data-and-tools/bb-tools/
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removal with KneadData (https://bitbucket.org/biobakery/kneaddata/) using pepper cv. 59 

(GCA_021292125.1) genome as a reference. 

2.2.4 Taxonomic profiling 

Quality controlled and host decontaminated reads were taxonomically assigned using 

Kraken2 (v2.1.2) (Wood et al. 2019) against a standard Kraken2 database containing RefSeq 

libraries (O’Leary et al. 2016) of archaeal, bacterial, human, and viral sequences (as of March 01 

2022). Kraken2 is a kmer based short read classification system that assigns a taxonomic 

identification to each sequencing read by using the lowest common ancestor (LCA) of matching 

genomes in the database and has been used for high accuracy classification of metagenomic 

reads (Su et al. 2022; Ye et al. 2019). Kraken2 report files were used as inputs to run Bayesian 

re-estimation of abundance with the Kraken (Bracken) (v2.6.2) (Lu et al. 2017) to re-estimate 

abundance at each taxonomic rank for all the samples. Bracken uses the taxonomy labels 

assigned by Kraken to estimate the abundance of each species. The database for Bracken was 

subsequently built with the Kraken2 database using the default 35 k-mer length and 100 bp read 

lengths based on the average read length in our sample with the lowest read length to re-estimate 

the relative abundance of microbial communities at the species level. The outputs from Bracken 

were combined using the combine_bracken_outputs.py function for downstream analysis. The 

kraken-biom tool (https://github.com/smdabdoub/kraken-biom) was used to convert the output 

from Bracken into BIOM format tables for diversity analyses in R (Team 2022). 

In addition to relative abundance for each taxon, we calculated an estimate of absolute 

abundance based on relative abundance of different bacterial taxa and the total DNA recovered 

from each sample. Microbiota density described as total DNA (ng) per mg of fresh sample was 

calculated for each sample, which was then used to calculate the absolute abundance of different 

https://bitbucket.org/biobakery/kneaddata/
https://github.com/smdabdoub/kraken-biom
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microbial taxa as defined by ng of DNA per mg of sample multiplied with the relative abundance 

(Contijoch et al. 2019). 

The taxonomic composition and diversity of eukaryotes in the samples were accessed 

using the EukDetect (v1.3) (Lind and Pollard 2021). EukDetect aligns the metagenomic reads to 

universal marker genes from conserved gene families curated from fungi, protists, non-vertebrate 

metazoan, and non-streptophyte archaeplastida genomes and transcriptomes followed by low-

quality and duplicate reads filtering. The final eukaryotes abundance is calculated by filtering 

taxa with fewer than four reads and aligning to less than two marker genes. The resulting 

absolute abundance (Reads Per Kilobase of Sequence) was used to compare the diversity across 

the samples. The RPKS value was normalized by multiplying with a scaling factor calculated by 

dividing the median library size by the sample library size, which was then used to compare 

across the samples.  

2.2.5 Culture-dependent method for determining the Xanthomonas population  

To determine the effect of cultivar and environment on the abundance of X. perforans, a 

culture-dependent method was used for tracking the in-planta population of Xanthomonas. Plants 

(6 from each cultivar/chamber) were dip-inoculated as described earlier and kept inside the 

chambers with ambient and elevated O3. Leaf samples were taken at day 0, 7 and 14 after 

inoculation to determine the in planta bacterial population. At each sampling time, 

approximately 4 cm2 of leaf area was taken using a sterile cork borer and was macerated using a 

sterile Dremel® in microcentrifuge tubes with 1 ml of sterile 0.01 M MgSO4 buffer. The 

homogenized suspension was then diluted by ten-fold followed by plating on Nutrient Agar plate 

using a spiral plater (Neu-tecGroup Inc., NY). Plates were then incubated at 28°C for 3 days and 

bacterial population was determined as colony forming units per centimeter squared of leaf area. 



20 

2.2.6 Diversity, statistical analysis, and network analysis 

All statistical and diversity analyses were performed using R (v4.1.3) (Team 2022) and 

Rstudio (Team 2020) with the Phyloseq (v1.38.0) (McMurdie and Holmes 2013), vegan (v2.5-7) 

(Dixon 2003), and ggplot2 (v3.3.5) (Wickham, Hadley 2016) packages. Before data analysis, the 

library size was normalized using scaling with ranked subsampling with ‘SRS’-function in the 

‘SRS’ R-package (v0.2.2) (Beule and Karlovsky 2020). Alpha diversity measures Chao1 and 

Shannon index were used to identify community richness and diversity, respectively. The 

Wilcoxon rank sum test tested significant differences in alpha diversity indices for nonparametric 

data and the T-test for normally distributed data. The appropriateness of these methods was 

verified by checking for the normal distribution of residuals based on the Shapiro-Wilk test for 

normality.  

The differences in overall microbial profiles among the cultivars and different 

environmental conditions (β-diversity) were estimated using the Bray–Curtis distance. To 

understand the factors contributing to microbial community structure, we performed permutation 

multivariate analysis of variance (PERMANOVA) (Anderson and Walsh 2013) as implemented 

in the adonis2 (analysis of variance using distance matrices, ADONIS) with the argument ‘by’ 

set to ‘margins’ and analysis of similarities (ANOSIM) with 1000 permutations (p = 0.05) using 

Bray-Curtis dissimilarity in the vegan R package (v 2.5-7). In addition, multivariate homogeneity 

of group dispersion test (BETADISPER) (Anderson et al. 2006) was performed to determine the 

homogenous dispersion between the factors in relation to their microbial taxa. Non-metric 

multidimensional scaling (NMDS) among the sample groups was calculated using Bray-Curtis 

dissimilarity and visualized using the ggplot2 package in R. 

For our network analysis, the taxonomic data was subsetted to at least 0.5% relative 

abundance in over 20% of the samples (prevalence) to ensure that all samples had sufficient 
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sequencing depth to recover most of the diversity. Correlation network analysis was performed 

using the SPRING (Yoon et al. 2019) approach implemented in the R package NetCoMi (v1.1.0) 

(Peschel et al. 2021). Community structures across the treatment were estimated using the 

“cluster_fast_greedy” algorithm (Clauset et al. 2004), and hub taxa were determined using the 

threshold of 0.95. A Jaccard index was used to test for similarities (Jacc = 0, lowest similarity 

and Jacc = 1, highest similarity) in selected local network centrality measures (degree, 

betweenness centrality, closeness centrality, and eigenvector centrality) to determine the hub or 

keystone taxa. A quantitative network assessment was performed with a permutation approach 

(1000 bootstraps) with an adaptive Benjamini-Hochberg correction for multiple testing.  

2.2.7 Functional profiling  

Functional profiling of the microbial communities was conducted on concatenated 

paired-end sequences with HUMAnN3 (v3.0) (Beghini et al. 2021) to quantify gene abundance 

(UniRef90 gene-families) (Suzek et al. 2015) and MetaCyc pathways (Caspi et al. 2020). 

ChocoPhlAn nucleotide database v30 was used for functional pathway abundance and coverage 

estimation. The gene families and pathway abundance tables were sum-normalized to copies per 

million reads (CPM) to facilitate comparisons between samples with different sequencing depths. 

The output from HUMAnN3 was then imported into QIIME2 (v2021.11) (Hall and Beiko 2018) 

to generate nonmetric multidimensional scaling (NMDS) ordinations using Bray-Curtis 

dissimilarly matrix. To understand the factors driving functional profiles, we performed 

permutation multivariate analysis of variance (PERMANOVA) (Anderson and Walsh 2013) as 

implemented in the adonis2 (analysis of variance using distance matrices, ADONIS) and analysis 

of similarities (ANOSIM) with 1000 permutations (p = 0.05) with different factors (cultivars, 

environment, inoculation status, and time of sampling), as described above. Differentially 
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abundant pathways across the treatment were identified using the LEfSe (Linear discriminant 

analysis Effect Size) (v1.1.2) (Segata et al. 2011). Pathways with a corrected p-value of 0.05 or 

less and Linear Discriminant Analysis (LDA) score of log > 2.5 were classified as significantly 

increased within one of the two groups.  

 

2.3 Results 

2.3.1 Influence of O3 levels on disease severity on resistant and susceptible cultivars   

Overall higher disease severity index was recorded on the susceptible cultivar compared 

to the resistant cultivar. Under ambient conditions, the susceptible cultivar supported an average 

of 53.01% disease severity index during mid-season, that decreased to 15.11% by the end of the 

growing season. The resistant cultivar supported minimal disease with disease severity index of 

0.37% during mid-season and 0.29% by the end of the season. Elevated O3 did not impact 

disease severity on the susceptible cultivar. However, significantly higher disease severity index 

was observed on the resistant cultivar under elevated O3 conditions, both at mid-season (12.61%) 

(p < 0.001) and end of the season (2.01%) (p = 0.01) compared to the ambient environment 

(mid-season = 0.37%, end of the season = 0.29%) (Fig. 2-1, Table S2-1).  

2.3.2 Sequencing statistics 

The samples collected in the beginning of the experiment (base samples) and twice 

during the growing season (mid-season and end of the season) were subjected to shotgun 

metagenome sequencing, which produced 2.83 to 17.16 Gbps of raw reads per sample. Adapter 

trimming and removal of low-quality reads resulted in the loss of 4.3 to 11.3% of the total reads 

among different samples. Of the quality trimmed reads, 5.78 to 39.09% of the reads were 

identified as host reads and removed from further analysis. The samples at the early seedling 
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stage yielded very few reads upon filtering because of higher host contamination (23-39%), 

indicating minimal microbial colonization in the greenhouse-grown seedlings before 

transplanting. Around 50.61% to 84.56% of the original total reads were retained for downstream 

analysis (Table S2-2).  

2.3.3 Microbial diversity and richness are reduced under susceptible response but are not 

significantly affected by elevated O3.  

We next investigated the effect of inoculation and elevated O3 and their interaction on 

overall microbial diversity and richness of the phyllosphere communities. Overall bacterial 

richness and diversity values in both the mid and end of the season samples were higher in 

control plants when compared with base samples. This could be attributed to low microbial 

colonization levels on greenhouse-grown base samples that increased in diversity and richness 

upon exposure to natural field conditions. Eukaryotic diversity in the base samples was not 

calculated as these samples had reads counts below the threshold (fewer than 4 reads that align to 

fewer than 2 marker genes) to be considered present in the sample. The O3 stress alone did not 

influence bacterial (Table S2-3) and eukaryotic richness and diversity (Table S2-4) in both 

cultivars. However, pathogen infection led to significantly lower bacterial richness (p < 0.001) 

(Fig. 2A) and diversity (Kruskal-Wallis, p = 0.01) (Fig. 2-2B) as well as lower eukaryotic 

richness (Kruskal-Wallis, p = 0.01) (Fig. 2-2C) and diversity (Kruskal-Wallis, p = 0.02) (Fig. 2-

2D) on the susceptible cultivar under ambient conditions throughout the growing season 

compared to that on control plants. Under combined stress of pathogen and elevated O3, there 

was a significant effect on both richness (p = 0.01) and diversity (p = 0.04) only during end of 

the season on the susceptible cultivar. Inoculation and elevated O3 did not influence bacterial 

richness (pinoc = 0.81, penv = 0.07) (Fig. 2-2A) and diversity (pinoc = 0.27, penv = 0.62) (Fig. 



24 

2-2B), or eukaryotic richness (Kruskal-Wallis, pinoc = 0.08, penv = 0.31) (Fig. 2-2C) and 

diversity (Kruskal-Wallis, pinoc = 0.23, penv = 0.82) (Fig. 2-2D) on the resistant cultivar. Time 

of sampling had significant influence on bacterial richness and diversity (p < 0.01) in both the 

cultivars.  

2.3.4 The effect of O3 levels was significant on the eukaryotic community yet was minimal 

in shaping bacterial community structure. 

To visualize the differences in bacterial and eukaryotic community structure between 

samples from two pepper cultivar and two environmental conditions, the taxonomic abundance 

profiles were used to compute the Bray-Curtis distance matrix and plotted into two dimensions 

using non-metric multidimensional scaling (NMDS). To understand the relative influence of 

each factor and their interaction on the overall phyllosphere microbial community structure, we 

performed a PERMANOVA on Bray-Curtis dissimilarities using cultivar, time of sampling, 

environment, and inoculation as independent variables. Overall, the effect of cultivar, time of 

sampling, and inoculation were highly significant in shaping bacterial communities (p < 0.001) 

in addition to the interactions of cultivar, time, and inoculation (p = 0.03) (Table S2-5A), with 

separation of inoculated susceptible plants from control susceptible, inoculated and control 

resistant plants (Fig. 2-3A). We further assessed individual factors’ influence and interactions 

across two sampling points.  The effect of the cultivar was significant but diminished over the 

growing season (mid-season: R2 = 0.23, p < 0.001; end of the season: R2 = 0.06, p = 0.03). In 

contrast, effect of inoculation increased over the course of growing season (mid-season: R2 = 

0.20, p < 0.001; end of the season: R2 = 0.55, p < 0.001) (Table S2-5B, Table S2-5C). The effect 

of interaction among cultivar and inoculation on bacterial communities remained statistically 

significant over time, although the effect decreased in size by the end of the growing season 
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(mid-season: R2 = 0.15, p < 0.01; end of the season: R2 = 0.05, p = 0.04). The effect of elevated 

O3 was minimal, with it being not statistically significant by the end of the growing season (mid-

season: R2 = 0.05 p = 0.04; end of the season: R2 = 0.02, p = 0.15) (Table S2-5B, Table S2-5C). 

The interaction between the environment and other variables was not statistically significant 

throughout the growing season. An increase in O3 levels did not alter the bacterial community 

structure on the susceptible cultivar. However, it influenced bacterial communities on the 

resistant cultivar (R2 = 0.14, p = 0.02) (Table S2-5D) in the absence of Xanthomonas. There was 

no difference in the microbial communities between the chambers with elevated O3 (p = 0.69) or 

ambient environment (p = 0.85) suggesting there is no effect of chamber in overall bacterial 

diversity (Table S2-5E, S2-5F). 

Like bacterial communities, eukaryotic communities diversity was also significantly 

influenced by the environment, cultivar, time of sampling, and inoculation (p < 0.01) (Table S2-

6A, Table S2-6B). Cultivar had a significant effect on eukaryotic diversity with more influence 

during the end of the season (mid-season: R2 = 0.12 (Table S2-6C), p = 0.007; end of the season: 

R2 = 0.37, p = 0.001 (Table S2-6D, S2-6E)). An increase in O3 levels significantly affected the 

eukaryotic communities during the mid-season, while it was not significant during the end of the 

season (mid-season: R2 = 0.22, p = 0.001 (Table S2-6C); end of the season: R2 = 0.06, p = 0.19 

(Table S2-6D, Table S2-6E). The effect of inoculation on eukaryotic communities was higher 

during the mid-season, and it decreased during the end of the season (Figure 2-3B) (mid-season: 

R2 = 0.15, p = 0.003 (Table S2-6C); end of the season: R2 = 0.11 p = 0.03 (Table S2-6D, S2-6E)). 

The influence of time of sampling on clustering was evident in shaping both bacterial and 

eukaryotic communities (Fig. 2-3A, 2-3B). 
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These findings indicate that microbial communities on resistant and susceptible cultivars 

were similar in absence of any stress, either pathogen or elevated O3, and influence of seasonal 

succession was evident on both bacterial and eukaryotic communities. Pathogen infection led to 

a shift in the bacterial community composition on the susceptible cultivar as the growing season 

progressed. However, despite presence of the Xanthomonas population on resistant cultivar, 

microbial community structure was like that observed on uninoculated plants. Despite increases 

in disease severity on the resistant cultivar under elevated O3, bacterial and eukaryotic 

communities were similar in their composition to that under ambient environment.  

2.3.5 Influence of pathogen infection and O3 stress on relative and absolute abundance of 

microbial taxa 

The presence of Xanthomonas on control plants of susceptible and resistant cultivars 

suggested low levels of natural inoculum in the field. However, the relative abundance of 

Xanthomonas on control plants did not increase significantly over time (< 5% by the end of the 

season). Both relative and absolute abundance of Xanthomonas increased from mid-season to 

end of the season on inoculated susceptible and resistant cultivars (Fig. S2-2A, S2-2B). 

Significant variation in the relative (~33-87%) as well as absolute (~13-37%) abundance of 

Xanthomonas on resistant inoculated plants under elevated O3 conditions was worth noting. 

However, presence of elevated O3 did not result in a significant difference in relative (Kruskal-

Wallis: pECW = 0.12, pX10R = 0.78) or absolute (Kruskal-Wallis: pECW = 0.15, pX10R = 0.54) 

abundance of Xanthomonas in either cultivar (Fig. S2-2A, S2-2B). This observation was 

surprising given that disease severity levels under elevated O3 conditions on resistant inoculated 

plants were significantly higher than that under ambient environment.  
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To further confirm the influence of elevated O3 and cultivars on Xanthomonas 

population, we analyzed the in-planta population of X. perforans determined using a culture-

dependent method for day 7 and day 14 post-inoculation. While this short-course experiment 

may not reflect the outcome for the entire growing season, it allowed us to evaluate the effect of 

elevated O3 on the Xanthomonas population. Similar to the above observations, there was no 

significant effect of environment (i.e., ambient vs. elevated O3) on X. perforans population in 

these cultivars (pECW = 0.31, pX10R = 0.34) (Fig. S2-2C).  

As the increase in the disease severity on the resistant cultivar under elevated O3 was not 

the result of changes in Xanthomonas population, we hypothesized that this increase was 

associated with a significant reduction in overall microbial density associated with the resistant 

cultivar under elevated O3 compared to ambient environment, referring to an altered prophylactic 

shield from microbiota under elevated O3. Microbiota density estimates were obtained based on 

microbial DNA content per mg of sample, similar to those calculated in gut microbiome studies 

(Reyes et al. 2013). There was a significant effect of inoculation on microbiota density (p < 

0.001), while neither cultivar (p = 0.15) nor elevated O3 (p = 0.19) had a significant effect on 

microbiota density (Fig. 2-4A). There was significantly lower microbiota density in mid-season 

samples on inoculated resistant cultivar under elevated O3 compared to susceptible cultivar (p = 

0.01), but not for end of the season samples (p = 0.13) (Table S2-7A, S2-7B, S2-7C, S2-7D).  

We further estimated absolute abundance of each bacterial genus by multiplying its relative 

abundance (Figure 2-4B) by the total DNA per mg of sample. Overall absolute abundance of 

microbiota was lower on inoculated resistant cultivar compared to inoculated susceptible 

cultivar, under both environments, although this difference was not statistically significant, 

accounting for large variation across samples (Figure 2-4C, Table S2-7E, S2-7F). Total absolute 



28 

abundance of microbiota associated with inoculated resistant cultivar under ambient environment 

was not significantly different compared to that under elevated O3 environment.  

Next, we investigated the temporal dynamics in community assembly and succession in the 

phyllosphere, and patterns were compared between inoculated and control plants. Detailed 

taxonomic description of bacteria and eukaryotes across different treatments is given in 

supplementary information. The taxonomic diversity analysis showed that several bacterial (Fig.  

4B, Table S8) and eukaryotic genera (Fig.  2-4C, Table S2-9) monopolizing the phyllosphere 

environment. These microbial genera are differentially affected by the presence of a pathogen, 

environmental stress, and their interaction.  

Next, we identified genera that showed changes in relative abundance in response to 

cultivars, or elevated O3. Bacterial genera Pseudomonas, Pantoea, Methylobacterium, 

Sphingomonas, Methylobrum, etc., were negatively affected, while Microbacterium was 

positively influenced in the presence of Xanthomonas on susceptible cultivar (Fig. S2-3A to F). 

In contrast to the susceptible cultivar, the relative abundance of Pseudomonas and Sphingomonas 

increased in the presence of the Xanthomonas on the resistance cultivar. The bacterial genus 

Methylobacterium was negatively influenced by elevated O3, while the genera Pseudomonas and 

Sphingomonas were positively impacted in resistant cultivar (Fig. S2-3G to L). Regarding 

eukaryotes, the genus Bullera was positively affected by elevated O3, while the genus Epicoccum 

and Protomyces had temporal variation regardless of treatment (Fig. 2-4C). 
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2.3.6 Functional composition of phyllosphere communities when exposed to O3 stress and 

pathogen infection 

As the microbial composition was significantly affected by cultivar, inoculation, and 

time, we sought to investigate whether observed taxonomic differences reflected niche-specific 

microbial functions. Overall community functions based on the relative abundance of metabolic 

pathways (Fig. 2-5A) as well as associated gene families that were mapped onto the pathways 

(Fig. 2-5B) were not affected by these individual factors (p > 0.05) (Table S2-10A, S2-10B). 

However, the interaction between inoculation, cultivar, and sampling time had a significant 

effect on microbial functions and gene families (p < 0.01) (Table S2-10A, S2-10B), as indicated 

by dissimilarities in the functional composition of both gene families and pathways associated 

with communities recovered from the inoculated susceptible cultivar compared to the inoculated 

resistant cultivar. We observed significant effect of cultivar during the end of the season (p = 

0.01) (Table S2-10C). Elevated O3 did not alter the functional assemblage of phyllosphere 

microbiome either on resistant or susceptible cultivars and regardless of the inoculation status. 

We observed similar functional profiles both in terms of genes as well as pathways across 

timepoints during the growing season on the respective cultivars despite differences in the 

species composition in mid vs. end of the season samples. This is likely due to substantial 

functional redundancy in the metabolic pathways associated with microbial communities over 

the growing season despite seasonal succession of taxa in the phyllosphere. 

To find differentially abundant pathways that explain differences among treatments in 

response to pathogen infection, elevated O3, and their interaction, we performed Linear 

discriminant analysis Effect Size (LEfSe). Upon pathogen infection and elevated O3, metabolic 

pathways related to heme scavenging (source of bioavailable iron) were enriched in microbial 
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communities recovered from the resistant cultivar whereas pathways associated with 

carbohydrate metabolism (pentose phosphate pathway, gallate degradation, glyoxylate cycle), 

protection (lipid IVA biosynthesis), growth and maintenance (phosphatidyl glycerol biosynthesis, 

CDP-diacylglycerol biosynthesis, GDP-mannose biosynthesis), and metabolism of unsaturated 

fatty acid (gondoate biosynthesis) were enriched in microbial communities recovered from the 

resistant cultivar under ambient conditions (Fig. S2-4A). Metabolic pathways that were enriched 

in microbial communities associated with both the cultivars upon O3 stress included pathways 

involved in primary energy production and the degradation of unsaturated fatty acids (beta-

oxidation, pentose phosphate), various defense-related pathways against oxygen stress and DNA 

repair (ubiquinol 7, pyrimidine (deoxy)nucleotides) and pathways related to oxygen-independent 

respiration (oxygen-independent heme b biosynthesis) (Fig. S2-4B). In the presence of both the 

pathogen and elevated O3, pathway related to purine nucleotide production and degradation was 

enriched (Fig. S2-4C). 

2.3.7 Microbial network topology is altered under combined pathogen and O3 stress.  

To assess whether pathogen infection and O3 stress alone or in combination affected 

overall microbial association in the phyllosphere, bacterial co-occurrence networks and their 

topological features across treatments were compared. We assessed local network centrality 

measures using degree, betweenness, closeness and eigenvector centrality used to determine hub 

taxa for bacterial co-occurrence networks under elevated O3 (Fig. 2-6A), inoculation (Fig. 2-6B), 

and combined stress of elevated O3 and pathogen (Fig. 2-6C), and compared to ambient, control 

condition or control condition and ambient environment, respectively. We observed that all 

treatment comparisons mentioned above showed significant differences for all the local network 

centrality measures (Table S2-11A). A hub taxon is a highly connected taxon and is known to 
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have strong impact in the network. There was a significant difference in hub taxa among 

treatment groups when comparing control with inoculated samples or control and ambient 

environment with pathogen and O3 stress (Table S2-11A, S2-11B). However, there was no 

change in hub taxa on plants exposed to elevated O3 compared to ambient environment.  

Comparing the overall similarities of the two networks between the ambient vs. individual stress 

or combined stress of elevated O3 and pathogen based on adjusted Rand index (ARI) indicated 

values close to 0 (ARI = 0.02, p = 0.07) for ambient vs. elevated O3 stress; control vs. inoculated 

(ARI = 0.03, p = 0.02) and control and ambient environment vs combined stress (ARI = 0.10,  p 

< 0.001) (Table S2-11C). These observations indicate that the partitions of species into 

communities show a low degree of similarity in these comparisons. These results, with 

differences in topology between these networks and dissimilarity in local network centrality 

measures, indicate that combination of pathogen infection and O3 stress results shifts in the 

bacterial community interactions in the phyllosphere.  

Next, we assessed global microbial network properties such as number of edges as a 

measure of complexity, modularity, average path length and clustering coefficient, that compare 

network topologies across treatments (Dini-Andreote et al. 2014; Hernandez et al. 2021). The 

current version of NetCoMi can only perform 1000 permutations due to the high run time of a 

single network construction. Since the minimum possible p-value for 1000 permutations is 

1/1000, the power is quite low, and this results in large p values after adjusting for multiple 

testing. Increasing number of permutations may allow evaluating global network properties with 

sufficient statistical power. Thus, in this study, we focused on absolute differences for each 

parameter under comparison, rather than associated p-values. Microbial networks under ambient 

environment showed higher positive edge percentage, higher clustering coefficient, and lower 
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average path length compared to elevated O3 (Table S2-11D). This suggests more positive 

interactions in ambient environments and that O3 stress may foster less complex and negative 

associations among community members. On the contrary, the presence of pathogen infection 

led to a more positive edge percentage, lower path length, higher modularity, and higher 

clustering coefficient, suggesting that all nodes were highly interlinked within the networks to 

form a more complex and stable network under pathogen infection (Table S2-11D). However, in 

the presence of pathogen infection and O3 stress, more positive interactions were found under 

ambient environment and control conditions with lower path length and higher clustering 

coefficient, suggesting that combined stress possibly creates less complex and less stable 

associations among community members (Table S2-11D).  

2.4 Discussion 

Changing climate and modern agricultural practices have pre-disposed agro-ecosystems 

to an increased threat of pests, thus, leaving us with the unpredictability as to how plants will 

adapt to the simultaneous biotic and abiotic stressors. Many studies have proposed the role of 

plant-associated microbiomes in contributing towards plant resilience in the changing climate 

and extending plant immunity against pathogens (Trivedi et al. 2022; Vannier et al. 2019; 

Debray et al. 2022; Ehau-Taumaunu and Hockett 2022). However, we have yet to fully 

understand how microbial communities, both respond to as well as contribute towards plant 

adaptation, in presence of simultaneous biotic and abiotic stressors. In this study, we tested 

individual and simultaneous effects of elevated O3 and pathogen stress on phyllosphere bacterial 

and eukaryotic community structure, function, and stability, and on overall plant disease 

outcomes on susceptible and resistant pepper cultivars. The resistant pepper cultivar used in this 

study possesses a compliment of resistance genes that provide an intermediate level of resistance 
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against all currently known pepper races of bacterial spot Xanthomonas (Stall et al. 2009). Our 

rationale of including this cultivar in this study design was to understand the durability of this 

resistant cultivar that is currently widely deployed in the southeastern US in response to 

emerging pathogen species and under elevated O3, representing future climate.  

While the apparent influence of elevated O3 was not observed on disease severity levels 

on the susceptible cultivar, the resistant cultivar displayed higher disease severity under elevated 

O3 throughout the growing season as compared to ambient environment (Fig. 2-1). This change 

in disease severity may also be indicative of resistance erosion under elevated O3 conditions. 

Unfortunately, the choice of cultivars used in this study not being near-isogenic prevents us from 

evaluating the influence of resistance loci on microbiome as was done in previous studies 

(Wagner et al. 2020). The increased disease severity observed on the resistant cultivar under 

elevated O3, however, was not associated with the increase in Xanthomonas population as 

estimated by absolute abundance data when compared to the ambient environment. Such a 

culture-independent DNA sequencing method may not accurately indicate living pathogen cell 

count and may warrant confirmation of these findings with a culture-dependent pathogen 

population estimate or with methods such as Quantitative PCR (qPCR) (Bonk et al. 2018; Jian et 

al. 2020), digital droplet PCR (Morella et al. 2018; Hindson et al. 2011). Although not for the 

entire growing season, we monitored the dynamics of the Xanthomonas population during a 

short-term two-week experiment and the results supported the previous findings that 

Xanthomonas population was unaffected despite higher disease severity under elevated O3 on the 

resistant cultivar. Interestingly, high variability in the Xanthomonas population counts on the 

resistant cultivar under elevated O3 was worth noting. This may indicate a plastic response of the 

pathogen during adaptation to the resistant cultivar under altered environment.  



34 

A large body of work has indicated that climatic fluctuations can have a profound effect 

on the outcome of plant-pathogen interactions (Cheng et al. 2013; Huot et al. 2017; Zhou et al. 

2019), which may result from alteration of the host environment via modification of host defense 

pathways, increased pathogen infection efficiency under altered environments, or alteration in 

the microbiome-provided extended immunity. These three plausible explanations are outlined 

below that could synergistically drive plant-pathogen-microbiome interactions and help to 

explain the observation from this study of potential resistance erosion under elevated O3 

conditions.  

Studies on plant’s response to a combination of abiotic and biotic stress have shown a 

unique and more complex response than that of individual stresses (Rizhsky et al. 2002, 2004; 

Zandalinas et al. 2021; Leisner et al. 2022). The effect of combined stress is governed by various 

factors such as time, degree of stress, plant genotype, and other climatic or environmental 

factors, thus, not necessarily additive in nature (Omae and Tsuda 2022). Plants respond to biotic 

and abiotic stresses via complex yet overlapping defense signaling pathways (Zhu 2016; Klessig 

et al. 2000), with induction of the abscisic acid (ABA) pathway observed upon abiotic stress, 

which antagonizes the salicylic acid (SA) pathway involved in pathogen defense (Jiang et al. 

2010; Yasuda et al. 2008). Simultaneous stresses of pathogen infection and elevated O3 may 

result in altered host immune response on the resistant cultivar. Oxidative damage of the plant 

cuticle caused by elevated [O3] can increase exposure to pathogens, thus, impacting disease 

severity (Berner et al. 2015). Complementing this current study with host transcriptomics will 

explain if such host defense alteration may be what explains the increased susceptibility on 

resistant cultivar in presence of elevated O3. Secondarily, increased pathogen virulence via 

increased effector output (Huot et al. 2017) under altered environment may explain increased 
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disease severity in absence of significant increase in pathogen population. The increased 

variation in pathogen population could be due to either host plastic response or plasticity in 

pathogen population.  

Third and the most important explanation for the observations from this study is the 

alteration in microbiome-mediated protection on the resistant cultivar in response to elevated O3 

and pathogen infection. Microbial communities recruited by the resistant cultivar in the 

phyllosphere could have a protective role against the pathogen as it has been demonstrated in 

previous studies (van Dam and Heil 2011; Li et al. 2022) and this protective role may have been 

altered under elevated O3, which may have led to increased disease severity. The bacterial and 

eukaryotic community composition, structure and function on the susceptible cultivar did not 

differ in the absence of pathogen infection or elevated O3. However, bacterial community 

structure on the resistant cultivar were influenced by presence of elevated O3, but in absence of 

the pathogen. Whether such differential influence on microbial community structure is due to 

specific resistance loci remains to be determined since the cultivars that we investigated were not 

near-isogenic lines for the resistance loci. On the susceptible cultivar, the presence of pathogen 

infection caused a sizeable shift in the bacterial community structure and function, even though 

concurrent O3 stress did not further alter the microbiome structure and function. Although no 

significant shift in microbiome structure and function was observed on the resistant cultivar upon 

infection, overall microbiota density associated with infected resistant cultivar was lower 

compared to infected susceptible cultivar. Furthermore, concurrent O3 stress resulted in lower 

total microbiota density during mid-season sampling on the infected resistant cultivar. Whether 

such reduction reflects impaired prophylactic potential of microbiome associated with resistant 

cultivar under the combined impact of elevated O3 and pathogen infection remains to be 
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investigated. Further experiments to assess the microbiome-mediated protection against pathogen 

can be designed using synthetic communities associated with the resistant cultivar, similar to the 

previous studies (Berg and Koskella 2018). These experiments may provide opportunities to 

dissect the influence of altered environment on absolute abundance of individual members of the 

community and their interactions and associated functional traits. Interestingly, our data did not 

reveal any influence of simultaneous stressors on functions of microbial communities associated 

with the resistant cultivar. This was surprising given the previous studies indicate enrichment of 

specific metabolic pathways under abiotic or biotic stressors (Muñoz-Elías and McKinney 2006; 

Nogales et al. 2011; Schiff 1980).  

Microbial function in the ecosystem is determined not just because of the number and 

composition of taxa but also the various positive, negative, direct, or indirect associations among 

the community members (Wagg et al. 2019). In response to the pathogen challenge, we observed 

network parameters indicative of a densely connected network. These findings of enhanced 

positive and complex association among the microbial communities upon pathogen infection 

have been observed in both the phyllosphere and endosphere (Luo et al. 2019; Hu et al. 2020; 

Tan et al. 2022). Such densely connected network indicates cooperative association such as 

facilitation, mutualism or commensalism, and cross-feeding (Faust and Raes 2012; Hernandez et 

al. 2021). Such connected networks, referred to as small-world networks (Ortiz-Álvarez et al. 

2021), are hypothesized to harbor resistance toward disturbances. In contrast, microbial co-

occurrence networks across O3 stress and simultaneous pathogen and O3 stress showed a similar 

trend of a relatively unstable random network compared to the control environment. This finding 

agrees with the notion that varying degrees of environmental stress disturb the stability of 

microbial communities (Hernandez et al. 2021). The observation from the similarity of the most 



37 

central node suggests that microbial communities are considerably different across different 

treatments. The presence of a pathogen and simultaneous pathogen and O3 stress considerably 

affected hub taxa. However, simultaneous stressors, but not individual stresses, had considerable 

influence on the most influential taxa, suggesting that plants respond to simultaneous stresses by 

changing the most influential microbial member in the random network. It would be interesting 

to dissect further the influence of individual cultivar and, thus influence of host defense 

responses on microbial community networks, as we observed a strong cultivar effect on 

community composition. However, the present study is limited in sample size, which does not 

allow sufficient power to compare the network structure across individual cultivars. As we 

observed that elevated O3 impacted eukaryotic communities more strongly than bacterial 

communities and pathogen infection impacted bacterial communities, influence on cross-

kingdom interactions cannot be ruled out in this case. Nevertheless, the present study has 

limitations in determining how specific and concurrent stressors affect cross-kingdom 

interactions due to the absence of appropriate methods to evaluate relative abundance of 

eukaryotic communities using shotgun metagenome data. It is possible that elevated O3 will have 

an impact on cross-kingdom interactions, as has been shown with other abiotic stressors (Debray 

et al. 2022). 

Overall, our study demonstrated that microbial communities respond to a change by not 

only altering community composition but also interactions among members and overall 

community function. This this work provides a base for our understanding of the complex 

response of microbial communities and their interactions with the host genotype in response to a 

changing climate. As plants have evolved in association with their phyllosphere microbiome 

members, the community members identified in this study have shown to be particularly 
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susceptible to a shift in response to abiotic stress or combined stress. Findings from this study are 

crucial to evaluate for future work on harnessing the microbiome for stress-tolerant plants. 

 

2.5 Data and code availability 

Sequence data generated from this work have been deposited in the SRA (Sequencing 

Read Achieve) database under the BioProject accessions PRJNA889178. All other data and code 

used in this study are available in the following GitHub repository 

(https://github.com/Potnislab/AtDep_2021_metagenome).   
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Figure 2-1: Elevated O3 exacerbates bacterial spot disease severity on the resistant cultivar 
but has no effect on the susceptible cultivar. Box and whisker plots showing the disease 
severity index (represented as % value) under elevated O3 and ambient environmental conditions 
across susceptible and resistant cultivars. Significance levels for each of the treatment 
combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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Figure 2-2: Elevated O3 has little impact on microbial diversity and richness.  However, 
pathogen infection on susceptible cultivar reduces microbial community richness and 
diversity.  (A) Bacterial Chao1 richness and (B) bacterial Shannon diversity index across 
different environments. (C)Eukaryotic community diversity and (D) richness across different 
treatments. Inoculated and control samples are indicated with yellow and green bars on the top, 
while ambient and elevated O3 treatments are denoted by light blue and red color bars at the 
bottom, respectively.   
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Figure 2-3: Elevated O3 changes microbial community structure on susceptible cultivars 
challenged with pathogen infection, but not on resistant cultivars. (A) Nonmetric 
Multidimensional Scaling (NMDS) ordination comparing the bacterial community diversity 
across two cultivars, environmental conditions, and time of sampling. (B) NMDS ordination 
comparing the eukaryotic community diversity across two cultivars, environmental conditions, 
and time of sampling. 
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Figure 2-4: The effects of elevated O3 on disease outcomes are not fully explained by 
changes in microbiota density and abundance. (A) Box and whisker plot showing microbiota 
density estimated by microbial DNA quantification (concentration of extracted DNA per mg of 
leaf samples) for various treatment in two cultivars. (B) Relative (Left) and absolute (right) 
species abundance of top 15 bacterial taxa across samples. Absolute abundance is obtained by 
scaling the relative abundance measurements by the microbiota density measurements. (C) Bar 
plots showing the relative abundance of the top 15 eukaryotic genera across the samples. 
Inoculated and control samples are indicated with yellow and green bars on the top, while 
ambient and elevated O3 treatments are denoted by light blue and red color bars at the bottom, 
respectively.  The time of sampling is indicated by Base (initial samples), Mid (mid-season), and 
End (end of the season). 
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Figure 2-5: Microbial community functions were affected by host susceptibility to 
pathogens, while elevated O3 had little impact. Nonmetric Multidimensional Scaling (NMDS) 
ordination displaying diversity in (A) metabolic pathways across different treatment conditions 
in susceptible and resistant cultivars, (B) genes mapped to metabolic pathways across various 
treatment conditions in susceptible and resistant cultivars. 
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Figure 2-6: Pathogen infection is associated with microbial communities showing 
positive and stable interactions, but these interactions are random and less predictable 
with a shift in hub taxa in response to concurrent O3 stress and pathogen infection. 
Comparison of bacterial association network across different environments. (A) Bacterial 
association network for the combined data set of ambient (top) and elevated O3 (bottom) in 
both cultivars under control conditions. (B) Bacterial association network for the combined 
data set from control (top) and inoculated (bottom) samples from both the cultivars under 
ambient environment. (C) Bacterial association network for the combined data set from 
control and ambient environment (top) and inoculated and elevated O3 (bottom) samples from 
both cultivars. Hub taxa are highlighted by bold text. Node color represents the cluster 
determined by greedy modularity optimization. Red edges correspond to negative 
correlations, while green edges correspond to positive correlations. 
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2.8 Supplementary results 

2.8.1 Taxonomic profiling 

A temporal pattern was observed in that, Actinobacteria were the most abundant (~57%) 

in the base samples, and their abundance decreased over time both in inoculated (mid-season: 8 

%; end of the season: 1%) and control plants (mid-season: 9 %; end of the season: 3%) shifting 

to Proteobacteria which was dominant both at the mid and end of the season samples (Figure 

S5). Phylum Bacteroidetes, although accounting for around 3% in the base samples, decreased in 

abundance to less than 1% at later time points and were negligible on the inoculated susceptible 

leaves. Phylum Firmicutes contributed to around 2% of the sequences during the mid-season. 

They were in higher abundance under elevated O3 conditions on the leaves of the control 

susceptible cultivar and in both inoculated and control plants in the resistant cultivar. This 

phylum was affected by inoculation on susceptible plants and was negligible across all the 

treatment conditions during the end of the season.  

We next examined the deeper taxonomic ranks, specifically, genus, for further comparison of 

patterns affected by the presence of the pathogen and elevated O3 or a combination of both 

stresses. Susceptible control plants were dominated mainly by Pseudomonas (~5-60%), Pantoea 

(~3-28%), and Sphingomonas (3-15%), while Xanthomonas (~84-98%) and Pseudomonas (~1-

4%) were the dominant genera in the inoculated plants. In resistant cultivar, Pseudomonas (6-

40%), Pantoea (~2-44%), and Methylobacterium (~9-35%) were the dominant genera in control 

plants, while Xanthomonas (~2-87%), Pseudomonas (~2-27%), and Methylobacterium (~1-26%) 

were dominant on inoculated plants (Fig. 4B, Table S8). Other genera contributing to the 

phyllosphere microbiome included Pseudomonas, Pantoea, Methylobacterium, Sphingomonas, 
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Methylorubrum, Stenotrophomonas, and Microbacterium. The abundance of Pseudomonas 

increased over the growing season, except for resistant control plants, where abundance levels 

were higher during the mid-season under elevated O3 and stayed at similar levels throughout the 

growing season. Pseudomonas abundance was affected by inoculation, where a decrease in the 

abundance of Pseudomonas was proportional to the increase in Xanthomonas abundance on 

either cultivar. The mean relative abundance of Pantoea increased over time in control plants of 

either cultivar. The inoculation shifted the temporal pattern with a decreased mean relative 

abundance of Pantoea from mid to end of the season sampling. This decrease was statistically 

significant under elevated O3 on inoculated samples of either cultivar (resistant cultivar: p = 

0.031; susceptible cultivar: p = 0.007). Inoculation also had a slight effect on the mean relative 

abundance of Methylobacterium with a significant decrease with inoculation under ambient 

environment (p = 0.005), under elevated O3 in the resistant cultivar (Kruskal-Wallis, p = 0.049), 

and ambient environment (p = 0.022) in the susceptible cultivar. An increase in O3 concentration 

has a negative effect on the Methylobacterium genus under control conditions and ambient 

environment (resistant cultivar: p = 0.009, susceptible cultivar: p= 0.025). However, the 

environment did not affect the Methylobacterium genus in inoculated samples in both cultivars 

(Fig. S3). 

Analysis of the eukaryotes diversity across our samples showed that the genera Moesziomyces, 

Golubevia, Paraphoma, Protomyces, and Cercospora were dominant across the samples (Fig.  

4C, Table S9). Base samples were dominated by the genus Pseudogymnoascus (~64%), which 

was not observed during later time points. Genus Bullera had a higher relative abundance under 

elevated O3 both in control (~ 32%) and inoculated plants (~16%) than that of ambient 

environment (~ 15% in control and 12% in inoculated) during the end of the season in both the 
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cultivars. Inoculation resulted in lower Zasmidium, Cladosporium, Aureobasidium, Alternaria, 

and Anthracocystis genera in susceptible cultivars compared to resistant ones under both 

environmental conditions. Regardless of treatments, the relative abundance of the genus 

Epicoccum increased at the end of the season (~ 31%) compared to mid-season (~ 4%). In 

comparison, the genus Protomyces decreased during the end of the season (~ 3%) compared to 

mid-season (~ 11%). Inoculation did not affect the relative abundance of Moesziomyces in 

susceptible cultivars during both mid (~ 60%) and end of the season (~70%). In comparison, the 

presence of Xanthomonas had a negative effect on this genus during the end of the season (~ 

12%) in resistant cultivars.  
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Figure S2-1: Study site and treatment design of Atmospheric Deposition Laboratory (AtDep) 
site at Auburn University. (A) Satellite image of AtDep site with individual chambers label 
where light blue circles are the chambers with the ambient environment and red circles are the 
chambers with elevated O3. Chambers 1-6 marked with yellow color are inoculated with X. 
perforans, and chambers 7-12, with green color are control samples. (B) Individual open-top 
chamber at the AtDep site (4 x 5m). (C) Daily average O3 concentration in treatment chambers. 
Sampling points (mid and end of the season) are marked by a red arrow. (D) Inoculation method 
showing how plants were inoculated with Xanthomonas and control plants with MgSO4 buffer. 
(E) The plants were then kept inside the OTCs where each chamber had 12 plants (6 each from 
susceptible and resistant cultivar). Inoculated and control plants were kept in different chambers 
as per the treatment plan in A. 
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Figure S2-2: Elevated O3 increases heterogeneity in Xanthomonas population counts on the 
resistant cultivar. Line graph showing the relative and absolute abundance (ng of DNA per mg of 
leaf tissue) (A) Xanthomonas relative and absolute abundance (ng of DNA per mg of leaf tissue) 
across different treatments in susceptible cultivars. (B) Xanthomonas relative and absolute 
abundance (ng of DNA per mg of leaf tissue) across different treatments in resistant cultivar.  
end of the season.  (C) Xanthomonas population growth based on culture-dependent technique on 
two different cultivars under ambient environment and elevated O3.  
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Figure S2-3: Box plot showing the relative abundance of top 6 bacterial genera. (A-F) Relative 
abundance of different bacterial genera on susceptible cultivar across different treatments; (G-L)   
Relative abundance of different bacterial genera on resistant cultivar across different treatments. 
Control samples are indicated by a green bar, while the yellow bar represents the inoculated 
samples. The blue box represents the samples taken during the mid-season, while the orange box 
is end of the season samples. Different environmental conditions are represented by the ambient 
environment and elevated O3 under both inoculation and control treatments. 
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Figure S2-4: Linear Discriminant Analysis Effect Size (LEfSe) of KEGG pathways between 
susceptible and resistant cultivar. Results were ranked by their Linear Discriminant Analysis 
(LDA) score. An FDR-adjusted p-value ≤ 0.05, as well as an LDA score ≥2.5, were used as 
thresholds to identify significant features. (A) pathways enriched upon inoculation of the 
resistant cultivar under elevated O3 (brown), resistant cultivar under ambient environment 
(violet), susceptible cultivar under elevated O3 (cyan), and susceptible cultivar under ambient 
environment (black). (B) pathways enriched in both cultivars under elevated O3 (red) and 
ambient environment (blue), (C) pathways enriched in both the cultivars under combined stress 
of pathogen infection and elevated O3 (orange) and ambient environment (lime green). 
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Figure S2-5: Stacked bar plots showing the relative abundance of dominant phyla across the 
samples. Control samples are indicated by a green bar, while the yellow bar represents the 
inoculated samples. The time of sampling is indicated by Base (initial samples), Mid (mid-
season) and End (end of the season). 
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Table S2-1:Multiple pairwise comparisons (Dunn test) of disease severity index across different cultivars and treatment conditions. 
Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 

Cultivar Comparison Standard test statistics p value Adjusted p-value significance 
Susceptible Ambient environment and end of the season vs. Ambient environment and mid-season 4.9074802 9.23E-07 5.54E-06 **** 
Susceptible Ambient environment and end of the season vs. Elevated ozone and end of the season 0.8719077 3.83E-01 3.83E-01  

Susceptible Ambient environment and end of the season vs. Elevated ozone and mid-season 3.4676327 5.25E-04 1.05E-03 ** 
Susceptible Ambient environment and mid-season vs. Elevated ozone and end of the season -4.0355726 5.45E-05 1.63E-04 *** 
Susceptible Ambient environment and mid-season vs. Elevated ozone and mid-season -1.4398475 1.50E-01 1.80E-01  

Susceptible Elevated ozone and end of the season vs. Elevated ozone and mid-season 2.5957251 9.44E-03 1.42E-02 * 
Resistant Ambient environment and end of the season vs. Ambient environment and mid-season 0.19131 8.48E-01 8.48E-01  

Resistant Ambient environment and end of the season vs. Elevated ozone and end of the season 2.7448823 6.05E-03 9.08E-03 ** 
Resistant Ambient environment and end of the season vs. Elevated ozone and mid-season 6.0969658 1.08E-09 6.49E-09 **** 
Resistant Ambient environment and mid-season vs. Elevated ozone and end of the season 2.5535723 1.07E-02 1.28E-02 * 
Resistant Ambient environment and mid-season vs. Elevated ozone and mid-season 5.9056558 3.51E-09 1.05E-08 **** 
Resistant Elevated ozone and end of the season vs. Elevated ozone and mid-season 3.3520835 8.02E-04 1.60E-03 ** 
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Table S2-2: Sample details and sequencing statistics of metagenome reads. 
Sample 
id 

Cultivar Inoculation 
status 

Time of sampling Environment DNA conc. 
(ng/μl) 

Total raw 
reads 

Total raw 
bases 

Reads after 
quality 
trimming 

Reads after host 
trimming 

% of final 
reads for 
further analysis 

Gbp of 
reads 

% lost in 
quality 
trimming 

% lost in 
host 
trimming 

1EM Susceptible Inoculated Mid-season Ambient 44.4 94632028 14012568232 82555398 76943654 81.31 14.01 12.76 6.80 
1EE Susceptible Inoculated End of the season Ambient 43.8 71879368 10853784568 63532100 59509512 82.79 10.85 11.61 6.33 
1XM Resistant Inoculated Mid-season Ambient 27.2 86444924 13053183524 75569647 70279794 81.30 13.05 12.58 7.00 
1XE Resistant Inoculated End of the season Ambient 34.5 83058106 12541774006 73320424 68466214 82.43 12.54 11.72 6.62 
2EM Susceptible Inoculated Mid-season Elevated ozone 44 83619784 12626587384 73105423 68279082 81.65 12.63 12.57 6.60 
2EE Susceptible Inoculated End of the season Elevated ozone 48.2 76613288 11568606488 68214364 64256044 83.87 11.57 10.96 5.80 
2XM Resistant Inoculated Mid-season Elevated ozone 23.1 67954684 10261157284 58945911 54317988 79.93 10.26 13.26 7.85 
2XE Resistant Inoculated End of the season Elevated ozone 31.6 85486336 12908436736 74113643 61375640 71.80 12.91 13.30 17.19 
3EM Susceptible Inoculated Mid-season Elevated ozone 39.5 78103064 11793562664 68629726 64244500 82.26 11.79 12.13 6.39 
3EE Susceptible Inoculated End of the season Elevated ozone 44.7 82463524 12451992124 72822036 68362944 82.90 12.45 11.69 6.12 
3XM Resistant Inoculated Mid-season Elevated ozone 9.88 72073444 10883090044 63021647 58620704 81.33 10.88 12.56 6.98 
3XE Resistant Inoculated End of the season Elevated ozone 34.8 107486130 16230405630 96211494 84545768 78.66 16.23 10.49 12.13 
4EM Susceptible Inoculated Mid-season Ambient 26.4 92419428 13955333628 81432726 76535500 82.81 13.96 11.89 6.01 
4EE Susceptible Inoculated End of the season Ambient 43.9 60405554 9121238654 53906544 50787970 84.08 9.12 10.76 5.79 
4XM Resistant Inoculated Mid-season Ambient 38.1 85511946 12912303846 74096844 68386118 79.97 12.91 13.35 7.71 
4XE Resistant Inoculated End of the season Ambient 40.2 95167264 14370256864 82585708 72069602 75.73 14.37 13.22 12.73 
5EM Susceptible Inoculated Mid-season Ambient 41.1 86126728 13005135928 75442752 70497018 81.85 13.01 12.40 6.56 
5EE Susceptible Inoculated End of the season Ambient 41.9 69052192 10426880992 59171173 54881300 79.48 10.43 14.31 7.25 
5XM Resistant Inoculated Mid-season Ambient 20 87321158 13185494858 76345143 71081610 81.40 13.19 12.57 6.89 
5XE Resistant Inoculated End of the season Ambient 25.9 92131658 13911880358 80518352 73696904 79.99 13.91 12.61 8.47 
6EM Susceptible Inoculated Mid-season Elevated ozone 39.8 83038324 12538786924 72028537 66836114 80.49 12.54 13.26 7.21 
6EE Susceptible Inoculated End of the season Elevated ozone 41.8 85948910 12978285410 74964898 69762754 81.17 12.98 12.78 6.94 
6XM Resistant Inoculated Mid-season Elevated ozone 25.3 72334912 10922571712 62846737 58011850 80.20 10.92 13.12 7.69 
6XE Resistant Inoculated End of the season Elevated ozone 33.6 43692494 6597566594 38063184 29469316 67.45 6.60 12.88 22.58 
7EE Susceptible Control End of the season Elevated ozone 36 80783162 12198257462 70281064 64307588 79.61 12.20 13.00 8.50 
7XM Resistant Control Mid-season Elevated ozone 11.5 82013696 12384068096 73704235 69351830 84.56 12.38 10.13 5.91 
7XE Resistant Control End of the season Elevated ozone 34.2 92715106 13999981006 82266875 74915476 80.80 14.00 11.27 8.94 
8EE Susceptible Control End of the season Ambient 35.1 93149022 14065502322 82364507 76748744 82.39 14.07 11.58 6.82 
8XM Resistant Control Mid-season Ambient 23.4 86912066 13123721966 75428445 69475752 79.94 13.12 13.21 7.89 
8XE Resistant Control End of the season Ambient 33.3 87639550 13233572050 76683529 71598300 81.70 13.23 12.50 6.63 
9EM Susceptible Control Mid-season Ambient 30.4 76739578 11587676278 66009506 60962488 79.44 11.59 13.98 7.65 
9EE Susceptible Control End of the season Ambient 44.6 74029888 11178513088 64536900 59974132 81.01 11.18 12.82 7.07 
9XM Resistant Control Mid-season Ambient 23.4 107540380 16238597380 92551600 84397566 78.48 16.24 13.94 8.81 
9XE Resistant Control End of the season Ambient 35.8 83594546 12622776446 73142122 66505530 79.56 12.62 12.50 9.07 
10EM Susceptible Control Mid-season Elevated ozone 19.2 62672036 9463477436 52745864 45571498 72.71 9.46 15.84 13.60 
10EE Susceptible Control End of the season Elevated ozone 14 79082574 11941468674 70079799 65237834 82.49 11.94 11.38 6.91 
10XM Resistant Control Mid-season Elevated ozone 21 74972812 11320894612 64473571 58494178 78.02 11.32 14.00 9.27 
10XE Resistant Control End of the season Elevated ozone 17.5 98574260 14884713260 85562399 78476258 79.61 14.88 13.20 8.28 
11EM Susceptible Control Mid-season Elevated ozone 29.8 120049118 18127416818 105338540 96783338 80.62 18.13 12.25 8.12 
11EE Susceptible Control End of the season Elevated ozone 13.84 76087608 11489228808 67008309 56202158 73.87 11.49 11.93 16.13 
11XM Resistant Control Mid-season Elevated ozone 16.06 108823052 16432280852 95722349 87635384 80.53 16.43 12.04 8.45 
11XE Resistant Control End of the season Elevated ozone 16.77 76221844 11509498444 66056543 55582900 72.92 11.51 13.34 15.86 
12EM Susceptible Control Mid-season Ambient 17.5 113646040 17160552040 99066065 91624154 80.62 17.16 12.83 7.51 
12XM Resistant Control Mid-season Ambient 38 60168800 9085488800 52245447 48209842 80.12 9.09 13.17 7.72 
12XE Resistant Control End of the season Ambient 29.6 105040296 15861084696 91675213 85177988 81.09 15.86 12.72 7.09 
OEC Susceptible Control Base Green house 34.6 41926072 6330836872 34883887 26811796 63.95 6.33 16.80 23.14 
OEI Susceptible Inoculated Base Green house 13.35 92472636 13963368036 76986190 54694930 59.15 13.96 16.75 28.95 
OXC Resistant Control Base Green house 13.94 18879282 2850771582 15442554 11542140 61.14 2.85 18.20 25.26 
OXI Resistant Inoculated Base Green house 16.11 61371554 9267104654 51009338 31065826 50.62 9.27 16.88 39.10 
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Table S2-3A: Pairwise comparison for bacterial Chao1 diversity index for resistant pepper. Significance levels for each treatment 
combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 
 

 Comparisons Mean difference lwr upr Adjusted p-value 
Control sample, ambient environment, and end of the season vs. Control sample, ambient environment, and base time point 153 -26.281695 332.2816953 0.1298768 
Control sample, ambient environment, and mid-season vs. Control sample, ambient environment, and base time point 177.333333 -1.948362 356.6150286 0.0537938 
Control sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and base time point 196.333333 17.051638 375.6150286 0.0260945 
Control sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and base time point 253.333333 74.051638 432.6150286 0.0028437 
Inoculated sample, ambient environment, and base time point vs. Control sample, ambient environment, and base time point 218 -1.574337 437.5743368 0.0524734 
Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and base time point 127 -52.281695 306.2816953 0.3003286 
Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and base time point 193 13.718305 372.2816953 0.0296671 
Inoculated sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and base time point 139.666667 -39.615029 318.9483619 0.203141 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and base time point 213.333333 34.051638 392.6150286 0.0134904 
Control sample, ambient environment, and mid-season vs. Control sample, ambient environment, and end of the season 24.333333 -102.437969 151.1046358 0.9991099 
Control sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and end of the season 43.333333 -83.437969 170.1046358 0.9527894 
Control sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and end of the season 100.333333 -26.437969 227.1046358 0.1889544 
Inoculated sample, ambient environment, and base time point vs. Control sample, ambient environment, and end of the season 65 -114.281695 244.2816953 0.9343351 
Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and end of the season -26 -152.771302 100.7713025 0.9985192 
Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and end of the season 40 -86.771302 166.7713025 0.9706473 
Inoculated sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and end of the season -13.333333 -140.104636 113.4379691 0.9999938 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and end of the season 60.333333 -66.437969 187.1046358 0.7636049 
Control sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and mid-season 19 -107.771302 145.7713025 0.9998771 
Control sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and mid-season 76 -50.771302 202.7713025 0.5029492 
Inoculated sample, ambient environment, and base time point vs. Control sample, ambient environment, and mid-season 40.666667 -138.615029 219.9483619 0.9968571 
Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and mid-season -50.333333 -177.104636 76.4379691 0.8945303 
Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and mid-season 15.666667 -111.104636 142.4379691 0.9999754 
Inoculated sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and mid-season -37.666667 -164.437969 89.1046358 0.9798423 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and mid-season 36 -90.771302 162.7713025 0.9849613 
Control sample, elevated ozone, and mid-season vs. Control sample, elevated ozone, and end of the season 57 -69.771302 183.7713025 0.8126418 
Inoculated sample, ambient environment, and base time point vs. Control sample, elevated ozone, and end of the season 21.666667 -157.615029 200.9483619 0.9999796 
Inoculated sample, ambient environment, and end of the season vs. Control sample, elevated ozone, and end of the season -69.333333 -196.104636 57.4379691 0.615523 
Inoculated sample, ambient environment, and mid-season vs. Control sample, elevated ozone, and end of the season -3.333333 -130.104636 123.4379691 1 
Inoculated sample, elevated ozone, and end of the season vs. Control sample, elevated ozone, and end of the season -56.666667 -183.437969 70.1046358 0.8172832 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, elevated ozone, and end of the season 17 -109.771302 143.7713025 0.9999511 
Inoculated sample, ambient environment, and base time point vs. Control sample, elevated ozone, and mid-season -35.333333 -214.615029 143.9483619 0.9989083 
Inoculated sample, ambient environment, and end of the season vs. Control sample, elevated ozone, and mid-season -126.333333 -253.104636 0.4379691 0.0511777 
Inoculated sample, ambient environment, and mid-season vs. Control sample, elevated ozone, and mid-season -60.333333 -187.104636 66.4379691 0.7636049 
Inoculated sample, elevated ozone, and end of the season vs. Control sample, elevated ozone, and mid-season -113.666667 -240.437969 13.1046358 0.098838 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, elevated ozone, and mid-season -40 -166.771302 86.7713025 0.9706473 
Inoculated sample, ambient environment, and end of the season vs. Inoculated sample, ambient environment, and base time point -91 -270.281695 88.2816953 0.6995067 
Inoculated sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and base time point -25 -204.281695 154.2816953 0.9999323 
Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and base time point -78.333333 -257.615029 100.9483619 0.8345678 
Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and base time point -4.666667 -183.948362 174.6150286 1 
Inoculated sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and end of the season 66 -60.771302 192.7713025 0.6720025 
Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and end of the season 12.666667 -114.104636 139.4379691 0.999996 
Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and end of the season 86.333333 -40.437969 213.1046358 0.3456482 
Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and mid-season -53.333333 -180.104636 73.4379691 0.8606658 
Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and mid-season 20.333333 -106.437969 147.1046358 0.9997862 
Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, elevated ozone, and end of the season 73.666667 -53.104636 200.4379691 0.5418761 
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Table S2-3B: Pairwise comparison for bacterial Shanon diversity index(Dunn's multiple comparison test) for resistant pepper. 
Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 
 

Comparisons Z Unadjusted p p adjusted Significance 
Control sample, ambient environment, and base time point vs. Control sample, ambient environment, and end of the season -1.13227703 0.257517982 0.57941546  

Control sample, ambient environment, and base time point vs. Control sample, ambient environment, and mid-season -1.32098987 0.186504741 0.52454458  

Control sample, ambient environment, and end of the season vs. Control sample, ambient environment, and mid-season -0.26688026 0.789561359 0.88825653  

Control sample, ambient environment, and base time point vs. Control sample, elevated ozone, and end of the season -0.83033649 0.406348562 0.6772476  

Control sample, ambient environment, and end of the season vs. Control sample, elevated ozone, and end of the season 0.42700841 0.669373202 0.86062269  

Control sample, ambient environment, and mid-season vs. Control sample, elevated ozone, and end of the season 0.69388867 0.487752032 0.70802714  

Control sample, ambient environment, and base time point vs. Control sample, elevated ozone, and mid-season -2.18906893 0.02859183 0.25732647  

Control sample, ambient environment, and end of the season vs. Control sample, elevated ozone, and mid-season -1.49452944 0.135037294 0.46743679  

Control sample, ambient environment, and mid-season vs. Control sample, elevated ozone, and mid-season -1.22764918 0.219578692 0.54894673  

Control sample, elevated ozone, and end of the season vs. Control sample, elevated ozone, and mid-season -1.92153785 0.054663936 0.35141102  

Control sample, ambient environment, and base time point vs. Inoculated sample, ambient environment, and base time point -1.01695036 0.309177045 0.63240759  

Control sample, ambient environment, and end of the season vs. Inoculated sample, ambient environment, and base time point -0.1132277 0.909850033 0.95216864  

Control sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and base time point 0.07548514 0.939828724 0.93982872  

Control sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and base time point -0.41516825 0.678018743 0.82461739  

Control sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and base time point 0.9435642 0.345392396 0.62170631  

Control sample, ambient environment, and base time point vs. Inoculated sample, ambient environment, and end of the season 0.07548514 0.939828724 0.96118847  

Control sample, ambient environment, and end of the season vs. Inoculated sample, ambient environment, and end of the season 1.70803364 0.087630101 0.4381505  

Control sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and end of the season 1.9749139 0.04827792 0.3620844  

Control sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and end of the season 1.28102523 0.200184804 0.52990095  

Control sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and end of the season 3.20256308 0.001362105 0.06129471  

Inoculated sample, ambient environment, and base time point vs. Inoculated sample, ambient environment, and end of the season 1.32098987 0.186504741 0.55951422  

Control sample, ambient environment, and base time point vs. Inoculated sample, ambient environment, and mid-season -1.66067298 0.096779142 0.43550614  

Control sample, ambient environment, and end of the season vs. Inoculated sample, ambient environment, and mid-season -0.74726472 0.454903785 0.73109537  

Control sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and mid-season -0.48038446 0.630954041 0.83508623  

Control sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and mid-season -1.17427313 0.240285643 0.56909758  

Control sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and mid-season 0.74726472 0.454903785 0.70588518  

Inoculated sample, ambient environment, and base time point vs. Inoculated sample, ambient environment, and mid-season -0.41516825 0.678018743 0.84752343  

Inoculated sample, ambient environment, and end of the season vs. Inoculated sample, ambient environment, and mid-season -2.45529836 0.01407677 0.21115155  

Control sample, ambient environment, and base time point vs. Inoculated sample, elevated ozone, and end of the season -0.33968311 0.734095182 0.86932324  

Control sample, ambient environment, and end of the season vs. Inoculated sample, elevated ozone, and end of the season 1.12089708 0.262331675 0.5621393  

Control sample, ambient environment, and mid-season vs. Inoculated sample, elevated ozone, and end of the season 1.38777733 0.165204859 0.53101562  

Control sample, elevated ozone, and end of the season vs. Inoculated sample, elevated ozone, and end of the season 0.69388867 0.487752032 0.73162805  

Control sample, elevated ozone, and mid-season vs. Inoculated sample, elevated ozone, and end of the season 2.61542651 0.00891161 0.20051122  

Inoculated sample, ambient environment, and base time point vs. Inoculated sample, elevated ozone, and end of the season 0.90582163 0.365030272 0.63178316  

Inoculated sample, ambient environment, and end of the season vs. Inoculated sample, elevated ozone, and end of the season -0.58713656 0.557111993 0.78343874  

Inoculated sample, ambient environment, and mid-season vs. Inoculated sample, elevated ozone, and end of the season 1.86816179 0.061739522 0.34728481  

control sample, ambient environment, and base time point vs. Inoculated sample, elevated ozone, and mid-season -1.50970271 0.131119299 0.49169737  

Control sample, ambient environment, and end of the season vs. Inoculated sample, elevated ozone, and mid-season -0.53376051 0.593507237 0.80932805  

Control sample, ambient environment, and mid-season vs. Inoculated sample, elevated ozone, and mid-season -0.26688026 0.789561359 0.91103234  

Control sample, elevated ozone, and end of the season vs. Inoculated sample, elevated ozone, and mid-season -0.96076892 0.336668368 0.65869898  

Control sample, elevated ozone, and mid-season vs. Inoculated sample, elevated ozone, and mid-season 0.96076892 0.336668368 0.63125319  

Inoculated sample, ambient environment, and base time point vs. Inoculated sample, elevated ozone, and mid-season -0.26419797 0.791627372 0.86885931  

Inoculated sample, ambient environment, and end of the season vs. Inoculated sample, elevated ozone, and mid-season -2.24179415 0.024974679 0.28096514  

Inoculated sample, ambient environment, and mid-season vs. Inoculated sample, elevated ozone, and mid-season 0.21350421 0.83093371 0.89028612  

Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, elevated ozone, and mid-season -1.65465759 0.097993975 0.40088444  
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Table S 2-3C: Pairwise comparison for bacterial Chao1 diversity index for susceptible pepper. Significance levels for each treatment 
combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 
 

Comparisons diff lwr upr p adjusted Significance 
Control sample, ambient environment, and end of the season vs. Control sample, ambient environment, and base time point 128 -88.71689 344.716891 0.4882834  

Control sample, ambient environment, and mid-season vs. Control sample, ambient environment, and base time point 141.5 -75.21689 358.216891 0.3688167  

Control sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and base time point 110.666667 -93.65598 314.989311 0.5917825  

Control sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and base time point 232 15.28311 448.716891 0.0319968  

Inoculated sample, ambient environment, and base time point vs. Control sample, ambient environment, and base time point 236 -14.24311 486.243111 0.0713791  

Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and base time point -63.666667 -267.98931 140.655978 0.964853  

Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and base time point 66.333333 -137.98931 270.655978 0.9554074  

Inoculated sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and base time point -62.333333 -266.65598 141.989311 0.9690089  

Inoculated sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and base time point 27.333333 -176.98931 231.655978 0.9999279  

Control sample, ambient environment, and mid-season vs. Control sample, ambient environment, and end of the season 13.5 -163.4486 190.448601 0.9999994  

Control sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and end of the season -17.333333 -178.86457 144.1979 0.9999887  

Control sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and end of the season 104 -72.9486 280.948601 0.4942194  

Inoculated sample, ambient environment, and base time point vs. Control sample, ambient environment, and end of the season 108 -108.71689 324.716891 0.6846657  

Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and end of the season -191.666667 -353.1979 -30.135433 0.015289 * 
Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and end of the season -61.666667 -223.1979 99.864567 0.894788  

Inoculated sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and end of the season -190.333333 -351.86457 -28.8021 0.0161128 * 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and end of the season -100.666667 -262.1979 60.864567 0.4236153  

Control sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and mid-season -30.833333 -192.36457 130.6979 0.998772  

Control sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and mid-season 90.5 -86.4486 267.448601 0.6567579  

Inoculated sample, ambient environment, and base time point vs. Control sample, ambient environment, and mid-season 94.5 -122.21689 311.216891 0.8085275  

Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and mid-season -205.166667 -366.6979 -43.635433 0.0090049 ** 
Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and mid-season -75.166667 -236.6979 86.364567 0.7526888  

Inoculated sample, elevated ozone, and end of the season vs. Control sample, ambient environment, and mid-season -203.833333 -365.36457 -42.3021 0.0094863 ** 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, ambient environment, and mid-season -114.166667 -275.6979 47.364567 0.2815983  

Control sample, elevated ozone, and mid-season vs. Control sample, elevated ozone, and end of the season 121.333333 -40.1979 282.864567 0.2220085  

Inoculated sample, ambient environment, and base time point vs. Control sample, elevated ozone, and end of the season 125.333333 -78.98931 329.655978 0.4425976  

Inoculated sample, ambient environment, and end of the season vs. Control sample, elevated ozone, and end of the season -174.333333 -318.81126 -29.855406 0.0134579 * 
Inoculated sample, ambient environment, and mid-season vs. Control sample, elevated ozone, and end of the season -44.333333 -188.81126 100.144594 0.9679123  

Inoculated sample, elevated ozone, and end of the season vs. Control sample, elevated ozone, and end of the season -173 -317.47793 -28.522073 0.0142701 * 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, elevated ozone, and end of the season -83.333333 -227.81126 61.144594 0.5169461  

Inoculated sample, ambient environment, and base time point vs. Control sample, elevated ozone, and mid-season 4 -212.71689 220.716891 1  

Inoculated sample, ambient environment, and end of the season vs. Control sample, elevated ozone, and mid-season -295.666667 -457.1979 -134.135433 0.000322 * 
Inoculated sample, ambient environment, and mid-season vs. Control sample, elevated ozone, and mid-season -165.666667 -327.1979 -4.135433 0.042541 * 
Inoculated sample, elevated ozone, and end of the season vs. Control sample, elevated ozone, and mid-season -294.333333 -455.86457 -132.8021 0.0003371 *** 
Inoculated sample, elevated ozone, and mid-season vs. Control sample, elevated ozone, and mid-season -204.666667 -366.1979 -43.135433 0.0091824 *** 
Inoculated sample, ambient environment, and end of the season vs. Inoculated sample, ambient environment, and base time point -299.666667 -503.98931 -95.344022 0.0026616 ** 
Inoculated sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and base time point -169.666667 -373.98931 34.655978 0.1413235  

Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and base time point -298.333333 -502.65598 -94.010689 0.0027695 ** 
Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and base time point -208.666667 -412.98931 -4.344022 0.0437245 * 
Inoculated sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and end of the season 130 -14.47793 274.477927 0.0931871 * 
Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and end of the season 1.333333 -143.14459 145.811261 1  

Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and end of the season 91 -53.47793 235.477927 0.4109739  

Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, ambient environment, and mid-season -128.666667 -273.14459 15.811261 0.0985778  

Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, ambient environment, and mid-season -39 -183.47793 105.477927 0.9855907  

Inoculated sample, elevated ozone, and mid-season vs. Inoculated sample, elevated ozone, and end of the season 89.666667 -54.81126 234.144594 0.4285686  

:
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Table S 2-3D: Pairwise comparison for bacterial Shanon diversity index (Kruskal-Wallis multiple comparisons & p-values adjusted with the 
Benjamini-Hochberg method) for control susceptible pepper.  

Comparisons Z p unadjusted p adjusted Significance 
Control sample, elevated ozone, and end of the season vs. Inoculated sample, elevated ozone, and end of the season 2.4618298 0.01382302 0.04146907 * 
Control sample, elevated ozone, and end of the season vs. Control sample, elevated ozone, and mid-season -0.2752409 0.78313113 0.78313113  

Control sample, elevated ozone, and mid-season vs. Inoculated sample, elevated ozone, and end of the season 2.4771685 0.01324294 0.07945763  

Control sample, elevated ozone, and end of the season vs. Inoculated sample, elevated ozone, and mid-season 1.3540064 0.17573434 0.2636015  

Control sample, elevated ozone, and mid-season vs. Inoculated sample, elevated ozone, and mid-season 1.4863011 0.1371995 0.274399  

Inoculated sample, elevated ozone, and end of the season vs. Inoculated sample, elevated ozone, and mid-season -1.1078234 0.26793808 0.3215257  

 

Table S 2-3E: Pairwise comparison for bacterial Shanon diversity index for inoculated susceptible pepper. Significance levels of treatment 
combination are indicated by *p < 0.05; **p < 0.01;***p < 0.001. 
 

Comparisons diff lwr upr p adjusted Significance 
Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and end of the season -2.2891591 -3.3399312 -1.238387 0.0011631 ** 
Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and end of the season -1.6760916 -2.7268637 -0.6253195 0.0059681 ** 
Inoculated sample, ambient environment, and end of the season vs. Control sample, ambient environment, and mid-season -3.080265 -4.1310371 -2.0294929 0.000223 *** 
Inoculated sample, ambient environment, and mid-season vs. Control sample, ambient environment, and mid-season -2.4671976 -3.5179697 -1.4164255 0.000772 *** 
Control sample, ambient environment, and mid-season vs. Control sample, ambient environment, and end of the season 0.7911059 -0.3599572 1.9421691 0.1817845  

Inoculated sample, ambient environment, and mid-season vs. Inoculated sample, ambient environment, and end of the season 0.6130674 -0.3267717 1.5529066 0.2101921  
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Table S 2-4A: Pairwise comparison of Eukaryotic Chao1 diversity index for resistant pepper. Significance levels for each treatment 
combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

  
Comparisons diff lwr upr p adjusted Significance 
Control, ambient environment, and mid-season vs. Control, ambient environment, and end of the season 7.3333333 -2.5464459 17.213113 0.231451  

Control, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season 2 -7.8797792 11.879779 0.995412  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season 10 0.1202208 19.879779 0.0462689 * 
Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and end of the season 2.6666667 -7.2131125 12.546446 0.9761333  

Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and end of the season 3.6666667 -7.3792623 14.712596 0.93174  

Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season 2.3333333 -7.5464459 12.213113 0.988641  

Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season 6.3333333 -3.5464459 16.213113 0.383007  

Control, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -5.3333333 -15.2131125 4.546446 0.578869  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season 2.6666667 -7.2131125 12.546446 0.9761333  

Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and mid-season -4.6666667 -14.5464459 5.213113 0.716115  

Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and mid-season -3.6666667 -14.7125956 7.379262 0.93174  

Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -5 -14.8797792 4.879779 0.6482302  

Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season -1 -10.8797792 8.879779 0.9999477  

Control, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season 8 -1.8797792 17.879779 0.1592666  

Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and end of the season 0.6666667 -9.2131125 10.546446 0.9999967  

Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and end of the season 1.6666667 -9.3792623 12.712596 0.9992691  

Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and end of the season 0.3333333 -9.5464459 10.213113 1  

Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season 4.3333333 -5.5464459 14.213113 0.7800355  

Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and mid-season -7.3333333 -17.2131125 2.546446 0.231451  

Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and mid-season -6.3333333 -17.3792623 4.712596 0.5107304  

Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and mid-season -7.6666667 -17.5464459 2.213113 0.1926158  

Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and mid-season -3.6666667 -13.5464459 6.213113 0.8867681  

Inoculated, ambient environment, and mid-season vs. Inoculated, ambient environment, and end of the season 1 -10.0459289 12.045929 0.9999754  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and end of the season -0.3333333 -10.2131125 9.546446 1  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and end of the season 3.6666667 -6.2131125 13.546446 0.8867681  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and mid-season -1.3333333 -12.3792623 9.712596 0.9998302  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and mid-season 2.6666667 -8.3792623 13.712596 0.9871275  

Inoculated, elevated ozone, and mid-season vs. Inoculated, elevated ozone, and end of the season 4 -5.8797792 13.879779 0.8375864  
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Table S 2-4B Pairwise comparison of Eukaryotic Shannon diversity index for resistant pepper. Significance levels for each treatment 
combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Comparisons diff lwr upr p adjusted Significance 
Control, ambient environment, and mid-season vs. Control, ambient environment, and end of the season 0.20217503 -0.5332479 0.93759798 0.9736648  

Control, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season 0.060349817 -0.6750731 0.79577277 0.9999874  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season -0.098997082 -0.83442 0.63642587 0.9996517  

Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and end of the season 0.26322271 -0.4722002 0.99864566 0.9034352  

Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and end of the season 0.262638007 -0.5595899 1.08486587 0.9432662  

Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season 0.168106746 -0.5673162 0.9035297 0.9905876  

Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season -0.394374595 -1.1297975 0.34104836 0.5862019  

Control, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -0.141825214 -0.8772482 0.59359774 0.9965823  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season -0.301172112 -1.0365951 0.43425084 0.830105  

Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and mid-season 0.06104768 -0.6743753 0.79647063 0.9999864  

Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and mid-season 0.060462976 -0.7617649 0.88269083 0.9999941  

Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -0.034068284 -0.7694912 0.70135467 0.9999998  

Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season -0.596549625 -1.3319726 0.13887333 0.1579671  

Control, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season -0.159346899 -0.8947699 0.57607606 0.9931169  

Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and end of the season 0.202872893 -0.5325501 0.93829585 0.9731763  

Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and end of the season 0.20228819 -0.6199397 1.02451605 0.9856766  

Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and end of the season 0.107756929 -0.627666 0.84317988 0.9993951  

Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season -0.454724412 -1.1901474 0.28069854 0.4239381  

Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and mid-season 0.362219792 -0.3732032 1.09764275 0.6758122  

Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and mid-season 0.361635089 -0.4605928 1.18386295 0.7778266  

Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and mid-season 0.267103828 -0.4683191 1.00252678 0.8969574  

Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and mid-season -0.295377513 -1.0308005 0.44004544 0.8426747  

Inoculated, ambient environment, and mid-season vs. Inoculated, ambient environment, and end of the season -0.000584704 -0.8228126 0.82164315 1  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and end of the season -0.095115964 -0.8305389 0.64030699 0.9997321  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and end of the season -0.657597305 -1.3930203 0.07782565 0.0966907  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and mid-season -0.094531261 -0.9167591 0.7276966 0.9998772  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and mid-season -0.657012601 -1.4792405 0.16521526 0.1692467  

Inoculated, elevated ozone, and mid-season vs. Inoculated, elevated ozone, and end of the season -0.562481341 -1.2979043 0.17294161 0.2048296  
 
 



70 

Table S 2-4C: Pairwise comparison of Eukaryotic Chao1 diversity index for susceptible pepper. Significance levels for each treatment 
combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 

Comparisons diff lwr upr p adjusted Significance 
Control, ambient environment, and mid-season vs. Control, ambient environment, and end of the season 13 -4.108058 30.1080581 0.2015098  

Control, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season 8.333333 -7.284116 23.9507822 0.5700742  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season 19.5 2.391942 36.6080581 0.021199 * 
Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and end of the season -13.333333 -28.950782 2.2841156 0.1193093  

Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and end of the season -4 -19.617449 11.6174489 0.9790401  

Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season -14.666667 -30.284116 0.9507822 0.072205  

Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season -5 -20.617449 10.6174489 0.9347312  

Control, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -4.666667 -20.284116 10.9507822 0.9532884  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season 6.5 -10.608058 23.6080581 0.8610813  

Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and mid-season -26.333333 -41.950782 -10.7158844 0.0008164 *** 
Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and mid-season -17 -32.617449 -1.3825511 0.0290765 * 
Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -27.666667 -43.284116 -12.0492178 0.0005076 *** 
Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season -18 -33.617449 -2.3825511 0.0195972 * 
Control, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season 11.166667 -4.450782 26.7841156 0.2550805  

Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and end of the season -21.666667 -35.635338 -7.6979957 0.0017689 ** 
Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and end of the season -12.333333 -26.302004 1.6353376 0.1007084  

Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and end of the season -23 -36.968671 -9.031329 0.0010214 ** 
Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season -13.333333 -27.302004 0.6353376 0.0658351  

Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and mid-season -32.833333 -48.450782 -17.2158844 0.0000893 **** 
Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and mid-season -23.5 -39.117449 -7.8825511 0.0023201 ** 
Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and mid-season -34.166667 -49.784116 -18.5492178 0.0000585 **** 
Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and mid-season -24.5 -40.117449 -8.8825511 0.0015964 ** 
Inoculated, ambient environment, and mid-season vs. Inoculated, ambient environment, and end of the season 9.333333 -4.635338 23.3020043 0.3220228  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and end of the season -1.333333 -15.302004 12.6353376 0.9999565  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and end of the season 8.333333 -5.635338 22.3020043 0.445405  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and mid-season -10.666667 -24.635338 3.3020043 0.1974943  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and mid-season -1 -14.968671 12.968671 0.9999939  

Inoculated, elevated ozone, and mid-season vs. Inoculated, elevated ozone, and end of the season 9.666667 -4.302004 23.6353376 0.2865034  
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 Table S 2-4D: Pairwise comparison of Eukaryotic Shanon diversity index for susceptible pepper. Significance levels for each treatment 
combination are indicated by *p < 0.05; **p < 0.01; ***p< 0.001. 

Comparisons diff lwr upr p adjusted Significance 
Control, ambient environment, and mid-season vs. Control, ambient environment, and end of the season -0.044112784 -0.9977797 0.90955417 0.9999997  

Control, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season -0.070985068 -0.9415599 0.79958977 0.9999851  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season -0.043791967 -0.9974589 0.90987498 0.9999997  

Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and end of the season -1.506356533 -2.3769314 -0.6357817 0.0006376 *** 
Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and end of the season -0.837815566 -1.7083904 0.03275927 0.0627951  

Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and end of the season -1.543782445 -2.4143573 -0.67320761 0.0005027 *** 
Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and end of the season -0.971433688 -1.8420085 -0.10085885 0.0245729 * 
Control, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -0.026872285 -0.8974471 0.84370255 1  

Control, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season 0.000320816 -0.9533461 0.95398777 1  

Inoculated, ambient environment, and end of the season vs. Control, ambient environment, and mid-season -1.462243749 -2.3328186 -0.59166891 0.0008469 *** 
Inoculated, ambient environment, and mid-season vs. Control, ambient environment, and mid-season -0.793702783 -1.6642776 0.07687205 0.0850128  

Inoculated, elevated ozone, and end of the season vs. Control, ambient environment, and mid-season -1.499669661 -2.3702445 -0.62909483 0.0006655 *** 
Inoculated, elevated ozone, and mid-season vs. Control, ambient environment, and mid-season -0.927320904 -1.7978957 -0.05674607 0.0335637 * 
Control, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season 0.027193101 -0.8433817 0.89776794 1  

Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and end of the season -1.435371465 -2.2140373 -0.65670566 0.0003432 *** 
Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and end of the season -0.766830498 -1.5454963 0.01183531 0.0548337  

Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and end of the season -1.472797377 -2.2514632 -0.69413157 0.0002653 *** 
Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and end of the season -0.900448619 -1.6791144 -0.12178282 0.0191385 * 
Inoculated, ambient environment, and end of the season vs. Control, elevated ozone, and mid-season -1.462564566 -2.3331394 -0.59198973 0.0008451 *** 
Inoculated, ambient environment, and mid-season vs. Control, elevated ozone, and mid-season -0.794023599 -1.6645984 0.07655124 0.0848274  

Inoculated, elevated ozone, and end of the season vs. Control, elevated ozone, and mid-season -1.499990478 -2.3705653 -0.62941564 0.0006641 *** 
Inoculated, elevated ozone, and mid-season vs. Control, elevated ozone, and mid-season -0.92764172 -1.7982166 -0.05706689 0.0334878 * 
Inoculated, ambient environment, and mid-season vs. Inoculated, ambient environment, and end of the season 0.668540967 -0.1101248 1.44720677 0.1160321  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and end of the season -0.037425912 -0.8160917 0.74123989 0.9999996  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and end of the season 0.534922846 -0.243743 1.31358865 0.2937759  

Inoculated, elevated ozone, and end of the season vs. Inoculated, ambient environment, and mid-season -0.705966879 -1.4846327 0.07269892 0.0875989  

Inoculated, elevated ozone, and mid-season vs. Inoculated, ambient environment, and mid-season -0.133618121 -0.9122839 0.64504768 0.9979966  

Inoculated, elevated ozone, and mid-season vs. Inoculated, elevated ozone, and end of the season 0.572348758 -0.206317 1.35101456 0.2299224  
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Table S 2-5A: Permutational multivariant analysis of variance (PERMANOVA) of bacterial community composition based on Bray–Curtis 
dissimilarities of their relative abundance. Significance levels for each treatment combination are indicated by *P < 0.05; **P < 0.01; ***P < 
0.001. 

Variable Df Sum of sq Mean Sqs F.Model R2 Pr(>F) Significance 
Cultivar 1 1.5289 1.5289 13.6497 0.12077 0.000999 *** 
Time of sampling 1 1.2936 1.2936 11.5487 0.10218 0.000999 *** 
Inoculation status 1 3.2369 3.2369 28.8983 0.25568 0.000999 *** 
Environment 1 0.3373 0.3373 3.0112 0.02664 0.023976 * 
Cultivar:Time of sampling 1 0.2654 0.2654 2.3694 0.02096 0.052947 *** 
Cultivar:Inoculation status 1 0.9932 0.9932 8.8667 0.07845 0.000999 *** 
Time of sampling:Inoculation status 1 0.5124 0.5124 4.5742 0.04047 0.008991 ** 
Cultivar:Environment 1 0.1136 0.1136 1.0142 0.00897 0.330669  

Time of sampling:Environment 1 0.1164 0.1164 1.0389 0.00919 0.336663  

Inoculation status:Environment 1 0.1682 0.1682 1.5015 0.01328 0.172827  

Cultivar:Time of sampling:Inoculation status 1 0.3345 0.3345 2.986 0.02642 0.032967 * 
Cultivar:Time of sampling:Environment 1 0.1147 0.1147 1.0242 0.00906 0.333666  

Cultivar:Inoculation status:Environment 1 0.0735 0.0735 0.6565 0.00581 0.632368  

Time of sampling:Inoculation status:Environment 1 0.1436 0.1436 1.2823 0.01135 0.241758  

Cultivar:Time of sampling:Inoculation status:Environment 1 0.1796 0.1796 1.6034 0.01419 0.16983  

Residuals 29 3.2483 0.112  0.25658   

Total 48 14.31   1   

 
Table S 2-5B:  Permutational multivariant analysis of variance (PERMANOVA) of bacterial community composition based on Bray–Curtis dissimilarities of relative abundance during the mid- season. 
Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum of sq Mean Sqs F.Model R2 Pr(>F) Significance 
Cultivar 1 1.1685 1.16851 11.9388 0.23261 0.000999 *** 
Environment 1 0.2725 0.27248 2.784 0.05424 0.048951 * 
Inoculation status 1 1.0519 1.05187 10.7471 0.20939 0.000999 *** 
Cultivar:Environment 1 0.0731 0.07313 0.7472 0.01456 0.515485  

Cultivar:Inoculation status 1 0.7896 0.78957 8.0671 0.15717 0.001998 ** 
Environment:Inoculation status 1 0.1676 0.16764 1.7127 0.03337 0.143856  

Cultivar:Inoculation status:Environment 1 0.1301 0.13012 1.3294 0.0259 0.208791  

Residuals 14 1.3703 0.09788  0.27276   

Total 21 5.0236   1   
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Table S 2-5C: Permutational multivariant analysis of variance (PERMANOVA) of bacterial community composition based on Bray–Curtis 
dissimilarities of relative abundance during end of the season. Significance levels for each treatment combination are indicated by *p < 0.05; 
**p < 0.01; ***p < 0.001. 

Variable Df Sum of sq Mean Sqs F.Model R2 Pr(>F) Significance 
Cultivar 1 0.3615 0.3615 4.038 0.06432 0.032967 * 
Environment 1 0.1627 0.16272 1.818 0.02895 0.152847  

Inoculation status 1 3.1114 3.1114 34.755 0.55363 0.000999 *** 
Cultivar:Environment 1 0.1342 0.13425 1.5 0.02389 0.190809  

Cultivar:Inoculation status 1 0.2961 0.29615 3.308 0.05269 0.042957 * 
Environment:Inoculation status 1 0.0881 0.08808 0.984 0.01567 0.336663  

Cultivar:Inoculation status:Environment 1 0.1231 0.12309 1.375 0.0219 0.223776  

Residuals 15 1.3429 0.08952  0.23894   

Total 22 5.62   1   

 

Table S 2-5D: Permutational multivariant analysis of variance (PERMANOVA) of bacterial community composition based on Bray–Curtis 
dissimilarities of relative abundance in control samples of the resistant cultivar. Significance levels for each treatment combination are 
indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum of sq Mean Sqs F.Model R2 Pr(>F) Significance 
Environment 1 0.31574 0.31574 2.3301 0.1417 0.027 * 
Time of sampling 1 0.64875 0.64875 4.7876 0.29115 0.001 *** 
Environment:Time of sampling 1 0.17973 0.17973 1.3264 0.08066 0.228  

Residuals 8 1.08405 0.13551  0.4865   

Total 11 2.22828   1   

 
Table S 2-5E: Permutational multivariant analysis of variance (PERMANOVA) of bacterial community composition based on Bray–Curtis 
dissimilarities of relative abundance in samples from the elevated ozone. Significance levels for each treatment combination are indicated by 
*p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum of sq Mean Sqs F.Model R2 Pr(>F) Significance 
Inoculation status 1 2.0005 2.00048 10.659 0.32704 0.001998 ** 
Chamber 4 0.5767 0.14417 0.7682 0.09428 0.691309  

Time of Sampling 1 0.7791 0.77909 4.1512 0.12737 0.015984 * 
Residuals 11 2.0645 0.0912     

Total 22 6.117 0.18768     
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Table S 2-5F: Permutational multivariant analysis of variance (PERMANOVA) of bacterial community composition based on Bray–Curtis 
dissimilarities of relative abundance in samples from the ambient environment. Significance levels for each treatment combination are 
indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum of sq Mean Sqs F.Model R2 Pr(>F) Significance 
Inoculation status 1 2.06467 2.06467 10.9547 0.36955 0.000999 *** 
Chamber 4 0.4095 0.10239 0.5432 0.0733 0.856144  

Time of Sampling 1 0.7042 0.70423 3.7365 0.12605 0.026973 * 
Residuals 10 1.8847 0.07308     

Total 21 5.5869 0.18847     

 
Table S 2-6A: Permutational multivariant analysis of variance (PERMANOVA) of eukaryotes community composition based on Bray–Curtis 
dissimilarities of relative abundance. Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 
0.001. 

Variable Df Sum of sq R2 F Pr(>F) Significance 
Time 1 1.8147 0.16834 9.3572 0.001 *** 
Environment 1 0.8229 0.07634 4.243 0.002 ** 
Time:Environment 1 0.3847 0.03569 1.9837 0.06  

Residual 40 7.7575 0.71963    

Total 43 10.7799 1    

 
Table S 2-6B: Analysis of similarity (ANOSIM) of eukaryotes community composition based on Bray–Curtis dissimilarities of relative 
abundance influenced by different factors. Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 
0.001. 

Variable R-Value P-Value Significance 
Susceptible vs Resistant 0.2092 0.001 ** 
Inoculation vs Control 0.1189 0.002 ** 
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Table S 2-6C: Permutational multivariant analysis of variance (PERMANOVA) of eukaryote community composition based on Bray–Curtis 
dissimilarities of relative abundance during mid- season. Significance levels for each treatment combination are indicated by *p < 0.05; **p 
< 0.01; ***p < 0.001. 

Variable Df Sum of sq R2 F Pr(>F) Significance 
Cultivar 1 0.4475 0.1208 5.68 0.007 ** 
Environment 1 0.8238 0.22238 10.4565 0.001 *** 
Inoculation 1 0.5713 0.15421 7.2508 0.003 ** 
Cultivar:Environment 1 0.1401 0.03781 1.7779 0.134  

Cultivar:Inoculation 1 0.3258 0.08795 4.1352 0.012 * 
Environment:inoculation 1 0.2071 0.05591 2.629 0.062  

Cultivar:Environment:Inoculation 1 0.1647 0.04447 2.0909 0.098  

Residual 13 1.0242 0.27648    

Total 20 3.7046 1    

 
Table S 2-6D: Permutational multivariant analysis of variance (PERMANOVA) of eukaryote community composition based on Bray–Curtis 
dissimilarities of relative abundance during the end season. Significance levels for each treatment combination are indicated by *p < 0.05; 
**p < 0.01; ***p < 0.001. 

Variable Df Sum of sq R2 F Pr(>F) Significance 
Environment 1 0.3513 0.06679 1.5029 0.19  

Residual 21 4.9092 0.93321    

Total 22 5.2606 1    

 

Table S 2-6E: Analysis of similarity (ANOSIM) of eukaryotes community composition based on Bray–Curtis dissimilarities of relative 
abundance during end season. Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable R-Value P-Value Significance 
Susceptible vs. Resistant 0.3747 0.001 ** 
Inoculation vs. Control 0.1157 0.035 * 
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Table S 2-7A: Permutational multivariant analysis of variance (PERMANOVA) microbiota density across samples during mid-season and 
ambient environment based on Bray–Curtis dissimilarities in Control samples. Significance levels for each treatment combination are 
indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum of sq R2 F Pr(>F) Significance 
Treatments 3 0.03898 0.01299 1.012 0.442  

Residuals 7 0.08985 0.01284    

 
Table S 2-7B: Pairwise comparison of microbiota density across samples during mid-season under elevated ozone. Significance levels for 
each treatment combination are indicated by *p < 0.05;**p < 0.01; ***p < 0.001. 

Comparisons diff lwr upr p adjusted Significance 
Control resistant cultivar vs. Control susceptible cultivar -0.10391667 -0.33077446 0.12294113 0.4770532  

Inoculated susceptible vs. Control susceptible plant 0.20833333 -0.01852446 0.43519113 0.0710621  

Inoculated resistant cultivar vs. Control susceptible cultivar -0.06341667 -0.29027446 0.16344113 0.7929435  

Inoculated susceptible cultivar vs. Control resistant cultivar 0.31225 0.10934222 0.51515778 0.0059349 ** 
Inoculated resistant cultivar vs. Control resistant cultivar 0.0405 -0.16240778 0.24340778 0.908505  

Inoculated resistant cultivar vs. Inoculated susceptible cultivar -0.27175 -0.47465778 -0.06884222 0.012501 * 
 

Table S 2-7C: Permutational multivariant analysis of variance (PERMANOVA) microbiota density across samples during mid-season and 
ambient environment based on Bray–Curtis dissimilarities in Control samples. Significance levels for each treatment combination are 
indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum of sq R2 F Pr(>F) Significance 
Treatments 3 0.03403 0.011345 2.976 0.106  

Residuals 7 0.02668 0.003812    

 

Table S 2-7D: Pairwise comparison of microbiota density across samples during the end of the season and elevated ozone. Significance levels 
for each treatment combination are indicated by *p< 0.05; **p < 0.01; ***p < 0.001. 

Comparisons diff lwr upr p adjusted Significance 
Control resistant cultivar vs. Control susceptible cultivar 0.01929167 -0.250525082 0.2891084 0.9954232  

Inoculated susceptible cultivar vs. Control susceptible cultivar 0.29525 0.025433252 0.5650667 0.0327813 * 
Inoculated resistant cultivar vs. Control susceptible cultivar 0.15066667 -0.119150082 0.4204834 0.3446105  

Inoculated susceptible cultivar vs. Control resistant cultivar 0.27595833 0.006141585 0.5457751 0.0451318 * 
Inoculated resistant cultivar vs. Control resistant cultivar 0.131375 -0.138441748 0.4011917 0.4499963  

Inoculated resistant cultivar vs. Inoculated susceptible cultivar -0.14458333 -0.414400082 0.1252334 0.3758588  
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Table S 2-7E: Permutational multivariant analysis of variance (PERMANOVA) on the total absolute abundance of microbial communities 
based on Bray–Curtis dissimilarities in Control samples. Significance levels for each treatment combination are indicated by *p < 0.05; **p 
< 0.01; ***p < 0.001. 

Variable Df Sum of sq R2 F Pr(>F) Significance 
Treatments 7 0.1481 0.02116 1.881 0.154  

Residuals 13 0.1462 0.01125    

 
Table S 2-7F: Pairwise comparison of the total absolute abundance of microbial communities in inoculated samples (only the significant 
treatment combinations are shown in the table). Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; 
***p < 0.001. 

Comparisons diff lwr upr p 
adjusted 

Significanc 
e 

Ambient environment, mid-season, and resistant cultivar vs. Ambient environment, end of the season, and susceptible 
cultivar 

- 
0.24672431 

- 
0.43374918 

- 
0.05969943 

0.0059222 ** 

Elevated ozone, mid-season, and resistant cultivar vs. Ambient environment, end of the season, and susceptible cultivar - 
0.31988045 

- 
0.50690532 

- 
0.13285558 

0.0004468 *** 

Elevated ozone, mid-season, and resistant cultivar vs. Ambient environment, end of the season, and resistant cultivar - 
0.19830876 

- 
0.38533363 

- 
0.01128389 

0.0336884 * 

Elevated ozone, mid-season, and resistant cultivar vs. Ambient environment, mid-season, and susceptible cultivar - 
0.22308397 

- 
0.41010884 

-0.0360591 0.0139018 * 

Elevated ozone, end of the season, and susceptible cultivar vs. Ambient environment, mid-season, and resistant cultivar 0.26977115 0.08274628 0.45679602 0.0025868 ** 
Elevated ozone, mid-season, and susceptible cultivar vs. Ambient environment, mid-season, and resistant cultivar 0.21757628 0.03055141 0.40460115 0.0169484 * 
Elevated ozone, mid-season, and resistant cultivar vs. Elevated ozone, end of the season, and susceptible cultivar - 

0.34292729 
- 

0.52995217 
- 

0.15590242 
0.0002051 *** 

Elevated ozone, mid-season, and resistant cultivar vs. Elevated ozone, mid-season, and susceptible cultivar - 
0.29073242 

-0.4777573 - 
0.10370755 

0.0012295 ** 
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Table S 2-8: Relative abundance of top 18 bacterial genera across the samples based on Kraken2 and Bracken 
 

Sample id Cultivar Inoculation status Time of sampling Environment Relative abundance of top 10 bacterial genera 
Xanthomonas Pseudomonas Pantoea Methylobacterium Sphingomonas Methylorubrum Stenotrophomonas Microbacterium Leclercia Brevundimonas 

1XM Resistant Inoculated Mid-season Ambient 0.021 0.142 0.166 0.252 0.011 0.056 0.003 0.079 0.005 0.008 
1XE Resistant Inoculated End of the season Ambient 0.632 0.131 0.051 0.057 0.044 0.019 0.010 0.002 0.000 0.014 
2XM Resistant Inoculated Mid-season Elevated ozone 0.166 0.027 0.513 0.056 0.008 0.009 0.005 0.036 0.011 0.009 
2XE Resistant Inoculated End of the season Elevated ozone 0.583 0.172 0.021 0.065 0.034 0.028 0.006 0.006 0.015 0.011 
3XM Resistant Inoculated Mid-season Elevated ozone 0.017 0.194 0.117 0.105 0.023 0.027 0.105 0.086 0.055 0.031 
3XE Resistant Inoculated End of the season Elevated ozone 0.871 0.047 0.011 0.012 0.020 0.003 0.009 0.001 0.001 0.002 
4XM Resistant Inoculated Mid-season Ambient 0.049 0.100 0.053 0.119 0.033 0.043 0.010 0.134 0.024 0.032 
4XE Resistant Inoculated End of the season Ambient 0.831 0.076 0.009 0.018 0.016 0.007 0.003 0.000 0.000 0.004 
5XM Resistant Inoculated Mid-season Ambient 0.153 0.195 0.054 0.264 0.015 0.080 0.007 0.036 0.005 0.022 
5XE Resistant Inoculated End of the season Ambient 0.705 0.078 0.020 0.081 0.051 0.032 0.007 0.001 0.000 0.006 
6XM Resistant Inoculated Mid-season Elevated ozone 0.067 0.089 0.229 0.183 0.034 0.056 0.004 0.102 0.026 0.019 
6XE Resistant Inoculated End of the season Elevated ozone 0.331 0.276 0.032 0.107 0.054 0.018 0.002 0.011 0.080 0.010 
7XM Resistant Control Mid-season Elevated ozone 0.002 0.159 0.177 0.152 0.047 0.024 0.037 0.052 0.004 0.061 
7XE Resistant Control End of the season Elevated ozone 0.001 0.396 0.174 0.085 0.114 0.020 0.002 0.005 0.006 0.015 
8XM Resistant Control Mid-season Ambient 0.003 0.165 0.089 0.227 0.025 0.073 0.013 0.073 0.003 0.053 
8XE Resistant Control End of the season Ambient 0.012 0.338 0.090 0.326 0.087 0.074 0.003 0.009 0.001 0.018 
9XM Resistant Control Mid-season Ambient 0.002 0.073 0.019 0.096 0.048 0.013 0.555 0.015 0.008 0.026 
9XE Resistant Control End of the season Ambient 0.002 0.157 0.074 0.351 0.113 0.123 0.025 0.011 0.001 0.024 
10XM Resistant Control Mid-season Elevated ozone 0.098 0.348 0.153 0.068 0.057 0.008 0.050 0.027 0.010 0.016 
10XE Resistant Control End of the season Elevated ozone 0.159 0.295 0.231 0.096 0.143 0.007 0.009 0.004 0.000 0.012 
11XM Resistant Control Mid-season Elevated ozone 0.004 0.339 0.088 0.230 0.016 0.008 0.002 0.035 0.006 0.009 
11XE Resistant Control End of the season Elevated ozone 0.007 0.284 0.434 0.121 0.049 0.016 0.006 0.001 0.000 0.004 
12XM Resistant Control Mid-season Ambient 0.006 0.060 0.056 0.409 0.026 0.051 0.047 0.028 0.005 0.062 
12XE Resistant Control End of the season Ambient 0.004 0.406 0.046 0.218 0.063 0.127 0.027 0.008 0.001 0.030 
OXC Resistant Control Base Green house 0.004 0.005 0.002 0.001 0.001 0.000 0.002 0.000 0.000 0.000 
OXI Resistant Inoculated Base Green house 0.136 0.046 0.019 0.019 0.009 0.001 0.005 0.001 0.000 0.003 
1EM Susceptible Inoculated Mid-season Ambient 0.878 0.024 0.004 0.012 0.002 0.005 0.002 0.001 0.000 0.007 
1EE Susceptible Inoculated End of the season Ambient 0.978 0.013 0.000 0.001 0.000 0.000 0.000 0.018 0.079 0.010 
2EM Susceptible Inoculated Mid-season Elevated ozone 0.893 0.011 0.003 0.010 0.001 0.005 0.001 0.001 0.021 0.005 
2EE Susceptible Inoculated End of the season Elevated ozone 0.940 0.038 0.002 0.000 0.000 0.000 0.005 0.020 0.005 0.006 
3EM Susceptible Inoculated Mid-season Elevated ozone 0.836 0.009 0.105 0.009 0.001 0.004 0.001 0.053 0.000 0.004 
3EE Susceptible Inoculated End of the season Elevated ozone 0.955 0.027 0.001 0.000 0.001 0.000 0.001 0.067 0.003 0.004 
4EM Susceptible Inoculated Mid-season Ambient 0.861 0.048 0.008 0.023 0.002 0.010 0.004 0.004 0.000 0.002 
4EE Susceptible Inoculated End of the season Ambient 0.966 0.024 0.001 0.001 0.001 0.000 0.001 0.023 0.001 0.003 
5EM Susceptible Inoculated Mid-season Ambient 0.796 0.027 0.010 0.037 0.001 0.017 0.005 0.013 0.002 0.002 
5EE Susceptible Inoculated End of the season Ambient 0.949 0.029 0.001 0.001 0.000 0.000 0.002 0.044 0.004 0.002 
6EM Susceptible Inoculated Mid-season Elevated ozone 0.911 0.012 0.007 0.023 0.001 0.010 0.002 0.000 0.001 0.001 
6EE Susceptible Inoculated End of the season Elevated ozone 0.965 0.022 0.000 0.000 0.000 0.000 0.001 0.018 0.000 0.002 
7EE Susceptible Control End of the season Elevated ozone 0.101 0.602 0.137 0.035 0.035 0.022 0.008 0.002 0.000 0.001 
8EE Susceptible Control End of the season Ambient 0.319 0.170 0.199 0.088 0.047 0.020 0.033 0.001 0.000 0.000 
9EM Susceptible Control Mid-season Ambient 0.004 0.091 0.032 0.481 0.043 0.093 0.029 0.002 0.001 0.000 
9EE Susceptible Control End of the season Ambient 0.032 0.501 0.288 0.047 0.031 0.007 0.019 0.001 0.000 0.000 
10EM Susceptible Control Mid-season Elevated ozone 0.043 0.054 0.047 0.091 0.036 0.010 0.006 0.008 0.003 0.033 
10EE Susceptible Control End of the season Elevated ozone 0.125 0.520 0.091 0.047 0.078 0.005 0.005 0.069 0.005 0.046 
11EM Susceptible Control Mid-season Ambient 0.129 0.261 0.083 0.205 0.026 0.010 0.006 0.035 0.001 0.016 
11EE Susceptible Control End of the season Ambient 0.001 0.317 0.072 0.213 0.154 0.063 0.060 0.003 0.063 0.016 
12EM Susceptible Control Mid-season Ambient 0.033 0.104 0.061 0.277 0.032 0.082 0.026 0.018 0.000 0.016 
OEC Susceptible Control Base Green house 0.006 0.017 0.094 0.001 0.001 0.000 0.006 0.003 0.000 0.000 
OEI Susceptible Inoculated Base Green house 0.027 0.030 0.005 0.003 0.005 0.000 0.025 0.000 0.000 0.000 
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Table S 2-9: Normalized RPKS (Reads Per Kilobase of Sequence) value of eukaryotes genera across samples obtained from the EukDetect 
pipeline. 

Sample id Cultivar Inoculation status Time of sampling Environment Top 10 eukaryotic genera 
Pseudogymnoascus Zasmidium Cladosporium Aureobasidium Epicoccum Protomyces Meira Moesziomyces Bullera Papiliotrema 

1EM Susceptible Inoculated Mid-season Ambient 0.00 0.03 0.01 0.00 0.00 0.36 0.12 2.70 0.04 0.00 
1EE Susceptible Inoculated End of the season Ambient 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.67 0.00 0.00 
1XM Resistant Inoculated Mid-season Ambient 0.00 0.72 0.19 0.59 0.06 0.60 0.40 1.54 0.15 0.36 
1XE Resistant Inoculated End of the season Ambient 0.00 0.17 0.34 0.55 1.78 0.60 0.00 1.60 1.81 0.55 
2EM Susceptible Inoculated Mid-season Elevated ozone 0.00 0.04 0.06 0.00 0.03 0.74 0.03 8.19 0.23 0.00 
2EE Susceptible Inoculated End of the season Elevated ozone 0.00 0.00 0.00 0.00 0.08 0.02 0.00 0.69 0.07 0.00 
2XM Resistant Inoculated Mid-season Elevated ozone 0.00 0.49 0.83 0.86 0.35 5.58 1.37 36.07 2.17 0.78 
2XE Resistant Inoculated End of the season Elevated ozone 0.00 0.43 1.20 0.65 5.61 0.95 0.05 5.30 2.74 0.94 
3EM Susceptible Inoculated Mid-season Elevated ozone 0.00 0.00 0.03 0.34 0.00 0.52 0.00 2.73 0.09 0.00 
3EE Susceptible Inoculated End of the season Elevated ozone 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 
3XM Resistant Inoculated Mid-season Elevated ozone 0.00 0.34 0.56 0.57 0.27 4.84 0.37 11.04 1.29 0.46 
3XE Resistant Inoculated End of the season Elevated ozone 0.00 0.18 0.65 0.45 2.57 0.50 0.02 0.48 4.09 0.37 
4EM Susceptible Inoculated Mid-season Ambient 0.00 0.00 0.00 0.00 0.01 0.39 0.01 1.48 0.04 0.00 
4EE Susceptible Inoculated End of the season Ambient 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.76 0.04 0.00 
4XE Resistant Inoculated End of the season Ambient 0.00 0.68 0.83 0.60 2.31 0.97 0.10 1.11 2.09 0.48 
5EM Susceptible Inoculated Mid-season Ambient 0.00 0.03 0.00 0.00 0.02 0.35 0.03 1.49 0.08 0.00 
5EE Susceptible Inoculated End of the season Ambient 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.45 0.10 0.00 
5XM Resistant Inoculated Mid-season Ambient 0.00 0.09 0.18 0.00 0.14 0.36 0.41 1.96 0.12 0.50 
5XE Resistant Inoculated End of the season Ambient 0.00 0.25 0.53 0.00 2.05 1.37 1.64 1.47 2.79 0.53 
6EM Susceptible Inoculated Mid-season Elevated ozone 0.00 0.00 0.00 0.00 0.01 0.06 0.00 2.49 0.04 0.53 
6EE Susceptible Inoculated End of the season Elevated ozone 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.05 0.00 
6XM Resistant Inoculated Mid-season Elevated ozone 0.00 0.39 0.65 0.00 0.30 5.24 0.46 22.11 1.00 0.00 
6XE Resistant Inoculated End of the season Elevated ozone 0.00 0.28 1.34 1.67 5.49 1.88 0.00 1.95 4.57 0.74 
7EE Susceptible Control End of the season Elevated ozone 0.00 0.15 0.79 0.53 4.27 0.28 0.00 0.86 4.22 0.39 
7XM Resistant Control Mid-season Elevated ozone 0.00 0.37 0.69 0.46 0.37 2.65 0.27 10.66 1.38 0.66 
7XE Resistant Control End of the season Elevated ozone 0.00 0.12 1.00 0.66 5.34 0.32 0.00 1.22 3.63 0.44 
8EE Susceptible Control End of the season Ambient 0.00 0.10 0.21 0.74 2.16 0.13 0.00 2.89 1.38 0.82 
8XM Resistant Control Mid-season Ambient 0.00 0.41 0.17 0.00 0.55 2.40 0.59 3.42 0.37 0.33 
8XE Resistant Control End of the season Ambient 0.00 0.22 0.28 0.00 1.77 0.24 0.05 3.14 5.29 0.74 
9EM Susceptible Control Mid-season Ambient 0.00 0.36 0.20 0.00 0.11 1.07 0.15 4.55 0.57 0.42 
9EE Susceptible Control End of the season Ambient 0.00 0.04 0.18 0.00 1.19 0.09 0.03 0.92 0.38 0.60 
9XM Resistant Control Mid-season Ambient 0.00 0.50 0.42 0.00 0.34 1.66 0.55 2.77 0.24 0.42 
9XE Resistant Control End of the season Ambient 0.00 0.29 0.47 0.79 2.46 0.79 0.05 2.18 1.71 0.77 
10EM Susceptible Control Mid-season Elevated ozone 0.00 0.96 0.83 0.71 0.56 6.34 0.32 19.23 1.17 0.78 
10EE Susceptible Control End of the season Elevated ozone 0.00 0.01 0.15 0.53 0.30 0.01 0.00 1.17 1.55 0.79 
10XM Resistant Control Mid-season Elevated ozone 0.00 1.17 0.87 1.03 0.68 1.53 12.65 18.08 1.66 0.38 
10XE Resistant Control End of the season Elevated ozone 0.00 0.03 0.31 0.62 0.78 0.08 0.00 1.35 2.29 0.40 
11EM Susceptible Control Mid-season Elevated ozone 0.00 1.77 0.88 0.93 0.83 11.20 0.46 17.09 6.71 0.64 
11EE Susceptible Control End of the season Elevated ozone 0.00 0.57 1.28 1.22 8.07 0.95 0.02 3.14 14.65 2.67 
11XM Resistant Control Mid-season Elevated ozone 0.00 3.17 0.83 0.77 0.70 7.95 0.55 15.08 19.48 0.34 
11XE Resistant Control End of the season Elevated ozone 0.00 0.31 0.69 0.89 4.13 0.29 0.00 2.23 4.82 0.77 
12EM Susceptible Control Mid-season Ambient 0.00 0.28 0.11 0.68 0.15 0.98 0.80 9.53 0.31 0.36 
12XM Resistant Control Mid-season Ambient 0.00 0.30 0.12 0.00 0.20 1.51 0.33 8.85 0.47 0.32 
12XE Resistant Control End of the season Ambient 0.00 0.11 0.15 0.37 0.84 0.13 0.00 4.78 1.79 0.61 
OEC Susceptible Control Base Green house 5.13 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 
OEI Susceptible Inoculated Base Green house 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
OXC Resistant Control Base Green house 3.40 0.00 2.67 0.00 0.31 0.00 0.00 0.00 0.00 0.00 
OXI Resistant Inoculated Base Green house 0.00 1.01 0.00 0.00 0.00 0.07 0.00 0.98 0.00 0.00 
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Table S 2-10A: Permutational multivariant analysis of variance (PERMANOVA) of microbial pathways based on Bray–Curtis 
dissimilarities. Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum of sq Mean Sqs. F.Model R2 Pr(>F) Significance 
Environment 1 0.0215 0.021499 1.3167 0.02512 0.2584  

Cultivar 1 0.00262 0.002619 0.1604 0.00306 0.7028  

Inoculation 1 0.0019 0.001898 0.1163 0.00222 0.7612  

Time of sampling 1 0.01013 0.01013 0.6204 0.01184 0.4332  

Environment:Cultivar 1 0.00129 0.001292 0.0791 0.00151 0.814  

Environment:Inoculation status 1 0.00161 0.001607 0.0984 0.00188 0.7756  

Cultivar:Inoculation status 1 0.02972 0.029721 1.8202 0.03473 0.1764  

Environment:Time of sampling 1 0.0315 0.031496 1.9289 0.03681 0.1756  

Cultivar:Time of sampling 1 0.00811 0.008114 0.4969 0.00948 0.4892  

Innoculation status:Time of sampling 1 0.00137 0.001366 0.0837 0.0016 0.8046  

Environment:Cultivar:Inoculation status 1 0.00115 0.001146 0.0702 0.00134 0.8326  

Environment:Cultivar:Time of sampling 1 0.00398 0.00398 0.2438 0.00465 0.6352  

Environment:Inoculation status:Time of sampling 1 0.01283 0.012834 0.786 0.015 0.3814  

Cultivar:Inoculation status:Time of sampling 1 0.20899 0.208991 12.7991 0.24422 0.0014 ** 
Environment:Cultivar:Inoculation status:Time of sampling 1 0.04551 0.045513 2.7873 0.05319 0.104  

Residuals 29 0.47353 0.016329  0.55336   

Total 44 0.85574   1   

 

Table S 2-10B: Permutational multivariant analysis of variance (PERMANOVA) of microbial genes based on Bray–Curtis dissimilarities. 
Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Df Sum Of Sqs R2 F Pr(>F) Significance 
Environment 1 0.02586 0.02767 1.1657 0.2854  

Cultivar 1 0.00379 0.00406 0.171 0.7336  

Inoculation 1 0.00401 0.00429 0.1806 0.727  

Time of sampling 1 0.01453 0.01555 0.6552 0.4262  

Environment:Cultivar 1 0.00154 0.00164 0.0696 0.9034  

Environment:Inoculation status 1 0.00295 0.00315 0.1338 0.7818  

Cultivar:Inoculation status 1 0.02723 0.02915 1.241 0.2664  

Environment:Time of sampling 1 0.03592 0.03844 1.6454 0.1956  

Cultivar:Time of sampling 1 0.00812 0.00869 0.3661 0.5712  

Innoculation status:Time of sampling 1 0.00165 0.00176 0.0739 0.895  

Environment:Cultivar:Inoculation status 1 0.00138 0.00147 0.0588 0.9234  

Environment:Cultivar:Time of sampling 1 0.00449 0.0048 0.1976 0.7074  

Environment:Inoculation status:Time of sampling 1 0.01168 0.0125 0.5156 0.4874  

Cultivar:Inoculation status:Time of sampling 1 0.21206 0.22697 11.834 6.00E-04 *** 
Environment:Cultivar:Inoculation status:Time of sampling 1 0.05069 0.05426 2.8391 0.0954  

Residuals 29 0.51778 0.5542    

Total 44 0.93429 1    



81 

Table S 2-10C: Permutational multivariant analysis of variance (PERMANOVA) of microbial pathways based on Bray–Curtis dissimilarities 
during mid and end of the season. Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001. 

Variable Mid-season End of the season 
R2 Pr(>F) Significance R2 Pr(>F) Significance 

Environment 0.00088 0.9288  0.00034 0.9744  

Cultivar 0.14094 0.1278  0.29088 0.0194 * 
Inoculation 0.04592 0.371  0.02146 0.5004  

Environment:Cultivar 0.01013 0.6776  0.00231 0.8574  

Environment:Inoculation status 0.03693 0.431  0.03231 0.3902  

Cultivar:Inoculation status 0.00561 0.7722  0.00888 0.6762  

Environment:Cultivar:Inoculation status -0.0003 0.9994  0.00038 0.9798  

 
 

Table S 2-11A: Comparison of jaccard index (similarity between the sets of most central nodes) of local network centrality measures 
between groups. Significance levels for each treatment combination are indicated by *p < 0.05; **p < 0.01; ***p < 0.001.= 
 

Pairwise comparison between networks    

 Ambient vs. Elevated ozone Inoculated vs. Control Control and ambient environment vs. Combined stress 

Centrality measures Jaccard index p(<=Jaccard) Significance p(>=Jaccard) Jaccard index p(<=Jaccard) Significance p(>=Jaccard) Jaccard index p(<=Jaccard) Significance p(>=Jaccard) 

Degree 0.069 0.000915 *** 0.999879 0.056 0.000081 *** 0.999991 0.133 0.01223 * 0.996703 

Betweenness centrality 0.136 0.002762 ** 0.999208 0.163 0.010359 * 0.996387 0.111 0.00059 *** 0.999865 

Closeness centrality 0.19 0.031715 * 0.986817 0.163 0.010359 * 0.996387 0.163 0.010359 * 0.996387 
eigenvector centrality 0.25 0.171435  0.903429 0.25 0.171435  0.903429 0.02 0 *** 1 

Hub taxa 0.111 0.143068  0.973988 0 0.017342 * 1 0 0.017342 * 1 
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Table S 2-11B: Microbial hub taxa across treatment groups 

Comparison between ambient and elevated ozone Comparison between control and inoculated Comparison between control and ambient environment vs. combined stress 

Ambient Ozone Control Inoculated Ambient Combined 

Atlantibacter Exiguobacterium Brevibacterium Enterococcus Acinetobacter Alcaligenes 

Exiguobacterium Leucobacter Curtobacterium Lactococcus Altererythrobacter Empedobacter 

Mycolicibacterium Marmoricola Duganella Mammaliicoccus Asaia Escherichia 

Pectobacterium Nocardioides Hymenobacter Mycobacterium Brucella Humibacter 

Rhodococcus Weissella Mycolicibacterium Weissella Kocuria Lactococcus 

    Sorangium Serratia 

    Sphingobacterium Weissella 

    Urbifossiella Yersinia 

 
 

Table S 2-11C: Adjusted Rand index (similarity between clustering) across treatment groups 
 

Comparisons ARI p-value 

Ambient vs. Elevated ozone 0.027 0.07 
Control vs. Inoculated 0.034 0.021 

Control and ambient environment vs. Combined stress 0.103 0 
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Table S 2-11D: Topological features of the taxonomic networks across various treatments 
 Ambient vs. Elevated ozone Control vs. Inoculated Ambient vs. Combined stress 

Topological features Ambient Elevated ozone abs.diff. p-value Contro 
l 

Inoculated abs.diff. p-value Control and ambient 
environment 

Combined 
stress 

abs.diff. p-value 

Number of components 3 1 2 0.181818 1 1 0 1 1 3 2 0.18981 

Clustering coefficient 0.125 0.082 0.043 0.345654 0.12 0.169 0.048 0.410589 0.182 0.121 0.061 0.253746 

Moduarity 0.561 0.562 0.002 0.976024 0.544 0.601 0.057 0.168831 0.56 0.611 0.051 0.164835 

Positive edge percentage 68.156 65.497 2.659 0.681319 59.563 82.258 22.695 0.102897 83.152 73.62 9.533 0.207792 

Edge density 0.036 0.035 0.002 0.904096 0.037 0.038 0.001 0.911089 0.037 0.035 0.002 0.481518 

Natural connectivity 0.012 0.012 0 0.723277 0.012 0.013 0 0.535465 0.013 0.013 0 0.713287 

Vertex connectivity 1 1 0 1 1 1 0 1 1 1 0 1 

Edge connectivity 1 1 0 1 1 1 0 1 1 1 0 1 

Average dissimilarity 0.988 0.989 0.001 0.539461 0.989 0.988 0.001 0.669331 0.988 0.989 0.001 0.333666 

Average path length 2.702 2.956 0.254 0.703297 2.821 2.765 0.056 0.874126 2.859 3.064 0.205 0.355644 
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3. CHAPTER THREE: Long-term fertilization and crop management affects soil 

microbial communities. 

 
 
Abstract 

Soil microbial communities plays a crucial role in plant health and agricultural 

productivity. Yet, there remains limited knowledge about how soil microbiomes respond to long-

term fertilization in various cropping systems. In this study, we investigated the impact of over a 

century of cover cropping and fertility management on soil microbial community structure, 

abundance, and activity in 8 treatments and one cropping systems (cotton-corn-wheat-soybean 

rotation). These treatment includes N, P, and K fertilization, lime, and legume cover crop 

variations. Our results, obtained through Illumina MiSeq sequencing (16S and ITS rRNA), 

reveal that addition of legume cover crops in the absence of any chemical fertilizer showed the 

highest microbial diversity and richness. Although short term N fertilization is associated with 

lower microbial diversity and richness, but our study indicates that long-term N addition leads to 

higher bacterial diversity and richness. However, fungal diversity and richness decrease in 

response to N, suggesting a negative impact on fungal communities. Interestingly, pH 

significantly influences bacterial communities, but fungal communities appear more resilient to 

pH changes. Furthermore, soil biomarker analysis uncovers distinct microbial biomarkers 

associated with different treatments, highlighting the influence of specific cropping and fertility 

management practices on microbial communities. Despite previous findings that long-term 

chemical fertilizer use can reduce soil bacterial richness and diversity, potentially disrupting 

microbial community ecology, our study suggests that bacterial diversity and richness remain 
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relatively stable in the standard treatment over time. This stability may indicate the adaptation of 

microbial communities to long-term fertilizer application. 

3.1 Introduction 

Soil microbes play an integral role in plant growth and development and soil fertility 

management through nutrient cycling, inhibiting soil-borne plant diseases, determining soil 

structure, and supporting plant productivity by regulating many ecological processes (Kumar and 

Verma 2019; Coban et al. 2022). With the recent advancements in genomic and microbial 

metagenomic technology enabling comprehensive analysis of both culturable and unculturable 

microorganisms, this can provide insight into soil microbial community structure, diversity, and 

activity which are considered key indicators of the overall soil health and productivity potential 

(Fierer 2017; Mbuthia et al. 2015). Soil microbial communities are sensitive to changes as they 

are constantly exposed to natural fluctuations in environmental conditions (Zhou et al. 2020). 

Hence, alterations in soil physicochemical properties due to land use and various management 

practices can influence the composition and structure of microbial communities (Hu et al. 2021; 

Wang et al. 2019). 

The soil microbiome is one of the Earth's most intricate and ever-changing microbiomes 

(Fierer 2017). These microbial communities are connected as a complex ecological web through 

positive (e.g., mutualism), negative (e.g., competition), or neutral (e.g., commensalism) 

interactions. Correlation-based network inference methods have been developed to understand 

these complex associations to predict potential microbial relationships (Faust and Raes 2012; 

Röttjers and Faust 2018; Proulx et al. 2005). Bacteria and fungi can have both direct and indirect 

effects on each other, and they often coexist, forming intricate interaction networks (Boer et al. 

2005; Frey-Klett et al. 2011). Co-occurrence patterns of community members are known to be 
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influenced by various soil properties (Kumar et al. 2018; Liang et al. 2021; Chen et al. 2021). As 

the soil's physical and chemical properties are influenced by long-term fertilization and inter-

kingdom interaction, the identification of putative keystone bacterial and fungal taxa across 

different fertilizer treatments can lead to understanding of the influence of various fertilizer 

treatments in microbial coexistence over long durations.  

Crop rotation and cover cropping improve soil health and alleviate the repercussions of 

soil degradation on a temporal scale (Saleem et al. 2020; Dabney et al. 2001; Mendes et al. 

2015). The effect of crop rotational sequence and cover crops on soil microbial communities are 

known to be variable due to the influence of the different plant residues (Venter et al. 2016; 

Nevins et al. 2018). Several studies have explored the positive effects of cover cropping on the 

soil microbial biomass and microbial diversity by altering the dynamics of microbial 

communities, suppressing pathogens and stimulating beneficial microorganisms (Kim et al. 

2020a; Iriarte et al. 2007; Manici et al. 2018; Qi et al. 2020). However, this effect by cover crops 

has been shown to depend on the different species of cover crop used(Calderón et al. 2016; 

Finney et al. 2017), and their effect was conditioned by various crop and residue management 

practices, time, and method of termination  (Romdhane et al. 2019; Liang et al. 2014; Nevins et 

al. 2018; Schmidt et al. 2018).Traditionally, legumes have been used as cover crops as they 

increase the availability of organic carbon and fix atmospheric nitrogen in the soil (Hubbard et 

al. 2013; Villamil et al. 2006). However, their effect on long-term fertility management and 

response to microbial diversity is yet to be understood. 

To provide a comprehensive understanding of the impact of long-term cropping systems 

and fertility management on soil health indicators, changes in soil microbial community structure 

and their relationship with soil characteristics and crop yield were analyzed in a >110 years 
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cropping and fertilization treatment experiment. We harnessed Illumina MiSeq sequencing, 

which was used to analyze the prokaryotic 16S rDNA and fungal 18S rDNA from soil across 

different cropping systems and fertilization regimes, along with complete fertilization as a 

control. Soil physicochemical properties, bacterial and fungal community composition and 

diversity, bioindicators, and co-occurrence were determined. In this study, we hypothesized that 

(i) different fertilization regimes drive the composition and abundance of the soil microbiome, 

(ii) soil nutrient content is the main determinant for bacterial and fungal structure, whereas 

winter legumes are more helpful for the development of microbial community. Our findings 

provide a basis for further understanding the impact of different fertilization and cropping 

patterns on microbial diversity and soil properties in the long-term. This could provide important 

information on why reducing the excessive use of fertilizers and increasing the sustainability of 

currently used fertilizers is needed. 

 
3.2 Materials and Methods 

3.2.1 Study site and sampling 

The experiment was conducted in Cullars Rotation (32° 35' 15.35'4" N lat" 85° 28' 

56.28'2" W lon") (Fig. S3-1A) at Auburn University, Auburn, Alabama. The Cullars Rotation, 

also known as the Alvis field, was started in 1911 by J. A. Cullars and John P. Alvis. Mr. Cullars 

and Mr. Alvis allowed Professor George F. Atkinson of the Agricultural and Mechanical College 

of Alabama, now Auburn University, to conduct cotton research projects. The experiment has 

been running for 110 years and is the oldest continuous soil fertility experiment in the southern 

United States. The experimental site comprises three blocks: east, middle, and west. Each block 

represented a different stage of a cotton-corn-wheat-soybean rotation. These three blocks were 
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divided into 14 treatments (Fig. S3-1B). Each experimental plot measured 6.1 x 30.2 m and was 

separated by a 1 m alley, while a 6 m alley separated the blocks. A selection of eight treatments 

was utilized for this study from each block. These included the following: plot A (No N fertilizer 

applied), plot B (no N fertilizer applied or legume cover crop planted), plot C (no soil 

amendments and no legume cover crop), plot 1 (no legume cover crop with N applied), plot 2 

(no P fertilizer applied), plot 3 (complete fertilization), plot 6 (no K fertilizer applied), and plot 8 

(no agricultural limestone used). 

Soil samples were obtained from each plot on three different dates: April 27, 2020, July 

7, 2020, and October 6, 2020. A 2.5 cm diameter soil probe was used for each sample to collect 

soil from 0-10 cm depth. Around 15 soil cores were taken from each plot and combined in a 

bucket to create a composite sample. The probes and corresponding buckets were surface-

sterilized using 70% ethanol to prevent potential cross-contamination between samples before 

sampling each plot. To ensure proper handling, the collected soil samples were stored in a cooler 

until further processing. Immediately after sampling, each sample was sieved to a particle size of 

4 mm for subsequent analysis. A portion of the sieved sample was stored at a temperature of 4°C 

for microbial analysis, while a second portion was stored at -80°C for DNA analysis. 

Additionally, a third portion of the sample was air-dried at room temperature for chemical and 

physical analysis. Furthermore, a subset of the air-dried soil was finely ground using a coffee 

grinder to prepare it for total carbon analysis through dry combustion. 

 
3.2.2 Soil DNA extraction and sequencing 

Soil DNA was isolated using the DNeasy PowerSoil kit (Qiagen, Germany). 0.5 grams of 

moist soil samples were added to the PowerBead tube and subjected to bead beating for 10 
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minutes (with 30 second break after 5 minutes) using the Mini-Beadbeater-96 (BioSpec, 

Bartlesville, OK, USA). The manufacturer's instructions were followed for the remaining DNA 

extraction steps, except for using 50 µl of nuclease-free water for elution in the final step. The 

concentration and purity of the nucleic acids were evaluated using the Qubit dsDNA high 

sensitivity assay kits on a Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA) and a 

Nanodrop spectrophotometer 2000 (Thermo Scientific, Wilmington, DE, USA), respectively. 

The extracted DNA was stored at -80 °C until further processing. 

The V3-V4 hypervariable region of the 16S rRNA gene was amplified from the extracted 

DNA using the 341F (CCTACGGGNGGCWGCAG) and 806R 

(GGACTACNNGGGTATCTAAT) primer. Moreover, the ITS 2 region of the fungal ITS gene 

was amplified using the primers ITS3-2024F (GCATCGATGAAGAACGCAGC) and ITS4-

2409R (TCCTCCGCTTATTGATATGC). The library construction and sequencing were 

conducted on the Illumina NovaSeq platform at Novogene Corporation (Beijing, China) and 

paired end reads of 250 bp were generated. 

3.2.3 Sequence data processing 

Raw reads obtained from MiSeq Illumina were subjected to processing using the high-

resolution Divisive Amplicon Denoising Algorithm 2 (DADA2) package (v1.20.0)  (Callahan et 

al. 2016) to generate amplicon sequence variants (ASVs) with minor modifications 

(filterAndTrim: maxEE =2, truncQ = 5) based on the results of an analysis of mock 

communities. To estimate the error rates in amplicon sequencing data, learnErros function was 

used for forward and reverse reads, which represent the probability of a sequencing error 

occurring at each position in the reads. Chimeric sequences were detected and removed using the 

consensus method with the remote Bimera Denovo function in DADA2. The taxonomy 
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assignment was performed with the assignTaxonomy function using the SILVA database 

(silva_nr99_v138.1) (Quast et al. 2013)  for 16S rRNA gene sequences and the UNITE database 

(sh_general_release_10.05.2021) (Nilsson et al. 2019) for ITS region sequences.  

The ASV table, phylogenetic tree, and taxonomic placement were joined in a phyloseq 

object in R (Team 2022) within R studio (Team 2020) using packages PhyloSeq (v1.30) 

(McMurdie and Holmes 2013). The PhyloSeq object was filtered to account for ASVs detected 

in negative and extraction kit controls. ASVs pointing to nonbacterial taxa and unassigned 

phylum were removed for further bacterial community analysis. Similarly, ASVs pointing to 

noneukaryotic taxa and assigned phyla were removed for fungal community analyses.  

3.2.4 Microbial community analyses 

PhyloSeq objects obtained above for bacterial and eukaryotic data were filtered for 

samples with less than 1000 counts and samples with ASVs with overall abundance higher than 

0.005% of the total sampling depth. The Phyloseq object was then rarefied to the smallest sample 

size for even depth using the "rarefy" command in vegan (v2.6-4) (Dixon 2003) R package. The 

datasets were assessed for normality using the Shapiro-Wilk normality test. Chao1 (Chao 1984) 

and Shannon diversity (Magurran 2013; Ludwig and Reynolds 1988) index was used to assess 

the effects of treatments and sampling time on microbial richness and diversity, respectively. 

Significant differences in alpha diversity indexes between the treatment groups (p < 0.05) were 

determined either by an analysis of variance (ANOVA) or the Kruskal-Wallis rank-sum test, 

depending on the distribution of the data. 

Microbial beta-diversity on the normalized reads counts was assessed by computing 

weighted UniFrac distance matrices. The ordinations for β-diversity between treatments were 
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estimated using Non-Metric Multidimensional Scale (NMDS) and principal coordinate analysis 

(PCoA) based on Bray-Curtis dissimilarity matrices as implemented in the plot_ordination() 

function in PhyloSeq package. The effect of different fertilizer treatments on both the bacterial 

and fungal microbial community dissimilarity was tested with permutational multivariate 

analysis of variance (PERMANOVA) followed by pairwise comparisons using adonis2() 

function in vegan (v2.6-4) (Dixon 2003) R package. To explore the relationships between 

microbial taxa and soil properties, we employed a constrained analysis of principal coordinates 

(CAP) (Anderson and Willis 2003). This analysis allowed us to assess the influence of soil 

properties on microbial taxa composition. The significance of the relationships was evaluated 

using a permutation test. A pairwise multi-level comparison was performed using 

pairwise.adonis() function of pairwiseAdonis (v0.4.1) (Martinez Arbizu 2020) package to further 

identify differences among treatments. Multivariate dispersion among the treatments (deviation 

from centroids) was performed with the function betadisper() and permutest() from the vegan 

package.  

To Identify significant differentially abundant ASVs at genus level between different 

fertilizer treatments was conducted using three different tools DESeq2 (1.40.2) (Love et al. 

2014), Corncob (v0.3.1) (Martin et al. 2020), and MaAsLin2 (v1.14.1) (Mallick et al. 2021) 

package in R. Venn diagrams were drawn to illustrate the number of shared ASVs across the 

different treatment types using the vennDiagram package (v1.7.3). 

3.2.5 Biomarker and network analysis 

To identify the potential biomarker, the linear discriminant analysis effect size (LEfSe) 

(Segata et al. 2011) was applied (Wilcoxon p < 0.05, logarithmic LDA (linear discriminant 
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analysis) score > 3) to identify the biomarker across different fertilizer treatments at the genus 

level. We performed a network analysis using a subset of the taxonomic data to ensure sufficient 

sequencing depth for capturing most diversity. Specifically, we retained taxa with a relative 

abundance of at least 0.5% in over 20% of the samples (prevalence criterion). This approach 

ensured that all samples had adequate sequencing depth to capture the most taxonomic diversity 

in the analysis. The cross-domain microbial co-occurrence of bacteria and fungi was constructed 

using SpiecEasi (v1.1.2) (Kurtz et al. 2015) and was compared between the fertilizer treatments 

using NetCoMi (v1.1.0) (Peschel et al. 2021). To examine community structures among the 

treatments, we employed the "cluster_fast_greedy" algorithm (Clauset et al. 2004). The 

association matrices across the treatments were compared using the netAnalyse function within 

NetCoMi. Hub taxa, which play crucial roles in the networks, were identified using a threshold 

of 0.95 on eigenvector centrality, and a comparison of the hub taxa across the treatment groups 

was based on the Jaccard similarity index. 

 

3.3 Results 

3.3.1 Microbial diversity in response to fertilization 

From soil samples collected from east, middle, and west plots of eight different fertilizer 

treatments across three times during the season, a total of 72 samples were collected for 16S 

rRNA and ITS gene high-throughput sequencing. 26,325 16S rRNA and 20,077 ITS rRNA 

ASVs from 7 taxonomic ranks were obtained at >97% sequence similarity. Samples with less 

than 1000 counts and ASVs with an overall abundance higher than 0.005% of the total sampling 

depth were pruned. 2,303 unique 16S rRNA ASVs for bacteria and 2,790 I18S rRNA ASVs for 

fungi were obtained for downstream analysis.  
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We observed a significant difference in bacterial Chao1 richness between the treatments 

(p < 0.001), while sampling time and interaction between treatments and sampling time had no 

significant influences (p > 0.05) (Fig. 3-1A, Table S3-1A, Table S3-1B). Bacterial Shannon 

diversity was significantly affected by treatment (Kruskal-Wallis: p <0.01) and the interaction of 

treatment and sampling time was also found to be significant (Kruskal-Wallis p = 0.002) (Fig. 3-

1B, Table S3-1C, S3-1D). However, sampling time had no significant influence on bacterial 

diversity (Kruskal-Walis: p > 0.05). Regarding the fungal community richness, there was a 

significant difference between treatment (p = 0.02) and time of sampling (p < 0.01). In contrast, 

the interaction of sampling time and treatment did not have a significant effect on overall 

richness (p > 0.05) (Fig. 3-1C, Table S3-1E, Table S3-1F, Table S3-1G). However, treatment did 

not influence fungal Shannon diversity (p > 0.05). Yet, time of sampling (Kruskal-Walis: p < 

0.001) and interaction between time of sampling and treatment (Kruskal-Walis: p =0.02) had 

significant effect on the diversity (Fig. 3-1D, Table S3-1H, Table S3-1I). 

3.3.2 Microbial diversity under different fertilizer treatments 

Our results based on NMDS ordination of bacterial communities indicated that samples 

clustered according to the treatment but not by time or by location (Fig. 3-1E). PERMANOVA 

analysis of the bacterial diversity suggested that the variation in the bacterial community was 

mainly explained by fertilizer treatment (R2 = 0.48, p < 0.001) followed by time of sampling (R2 

= 0.04, p < 0.01) (Table S3-2A). Bacterial communities associated with treatments No soil 

amendments, No Lime, No P, and No winter legumes + N clustered distinctly from other 

treatments based on NMDS ordination (Fig. 3-1E). The non-significant beta dispersion tests 

across treatments indicate that the effects of treatments on soil bacterial community composition 

are likely due to actual differences in community composition rather than group dispersions 
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(Table S3-2B). Further pairwise comparison of bacterial communities across treatments 

indicated significant differences among the following pairs: No N/+legume vs Std fertilization (p 

= 0.012), No N/+legume vs No K (p = 0.028), and No P vs. No lime (p = 0.029) (Table S3-2C). 

Regarding fungal communities, we only had a significant effect (p < 0.001) at sampling time. In 

contrast, treatments and the interaction between treatment and time had no significant differences 

in community diversity (Fig. 3-1F, Table S3-2D). Among the time points, overall fungal 

communities were significantly different in early sampling time when compared to mid (p = 

0.001) and end (p = 0.001). At the same time, there were no differences in fungal communities 

when comparing between mid and end timepoint (Table S3-2E). 

3.3.3 Influence of soil chemistry parameters on microbial community composition 

Pearson correlation analysis was used to identify the relationship between soil properties 

in different fertility treatments following the removal of the highly correlated variables (>0.80) 

(Fig. S3-2, Fig. S3-3). Canonical analysis of principal coordinates (CAP) plot that incorporates 

both the microbiome composition (Bray–Curtis dissimilarity) and soil health parameters was 

constructed to determine the interaction between these variables.  

The CAP ordination explains approximately 34% (21.3% in CAP1 and 12.6% CAP2) and 

3% (1.8% in CAP1 and 1.6% in CAP2) of the total variance observed in bacterial (Fig. 3-2A) 

and fungal (Fig. 3-2B) communities respectively. The constrained axes capture the bacterial 

microbiome variation is associated with continuous variables showed to have the strongest 

influence on bacterial community composition along the primary y-axis (CAP2, 12.6% of 

variation explained). At the same time, P and ACE primarily drive the community composition 

in “No Lime” and “No winter legume /+N” treatment (CAP1, 21.3% variance) (Figure 2A). 



95 

However, soil chemical properties weakly influenced fungal community diversity (CAP1, 1.8% 

of variation; CAP2, 1.6% of variation) (Fig. 3-2B). 

All the soil chemistry parameters significantly affected the bacterial community (p < 

0.05). The pH was the strongest predictor for bacterial communities (R2 = 0.70, p = 0.001), 

followed by ACE (R2 = 0.52, p = 0.001) (Table S3-3). However, none of the soil health 

parameters significantly affected fungal diversity, although TC was a weak predictor for fungal 

diversity (R2 = 0.532, p = 0.056) (Table S3-3).  

3.3.4 Bacterial community composition among different treatments 

Given the PERMANOVA significance test results, we identified taxa that have driven 

changes in soil bacterial communities between treatments. Proteobacteria is the dominant 

bacterial phylum across all treatments, followed by Acidobacteria, Actinobacteria, and 

Chloroflexi (Fig. S3-4A). Members of the bacterial candidate phylum WPS-2 (or 

Eremiobacterota) were abundant only in “No Lime” and “No soil amendment” treatments. In 

terms of fungal community, phylum Ascomycota was the most dominant phylum across all 

treatment, while Basidiomycota, Glomeromycota, and Monoblepharomycota were seen in low 

abundance during the end sampling (Fig. S4B). In terms of genus, bacterial genus 

Sphingomonas, Rhodoplanes, Microvirga, Candidatus koribacter, and Bryobacter are dominant 

across all treatments (Fig. 3-3A). In terms of fungal genera, Fusarium, Cladosporium, 

Talaromyces, Penicillium, and Humicola are dominant across all treatments (Fig. 3-3B). 

Further analysis using three methods, DESeq2, MaAsLin2, and Corncob, for assessing 

differential enrichment of taxa among various fertilizer treatments led to the identification of 

several ASVs enriched across the treatment groups at the family level (Fig. S3-5). A single ASV 
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belonging to Xanthobacteraceae was enriched compared to the treatments “No N/+legumes” and 

“No N/ No legume”. Comparison of the fertilizer treatment “No P” with “Std Fertilization”, 

ASVs belonging to Beijerinckiaceae, Xanthobacteraceae, Rhizobiaceae, and Nitrososphaeraceae 

were differently abundant. Intriguingly, neither “No Lime” nor “No soil amendments” treatments 

have low pH environments (pH range 4.5-5.0). Yet, the community compositions are distinct in 

the two treatments, as indicated by the beta-diversity analyses above. The differential abundance 

analysis between “No Lime” and “No soil amendments” resulted in 132 differentially abundant 

ASVs mostly belonging to Ktedonobacteraceae, Xanthobacteraceae, Bryobacteraceae, 

Acetobacteraceae, Koribacteraceae (Candidatus Koribacter), Ktedonobacteraceae, 

Bryobacteraceae (Bryobacter), Solibacteraceae (Candidatus Solibacter), and 

Sphingomonadaceae (Sphingomonas). ASVs belonging to Ktedonobacteraceae, 

Xanthobacteraceae (Rhodoplanes), and Nitrososphaeraceae (Candidatus Nitrocosmicus) were 

differentially abundant when compared between “No K” and “Standard fertilization”. The effect 

of nitrogen suggests ASVs belonging to Bryobacteraceae (Bryobacter), Xanthobacteraceae, 

Acetobacteraceae, Ilumatobacteraceae (Ilumatobacter), Ktedonobacteraceae (1921-3), 

Streptosporangiaceae, Koribacteraceae (Candidatus Koribacter), Nitrososphaeraceae, and 

Nitrosotaleaceae (Candidatus Nitrosotalea) were differentially abundant when compared to 

treatments between “No winter legume /+N” and “No N/No legume treatments”.  

3.3.5 Effect of fertilizer treatment on soil microbial biomarkers 

A Linear Discriminant Effect Size (LEfSe) analysis was performed to identify and select 

distinct microbial taxa significantly associated with each fertilizer treatment. The LEfSe analysis 

with "all-against-all" computation for all the fertilizer treatments identified 71 bacterial (Fig. 3-

4A) and 42 fungal biomarkers (Fig. 3-4B). In “Std Fertilization” treatment, bacterial genera 
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Lamia, Pseudolabrys, Candidatus Nitrocosmicus and fungal genera Stagonosporopsis, 

Humicola, Gibellulopsis, Striaticonidium and Nectriopsis were identified as biomarkers. In “No 

winter legume+N” treatment, bacterial genera Devosiaceae and Candidatus Nitrososphaera, and 

fungal genera Penicillium were identified as biomarkers. Bacterial genera Acidothermus, 

Actinomadura, and Rhodoplanes and fungi belonging to genera Aspergillus, Arthocladium, 

Chaetomium, Arcopilus, Macrophomina, stagonospora, Arcopilus, and Collariella were 

identified as biomarkers under “No soil amendment” treatment. The fertilizer treatment “No 

N/+legume” had the highest number of both bacterial and fungal biomarkers across all the 

treatment where bacterial genera Candidatus Nitrosotalea, Bryobacter, Roseiarcus, and 

Occallatibacter were identified as biomarkers. Fungal genera Neophaeococcomyces, 

Polyschema, Ochroconis, Stainwardia, Phaeoacremonium, Didymocyrtis, and Dictyosporium 

were identified as biomarkers. In the absence of nitrogen (“No N/No legume”), bacterial genera 

Pedomicrobium, Methyloceanibacter, Actinocorallia, Nonomuraea, Streptosporangium, 

Sphaerisporangium, and Dongia were the biomarkers. Similarly, fungal genera Paraphoma and 

Paraphaeosphaeria were identified as biomarkers. The addition of legume as a source of 

nitrogen (“No N/+legume”) identifies bacterial family Xanthobacteraceae and Reyranellaceae 

and fungal genera Fusarium, Codinaea, and Purpureocillium as bioindicators. In “No K” 

treatment, the bacterial family Koribacteraceae, Solibacteraceae, fungal genera Emericellopsis, 

and Paramyrothecium were identified as biomarkers. Comparison of microbial markers across 

the standard fertilizer treatment leads to the identification of various biomarkers in “No P” soil 

(22 markers), “No K” (26 markers), and “No soil amendments” (74 markers) (Fig. S3-6A, S3-

6C, S3-6D). Similarly, comparing the treatments to see the effect of legume (“No N/+legume” 

vs. “No N/No legume”) leads to identifying 13 biomarkers (Fig. S3-6B). In comparison, the 
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effect of N (“No N/No legume” vs. “No winter legume +N”) suggests 38 biomarkers (Fig. S3-

6E). The low pH soil treatments (“No Lime” vs. “No soil amendments”) led to the identification 

of 46 biomarkers (Fig. S3-6F). 

 

3.4 Discussion 

Agricultural viability in the southeastern United States is threatened by land degradation. 

The soils in this region, initially developed under high-rainfall forests, have deteriorated over 

time due to intensive land use, becoming acidic, infertile, and degraded (Sikora and Moore 

2014). The repeated application of fertilizers has the potential to induce lasting alterations in soil 

functionality and quality. This can encompass changes in the soil's physical, chemical, and 

biological characteristics, as well as modifications in nutrient availability. These changes, which 

can persist for over a century under consistent treatment, can profoundly impact soil fertility. 

Despite its significance, the comprehension of how long-term soil management practices 

influence shifts in microbial communities remains incompletely recognized. The present study 

delved into this aspect by investigating the impacts of different long-term fertilization 

approaches on crop yields and the soil's physicochemical and microbiological attributes. The 

timing of soil sample collection did not demonstrate a noteworthy impact on soil bacterial 

diversity and richness. Conversely, distinct fertilizer treatments exhibited a significant influence 

on these factors. The absence of potassium (K) displayed no discernible effect on the diversity 

and richness of bacterial microbial communities. However, the "No lime" treatment exhibited the 

lowest levels of diversity and richness across all time points. Interestingly, the "No soil 

amendments" treatment, despite having lower calcium levels than the "No lime" treatment, 
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showed higher bacterial diversity and richness. This suggests that the quantity of calcium might 

not directly dictate bacterial diversity and richness. The reduced pH associated with the "No 

lime" treatment could be responsible for the decreased bacterial diversity and richness. Similar 

findings of higher bacterial diversity in neutral pH and lower in acidic soil samples suggest the 

negative effect of lower pH (Wu et al. 2017; Griffiths et al. 2011; Ren et al. 2018). Despite 

having a lower pH, higher bacterial diversity in no soil amendments was noteworthy. The 

heightened diversity observed in the "No soil amendments" treatment could be attributed to 

winter legumes. Crop rotation with legumes improves soil's physical, chemical, and biological 

properties (Aschi et al. 2017).  

Notably, there were significant disparities in bacterial diversity and richness between the 

"No winter legumes +N" and "No N/No legumes" treatments. The introduction of nitrogen led to 

increased bacterial diversity and richness. Prolonged nitrogen addition, however, has been 

associated with reduced bacterial richness due to induced soil acidification and decreased soil 

microbial biomass (Dai et al. 2018; Wang et al. 2023; Yang et al. 2020). Nonetheless, the impact 

of nitrogen deposition has been recognized as seasonal (Huang et al. 2021) and dependent on 

fertilizer gradient (Wan et al. 2021). Thus, the heightened bacterial diversity observed in the 

nitrogen-added treatment might be linked to factors like soil moisture, fertilizer quantity, and 

fluctuations in soil pH during sampling. 

Regarding fungal richness, nitrogen fertilization demonstrated a significant decrease in 

richness. Although not statistically significant, fungal diversity declined with nitrogen treatment 

during the early and mid-season. This echoes similar observations of varied responses in fungal 

diversity and richness across different nitrogen treatments (Zhou et al. 2016; Lin et al. 2023; 
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Liao et al. 2021), underscoring the influence of soil type, fertilizer quantity, and crop 

involvement in shaping microbial diversity. 

In addressing the global concern of soil acidification and enhancing crop productivity, 

lime application emerges as a promising agricultural approach. Bacterial diversity and richness 

were notably lower in the "No Lime" treatment (pH = 4.51) than in other fertilizer treatments. 

Standard fertilization (pH = 6.73) resulted in a significant elevation in bacterial diversity through 

pH increment. Our findings align with the previously posited hypothesis that soil acidification 

can constrain the growth of a wide array of bacterial species (Xie et al. 2023). Interestingly, there 

appeared to be no variance in fungal community diversity and richness across treatments with 

varying pH, suggesting fungal communities might be resilient to pH changes (Rousk et al. 2010). 

Similar observations of fungal communities exhibiting resilience against diverse fertilizer 

treatments have been documented (Wen et al. 2020). 

Cationic antagonism is known to exist between calcium (Ca), magnesium (Mg), and 

potassium (K), whereby elevated levels of one or more of these nutrients can lead to reduced 

uptake of another nutrient (Rhodes et al. 2018; Garcia et al. 1999; Toumi et al. 2016). In 

scenarios lacking potassium fertilization, a notable increase in bacterial diversity and richness 

was observed compared to standard fertilization practices. Notably, the soil's calcium (740 

mg/kg) and magnesium (86.8 mg/kg) content proved significantly higher in the "No K" treatment 

when contrasted with complete fertilization, underscoring the antagonistic interactions of these 

cations with potassium. The heightened bacterial diversity within this treatment might be 

attributed to the greater availability of calcium and magnesium in the soil, while the fungal 

communities remained unaffected. Similar findings of magnesium's positive impact on bacterial 

diversity have been documented in tea cultivation (Yang et al. 2023). Moreover, positive 
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influences on bacterial diversity and composition have been observed in soils amended with 

calcium, as indicated by previous studies (Sridevi et al. 2012; Silveira et al. 2021). 

Our study revealed Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi as the 

prevailing entities among the bacterial species. In contrast, the presence of the Firmicutes 

phylum was noted in limited quantities across various samples. Acidobacteria, recognized as 

oligotrophic bacteria, commonly thrive in environments with low nutrient availability and high 

soil acidity. They also can degrade complex and resistant carbon sources (Fierer et al. 2003; 

Kalam et al. 2020). Our study also indicates that Acidobacteria exhibited the highest abundance 

in soils subjected to the "No amendment" treatment, as opposed to the "No lime" treatment, 

despite both treatments exhibiting lower pH levels. While a positive correlation between 

Acidobacteria and pH has been established (Kalam et al. 2020), it is noteworthy that a 

significantly negative correlation with nitrogen fertilizer treatments has also been reported (Ren 

et al. 2020). Specifically, the "No Lime" and "No Soil amendments" treatments solely 

demonstrated the presence of the candidate bacterial phylum WPS-2 (now identified as 

Candidatus Eremiobacterota). This abundant candidate phylum in soils remains uncultivated and 

encompasses bacteria displaying diverse metabolic capabilities (Sheremet et al. 2020). Existing 

research has illustrated that soils characterized by coarse textures, acidic conditions (pH < 6), and 

reduced fertility exhibit notably elevated proportions of Amplicon Sequence Variants (ASVs) 

affiliated with Candidatus Eremiobacterota (Ji et al. 2021; Kim et al. 2019; Ward et al. 2019). 

Regarding fungal taxa, the Ascomycota species emerged as the dominant fungal entity across all 

examined samples. In contrast, the presence of the Basidiomycota phylum was observed in 

specific fertilizer treatments during the concluding stages of the growing season. These two 
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fungal phyla, Ascomycota and Basidiomycota, command prominence in agricultural soils (Ding 

et al. 2017; Egidi et al. 2019).  

Soil microbial biomarkers help to understand how microorganisms respond to changes in 

environmental conditions, land management practices, and disturbances. Lefse analysis to 

identify the microbial biomarkers across various treatments reveals the prevalence of the 

Candidatus Koribacter and Candidatus Solibacter genera (both belonging to the Acidobacteria 

phylum) in soil treatments "No K." Despite their widespread presence, the physiological and 

ecological roles of the Acidobacteria phylum remain enigmatic due to the challenges associated 

with culturing these microorganisms (Kielak et al. 2016). Genomic investigations have indicated 

these bacteria's involvement in nitrogen (N2) cycling through processes such as nitrate, nitrite, 

and potentially nitric oxide reduction (Ward et al. 2009). Our findings also shed fresh insights 

into the role of Acidobacteria in nutrient and carbon cycling within agriculture-affected soils 

characterized by low potassium and high phosphorus levels. Likewise, fungal genera 

Emericellopsis and Paramyrothecium enrichment were observed in treatments lacking 

potassium. The Emericellopsis fungi have long been recognized as producers of antimicrobial 

peptides from the peptaibol group, with the potential to combat resistant pathogens (Baranova et 

al. 2017). In the absence of soil amendments, specific microbial taxa, including Acidothermus, 

Actinomadura, Rhodoplanes, and several families such as Acidobacteriae, Thermonosporaceae, 

and Ktedonobacteraceae, were identified as biomarkers. Acidothermus bacteria are renowned for 

thriving in acidic conditions and breaking down plant tissues (Ogola et al. 2021; Kim et al. 

2016). Rhodoplanes spp. are associated with nitrate reduction and denitrification processes that 

improve nitrogen availability and soil enhancement (Buckley et al. 2007). In the "No 

N/+legume" treatment, biomarkers included N-fixing soil genera like Bradyrhizobium, 
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Hyphomicrobium, Reyranella, and ASVs from the family Xanthobacteraceae. These 

methanotrophic bacteria are recognized for their ability to nodulate and fix nitrogen in 

association with legumes (Sprent et al. 2017; Bender et al. 2022), implying that in the absence of 

inorganic nitrogen, these bacterial genera become enriched to facilitate nitrogen fixation from 

legume crops. Under standard fertilization, bacterial ASVs from the genera Lamia, 

Pseudolabrys, Candidatus Nitrocosmicus, and fungal genera Humicola, Nitriopsos, 

Gibellulopsis, and Stagonosporopsis were identified as microbial biomarkers. Members of the 

Pseudolabrys genus are known for their capacity to metabolize organic acids (Miao et al. 2019; 

Kämpfer et al. 2006) and are associated with enrichment in healthy soils and potassium-deficient 

treatments (Wang et al. 2017; Eo and Park 2016). The Candidatus Nitrosocosmicus genus plays 

a significant role in soil ammonia oxidation, particularly in nitrogen fertilizer input conditions 

(Hink et al. 2017; Prosser and Nicol 2012; Hink et al. 2018). The Pseudolabrys genus has been 

reported as a beneficial biocontrol microorganism in the plant rhizosphere, capable of forming 

symbiotic relationships with plant roots to facilitate nitrogen fixation (Kämpfer et al. 2006). The 

Humicola fungal genus is a potential biological control agent against plant diseases (Yang et al. 

2014; Ko et al. 2011). However, the identification of pathogenic biomarkers, such as 

Stagonosporopsis (Stewart et al. 2015) and Striaticonidium (Lombard et al. 2016), suggests that 

antagonistic activities related to phytopathogens are influenced by specific ecological conditions 

or variations in the functional relationships between species or hosts. The NMDS analysis 

yielded distinct bacterial community compositions influenced by fertilization. Notably, the 

fertilizer treatments without lime, potassium, phosphorous, and soil amendments formed 

different clusters separate from the other samples. Remarkably, even though the treatments “No 

soil amendments” and “No Lime” exhibited lower pH, they still exhibited significant differences 
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in bacterial communities. Furthermore, the absence of inorganic nitrogen and the utilization of 

cover crops led to unique microbial community patterns compared to standard fertilization, 

highlighting the potential role of inorganic nitrogen in shaping microbial communities. During 

the early season, microbial diversity and richness were lower in the legume treatment, gradually 

increasing as the season progressed. This trend might stem from the rate of cover crop 

decomposition and subsequent biomass nutrient release, which is closely linked to microbial 

activity (Murungu et al. 2011). The lower diversity early in the sampling period could indicate 

limited nutrient availability, with diversity rising as degradation progresses throughout the 

season. 

Long-term use of chemical fertilizers has been shown to diminish soil bacterial richness 

and diversity, disrupting the ecological balance of microbial communities (Sun et al. 2015; 

Ramirez et al. 2010). In contrast, our findings suggest that bacterial diversity and richness 

remained relatively stable in the standard treatment throughout the sampling period, surpassing 

other nutrient-deficient treatments. The positive soil health data and higher yields associated with 

this treatment further underscore its stability. Although the treatments involving other fertilizers 

lacking winter legume demonstrated higher bacterial diversity and richness than standard 

fertilization, these differences were not statistically significant. The impact of cover crops on soil 

microbial diversity is known to hinge on factors such as climate, cover crop species, termination 

methods, and tillage practices (Kim et al. 2020b). A similar decrease in microbial diversity due 

to cover crops during summer was observed in long-term apple experiments (Yang et al. 2019). 

This decline could be attributed to intra- and inter-kingdom competition from shifts in soil 

chemical properties, mirroring findings associated with green manure application (Hu et al. 

2018; Vida et al. 2020).  
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Agricultural practices can alter soil mineral composition, influencing microbial 

community structure and functional diversity (Dai et al. 2020; Carson et al. 2007). Earlier reports 

have highlighted shifts in soil bacterial and fungal community structures due to various fertilizer 

treatments in short-term fertility trials, driven by modifications in soil nutrients for microbial 

growth and colonization (Zeng et al. 2016; Tao et al. 2015). The impacts of inorganic fertilizers 

can vary based on application duration, with establishing equilibrium within the soil ecosystem 

requiring considerable time (Moscatelli et al. 2008). Consequently, numerous studies emphasize 

the importance of long-term field experiments to comprehensively assess the effects of diverse 

farming systems on soil quality and productivity (Francioli et al. 2016; Hartmann et al. 2015; 

Merbach and Schulz 2013). While soil pH is commonly recognized as a key factor influencing 

bacterial diversity, soil fungal diversity tends to be less affected by pH variations (Rousk et al. 

2010). Additionally, using autoclaved citrate extractable (ACE) protein has been identified as a 

potential indicator of soil health (Das et al. 2023; Hurisso et al. 2018). 

For sustainable agriculture, it is an utmost need to study how long-term fertilization 

impacts soil nutrients, microbiomes, and crop productivity in different cropping systems and 

understand their functional mechanisms. Our study involving century-long cropping and fertility 

management studies intricate relationships between long-term fertilization, soil microbial 

communities, and their effects on agricultural systems. We found that adding legume cover 

crops, even without chemical fertilizers, significantly increased microbial diversity and richness. 

While short-term nitrogen (N) fertilization was associated with reduced microbial diversity, our 

results indicate that balanced, long-term N addition led to higher bacterial diversity and richness. 

However, it's noteworthy that fungal diversity and richness declined with N application, 

suggesting a detrimental impact on fungal communities. Despite earlier concerns that long-term 
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chemical fertilizer use might disrupt soil bacterial richness and diversity, our findings indicate 

that bacterial diversity and richness remained relatively stable in the standard treatment over 

time. This stability implies that microbial communities have adapted to prolonged fertilizer 

application. Our research underscores the importance of understanding how soil microbiomes 

respond to long-term fertilization in diverse cropping systems, providing valuable insights for 

sustainable agriculture and ecosystem management. 
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Figure 3-1: Long term fertility treatment has impact on microbial diversity and richness. 
(A) Bacterial Chao1 richness (B) bacterial Shannon diversity (C) fungal Chao1 richness and (D) 
fungal Shannon diversity across different treatments. Nonmetric dimensional scaling (NMDS) 
analysis of (E) bacterial and (F) fungal community. 
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Figure 3-2: Canonical analysis of principal coordinates (CAP) bi-plot ordination (based 
upon a Bray-Curtis distance) showing canonical axes (CAP1, CAP2) that best discriminate 
treatments groups of (A) bacterial and (B) fungal communities. The correlation with canonical 
axes are only shown when the Pearson's correlation coefficient is >0.6. The length of each vector 
line is proportional to the strength of the correlation. 
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Figure 3-3: Bacterial and fungal communities differ across fertilizer treatment. (A) Relative 
abundance of the top 15 bacterial genera and (B) top 15 fungal genera across treatment groups. 
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Figure 3-4: Long term fertilization results in enrichment of various bacterial and fungal 
taxa across treatments. Differential abundance analysis and identification of microbial markers 
as predictive signatures through linear discriminant analysis (LDA) in (A) bacterial genera (B) 
fungal genera. based on effect size measurements (LEfSe) analysis. A taxon is considered as 
significantly different according to a LDA score of ≥ 3. 
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Figure S 3-1: Study site and treatment design of Cullars Rotation site at Auburn University. (A) 
Satellite image of Cullars rotation site with individual plots and blocks. (B) Treatment design of 
each plot in Cullars rotation and treatment plots used in this study. (C) Treatment blocks showing 
distribution of treatment plan. 
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Figure S 3-2: Pearson correlation analysis to identify the relationship between soil properties in 
different fertility treatments and bacterial communities. 
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Figure S 3-3: Pearson correlation analysis to identify the relationship between soil properties in 
different fertility treatments and fungal communities. 
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Figure S 3-4: Distribution of soil (A) bacterial and (B) fungal microbial communities at the 
phylum level. 
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Figure S 3-5: Total number of differentially abundant bacterial taxa identified using DESeq2, 
Corncob, and Maaslin2. 
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Figure S 3-6: Microbial biomarkers as predictive signatures through linear discriminant analysis 
(LDA) across (A) No P vs Std fertilization, (B) No N/+legume vs No N/No Legume (C) No K vs 
Std fertilization. A taxon is considered as significantly different according to a LDA score of ≥ 3. 
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Figure S 3-7: Microbial biomarkers as predictive signatures through linear discriminant analysis 
(LDA) across (D) No N/No Legume vs No winter legumes + N and (E) No Lime vs No soil 
amendments treatment. A taxon is considered as significantly different according to a LDA score 
of ≥ 3. 
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Table S 3-1A: Influence of various factors on bacterial Chao1 richness 

 
 

Table S 3-1B: Bacterial Chao1 richness between treatments 

 
 
Table S 3-1C: Bacterial Shannon diversity index based on Kruskall walis rank sum test 

 
 

Df Sum sq Mean Sq F value Pr(>F)
treatment 7 130582 18655 13.333 2.09E-09
time 2 2102 1051 0.751 0.477
treatment:time 14 18094 1292 0.924 0.541
Residuals 48 67157 1399
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Treatments diff lwr upr Padj
No lime-No K -142.48228 -198.34769 -86.616864 0 ***
No N/+legume-No K -56.911267 -112.77668 -1.045852 0.0430404 *
No N/No legume-No K -89.758033 -145.62345 -33.892617 0.0001513 ***
No P-No K -79.746849 -135.61227 -23.881434 0.0009785 **
No soil amendments-No K -44.917416 -100.78283 10.947999 0.2010368
No winter legumes +N-No K -9.421554 -65.28697 46.443861 0.9993972
Std fertilization-No K -53.9924 -109.85782 1.873015 0.0649577
No N/+legume-No lime 85.571012 29.705596 141.436427 0.0003337 **
No N/No legume-No lime 52.724246 -3.141169 108.589662 0.0771555
No P-No lime 62.73543 6.870014 118.600845 0.0178624 **
No soil amendments-No lime 97.564863 41.699448 153.430278 0.0000336 ***
No winter legumes +N-No lime 133.060725 77.19531 188.92614 0 ***
Std fertilization-No lime 88.489879 32.624464 144.355294 0.0001925 **
No N/No legume-No N/+legume -32.846765 -88.712181 23.01865 0.5820193
No P-No N/+legume -22.835582 -78.700997 33.029833 0.8962496
No soil amendments-No N/+legume 11.993851 -43.871564 67.859266 0.9971667
No winter legumes +N-No N/+legume 47.489713 -8.375702 103.355128 0.1496854
Std fertilization-No N/+legume 2.918867 -52.946548 58.784282 0.9999998
No P-No N/No legume 10.011183 -45.854232 65.876599 0.9991051
No soil amendments-No N/No legume 44.840616 -11.024799 100.706032 0.2027471
No winter legumes +N-No N/No legume 80.336478 24.471063 136.201894 0.0008788 **
Std fertilization-No N/No legume 35.765633 -20.099783 91.631048 0.474426
No soil amendments-No P 34.829433 -21.035982 90.694848 0.5085303
No winter legumes +N-No P 70.325295 14.45988 126.19071 0.0051518 **
Std fertilization-No P 25.754449 -30.110966 81.619864 0.8238365
No winter legumes +N-No soil amendments 35.495862 -20.369553 91.361277 0.4841909
Std fertilization-No soil amendments -9.074984 -64.940399 46.790431 0.9995285
Std fertilization-No winter legumes +N -44.570846 -100.43626 11.294569 0.2088379

Kruskal chi square df p value Remarks
Treatment 40.23 7 1.14E-06 ***
Time 0.80613 2 0.6352
Treatment:time 46.432 23 0.002642 **
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Table S 3-1D: Influence of various treatments in bacterial communities based on pairwise 
wilcox test for treatment. 

 
 
Table S 3-1E: Influence of various factors in fungal chao1 richness 

 
 
Table S 3-1F: Pairwise comparison of Fungal Chao1 richness between treatments 

 
 

No K No lime No N/+legume No N/No legumeNo P No soil amendmentsNo winter legumes +N
No lime 0.00038 - - - - - -
No N/+legume 0.03501 0.00154 - - - - -
No N/No legume 0.00058 0.00066 0.51534 - - - -
No P 0.00931 0.00066 0.73629 0.75749 - - -
No soil amendments 0.02838 0.00471 0.75749 0.62291 0.79617 - -
No winter legumes +N 0.51534 0.00038 0.11348 0.00101 0.01675 0.08286 -
Std fertilization 0.00066 0.00038 0.75749 0.05507 0.09726 0.75749 0.00346

Df Sum Sq Mean Sq F value Pr(>F)
treatment 7 1429 204 2.561 0.0252
time 2 16835 8417 105.635 <2e-16
treatment:time 14 1914 137 1.716 0.0835
Residuals 48 3825 80

Treatments comparison diff lwr upr P adj Remarks
No lime-No K 4.3333333 -8.998922 17.66558829 0.9674189
No N/+legume-No K 6.7777778 -6.554477 20.11003274 0.7416481
No N/No legume-No K -2.1388889 -15.471144 11.19336607 0.9995656
No P-No K 0.8333333 -12.498922 14.16558829 0.9999993
No soil amendments-No K 3.1666667 -10.165588 16.49892163 0.9947048
No winter legumes +N-No K -8.9722222 -22.304477 4.36003274 0.4099675
Std fertilization-No K 1.3333333 -11.998922 14.66558829 0.9999819
No N/+legume-No lime 2.4444444 -10.887811 15.77669941 0.9989624
No N/No legume-No lime -6.4722222 -19.804477 6.86003274 0.7831183
No P-No lime -3.5 -16.832255 9.83225496 0.9903268
No soil amendments-No lime -1.1666667 -14.498922 12.16558829 0.9999928
No winter legumes +N-No lime -13.3055556 -26.637811 0.02669941 0.0508002
Std fertilization-No lime -3 -16.332255 10.33225496 0.9962034
No N/No legume-No N/+legume -8.9166667 -22.248922 4.41558829 0.417966
No P-No N/+legume -5.9444444 -19.276699 7.38781052 0.8469738
No soil amendments-No N/+legume -3.6111111 -16.943366 9.72114385 0.9883701
No winter legumes +N-No N/+legume -15.75 -29.082255 -2.41774504 0.0105977 *
Std fertilization-No N/+legume -5.4444444 -18.776699 7.88781052 0.8967141
No P-No N/No legume 2.9722222 -10.360033 16.30447718 0.9964162
No soil amendments-No N/No legume 5.3055556 -8.026699 18.63781052 0.9085309
No winter legumes +N-No N/No legume -6.8333333 -20.165588 6.49892163 0.7338119
Std fertilization-No N/No legume 3.4722222 -9.860033 16.80447718 0.9907736
No soil amendments-No P 2.3333333 -10.998922 15.66558829 0.9992324
No winter legumes +N-No P -9.8055556 -23.137811 3.52669941 0.2991374
Std fertilization-No P 0.5 -12.832255 13.83225496 1
No winter legumes +N-No soil amendments -12.1388889 -25.471144 1.19336607 0.0985215
Std fertilization-No soil amendments -1.8333333 -15.165588 11.49892163 0.9998439
Std fertilization-No winter legumes +N 10.3055556 -3.026699 23.63781052 0.2422346
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Table S 3-1G: Fungal Chao1 richness between sampling time 

 
 
Table S 3-1H: Fungal Shannon diversity index based on Kruskall walis rank sum test 

 
 
Table S 3-1I: Pairwise comparison of fungal communities and time of sampling 

 
 
Table S 3-2A: PERMANOVA Bacterial beta diversity  

 
 
Table S 3-2B: Permutation test for homogeneity of multivariate dispersions to determine if the 
variance differ by treatment group. 

 
 
Table S 3-2C: Pairwise adonis for pairwise comparison against various treatment and time 

No N/+legume vs standard fertilization 

 
 

Time comparison diff lwr upr P adj Remarks
end-early -33.083333 -39.315497 -26.851169 0 ***
mid-early -31.75 -37.982164 -25.517836 0 ***
mid-end 1.333333 -4.898831 7.565497 0.8632367

Factors Kruskal chi square df p value Remarks
Treatment 11.118 7 1.34E-01
Time 15.485 2 0.0004341 ***
Treatment:time 37.524 23 0.02863 *

early end
end 0.00062 -
mid 0.00191 0.631

Factors Df SumOfSqs R2 F Pr(>F) Remarks
treatment 7 5.3873 0.4843 8.5487 0.000999 ***
time 2 0.4527 0.04069 2.5141 0.000999 ***
treatment:time 14 0.9626 0.08653 0.7637 0.991009
Residual 48 4.3213 0.38847
Total 71 11.1239 1

No K No lime No N/+legume No N/No legume No P No soil amendments No winter legumes +NStd fertilization
No K 0.521479 0.113886 0.324675 0.582418 0.131868 0.062937 0.1389
No lime 0.539273 0.452547 0.719281 0.98002 0.405594 0.383616 0.5195
No N/+legume 0.112973 0.435823 0.762238 0.421578 0.777223 0.935065 0.9131
No N/No legume 0.317624 0.70011 0.761374 0.678322 0.638362 0.703297 0.8262
No P 0.571065 0.977793 0.432661 0.686924 0.380619 0.341658 0.5025
No soil amendments 0.140549 0.388989 0.782238 0.632537 0.385405 0.829171 0.7383
No winter legumes +N 0.06716 0.362944 0.934771 0.699387 0.364098 0.806086 0.8462
Std fertilization 0.148754 0.499965 0.915765 0.829727 0.493982 0.728605 0.842355

Factors Df SumOfSqs R2 F Pr(>F) Remarks
treatment 1 2027405 0.13017 2.1241 0.012 *
time 2 1017417 0.06532 0.533 0.189
treatment:time 2 1076698 0.06913 0.564 0.946
Residual 12 11453734 0.73538
Total 17 15575254 1
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No P vs No lime 

 
 
Table S 3-2D: PERMANOVA of fungal diversity 

 
 
Table S 3-2E: Pairwise permanova between timepoints for fungal communities 

Early vs mid-season 

 
Early vs end season 

 
Mid vs end-season 

 
 

Factors Df SumOfSqs R2 F Pr(>F) Remarks
treatment 1 1942881 0.11652 1.8681 0.028 *
time 2 1208597 0.07248 0.581 0.653
treatment:time 2 1042355 0.06251 0.5011 0.984
Residual 12 12480140 0.74848
Total 17 16673973 1

Factors Df SumOfSqs R2 F Pr(>F) Remarks
treatment 1 1918752 0.1093 1.7407 0.029 *
time 2 1268892 0.07228 0.5756 0.728
treatment:time 2 1139900 0.06493 0.5171 0.993
Residual 12 13227726 0.75349
Total 17 17555269 1

Factors Df SumOfSqs R2 F Pr(>F) Remarks
treatment 7 3.429 0.09679 0.9798 1
time 2 1.141 0.03221 1.1412 0.001998 **
treatment:time 14 6.859 0.19359 0.9798 0.964036
Residual 48 24 0.6774
Total 71 35.429 1

Factors Df SumOfSqs R2 F Pr(>F) Remarks
time 1 25711087 0.02241 1.0543 0.001 ***
Residual 46 1121792244 0.97759
Total 47 1147503330 1

Factors Df SumOfSqs R2 F Pr(>F) Remarks
time 1 21262479 0.02266 1.0664 0.001 ***
Residual 46 917156278 0.97734
Total 47 938418756 1

Factors Df SumOfSqs R2 F Pr(>F)
time 1 29605501 0.02128 1 1
Residual 46 1361853033 0.97872
Total 47 1391458533 1
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4. CHAPTER FOUR: Genetic and functional diversity help explain pathogenic, 

weakly pathogenic, and commensal lifestyles in the genus Xanthomonas 
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Abstract  

The primary focus of research on the genus Xanthomonas has been its pathogenic 

interactions with plants, with distinct pathovars demonstrating a high level of specificity towards 

particular hosts and tissues. However, this genus also comprises nonpathogenic strains from 

diverse hosts and environments, including rainwater, which are frequently isolated with the 

pathogenic strains. Based on their capacity to cause no or minor symptoms on the host of 

isolation under favorable conditions, nonpathogenic xanthomonads can be further characterized 

as commensal and weakly pathogenic. The diversity and evolution of these diverse lifestyles 

within this genus are poorly characterized. This study aimed to understand the diversity and 

https://doi.org/10.1101/2023.05.31.543148
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evolution of nonpathogenic xanthomonads compared to their pathogenic counterparts based on 

their co-occurrence or phylogenetic relationship and to identify genomic traits that form the basis 

of a life-history framework that groups xanthomonads by ecological strategies. We sequenced 

genomes of 83 strains spanning the genus phylogeny and identified eight novel species, 

indicating unexplored diversity. While some nonpathogenic species have experienced a recent 

loss of type III secretion system, specifically, hrp2 cluster, we observed an apparent lack of 

association of hrp2 cluster with lifestyles of diverse species. We gathered evidence for gene flow 

among co-occurring pathogenic and nonpathogenic strains, suggesting the potential of 

nonpathogenic strains to act as a reservoir of adaptive traits for pathogenic strains. We further 

identified traits enriched in nonpathogens that suggest their strategies of tolerance rather than 

avoidance of stressors they may experience during their association with a broad range of host 

plants. 

4.1 Introduction 

The genus Xanthomonas, traditionally considered to group plant pathogenic bacteria, 

encompasses bacterial strains that although they maintain close association with plants, do not 

cause apparent disease symptoms in their host of isolation (Bansal et al., 2021; Essakhi et al., 2015; 

Garita-Cambronero et al., 2017; Martins et al., 2020; Merda et al., 2016, 2017; Vauterin et al., 

1996). Nonpathogenic xanthomonads have a varied lifestyle with the ability to colonize the plant 

hosts and survive in various environments outside the plants, such as rain and aerosols (Mechan 

Llontop et al., 2021; Vauterin et al., 1996). Although referred to as nonpathogenic in the context 

of their phenotype based on artificial inoculation on the host of isolation, it cannot be ruled out 

that these strains may cause disease in other hosts. Some of these nonpathogenic Xanthomonas 

strains have been isolated together with pathogenic relatives from a diversity of host plants, at 
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times, from the same lesion in infected plants or asymptomatic hosts or seed-lots or transplants 

(Gitaitis, 1987; Vauterin et al., 1996). Some of these nonpathogenic xanthomonads are 

opportunistic pathogens under favorable conditions (Vauterin et al., 1996) and have amylolytic 

and/or pectolytic activity, which allows them to cause soft rot on their host (Gitaitis, 1987; Zarei 

et al., 2022). Vauterin et al. (1996) systematically characterized seventy diverse nonpathogenic 

xanthomonads based on fatty acid methyl ester (FAME) and sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) protein patterns. This pioneering study indicated 

potential new species and the need to address the diversity and relatedness of nonpathogenic strains 

to the pathogenic strains of xanthomonads from an ecological viewpoint and the practical aspects 

of disease diagnostics and management strategies. In the last two decades, several studies have 

addressed this question of diversity, focusing on individual species, using more advanced methods 

of multi-locus sequence typing and genome sequencing (Bansal et al., 2020, 2021; Cesbron et al., 

2015; Essakhi et al., 2015; Gonzalez et al., 2002; T. Li et al., 2020; Triplett et al., 2015). Whole 

genome-based phylogeny placed the crop-associated nonpathogenic xanthomonads in the species 

arboricola, cannabis, belonging to Group 2 (Cesbron et al., 2015; Jacobs et al., 2015; Merda et 

al., 2016, 2017) and some in the newly described species, such as X. sontii (Bansal et al., 2021), 

belonging to the early branching clade, Group 1. Apart from X. arboricola and X. campestris, 

which house both pathogenic and nonpathogenic strains simultaneously isolated from 

symptomatic hosts (Lee et al., 2020; Martins et al., 2020), other nonpathogenic strains are only 

distantly related to the co-colonizing pathogenic strains (Vauterin et al., 1996).  

These nonpathogenic strains are diverse in their phylogenetic placements and vary in their 

makeup of type III secretion systems (T3SS) and associated effectors. The T3SS, encoded by the 

hrp2 cluster and type III effectors and/or their repertoires, are important determinants of 
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pathogenicity in xanthomonads, and individual effectors or their repertoires have been 

hypothesized to contribute towards host specificity (Hajri et al., 2009; Jacques et al., 2016; White 

et al., 2009). Pathogenic xanthomonads belonging to X. maliensis, X. cannabis, X. 

pseudoalbilineans, and X. sacchari are an exception in that they lack a hrp2 T3SS, but some 

possess regulators of T3SS (Triplett et al. 2015; Jacobs et al. 2015, Studholme et al. 2011, Pieretti 

et al. 2015). Knowing the importance of T3SS and associated effectors in the pathogenicity of 

xanthomonads, it is unsurprising that most nonpathogenic xanthomonads lack T3SS. Such 

nonpathogenic xanthomonads lacking T3SS, specifically X. arboricola, have been previously 

referred to as commensal xanthomonads. However, Merda et al. (2017) further showed that some 

commensal strains of X. arboricola possess T3SS but contain only 3-4 effectors. Some commensal 

strains lack hrp2 cluster but have up to four effectors (Cesbron et al., 2015). 

Interestingly, some X. arboricola strains have been reported as weak pathogens based on 

pathogenicity tests showing faint or mild water-soaking symptoms on the host of isolation (Roach 

et al., 2018; Sawada et al., 2011). Further genome analysis of weakly pathogenic X. arboricola 

strains revealed a limited set of effectors compared to pathogenic strains, in some cases, up to 16 

effectors (Roach et al., 2019), suggesting the possibility of these strains be potentially pathogenic 

on other hosts. This heterogenic distribution of T3SSs and variable T3E repertoires make 

nonpathogenic strains a suitable model to study the evolutionary history of the hrp2 T3SS family, 

effectors, and associated regulators in xanthomonads (Cesbron et al., 2015; Merda et al., 2017). 

Merda et al. (2017) inferred ancestral acquisitions of the hrp2 cluster in Xanthomonas and 

indicated loss or subsequent gain in certain clades in 82 genomes spanning the genus 

Xanthomonas. As we uncover additional diversity in the genus Xanthomonas, evolutionary gain 

and loss of different types of T3SSs, including atypical T3SSs (Pesce et al., 2017; Pieretti et al., 
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2015) in xanthomonads along with effectors and regulators can be a valuable approach to 

understand the role of T3SSs in allowing intimate association of xanthomonads with plants and to 

further determining their lifestyle.  

The presence of nonpathogenic xanthomonads in association with pathogenic 

xanthomonads from the same infected tissues raises the important question of whether the 

presence of nonpathogenic xanthomonads influences the population dynamics of pathogenic 

xanthomonads and vice versa, either through the exchange of genetic material or through sharing 

of public goods, such as cell-wall degrading enzymes or their products of degradation 

(Sadhukhan et al., 2023). Profiling of the mobile genetic elements (MGEs) shared between 

pathogenic and nonpathogenic strains can provide critical information to understand how genes 

and their encoded functions can be exchanged via horizontal gene transfer. These MGEs can 

influence selection pressure-driven changes in the population dynamics of pathogens and 

nonpathogens. Such events linked to pathoadaptation have been proposed (Cesbron et al., 2015; 

Meline et al., 2019).  

Xanthomonas strains were recently found in the endosphere of Arabidopsis as a part of 

the At-LSPHERE collection. Evaluation of these strains' pathogenicity on wild-type Arabidopsis 

and immunocompromised plants confirmed their opportunistic or conditional pathogenic nature 

based on aggressive symptoms on immunocompromised plants lacking plant NADPH oxidase 

(RBOHD) (Pfeilmeier et al., 2021). This study further highlighted the role of microbial 

community members and microbiota-induced plant immunity in reducing the prevalence of 

opportunistic strains. On the other hand, a closely related endophytic Xanthomonas strain, 

WCS2014-23, was identified as a member of the consortium recruited to the rhizosphere of 

Arabidopsis thaliana upon foliar infection with the biotrophic pathogen and played a role in 
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induced systemic resistance against the biotrophic pathogen and enhancing plant growth 

(Berendsen et al., 2018). These findings raise the question of whether nonpathogenic 

xanthomonads play an important role as resident and functional members of the phyllosphere 

microbiome or are transient nonfunctional community members. A related question is if the so 

far uncharacterized xanthomonads that have been isolated from rainwater are bona fide 

phyllosphere microbiome members that are only transiently present in the atmosphere or if they 

present a separate population of non-plant-associated xanthomonads (Failor et al., 2017).  

In this study, we set out to address the above-mentioned knowledge gaps on the overall 

diversity of nonpathogenic xanthomonads regarding the genetic diversity of strains, associated 

virulence factors, and mobile genetic elements. We also focused on understanding the evolution 

of pathogenic and nonpathogenic strains and deciphering genes associated with the adaptation of 

these diverse strains to different lifestyles in association with plants and the environment. We 

sequenced a collection of 83 presumptive nonpathogenic Xanthomonas strains from diverse hosts, 

environments, and geographical locations. The phylogenetic placement of these strains spanned 

the entire genus, including the identification of potentially new species. The heterogeneous 

distribution of T3SS and associated effectors across pathogenic, weakly pathogenic, and 

commensal strains suggested a lack of apparent association of these important pathogenicity 

factors with the lifestyle of Xanthomonas strains. Thus, we used an integrated approach of 

comparative genomics and association analysis to identify the genomic attributes associated with 

these lifestyles of strains spanning the genus phylogeny.  
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4.2 Materials and Methods 

4.2.1 Bacterial strains collection and genome sequencing 

Nonpathogenic Xanthomonas strains collected from different plant hosts and 

environmental samples (Table S4-1) were used for genomic DNA extraction using the CTAB-

NaCl method (William et al., 2012). Degradation and contamination of the genomic DNA were 

monitored on 0.5% agarose gels. DNA concentration was measured using a Qubit® DNA Assay 

Kit on a Qubit® 2.0 Fluorometer (Life Technologies, CA, USA) and submitted to the Joint 

Genome Institute (JGI) for library preparation and sequencing. Paired-end reads were generated 

by multiplexing 12 libraries in a single lane on the Illumina NovaSeq (PE150) platform. Raw reads, 

annotation data, and final assembly are in the JGI data portal (http://genome.jgi.doe.gov). The 

information for 83 newly sequenced genomes from this study is in Table S4-1. 

4.2.2 Genome-based identification of Xanthomonas strains  

Comparative genomic analysis was performed among 134 Xanthomonas strains, including 

83 strains from this study and 51 representative Xanthomonas strains from NCBI (Table S4-2). 

Average nucleotide identity (ANI) was estimated using all-versus-all strategies using FastANI 

(v1.1) (Jain et al., 2018) and pyani (v0.2.12) (Pritchard et al., 2015). We also used the ANI values 

from the web server LINbase (Tian et al., 2020) and Microbial Species Identifier (MiSI) (Varghese 

et al., 2015) as additional tools in species circumscription. The MiSI method addresses 

inconsistencies based on ANI alone and includes alignment fractions and genome-wide ANI 

values. Additionally, twenty strains representing the novel species diversity were subject to the 

Type (Strain) Genome Server (https://tygs.dsmz.de/) to calculate digital DNA-DNA hybridization 

(dDDH) values based on the Genome BLAST Distance Phylogeny (Meier-Kolthoff et al., 2013). 

http://genome.jgi.doe.gov/
https://tygs.dsmz.de/
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A combination of ANI, dDDH, and MiSI was used to designate the "new species" status to a given 

strain only when values were below the accepted threshold (≤95% for ANI and ≤70% for dDDH) 

(Kim et al., 2014).  

The whole proteome of the 134 Xanthomonas strains was compared by OrthoFinder 

(v2.5.2) (Emms & Kelly, 2019) to identify orthogroups using the original algorithm (Emms & 

Kelly, 2015). The identified orthogroups were used to infer unrooted gene trees using the BLAST-

based hierarchical clustering algorithm DendroBLAST (Kelly & Maini, 2013). Using this set of 

unrooted gene trees, the STAG algorithm identified the closest pair of genes from those species to 

infer an unrooted species tree (Emms & Kelly, 2018). The unrooted species tree inferred from 

STAG was then rooted using the STRIDE algorithm (Emms & Kelly, 2017) by identifying well-

supported gene duplication events. The resulting cladogram was visualized with R package ggtree 

(G. Yu et al., 2017). 

To identify and visualize possible conflicting signals that would suggest recombination 

events and evolutionary relationships within the Xanthomonas sequence data, Multi-locus 

sequence analysis (MLSA) was carried out for 12 housekeeping genes fragments (gyrB, gapA, 

lacF, gltA, fsuA, lepA, atpD, rpoD, glnA, efP, dnaK, and fyuA) using autoMLSA2 (v0.7.1) 

(https://github.com/davised/automlsa2). The resultant splits.nex file was used in SplitsTree4 

(v4.17.0) (Huson et al., 2008) to develop a phylogenetic network. The possibility of recombination 

events was identified by the branches that form parallelograms (Joseph & Forsythe, 2012).  

4.2.3 Analysis of the gain and loss dynamics of the T3SS clusters 

Protein sequences of T3Es representing all effector families, putative effectors, and their 

diversity were also identified in genome sequences using tBLASTn searches. The T3SS-coding 

genes from five different Xanthomonas species (X. campestris pv. vesicatoria 85-10, X. campestris 

https://github.com/davised/automlsa2
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pv. campestris ATCC33913, X. translucens pv. translucens DSM18974, X. albilineans CFBP 

2523, and Xanthomonas sp. 60), were used as query to perform BLASTn searches on Xanthomonas 

strains genomes using autoMLSA2 (v0.7.1) with the cut-offs set to 40% identity and 30% 

coverage. Heatmaps for the blast searches were generated using the R package Pheatmap 

(v1.0.12).  

Branch-specific gain and loss probabilities of Xanthomonas T3SS genes during the 

evolution were inferred with the species tree and presence/absence in the 134 genomes using 

GLOOME (Cohen et al., 2010). GLOOME analyzes presence and absence profiles (phyletic 

patterns) and accurately infers branch-specific and site-specific gain and loss events. We first 

inferred the gain and loss dynamics of all genes encoding components of the T3SS. Specifically, 

we searched the genes of four T3SS clusters: (1) hrp2 cluster derived from X. campestris pv. 

campestris ATCC33913 (Xcc cluster, 22 genes); (2) X. translucens pv. translucens DSM18974 

(Xtra cluster, 18 genes); (3) X. albilineans CFBP 2523 (Xalb cluster, 11 genes); (4) Xanthomonas. 

sp. 60 (strain 60 cluster from this study, 11 genes). We additionally searched for the presence and 

absence of genes encoding transcription factors involved in T3SS-related pathogenicity: HrpG, 

HrpX, HpaR, and HpaS (four genes). These 66 genes were searched in the 134 genomes using 

BLASTp. A hit was considered if the identity percentage was at least 50%, the E-value was lower 

than 10-10, and the coverage was at least 30%. When a hit was detected to two or more genes from 

different T3SS clusters, the one with the highest bit-score was retained. As the phylogenetic tree 

for the analysis, we used the species tree generated by OrthoFinder. The final GLOOME analysis 

was performed with default parameter values. Graphical visualization of the tree was done using 

FigTree (v1.4.4) (http://tree.bio.ed.ac.uk/software/figtree/).  

http://tree.bio.ed.ac.uk/software/figtree/
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4.2.4 Prediction of Mobile Genetic Elements 

To study the genomic differences driven by mobile genetic elements (MGE) in the genus 

Xanthomonas, we used Mobile Genetic Element Finder (MGEfinder) (v1.0.6) (Durrant et al., 

2020). MGEfinder assembles the short reads and aligns them to a reference genome to find 

insertions (Durrant et al., 2020). Xanthomonas reads from this study and representative short reads 

were downloaded from NCBI's SRA database and trimmed using Trim Galore (v0.6.6) 

(https://github.com/FelixKrueger/TrimGalore). Reference genomes were indexed, and the cleaned 

reads were aligned with BWA-MEM (v0.7.17) (H. Li & Durbin, 2009). Target strains were 

assigned to pathogenic reference genomes according to their phylogenetic placement generating 

eight clusters (Table S4-2). Each cluster contains a representative/type strain and the strains from 

this study. The predicted mobile genetic islands were annotated using a consensus from BLASTx 

results in NCBI, JGI, and UniProt. Islands containing carrier genes of potential interest were 

further analyzed using JGI BLASTp and gene neighborhood viewer to locate transposases or 

phage-related genes associated with or flanking the island. Additionally, EasyFig (v2.2.2) 

(Sullivan et al., 2011) was used to visualize the insertion location of mobile genetic elements 

within genomes. 

4.2.5 Comparison of secreted carbohydrate-active enzymes 

We screened the genomes of commensal, weakly pathogenic, and pathogenic 

Xanthomonas strains for the presence of various genes involved in breakdowns (CEs, PLs, GHs) 

and assembly (GTs) of carbohydrates, lignin degradation (AAs), and the carbohydrate-binding 

module (CBM) (Kaoutari et al., 2013; Lairson et al., 2008). Carbohydrate active enzymes 

(CAZymes) were assigned to Prokka (v1.14.5) (Seemann, 2014) protein output files (.faa files) 

https://github.com/FelixKrueger/TrimGalore
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using run_dbcan command (https://github.com/linnabrown/run_dbcan) against the HMMER, 

DIAMOND, and eCAMI databases with default settings. Final CAZyme domain annotations were 

the best hits based on the outputs of at least two databases to investigate the genomic potential of 

various species for carbohydrate utilization. To assess the impacts of different lifestyles on the 

secreted CAZyme count while considering phylogenetic signals, pairwise phylogenetic distances 

were created between the genomes using the function tree.distance() from the package biopython 

phylo (Cock et al., 2009), which was then used to build a principal component analysis (PCA). 

The CAZyme count for each genome from the run_dbcan step was then converted into a distance 

matrix with the function vegdist (method="jaccard") from the Vegan (v2.6-4) R package (Dixon, 

2003) (Oksanen et al. 2009). Permutational multivariate analysis of variance (PERMANOVA) was 

performed to determine the effect of phylogeny and microbial lifestyle on the distribution of 

CAZymes with the function adonis2 from the Vegan R package. Pairwise comparisons between 

the lifestyles were carried out using the function pairwise.perm.manova (from R package 

RVaidememoire) to understand the difference between lifestyles in terms of their  genome content 

as described in Miyauchi et al. (2020). 

4.2.6 Pathogenicity assays and co-inoculation experiments 

A subset of Xanthomonas strains isolated from tomato were further tested for their 

pathogenicity by dip-inoculating tomato plants (susceptible cultivar FL 47R). 4-5 weeks old 

tomato plants were dip-inoculated with an inoculum of overnight grown Xanthomonas strains 

adjusted to 106 CFU/ml in MgSO4 buffer amended with 0.0025% (vol/vol) Silwet L-77 

(PhytoTechnology Laboratories, Shawnee Mission, KS, USA) and maintained under greenhouse 

conditions. The symptoms on leaves and in-planta bacterial population were recorded after ten 

days. The in-planta bacterial population was estimated by sampling 2cm2 leaf tissue using a cork-

https://github.com/linnabrown/run_dbcan
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borer, homogenizing the tissue in 1ml of MgSO4 buffer, and plating on Nutrient Agar using a spiral 

plater (Neu-tecGroup Inc., NY). Plates were incubated at 28°C for three days, and the population 

for each Xanthomonas strain was determined as colony-forming units per centimeter squared of 

leaf area.  

A coinfection experiment was conducted to gain experimental evidence for the exchange 

of genetic material among commensal and pathogenic Xanthomonas under host selection pressure. 

Pathogenic Xanthomonas, X. euvesicatoria 85-10 carrying the intact avrBs1 gene and the 

commensal Xanthomonas strain T55 were co-inoculated onto pepper cv. Early Cal Wonder (ECW, 

susceptible cultivar) and ECW-10R (carrying the Bs1 resistance gene, resistant cultivar) using the 

dip-inoculation method described above at the inoculum concentration of 107 CFU/ml. The plants 

were maintained under greenhouse conditions for two weeks, and the leaf tissue containing lesions 

was sampled from resistant and susceptible cultivars. Inactivation of the avrBs1 gene by 

transposons was tested by PCR using primers flanking transposons on transconjugants obtained 

from these samples.  

4.2.7 Identification of lifestyle-associated genes  

We retrieved 1,834 Xanthomonas genomes from the NCBI GenBank RefSeq database to 

ensure a high-quality and minimally biased set of genomes. These genomes were then de-

replicated using dRep (v3.2.2) (Olm et al., 2017) to de-replicate the complete dataset using a 95% 

minimum genome completeness cut-off and 5% maximum contamination. The ANI threshold to 

form primary clusters (-pa) was set at 0.95 (species level) and 0.99 (strain level) for the secondary 

cluster. During secondary comparisons, a minimum level of overlap between genomes was set to 

80% coverage. The de-replicated genomes were manually curated to include the 83 new genomes 

generated in this work in addition to representative genomes from diverse Xanthomonas species 
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belonging to groups 1 and 2. A total of 337 genomes were selected for downstream analysis (Table 

S4-3). OrthoFinder was used as a clustering approach to compare the whole proteome of the 337 

Xanthomonas strains with the default settings as previously described. To determine significantly 

enriched or depleted protein clusters in different Xanthomonas lifestyles, we used the 

hypergeometric test, PhyloGLM, and Scoary as described in Levy et al. (2018). Among the three 

methods, the hypergeometric test looks for the overall enrichment of genes without considering 

the dataset's phylogenetic structure. PhyloGLM is a phylogenetic-aware method that eliminates 

enrichments related to shared ancestry (Ives & Garland, 2010), while Scoary combines the 

phylogeny-aware test, Fisher's exact test, and empirical label-switching permutation analysis 

(Brynildsrud et al., 2016). All these approaches were used on gene presence/absence and gene 

copy-number data and used for PhyloGLM test. A gene was considered significant a) if it had a q-

value < 0.05 for Fisher's exact test and an empirical p-value < 0.05 for Scoary; b) if it had a 

corrected p-value with FDR with q < 0.01 for hypergeometric test; and c) a p-value < 0.01 along 

with an estimate of < -1.5 or > 1.5 in copy number analysis for PhyloGLM. We used eggNOG-

mapper (v2.1.7) (Cantalapiedra et al., 2021) to address COG categories to each significantly 

enriched and depleted protein cluster from the combination of two or more methods 

(hypergeometric, PhyloGLM, and Scoary) in the different Xanthomonas lifestyles. In addition, 

each ortholog id was queried across the IMG database to obtain annotation based on COG, KO, 

TIGRFAM, and Pfam. Heatmaps were generated using the R package ggplot2.  
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4.3 Results 

4.3.1 General features of Xanthomonas strains from this study, potential new species, and 

core genome phylogeny 

Presumptive nonpathogenic Xanthomonas strains sequenced in this study were isolated 

from various symptomatic and asymptomatic crops, including tomato (Solanum lycopersicum) (14 

strains), pepper (Capsicum annuum) (8 strains), and common bean (Phaseolus vulgaris) (27 

strains), along with other plant species such as radish (Raphanus sativus), walnut (Juglans), orange 

(Citrus sinensis), and sunflower (Helianthus). In addition to the strains isolated from plant hosts, 

18 strains were recovered from rainwater (Table S4-1). The genome sizes among the sequenced 

strains varied from 3.6 Mb for strain 60 to 5.3 Mb for strain F5. The percent GC content ranged 

from 64.60% for strain 3075 to 69.31% for strain F10. Furthermore, the number of coding 

sequences (CDS) varied from 3,223 in strain 60 to 4,535 in strain F5. There was no apparent 

correlation between genome size, CDS, %GC and status as pathogenic and nonpathogenic (Figure 

S1). While a median genome size of 4.87 Mb and a median number of genes of 4208 are found in 

the genus Xanthomonas, one strain (60) showed a reduced genome size of 3.6 Mb and a reduced 

number of 3223 coding genes (Table S4-1). 

To determine the taxonomic placement of the 83 newly sequenced strains, ANI, dDDH, 

and MiSI were used. ANI values of the strains varied from 79% to 100% compared to the 

representative Xanthomonas strains. Nonpathogenic strains sequenced in this study belonged to 

both Xanthomonas groups. For group 1, nine strains belonged to X. euroxanthea. For group 2, 34 

strains belonged to X. arboricola, 16 to X. cannabis, 9 to X. campestris, and two to X. euvesicatoria 

(Table S4-4 and Figure S4-2, S4-3). The remaining thirteen strains showed ANI values between 

85-94% when compared with known species of Xanthomonas. These strains were assigned to eight 
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cluster-type cliques or singletons according to the MiSI method, indicating the presence of at least 

eight potentially novel species. Given the findings of potentially novel species adding diversity to 

the existing Xanthomonas genus phylogeny, we established a robust phylogenetic tree based on 

the single-copy genes of these newly sequenced strains along with type or representative strains of 

the Xanthomonas genus (Figure 4-1). The OrthoFinder analysis assigned most genes (544,723; 

99% of the total) to 11,456 orthogroups. There were 1005 orthogroups in all species, and 819 of 

these consisted entirely of single-copy genes. The phylogenetic reconstruction showed a 

considerable diversity of strains isolated from both plant hosts and the environment, and these 

strains were broadly distributed throughout the genus (Figure 4-1). 

X. sontii, X. sacchari, X. albilineans, X. hyacinthi, X. translucens, X. theicola, and the two 

recently described species X. bonasiae and X. youngii were the only known species belonging to 

Xanthomonas group 1 (Bansal et al., 2021; Mafakheri et al., 2022; Rodriguez-R et al., 2012). The 

collection sequenced here adds four new Xanthomonas species to group 1, species I (strain F5), 

species II (strain F1), species IV (strain F10), and species VIII (strains 3307, 3498, and F4), all 

isolated from citrus plants and rainwater. Another new Xanthomonas species, species III (strain 

60), from this collection clustered with early branching species at the base of the phylogenetic tree, 

along with X. retroflexus. 

Our collection also added three new species to Xanthomonas group 2 (Figure 4-1). Most 

strains sequenced here belong to clade A, specifically to X. arboricola (S4-5) and X. euroxanthea. 

Strains isolated from bean seeds (CFBP 8151 and CFBP 8152) were closely related to X. 

arboricola, and strains isolated from rainwater (3075 and 3058) belong to potentially novel species 

group, species VI and species V, respectively, within clade A (Figure 4-1). Two of our sequenced 

strains belonged to clade B and were identified as X. euvesicatoria (CFBP 7921 and CFBP 7922). 
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Strains in clade C isolated from bean seed, tomato, and nightshade plants belong to X. cannabis 

species (16 strains). This clade also harbors one novel Xanthomonas species, species VII (strains 

3793 and 4461), isolated from rainwater. Crop-associated Xanthomonas campestris strains (9 

strains) isolated from radish, bean, and tomato plants belong to clade D, including pathogenic X. 

campestris strains (Figure 4-1).  

4.3.2 Distribution of T3SS clusters across the phylogeny 

We screened three types of T3SS clusters known within the genus Xanthomonas across the 

set of genomes: (1) the hrp2 cluster present in group 2 xanthomonads (Tampakaki et al., 2010), 

(2) the SPI-1 type present in X. albilineans (Pieretti et al., 2009), and (3) the noncanonical T3SS 

cluster present in X. translucens (Wichmann et al., 2013). In addition, we also included the T3SS 

cluster from Stenotrophomonas sp. to represent the sct-type cluster from a closely related genus. 

Among the 83 newly sequenced Xanthomonas genomes, 24% contained a functional T3SS cluster 

(Figure S4-4). Strain Xanthomonas sp. 60 showed the presence of a unique sct-type T3SS cluster 

with a gene organization comparable to the one found in Stenotrophomonas chelatiphaga DSM 

21508 (Figure S4-5). Apart from partial T3SS clusters in strains of X. fragariae, we also identified 

single gene encoding protein V of sct-type cluster in X. cannabis CFB P8595, X. cannabis 8600, 

X. cannabis CFBP 8600, X. arboricola F12, X. arboricola 84A, and Xanthomonas sp. 4461 and a 

single hrpF in X. arboricola CFBP 7681 (Figure 4-2). T3SS clusters were missing in X. pisi, X. 

floridensis, X. melonis, X. maliensis, X. sontii, X. sacchari, and X. retroflexus. X. phaseoli pv. 

phaseoli CFBP 412 showed the presence of two types of T3SS, the hrp2 cluster and the SPI-1 type 

cluster present in X. albilineans, like previous findings on X. phaseoli pv. phaseoli CFBP 6164 

(Alavi et al., 2008) (Figure 4-2).  
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4.3.3 T3SS was gained and lost multiple times in the genus Xanthomonas  

To better understand the evolution of T3SS clusters in the genus Xanthomonas, we next 

studied the presence and absence patterns of T3SS clusters among the analyzed genomes. The 

phyletic pattern generated above was input to GLOOME, which maps gain and loss events onto 

the phylogeny. According to the scenario estimated with GLOOME, there were several 

independent acquisition and loss events of T3SS clusters during the evolution of xanthomonads. 

Independent acquisition of the sct-type T3SS cluster was inferred to have occurred in 

Xanthomonas sp. 60 (Figure 4-2). The ancestor of X. translucens, X. hyacinthi, Xanthomonas sp. 

F5, and X. theicola acquired the Xtr-type T3SS cluster. This cluster was found to be conserved in 

the X. translucens clade. However, it has been subsequently lost in Xanthomonas sp. F5 and 

partially lost in X. hyacinthi and X. theicola, as indicated by a partial Xtr-type cluster (Figure S4-

5 and Figure 4-2). The SPI-1 T3SS cluster was independently acquired in X. albilineans and X. 

phaseoli CFBP 412. 

Next, in addition to the probabilities of gene-gain/loss estimated by GLOOME analysis, 

we noted the genomic context and sequence identities to identify hrp2 cluster gain/loss events 

associated with group 2 xanthomonads. Based on the sequence identities of hrp2 cluster genes, 

clades A, C, and D were observed to possess the Xcc-type hrp2 cluster, while clade B, except for 

X. nasturtii, possessed the Xeu-type hrp2 cluster. It is possible that replacement of the Xcc-type 

hrp2 cluster by the Xeu-type hrp2 cluster occurred within clade B strains, except in X. nasturtii, 

through rearrangements.  

According to GLOOME analysis, regulators of T3SS, HrpX, and HrpG, were acquired by 

a common ancestor of Xanthomonas before the split into group 1 and group 2. A single loss event 

of these regulators occurred in group 2, where these genes were lost on the branch leading to X. 
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pisi DSM18956. In group 1 these genes were lost in several independent events: (1) on the branch 

leading to the common ancestor of X. albilineans, X. sontii, X. sacchari, and Xanthomonas sp. 

strains (F10, F1, F4, 3307, and 3498); (2) on the branch leading to Xanthomonas sp. F5; (3) on the 

branch leading to the common ancestor of X. retroflexus and Xanthomonas sp. 60. An alternative 

less parsimonious explanation is that these regulators were only acquired by group 2 Xanthomonas 

and were independently acquired by the cluster of X. hyacinthi, X. translucens, X. theicola, and 

Xanthomonas sp. F5, followed by loss of these genes together with loss of Xtra-type T3SS genes 

in Xanthomonas sp. F5. Similar to HrpX and HrpG, the regulators HpaR and HpaS were also 

acquired by the common ancestor of Xanthomonas before the split of group 1 and group 2. These 

regulators were lost independently on numerous occasions: (1) on the branch leading to X. 

translucens in group 1; (2) on the branch leading to X. populi in group 2, and (3) on the branch 

leading to X. oryzae in group 2. 

4.3.4 T3E repertoire ranges from zero to forty-one in crop-associated and environmental 

strains 

Previous studies involving genome screening for T3E of nonpathogenic X. arboricola 

strains indicated low effector gene loads, with a reduced core effector set ranged from zero to four 

effectors, namely, XopR, HpaA, XopF1, and AvrBs2 (Merda et al., 2017). Given the diversity of 

commensal xanthomonads spanning the entire phylogeny of the genus Xanthomonas and the fact 

that this study also included environmental strains, we hypothesized that low effector loads might 

be widespread among nonpathogenic xanthomonads that are either plant-associated or 

environmental strains, owing to their global broad host range. However, we caution that host range 

tests have not been conducted for each strain sequenced in this study. Thus, we refer to a global 

broad host range based on previous studies that either recovered nonpathogenic isolates from 
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diverse plant hosts or tested their host range on diverse plants. Our analysis indicated that effector 

repertoires vary greatly from zero to 41 (Figure S4-6). 

X. arboricola strains sequenced in this study, although belonging to a monophyletic group, 

showed a considerable variation in the presence/absence of T3SS and the size of effector 

repertoires, ranging from one to twelve known effectors. Strains lacking T3SS but containing 

effectors, XopAW and XopAX, included crop-associated and environmental strains. Some crop-

associated strains lacking a T3SS possessed an additional T3E, AvrBs2. Two X. arboricola strains 

(F21 and CFBP 6681) isolated from tomato lacked T3SS but possessed two effectors, AvrBs1 and 

XopH, in addition to XopAW and XopAX. AvrBs1 and XopH have been identified as plasmid-

borne effectors in X. euvesicatoria, a tomato pathogen. Interestingly, a set of strains isolated from 

rainwater and from diverse crops such as walnut, pepper, and bean seed shared the same effector 

repertoire (XopR, XopF1, XopF2, AvrBs2, and XopAW), in addition to a functional T3SS. Strains 

of X. arboricola (CFBP 6825, CFBP 6826, and CFBP 6828) isolated from pepper possessed 

unusually large effector repertoires comprising 10 T3Es (XopZ2, XopR, XopP, XopF1, XopF2, 

XopAW, XopAR, XopAL1, XopAD, AvrBs2) comparable to those found in X. arboricola strains 

pathogenic on walnut (Figure S4-6).  

We hypothesized that X. arboricola strains with intact T3SSs and larger effector repertoires 

(i.e.,> seven effectors) would be weakly pathogenic on their host of isolation. Pathogenicity assays 

using the dip-inoculation method mimicking a natural infection and in-planta population growth 

were performed using six X. arboricola strains (CFBP 6825, CFBP 6826, CFBP 6828, CFBP 6681, 

CFBP 7681, and CFBP 7680) possessing different repertoires of T3Es and presence/absence of a 

T3SS in tomato cv. FL47R. Strains CFBP 6825, CFBP 6826, and CFBP 6828 triggered slight 

disease symptoms on tomato leaves at 10 days after inoculation (DAI) (Figure S7A). Strains CFBP 
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6681 and CFBP 7681 were unable to colonize the host tissue, while strains CFBP 6825, CFBP 

6826, and CFBP 6828 maintained a population of ~ 105 CFU/cm2 at 10 DAI (Figure S7B). No 

visible symptoms were observed for strain CFBP 7680, despite maintaining a population of ~ 104 

CFU/cm2 at 10 DAI (Figure S4-7B). A comparison of the T3Es among these strains indicated that 

strains that caused disease symptoms had a repertoire of T3E of similar size (11 effectors). In 

contrast, strains that were unable to cause disease lacked T3SS and had few effectors (<7 effectors) 

(Figure S4-7C). 

Along with the variable presence of T3SSs, crop-associated nonpathogenic strains also 

varied in effector repertoire size, which ranged from one to 10 effectors in X. cannabis and reached 

25 effectors in X. campestris (Figure S4-6). These strains with a higher number of effectors (>7) 

may suggest their possible pathogenic status, although their host range needs further exploration. 

Rain-derived X. euroxanthea strains lacked T3SSs and possessed a single effector, XopR. Crop-

associated X. euroxanthea strains isolated from tomato and bean contained a T3SS and effectors, 

XopF1, XopF2, XopZ2, XopAK, and XopR. Rain-derived novel Xanthomonas sp. strains (3058, 

3075, 3793, and 4461), although lacking canonical T3SSs, possessed orthologs of the HrpG/X 

master regulators. Strains 3058 and 3075 lacked any known effectors, while strains 3793 and 4461 

contained homologs of AvrXccA1 and AvrXccA2. XopAW and AvrXccA1 were observed in the 

crop-associated strains 3793 and 4461 lacking T3SSs but containing sequences homologous of 

HrpG/X.  

Based on the work described so far, we defined the lifestyle of strains based on the presence 

of the T3SS gene cluster and putative effectors. Strains that possessed an intact T3SS and 13 or 

more T3Es were considered as potentially pathogenic strains. Xanthomonas strains with a number 

of T3SS effectors ranging from 7 to 12 were considered potentially weak pathogens, while strains 
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lacking an intact T3SS and having <7 or no T3Es were considered commensals (Table S4-3). 

These three types of lifestyles defined here will be used for the following downstream analyses to 

infer genetic exchange between commensal and pathogenic Xanthomonas and to identify the 

features that define these lifestyles.  

4.3.5 Genetic exchange between commensal, weakly pathogenic, and pathogenic 

Xanthomonas strains 

To determine whether environmental (i.e., rainwater-associated) or crop-associated 

commensals or weakly pathogenic strains exchange genetic material with crop-associated 

pathogenic strains, we examined phylogenetic networks inferred from concatenated sequences of 

twelve housekeeping genes using SplitsTree (Figure 4-3). This analysis revealed reticulated events 

between commensal and pathogenic Xanthomonas strains, suggesting recombination. Two evident 

reticulation events were identified at the intersections of the network, one between pathogenic and 

commensal or weakly pathogenic strains belonging to X. arboricola, and another one between 

species encompassing clades B, C, and D of group 2 and species belonging to group 1, indicating 

the flow of genetic information between them (highlighted gray in Figure 4-3). Three intrinsic 

events can be observed by closely analyzing the parallelograms between Group 1 and Group 2. 

The first event is localized in the central part of the entire network. This reticulated event links the 

two main branches involving all species belonging to clades B, C, and D of group 2 and species 

belonging to group 1 (highlighted purple in Figure 4-3). The second event involves clade D (X. 

campestris), some species belonging to clade C and the entire group 1 (highlighted orange in 

Figure 4-3). Finally, the third event is exclusively shared between species from clade B and some 

species belonging to clade C (highlighted green in Figure 4-3). According to the neighbor-net tree, 

at least two strains isolated from rainwater appear to result from the above-mentioned putative 
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recombination events. Within the clade A parallelogram, X. arboricola strains (3790, 2768, 3140, 

3272, 3046, and 3376) isolated from rainwater showed genetic recombination with type strain X. 

arboricola pv. juglandis CFBP 2528 and other crop-associated commensals/weakly pathogenic X. 

arboricola strains. A similar observation was found for Xanthomonas sp. strains (3793, 4461, 

3307, and 3498) as these environmental strains exchanged genomic content with the ancestors of 

crop-associated pathogenic and commensal species belonging to clade C and of species belonging 

to Group 1, respectively.  

Many exchange events were observed between the ancestors of crop-associated 

commensal, weakly pathogenic, and pathogenic strains isolated from the same crop hosts. Within 

the X. arboricola clade, two commensal strains (CFBP 7629 and CFBP 7634) and one weakly 

pathogenic strain (CFBP 7652) isolated from walnut and the pv. juglandis pathotype strain (CFBP 

2528) showed a reticulated network. X. campestris ATCC33913, pathogenic on crucifers also 

appears to result from the genomic exchange with the ancestor of the commensal strains X. 

campestris (CFBP 13567 and CFBP 13568), both isolated from radish plants. 

The sympatric association of commensals with pathogens, the presence of shared T3Es in 

commensals, and the observation of recombination signals between commensals and pathogens 

suggest that commensals and pathogens may act as repositories of fitness traits for each other. To 

test this hypothesis, we co-inoculated X. cannabis T55, a nonpathogenic strain with the T3E gene 

avrBs1 with a transposon insertion, IS476, and a plant pathogenic strain, X. euvesicatoria 85-10, 

on pepper plants. X. euvesicatoria 85-10 harbors a functional avrBs1 gene. AvrBs1 induces a 

hypersensitive response (HR) when infiltrated in the resistant pepper genotype Early California 

Wonder 10R containing the Bs1 resistance gene. When screening for putative X. euvesicatoria 

transconjugants, we found that none of the strains isolated from the susceptible pepper genotype 
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(Early California Wonder) had acquired the disrupted avirulence gene from strain T55. In contrast, 

of nine pools each containing 50 transconjugants, at least two pools isolated from the resistant 

pepper genotype tested positive for an IS476 transposon insertion (Figure S4-8).  

By screening for mobile genetic elements and associated genes using a computational 

approach, we further tested the hypothesis that commensal xanthomonads may act as reservoirs 

carrying fitness and virulence factors that can potentially be transferred to other strains through 

mobile genetic elements. MGEfinder identified at least one predicted mobile genetic island for 

each phylogenetic cluster and over 300 unique MGEs. Predicted mobile islands containing genes 

of possible interest and all islands identified as having a mobility gene, such as transposases or 

integrases. While many predicted mobile genetic elements that we found contain housekeeping 

genes, some contained genes that may play a role in increasing fitness or virulence. The predicted 

mobile islands contained genes associated with antimicrobial resistance and genes for bacterial 

and fungal competition, such as multi-drug efflux pumps, type IV secretion system genes, 

chitinase, and virulence factors. Most mobile genetic elements also contained integrase and phage-

related genes. Type III effector XopAD, flanked on both ends by IS5 transposases, was observed 

in X. campestris strains F24 and F22. This island was also found in X. campestris pv. raphani 

756C (the insertion location is shown in Figure S4-9). The type III effector XopAA, flanked by a 

putative transposase, was found in X. euvesicatoria strains CFBP 7922 and CFBP 7921. An 

endopolygalacturonase, known for degrading pectin in plant cell walls (Federici et al., 2001), was 

identified in Xanthomonas sp. F1. A peptidoglycan O-acetylase, which may alter bacterial cell 

walls to avoid lysis by an innate immune response (Sychantha et al., 2018), was detected in X. 

arboricola 3272. 
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4.3.6 Lifestyle had a significant effect in determining the repertoires of cell wall-

degrading enzymes in Xanthomonas  

We hypothesized that nonpathogenic Xanthomonas strains possess a distinct repertoire of 

cell-wall degrading enzymes compared to that from pathogens. Such repertoire might confer them 

the ability to utilize a wide range of carbohydrate substrates and colonize diverse host plants. 

Within the genus Xanthomonas, different species generally had similar types of CAZymes, but 

with large variations in the absolute numbers of genes within each category in the CAZy profiles 

(Figure 4-4). We assessed the effect of bacterial lifestyle on repertoires of genes coding for 

CAZymes. Distance-based redundancy analyses (dbRDA) of Jaccard distances and permutational 

multivariate analysis of variance (PERMANOVA) calculated on the genomic compositions of 

CAZyme family revealed a significant contribution of lifestyle to the distribution of gene 

repertoires for CAZyme (R2 = 0.06, p < 0.05). Furthermore, a pairwise comparison of genomes of 

different lifestyles revealed CAZyme gene repertoire composition across commensals, weak 

pathogens, and pathogens to be significantly different (p < 0.05), suggesting that lifestyle plays an 

important role in determining the distribution of CAZymes. Principal component analysis on a 

matrix containing CAZymes using Jaccard distances showed increased separation of pathogenic 

from weakly pathogenic strains and commensals. 

4.3.7 Association analysis to identify genes and features that define the lifestyle of 

Xanthomonas species 

Next, we were interested in identifying genes either involved in the adaptation of 

Xanthomonas species to a commensal or a pathogenic lifestyle. Association analysis was 

performed on the 26,812 orthogroups from a set of 337 Xanthomonas genomes containing 
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representative strains from different clades that comprised both pathogens, commensals, and weak 

pathogens (Table S4-4, Figure S4-10). We hypothesized that commensals or weak pathogens and 

pathogens possess genes or gene families that define their adaptation to the respective lifestyles 

and have evolved these genes in a phylogeny-independent manner. Presence/absence as well as 

copy number matrix of orthologs, were used as input to conduct association analysis using three 

methods, Scoary, PhyloGLM, and hyperglm. Candidate genes present/absent or enriched/depleted 

in commensal, weakly pathogenic, and pathogenic strains were identified (Figure S4-11). Overall, 

each lifestyle category had unique genomic attributes. Interestingly, weak pathogens, as defined 

here by the presence of a T3SS and 7-12 effectors, contained overlapping genes with both 

pathogens and commensals (Figure S4-11).  

Among the genes identified as enriched in commensals compared to pathogens and weak 

pathogens, we found those that belonged to the following functional categories: intracellular 

trafficking and secretion (type VI secretion system proteins and putative effectors), carbohydrate 

metabolism and transport, phages and transposons, post-translational modification, protein 

turnover and chaperones, replication and repair and defense mechanisms (specifically those 

encoding multi-drug efflux proteins) (Figure 4-5). Enrichment of genes involved in carbohydrate 

metabolism in commensals may indicate their ability to utilize broader energy sources than 

pathogens. A distinct set of DNA-binding transcriptional regulators in commensals may allow 

them to easily switch between different energy sources depending on their availability on a diverse 

group of hosts. Other genes that may also impart stress tolerance related to a much broader range 

of conditions associated with plants or environments outside plants include multi-drug efflux 

proteins, chaperones, outer-membrane transporters, and type I restriction-modification system 

genes. During epiphytic colonization of a broad range of hosts, enrichment of genes involved in 
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type VI secretion systems and effectors may allow the commensal xanthomonads to mediate 

interactions with the resident epiphytic community or pathogenic species (Drebes Dörr & 

Blokesch, 2018).  

We next identified the genomic attributes shared by commensals and weak pathogens but 

absent from pathogens that could explain strategies evolved by nonpathogens during their 

association with a broad range of hosts (Figure 4-5). Glyoxalase bleomycin resistance protein 

dioxygenase was identified to be enriched in both the commensal and weakly pathogenic 

xanthomonads. This protein might be involved in providing tolerance to toxins produced by other 

phyllosphere colonizers, as seen recently with the clone expressing a putative glyoxylase/ 

bleomycin resistance dioxygenase showing neutralizing activity against toxoflavin, produced by 

Burkholderia gladioli (Choi et al., 2018). SGNH hydrolase-like domain containing 

acetyltransferase protein, AlgX, is involved in alginate biosynthesis in Pseudomonas aeruginosa 

and in virulence during cystic fibrosis. Although alginate is known to be involved in epiphytic 

fitness in Pseudomonas syringae (Yu et al., 1999), its contribution towards stress tolerance in 

xanthomonads remains to be investigated. Another gene belonging to PD-(D/E)XK nuclease 

superfamily, also characterized in contact-dependent DNA-degrading effectors (Sirias et al., 

2020), was identified in both commensals and weak pathogens. Such nuclease effectors may 

impart a competitive advantage to the commensals and weak pathogens in a mixed species 

community as they establish their niche. At least three TonB-dependent receptors were identified 

to be associated with commensals and weak pathogens. Overall, TonB-dependent receptors are 

over-represented in xanthomonads and are thought to impart the adaptive ability to xanthomonads 

to utilize a wide variety of carbohydrates (Blanvillain et al., 2007). Another gene associated with 

commensal and weak pathogens belonged to the NRAMP (natural resistance-associated 
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macrophage proteins) family, conserved from bacteria to eukaryotes. These proteins function as 

proton-dependent manganese transporters in bacteria and have evolved to adapt to oxidative 

environments (Cellier et al., 2001; Kehres et al., 2000). Enrichment of these proteins in 

commensals and weak pathogens may explain why they can be simultaneously isolated along with 

pathogens from infected tissue and withstand host defenses, including reactive oxygen species. 

We also screened the genomes for fliC, flagellin encoding gene, and specifically, the 

canonical flg22 epitope sequence to see the extent of variation within xanthomonads. It is not 

known whether commensal and weakly pathogenic xanthomonads can evade MAMP-triggered 

immunity induced by flagellin. Polymorphism in the 43rd amino acid residue in the fliC sequence, 

a part of the flg22 epitope, was previously observed in pathogenic xanthomonads (Malvino et al., 

2022). More specifically, a change from the canonical residue Val43 to Asp43 allowed pathogenic 

xanthomonads to escape detection by FLS2 in Arabidopsis and tomato (Malvino et al., 2022; Sun 

et al., 2006). We observed that all commensals and weak pathogens carried the canonical Val43 in 

the flg22 epitope, except for X. maliensis LMG27592. In addition, some pathogenic xanthomonads 

also had the immunogenic version of flagellin (Table S4-3). Some commensals and weak 

pathogens possessed multiple copies (up to 3) of fliC in their genome. Based on their similarity to 

the canonical flg22 epitope residues, they can be expected to possess immunogenic properties. 

However, variations in other parts of the gene may have a role in modulating immunity in various 

hosts.  

We also identified genes that were enriched in pathogens compared to commensals. As 

expected, most such genes were genes involved in T3SSs and effectors (Figure S4-11). Other 

features enriched in pathogens included glycosyl hydrolases, phage proteins, and chemotaxis 

proteins. Certain phage-related proteins and transposases were also identified as exclusively 
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present in pathogens but absent in commensals, indicating their role in mobilizing pathogen fitness 

and virulence genes. This finding suggests that it might be possible to devise phage-based control 

strategies using phages selective towards pathogens. Pathogens also exclusively contained certain 

transcriptional regulators, genes involved in c-di-GMP signaling pathway and chemotaxis, lipid 

metabolism, and carbohydrate and amino acid metabolism compared to commensals.  

Genes that were enriched in pathogens compared to nonpathogens (commensals and weak 

pathogens) included a TonB-dependent receptor involved in Fe transport, a chemotaxis protein, 

specific cell-wall degrading enzymes, and an anti-sigma factor and AraC transcriptional regulator 

(Figure 4-5). Among the genes depleted in commensals and weak pathogens was an 

adenylosuccinate synthetase (S-AMPS) involved in de novo purine biosynthesis in the cytoplasm. 

This pathway is connected to the TCA cycle and, thus, to the central metabolism. This enzyme 

links GTP hydrolysis to inosine monophosphate (IMP) condensation with L-aspartate to produce 

adenylosuccinate (S-AMP). It can be hypothesized that pathogens may experience limitations of 

these compounds in their niche, for example, apoplast or xylem, and, thus, have evolved the ability 

to synthesize S-AMP. This enzyme was found in the periplasm-enriched fraction of X. citri but not 

in X. fuscans subsp. aurantifolii type B (Zandonadi et al., 2020). Another gene involved in lipid 

metabolism, annotated as phosphatidylserine/phosphatidylglycerophosphate/cardiolipin synthase 

or related enzyme was associated exclusively with pathogenic Xanthomonas. X. campestris was 

characterized for its unique lipid metabolism pathways with a bifunctional enzyme for PE 

synthesis that functions in a serine-dependentor an ethanolamine-dependent pathway, depending 

upon the availability of substrates in-planta (Aktas & Narberhaus, 2015).  
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4.4 Discussion 

Since the identification of nonpathogenic Xanthomonas strains isolated simultaneously 

with pathogenic strains and in close association with plants or plants debris, the interest in 

exploring the role of these strains in the evolution of the genus, their potential for pathogenicity, 

and their contribution towards the microbiota-mediated extended plant immunity have increased 

(Bansal et al., 2020, 2021; Cesbron et al., 2015; Entila et al., 2023; Essakhi et al., 2015; Gonzalez 

et al., 2002; T. Li et al., 2020; Martins et al., 2020; Pfeilmeier et al., 2021, 2023; Triplett et al., 

2015; Vauterin et al., 1996). In this study, we attempted to address these aspects to understand 

how the diversity spanning the commensal to pathogenic lifestyles across the genus Xanthomonas 

has evolved. We harnessed the unexplored diversity that the collection sequenced in this study 

brought, particularly the previously poorly explored group 1 xanthomonads species (Studholme et 

al., 2011). These new genomes were combined with a collection of 1,834 high-quality publicly 

available Xanthomonas genomes to obtain a phylogenetically representative set of 337 genomes 

spanning the different lifestyles present in the genus for comparative analysis.  

We observed variable, but not random, presence/absence of T3SS clusters as indicated in 

the previous studies (Cesbron et al., 2015; Fang et al., 2015; Merda et al., 2017; Triplett et al., 

2015). This study extends these findings to include some atypical T3SS clusters not limited to 

group 1 xanthomonads. This finding of gain of atypical T3SSs in addition to the hrp2 cluster in 

some group 2 strains raises important questions about its functional significance and ecological 

role. The variable presence of T3SSs and effector repertoire sizes in xanthomonads ranging from 

0 to 41 effectors indicate a plethora of diversity in the lifestyles of xanthomonads associated with 

plants along a continuum commensal endophyte to opportunistic pathogens or weak pathogens to 

pathogens.  
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As a genus for which research has been highly focused on pathogenic potential, commensal 

or nonpathogenic xanthomonads represent a largely ignored component (Vauterin et al., 1996). 

Unlike pseudomonads, this side of the continuum that spans from commensal to opportunistic 

lifestyles has not been well studied in xanthomonads. We lack understanding as to what extent 

nonpathogenic xanthomonads play a role in being evolutionary partners of plants with adaptive 

value contributing to overall plant health or whether they are just the members that contribute to 

niche filling, a process influenced by plant traits but are of minor adaptive importance in terms of 

fitness or growth benefit to the plant host. Hacquard et al. (2017) proposed a system involving 

multiple layers of barriers for establishing homeostasis with plants. Here, we assess how 

xanthomonads may have established association with the plants across the continuum of lifestyles 

from commensals to pathogens using this framework. The first two protective layers are 

microbiota exhibiting nutritional and niche competition and plant physical barriers. Based on the 

association analysis conducted in this study, we identified several traits in commensals, such as 

enrichment in type VI secretion system genes, transcriptional regulators, and carbohydrate 

metabolism genes, which may indicate their ability to overcome nutritional and niche competition 

with other microflora members associated with a wide range of plant hosts. Distinct cell-wall 

degrading enzyme repertoire in commensals, weak pathogens, and pathogens may also indicate 

their differential ability to overcome epidermal cell barriers. The next layer in maintaining 

homeostasis with plants is MAMP-triggered immunity (MTI). We found that commensal, weakly 

pathogenic, and few pathogenic xanthomonads possess canonical flg22 immunogenic epitopes, 

indicating that plants recognize and mount an innate immune response against them. Whether they 

can suppress this defense response may depend on the presence of T3SSs and effectors. It is 

hypothesized that a minimal repertoire of effectors present in some nonpathogenic X. arboricola 
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may help them suppress the MTI (Merda et al., 2017). Some commensal strains from our collection 

had no known effectors, indicating that MTI may explain their low abundance and lower in planta 

population. Their simultaneous isolation with pathogenic xanthomonads may also suggest that 

association with pathogens allows them to take advantage of innate immune response suppression 

performed by the pathogens. However, the ability of commensal and weakly pathogenic 

xanthomonads to activate MTI may also suggest their contribution towards extending plant 

immunity against other pathogenic bacteria or fungi, as seen in Sphingomonas (Innerebner et al., 

2011). Apart from this epitope conservation, we observed variation in the rest of the flagellin 

sequence of commensals and weak pathogens. The importance of such sequence diversification in 

commensals and multiple copies of flagellin in evading MTI needs to be further explored. MTI 

suppression by type III secreted effectors has been demonstrated in many pathogenic 

xanthomonads. Analysis in this study showed that weak pathogens could also cross this MTI 

barrier due to the presence of a larger set of effectors (7-12 effectors) and intact T3SS. Whether 

minimized ancestral T3E repertoire of commensal xanthomonads is sufficient for them to 

overcome MTI barrier needs to be explored as commensals lack T3SS and thus secretion and 

translocation of these effectors might be of question. However, Merda et al. (2017) indicated the 

possibility of the secretion of effectors, specifically xopR and avrBs2, mediated by the flagellar 

apparatus (Journet et al., 2005). These effectors may also have functions independent of T3SS. 

Simultaneous colonization of commensals and pathogenic xanthomonads may also mean that 

commensal xanthomonads coordinate the action of these effectors and share these effectors as a 

public good with the pathogenic members, similar to the phenomenon demonstrated with studies 

using effectorless Pseudomonas strains (Ruiz-Bedoya et al., 2023). Experiments evaluating the 

effect of coinfection on their collective virulence may further our understanding of the importance 
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of reduced effector repertoires in commensal xanthomonads. These effectors in commensal strains 

may also have a role outside the host, similar to that shown for AvrBs1, IS476, and the associated 

plasmid offering enhanced overwintering potential (O'Garro et al., 1997). Further functional 

assessment of MTI-inducing and MTI-suppressive abilities of the commensals and weak 

pathogens from diverse clades across the phylogeny may clarify whether they can actively or 

passively cross the MTI barrier and how they may contribute towards microbiota-host homeostasis 

and ultimately towards plant growth-defense tradeoff and plant fitness (Ma et al., 2021). Although 

the opportunistic nature of nonpathogens has been documented (Gitaitis et al., 1987), the 

contribution of T3SS and associated minimized effector repertoire or distinct CWDE repertoire 

towards such conditional pathogenicity has not been experimentally validated. Alternatively, 

conditional pathogenicity may result from altered host-microbiota homeostasis and a compromised 

immune response rather than the involvement of T3SS or CWDEs alone. This important question 

of the contribution of nonpathogenic xanthomonads as a member of the microbiota has been 

investigated by two independent studies that emphasized the role of T2SS and cell wall degrading 

enzymes in mediating the shift in microbiota and conditional pathogenicity (Entila et al. 2023; 

Pfeilmeier et al. 2023). Further, Entila et al. (2023) showed that conditional pathogenicity of a 

nonpathogenic xanthomonad strain, lacking hrp2 cluster, is kept in check by suppression of cell-

wall degrading enzymes by plant NADPH oxidase respiratory burst oxidase homolog D (RBOHD) 

through a negative feedback loop between DAMP-triggered immunity-led reactive oxygen species 

production by Arabidopsis and T2SS/cell-wall degrading enzymes.  

The diversity of commensals and weak pathogens across the genus phylogeny present 

opportunities to study evolution of xanthomonads specifically in the context of important virulence 

factors such as T3SS, effectors, and CWDEs that explain their plant-associated lifestyles. While 
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CWDEs have been proposed to be acquired by the ancestor of xanthomonads, they seemed to have 

diversified along the course of evolution as xanthomonads established associations with diverse 

hosts. The differential repertoire of CWDEs accompanied by unique TonB-dependent receptors 

among pathogens and commensals may explain the differential niche colonization. While we did 

not study patterns of gain/loss of specific CWDEs, we observed that commensal and weak 

pathogens have distinct sets of CWDEs compared to pathogens, similar to the observation with 

pathogenic and nonpathogenic X. arboricola (Cesbron et al., 2015). Different methyl-accepting 

chemotaxis proteins in commensals and pathogens may also suggest how the perception of the 

environment may be lifestyle-dependent. Like Merda et al. (2016, 2017) observations, we found 

evidence for an ancestral gain of hrp2 cluster before the split of Group 2 xanthomonads. Group 1 

xanthomonads have independently acquired different T3SS clusters. Thus, commensals belonging 

to Group 1 xanthomonads may possess ancestral traits that allowed them to closely associate with 

plants, such as diverse regulators, carbohydrate metabolism, and defense/repair-related genes. 

Subsequently, upon diversification of Group 2 xanthomonads into subsequent species, each 

displaying a high degree of host specificity, the effector repertoire reshuffling was observed (Hajri 

et al., 2009). Examining the genomic context of hrp2 cluster and identities of core hrp2 genes led 

us to hypothesize that replacement of Xcc-type hrp2 cluster by Xeu-type hrp2 cluster occurred 

within clade B strains, except in X. nasturtii, through rearrangements. Merda et al. (2016, 2017) 

also observed gene flow among T3SS and effectors of Group 2 xanthomonads. The subsequent 

loss of hrp2 cluster in certain lineages representing commensal xanthomonads was observed 

(Figure 2). T3SS and associated effector loss may suggest that T3SS may impose a fitness cost. 

Thus, under this model, commensals belonging to Group 2 may have been derived because of 

regressive evolution from pathogenic strains. We also assessed patterns of gain/loss of hrp2 
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regulators, hrpG/X, analyzed in this study to identify clues to their involvement in the regulation 

of T3SS, associated limited repertoire in weak pathogens, or their existence in commensals in the 

absence of T3SS. Pfeilmeier et al. (2023) found that these master regulators do not regulate T2SS 

in nonpathogenic Xanthomonas strains lacking T3SS. This suggests a distinct regulatory network 

in play in commensal and pathogenic xanthomonads upon colonization of the host. Our analysis 

also indicated that many commensal and pathogenic strains engage in gene exchange and possess 

shared mobile genetic elements and carrier genes. Although experiments demonstrating the 

transfer of T3SSs from pathogenic to nonpathogenic xanthomonads were insufficient to impart 

pathogenicity phenotype to nonpathogenic strains (Meline et al., 2019), gene flow among certain 

strains may explain the re-acquisition of T3SS. Such gain/loss events of T3SS and associated 

effectors may explain the heterogenous distribution of hrp2 cluster and diversity in effector 

repertoires across strains. Merda et al. (2016) showed that genetic exchange involving life history 

traits between pathogenic and nonpathogenic Xanthomonas strains occurred likely through 

horizontal gene transfer and suggested a possibility of nonpathogenic strains acting as reservoirs 

of traits that allow the emergence of novel pathogenic strains (Meline et al., 2019). Here, we 

gathered empirical evidence for the transfer of an IS element from the nonpathogenic to the 

pathogenic strain upon co-inoculation of the same plant. This exchange disrupted the avirulence 

gene in the pathogen under selection pressure allowing it to overcome host resistance. This finding 

further highlights the role of commensals as a reservoir of traits that may contribute to the 

adaptation of pathogens resulting in new outbreaks, as demonstrated by Lee et al. (2020). HGT 

between pathogen and commensal strains has been demonstrated in some bacteria, converting 

nonpathogenic strains into pathogenic (Brouwer et al., 2013). Such adaptive traits may have been 

subject to gene transfer among commensal and pathogenic strains.  
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However, this study also demonstrates that T3SS and effectors are not the sole 

determinants of the lifestyle of xanthomonads. The commensals and weak pathogens have evolved 

strategies for tolerance to stresses with distinct sets of chemotaxis proteins, type VI secretion 

system, TonB-dependent receptors, chaperone, and transcriptional regulators. We previously 

examined gain/loss patterns of type VI secretion system clusters across Xanthomonas phylogeny 

and found evidence for non-random acquisition of T6SS and gene flow in core genes and effectors 

(Liyanapathiranage et al., 2022). Further examination of gain/loss patterns of other non-pathogen-

enriched traits may help assess support for the regressive evolution model to explain the origin of 

commensal strains.  

Finally, systematic evaluation of genomic traits associated with lifestyles might guide us 

as we develop diagnostic strategies to differentiate pathogenic and nonpathogenic strains 

associated with seed samples or infected field samples. A recent machine-learning approach 

developed to predict the phenotype of plant-associated xanthomonads indicated specific domains 

associated with pathogenic and nonpathogenic lifestyles ( Molder et al., 2021), many of which 

were found to overlap with the candidates identified in this study. Our study further confirms that 

diagnostic methods cannot rely on type III secretion system gene markers alone to identify 

pathogenic xanthomonads.  

This study highlights the diversity of lifestyles across the genus phylogeny along the 

continuum of commensal, weakly pathogenic, and pathogenic strains. We find that type III 

secretion system and effectors are not the only factors that define these lifestyles. Several niche 

adaptative factors were identified to be associated with each lifestyle. Commensals establish 

themselves on different hosts in the presence of various host defenses and competing microflora, 

as well as derive complex nutrients from a wide range of hosts while sustaining their populations 



167 

on a broad range of hosts. We also observed distinct cell-wall degrading enzyme repertoires that 

distinguish pathogenic vs. commensal or weakly pathogenic lifestyles. Conversely, pathogens rely 

on type III secretion system and associated effectors to subvert defense responses. Overall, 

commensals possess genes that allow them to tolerate stresses rather than avoid them in the 

absence of T3SS.    
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Figure 4-1: Comparative genome analysis demonstrated the presence of eight novel species 
in the genus Xanthomonas. Maximum-likelihood phylogeny based on the 1005 orthogroups of 
134 strains representing the entire Xanthomonas genus. The phylogenetic tree was inferred using 
OrthoFinder v2.5.2 and drawn with R package ggtree. Here, Xanthomonas strains from this study 
are highlighted in red, while the representative/type strains are in black. The tip points are colored 
orange to show novel species identified from this study, while cyan represents Xanthomonas 
species with known taxonomy. Blue-colored blocks indicate environmental strains and host-
associated strains are indicated by green-colored blocks surrounding the phylogenetic tree.
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Figure 4-2: Multiple events of gain and loss of T3SS were evident in the genus Xanthomonas 
along with the presence of a novel T3SS cluster. Maximum-likelihood phylogeny based on the 
core proteome and T3SS cluster and regulators gain-loss prediction inferred for the 134 strains 
representing the entire Xanthomonas genus. The presence/absence of the different types of T3SS 
and regulators are represented by an ordered vector of size 7, such that a dark grey, a light grey, 
and a white ith element in the vector indicates a full presence, a partial presence, and an absence of 
the ith element, respectively. Inferred full and partial T3SS clusters are in color or white 
background, respectively. Acquisition and loss events are represented by plus and minus signs, 
respectively. For example, a colored +2 indicates a full acquisition of the 2nd T3SS in this figure, 
i.e., hrp2.
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Figure 4-3: Phylogenetic network between pathogens, weak pathogens, and commensals 
suggests the possibility of several recombination events during their evolutionary history. 
Neighbor-net tree constructed using SplitsTree software based on concatenated 12 housekeeping 
gene sequences generated for the 134 Xanthomonas strains, indicating diversity and recombination 
events. 
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Figure 4-4: Xanthomonas lifestyle can be explained by altered CAZymes landscape. Principal 
Component Analysis (PCA) plot showing the contribution of the different bacterial lifestyle in the 
distribution of gene repertoire for carbohydrate active enzymes (CAZyme). 
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Figure 4-5: Genomic architecture of Xanthomonas contains signatures for both phylogenetic 
placement and their associated lifestyle. A complex heatmap shows the select candidate genes 
associated with commensal, weakly pathogenic, and pathogenic lifestyles. The candidates 
obtained from different methods in figure S11 were further narrowed by identifying those 
present/enriched in commensals and weak pathogens compared to pathogens and vice versa. The 
matrix shows the presence/absence of genes across these lifestyles along with their functional 
categories and annotations on the Y-axis. 
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Figure S 4-1: Relationship between genome size, GC content, and number of CDS for the 
genomes sequenced for this study. 
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Figure S 4-2: Average nucleotide identity (ANI)-based heatmap showing the status of the 134 
Xanthomonas strains. The intensity of the color indicates the level of identity of all-versus-all 
genomes as depicted by the scale. 



184 

 

 
Figure S 4-3: Average nucleotide identity (ANI)-based heatmap showing the status of the 
representative Xanthomonas euroxanthea strains and strains from this study. The intensity of the 
color indicates the level of identity of all-versus-all genomes as depicted by the scale. 
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Figure S 4-4: Heatmap showing the status of T3SS genes in Xanthomonas strains used in this 
study. Here, query genes names from the different species are indicated as gene_Xeu (genes from 
Xanthomonas campestris pv. vesicatoria 85-10), gene_Xcc (genes from Xanthomonas campestris 
pv. campestris ATCC33913), gene_Xtra (genes from Xanthomonas translucens pv. translucens 
DSM18974), gene_Xalb (genes from Xanthomonas albilineans CFBP 2523), and gene_X60 (genes 
from Xanthomonas sp. 60). Red color represents the presence while blue color represents the 
absence of the gene. 
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Figure S 4-5: Schematic representation of the genetic organization of T3SS clusters found in 
Xanthomonas campestris pv. campestris ATCC33913 (Xcc), Xanthomonas campestris pv. 
vesicatoria 85-10 (Xeu), Xanthomonas translucens pv. translucens DSM18974 (Xtr), 
Xanthomonas sp. 60, and Stenotrophomonas chelatiphaga DSM 21508. Genes of the same color 
(except light yellow, which has no COG assignment) are from the same orthologous group. The 
gene names are according to the Sct T3S injectisome nomenclature and annotation available in the 
IMG/M system (https://img.jgi.doe.gov/cgi-bin/m/main.cgi). 

https://img.jgi.doe.gov/cgi-bin/m/main.cgi
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Figure S 4-6: Heatmap showing the status of T3E in Xanthomonas strains used in this study. Here 
the query represents all effectors families, putative effectors (AvrBs1, AvrBs2, AvrBs3, Xop, 
HpaA, HrpW, and AvrXccA), and their diversity. Red represents the presence, while blue 
represents the absence of the gene. 
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Figure S 4-7: (A) Pathogenicity and (B) in-planta population and (C) distribution of T3E in  X. 
arboricola strains (CFBP 6825, CFBP 6826, CFBP 6828, CFBP 6681, CFBP 7681, and CFBP 
7680) on 4-5-week-old tomato cv. FL 47R 10 DAI (days after inoculation). The presence of 
common T3Es across different Xanthomonas strains is shown in red, while blue represents the 
absence of T3Es. 
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Figure S 4-8: Analysis of the presence of type three secreted effector avrBs1 with a transposon 
insertion among 50 randomly selected transconjugants. Mating experiments were conducted in 
both compatible (Capsicum annuum cv. Early California Wonder) and incompatible (Capsicum 
annuum cv. Early California Wonder 10R) backgrounds with Xanthomonas euvesicatoria strain 
85-10 and Xanthomonas sp. strain T55. Each lane represents the pooled DNA of five to six 
individual transconjugants. The positive control (Xanthomonas sp. T55) shows an approximately 
1.0 kb band indicative of avrBS1 with a transposon insertion, transconjugants isolated from the 
incompatible host in lanes six and eight have acquired the disrupted avirulence gene. 
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Figure S 4-9: Schematic representation and comparison of the genetic organization of the mobile 
genetic element island identified by MGEfinder in Xanthomonas campestris pv. raphanin 756C, 
Xanthomonas campestris F24, and Xanthomonas campestris F22, highlighting the XopAD effector 
flanked on both ends by IS5 transposases. 
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Figure S 4-10: Maximum-likelihood phylogeny based on the orthogroups of 337 Xanthomonas 
strains. Commensal Xanthomonas strains are highlighted in blue branches, weakly pathogenic 
strains in green branches, and pathogenic strains in orange. Branches were collapsed to visualize 
better strain diversity and phylogenetic placement with different lifestyles 
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Figure S 4-11: A complex heatmap showing results from association analysis correlating 
pathogenic, weakly pathogenic, and commensal phenotypes to the orthologs identified using 
Orthofinder. The functional categories are indicated for each candidate gene identified based on 
the intersection of three methods PhyloGLM, Scoary, and hyperglm (gene presence/absence), and 
those identified by PhyloGLM based on gene copy number. 
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Table S 4-1: Details of Xanthomonas species sequenced in this work. 

 

S.N. Strain id Taxonomic classification Host of isolation Country of isolation Collected by
Genome size 

(bp)
GC content 

(%)
No. of 
tRNA

No. of 
rRNA

No. of 
gene No. of CDS

No. of 
scaffolds

Genome 
coverage (x)

CheckM 
completeness (%)

CheckM 
contamination (%) IMG Taxon ID

NCBI Bioproject 
Accession

NCBI Biosample 
Accession Genbank ID

1 2768 Xanthomonas arboricola 2768 Rainwater USA Boris A Vinatzer 4,795,040 65.89 53 3 4129 4018 16 313 98.77 0.6 2828658931 PRJNA583330 SAMN13173792 JACHOE000000000
2 3046 Xanthomonas arboricola 3046 Rainwater USA Boris A Vinatzer 4,877,301 65.67 53 3 4207 4093 6 307 97.62 0.8 2828036968 PRJNA547322 SAMN12024095 JAASRI000000000
3 3140 Xanthomonas arboricola 3140 Rainwater USA Boris A Vinatzer 4,915,557 65.71 50 2 4183 4071 10 305 97.89 0.91 2828041176 PRJNA547323 SAMN12024092 JAASRH000000000
4 3272 Xanthomonas arboricola 3272 Rainwater USA Boris A Vinatzer 4,941,414 65.63 51 3 4210 4094 4 303 97.95 1.16 2828671728 PRJNA583334 SAMN13190211 JAATIV000000000
5 3376 Xanthomonas arboricola 3376 Rainwater USA Boris A Vinatzer 5,029,964 65.55 52 3 4355 4243 5 298 97.48 1.03 2828680123 PRJNA583336 SAMN13190212 JAATIW000000000
6 3790 Xanthomonas arboricola 3790 Rainwater USA Boris A Vinatzer 4,803,630 65.91 53 3 4084 3972 17 312 99.02 0.25 2828049435 PRJNA547325 SAMN12024080 JACICJ000000000
7 74 Xanthomonas arboricola 74 Cucurbit USA Neha Potnis 4,714,362 65.95 53 3 4061 3948 5 318 96.85 0.25 2828016237 PRJNA547318 SAMN12024071 JAASRL000000000
8 84A Xanthomonas arboricola 84A Sunflower USA Neha Potnis 4,898,161 65.82 54 3 4213 4102 7 306 99.02 0.75 2828020299 PRJNA547330 SAMN12024093 JACICG000000000
9 CFBP6681 Xanthomonas arboricola CFBP 6681 Tomato Cuba CFBP, Marie-Agnès Jacques 5,249,229 65.53 55 5 4611 4494 80 291 99.91 0.05 2828121528 PRJNA547335 SAMN12024074 JACICS000000000

10 CFBP6825 Xanthomonas arboricola CFBP 6825 Pepper USA CFBP, Marie-Agnès Jacques 4,947,835 65.69 52 3 4249 4130 3 300 99.89 0.24 2828126140 PRJNA547336 SAMN12024076 JAASRC000000000
11 CFBP6826 Xanthomonas arboricola CFBP 6826 Pepper USA CFBP, Marie-Agnès Jacques 4,946,363 65.69 52 3 4252 4133 5 300 99.56 0.24 2828130390 PRJNA547337 SAMN12024085 JACICT000000000
12 CFBP6828 Xanthomonas arboricola CFBP 6828 Pepper USA CFBP, Marie-Agnès Jacques 4,947,178 65.69 52 3 4254 4135 5 301 99.56 0.24 2828134643 PRJNA546814 SAMN12025056 JACICU000000000
13 CFBP7629 Xanthomonas arboricola CFBP 7629 Walnut France CFBP, Marie-Agnès Jacques 4,943,431 65.6 54 4 4288 4164 11 300 99.39 0.65 2828142967 PRJNA546816 SAMN12025187 JACICV000000000
14 CFBP7634 Xanthomonas arboricola CFBP 7634 Walnut France CFBP, Marie-Agnès Jacques 4,943,858 65.6 54 4 4293 4169 11 303 99.1 1.11 2828147256 PRJNA546817 SAMN12025210 JACICW000000000
15 CFBP7652 Xanthomonas arboricola CFBP 7652 Walnut France CFBP, Marie-Agnès Jacques 5,216,680 65.5 53 4 4511 4387 78 285 99.8 0.05 2828155758 PRJNA546819 SAMN12025058 JACHNJ000000000
16 CFBP7680 Xanthomonas arboricola CFBP 7680 Pepper France CFBP, Marie-Agnès Jacques 4,891,176 65.7 53 3 4209 4088 11 307 99.91 0.05 2828692919 PRJNA583339 SAMN13173797 JACJNK000000000
17 CFBP7681 Xanthomonas arboricola CFBP 7681 Pepper China CFBP, Marie-Agnès Jacques 4,963,904 66 54 3 4189 4072 19 302 98.84 0.54 2828697129 PRJNA583340 SAMN13172221 JACHOJ000000000
18 CFBP8130 Xanthomonas arboricola CFBP 8130 Bean seed France CFBP, Marie-Agnès Jacques 4,754,280 65.99 53 3 4052 3940 13 315 98.77 0.5 2828173407 PRJNA547342 SAMN12024090 JACHNM000000000
19 CFBP8139 Xanthomonas arboricola CFBP 8139 Bean seed N/A CFBP, Marie-Agnès Jacques 4,953,125 65.74 54 3 4324 4207 8 303 97.81 0.65 2828177460 PRJNA547343 SAMN12024081 JAASRA000000000
20 CFBP8140 Xanthomonas arboricola CFBP 8140 Bean seed N/A CFBP, Marie-Agnès Jacques 4,830,954 65.73 53 3 4162 4039 9 310 99.72 0.75 2828270531 PRJNA546808 SAMN12025522 JACIIT000000000
21 CFBP8145 Xanthomonas arboricola CFBP 8145 Bean seed N/A CFBP, Marie-Agnès Jacques 4,834,499 65.89 53 3 4131 4019 11 310 99.91 0.05 2828181785 PRJNA546809 SAMN12025540 JAASSC000000000
22 CFBP8149 Xanthomonas arboricola CFBP 8149 Bean seed N/A CFBP, Marie-Agnès Jacques 4,878,272 65.69 51 3 4208 4095 7 307 99.72 0.5 2828185917 PRJNA546810 SAMN12025186 JACHNN000000000
23 F11 Xanthomonas arboricola F11 Citrus orange USA R. E. Stall and J. B. Jones 4,869,765 65.82 53 4 4163 4051 11 308 99.02 1.01 2828215148 PRJNA546658 SAMN12025545 JACHNQ000000000
24 F12 Xanthomonas arboricola F12 Tomato USA R. E. Stall and J. B. Jones 4,967,385 66.03 53 3 4218 4109 19 302 98.81 1.1 2828219312 PRJNA546659 SAMN12025199 JACHNR000000000
25 F13 Xanthomonas arboricola F13 Tomato USA R. E. Stall and J. B. Jones 4,808,302 65.76 55 3 4150 4034 4 312 96.74 0.65 2828722391 PRJNA583343 SAMN13173072 JAATIY000000000
26 F14 Xanthomonas arboricola F14 Citrus orange USA R. E. Stall and J. B. Jones 4,748,859 65.91 52 3 4108 3999 10 312 99.91 0.05 2828726542 PRJNA583344 SAMN13190100 JACHOM000000000
27 F15 Xanthomonas arboricola F15 Linaria sp. USA R. E. Stall and J. B. Jones 4,868,193 65.75 51 3 4172 4061 12 308 98.97 0.25 2828480307 PRJNA546660 SAMN12025150 JACIJV000000000
28 F18 Xanthomonas arboricola F18 Tomato USA R. E. Stall and J. B. Jones 4,821,314 65.89 51 3 4113 4003 14 311 98.72 0.05 2828227655 PRJNA546663 SAMN12025087 JACHNT000000000
29 F19 Xanthomonas arboricola F19 Pepper USA R. E. Stall and J. B. Jones 4,846,312 65.78 52 3 4208 4096 7 309 99.91 0.05 2828231769 PRJNA546664 SAMN12025543 JACJNJ000000000
30 F20 Xanthomonas arboricola F20 Tomato USA R. E. Stall and J. B. Jones 4,866,293 65.88 52 4 4188 4076 16 308 98.69 0.75 2828235978 PRJNA546665 SAMN12025125 JACIIP000000000
31 F21 Xanthomonas arboricola F21 Tomato USA R. E. Stall and J. B. Jones 5,253,819 65.53 55 5 4613 4496 75 285 98.77 0.99 2828240167 PRJNA546666 SAMN12025546 JACIIQ000000000
32 F7 Xanthomonas arboricola F7 Tomato USA R. E. Stall and J. B. Jones 4,763,808 65.86 53 3 4161 4040 12 313 99.91 0.05 2828714124 PRJNA583349 SAMN13172344 JAATLO000000000
33 F8 Xanthomonas arboricola F8 Tomato USA R. E. Stall and J. B. Jones 4,807,951 65.78 54 3 4104 3993 4 312 97.06 0.06 2828718286 PRJNA583350 SAMN13172246 JAATIX000000000
34 F9 Xanthomonas arboricola F9 Tomato USA R. E. Stall and J. B. Jones 4,802,478 65.83 53 3 4094 3981 9 312 99.91 0.06 2833698404 PRJNA546669 SAMN12025045 JACCEJ000000000
35 CFBP13567 Xanthomonas campestris CFBP 13567 Radish seed France CFBP, Marie-Agnès Jacques 5,040,092 65.44 54 3 4383 4206 9 297 99.64 0.24 2828488598 PRJNA547331 SAMN12024066 JANUPS000000000
36 CFBP13568 Xanthomonas campestris CFBP 13568 Radish seed France CFBP, Marie-Agnès Jacques 5,040,178 65.44 54 3 4385 4207 9 297 99.64 0.24 2828274694 PRJNA547333 SAMN12024089 JANUPR000000000
37 CFBP3277 Xanthomonas campestris CFBP 3277 Tomato Guadeloupe (French west indies) CFBP, Marie-Agnès Jacques 5,002,720 65.11 54 3 4444 4263 84 300 99.64 0.05 2828117083 PRJNA547334 SAMN12024072 JACICR000000000
38 CFBP7911 Xanthomonas campestris CFBP 7911 Bean seed N/A CFBP, Marie-Agnès Jacques 4,885,581 65.47 54 3 4282 4112 7 304 99.64 0.05 2828160270 PRJNA547338 SAMN12024075 JANUPO000000000
39 CFBP7915 Xanthomonas campestris CFBP 7915 Bean seed China CFBP, Marie-Agnès Jacques 4,889,592 65.43 56 3 4322 4147 22 307 98.07 2.45 2828701319 PRJNA583341 SAMN13172233 JANTYW000000000
40 CFBP7924 Xanthomonas campestris CFBP 7924 Bean seed N/A CFBP, Marie-Agnès Jacques 4,977,629 65.35 53 3 4368 4190 9 301 99.64 0.05 2828266162 PRJNA547341 SAMN12024073 JANUPQ000000000
41 F22 Xanthomonas campestris F22 Tomato USA R. E. Stall and J. B. Jones 4,959,759 65.14 54 3 4394 4227 33 299 99.64 0.24 2828730651 PRJNA583346 SAMN13172197
42 F24 Xanthomonas campestris F24 Pepper USA R. E. Stall and J. B. Jones 4,918,247 65.36 54 3 4344 4172 38 305 99.64 0.24 2828735046 PRJNA583347 SAMN13172198 JANUPT000000000
43 F6 Xanthomonas campestris F6 Tomao USA R. E. Stall and J. B. Jones 5,029,390 65.42 54 3 4380 4207 23 295 99.68 0.05 2828206614 PRJNA546668 SAMN12025061 JANUPP000000000
44 8590 Xanthomonas cannabis 8590 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,913,203 65.75 55 3 4276 4166 8 302 99.8 0.41 2828062588 PRJNA547328 SAMN12024094 JAASRG000000000
45 8600 Xanthomonas cannabis 8600 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,795,610 65.74 53 3 4145 4036 17 311 99.73 0.05 2828104512 PRJNA547329 SAMN12024084 JACICP000000000
46 CFBP8590 Xanthomonas cannabis CFBP 8590 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,914,203 65.75 55 3 4276 4166 8 305 97.52 0.77 2828108658 PRJNA546813 SAMN12025062 JAASRD000000000
47 CFBP8591 Xanthomonas cannabis CFBP 8591 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,853,759 65.71 53 4 4224 4114 18 309 97.52 0.57 2828066865 PRJNA546648 SAMN12025170 JACICK000000000
48 CFBP8592 Xanthomonas cannabis CFBP 8592 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,838,975 65.74 53 3 4182 4073 22 310 97.48 0.52 2828071090 PRJNA546649 SAMN12025542 JAASRF000000000
49 CFBP8593 Xanthomonas cannabis CFBP 8593 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,839,134 65.75 55 3 4203 4091 18 307 99.87 0.05 2828075273 PRJNA546650 SAMN12025064 JAASRE000000000
50 CFBP8594 Xanthomonas cannabis CFBP 8594 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,684,449 65.84 52 3 4058 3946 8 317 99.75 0.05 2828079477 PRJNA546651 SAMN12025075 JACICL000000000
51 CFBP8595 Xanthomonas cannabis CFBP 8595 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,819,314 65.78 53 3 4164 4058 19 311 97.59 0.67 2828083536 PRJNA546652 SAMN12025144 JACICM000000000
52 CFBP8596 Xanthomonas cannabis CFBP 8596 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,814,602 65.77 52 3 4139 4032 16 308 99.87 0.05 2828087701 PRJNA546653 SAMN12025171 JACBZB000000000
53 CFBP8597 Xanthomonas cannabis CFBP 8597 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,814,889 65.77 52 3 4144 4037 15 308 99.71 0.05 2828091841 PRJNA546654 SAMN12025123 JACBZC000000000
54 CFBP8598 Xanthomonas cannabis CFBP 8598 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,853,479 65.71 53 4 4229 4119 15 306 99.76 0.05 2828095986 PRJNA546655 SAMN12025188 JACICN000000000
55 CFBP8599 Xanthomonas cannabis CFBP 8599 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,953,994 65.51 54 3 4295 4184 18 301 99.78 0.17 2828100216 PRJNA546656 SAMN12025100 JACICO000000000
56 CFBP8600 Xanthomonas cannabis CFBP 8600 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,795,634 65.74 53 3 4147 4038 19 310 99.71 0.05 2828112935 PRJNA546806 SAMN12025110 JACICQ000000000
57 CFBP8605 Xanthomonas cannabis CFBP 8605 Bean leaf Brazil CFBP, Marie-Agnès Jacques 4,796,975 65.74 53 3 4103 3992 25 313 97.48 0.52 2828198290 PRJNA546807 SAMN12025111 JAASQY000000000
58 F16 Xanthomonas cannabis F16 Nightshade (Solanum nigrum ) USA R. E. Stall and J. B. Jones 4,776,640 65.75 54 3 4123 4011 18 314 97.48 0.27 2828223531 PRJNA546661 SAMN12025151 JACHNS000000000
59 F17 Xanthomonas cannabis F17 Tomato USA R. E. Stall and J. B. Jones 4,778,090 65.75 54 3 4117 4005 19 314 97.53 0.27 2828484480 PRJNA546662 SAMN12025124 JACIJW000000000
60 2949 Xanthomonas euroxanthea 2949 Rainwater USA Boris A Vinatzer 4,824,595 65.87 52 3 4211 4101 7 311 96.76 0.4 2828024513 PRJNA547319 SAMN12024087 JAASRK000000000
61 2955 Xanthomonas euroxanthea 2955 Rainwater USA Boris A Vinatzer 4,767,670 65.88 53 3 4130 4020 7 314 96.94 0.15 2828028725 PRJNA547320 SAMN12024091 JAASRJ000000000
62 2957 Xanthomonas euroxanthea 2957 Rainwater USA Boris A Vinatzer 4,970,240 65.85 55 3 4346 4232 8 302 96.45 0.41 2828663061 PRJNA583331 SAMN13173081 JAATIU000000000
63 2974 Xanthomonas euroxanthea 2974 Rainwater USA Boris A Vinatzer 4,799,859 65.98 53 3 4111 4002 20 312 96.45 0.4 2828032856 PRJNA547321 SAMN12024078 JACICH000000000
64 3338 Xanthomonas euroxanthea 3338 Rainwater USA Boris A Vinatzer 4,718,025 65.95 51 3 4074 3964 11 318 96.83 0.06 2828045360 PRJNA547324 SAMN12024079 JACICI000000000
65 3640 Xanthomonas euroxanthea 3640 Rainwater USA Boris A Vinatzer 4,836,250 66.04 52 3 4168 4062 13 310 97.24 0.77 2828688750 PRJNA583338 SAMN13173795 JACHOI000000000
66 CFBP7622 Xanthomonas euroxanthea CFBP 7622 Bean  USA CFBP, Marie-Agnès Jacques 4,705,769 66.21 53 3 4068 3963 6 319 97.4 0.13 2828138898 PRJNA546815 SAMN12025169 JAASRB000000000
67 CFBP7635 Xanthomonas euroxanthea CFBP 7635 Walnut (cv. Franquette) France CFBP, Marie-Agnès Jacques 4,857,910 66.15 49 3 4207 4100 10 306 99.67 0.05 2828151550 PRJNA546818 SAMN12025097 JACHNI000000000

68 F2 Xanthomonas euroxanthea F2
Peruvian groundcherry (Physalis 
peruviana) N/A R. E. Stall and J. B. Jones 4,885,591 65.98 52 3 4232 4122 10 304 99.57 0.23 2828709891 PRJNA583345 SAMN13172987 JACHOL000000000

69 CFBP7921 Xanthomonas euvesicatoria CFBP 7921 Bean seed N/A CFBP, Marie-Agnès Jacques 5,035,348 64.89 56 3 4426 4297 21 298 99.78 0.43 2828164553 PRJNA547339 SAMN12024088 JACHNK000000000
70 CFBP7922 Xanthomonas euvesicatoria CFBP 7922 Bean seed N/A CFBP, Marie-Agnès Jacques 5,034,570 64.89 56 3 4426 4297 21 298 98.22 0.43 2828168980 PRJNA547340 SAMN12024083 JACHNL000000000
71 3058 Xanthomonas sp. 3058 Rainwater USA Boris A Vinatzer 4,968,012 64.74 54 3 4319 4209 60 302 97.09 0.37 2828667408 PRJNA583332 SAMN13173779 JACHOF000000000
72 3075 Xanthomonas sp. 3075 Rainwater USA Boris A Vinatzer 4,997,784 64.6 52 3 4294 4185 61 300 97.17 0.82 2831322938 PRJNA583333 SAMN13172773 JACIFI000000000
73 3307 Xanthomonas sp. 3307 Rainwater USA Boris A Vinatzer 4,860,261 68.94 51 3 4183 4099 20 308 95.43 3.44 2828675939 PRJNA583335 SAMN13172743 JACHOG000000000
74 3498 Xanthomonas sp. 3498 Rainwater USA Boris A Vinatzer 4,925,041 68.91 55 3 4270 4182 13 304 95.57 3.73 2828684479 PRJNA583337 SAMN13190338 JACHOH000000000
75 3793 Xanthomonas sp. 3793 Rainwater USA Boris A Vinatzer 5,210,011 65.26 55 3 4513 4379 14 288 97.67 0.6 2828053520 PRJNA547326 SAMN12024082 JANTYU000000000
76 4461 Xanthomonas sp. 4461 Rainwater USA Boris A Vinatzer 5,263,960 65.29 55 3 4553 4423 12 285 98.05 1.03 2828058034 PRJNA547327 SAMN12024077 JANTYV000000000
77 CFBP8151 Xanthomonas sp. CFBP 8151 Bean seed N/A CFBP, Marie-Agnès Jacques 4,610,370 65.59 52 3 4036 3928 9 325 96.29 1.31 2828190126 PRJNA546811 SAMN12025089 JAASQZ000000000
78 CFBP8152 Xanthomonas sp. CFBP 8152 Bean seed N/A CFBP, Marie-Agnès Jacques 4,705,389 65.53 53 3 4126 4008 15 319 96.69 0.56 2828194163 PRJNA546812 SAMN12025148 JACHNO000000000
79 F1 Xanthomonas sp. F1 Citrus orange USA R. E. Stall and J. B. Jones 4,955,224 68.93 53 3 4248 4159 24 300 99.96 0.74 2828705642 PRJNA583342 SAMN13190379 JACHOK000000000
80 F10 Xanthomonas sp. F10 Citrus orange USA R. E. Stall and J. B. Jones 4,776,209 69.31 51 3 4152 4060 6 314 95.45 3.47 2828210995 PRJNA546657 SAMN12025141 JACHNP000000000
81 F4 Xanthomonas sp. F4 Citrus orange USA R. E. Stall and J. B. Jones 4,895,058 68.81 51 4 4219 4132 13 303 99.54 0.34 2828202394 PRJNA546667 SAMN12024050 JAASQX000000000
82 F5 Xanthomonas sp. F5 Pepper USA R. E. Stall and J. B. Jones 5,317,945 68.59 55 3 4621 4535 17 279 99.62 0.5 2833702499 PRJNA583348 SAMN13172314 JACIFN000000000
83 60 Xanthomonas sp. 60 Tomato USA Neha Potnis 3,640,246 67.3 65 4 3318 3223 13 408 99.74 0.39 2828262843 PRJNA547317 SAMN12024202 JAASQW000000000
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Table S 4-2: Xanthomonas strains sequenced for this work and representative/type strain from NCBI used for comparative genomic 
analysis 

S.N. Strain ID Genome source Taxonomic classification Cluster id for MGE 

finder 

1 CFBP6681 This study Xanthomonas arboricola CFBP 6681 8 

2 3790 This study Xanthomonas arboricola 3790 8 

3 F11 This study Xanthomonas arboricola F11 8 

4 F21 This study Xanthomonas arboricola F21 8 

5 F14 This study Xanthomonas arboricola F14 8 

6 F7 This study Xanthomonas arboricola F7 8 

7 F9 This study Xanthomonas arboricola F9 8 

8 F12 This study Xanthomonas arboricola F12 8 

9 84A This study Xanthomonas arboricola 84A 8 

10 F8 This study Xanthomonas arboricola F8 8 

11 F13 This study Xanthomonas arboricola F13 8 

12 F19 This study Xanthomonas arboricola F19 8 

13 74 This study Xanthomonas arboricola 74 8 

14 CFBP8130 This study Xanthomonas arboricola CFBP 8130 8 

15 CFBP8145 This study Xanthomonas arboricola CFBP 8145 8 

16 F18 This study Xanthomonas arboricola F18 8 

17 F15 This study Xanthomonas arboricola F15 8 

18 CFBP7681 This study Xanthomonas arboricola CFBP 7681 8 
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S.N. Strain ID Genome source Taxonomic classification Cluster id for MGE 

finder 

19 F20 This study Xanthomonas arboricola F20 8 

20 CFBP7629 This study Xanthomonas arboricola CFBP 7629 8 

21 CFBP7634 This study Xanthomonas arboricola CFBP 7634 8 

22 CFBP7652 This study Xanthomonas arboricola CFBP 7652 8 

23 2768 This study Xanthomonas arboricola 2768 8 

24 3046 This study Xanthomonas arboricola 3046 8 

25 3140 This study Xanthomonas arboricola 3140 8 

26 3272 This study Xanthomonas arboricola 3272 8 

27 CFBP8140 This study Xanthomonas arboricola CFBP 8140 8 

28 CFBP8149 This study Xanthomonas arboricola CFBP 8149 8 

29 CFBP6826 This study Xanthomonas arboricola CFBP 6826 8 

30 CFBP6825 This study Xanthomonas arboricola CFBP 6825 8 

31 CFBP6828 This study Xanthomonas arboricola CFBP 6828 8 

32 CFBP8139 This study Xanthomonas arboricola CFBP 8139 8 

33 CFBP7680 This study Xanthomonas arboricola CFBP 7680 8 

34 3376 This study Xanthomonas arboricola 3376 8 

35 CFBP2528 Type/Representative  Xanthomonas arboricola CFBP 2528 8 

36 CFBP8152 This study Xanthomonas sp. CFBP 8152 8 

37 CFBP8151 This study Xanthomonas sp. CFBP 8151 8 

38 2949 This study Xanthomonas euroxanthea 2949 
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S.N. Strain ID Genome source Taxonomic classification Cluster id for MGE 

finder 

39 2955 This study Xanthomonas euroxanthea 2955 8 

40 2957 This study Xanthomonas euroxanthea 2957 
 

41 2974 This study Xanthomonas euroxanthea 2974 8 

42 3640 This study Xanthomonas euroxanthea 3640 8 

43 F2 This study Xanthomonas euroxanthea F2 8 

44 CFBP7622 This study Xanthomonas euroxanthea CFBP 7622 8 

45 3338 This study Xanthomonas euroxanthea 3338 8 

46 CFBP7635 This study Xanthomonas euroxanthea CFBP 7635 8 

47 BRIP62409 Type/Representative  Xanthomonas euroxanthea BRIP62409 
 

48 BRIP62411 Type/Representative  Xanthomonas euroxanthea BRIP62411 
 

49 BRIP62415 Type/Representative  Xanthomonas euroxanthea BRIP62415 
 

50 BRIP62418 Type/Representative  Xanthomonas euroxanthea BRIP62418 
 

51 WHRI7744 Type/Representative  Xanthomonas hortorum WHRI7744 
 

52 CFBP4925 Type/Representative  Xanthomonas hortorum CFBP 4925 
 

53 M081 Type/Representative  Xanthomonas hortorum M081 
 

54 CFBP4188 Type/Representative  Xanthomonas cynarae CFBP 4188 
 

55 ATCC19865 Type/Representative  Xanthomonas gardneri ATCC19865 
 

56 ICMP7383 Type/Representative  Xanthomonas gardneri ICMP7383 
 

57 CFBP1817 Type/Representative  Xanthomonas populi CFBP 1817 
 

58 3058 This study Xanthomonas sp. 3058 8 
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S.N. Strain ID Genome source Taxonomic classification Cluster id for MGE 

finder 

59 3075 This study Xanthomonas sp. 3075 8 

60 PD885 Type/Representative  Xanthomonas fragariae PD885 
 

61 91-118 Type/Representative  Xanthomonas perforans 91-118 
 

62 CFBP7293 Type/Representative  Xanthomonas perforans CFBP 7293 
 

63 GEV07 Type/Representative  Xanthomonas alfalfae GEVRose07 1 

64 LMG27970 Type/Representative  Xanthomonas euvesicatoria LMG27970 
 

65 85-10 Type/Representative  Xanthomonas euvesicatoria 85-10 
 

66 BRIP39016 Type/Representative  Xanthomonas euvesicatoria BRIP39016 
 

67 CFBP7922 This study Xanthomonas euvesicatoria CFBP 7922 1 

68 CFBP7921 This study Xanthomonas euvesicatoria CFBP 7921 1 

69 LMG695 Type/Representative  Xanthomonas phaseoli LMG695 
 

70 CFBP412 Type/Representative  Xanthomonas phaseoli CFBP 412 
 

71 LMG9322 Type/Representative  Xanthomonas citri LMG9322 
 

72 DAR33341 Type/Representative  Xanthomonas citri DAR33341 
 

73 DSM3585 Type/Representative  Xanthomonas axonopodis DSM3585 
 

74 NCPPB2417 Type/Representative  Xanthomonas vasicola NCPPB2417 
 

75 CFBP2543 Type/Representative  Xanthomonas vasicola CFBP 2543 
 

76 CFBP7342 Type/Representative  Xanthomonas oryzae CFBP 7342 
 

77 ATCC35933 Type/Representative  Xanthomonas oryzae ATCC35933 
 

78 CFBP8353 Type/Representative  Xanthomonas prunicola CFBP 8353 
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S.N. Strain ID Genome source Taxonomic classification Cluster id for MGE 

finder 

79 CFBP1976 Type/Representative  Xanthomonas bromi CFBP 1976 
 

80 WHRI8853 Type/Representative  Xanthomonas nasturtii WHRI8853 
 

81 CFBP8596 This study Xanthomonas cannabis CFBP 8596 3 

82 CFBP8597 This study Xanthomonas cannabis CFBP 8597 3 

83 CFBP8605 This study Xanthomonas cannabis CFBP 8605 3 

84 CFBP8592 This study Xanthomonas cannabis CFBP 8592 3 

85 CFBP8590 This study Xanthomonas cannabis CFBP 8590 3 

86 8590 This study Xanthomonas cannabis 8590 3 

87 CFBP8599 This study Xanthomonas cannabis CFBP 8599 3 

88 CFBP8598 This study Xanthomonas cannabis CFBP 8598 3 

89 CFBP8591 This study Xanthomonas cannabis CFBP 8591 3 

90 CFBP8593 This study Xanthomonas cannabis CFBP 8593 3 

91 8600 This study Xanthomonas cannabis 8600 3 

92 CFBP8600 This study Xanthomonas cannabis CFBP 8600 3 

93 CFBP8595 This study Xanthomonas cannabis CFBP 8595 3 

94 F16 This study Xanthomonas cannabis F16 3 

95 F17 This study Xanthomonas cannabis F17 3 

96 NCPPB3753 Type/Representative  Xanthomonas cannabis NCPPB3753 3 

97 CFBP8594 This study Xanthomonas cannabis CFBP 8594 3 

98 DSM18956 Type/Representative  Xanthomonas pisi DSM18956 
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S.N. Strain ID Genome source Taxonomic classification Cluster id for MGE 

finder 

99 CFBP4643 Type/Representative  Xanthomonas pisi CFBP 4643 2 

100 3793 This study Xanthomonas sp. 3793 2 

101 4461 This study Xanthomonas sp. 4461 2 

102 LMG911 Type/Representative  Xanthomonas vesicatoria LMG911 
 

103 CFBP7245 Type/Representative  Xanthomonas dyei CFBP 7245 
 

104 CFBP4642 Type/Representative  Xanthomonas cassavae CFBP 4642 
 

105 WHRI8848 Type/Representative  Xanthomonas floridensis WHRI8848 
 

106 CFBP4690 Type/Representative  Xanthomonas codiaei CFBP 4690 
 

107 CFBP2542 Type/Representative  Xanthomonas cucurbitae CFBP 2542 
 

108 CFBP4644 Type/Representative  Xanthomonas melonis CFBP 4644 
 

109 CFBP13567 This study Xanthomonas campestris CFBP 13567 7 

110 CFBP13568 This study Xanthomonas campestris CFBP 13568 7 

111 CFBP7911 This study Xanthomonas campestris CFBP 7911 7 

112 CFBP7924 This study Xanthomonas campestris CFBP 7924 7 

113 F6 This study Xanthomonas campestris F6 7 

114 CFBP7915 This study Xanthomonas campestris CFBP 7915 7 

115 F22 This study Xanthomonas campestris F22 7 

116 F24 This study Xanthomonas campestris F24 7 

117 CFBP3277 This study Xanthomonas campestris CFBP 3277 7 

118 ATCC33913 Type/Representative  Xanthomonas campestris ATCC33913 7 
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S.N. Strain ID Genome source Taxonomic classification Cluster id for MGE 

finder 

119 LMG27592 Type/Representative  Xanthomonas maliensis LMG27592 
 

120 M97 Type/Representative  Xanthomonas maliensis M97 
 

121 3307 This study Xanthomonas sp. 3307 6 

122 3498 This study Xanthomonas sp. 3498 6 

123 F4 This study Xanthomonas sp. F4 6 

124 F1 This study Xanthomonas sp. F1 6 

125 PPL1 Type/Representative  Xanthomonas sontii PPL1 
 

126 CFBP4641 Type/Representative  Xanthomonas sacchari CFBP 4641 6 

127 F10 This study Xanthomonas sp. F10 6 

128 CFBP2523 Type/Representative  Xanthomonas albilineans CFBP 2523 
 

129 DSM18974 Type/Representative  Xanthomonas translucens DSM18974 5 

130 CFBP1156 Type/Representative  Xanthomonas hyacinthi CFBP 1156 
 

131 F5 This study Xanthomonas sp. F5 
 

132 CFBP4691 Type/Representative  Xanthomonas theicola CFBP 4691 5 

133 AL60 This study Xanthomonas sp. 60 4 

134 Sp953 Type/Representative  Xanthomonas retroflexus Sp953 4 

.
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Table S 4-3: Taxonomic classification, lifestyle, and variation in flagellin encoding gene in Xanthomonas genomes used for the 
association analysis.  
Strain ID Taxonomic classification Lifestyle flg22-43rd amino acid residue 

17 Xanthomonas  arboricola 17 Commensal D 
74 Xanthomonas  arboricola 74 Commensal D 
2768 Xanthomonas arboricola 2768 Commensal D 
2949 Xanthomonas euroxanthea 2949 Commensal D 
2955 Xanthomonas euroxanthea 2955 Commensal D 
2957 Xanthomonas euroxanthea 2957 Commensal D 
2974 Xanthomonas euroxanthea 2974 Commensal D 
3004 Xanthomonas  arboricola 3004 Commensal D 

3058 Xanthomonas  sp.  3058 Commensal D 
3075 Xanthomonas  sp.  3075 Commensal D 
3307 Xanthomonas  sp. 3307 Commensal D 
3338 Xanthomonas euroxanthea 3338 Commensal D 
3498 Xanthomonas  sp. 3498 Commensal D 
3640 Xanthomonas euroxanthea 3640 Commensal D 
3790 Xanthomonas arboricola 3790 Commensal D 
8590 Xanthomonas cannabis CFBP 8590 Commensal D 
84A Xanthomonas arboricola 84A Commensal D 
A2111 Xanthomonas  sp. A2111 Commensal D 
AmX2 Xanthomonas  sp. Commensal D 
ATCC23378 Xanthomonas  cucurbitae Commensal D 

BRE_17 Xanthomonas  campestris Commensal D 
CaNP6A Xanthomonas  melonis Commensal D 
CFBP3122 Xanthomonas  arboricola pv. populi Commensal D 
CFBP3123 Xanthomonas  arboricola pv. populi Commensal D 
CFBP426 Xanthomonas  sp. CPBF 426 Commensal D 
CFBP4643 Xanthomonas  pisi CFBP 4643 Commensal D 
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CFBP4644 Xanthomonas  melonis CFBP 4644 Commensal D 
CFBP6771 Xanthomonas  arboricola Commensal D 
CFBP6773 Xanthomonas  arboricola pv. fragariae Commensal D 
CFBP7604 Xanthomonas  arboricola Commensal D 
CFBP7614 Xanthomonas  arboricola Commensal D 
CFBP7634 Xanthomonas arboricola CFBP 7634 Commensal D 

CFBP7645 Xanthomonas  arboricola Commensal D 
CFBP7653 Xanthomonas  arboricola Commensal D 
CFBP7681 Xanthomonas  arboricola Commensal D 
CFBP7698 Xanthomonas  sp. CFBP  7698 Commensal D 
CFBP7700 Xanthomonas  campestris Commensal D 
CFBP8130 Xanthomonas  arboricola CFBP  8130 Commensal D 
CFBP8138 Xanthomonas  arboricola Commensal D 
CFBP8150 Xanthomonas  arboricola Commensal D 
CFBP8151 Xanthomonas  sp. CFBP 8151 Commensal D 
CFBP8152 Xanthomonas  sp.  CFBP 8152 Commensal D 
CFBP8153 Xanthomonas  arboricola Commensal D 
CFBP8591 Xanthomonas cannabis CFBP 8591 Commensal D 

CFBP8595 Xanthomonas cannabis CFBP 8595 Commensal D 
CFBP8605 Xanthomonas cannabis CFBP 8605 Commensal D 
CFBP8700 Xanthomonas  bonasiae Commensal D 
CFBP8703 Xanthomonas  bonasiae Commensal D 
CITA124 Xanthomonas  arboricola Commensal D 
CITA44 Xanthomonas  arboricola CITA 44 Commensal D 
CPBF367 Xanthomonas  arboricola pv. juglandis Commensal D 
D-109 Xanthomonas  sp. D-109 Commensal D 
D-93 Xanthomonas  sp. D-93 Commensal D 
DC06P2B Xanthomonas  arboricola Commensal D 
DE0062 Xanthomonas  citri pv. mangiferaeindicae Commensal D 
DMCX Xanthomonas  melonis Commensal D 

E1 Xanthomonas  campestris strain:E1 Commensal D 



203 

F10 Xanthomonas  sp.  F10 Commensal D 
F12 Xanthomonas arboricola F12 Commensal D 
F13 Xanthomonas arboricola F13 Commensal D 
F15 Xanthomonas arboricola F15 Commensal D 
F16 Xanthomonas cannabis F16 Commensal D 
F18 Xanthomonas arboricola F18 Commensal D 

F20 Xanthomonas arboricola F20 Commensal D 
F8 Xanthomonas arboricola F8 Commensal D 
FOR_F20 Xanthomonas  arboricola Commensal D 
FOR_F23 Xanthomonas  arboricola Commensal D 
GPE39 Xanthomonas  sp. GPE 39 Commensal D 
GW Xanthomonas  sp. GW Commensal D 
HWA1 Xanthomonas  campestris Commensal D 
JAI131 Xanthomonas  sp. JAI131 Commensal D 
Leaf131 Xanthomonas  sp. Leaf131 Commensal D 
LMC_P25 Xanthomonas  campestris Commensal D 
LMC_P47 Xanthomonas  campestris Commensal D 
LMC_P73 Xanthomonas  campestris Commensal D 

LMG12459 Xanthomonas  sp. LMG 12459 Commensal D 
LMG12460 Xanthomonas  sp. LMG 12460 Commensal D 
LMG12461 Xanthomonas  sp. LMG 12461 Commensal D 
LMG12462 Xanthomonas  sp. LMG 12462 Commensal D 
LMG19144 Xanthomonas  arboricola Commensal D 
LMG27592 Xanthomonas  maliensis LMG 27592 Commensal V 
LMG476 Xanthomonas  sacchari LMG 476 Commensal D 
LMG8992 Xanthomonas  sp. LMG 8992 Commensal D 
LMG9002 Xanthomonas  sp. LMG 9002 Commensal D 
MEDV_A40 Xanthomonas  campestris Commensal D 
MEDV_P25 Xanthomonas  campestris Commensal D 
MEDV_P39 Xanthomonas  arboricola Commensal D 

MLO165 Xanthomonas  sp. MLO165 Commensal D 
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MUS060 Xanthomonas  sp. MUS 060 Commensal D 
MWU16-30325 Xanthomonas  sp. MWU16-30325 Commensal D 
NCPPB1067 Xanthomonas  sp. NCPPB 1067 Commensal D 
NCPPB1128 Xanthomonas  sp. NCPPB 1128 Commensal D 
NCPPB2190 Xanthomonas  campestris pv. esculenti Commensal D 
NCPPB2983 Xanthomonas  campestris pv. phormiicola Commensal D 

NCPPB4231 Xanthomonas  campestris Commensal D 
NCPPB4232 Xanthomonas  campestris Commensal D 
NL_P121 Xanthomonas  campestris Commensal D 
NL_P172 Xanthomonas  campestris Commensal D 
PLY_2 Xanthomonas  dyei Commensal D 
PLY_4 Xanthomonas  arboricola Commensal D 
PLY_9 Xanthomonas  arboricola Commensal D 
PNG130 Xanthomonas  albilineans PNG130 Commensal D 
PPL2 Xanthomonas  sontii Commensal D 
PPL3 Xanthomonas  sontii Commensal D 
R1 Xanthomonas  arboricola pv. pruni Commensal D 
Sa3BUA13 Xanthomonas  surreyensis Commensal D 

SAM114 Xanthomonas  sontii Commensal D 
SHU166 Xanthomonas  sp. SHU 166 Commensal S 
SHU199 Xanthomonas  sp. SHU199 Commensal D 
SHU308 Xanthomonas  sp. SHU308 Commensal D 
SI Xanthomonas  sp. SI Commensal D 
SL2098 Xanthomonas  arboricola Commensal D 
SN8 Xanthomonas  massiliensis SN8 Commensal D 
SS Xanthomonas  sp. SS Commensal D 
WHRI8481 Xanthomonas  campestris Commensal D 
WHRI8848 Xanthomonas  floridensis WHRI 8848 Commensal D 
CFBP6681 Xanthomonas arboricola CFBP 6681 Commensal D 
CFBP7629 Xanthomonas arboricola CFBP 7629 Commensal D 

CFBP8145 Xanthomonas arboricola CFBP 8145 Commensal D 
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F11 Xanthomonas arboricola F11 Commensal D 
F14 Xanthomonas arboricola F14 Commensal D 
F19 Xanthomonas arboricola F19 Commensal D 
F21 Xanthomonas arboricola F21 Commensal D 
F7 Xanthomonas arboricola F7 Commensal D 
F9 Xanthomonas arboricola F9 Commensal D 

CFBP13567 Xanthomonas campestris CFBP 13567 Commensal D 
CFBP13568 Xanthomonas  arboricola CFBP  13568 Commensal D 
CFBP7911 Xanthomonas arboricola CFBP 8139 Commensal D 
CFBP7915 Xanthomonas campestris CFBP 7915 Commensal D 
CFBP7924 Xanthomonas campestris CFBP 7924 Commensal D 
F6 Xanthomonas campestris F6 Commensal D 
8600 Xanthomonas cannabis CFBP 8600 Commensal D 
CFBP8590 Xanthomonas cannabis 8590 Commensal D 
CFBP8592 Xanthomonas cannabis CFBP 8592 Commensal D 
CFBP8593 Xanthomonas cannabis CFBP 8593 Commensal D 
CFBP8594 Xanthomonas cannabis CFBP 8594 Commensal D 
CFBP8596 Xanthomonas cannabis CFBP 8596 Commensal D 

CFBP8597 Xanthomonas cannabis CFBP 8597 Commensal D 
CFBP8598 Xanthomonas cannabis CFBP 8598 Commensal D 
CFBP8600 Xanthomonas cannabis 8600 Commensal D 
F17 Xanthomonas cannabis F17 Commensal D 
Xcz13 Xanthomonas  cannabis Commensal D 
Xcz5 Xanthomonas  arboricola Commensal D 
CFBP7635 Xanthomonas euroxanthea CFBP 7635 Commensal D 
F2 Xanthomonas euroxanthea F2 Commensal D 
XNM01 Xanthomonas  sp. XNM01 Commensal D 
3793 Xanthomonas  sp. I 3793 Commensal D 
4461 Xanthomonas  sp. I 4461 Commensal D 
60 Xanthomonas  sp. 60 Commensal D 

F1 Xanthomonas  sp.  F1 Commensal D 
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F4 Xanthomonas  sp. F4 Commensal D 
F5 Xanthomonas  sp.  F5 Commensal D 
1 Xanthomonas  euroxanthea 1 Pathogenic V 
85-10 Xanthomonas  campestris pv. vesicatoria 85-10 Pathogenic V 
A7 Xanthomonas  arboricola pv. corylina Pathogenic V 
B99 Xanthomonas  translucens pv. poae Pathogenic V 

BA29-1 Xanthomonas  vesicatoria Pathogenic V 
BB151-3 Xanthomonas  oryzae BB151-3 Pathogenic V 
BP5178 Xanthomonas  hortorum Pathogenic V 
Bv5-3A Xanthomonas  vesicatoria Pathogenic V 
CCUG18839 Xanthomonas  cissicola Pathogenic V 
CFBP1817 Xanthomonas  populi CFBP 1817 Pathogenic V 
CFBP1976 Xanthomonas  bromi CFBP 1976 Pathogenic V 
CFBP2528 Xanthomonas  arboricola pv. juglandis CFBP  2528 Pathogenic V 
CFBP2533 Xanthomonas  hortorum pv. pelargonii Pathogenic V 
CFBP410 Xanthomonas  hortorum pv. taraxaci Pathogenic V 
CFBP4642 Xanthomonas  cassavae CFBP  4642 Pathogenic V 
CFBP4925 Xanthomonas  hortorum pv. hederae CFBP 4925 Pathogenic V 

CFBP498 Xanthomonas  hortorum pv. vitians Pathogenic V 
CFBP7112 Xanthomonas  citri pv. vignicola CFBP 7112 Pathogenic V 
CFBP7245 Xanthomonas  dyei CFBP 7245 Pathogenic V 
CFBP7319 Xanthomonas  oryzae pv. oryzae CFBP 7319 Pathogenic V 
CFBP7342 Xanthomonas  oryzae pv. oryzicola CFBP 7342 Pathogenic V 
CFBP7408 Xanthomonas  arboricola pv. guizotiae Pathogenic V 
CFBP8304 Xanthomonas  translucens Pathogenic V 
CFBP8355 Xanthomonas  prunicola Pathogenic V 
CN03 Xanthomonas  campestris pv. campestris str. CN03 Pathogenic V 
CN14 Xanthomonas  campestris pv. campestris CN14 Pathogenic V 
CN18 Xanthomonas  campestris pv. campestris CN18 Pathogenic V 
CO-5 Xanthomonas  vasicola Pathogenic V 

CPBF427 Xanthomonas  arboricola pv. juglandis Pathogenic V 
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D-99 Xanthomonas  sp. D-99 Pathogenic V 
DW3F3 Xanthomonas  arboricola pv. juglandis Pathogenic V 
F1 Xanthomonas  sp.  F1 Pathogenic V 
GBBC3236 Xanthomonas  campestris pv. campestris Pathogenic V 
GSXT20191014 Xanthomonas  campestris pv. campestris Pathogenic V 
JS749-3 Xanthomonas  hortorum pv. gardneri JS749-3 Pathogenic V 

Km8 Xanthomonas  translucens pv. Translucens Pathogenic V 
Km9 Xanthomonas  translucens pv. translucens Pathogenic V 
LH3 Xanthomonas  perforans LH3 Pathogenic V 
LM159 Xanthomonas  vesicatoria LM159 Pathogenic V 
LMG31887 Xanthomonas  hydrangeae LMG 31887 Pathogenic V 
LMG727 Xanthomonas  translucens pv. arrhenatheri LMG 727 Pathogenic V 
LMG728 Xanthomonas  translucens pv. poae LMG 728 Pathogenic V 
LMG843 Xanthomonas  translucens pv. phleipratensis Pathogenic V 
LMG911 Xanthomonas  vesicatoria LMG 911 Pathogenic V 
LW16 Xanthomonas  translucens LW16 Pathogenic V 
M081 Xanthomonas  hortorum pv. carotae M081 Pathogenic V 
M28 Xanthomonas  campestris Pathogenic V 

Mex-1 Xanthomonas  vasicola Pathogenic V 
NCPPB1061 Xanthomonas  campestris pv. plantaginis Pathogenic V 
NCPPB1334 Xanthomonas  campestris pv. ionidii Pathogenic V 
NCPPB2372 Xanthomonas  campestris pv. fici Pathogenic V 
NCPPB2373 Xanthomonas  campestris pv. carissae Pathogenic V 
NCPPB2498 Xanthomonas  campestris pv. convolvuli Pathogenic V 
NCPPB3888 Xanthomonas  campestris pv. parthenii Pathogenic V 
NCPPB4013 Xanthomonas  campestris pv. asclepiadis Pathogenic V 
NCPPB4037 Xanthomonas  campestris Pathogenic V 
NCPPB4349 Xanthomonas  campestris pv. pennamericanum Pathogenic V 
NCPPB796 Xanthomonas  axonopodis pv. vasculorum Pathogenic V 
NEB122 Xanthomonas  campestris pv. badrii NEB122 Pathogenic V 

PD885 Xanthomonas  fragariae PD885 Pathogenic V 
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PXO99A Xanthomonas  oryzae pv. oryzae PXO99A Pathogenic V 
SB80 Xanthomonas  campestris pv. campestris Pathogenic V 
SHQP01 Xanthomonas  fragariae Pathogenic V 
X11-5A Xanthomonas  oryzae X11-5A Pathogenic V 
Xa85 Xanthomonas  axonopodis Pathogenic V 
CFBP3277 Xanthomonas campestris CFBP 3277 Pathogenic V 

Xcc8004_Xcc1 Xanthomonas  campestris pv. campestris Pathogenic V 
Xcp1 Xanthomonas  arboricola pv. Pruni Pathogenic V 
BRIP39016 Xanthomonas  euvesicatoria BRIP39016 Pathogenic V 
71 Xanthomonas  campestris Pathogenic D 
18048 Xanthomonas  campestris pv. incanae Pathogenic D 
756C Xanthomonas  campestris pv. raphani 756C Pathogenic D 
A1809 Xanthomonas  sp. A1809 Pathogenic D 
AR81009 Xanthomonas  citri malvacearum AR81009 Pathogenic D 
Bagalkot Xanthomonas  citri pv. punicae Pathogenic D 
CFBP1156 Xanthomonas  hyacinthi CFBP  1156 Pathogenic D 
CFBP1606R Xanthomonas  campestris pv. incanae Pathogenic D 
CFBP2524 Xanthomonas  axonopodis pv. begoniae Pathogenic D 

CFBP2527R Xanthomonas  campestris pv. incanae Pathogenic D 
CFBP3836 Xanthomonas  euvesicatoria pv. alfalfae CFBP  3836 Pathogenic D 
CFBP5825R Xanthomonas  campestris CFBP  5825R Pathogenic D 
CFBP6164 Xanthomonas  phaseoli pv. phaseoli CFBP 6164 Pathogenic D 
CFBP6369 Xanthomonas  euvesicatoria pv. allii CFBP  6369 Pathogenic D 
CFBP6988 Xanthomonas  citri sv. phaseoli fuscans CFBP 6988R Pathogenic D 
CFBP6992 Xanthomonas  citri sv. phaseoli fuscans CFBP 6992 Pathogenic D 
CFBP7111 Xanthomonas  citri pv. vignicola CFBP 7111 Pathogenic D 
CFBP7113 Xanthomonas  citri pv. vignicola CFBP 7113 Pathogenic D 
CFBP7119 Xanthomonas  citri pv. glycines CFBP  7119 Pathogenic D 
CFBP7407 Xanthomonas  arboricola pv. Arracaciae Pathogenic D 
CFBP7764 Xanthomonas  citri Pathogenic D 

CFBP7921 Xanthomonas  euvesicatoria CFBP  7921 Pathogenic D 
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CHN01 Xanthomonas  phaseoli pv. manihotis Pathogenic D 
DAR26930 Xanthomonas  euvesicatoria Pathogenic D 
DC06T4A Xanthomonas  campestris Pathogenic D 
FDC1559 Xanthomonas  citri aurantifolii FDC 1559 Pathogenic D 
FDC1637 Xanthomonas  euvesicatoria pv. citrumelonis Pathogenic D 
FIJ080 Xanthomonas  albilineans FIJ080 Pathogenic D 

FPH2013-1 Xanthomonas  hortorum Pathogenic D 
GPEPC86 Xanthomonas  albilineans GPE PC86 Pathogenic D 
ISO118C5 Xanthomonas  fuscans fuscans ISO118C5 Pathogenic D 
LMG12749 Xanthomonas  euvesicatoria LMG12749 Pathogenic D 
LMG26789 Xanthomonas  axonopodis pv. Commiphoreae Pathogenic D 
LMG548 Xanthomonas  axonopodis pv. Bauhiniae LMG548 Pathogenic D 
LMG695 Xanthomonas  phaseoli pv. dieffenbachiae LMG 695 Pathogenic D 
LMG726 Xanthomonas  translucens pv. graminis Pathogenic D 
LMG753 Xanthomonas  axonopodis pv. khayae LMG753 Pathogenic D 
LMG872 Xanthomonas  citri pv. thirumalacharii Pathogenic D 
LMG9050 Xanthomonas  axonopodis pv. Melhusii LMG9050 Pathogenic D 
LMG954 Xanthomonas  campestris pv. vitiswoodrowii Pathogenic D 

MAFF106181 Xanthomonas  campestris pv. raphani Pathogenic D 
NCPPB1336 Xanthomonas  euvesicatoria pv. alangii Pathogenic D 
NCPPB1757 Xanthomonas  campestris pv. blepharidis Pathogenic D 
NCPPB1758 Xanthomonas  campestris pv. coriandri Pathogenic D 
NCPPB1760 Xanthomonas  campestris pv. spermacoces Pathogenic D 
NCPPB1787 Xanthomonas  campestris pv. veroniae Pathogenic D 
NCPPB1828 Xanthomonas  campestris pv. euphorbiae Pathogenic D 
NCPPB1946 Xanthomonas  campestris pv. raphani Pathogenic D 
NCPPB2057 Xanthomonas  campestris pv. heliotropii Pathogenic D 
NCPPB2337 Xanthomonas  dyei pv. eucalypti Pathogenic D 
NCPPB2439 Xanthomonas  campestris pv. zinniae Pathogenic D 
NCPPB3079 Xanthomonas  campestris pv. paulliniae Pathogenic D 

NCPPB347 Xanthomonas  campestris pv. armoraciae Pathogenic D 
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NCPPB4348 Xanthomonas  campestris pv. mirabilis Pathogenic D 
NCPPB4351 Xanthomonas  campestris pv. viegasii Pathogenic D 
NCPPB464 Xanthomonas  campestris pv. olitorii Pathogenic D 
NCPPB579 Xanthomonas  campestris pv. lawsoniae Pathogenic D 
NCPPB586 Xanthomonas  campestris pv. uppalii Pathogenic D 
NL_P126 Xanthomonas  arboricola Pathogenic D 

TX160149 Xanthomonas  citri pv. citri TX160149 Pathogenic D 
USA048 Xanthomonas  albilineans USA048 Pathogenic D 
WHRI10004 Xanthomonas  campestris pv. campestris Pathogenic D 
WHRI10006 Xanthomonas  campestris pv. raphani Pathogenic D 
WHRI8853 Xanthomonas  nasturtii WHRI 8853 Pathogenic D 
F22 Xanthomonas campestris F22 Pathogenic D 
F24 Xanthomonas campestris F24 Pathogenic D 
CFBP8599 Xanthomonas cannabis CFBP 8599 Pathogenic D 
XcitriDAR33341 Xanthomonas  sp. DAR33341 Pathogenic D 
XcvDC91-1 Xanthomonas  campestris Pathogenic D 
CFBP7922 Xanthomonas euvesicatoria CFBP 7922 Pathogenic D 
3046 Xanthomonas arboricola 3046 Weaklypathogenic D 

3140 Xanthomonas arboricola 3140 Weaklypathogenic D 
3272 Xanthomonas arboricola 3272 Weaklypathogenic D 
3376 Xanthomonas arboricola 3376 Weaklypathogenic D 
1311A Xanthomonas  arboricola Weaklypathogenic D 
1314C Xanthomonas  arboricola Weaklypathogenic D 
BRIP62409 Xanthomonas  sp. BRIP62409 Weaklypathogenic D 
BRIP62411 Xanthomonas  sp. BRIP62411 Weaklypathogenic D 
BRIP62412 Xanthomonas  arboricola Weaklypathogenic D 
BRIP62415 Xanthomonas  sp. BRIP62415 Weaklypathogenic D 
BRIP62416 Xanthomonas  arboricola Weaklypathogenic D 
BRIP62418 Xanthomonas  sp. BRIP62418 Weaklypathogenic D 
BRIP62432 Xanthomonas  arboricola Weaklypathogenic D 

CFBP1022 Xanthomonas  arboricola Weaklypathogenic D 



211 

CFBP4690 Xanthomonas  codiaei CFBP 4690 Weaklypathogenic D 
CFBP4691 Xanthomonas  theicola CFBP  4691 Weaklypathogenic D 
CFBP6827 Xanthomonas  arboricola Weaklypathogenic D 
CFBP7410 Xanthomonas  arboricola pv. zantedeschiae Weaklypathogenic D 
CFBP7610 Xanthomonas  arboricola Weaklypathogenic D 
CFBP7622 Xanthomonas euroxanthea CFBP 7622 Weaklypathogenic D 

CFBP7651 Xanthomonas  arboricola CFBP  7651 Weaklypathogenic D 
CFBP7652 Xanthomonas arboricola CFBP 7652 Weaklypathogenic D 
CFBP7697 Xanthomonas  arboricola Weaklypathogenic D 
CFBP8132 Xanthomonas  arboricola Weaklypathogenic D 
CFBP8139 Xanthomonas arboricola CFBP 8139 Weaklypathogenic D 
CFBP8140 Xanthomonas arboricola CFBP 8140 Weaklypathogenic D 
CFBP8142 Xanthomonas  arboricola Weaklypathogenic D 
CFBP8147 Xanthomonas  arboricola Weaklypathogenic D 
CFBP8149 Xanthomonas arboricola CFBP 8149 Weaklypathogenic D 
CITA14 Xanthomonas  arboricola Weaklypathogenic D 
CPBF1494 Xanthomonas  arboricola pv. juglandis Weaklypathogenic D 
CPBF424 Xanthomonas  euroxanthea Weaklypathogenic D 

CPBF765 Xanthomonas  arboricola pv. juglandis Weaklypathogenic D 
CPBF766 Xanthomonas  euroxanthea Weaklypathogenic D 
LMG19146 Xanthomonas  arboricola pv. fragariae Weaklypathogenic D 
MEDV_A37 Xanthomonas  arboricola Weaklypathogenic D 
MEU_M1 Xanthomonas  arboricola MEU_M1 Weaklypathogenic D 
NCPPB1630 Xanthomonas  arboricola pv. Celebensis NCPPB 1630 Weaklypathogenic D 
NCPPB1832 Xanthomonas  arboricola pv. celebensis NCPPB 1832 Weaklypathogenic D 
NCPPB2970 Xanthomonas  campestris pv. papavericola Weaklypathogenic D 
Nyagatare Xanthomonas  cannabis pv. phaseoli Nyagatare Weaklypathogenic D 
X203 Xanthomonas  codiaei Weaklypathogenic D 
CFBP6825 Xanthomonas arboricola CFBP 6825 Weaklypathogenic D 
CFBP6826 Xanthomonas arboricola CFBP 6826 Weaklypathogenic D 

CFBP6828 Xanthomonas arboricola CFBP 6828 Weaklypathogenic D 
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CFBP7680 Xanthomonas arboricola CFBP 7680 Weaklypathogenic D 
:
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Table S 4-4: List of T3Es representing all effector families and putative effectors along with their protein sequence used in the study. 
 

Family Synonyms Source T3E id 

AvrBs1   AvrA AvrBs1 [Xanthomonas campestris pv. vesicatoria str. 85-10] AvrBs1_Xeu 

AvrBs2 
   

avrA_family_Xg101 AvrBs1_Xg 
   

AvrBs2 [Xanthomonas campestris pv. vesicatoria str. 85-10] AvrBs2_Xeu 

AvrBs3 
  

PthA, PthB, 

PthN, PthXo, 

TALE, AvrXa7, 

AvrXa27 

avrBs3[Xanthomonas vesicatoria] AvrBs3_Xve 

   
pthB AvrBs3_Xac1 

   
pthC AvrBs3_Xac2 

   
avXa7[Xanthomonas oryzae pv. oryzae KACC10331] AvrBs3_Xoo1 

   
pthA3[Xanthomonas axonopodis pv. citri str. 306] AvrBs3_Xac3 

   
pthA4[Xanthomonas oryzae pv. oryzae KACC10331] AvrBs3_Xoo2 

   
pthA4[Xanthomonas axonopodis pv. citri str. 306] AvrBs3_Xac4 

   
pthA2[Xanthomonas oryzae pv. oryzae KACC10331] AvrBs3_Xoo3 

   
pthA2 [Xanthomonas axonopodis pv. citri str. 306] AvrBs3_Xac5 

   
pthA1 [Xanthomonas axonopodis pv. citri str. 306] AvrBs3_Xac6 
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XopB 
  

HopD1, 

HopPtoD1, 

AvrPphD1 

xopB [Xanthomonas campestris pv. vesicatoria str. 85-10] XopB_Xeu 

XopC C1 
  

xopC [Xanthomonas campestris pv. vesicatoria str. 85-10] XopC1_Xeu 

C2 
 

RSp1239 XopC2_XPE3585 XopC2_Xp 

XopD 
   

xopD [Xanthomonas campestris pv. vesicatoria str. 85-10] XopD_Xeu 
   

xopD_XPE2945 XopD_Xp 

XopE E1 
 

AvrXacE1, 

HopX(AvrPphE) 

avrXacE1[Xanthomonas axonopodis pv. citri str. 306] XopE1_Xac 

   
XopE1_XPE1224 XopE1_Xp 

   
gi|78034280|emb|CAJ21925.1| Xanthomonas outer protein E1 

[Xanthomonas campestris pv. vesicatoria str. 85-10] {XopE1} 

XopE1_Xeu 

E2 
 

AvrXacE3, 

AvrXccE1, 

HopX 

(AvrPphE) 

avrXccE1 [Xanthomonas campestris pv. campestris str. ATCC 

33913] 

XopE2_Xcc 

   
gi|78036266|emb|CAJ23957.1| Xanthomonas outer protein E2 

[Xanthomonas campestris pv. vesicatoria str. 85-10]  {XopE2} 

XopE2_Xeu 

   
avrXacE3 [Xanthomonas axonopodis pv. citri str. 306] XopE2_Xac 

E3 
 

AvrXacE2, 

HopX 

(AvrPphE) 

avrXacE2 [Xanthomonas axonopodis pv. citri str. 306] XopE3_Xac 
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E4 
 

Putative HopX 

(AvrPphE) 

SBV51443.1 putative type III effector protein XopE class 

[Xanthomonas bromi] {XopE4} 

XopE4_Xbr 

   
xopE4_C-aurantifolii_strain XopE4_Xau 

E5 
  

QDI05960.1 type III effector HopX1 [Xanthomonas translucens pv. 

cerealis] {XopE5} 

XopE5_Xtr 

XopF F1 
 

Hpa4 xopF1 [Xanthomonas campestris pv. vesicatoria str. 85-10] XopF1_Xeu 
   

XopF1_XPE2922 XopF1_Xp 

F2 
  

xopF2[Xanthomonas campestris pv. vesicatoria str. 85-10] XopF2_Xeu 
   

XopF2_XPE1639 XopF2_Xp 

XopG G1 
 

HopH 

(HopPtoH), 

HopAP 

xopG xopG_Xph 

XopH 
   

xopH-avrBs1.1 xopH_X 

XopI I1 
  

XopI_Fbox_XAC0754 XopI_Xac 
   

XopI_XPE3711 XopI_Xp 

XopJ J1 
 

XopJ xopJ [Xanthomonas campestris pv. vesicatoria str. 85-10] xopJ1_Xeu 

J2 
 

AvrBst, XopJ, 

HopZ2 

AvrBsT [Xanthomonas campestris pv. vesicatoria] XopJ2_Xeu 

J3 
 

AvrRxv, XopJ AvrRxv [Xanthomonas campestris pv. vesicatoria str. 85-10] XopJ3_Xeu 

J4 
 

AvrXv4, XopJ, 

PopP1 

AvrXv4 [Xanthomonas campestris pv. vesicatoria] XopJ4_Xeu 

J5 
 

AvrXccB, XopJ avrXccB[Xanthomonas campestris pv. campestris str. ATCC 33913] xopJ5_Xcc 
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XopK 
   

Xoo1669 XopK_Xoo 
   

XopK_XPE1077 XopK_Xp 
   

xopK_XAC3085 xopK_Xac 

XopL 
   

XCC4186_LRR XopL_Xcc 
   

XopL_XPE1073 XopL_Xp 
   

xopL_XAC3090_LRR xopL_Xac 

XopN 
  

HopAU1 xopN [Xanthomonas campestris pv. vesicatoria str. 85-10] xopN_Xeu 
   

XopN_XPE1640 XopN_Xp 

XopO 
  

HopK1, 

(HopPtoK, 

HoIPtoAB), 

AvrRps4 N-

terminal domain 

xopO [Xanthomonas campestris pv. vesicatoria str. 85-10] xopO_Xeu 

XopP 
  

HlK xopP [Xanthomonas campestris pv. vesicatoria str. 85-10] xopP_Xeu 
   

xopP_XPE3586 xopP_Xp1 
   

XopP_XPE4695 XopP_Xp2 

XopQ 
  

HopQ1 

(HoIPtoQ), 

RipB 

xopQ [Xanthomonas campestris pv. vesicatoria str. 85-10] xopQ_Xeu 

   
XopQ_XPE0810 XopQ_Xp 

XopR 
   

Xoo4134_XopR XopR_Xoo 
   

xopR xopR_Xeu 
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XopR_XPE3295 XopR_Xp 

XopS 
   

xopS xopS_Xeu 

XopT 
   

Xoo2210 XopT_Xoo1 
   

xopT xopT_Xoo2 

XopU 
   

xopU xopU_Xoo 

XopV 
   

Xoo3803_XopV XopV_Xoo 
   

xopV xopV_Xeu 
   

XopV_XPE4158 XopV_Xp 

XopW 
   

Xoo0037 XopW_Xoo 

XopX 
  

HopAE1 

(HoIPsyAE) 

xopX [Xanthomonas campestris pv. vesicatoria str. 85-10] xopX_Xeu 

   
xopX_XPE1488 xopX_Xp 

XopY 
   

Xoo1488 XopY_Xoo 

XopZ Z1 
 

HopAS1 xopZ_XAC2009 xopZ1_Xac 
   

XopZ1_XPE2869 XopZ1_Xp 

Z2 
  

xopZ2 xopZ2_X 

XopA A 
 

Ecf, HopAE1 

(HoIPsyAE) 

holPsyAE/Xoo3022 XopAA_Xoo 

   
early chlorosis factor_Xeuves XopAA_Xeu 

B 
 

weakly related 

to XopN  

xopAB xopAB_X 

C 
 

AvrAC avrAC_XCC2565 XopAC_Xcc 
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D 
  

gi|188519096|gb|ACD57041.1| skwp protein 4 [Xanthomonas 

oryzae pv. oryzae PXO99A] 

XopAD_Xoo 

   
xopAD xopAD_Xac 

   
xopAD_XPE4269 xopAD_Xp 

E 
  

XopAE_XPE2919_HpaF/G XopAE_Xp 
   

xopAE xopAE_Xac 

F F1 AvrXv3, 

HopAF1 

(HopPtoJ) 

avrXv3_XopAF XopAF_Xeu 

G 
 

AvrGf1, HopG1 

(HopPtoG), 

HoIPtoW 

avrGf1_Xac306 XopAG_Xac1 

   
avrGf2 XopAG_Xac2 

H 
 

AvrXccC, AvrB, 

AvrC 

(AvrPphC) 

avrXccC[Xanthomonas campestris pv. campestris str. ATCC 33913] XopAH_Xcc 

I 
 

HopO1 

(HopPtoO, 

HopPtoS), 

HopAI1 

(HopIPtoAI) 

xopAI_XAC3230 xopAI_Xac 

J 
 

AvrRxo1 avrRxo1 XopAJ_X 
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K 
 

HopK1 

(HopPtoK, 

HoIPtoAB) 

xopAK_XAC3666 xopAK_Xac 

   
xopAK_XPE4569 xopAK_Xp 

L L1 Eop3 xopAL1 xopAL1_Xcc 
 

L2 Eop3 xopAL2 xopAL2_Xcc 

M 
 

HopR1 xopAM_avrRpm1family xopAM_Xhor 

O 
 

AvrRpm1 xopAO xopAO_X 

P 
  

XopAP_XPE_1567 XopAP_Xp 
   

xopAP xopAP_Xcc 

Q 
 

Rip6, Rip11 XopAQ_XGA2091 XopAQ_Xg 

R 
  

XopAR_XPE_2975 XopAR_Xp 

S 
 

HopAS1 XopAS_XGA0764/0765(HopAS_homolog) XopAS_Xg 

U 
  

xopAU xopAU_Xcc 

V 
  

xopAV xopAV_Xcc 

W 
  

xopAW xopAW_Xcc 

X 
  

xopAX xopAX_Xcc 

Y 
  

xopAY xopAY_Xcc 
  

Hpa1, Hpa6 xopA [Xanthomonas campestris pv. vesicatoria str. 85-10] xopA_Xeu 

HpaA 
   

HpaA [Xanthomonas campestris pv. vesicatoria] HpaA_Xeu 

HrpW 
   

hrpW_306 hrpW_Xac 
   

hrpW hrpW_Xeu 
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AvrXccA 1 
 

AvrXca avrXccA1 [Xanthomonas campestris pv. campestris str. ATCC 

33913] 

avrXccA1_Xcc 

2 
  

avrXccA2 [Xanthomonas campestris pv. campestris str. ATCC 

33913] 

avrXccA2_Xcc 
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Table S 4-5: Designation of new Xanthomonas species from this study based on the Microbial Species Identifier (MiSI) method. 

S.N. Taxonomic 
classification 

Species designation MiSI FASTANI 
 

Cluster ID Cluster Type Most similar 

species 

ANI % 

1 Xanthomonas sp. 

F5 

New species I 16927 singleton Xanthomonas 

translucens  

92 

2 Xanthomonas sp. 

F1 

New species II 3459 clique Xanthomonas 

spp. 

96 

3 Xanthomonas sp. 

60 

New species III 16552 singleton Xanthomonas 

retroflexus 

83 

4 Xanthomonas sp. 

F10 

New species IV 16550 singleton Xanthomonas 

sacchari 

94 

5 Xanthomonas sp. 

3058 

New species V 3626 clique Xanthomonas 

arboricola 

89 

6 Xanthomonas sp. 

3075 

7 Xanthomonas sp. 

CFBP 8152 

New species VI 3417 clique Xanthomonas 

arboricola 

94 

8 Xanthomonas sp. 

CFBP 8151 

9 Xanthomonas sp. 

3793 

New species VII 3442 clique Xanthomonas 

pisi 

94 
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10 Xanthomonas sp. 

4461 

11 Xanthomonas sp. 

3307 

New species VIII 3418 clique Xanthomonas 

arboricola 

94 

12 Xanthomonas sp. 

3498 

13 Xanthomonas sp. 

F4 
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5. CHAPTER FIVE: Bacterial spot of tomato: strain diversity, dynamics, and 

environmental drivers in the southeastern United States 

 
 
Abstract 

Bacterial leaf spot is a significant economic constraint to tomato production worldwide 

and is caused by the bacterium Xanthomonas perforans (Xp). Understanding the genetic 

variations of the pathogen and the factors driving its diversity and disease severity is essential for 

insights into successful disease management. We conducted a comprehensive three-year study in 

Southeastern US tomato fields, employing a high-resolution metagenomics approach to track the 

dynamics of Xp in tomato fields. Our findings revealed the presence of up to five co-occurring 

Xp lineages within individual fields and that the composition and diversity of pathogen strains 

exhibit variability across space and time. Correlation analysis between the pathogen diversity 

and disease severity suggests that the diversity of Xp strains positively correlated with disease 

severity, suggesting that multiple lineages may increase the pathogen's ability to cause disease. A 

modeling approach to predict the drivers of disease severity found that environmental factors, 

such as photosynthetically active radiation (PAR) and wind direction, were significant 

predictors. Additionally, extremes in atmospheric pressure and relative humidity influenced the 

pathogen abundance. This study provides valuable information for disease diagnostics, 

epidemiological studies, and predictive modeling, emphasizing the importance of high-resolution 

metagenomics and considering meteorological parameter distribution in disease management and 

early warning systems. 
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5.1 Introduction 

 In natural ecosystems, continual interactions exist among plants, pathogens, and the 

environment, which are influenced by co-evolutionary processes (Burdon and Thrall 2009). 

Diseases are not of frequent occurrence in the natural environment, primarily due to host 

diversity and connectivity that result in stabilized co-evolutionary interactions among host and 

the pathogen. In contrast, the interactions between the pathogen and the host are altered under 

agricultural conditions. The monoculture system, global trade, widespread chemical use, and 

poor cultural practices create a perfect environment for pathogens to evolve rapidly and cause 

recurring outbreaks (Zhan et al. 2002; McDonald and Linde 2002; Bartoli et al. 2016; Sundin 

and Wang 2018; Wichmann et al. 2005). Isolate genome sequencing efforts over the years have 

provided insights into how specific virulence factors have evolved in response to host selection 

pressure due to deployment of resistant cultivars or how pathogen acquires resistance genes in 

response to chemicals (Velásquez et al. 2018). However, how environmental factors or other 

cultural practices foster pathogen diversification is not yet clear.  The continuous input of 

different pathogen genotypes on seeds or plant materials that are circulated worldwide 

additionally contributes to the diversity observed under field conditions (Elmer 2001).  As 

pathogen genetic diversity enhances fitness, adaptability, and evolution, enabling evasion of 

control measures, studying pathogen diversity is crucial for understanding infectivity, evolution, 

and adaptability in a changing environment. 

Among various factors influencing the disease development and pathogen diversity, 

environmental conditions have a substantial impact. Plant disease epidemiologists often correlate 

disease outbreaks with the weather patterns, particularly in a changing climate (Shah et al. 2019). 

One of the most significant approaches for managing plant disease epidemics is genetic 
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resistance within the host plant. Yet, in the absence of resistant cultivars, farmers often resort to 

strategically applying crop protection chemicals to prevent diseases from reaching levels that 

would economically damage crop quality and yield, which are costly (Lechenet et al. 2017). 

Climate change has a variable effect on pesticide efficacy and exacerbates pest pressure (Ma et 

al. 2021). So, the relationship between weather and plant disease is commonly employed for 

predicting and controlling disease epidemics, as the disease epidemics can vary based on climatic 

fluctuations (Chakraborty et al. 2000; Seherm and Coakley 2003). Predictive models are being 

developed for many crops, which helps farmers evaluate the disease risk and make management 

decisions based on these climatic factors (Shah et al. 2019). A plant disease model is a simplified 

representation of complex interactions within the pathosystem, encompassing pathogens, crops, 

and the environment, which lead to epidemic development occurring over time and space  (van 

Maanen and Xu 2003; Soubeyrand et al. 2008; Lee et al. 2020). These disease models have been 

developed since the middle 1900s, showing the relationship between components of disease 

cycles and their associated weather conditions (Zadoks 1971; Plank 2013). But a significant 

problem in predicting plant diseases over time and space is understanding the intricate 

relationship between the pathogens and how they respond to various disease-driving factors in 

the face of climate change. Climate change can significantly impact plant disease dynamics by 

altering pathogen evolution, host-pathogen interactions, and the emergence of new pathogen 

strains, potentially compromising host-plant resistance (Cohen and Leach 2020; Newbery et al. 

2016). Additionally, it can lead to shifts in the geographic ranges of pathogens and hosts, 

potentially expanding the spread of plant diseases into new areas (Dudney et al. 2021; Chaloner 

et al. 2021). In case of endemic diseases, such climatic fluctuations can lead to alterations in 

disease severities. While the potential effects of variable climatic factors in agriculture have been 
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extensively discussed, environmental changes can alter the disease triangle by favoring new 

climatic preferences and altering pathogen dynamics in plant-pathogen interactions (Velásquez et 

al. 2018). Despite being often overlooked in epidemiological modeling, pathogen diversity and 

variations in genotype fitness play a significant role in shaping the course of epidemic diseases.  

Bacterial leaf spot (BLS) is a disease affecting tomato and pepper plants, with economic 

implications for processing and fresh market produce. It can impact various aerial parts of these 

plants and is found in tropical, subtropical, and temperate regions globally (Jones et al. 2004; 

Hamza et al. 2010).(Jones et al. 2004; Hamza et al. 2010). BLS is considered an endemic 

problem in the United States, particularly in the Southeast, being known to be present now for 

more than a century. This disease results from a genetically diverse group of Xanthomonas 

bacteria, including X. euvesicatoria pv. euvesicatoria (Xeu), X. euvesicatoria pv. perforans 

(Xp), X. hortorum pv. gardneri, and X. vesicatoria (Jones et al. 2004). Although Xeu was the 

dominant pathogen of tomato in the mid 1990s, Xp is a dominant species in the southeastern US 

for the past three decades (Timilsina et al. 2015). BLS is a seed-borne pathogen, primarily 

spreading through contaminated seeds and transplants (Dutta et al. 2014). Research into the 

population structure of BLS pathogens in the United States has revealed considerable diversity, 

marked by species shifts, race changes, and an expansion of host ranges (Timilsina et al. 2016; 

Schwartz et al. 2015). Genomic studies based on the  Multilocus Sequence Analysis (MLSA) as 

well as core genome have indicated that multiple recombination events and horizontal transfer 

events are responsible for the emergence of new lineages of Xp over the period of past three 

decades (Timilsina et al. 2019; Newberry et al. 2019).  Moreover, the co-occurrence of multiple 

lineages of Xp in the same field was recently observed by our group when we used a high-

resolution metagenome sequencing approach  (Newberry et al. 2020). The presence of multiple 
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co-occurring pathogen genotypes in the field at a given sampling time suggest that it is not just 

one single genotype-host binary interaction that we need to focus on, but rather consider the 

diversity existing in the field when considering management strategies. Considering this, 

recognizing the impact of environmental conditions on plant-Xanthomonas interactions is 

essential for predicting disease outbreaks, associated pathogen diversity and developing resilient 

crop plants capable of withstanding current and future climate changes.  

Host resistance is the primary and most effective approach to managing BLS disease, 

however the emergence of pathogenic races capable of overcoming resistance genes in tomatoes 

has led to a lack of commercially available resistant tomato cultivar. The efficacy of copper-

based bactericides is diminishing due to the development of copper-resistant bacterial pathogens 

resulting in disease outbreaks around the world. As the development of effective management 

strategies including resistance breeding, relies upon the accurate identification of pathogens and 

an understanding of their diversity and pathogenicity, this study describes the large-scale survey 

of pathogen diversity using high resolution metagenome profiling and then studying strain 

dynamics during growing season and three years across the fields in southeast United States. We 

screened the metagenome data for the presence of eight X. perforans lineages that we identified 

based on phylogenetic analysis of isolate genome collected globally.  The high-resolution 

shotgun metagenome analysis was useful in studying patterns of co-occurrence of lineages across 

fields spatially and temporally. It is currently unknown whether presence of such multiple 

lineages has influence on the disease severity levels, although co-operation among genotypes 

may be quite common leading to collective performance of pathogen population with high 

disease severity values. So, we looked whether the diversity of lineages present in the field is 

associated with disease severity. Moreover, as isolate genome sequencing results have shown the 
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dominance of Xp in tomato after mid 1990s, we wanted to see if high resolution approach, in 

fact, detects any low levels of Xeu. This study also addresses the knowledge gap regarding how 

climate components and their interaction with human activities affect endemic bacterial pathogen 

dynamics and disease severity. This information can inform management practices and targeted 

breeding programs to mitigate the influence of these pathogens. 

 

5.2 Materials and Methods 

5.2.1 Reconstruction of the X. perforans core genome  

Sequencing reads for 497 Xp strains downloaded from NCBI (as of 08/15/2023) along 

with quality trimmed reads from strains collected from a pepper field in Georgia (sequenced by 

our group, unpublished), was used to study the global diversity of Xp isolate genomes. To ensure 

high-quality and minimally biased genomes, the genomes were de-replicated using dRep (v3.2.2) 

(Olm et al. 2017) using a 95% minimum genome completeness and 5% maximum 

contamination. We manually discarded the genomes with more than 400 contigs to ensure better 

alignment with the reference genome and avoid bias while creating the SNV profile. Four 

hundred sixty seven quality-controlled genomes collected from tomato, and pepper (with one 

eggplant isolate) s around the globe were individually aligned against the completed genome of 

Xp strain LH3. Single-nucleotide polymorphisms (SNPs) common to all genomes were extracted 

to generate a concatenated set of high-quality core-genome SNPs using Parsnp (Treangen et al. 

2014). The phylogenetic tree was visualized and annotated using iTol (v.6.7.5)  (Letunic and 

Bork 2007) 
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5.2.2 Sample collection and disease severity estimation  

To study the diversity of BLS Xanthomonas in the southeastern United States, we 

collected 66 samples from 22 fields. These samples were collected from symptomatic and 

asymptomatic tomato plants grown in Alabama, Georgia, South Carolina, and North Carolina 

over 2020, 2021, and 2022 (Fig. S5-1, Table S5-1). Samples were taken during mid-season, end-

season, and, when available, in the winter to capture the temporal dynamics of the pathogen 

population. While sampling, two to three leaflets were randomly taken from individual plants in 

the field. Multiple plants were sampled across the field to obtain a representative 50-100 grams 

leaf tissue sample. Assessments of the disease were made by estimating the percent of disease 

symptoms and defoliation caused by bacterial spots using the Horsfall-Barratt scale, which 

ranges from 1 to 12, with scale of 1 being no disease and 12 being 100% defoliation (Horsfall 

and Barratt 1945).  

5.2.3 DNA extraction and sequencing 

Metagenomic DNA extraction, quantification and sequencing of the samples was done as 

described earlier (Newberry et al. 2020). Approximately 40 grams of the leaf sample was taken in 

a Ziploc bag (Ziploc®) with 50 ml 0.1% wash buffer (0.05M PBS, 8.5 g NaCl, and 0.2 ml tween 

20 per liter of water), sonicated for 20 minutes, followed by transfer of the buffer to a 50 ml falcon 

tube with the help of a sterile pipette. The tubes were centrifuged at 4000 rpm, 4°C for 20 minutes 

(Eppendorf® 5418 R) to collect all the cells. The cells were then washed twice with sterile 

deionized water, and the metagenomic DNA extraction was done using Wizard® Genomic DNA 

Purification Kit (Promega) as per the manufacturer's instructions with the addition of a phenol-

chloroform step to remove protein contamination. The extracted DNA was quantified using a 
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Qubit® fluorometer and dsDNA high-sensitivity assay kit (Life Technologies, Carlsbad, CA, USA) 

and kept at -800C until further processing. Sequencing was performed on the Illumina HiSeq 4000 

platform. The raw reads were processed and trimmed for the adapter using BBDuk 

(https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/). DynamicTrim 

command of SolexaQa was used to trim the reads based on quality values with Qphred less than 

20, followed by filtering the reads shorter than 50bp (Cox et al. 2010). Host reads were separated 

and removed from the metagenomic samples using KneadData tools 

(https://bitbucket.org/biobakery/kneaddata/wiki/Home) using tomato cv. Heinz 1706 

(GCA_022405115.1) as a reference.  

5.2.4 Taxonomic profiling and diversity estimation 

The relative abundance of Xanthomonas sp. in quality-controlled and host-

decontaminated reads was performed using Kraken2 (v2.1.2) (Wood et al., 2019) against a 

standard Kraken2 database. The database contained RefSeq libraries of archaeal, bacterial, 

human, and viral sequences as of March 1, 2022 (O'Leary et al., 2016). The resulting Kraken2 

report files were used as inputs for Bayesian re-estimation of abundance using Kraken (Bracken) 

(v2.6.2) (Lu et al., 2017). We also calculated the absolute abundance estimates for Xp by 

combining their relative abundance with the total DNA content in each sample. Microbiota 

density, expressed as total DNA (ng) per mg of fresh sample, was computed for each sample. 

This information was utilized to determine the absolute abundance of Xp by multiplying the ng 

of DNA per mg of the sample with their relative abundance. 

To explore the intraspecific diversity and dynamics of Xp in the metagenomic samples, 

we employed the StrainEst pipeline (Albanese and Donati, 2017). StrainEst is a reference-based 

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://bitbucket.org/biobakery/kneaddata/wiki/Home
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method that utilizes single-nucleotide variant (SNV) profiles from carefully selected reference 

genomes. This approach enables us to estimate the presence and relative abundance of strains 

within a given sample. Initially, we conducted SNV profiling of representative strains from Xp, 

Xeu, and other closely related pathovars belonging to Xeu species complex to determine their 

presence. A second round of profiling was done to identify the diversity of Xp strains. A 

representative genome from each Xp SC (Fig. 5-1) was selected and aligned against the 

completed reference genome of Xp strain 91-118 using the MUMmer algorithm (Kurtz et al. 

2004). This genome alignment was used to construct a SNV matrix, where each row 

corresponded to a variable position in the reference genome, and columns contained allelic 

variants present in the reference strains. This matrix was used as a reference in modeling strain 

level abundance.  

To assess the diversity of Xp SCs within the samples, we computed the Shannon diversity 

index (Shannon-Wiener diversity index) using the "diversity()" function from the R package 

vegan (v2.6-4) (Dixon 2003). The index considers both the count of SCs present (richness) and 

their proportional distribution (evenness). A higher index value indicates greater species 

diversity in the habitat. When the Shannon diversity index of a sample is equal to 0, it implies 

that only a single SC is detected in that sample. 

5.2.5 Weather data 

Daily climate data spanning three years for all 22 fields were compiled from the NASA 

Power database using the nasapower (v4.0.12) package (Sparks 2018) in R. Data were collected 

during mid-season, end-season, and winter samples as per the sampling time in Table S1. The 

gridded weather data used in this analysis are based on satellite observations and models and are 

offered globally at a horizontal resolution of 0.5° X 0.625° latitude–longitude grid cell. Weather 
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variables, such as temperature, precipitation, solar radiation, relative humidity, wind, and others 

(Table S5-2), were consolidated over time and space to generate data points for each sampling 

time, resulting in an average value. The average for mid-season was calculated as an average 

from the time of planting to mid-season sampling time, which is usually 60 days after 

transplanting, and the average for end-season is calculated as the average from the time of 

sampling to end-of-season sampling time, which is generally 30 days after mid-season sampling.  

Variability among the weather parameters were measured using the descriptive statistics 

(standard deviation, skewness, entropy, and kurtosis) for all the climatic variables to see if the 

extreme temperature events during the growing season have an impact on disease severity, 

pathogen diversity, and abundance. Standard deviation measures the deviation from the mean 

value. Higher the standard deviation indicates greater variability in the weather parameters while 

lower standard deviation suggests more consistent pattern. Skewness measures the degree and 

direction of asymmetry. A positive skewness implies that there are more extreme high weather 

parameters while a negative skewness suggests more extreme low with zero suggesting a 

symmetric distribution. Kurtosis is a measure of tail extremity reflecting either the presence of 

outliers in a distribution (Westfall 2014). Higher positive kurtosis suggests that presence of 

extreme weather values or outliers while negative kurtosis indicates the flatter distribution with 

less extreme weather values. Similarly, entropy quantifies the level or unpredictability in the 

weather values. Higher the entropy, more will be the unpredictability in the weather fluctuations.  

 
5.2.6 Statistical analysis  

 We quantified the relative abundance of various Xp lineages across the samples and 

analyzed their distribution patterns in relation to various climatic factors. We then did a principal 
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component analysis using a biplot to know the main climatic factors that are related to the 

variation observed among Xp lineages and computed a pairwise average bi-distance (Bray-

Curtiss using ggplot2 package in R. In our study, we harnessed the power of the Least Absolute 

Shrinkage and Selection Operator (LASSO) regression models to identify the most influential 

factors affecting disease severity. LASSO is the preferred feature selection method in our 

analysis, as it combines the benefits of ridge regression and subset selection, enhancing model 

accuracy and interpretability (Tibshirani 1996). This model can also simultaneously conduct 

variable selection and regularization, improving predictive accuracy and model interpretability, 

rendering it the top choice among regression models (Fonti and Belitser 2017). LASSO imposes 

an upper limit on the absolute values of model parameters. The method employs a shrinkage, or 

regularization, process that penalizes regression variable coefficients, effectively reducing some 

to zero. Feature selection was performed on the variables that still have non-zero coefficients 

after the shrinkage process using the "cv.glmnet" function to prevent the overfitting of the model. 

This study determined the tuning parameter for regularization using 10-fold cross-validation. The 

path length (min_lambda/max-lambda) was chosen to be 0.001, and 100 default values along the 

regularization pass were tested to find the best lambda value. The effects of the climatic 

parameters on Xp relative and absolute abundance were analyzed using a beta regression analysis 

in R using the betareg package (Cribari-Neto and Zeileis 2010). The beta regression model is 

employed for non-normally distributed data with a range between 0 and 1, addressing 

heteroskedasticity and asymmetry issues (Ferrari and Cribari-Neto 2004), and is specifically 

chosen here due to the non-normal distribution of Xp relative abundance in the sample, which 

conforms to a beta distribution. 
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5.3 Results  

5.3.1 Diversity of bacterial leaf spot pathogen Xp around the world  

More than 500 genomes of Xp are now available for the strains collected around the 

world over the last three decades. Our group had identified 6 lineages (also known as sequence 

clusters) based on core single nucleotide polymorphisms (SNPs) phylogeny using the set of 

published genomes available then in 2019 (Newberry et al. 2019). However, after this study, 

although there was exponential increase in sequenced Xp genomes, the studies did not include all 

the sequenced genomes in informing population structure or used other methods to characterize 

pathogen population structure, thereby, leading to a knowledge gap of relationship of existing 

strains to the newly sequenced strains and the global population structure.  Here, utilizing a 

maximum likelihood phylogenetic approach, a phylogenetic tree was constructed based on core 

genome SNPs, and a Bayesian analysis of population structure was performed. This 

comprehensive analysis identified eight distinct lineages within Xp strains referred here as 

sequence clusters (SC) (Fig. 5-1). SC1 and SC2 represent previously characterized population 

structures of Xp strains primarily collected from tomatoes, primarily in Florida but also from 

Ohio, Indiana, and Georgia. Most strains in SC3 originate from tomatoes in Florida, and this 

group also includes six strains isolated from peppers, including three new strains from this study 

(GAJa1, GAJa2, and GACu1). SC4 primarily consists of strains collected from tomatoes in the 

United States, specifically Florida, Ohio, and Alabama. It includes a single strain isolated from 

tomatoes in Australia (BRIP62398), one from eggplants in Turkey (Tu-04), and a small number 

of tomato strains isolated from Canada. SC5 consists exclusively of tomato strains collected from 

Alabama and Florida. SC6, on the other hand, is a diverse cluster primarily composed of strains 

collected from peppers in Alabama, Georgia, and Florida. Additionally, this cluster includes 
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eight pepper strains obtained during this study. Furthermore, SC6 contains a subset of tomato 

strains from Turkey and one strain each from Alabama and Australia. In contrast, SC7 is entirely 

composed of Xp strains collected from tomatoes in Australia, while SC8 consists of tomato 

strains collected from Florida. 

5.3.2 Abundance of Xp is positively associated with BLS disease severity 

Out of the 66 tomato phyllosphere samples gathered over three years, six exhibited no 

symptoms of BLS. Among 66 fields, not all the field were sampled for both mid-season and end 

season and for all three years. A total of 11 fields were sampled during both mid and end season. 

The average disease severity in samples from Alabama was lower (2.7) during mid-season when 

compared to other states. However, the average disease severity during end season was higher in 

Alabama (6) as compared to other states (Fig. 5-2A). Beside Alabama and North Carolina, 

average disease severity during end season was lower in samples from Georgia and South 

Carolina when compared to mid-season. The relative abundance of Xp was positively correlated 

with disease severity both during the mid and end season (mid-season: R2 = 0.5084, p < 0.001, 

end season: R2 = 0.378, p < 0.001). Similar results were observed with absolute abundance of Xp 

during both timepoints (mid-season: R2 = 0.3814, p < 0.001, end season: R2 = 0.2833, p < 0.01). 

The pathogen population had more significant influence on disease severity during early season 

compared to late season based on R2 value (Fig. 5-2B). SNV profiling of Xp, Xeu and Xeu sister 

cluster using StrainEST showed absence of of Xeu in the sampled tomato fields. The presence of 

Xp alone suggest Xp is the dominant pathogen of BLS in tomatoes in southeastern United States. 

5.3.3 Xanthomonas abundance reveals co-occurrence of various Xp lineages 

Subsequently, we conducted a second round of SNV profiling to examine which Xp 

lineages that are identified in the global collection are present in the individual fields of 
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southeastern US. From our analysis, we identified the presence of all lineages in our samples. 

Notably, SC1, SC7, and SC8 were found to be present in lower abundance, appearing in only 8 

of the samples. Co-occurrence of different Xp lineages in the samples was observed, as was also 

noted in our previous limited metagenome survey. Interestingly, fields had minimum of 1 to 

maximum of 5 lineages present at a given sampling time and this diversity of co-occurring 

lineages was different across different years and samples from neighboring states (Fig. 5-3). 

Among the Xp lineages, SC3 was dominant in Georgia across all three years with fewer 

abundance of SC4, SC2, and SC1. Similarly, SC4, SC5, and SC6 were the prevalent SCs in 

South Carolina. In Alabama, in most of the samples, SC3, SC4, SC5, and SC6 were prevalent. 

Although we had only one field sample with Xanthomonas from North Carolina, the sample was 

dominated with SC4 and SC2. In most of the samples, there was a mixed occurrence of multiple 

SCs where SC3, SC4 and SC6 was the most prevalent combination across all samples.  

Changes in strain composition were not only evident across different fields but also 

within individual fields throughout the growing season, spanning a period of three years. These 

dynamics in strain composition were marked by fluctuations in their relative abundance, with a 

notable prevalence of introduction of new lineages during the end season, introduction of 

completely new strains, and the dominance of one strain over others. For example, in Farm 3 

during the year 2022, only SC4 was present. However, as the season transitioned from mid to 

end, the abundance of SC4 decreased significantly, coinciding with the introduction of new 

lineages of, SC3 and SC2. A similar pattern was observed in Farm 22, where the abundance of 

SC3 decreased from mid-season to end season, accompanied by the introduction of a new 

lineage, SC5, during the end season in 2020. In Farm 10, a comparable reduction in the 

abundance of SC4 occurred with the introduction of SC3 and SC5 during the end season. 



237 

Moreover, in Farm 7, a new lineage SC3, was introduced, leading to a decrease in the abundance 

of SC4 during the end season. 

Notably, introduction of completely new lineages (SCs) was also observed in some fields 

over this three-year period in Alabama. For instance, in Farm 1 during the year 2020, only SC6 

was prevalent. In 2021, SC6 dominated the mid-season, while SC5 and SC7 were introduced and 

became prominent during the end season. However, in 2022, a new strain, SC4, was introduced, 

and it became the dominant strain in the samples. A similar pattern was observed in Farm 4, 

where SC6 was the predominant strain in 2020. In 2021, SC5 was introduced during the mid-

season and later dominated the end-season sample. However, in 2022, a novel strain, SC3, 

emerged and completely dominated the mid-season sample. This result suggests these dynamics 

in the co-occurrence of these SCs might be influenced by various climatic, host, and 

anthropogenic factors. 

5.3.4 Xp population diversity is positively associated with disease severity 

Next, we investigated whether the presence of multiple co-occurring lineages of Xp 

within individual fields   influenced disease severity.  We estimated shannon diversity index that 

captures evenness indicative of the extent of diversity of Xp. Correlation analysis between  

shannon diversity index of pathogen population and disease severity revealed a positive 

association (R2 = 0.52, p < 0.001) (Fig. 5-4). This suggests that the presence of multiple SCs in 

the field leads to more severe disease. 
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5.3.5 Variation in Xp lineages during growing season is influenced by various climatic 

factors 

To investigate the factors driving the composition and diversity of various Xp lineages in 

our samples, we used Principal Coordinate Analysis (PCoA) plots, utilizing the compositional 

variations in Xp lineages (assessed using Bray-Curtis distances). The results revealed distinct 

sample clustering patterns based on the timing of sample collection, distinguishing between mid, 

end, and winter seasons (Fig. 5-5). The ordination plot further suggested that UV index, 

temperature, and precipitation are the factors that drive the Xp lineages diversity during end-

season while wind speed is the major driver of Xp lineages during mid-season and winter (Fig. 5-

5). 

5.3.6 Photosynthetically active radiation and wind speed significantly influence BLS 

disease severity 

Next, we focused on understanding which climatic factors drive disease severity. We 

subsequently employed a disease modeling approach. We used disease severity as our response 

variable and considered climatic factors, sampling time, year, and farm-scale as predictors, 

treating the latter three as categorical variables. In addition to routine climatic variables, their 

mean or median values, we also considered upscaling approach, that allows considering the 

extreme climatic values using indexes that capture the spread (standard deviation), asymmetries, 

and tail-heaviness (skewness and kurtosis). We employed an ordinal logistic regression model to 

analyze the relationship between their predictors and ordinal disease severity. We assessed 

statistical significance using t-values, with values exceeding 2 or falling below -2 indicating 

significance. This approach helped identify key factors influencing the severity of BLS disease. 
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Although not significant, the size of the sampling field positively influenced the disease severity 

(t value = 1.78), suggesting that an increased sampling field size would increase the possibility of 

increased disease severity. A similar observation was made about sampling year (t value = 1.93), 

suggesting that in 2020, the BLS disease severity in the sampled field was higher than in the 

years 2021 and 2022. Among the climatic variables, the predictor average of clear sky surface 

photosynthetically active radiation (PAR), indicative of the photosynthetic capability of plants (t 

value = 2.3826) and standard deviation of the average of the wind direction at 10 meters above 

the surface of the earth (t value = 2.4679) had the significant positive influence on BLS disease 

severity (Table 5-1A). 

5.3.7 Frequent shifts in wind direction and extreme changes in surface pressure and 

relative humidity influences Xp abundance 

A beta regression model was designed to predict the relative and absolute abundance of 

Xp (response variable) and the influence of climatic factors, sampling time, year, and farm-scale 

as predictors, treating the latter three as categorical variables as described earlier. Results from 

the beta regression demonstrate that the standard deviation of the average of the wind direction at 

10 meters above the surface of the earth (p < 0.01) and farm scale where commercial farm (p < 

0.01) has a significant positive effect on Xp relative abundance (Table 5-1B). Moreover, the 

skewness of surface pressure (p < 0.01) and Kurtosis of relative humidity (p < 0.01) showed a 

significant negative effect on Xp relative abundance (Table 5-1B). A similar observation of 

negative interaction between Kurtosis of relative humidity at 2 meters (p < 0.01) and skewness of 

surface pressure (p < 0.001) was observed on the absolute abundance of Xp. In comparison, only 

the standard deviation of the wind direction at 10 meters above the surface of the earth had 

significant positive interaction (p < 0.01) (Table 5-1C) with Xp absolute abundance.  
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5.4 Discussion 

BLS pathogen, X. perforans, has shown extraordinary diversity over time in various parts 

of the world (Schwartz et al. 2015; Timilsina et al. 2016; Newberry et al. 2019; Timilsina et al. 

2019; Klein-Gordon et al. 2021). Different strains of the same species differ significantly in their 

gene content, single nucleotide polymorphism (SNPs), etc. These differences in different strains 

within the same species for the basis for understanding microbial adaptation and evolution (Zhu 

et al. 2015; Schloissnig et al. 2012; Myers et al. 1993). While previous studies using isolate 

genome sequencing have indicated genomic changes or processes that may have contributed 

towards diversification of the pathogen into several lineages (eight, to be precise, based on the 

comprehensive analysis using core genome SNP phylogeny built in this study), we lack 

understanding of the extent of diversity existing in the fields at a given time. Being endemic 

disease, presence of the disease in the tomato fields in the southeastern US is not surprising. But 

what drives the differences in disease severity across fields in the neighboring states is a complex 

question to answer. This is primarily because of multiple factors involved in driving the disease 

dynamics, ranging from climatic factors, choice of host genotypes, scale of farm operations, 

source of seeds or transplants, field sanitation, other cultural practices, to the management 

strategies used by the growers to tackle bacterial spot disease or other fungal or nematode 

diseases. We attempted to address these knowledge gaps in this study by using strain-resolved 

metagenomics approach that we optimized on phyllosphere samples in 2019 (Newberry et al. 

2020). This high-resolution method allowed us to track strain dynamics of Xp in individual fields 

in the southeastern US over the course of three years. Beyond pathogen population survey, a rich 

metadata collected alongside samples from the field and climate data allowed us to identify 
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variable importance of individual factors in contributing towards disease severity and pathogen 

diversity. 

Our survey of fields in Alabama, Georgia, North and South Carolina in the growing 

seasons of 2020-2022 indicated overall higher disease pressures during mid-season compared to 

the end season. The disease severity was positively correlated with Xanthomonas abundance. 

Overall higher severity values in mid-season compared to end season could be due to age-related 

host resistance (Hu and Yang 2019, Whalen 2005; Sharabani et al. 2013), or prevalence of other 

fungal diseases later during the growing season, or changes in climatic conditions less conducive 

for further disease development of bacterial spot.   

Strain-resolved metagenomics approach indicated prevalent lineages in the fields. 

Interestingly, all eight lineages are currently circulating in the fields of the southeastern US, 

although some lineages are always found in low abundance. The spatio-temporal analysis of 

strain dynamics allowed us to identify persisting lineages across fields. As previously noted in 

our pilot study on limited samples, we observed co-occurrence of up to five lineages of Xp in 

individual fields. Intraspecific co-occurrences are common in the natural environment due to 

stabilizing host-pathogen interactions but are assumed to be of rare occurrence under agricultural 

environment (Susi et al. 2015; Walkowiak et al. 2015; Karasov et al. 2018). Co-occurrence of 

microbial communities can infections result in either increased or decreased pathogen virulence, 

depending on the specific interactions among the co-infecting bacterial strains. The disease 

severity values obtained in this survey were found to be positively correlated with Xp diversity, 

indicating the overall pattern of higher disease severity in presence of multiple lineages. The 

positive association between the diversity of the SCs and disease severity suggest the possible 

mutualistic or competitive interactions among the SCs (Fig. 5-3) (West and Buckling 2003; 
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Buckling and Brockhurst 2008, Kinnula et al. 2017; Inglis et al. 2009; Carvalho et al. 2023). 

Increased in diversity of the co-occurring strains might have resulted in more diverse gene pool 

with more accessory genes which might provide benefit to the pathogens to adapt to fluctuating 

climatic conditions and host genotypes. Increased in fitness of the co-occurring microbial 

communities by sharing the public good molecules which includes virulence factors, toxins, 

signaling molecules is widespread in bacterial communities (Dimitriu et al. 2014; West et al. 

2007). The possible increased co-operation and sharing of resources among the co-occurring SCs 

and the inability of the host defense system to defend against multiple infections, might be linked 

with increased disease severity. 

The composition and diversity of pathogen strains was found to exhibit variability across 

both space and time. Seasonal fluctuations in the abundance of these strain clusters may be 

attributed to the process of strain assembly and the differential survival of strains within their 

local environment (Krasnov et al. 2015). With the onset of new growing season, new strain 

clusters are introduced to the field through seeds or transplants, alongside strains from the 

previous season, which may originate from either the same seed source or overwintering 

pathogens. This results in the introduction of new strain clusters or the persistence of similar 

ones across multiple years in the field. During the growing season, the spread of infection among 

crops occurs through various means, including aerosols, wind-driven rain, and human activities. 

Spatial variation of the SCs across different states might be driven by heterogeneity in tomato 

cultivars and varied environmental conditions. Variation in the environmental conditions and 

genotype specific response of pathogen to different cultivars is known to promote the 

differentiation in the pathogen population (Thompson and Burdon 1992). 
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Environmental factors are known to exert a substantial influence on the development of 

diseases in field crops. Consequently, assessing the connection between epidemiological 

variables and disease severity is crucial. This assessment provides an early warning system to 

predict the disease's onset and understand the influence of different factors that drives BLS 

disease severity. In this study, we examined the effect of climatic factors and the prevalence of 

extreme weather events on BLS disease severity and Xp relative and absolute abundance. The 

ordinal regression model indicated that average clear sky surface photosynthetically active 

radiation (PAR) and standard deviation of wind direction at 10 Meters (WD10M) are significant 

predictors of higher disease severity. Photosynthetically active radiation is in the spectral range 

of 400 to 700 nm and is known to play a key role in plant growth and biomass production 

through photosynthesis (Frolking et al. 1998; McCree 1981). It is known that the change in the 

global climate affects plant's ability to make defense hormones, making them more prone to 

disease (Kim et al. 2022; Bhandari et al. 2023). As sun is the main source of energy, the rate of 

energy from the sun influences the climate variability in the earth including temperature, 

precipitation, etc. (Bhargawa and Singh 2019). So, a shift in other climatic factors due to change 

in PAR might exacerbate the disease. Therefore, further investigation with consideration of 

Xanthomonas-host interactions and their adaption/evolution to gradually changed environmental 

factors is necessary to understand their response to global climate changes better. Wind plays an 

essential role in disseminating various plant bacterial pathogens (Vidaver and Lambrecht 2004). 

The direction of the wind can play a crucial role in the dispersal and drift of Xanthomonas within 

and between the fields. Thus, finding of shifts in wind direction influencing disease severity 

levels is not surprising.  
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The abundance of Xp was negatively influenced by skewness of surface pressure and 

kurtosis of relative humidity, suggesting that frequent changes in surface pressure and relative 

humidity from normal levels may be less conducive for pathogen multiplication. Atmospheric 

pressure, though often overlooked, is a significant factor that can influence other climatic factors 

such as temperature. The atmospheric pressure might lead to changes in oxygen and carbon 

dioxide partial pressures, which can lead to physiological and growth impacts for plants 

(Armarego-Marriott 2021). Atmospheric pressure is also positively associated with temperature 

suggesting increase in air pressure results in increase of temperature. Studies on common 

dandelion (Taraxacum officinale) have revealed reduced plant growth under lower atmospheric 

pressure and higher production of defense metabolites under higher pressure (Arce et al. 2021). 

The negative interaction of the surface pressure and Xp abundance might be because of increased 

defense response with the increase in surface pressure. Similarly, higher kurtosis of relative 

humidity was significantly associated with a lower abundance of Xp. Higher kurtosis of relative 

humidity values indicates that periods of particularly high or low humidity (extreme) negatively 

affect the abundance of Xp. Xp population is positively associated with high humidity and 

temperatures, commonly found in tropical and subtropical regions (Abrahamian et al. 2021; 

Obradovic et al. 2008). Humidity also alters the interspecies interaction in tomatoes infected with 

Xp, giving advantages to other phyllosphere weak colonizers (Sadhukhan et al. 2023). These 

findings emphasize the importance of considering the extreme values of meteorological 

parameters and their distributional characteristics when assessing their influence on disease 

severity and pathogen abundance.   

In summary, we observed diversity of the BLS pathogen, Xp, in various crop hosts and 

regions worldwide, characterized by two novel lineages. Our high-resolution metagenomics 
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approach tracked strain dynamics of Xp over three years in Southeastern US tomato fields, 

revealing 1-5 co-occurring lineages of Xp, with disease severity positively correlated with 

diversity among them. Modelling approach to identify the drivers of BLS disease severity 

predicts that environmental factors, including photosynthetically active radiation (PAR) and 

wind direction, significantly influenced disease severity. Similarly, extreme values of 

atmospheric pressure and relative humidity also played roles in pathogen abundance, 

highlighting the complex interplay of climate variables in driving disease dynamics. Our results 

suggest that the culture independent higher resolution method can be employed for disease 

diagnostics and epidemiological studies. Modeling of pathogen population and disease severity 

with the climatic variables underscores the importance of considering the distributional 

characteristics of meteorological parameters when evaluating their impact on disease severity 

and pathogen population. This understanding is instrumental in developing more precise 

predictive models and early warning systems for disease outbreaks. 
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Figure 5-1: Comparative genome analysis demonstrated the presence of eight distinct 
lineages in X. perforans.  Midpoint-rooted maximum-likelihood phylogeny of 467 X. perforans 
strains isolated form tomato, pepper, eggplant, and watercress from around the globe based on 
concatenated alignment of 16,823 core genome SNPs. The clades color coded according to the 
SCs identified in the first level of the HierBAPS hierarchy. Geographical location and host of 
isolation of each strain was isolated from, are indicated by different colored blocks within each 
respective ring surrounding the phylogenetic tree. 
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Figure 5-2: X. perforans is the dominant pathogen for BLS disease severity in tomato Box 
plot showing (A) average disease severity of samples (B) Relative and absolute abundance of X. 
perforans collected from different states during 2020, 2021 and 2022. The box is color coded 
based on their time of sampling.
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Figure 5-3: Multiple X. perforans lineages co-occur with spatio and temporal variations, 
involving new lineages, strain turnover, and dominance shifts. Stacked donut chart to show 
the diversity of Xp lineages in different farms from Alabama, North Carolina, South Carolina, 
and Georgia. The inner two donuts circle represents the year 2020 where inner donut within the 
year 2020 is for mid-season and outer is for end-season. The outer two donuts are for year 2021 
and the outermost two are for the year 2022.
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Figure 5-4: Co-occurrence of more lineages of X. perforans in the field results in higher BLS 
disease severity. A correlation plot shoeing the interaction between Shannon diversity of Xp 
lineages and disease severity across all samples.  
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Figure 5-5: Various climatic factors drive X. perforans population. Principal coordinate 
analysis (PCoA) based on the overall structure of Xp lineages in all samples. Each data point 
represents an individual sample. PCoA was calculated using Bray-Curtis distances. Arrows with 
the weather parameters indicate the direction and magnitude of variables.
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Figure S 5-1: Map of the study area from Alabama, North Carolina, South Carolina, and Georgia 
from southeast United States. The dots in the figures represents the sampled farm and the size of 
the dot represents the number of samples collected during 2020, 2021, and 2022.
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Table 5-1A: Results of the ordinal regression model showing parameter estimates and associated 
statistics for disease severity. 

Parameters Value Std. 

Error 

t value 

Av_CLRSKY_SFC_PAR_TOT 0.08753 0.03674 2.3826 

Sd_WD10M 0.09293 0.03765 2.4679 

Skew_CLRSKY_SFC_PAR_TOT -0.3143 0.4417 -0.7116 

sampled.field.size 0.22126 0.12428 1.7803 

Year_2020 1.20354 0.62204 1.9348 

 
Table 5-2: Results of the beta regression model showing parameter estimates and associated 
statistics for relative abundance of Xanthomonas perforans (Signif. codes:  0 '***' 0.001 '**' 0.01 
'*' 0.05 '.' 0.1 ' ' 1 ).  

Estimate Std. Error z value  Pr(>|t|) Remarks 

(Intercept) -4.7595 1.15335 -4.127 3.68E-05 *** 

Sd_WD10M 0.0391 0.01429 2.736 0.006218 ** 

Skew_RH2M 0.41746 0.26863 1.554 0.120177 
 

Skew_PS -1.37198 0.4113 -3.336 0.000851 *** 

Kur_RH2M -0.63686 0.21604 -2.948 0.0032 ** 

Year_2020 -0.07795 0.22443 -0.347 0.728365 
 

Year_2022 -0.17922 0.27699 -0.647 0.517621 
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Table 5-3: Results of the beta regression model showing parameter estimates and associated 
statistics for absolute abundance of Xanthomonas perforans (Signif. codes:  0 '***' 0.001 '**' 
0.01 '*' 0.05 '.' 0.1 ' ' 1 ). 

 
Estimate Std. Error z value  Pr(>|t|) Rema

rks 

(Intercept) -4.7595 1.15335 -4.127 3.68E-05 *** 

Sd_WD10M 0.0391 0.01429 2.736 0.006218 ** 

Skew_RH2M 0.41746 0.26863 1.554 0.120177 
 

Skew_PS -1.37198 0.4113 -3.336 0.000851 *** 

Kur_RH2M -0.63686 0.21604 -2.948 0.0032 ** 

Year_2020 -0.07795 0.22443 -0.347 0.728365 
 

Year_2022 -0.17922 0.27699 -0.647 0.517621 
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Table S 5-1:Farm details and time of sampling 

Farm ID Year State Growing 

Season Start 

Date 

Mid 

Sample 

Date 

End Sample 

Date 

Farm 1 2020 AL 4/6/20 5/21/20 7/17/20 

Farm 1 2021 AL 4/12/21 5/27/21 6/17/21 

Farm 1 2022 AL 4/13/22 5/28/22 6/30/22 

Farm 2 2020 AL 4/6/20 5/21/20 6/17/20 

Farm 2 2021 AL 4/12/21 5/27/21 6/17/21 

Farm 2 2022 AL 4/13/22 5/28/22 6/30/22 

Farm 3 2020 AL 5/19/20 7/3/20 7/28/20 

Farm 3 2021 AL 5/24/21 7/8/21 7/17/21 

Farm 3 2022 AL 5/27/22 7/11/22 8/17/22 

Farm 4 2020 AL 4/13/20 5/28/20 7/3/20 

Farm 4 2021 AL 4/17/21 6/1/21 7/1/21 

Farm 4 2022 AL 4/9/22 5/24/22 6/16/22 

Farm 5 2022 AL 5/12/22 
 

8/10/22 

Farm 6 2020 NC 5/31/20 7/15/20 7/30/20 

Farm 7 2020 NC 5/31/20 7/15/20 8/3/20 

Farm 8 2020 SC 4/5/20 5/20/20 6/20/20 

Farm 8 2021 SC 4/6/21 5/21/21 6/21/21 

Farm 9 2020 SC 4/4/20 5/19/20 6/17/20 

Farm 9 2021 SC 4/6/21 5/21/21 6/24/21 

Farm 9 2022 SC 4/5/22 5/20/22 6/14/22 

Farm 10 2020 SC 4/4/20 5/19/20 6/17/20 

Farm 10 2021 SC 5/3/21 6/17/21 7/17/21 

Farm 10 2022 SC 4/5/22 5/20/22 6/18/22 

Farm 11-1 2022 SC 5/17/22 
 

8/16/22 

Farm 11-2 2022 SC 5/17/22 
 

8/16/22 

Farm 12 2022 SC 5/17/22 
 

8/16/22 
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Farm ID Year State Growing 

Season Start 

Date 

Mid 

Sample 

Date 

End Sample 

Date 

Farm 13 2022 SC 5/17/22 
 

8/16/22 

Farm 14 2020 SC 6/7/20 7/22/20 
 

Farm 15 2020 SC 6/7/20 7/22/20 
 

Farm 16 2020 SC 6/7/20 7/22/20 
 

Farm 17 2020 GA 5/3/20 6/17/20 
 

Farm 17 2021 GA 5/3/21 6/17/21 7/17/21 

Farm 17-W 2020 GA 8/15/21 9/30/20 
 

Farm 18 2020 GA 5/3/20 6/17/20 
 

Farm 18-W 2020 GA 8/15/20 9/30/20 
 

Farm 18 2021 GA 5/3/21 6/17/21 7/17/21 

Farm 18 2022 GA 5/4/22 
 

7/6/22 

Farm 19 2022 GA 5/1/22 6/15/22 7/7/22 

Farm 20 2022 GA 8/15/22 
 

10/6/22 

Farm 21 2020 GA 5/12/20 6/26/20 7/26/20 

Farm 21-W 2020 GA 8/15/20 9/30/20 
 

Farm 22 2020 GA 5/12/20 6/26/20 7/26/20 

Farm 22-W 2020 GA 8/15/20 9/30/20 
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Table S 5-2: Climatic parameters used in the study and their meaning 

Parameters Meaning 

T2M  Temperature at 2 Meters (C) 

T2MDEW  Dew/Frost Point at 2 Meters (C) 

T2MWET  Wet Bulb Temperature at 2 Meters (C) 

TS  Earth Skin Temperature (C) 

T2M_RANGE  Temperature at 2 Meters Range (C) 

QV2M  Specific Humidity at 2 Meters (g/kg) 

RH2M  Relative Humidity at 2 Meters (%) 

PRECTOTCORR  Precipitation Corrected (mm/day) 

CLRSKY_SFC_PAR_TOT  Clear Sky Surface PAR Total (W/m^2) 

ALLSKY_SFC_PAR_TOT  All Sky Surface PAR Total (W/m^2) 

PS  Surface Pressure (kPa) 

WS10M  Wind Speed at 10 Meters (m/s) 

WD10M  Wind Direction at 10 Meters (Degrees) 

ALLSKY_SFC_UV_INDEX  All Sky Surface UV Index 

ALLSKY_SFC_LW_DWN  All Sky Surface Longwave Downward 

 
 


