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Abstract

Thermal conductivity is a material property of great importance in many areas of physics

including coat barriers, renewable energy, nano-electronic devices, and geological processes

inside the Earth. At the microscopic level, two type of heat carriers, electronic and vibrational,

regulate this macroscopic heat transport property. The lattice thermal conductivity, from lattice

vibrations or phonons, dominates in semiconductors or insulators at moderate temperatures

while the electronic contribution is non-negligible at ambient temperatures. While experiments

are only able to measure the total conductivity, extrapolation equations are given to estimate the

lattice component. Traditionally, perturbation theory predicts a temperature (T) dependence of

the form 1
T

at high temperatures within the Peierl’s heat flux approximation and three-phonon

scattering mechanisms yet the experimental extrapolations do not have the same predictions.

Even for simple crystals, such as Si, the temperature dependence of the lattice conductivity

remain speculative near the melting point (1680K for Si)

Alternatively, molecular dynamic (MD) simulations can be used to get a non-perturbative

modelling of anharmonic lattice dynamics, but calculations of the thermal conductivity with

equilibrium and non-equilibrium MD is susceptible to accuracy issues, such as finite-size effect,

reliability of the inter-atomic potential, and requirements of large number of ensembles. In this

work, we focus on the high temperature regime of diamond-lattice Silicon through Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) with the highly accurate Gaussian

Approximation Potential (GAP) machine-learning inter-atomic potential.

First, we calculate the thermal conductivity with renormalized phonon frequency and life-

time given the q-projected velocity auto-correlation function (ACF). The damp harmonic os-

cillator theory is validated at high temperature and the q-space symmetry is used to reduce

the necessary large number of ensembles by averaging over equivalent q-points, with a mean

equivalence number of 24. A fitting algorithm, utilizing LMFIT, is developed to fix the sensitiv-

ity of the phonon lifetime parameter by implementing an ”accidental degeneracy” constraint if
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non-degenerate mode frequencies are too close relative to the MD resolution. When compared

to similar perturbation calculations, we find that the simulation parameters of 100 ps simulation

time may induce sampling issues of the acoustic mode with long lifetimes that leads to severe

underestimation of the thermal conductivity.

Then, we calculate the thermal conductivity through the Green-Kubo formalism with dif-

ferent orders of the heat flux auto-correlation function (HFACF) based on the Hardy heat flux

operator. Applying an orthogonality rule to the second-order HFACF mitigates convergence

issues when integrating the correlation function, enabling us to confirm the underestimation of

phonon lifetimes. A unified transport theory, based on the second-order HFACF, is discussed

that combines the inter-mode, intra-mode HFACF and the cross-correlation term, where the

intra-term corresponds to the Peierl’s heat flux discussed above. Our MD simulations indepen-

dently confirmed that the conductivity, from the inter-mode HFACF, is comparable to Wigner

transport equation results at room temperature and saturates to 0.32 W/(m-K) at 1500K. In con-

trast, the conductivity, from the cross-correlation term, lowers the overall prediction by about

-1 W/(m-K) at all temperatures and this term is neglected by the Wigner transport equation, as

well as all the recently proposed unified theory.

Finally, we perform at q-projected force fitting to get the temperature-dependent higher-

order force constant (FC) matrices, namely the third- and fourth- order anharmonic and use

them for the higher-order HFACF. The effective fourth-order FC matrix with a selection rule

∆(−q⃗ + q⃗2) provided no improvements to q-projected force fitting when used in conjunction

with the bare or renormalized FC2 and a different approach should be used to handle the fourth-

order effects. We demonstrate that a similar orthogonality rule to the one applied to the second-

order HFACF enhances convergence by integration of the third-order HFACF. Only accounting

for the third-order HFACF lowers the overall conductivity prediction and an improved method

of the fourth-order FC is needed to clarify the importance of the fourth-order anharmonicity at

high temperatures.
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Chapter 1

Motivation

The majority, if not all, of the readers engaging with this dissertation are doing so through a

computer, providing clear evidence of the entanglement of advanced technology into our daily

lives. The utilization of advanced technology necessitates the development of correspond-

ing advanced materials. Engineering these advanced materials underscores the significance of

scientifically studying the fundamental physics principles that regulate properties of complex

materials. An example of such fundamental material properties is thermal conductivity. It is

probable that among the readership, at least one individual has encountered the predicament

of a mobile phone or laptop overheating during the summer season. An issue that is directly

attributable to materials failing to efficiently diffuse the heat generated from the circuits to the

environment due to low thermal conductivity. The subsequent sections of this chapter will

demonstrate the relevance of this atom-scale computational research within the broader scope

of the physics of this material property.

1.1 Thermal Conductivity κ

Thermal conductivity κ measures a material’s ability to allow (conductor) or resist (insulator)

the flow of heat. κ, especially at elevated temperatures, is essential in many areas of physics:

1. Barrier coating [9]

2. Electric materials with an emphasis on renewable energy [22]

3. Potential materials for electronic devices like Boron Arsenide [53]
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Figure 1.1: Experimentally measured thermal conductivity of (left) Silicon and (right) Germa-
nium by Glassbrenner & Slack [17]. (dotted line) predicted κL by extrapolation. Debye (θ) and
melting point (MP) temperatures are label.

4. Earth core and heat cycle [49]

κ is a macroscopic transport property that follows Fourier’s Law :

J⃗ = −κ∇T (1.1)

in a material with a temperature gradient ∇T and heat flux J⃗ . On a microscopic level, κ consists

of a lattice contribution κL, from lattice vibrations (or phonons) and an electrical contribution

κE , from electron/hole transport. The lattice thermal conductivity κL is the dominant term in

solid insulators and semiconductors [2] with Silicon, a common material in microchips and

electronics, being the focus of this work.

Harmonic behavior is governed by a restoring force (e.g. Hooke’s law with spring motion)

while anharmonicity (discussed in detail in Chapter 2) captures all the non-harmonic behavior

and governs κL. A small perturbation of the lowest order anharmonicies, 3rd order, leads to a

κL ∝ 1
T

temperature (T) dependence at elevated temperatures (defined as perturbation theory in
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this work). [10] However, this 1
T

temperature dependence is not consistent with experimentally

measured Silicon [16, 43, 17] (and Germanium) diamond lattice structures with Glassbrenner

& Slack results [17] shown in Fig 1.1. While the electronic thermal conductivity κE was cal-

culated in these measurements to account for some of the saturation, these κE calculations had

uncertainties upwards of ±20% at the melting point. Two experimental equations to extrapolate

κL (in W/(cm-K)) at all temperatures T are shown below[16, 17]:

1

κL
= 1.583× 10−6T 2 + 1.532× 10−3T + 0.1598

1

κL
= 1.65× 10−6T 2 + 1.56× 10−3T + 0.03

(1.2)

With these equations also deviating from a 1
T

prediction, a non-perturbative approach to the

temperature dependence is needed to fully understand κL as higher order anharmonicity has

shown to become non-negligible these temperatures [15, 14].

1.2 Theoretical Approaches

Two main theoretical approaches to thermal conductivity involve calculations utilizing quantum

mechanics or classical dynamics. While quantum calculations will be the more accurate, the

results should converge to those of classical dynamics above the Debye temperature. This

Debye temperature, from the Debye model [11], establishes a temperature at which all the

lattice vibrations are excited and the heat capacity, the heat required to change the temperature

of a material by one degree, converges to a constant value. With the saturation and emphasis

of κL well above the Debye temperature of Silicon, 640K [26], either a quantum or classical

approach would suffice.

1.2.1 Quantum Accuracy

First principle (or ab-initio) calculations utilizes quantum mechanics and quantum chemistry

by including electronic structures and interactions. The exact solution to an electronic system’s
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evolution |ψ⟩ in time t can be solved with the Schrödinger equation:

H|ψ⟩ = (− h̄2

2m
∇2 + Vtotal)|ψ⟩ = ih̄

∂|ψ⟩
∂t

(1.3)

where H is the Hamiltonian defining the energy of the system, h̄ is Planck’s constant, m is the

mass, ∇ is the derivative in space, and Vtotal is the total potential energy of all interactions.

This becomes analytically and numerically impossible to solve for a many-body system as

physics would have been mostly (if not fully) complete. As such, the commonly used Kohn-

Sham density function theory (DFT) [29] reduces the many-body electron system Schrödinger

equation to a single electron equation of motion:

Heff |ψ⟩ = (− h̄2

2m
∇2 + Veff )|ψ⟩ = ej|ψj⟩ (1.4)

with an effective HamiltonianHeff based on an effective potential Veff that requires an electron

density. While DFT has quantum accuracy, it is limited to system sizes of 100s of atoms.

1.2.2 Classical Regime

Alternatively, molecular dynamics (MD) simulations (discussed in more detail in Chapter 3)

solve for the evolution of a classical system in time t with a Newtonian equation of motion:

F⃗ =
dp⃗

dt
(1.5)

where F⃗ is the force and p⃗ is the momentum of particles. While MD simulations have been

done utilizing DFT time evolution, it was limited in size to 100s of atoms and used a size

extrapolation to converged the results [7]. Unfortunately, MD has a finite size effect, with

a higher severity for non-equilibrium MD simulations [41], that contribute to the numerical

uncertainty. Also, MD requires an inter-atomic potential (IAP), defining the atomic interactions

or forces between the atoms. This varies the numerical accuracy depending on the potential

model and demands over 100s of ensembles for reasonable convergence[18].
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Empirical potentials, e.g. Tersoff[50], and Stillinger and Weber[45], use observed data to

approximate the atomic system energies of different materials while recent machine-learning

inter-atomic potentials (MLIAP), e.g. Gaussian Approximation Potential[3] (GAP) and Spec-

tral Neighbor Analysis Potential (SNAP) [52], have being developed using DFT calculations

and different kernel (basis) functions. Discussed in detail later, the GAP and SNAP potential

both include quantum accuracy while the GAP potential has been shown to be more accurate in

exchange for higher computational cost[57]. While thermal conductivity has been calculated

MD using GAP [40], not much work has been done at elevated temperatures.

While lattice thermal conductivity is an intrinsic transport property that can be directly as-

sessed using Non-Equilibrium Molecular Dynamics simulations (NEMD), it has been demon-

strated that, for equivalent numerical convergence, NEMD typically necessitates significantly

larger simulation models and/or longer simulation times than Equilibrium MD (EMD) simula-

tions. Despite the substantial reduction in numerical load achieved through the development of

accurate machine-learning interatomic potentials (MLIP), the computation of dynamical prop-

erties crucial for robustly modeling anharmonicity-regulated thermal transport processes re-

mains computationally expensive, particularly for low-frequency and long-wavelength acoustic

phonons. Consequently, in this study, we first focus on adopting systematic EMD simulations

to capture the fluctuation and dissipation dynamics within a perfect yet anharmonic crystal. We

then extrapolate non-equilibrium transport properties based on statistical transport theories.

In this study, two distinct types of EMD techniques have been employed. First, we utilize

time auto-correlation functions (ACFs) of atomic displacement or velocity to investigate ther-

mal excitations at the one-phonon level, i.e. within the phonon gas approximation. The primary

outcomes of these EMD simulations include temperature-dependent renormalized phonon fre-

quencies and phonon lifetimes. We conduct a comprehensive assessment of phonon modes

throughout the entire Brillouin Zone in reciprocal q-space, employing finite q-sets that are

commensurate with the employed supercell models. In principle, enlarging the size of MD

simulation models allows us to sample a finer commensurate q-set, achieving numerical con-

vergence. Notably, these phonon-based EMD simulations enable the isolation of specific con-

tributions from individual phonon modes. However, a significant limitation lies in the adopted
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approximation for the lattice heat flux at the Peierls’ kinetic model of phonon heat currents. To

address effects beyond the kinetic phonon models, a parallel EMD simulation is conducted for

the ACF of lattice heat flux, employing an approximate Hardy’s lattice model of heat flux. As

a first step, we utilize a Taylor expansion of the anharmonic interatomic potentials based on

atomic displacements. The atomic forces expressed in the Hardy’s model are truncated at three

levels: FC2 only, FC2+FC3, and FC2+FC3+FC4, where FC2, FC3, and FC4 refer to the second-,

third-, and fourth-order of force constant matrices.

The goal of this work is to use large scale MD simulations through the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS)[51] modeling program with the highly accurate GAP

MLIAP to achieve the following: 1) reduce the numerical uncertainty of ordered systems

(specifically Silicon) and 2) study high order anharmonicity at elevated temperatures with a

non-perturbative temperature dependence for the study of lattice thermal conductivity.

1.3 Outline of Thesis

Fig 1.2 presents a visual overview of this dissertation, whose organizational structure is outlined

as follows:

Chapter 2 consists of two parts. The initial part focuses on the computational methodolo-

gies utilized for computing harmonic and anharmonic phonon properties, incorporating damp

harmonic oscillator theory and equilibrium molecular dynamics (MD) simulation. The subse-

quent part delves into the kinetic transport theory of phonons, explaining how the harmonic and

anharmonic properties serve as the basis for defining microscopic heat fluxes in crystals. This

includes the application of Peierls or Hardy formalism and the calculation of lattice thermal

conductivity (κL) using the Boltzmann Transport Equation (BTE) or Green-Kubo theory.

Chapter 3 offers a comprehensive overview of the theoretical foundations underlying Non-

Equilibrium MD (NEMD) and Equilibrium MD (EMD) simulations. Implementation details,

particularly with the MD packages LAMMPS, and the adoption of machine-learning inter-

atomic potentials (MLIAP), such as the GAP potential, are discussed.

Chapter 4 discusses some critical aspects of numeric algorithms developed in this disser-

tation research, for example q-space based algorithm for the reduction of numerical noise in
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Figure 1.2: Outline of the rest of the chapters in this dissertation
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1-phonon spectra, and a robust fitting algorithm for the calculations of renormalized phonon

frequencies and lifetimes. The successes of the noise reduction in MD simulations and the

enhanced robustness of the fitting algorithm justify the accuracy of the simulated phonon prop-

erties at elevated high-temperature conditions. The fitted spectra are subsequently employed

to predict κL with the BTE, enabling a comparative analysis against perturbation theory and

experimental findings.

Chapter 5 presents the simulation data beyond the kinetic phonon transport theory, with

a focus to presenting an analytical solution aimed at improving the convergence of the Green-

Kubo formalism. This chapter also delves into the individual contributions of the two distinct

terms in second-order Hardy heat flux, i.e. the intra-model heat flux, which is comparable to

the Peierl’s heat flux in the kinetic phonon transport theory, and the inter-mode heat flux, which

is omitted in the kinetic phonon transport theory. The numeric robustness of the data analysis

reveals the significance of the cross-correlation between intra-mode and inter-mode heat fluxes.

This is a crucial aspect largely overlooked in the existing theoretical literature.

Chapter 6 extends the discussion on the Hardy heat flux, exploring higher-order contribu-

tions and introducing an innovative approach involving temperature-dependent force constant

matrices.

Finally, Chapter 7 provides a concise summary of the findings and suggests potential av-

enues for future research.
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Chapter 2

Phonon Theory

This chapter serves as the theoretical framework of this work with emphasis on phonons

and their application to the lattice thermal conductivity κL. While κL is inherently a non-

equilibrium transport property, we show that κL can be calculated with equilibrium atomic

dynamics (force, velocity, displacement). We begin with the Peierls’ kinetic model of phonon

heat currents. Then, we go beyond the Peierls heat flux with an approximate Hardy heat flux

and showcase how we implemented mathematical techniques to project various orders of the

approximate Hardy heat flux into q-space.

2.1 Lattice Vibrations and Phonons

At thermal equilibrium, atoms at the lattice sites will oscillate about an equilibrium point

(shown later in this chapter). This movement is similar to that of a ball and spring model. With

a model as shown in Fig 2.1, the normal modes define a basis of movement of a N-ball system

with 1×N normal modes corresponding to the single degree of freedom in the x-direction. The

entire system can be modeled as a superposition of these normal modes with an eigenvalue and

eigenvector being the frequency of movement of the atoms and the direction of movement, re-

spectively. When comparing phonons to the ball and spring model, phonons are quasi-particles

representation of lattice vibrations. The dynamical properties of lattice vibrations can be mod-

eled in terms of phonon dynamics with each phonon mode α characterized by its wave vector

q⃗, oscillation frequency ω, and lifetime τ .
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Figure 2.1: Normal modes of a 3-body ball and spring system restricted to movement in the
x-direction
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Figure 2.2: 8-atom diamond unit cell with nearest neighbor bonds visualized with OVITO [46]

2.2 Crystal Momentum in Reciprocal Space

Due to characterization with quantized frequencies, phonons are naturally represented in a fre-

quency domain through reciprocal space. Perfect crystals with periodic lattices, e.g. diamond,

clathrate, can utilize its real space periodicity to Fourier transform the basis from real-space to

reciprocal space. The work in this dissertation focuses on the diamond lattice structure. Dia-

mond is a face centered cubic (FCC) structure with a two basis atoms shown in Fig 2.2. The

basis vectors of a diamond cell with lattice length,L, in real-space can be conventional cubic in

the x,y,z:

a⃗′1 = L(x̂)

a⃗′2 = L(ŷ)

a⃗′3 = L(ẑ)

(2.1)

where x̂ is a unit distance in the x-direction or primitive unit vectors:

a⃗1 =
L

2
(ŷ + ẑ)

a⃗2 =
L

2
(x̂+ ẑ)

a⃗3 =
L

2
(x̂+ ŷ)

(2.2)
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Figure 2.3: Brillioun zone of a FCC/Diamond lattice labeled with high symmetry points [42]

,which is the smallest vectors that can represent a cell. Due to the periodicity of an FCC cell,

a translation of one unit vector in any direction from one atom will overlap with another atom.

Bisecting all first nearest neighbor atoms makes a reciprocal unit cell, or Brillouin zone, with

basis vectors: 
b⃗1

b⃗2

b⃗3

 =
2π

V


a⃗2 × a⃗3

a⃗3 × a⃗1

a⃗1 × a⃗2

 (2.3)

with volume, V = |⃗a1 · (⃗a2 × a⃗3)| = |⃗a2 · (⃗a3 × a⃗1)| = |⃗a3 · (⃗a1 × a⃗2)|. By definition, the

Brillouin zone has a periodic boundary with vectors of units of frequency called q-points where

a translation of G⃗, an integer number in reciprocal lattice units, yields Q⃗ = q⃗ + G⃗ = q⃗ . The q-

point boundaries of the Brillouin zone range from (-0.5,0.5], where either 0.5 or -0.5 is used but

not both due to periodicity. The FCC Brillouin zone shown in 2.3 has various high symmetry

q-points like Γ-point, which is the zone center point and L-point, which is a zone boundary

point. q-points have other q-points equivalent to it by either rotation in reciprocal space or a

translation of G⃗ beyond the boundary of the Brillouin zone.

All equivalent q-points are expected to have the same properties and phonon information

for each mode. This makes it ideal to convert certain properties to reciprocal space by folding
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atoms with translational symmetry to the basis atoms. This folding will decompose the N atom

system of 3N modes to a set of q-points where each q-point has 3 × (# of basis atoms) modes,

which totals to 6 modes per q-point in diamond.

2.3 Harmonic and Anharmonic Forces

Crystal dynamics can be categorized by harmonic and anharmonic behavior. Harmonic behav-

ior describes motions controlled by a restoring force, F,:

F = −kx (2.4)

where x is the displacement from equilibrium and k is a spring constant. The stronger the spring

constant, the larger the force pulling the object back to equilibrium. The potential energy, U , for

harmonic motion quantifies the amount of energy the storied by the system that can potentially

move the object:

U =
1

2
kx2 (2.5)

For the system to be stable and oscillating about an equilibrium point, the potential must be at

a local minimum. A realistic system will not be perfectly harmonic and deviations from this

quadratic potential gives rise to anharmonic forces. As seen in Fig 2.4, higher order potential

terms provides more terms to accurately capture the complexity of the system and oscillation

about equilibrium. Without the inclusion of dissipative forces, the force is conserved (no net

change in energy over a closed loop) which results in F = −∇U = −
∑

i

∑
I

∂U
∂uI

i
, where I

represents the Cartesian directions, x, y, z , and ui is the displacement of the ith atom from

equilibrium. A Taylor expansion, or polynomial expansion, of U about an equilibrium position

req gives:

U = U(req) +
∑
i

∑
I

∂U

∂uIi
uIi +

1

2!

∑
i,j

∑
I,J

∂2U

∂uIi ∂u
J
j

uIiu
J
j

+
1

3!

∑
i,j,k

∑
I,J,K

∂3U

∂uIi ∂u
J
j ∂u

K
k

uIiu
J
j u

K
k +

1

4!

∑
i,j,k,l

∑
I,J,K,L

∂4U

∂uIi ∂u
J
j ∂u

K
k ∂u

L
l

uIiu
J
j u

K
k u

L
l + ...

(2.6)
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Figure 2.4: Decomposition of a generic potential energy between two atoms to the harmonic
approximation, 3rd order, and 4th order approximation

where ∂2U
∂uI

i ∂u
J
j

, ∂3U
∂uI

i ∂u
J
j ∂u

K
k

, and ∂4U
∂uI

i ∂u
J
j ∂u

K
k ∂uL

l
are called the 2nd, 3rd, and 4th order force constants

(FC) matrices, respectively. Bare phonon FC matrices are FC matrices calculated independent

of the system temperature while renormalized phonons FC matrices account for the system

temperature. From the ’Full Potential’ curve in Fig 2.4 , it can be shown that the 1st order force

term, ∂U
∂uI

i
, must be zero since the slope is zero at req. The term with the 2nd force constants

(FC2) is the harmonic term while all other higher order terms are anharmonic terms. Typically,

the FC4 or FC3 terms are the highest order anharmonicity considered and the rest are truncated

due to the computational intensity of those calculation (cite some examples maybe). Another

”trick” (that will be discussed later) involved folding higher order terms to even (2nd and/or

4th) and odd (3rd) terms.

A FC2 matrix define a matrices of spring constants, FC2
ij =

(
kij

)
between the ith atom

and the jth atom. Dividing by the mass creates a dynamical matrix, D :

Dij =

(
kij√
mi

√
mj

)
=

(
ω2
ij

) (2.7)

where the frequency w =
√

k
m

. Dij(li, lj) represents Dij as a function of the equilibrium

distance between atom i to the origin and atom j to the origin. Any point can be the reference
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point and using atom i as the reference point yields an invariant Dij:

Dij(l⃗i, l⃗j) = Dij(0, h⃗) (2.8)

where h = lj − li. This invariance makes D easy to fold to reciprocal space at q-points, q⃗1 and

q⃗2 :

Di′j′(q⃗1, q⃗2) ≡
∑
h

∑
li

D(0, h⃗)eil⃗1·(q⃗1+q⃗2)eiq⃗1·r⃗i′eiq⃗2·(r⃗j′+h⃗)

=
∑
h

D(0, h⃗)ei(q⃗2·(r⃗j′+h⃗)+q⃗1·r⃗i′ )
∑
li

eil⃗1·(q⃗1+q⃗2)

(2.9)

where i′ and j′ are the basis atom indices, and r⃗i′ and r⃗j′ are the equilibrium distance of the

basis atoms to the origin. The
∑

li
term reduces to:

∑
li

eil⃗1·(q⃗1+q⃗2) = N∆(q⃗1 + q⃗2) (2.10)

where N is the total q-points of the system. This leads to the selection rule, for 2 q-points,

restricting the allowed values of q⃗1 and q⃗2:

q⃗1 + q⃗2 = G⃗ (2.11)

Since a single q⃗ ranges from (-0.5,0.5], the only way for Eq 2.11 to remain valid is for G⃗ = 0

thus, q⃗1 = −q⃗2 = q⃗. Combining the implications of Eq 2.11 to Eq ?? gives:

Di′j′(q⃗) = m
∑
h

Dij(0, h⃗)e
iq⃗·(r⃗j+h⃗−r⃗j)

≈
∑
h

Dij(0, h⃗)e
iq⃗·(r⃗j+h⃗−r⃗j)

(2.12)

The total modes m can be dropped if Di′j′(q⃗) is normalized per q-point. For a diamond lattice,

Di′j′(q⃗) will always be a square matrix of shape (6,6) that makes it a unique indicator for com-

paring different system sizes. Also, the phonon characteristics, ωα and v⃗αg , can be calculated
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by finding the eigenvalues and eigenvectors of Di′j′(q⃗). The eigenvalues λ and eigenvectors e⃗λ

are coupled parameters of a linear transformation:

Ae⃗λ = λe⃗λ (2.13)

that extracts the normal mode vectors and frequencies from a square matrix A of shape n× n.

Moving the terms of Eq 2.13 to the left side and factoring out e⃗λ gives:

(A− λI)e⃗λ = 0 (2.14)

where I is the identity matrix with diagonal elements of 1 and all off diagonals elements of 0.

A Kronecker delta:

δij ≡


1 if i = j

0 elsewhere

(2.15)

is another representation of the identity matrix that will be used later on. Eq 2.14 implies:

∣∣∣∣A− λδij

∣∣∣∣ = 0 (2.16)

where || is the determinant of a matrix. From Cramer’s rules in linear algebra, the determinant

solves a system of equation if the matrix is a matrix of coefficients like Eq 2.16. This will give a

list of eigenvalues λn corresponding to the shape of A. Di′j′(q⃗) is a coefficient matrix of square

frequencies ω2 so
√
λα = ωα and ωα > 0 for the phonon modes α. Plugging each individual

λα into Eq 2.14 and solving for e⃗λ, gives a unique ⃗eλ,α for each phonon mode.

Phonopy, an open-source phonon calculation package [54], illustrates how e⃗λ, ωα, and

Di′j′(q⃗) can derive the group velocity v⃗gα = ∂ωα

∂q⃗
. The chain rule for derivatives:

∂f(g(q⃗))

∂q⃗
=
∂f(q⃗)

∂q⃗

∂g(q⃗)

∂q⃗
(2.17)
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where f and g are a function of q⃗. For a square function like ω2
α, the derivative with respect to

q⃗ is:
∂ω2

α

∂q⃗
= 2ωα

∂ωα

∂q⃗
(2.18)

Rearranging Eq 2.18 and applying it to the definition of group velocity gives:

v⃗gα =
∂ωα

∂q⃗

=
1

2ωα

∂ω2
α

∂q⃗

(2.19)

The derivative of Di′j′(q⃗) , as defined by Eq 2.12, with respect to q⃗ using the chain rule is:

∂Di′j′(q⃗)

∂q⃗
=

∑
h

i(r⃗j + h⃗− r⃗j)Dij(0, h⃗)e
iq⃗·(r⃗j+h⃗−r⃗j) (2.20)

Building a square matrix ηα, with columns being ⃗eλ,α, creates a change of basis matrix that

transforms a matrix or vector from one basis to the normal mode basis. For Di′j′(q⃗), this

transformation gives:

η†αDi′j′(q⃗)ηα = ω2
α (2.21)

where † is the conjugate transpose of a matrix and the derivative becomes:

∂η†αDi′j′(q⃗)ηα
∂q⃗

=
∂ωα

∂q⃗

η†α
∂Di′j′(q⃗)

∂q⃗
ηα =

∂ωα

∂q⃗

(2.22)

Combining Eq 2.22 and Eq 2.23 an equation for the group velocity:

v⃗gα =
1

2ωα

η†α
∂Di′j′(q⃗)

∂q⃗
ηα (2.23)

,which can be entirely computed from a dynamical matrix.

17



2.4 Phonon-Phonon Scattering

Phonon-phonon scattering occurs when phonons transition from an initial state |i⟩ to a final

state |f⟩ with energies Ei and Ef , respectively, based on a probability distribution. Other

scattering mechanisms occur in a lattice, i.e. phonon-electron and phonon-defect, but phonon-

phonon scattering are the dominant mechanism in lattice thermal conductivity and the focus of

this dissertation. Multiple scattering rates τ combine by Matthiessen’s rule:

1

τtotal
=

1

τphonon
+

1

τdefect
+

1

τelectron
+ ... (2.24)

From this point, phonon-phonon scattering will be referred to as phonon scattering unless spec-

ified otherwise. In the harmonic approximation, phonons will never scatter because the oscil-

lation never changes in time. This means all phonon scattering is due to anharmonic behavior

with the lowest order being 3rd. Using a first-order perturbation, Fermi’s golden rule defines

the scattering rate Si→f :

Si→f =
2π

h̄
|⟨f |∆V̂ |i⟩|2δ(Ei − Ef )

=
2π

h̄
|⟨f |∆V̂ |i⟩|2δEi,Ef

(2.25)

where ∆V̂ is the difference between the full potential energy and harmonic term, and h̄ is

Planck’s constant. The delta function δEi,Ef
in Eq 2.25 implies the transitions must conserve

energy since δEi,Ef
= 0 unless Ef = Ei, where the energy of a phonon mode is Eα = h̄ωα.

Similar to conservation of momentum, phonons scatter one of two ways: (1) one mode

splitting into multiple modes, or (2) multiple modes combining to a single mode. 3-phonon

scatter involves scattering involving 3 separate modes, 4-phonon scattering involves 4 separate

modes, etc as shown in Fig 2.5 a). When a phonon scatters the second way by combining,

the resulting mode can sometimes be larger than the boundary of the reciprocal lattice. This

resultant mode can be folded back to the reciprocal boundary by a G⃗ translation. This folding

along with conservation of energy gives the governing conservation constraints for 3-phonon

18



scattering:

Method 1 :


h̄q⃗α = h̄q⃗β + h̄q⃗β

h̄ω⃗α = h̄ω⃗β + h̄ω⃗β

(2.26)

Method 2 :


h̄q⃗β + h̄q⃗β = h̄q⃗α + h̄G⃗

h̄ω⃗β + h̄ω⃗β = h̄ω⃗α

(2.27)

where the momentum of a phonon mode is h̄q⃗. By factoring the h̄ out of Eq 2.26 and Eq 2.27,

the conservation constraints reduce to:

Method 1 :


q⃗α = q⃗β + q⃗β

ω⃗α = ω⃗β + ω⃗β

(2.28)

Method 2 :


q⃗β + q⃗β = q⃗α + G⃗

ω⃗β + ω⃗β = ω⃗α

(2.29)

When G⃗ = 0, this is called a Normal process scattering (or N-process). N-process scatterings

conserve both energy and momentum. When G⃗ ̸= 0, this is called an Umklapp process scatter-

ing (U-process). The resultant mode of an U-process is folded by into the reciprocal lattice and

becomes inverted as shown in Fig 2.5. This flipping of the mode causes momentum not to be

conserved as the resultant mode will be in the opposite direction of combined modes in at least

one direction. This is a consequence of the translational invariance of the reciprocal lattice due

to the Fourier transformation and it is important to note that crystal momentum is not equal to

real space momentum.

While not computationally impossible, accounting for all possible scattering arrangements

(3−+ phonon) would require an immense amount of computer resources for even a small crys-

tal. Typically, only 3-phonon (and sometimes 4-) scatterings are computed. ShengBTE and

phono3py utilize symmetry and other operations to compute 3-phonon scattering with only
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bare phonon FC2 and FC3 [31, 54]. FourPhonon calculates 4-phonon scattering by using ex-

panding upon ShengBTE’s 3-phonon methodology [20]. Due to only using the bare phonon,

these rely on perturbation theory as a predictor for higher temperatures.

2.5 Phonon Gas Model

The phonon gas model (PGM) treats the behavior of complex anharmonic lattice vibration as

that of a gas consisting of weakly interacting phonons, which travels at their group velocities

over some distance (mean free path) without any scattering. This gives rise to a more intuitive

understanding of phonon group velocity as the speed of the phonon modes. Unfortunately, a

highly disordered material like amorphous glass has no rigorous definition of phonon velocities

in these modes and invalidates the phonon gas model [32].

The theoretical foundation of the PGM is that the Hamiltonian (or total energy of system)

of an anharmonic lattice can be described as:

H = H0 +H ′ (2.30)

where H0 is the Hamiltonian of non-interacting (bare) phonons and H ′ encompasses the in-

teractions among bare phonons. H0 will be a summation of harmonic oscillators (HO) of the

form:

HHO =
p2

2m
+
mω2x2

2
(2.31)

with momentum p, mass m, displacement x, and frequency ω. The perturbation can be approx-

imated to the anharmonic potential terms if the anharmonic potential is sufficiently smaller than

the harmonic potential term. A Green’s function corresponds to the propagation of an impulse

or shock through a system in a given time interval. Thus, the 1-phonon Green’s function Gq(ω)

can be seen as the response of a system to a single-phonon propagation with momentum h̄q⃗ and

energy h̄ω. The Dyson equation:

Gq(ω)
−1 = G0

q(ω)
−1 − Σq(ω) (2.32)
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Figure 2.5: Different methods of scattering for a) 3-phonon and 4-phonon interactions and b)
types of processes for phonon combination
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gives the relation of the 1-phonon Green’s function, Green’s function from the non-interacting

Hamiltonian, and self energy Σ. The self-energy defines the anharmonic phonon interactions

that can be represented with Feynman diagrams. With weakly interacting phonons and h̄ωq ≫

|Σq(ωq, T )|, the temperature dependent frequency shifts ∆q(T ) and broadening Γq(T ) are:

∆q = Re(Σq(ωq))

Γq = Im(Σq(ωq))

(2.33)

where Re and Im are the real and imaginary components, respectively. With the non-interacting

Green’s function G0
q(ω) as:

G0
q(ω) =

2ω0

ω2 − ω2
0

(2.34)

then Gq(ω), based on Eq 2.35, becomes:

Gq(ω) =
2ω0

ω2 − ω2
0 − 2ω0Σ(ω, T )

(2.35)

The phonon spectra Aq(ω, T ) defines the probability of finding a particle with energy h̄ω and

momentum h̄q⃗, at a temperature T:

Aq(ω, T ) = − 1

π
Im(Gq(ω)) (2.36)

Expanding Σ(ω, T ) = (∆(ω)+ iΓ(ω)) and taking the imaginary component, Eq 2.35 becomes

to:

Aq(ω, T ) = − 1

π

2ω2Γ

(ω2 − Ω2
0)

2 + 4ω2Γ2
(2.37)

where Ω0(T ) = ω0 + ∆(T ) is the renormalized frequency and Ω2
0 = ω2

0 − ∆2 − 2ω0∆ ≈

ω2
0 − 2ω0∆ given ω ≫ ∆. Treating w a constant, the Taylor series expansion of (ω2 − Ω2

0)
2 as

Ω0 approaches ω is 4ω2(Ω0 − ω)2 = 4ω2(ω − Ω0)
2. Combining the Taylor series expansion to

Eq 2.37 and factoring out a ω2, the 1-phonon spectrum:

Aq(ω, T ) = − 1

2π

Γ

(ω − Ω0)2 + Γ2
(2.38)
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Figure 2.6: (left) Lorentzian distribution function and (right) the integral over all space

has the form of a Lorentzian function, shown in Fig 2.6,:

L(x) =
1

π

1
2
γ

(x− x0)2 + (1
2
γ)2

P (X ≤ x) =

∫ ∞

−∞
L(x)dx = 1

(2.39)

centered at the renormalized frequency location Ω0(T ) and broadening 2Γ(T ). γ defines the

full width half maximum (FWHM) of the Lorentzian function, which is double the broadening

Γ. The phonon lifetime τ is inversely proportional to the FWHM such that:

τ =
1

2Γ
(2.40)

This means the temperature-dependent frequency, and phonon lifetime can be extracted from

the 1-phonon spectra. The full Aq(ω, T ) will not be perfectly Lorentzian and the deviations

from the ideal Lorentzian fit gives insights to 3+-phonon scattering.

Experimentally, the phonon spectrum has been observed by Raman spectroscopy and in-

elastic neutron scattering (INS) [34, 55, 5]. Both methods vibrate the nucleus of a crystal by

23



energizing the nucleus with either photons (Raman) or neutrons (INS), then measure the struc-

ture factor S:

S(q⃗, ω) =
1

2π

∑
ll′

e−iq⃗·(x⃗(l)−x⃗(l′))

∫ ∞

−∞
eiωt⟨e−iq⃗·u⃗(l,t)|eiq⃗·u⃗(l′,0)⟩dt (2.41)

where u⃗ is the displacement of atom about the equilibrium position x⃗(l) and ⟨|⟩ denotes the

auto-correlation function (ACF). The ACF defines the similarity of a random process f with

itself in τ for a continuous case:

C(τ) =

∫ ∞

−∞
f(t+ τ)f ∗(t)dt (2.42)

or discrete case:

C(τ) =
∑
n

f(n+ τ)f ∗(n) (2.43)

where f ∗(t) is the complex conjugate of f(t).

This structure factor describes how a material scatters based on an interference pattern and

can be seen as mirroring the phonon spectrum. Raman spectroscopy uses photons to scatter the

nucleus. This leads to issues of measurement due to the electron interactions which limits the

measurements to the zone-center point (Γ-point). The restriction on the q-point resolution has

made INS data more appealing for a full Brillouin zone analysis. By firing the nucleus with

neutral atoms, the phonon-electron and other scattering mechanisms are undisturbed. Unfor-

tunately, INS measurements are expensive calculations since they require neutron collisions,

utilize a large facility to run, and highly sensitive to instrument resolution. Regardless, re-

cent INS data has provided new avenues to study the phonon spectrum [28]. A Taylor series

expansion of Eq 2.41 to the first order is the 1-phonon spectrum:

S(q⃗, ω) =
e−2W

2π

1

2π

∑
ll′

e−iq⃗·(x⃗(l)−x⃗(l′))

∫ ∞

−∞
eiωt⟨q⃗ · u⃗(l, t) q⃗ · u⃗(l′, 0)⟩ (2.44)
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where W represents the Debeye-Waller factor. The 1-phonon approximation scales linearly

with q⃗. This allows for q-points to be sampled outside the first Brillouin zone to be folded back

to inside the reciprocal lattice.

A third approach to finding the 1-phonon spectrum is by approximating the phonon modes

as non-interacting damped harmonic oscillators (DHO). The non-interacting Hamiltonian Ĥ:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (2.45)

is the addition of the kinetic energy with a momentum operator p̂ and potential energy with

position operator x̂. Ĥ results in discrete energy values En such that:

En = h̄ω(n+
1

2
)

n = 0, 1, 2, 3, ...

(2.46)

An annihilation a† and creation a operator:

a†|n⟩ = En−1|n⟩ = h̄ω(n− 1 +
1

2
)|n⟩

a|n⟩ = En+1|n⟩ = h̄ω(n+ 1 +
1

2
)|n⟩

(2.47)

of a state |n⟩ lowers and raises, respectively, the energy En by one stage. When the position

operator x̂ is written in terms of the raising and lower operators:

x̂ =

√
h̄

2mω
(a† + a) (2.48)

then the non-interacting, 1-phonon Green’s function under the DHO approximation becomes:

G0
q ∝ i⟨x̂(ω, t)x̂∗(ω, 0)⟩ (2.49)

which leads to the 1-phonon spectrum A0
q as:

A0
q = − 1

π
Im(G0

q) ∝ − 1

π
Re(⟨x̂(ω, t)|x̂∗(ω, 0)⟩) (2.50)
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Only the real part of the Fourier transformation of the displacement’s ACF needs to be evaluated

to get the 1-phonon Green’s function in the classical regime.

The particles, with position x̂ and momentum p̂, can be treated as moving in the presence

of a fluid-like random force ξ. This system is modeled with a Langevin equation of motion:

dQ(t)

dt
= P (t)

dP (t)

dt
= −Ω2

0Q(t)− 2ΓP (t) + ξ(t)

(2.51)

where Ω is a characteristic frequency, Γ is the positive non-zero damping constant, and Q and

P are a transformation:

Q =

(
h̄

mω

)−1/2

x̂

P =

(
mωh̄

)−1/2

p̂

(2.52)

By letting X(t) represent the correlation of Q with itself in time, ⟨Q(t)|Q(0)⟩ with t ≥ 0,

multiplying by Q(0), and taking the correlation, then Eq 2.51 can be rewritten as:

dX(t)

dt
= ⟨P (t)|Q(0)⟩

d2X(t)

dt2
= −Ω2

0X(t)− 2Γ
dX(t)

dt
+ ⟨ξ(t)|Q(0)⟩

(2.53)

ξ(t) is random in time such that it has no correlation withQ(0) (or ⟨ξ(t)|Q(0)⟩ = 0). Therefore,

Eq 2.53 reduces to:
d2X(t)

dt2
= −Ω2

0X(t)− 2Γ
dX(t)

dt
(2.54)

Eq 2.54 has the solution of a harmonic oscillator. In the under-damped condition Ω0 > Γ, a

harmonic oscillator will oscillate multiple times while the maximum amplitude weakens as time

proceeds as shown in Fig 2.7. The general solution for an under-damped harmonic oscillator

is:

X(t) = e−Γt(Acos(ΩDt) +Bsin(ΩDt)) (2.55)
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Figure 2.7: Damp harmonic oscillator in the under-damped condition

where the frequency of oscillation ΩD =
√
Ω2

0 − Γ2, and A/B are constants that will be eval-

uated based on the initial conditions. From Fig 2.7, the correlation will be the maximum value

at t = 0 while the derivative will be zero at t = 0, which gives the following set of initial

condition:

X(0) = ⟨Q(0)Q(0)⟩ = ⟨Q2⟩
dX(0)

dt
= 0

(2.56)

where ⟨Q2⟩ is a statistical property called the variance ofQ. Using the general solution Eq 2.55

in Eq 2.56 yields:

X(0) = e−Γ0(Acos(0) +Bsin(0)) = e0(A+ 0) = A

dX(0)

dt
= −Γe−Γ0(Acos(0) +Bsin(0)) + e−Γ0(−ΩDAsin(0) + ΩDBcos(0))

= −Γe0(A+ 0) + e0(−ΩDB) = −ΓA− ΩB = 0

(2.57)
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such that A = ⟨Q2⟩ and B = − Γ
ΩD
A = − Γ

ΩD
⟨Q2⟩. The unique solution for the correlation of

Q becomes:

X(t) = ⟨Q(t)Q(0)⟩ = ⟨Q2⟩e−Γt(cos(ΩDt)−
Γ

ΩD

sin(ΩDt))

dX(t)

dt
= ⟨P (t)Q(0)⟩ = −⟨Q2⟩e−Γt Ω

2
0

ΩD

sin(ΩDt)

(2.58)

This solution can be used in Eq 2.54 to find the momentum P correlation in time,⟨P (t)P (0)⟩

as:

⟨P (t)P (0)⟩ = −Ω2
0X − 2Γ

dX

dt

= ⟨Q2⟩Ω2
0e

−Γt(cos(ΩDt)−
Γ

ΩD

sin(ΩDt))

= ⟨P 2⟩e−Γt(cos(ΩDt)−
Γ

ΩD

sin(ΩDt))

(2.59)

with d2X
dt2

= d⟨P (t)Q(0)⟩
dt

= −d⟨Q(t)P (0)⟩
dt

= −⟨P (t)P (0)⟩.

Both the time correlation of position X and momentum P are DHO and are related by

⟨Q2⟩Ω2
0 = ⟨P 2⟩. Either can be used to calculate the 1-phonon spectrum. The real component

of the Fourier transformation of the momentum correlation F (ω):

Re(F (ω)) =
2ω2Γ

(ω2 − Ω2
0)

2 + 4ω2Γ2
(2.60)

reduces to a Lorenzian function when ω approaches Ω0 as discussed earlier. In a later section,

the importance of choosing the q-projected momentum correlation compared to the q-projected

displacement correlation will be discussed.

2.6 Phonon Relation to Thermal Conductivity

Thermal conductivity κ is the rate of heat transfer in a material, such that:

J⃗ = −κ∇⃗x⃗T (x) (2.61)
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Figure 2.8: A material with a temperature gradient and the expected change of temperature as
a function of distance

where J⃗ is the heat flow rate, and T is the temperature gradient inside a material, and ∇⃗x⃗ is the

derivative with respect to x⃗. This can be measured with non-equilibrium molecular dynamics

(NEMD) by creating a temperature difference in a material, then measuring the temperature

change as a function of distance, shown in Fig 2.8. This comes with various sources for error

including length between heat source and sink, interfacial effects, and rate of heat extraction.

As quantized carriers of energy, phonons play a vital role in the lattice component of

the thermal conductivity. Other components of the thermal conductivity include the electron

conductivity but the lattice component is the dominant term at moderate temperatures in crystal

lattices. At higher temperatures, the electronic contribution may be upwards of 40% of the total

thermal conductivity [17] but the focus of this dissertation is to quantify all the effects of the

lattice contribution.

To contrast non-equilibrium dynamics, the two theories, used in this work, correlate equi-

librium dynamics ACF to non-equilibrium properties. The first theory, Boltzmann transport

equation with the relation time approximation, calculates the thermal conductivity with self-

mode phonon heat flux at every q-point. The thermal conductivity comes solely from intra-

mode transport. The second theory, Green-Kubo formalism, is a fluctuation-dissipation rela-

tion of statistical mechanics that relates the ACF of the heat current fluctuation to the transport
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property, thermal conductivity. This is analogous to the dissipative relation of Brownian mo-

tion. Green-Kubo formalism is a more general equation including both intra-mode transport

and inter-mode transport.

2.6.1 Phonon Bolzmann Transport Equation

The phonon Bolzmann transport equation (BTE) is widely used theory for thermal transport

due the direct implementation with first-principle calculations. The generalized BTE:

df(p, r, t)

dt
=
∂f

∂t
+ ∇⃗p⃗f · dp⃗

dt
+ ∇⃗r⃗ ·

dr⃗

dt
(2.62)

gives the probability density f that a particle can occupy a given state as a function of mo-

mentum, p, position r, and time t. As phonons scatter in time, the ensemble-averaged number

density of that phonon mode fα follows Bose-Einstein distribution:

fα,eq =
1

e
h̄ωα
kbT − 1

(2.63)

given h̄ and kb are Planck constant and Boltzmann constant, respectively. Under the steady

state condition:
∂fα
∂t

= 0 (2.64)

the phonon number constant is in time. Applying the assumption that there are no creation

or annihilation of phonons, all phonons change by scattering. Combining no net forces on

phonons (dp⃗
dt

= 0), Eq 2.64, and Eq 2.62, the phonon BTE equation becomes:

(
dfα
dt

)scattering = ∇⃗r⃗fα · v⃗gα (2.65)

where v⃗gα is the group velocity of a phonon mode α. In a near equilibrium condition, the

probability density has small changes about equilibrium, such that fα = fα,eq + ∆fα where

|feq| ≫ |∆fα|. The right hand side of Eq 2.65 can be replaced with ∇⃗r⃗fα,eq · v⃗gα. Based

on Eq 2.65, the diffusion of phonons are direct results of phonon scattering. The scatterings

matrix is a complex mechanic that is too computationally intensive to get the full matrix. The
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single-mode Relaxation Time Approximation (smRTA) approximates the scattering matrix

(
dfα
dt

)scattering ≈
fα − fα,eq

τα
= −∆fα,rta

τα
(2.66)

with a relaxation constant (or phonon lifetime), τ . Solving for fα with Eq 2.66 and Eq 2.65,:

fα = fα,eq +∆fα,rta = fα,eq − τ∇⃗r⃗fα,eq · v⃗gα

= fα,eq −
ταcv,α
h̄ωα

∇⃗r⃗T · v⃗gα
(2.67)

where:

cv,α = ∇⃗TEα = h̄ωα∇⃗Tfα,eq =
h̄ωα

kbT 2 e
h̄ωα
kbT

(e
h̄ωα
kbT − 1)2

(2.68)

is defined as the heat capacity and ∇⃗r⃗fα = ∇⃗Tfα∇⃗r⃗T .

The phonon heat flux J⃗ in a lattice of volume V as stated by the Peierls equation[38] as:

J⃗ =
1

V

∑
α

fαh̄ωαv⃗gα (2.69)

The group velocity v⃗gα is anti-symmetric in all of space, thus making the total equilibrium

component equating to zero, Jeq ≡ 1
V

∑
α fα,eqh̄ωαv⃗gα = 0, leaving the phonon heat flux as:

J⃗ =
1

V

∑
α

fα,rtah̄ωαv⃗gα (2.70)

. Using Eq 2.61 in the smRTA, the thermal conductivity:

κIJ =
1

V

∑
α

ταcv,αv⃗gα,I v⃗gα,J (2.71)

where I, J ranges over the basis direction. If the off-diagonal components of the thermal con-

ductivity are small, κIJ ≈ κIJδIJ , the bulk lattice thermal conductivity κbulk reduces to:

κbulk =
1

3
(κxx + κyy + κzz) =

1

3V

∑
α

ταcv,αv⃗g
2
α (2.72)
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With Eq 2.72, thermal conductivity calculations require three components: 1) mode frequencies

ωα, 2) lifetime τα, and 3) group velocity v⃗g2α of all the phonon modes. The first two can be found

with the 1-phonon spectra while the third can be found with the dynamical matrix.

2.6.2 Green-Kubo Formalism

Another common approach for solving thermal conductivity is the Green-Kubo equation:

κ =
V

kbT 2

∫ ∞

0

⟨J⃗(t)|J⃗∗(0)⟩dt (2.73)

with the ACF of the heat flux at temperature T , volume V , and Boltzmann constant, kb. With

current methodologies, this calculation requires a long simulation time length (∼100s of ps or

a few ns) as well as ∼100s of ensembles [18]. Currently, there is no universal definition of heat

flux. The Peierls heat flux, definition by Eq 2.70 , can be used but is not derived from a general

foundation. Implementation of a general heat flux has been shown to be nonphysical for 3+

body potentials with the current adoption in some simulations[4]. Corrections to particular 3-

and 4-body potentials, e.g. Tersoff, have been developed to account for this error [13]. Another

definition proposed by Hardy [21] derives heat flux through a volume V :

J⃗ =
1

2V

{∑
i
p⃗i
m
(

p2i
2mi

+ Ui) +
∑

ij(R⃗i − R⃗j)
1
ih̄

[
p2i
2mi

, Uj

]}
(2.74)

with momentum p⃗i, position R⃗i, and potential energy U of the atom i with mass mi, and [ , ]

is the commutation operator such that [A,B] = AB −BA. The first term of Eq 2.74 describes

the heat transported by the total energy. With this equating to the movement of the transport

by the center of mass, this term is negligible for equilibrium solid dynamics. The remainder of

this section treats the heat flux as the second term or lattice contribution.

A perturbation of the Hamiltonian, H = H0 + λH ′, splits the Hamiltonian of a harmonic

term and anharmonic term with a strength metric λ. Similarly, the heat flux split as J⃗ =

J⃗0 + λJ⃗ ′ + λ2J⃗”. The heat flux a rising from the force constant matrices J⃗FC becomes:

J⃗FC = J⃗2 + λJ⃗3 + λJ⃗4 (2.75)
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where Jn is the heat from the nth order FC matrix. The heat flux from the harmonic force

constant matrix is:

J⃗2 = − 1

2mV

∑
ij

∑
αβ

(R⃗i − R⃗j)Aαβ (⃗li, l⃗j)Qβ(l⃗j)Pα(⃗li) (2.76)

with α and β ranging over the three coordinate directions, l⃗ is the lattice site distances, A is the

2nd order FC matrix, P is the momentum of the phonon mode, and Q is the displacement from

equilibrium. Separating the distance with an equilibrium position r⃗ + l⃗, and displacement Q⃗,

J⃗2 =− 1

2mV

∑
ij

∑
αβ

(r⃗i + l⃗i − r⃗j − l⃗j)Aαβ (⃗li, l⃗j)Qβ (⃗lj)Pα(⃗li)

− 1

2mV

∑
ij

∑
αβ

(Q⃗i − Q⃗j)Aαβ (⃗li, l⃗j)Qβ (⃗lj)Pα(⃗li)

= J2,lattice + J2,displacement

(2.77)

This can be seen as the heat transfer between atoms at lattice sites compared to the actual

distance between atoms. When the displacement from equilibrium is small compared to the

equilibrium distance, J⃗2,lattice ≫ J⃗2,displacement but this is not true at higher temperatures.

Higher temperatures give larger oscillation amplitudes that make the displacement term non-

negligible. It can be shown with the inclusion of the annihilation and creation operators that

J⃗2,lattice = J⃗2,diagonal + J⃗2,off−diagonal such that:

J⃗2,diagaonal =
1

V

∑
α

fαh̄ωαv⃗gα (2.78)

or the diagonal component reduces to that of the Peierls heat flux of Eq 2.69 while the off-

diagonal term becomes a series of oscillating functions based on the frequency difference ωα−

ωα′ .

Both terms of Eq 2.77 can be converted into q-space, which will be the key to fixing the

convergence and other numerical issues with the Green-Kubo formalism. The symmetry of

FC matrices, (A(⃗li, l⃗j) = A(0, h⃗ji) where h⃗ji ≡ l⃗j − l⃗i for FC2), implies that FC matrices are
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independent of the reference point. This invariant with an inverse Fourier transformation:

Qiα(⃗li) =
1√
N

∑
q⃗

Qiα(q⃗)e
iq⃗·(⃗li+r⃗i)

Piα(⃗li) =
1√
N

∑
q⃗

Piα(q⃗)e
iq⃗·(⃗li+r⃗i)

(2.79)

makes:

J⃗2,lattice = − 1

2mV

∑
ij

∑
αβ

∑
h⃗ji

∑
l⃗i

(r⃗i − r⃗j − h⃗ji)Aαβ(0, h⃗ji)
1

N
Qβ (⃗li + h⃗ji)Pα(⃗li)

= − 1

2mV

∑
ij

∑
αβ

∑
h⃗ji

∑
l⃗i

∑
q⃗1q⃗2

(r⃗i − r⃗j − h⃗ji)Aαβ(0, h⃗ji)
1

N
Qβ(q⃗2)Pα(q⃗1)e

iq⃗1·(r⃗i+l⃗i)eiq⃗2·(r⃗i+l⃗i+h⃗ji)

(2.80)

The exponential term:

∑
l⃗i

eiq⃗1·(r⃗i+l⃗i)eiq⃗2·(r⃗i+l⃗i+h⃗ji)

=eiq⃗1·r⃗i+iq⃗2·(r⃗i+h⃗ji)
∑
l⃗i

ei(q⃗2+q⃗2)·⃗li
(2.81)

reproduces the selection rule, by Eq 2.10, such that q⃗1 = −q⃗2 = q⃗. Finally,

J⃗2,lattice =
1

2mV

∑
ij

∑
αβ

∑
q⃗

∇⃗q⃗Aαβ(q⃗)Qβ(q⃗)P
∗
α(q⃗) (2.82)

where:

∇⃗q⃗Aαβ(q⃗) ≡
∑
h⃗ji

(r⃗j + h⃗ji − r⃗i)Aαβ(0, h⃗ji)e
iq⃗·(r⃗j+h⃗ji−r⃗i) (2.83)

only requires the derivative of FC2 (or dynamical matrix), q-projected velocity, and q-projected

displacement. With product terms:

Θ⃗i ≡ Q⃗(⃗li)Pα(⃗li)

Υ⃗j ≡ Q⃗(⃗lj)Qα(⃗lj)

(2.84)

34



similar steps can be done with J⃗2,displacement to show:

J⃗2,displacement = − 1

2mV

∑
ij

∑
αβ

∑
q⃗

Aαβ(q⃗)

{
Θ⃗∗

i (q⃗)Qβ(q⃗) + P ∗
α(q⃗)Υ⃗j(q⃗)

}
(2.85)

The heat flux by anharmonic FC terms can be defined in real space as:

λJ⃗3 =− 1

3mV

∑
ijk

∑
αβγ

∑
h⃗jih⃗ki

∑
l⃗i

(r⃗i − r⃗j − h⃗ji)Bαβγ(0, h⃗ji, h⃗ki)Qβ (⃗li + h⃗ji)Qγ (⃗li + h⃗ki)Pα(⃗li)

− 1

3mV

∑
ijk

∑
αβγ

∑
h⃗jih⃗ki

∑
l⃗i

(Q⃗i − Q⃗j)Bαβγ(0, h⃗ji, h⃗ki)Qβ (⃗li + h⃗ji)Qγ (⃗li + h⃗ki)Pα(⃗li)

(2.86)

and:

λJ⃗4 =− 1

4mV

∑
(r⃗i − r⃗j − h⃗ji)Cαβγρ(0, h⃗ji, h⃗ki, h⃗li)Qβ (⃗li + h⃗ji)Qγ (⃗li + h⃗ki)Qρ(⃗li + h⃗li)Pα(⃗li)

− 1

4mV

∑
(Q⃗i − Q⃗j)Cαβγρ(0, h⃗ji, h⃗ki, h⃗li)Qβ (⃗li + h⃗ji)Qγ (⃗li + h⃗ki)Qρ(⃗li + h⃗li)Pα(⃗li)

(2.87)

where B and C are the FC3 and FC4 matrices, respectively. Only the J⃗3,lattice and J⃗4,lattice are

used for this work since J⃗2,displacement will be shown to be small compared to J⃗2,lattice later

on and it can be reasonable argued that J⃗4,displacement and J⃗4,displacement would be significantly

smaller. After converting to q-space,

λJ⃗3,lattice =
1

3mV
√
N

∑
ijk

∑
αβγ

∑
q⃗1q⃗2q⃗3

∇⃗q⃗Bαβγ(q⃗1, q⃗2, q⃗3)Qβ(q⃗2)Qγ(q⃗3)Pα(q⃗1)∆(q⃗1 + q⃗2 + q⃗3)

λJ⃗4,lattice =
1

4mVN

∑
ijkl

∑
αβγρ

∑
q⃗1q⃗2q⃗3q⃗4

∇⃗q⃗Cαβγρ(q⃗1, q⃗2, q⃗3, q⃗4)Qβ(q⃗2)Qγ(q⃗3)Qρ(q⃗4)Pα(q⃗1)∆(q⃗1 + q⃗2 + q⃗3 + q⃗4)

(2.88)
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with:

∇⃗q⃗Bαβγ(q⃗1, q⃗2, q⃗3) ≡ ei(q⃗1+q⃗2+q⃗3)·r⃗i
∑
h⃗jih⃗ki

(r⃗j + h⃗ji − r⃗i)e
iq⃗2·(r⃗j+h⃗ji−r⃗i)eiq⃗3·(r⃗k+h⃗ki−r⃗i)

∇⃗q⃗Cαβγρ(q⃗1, q⃗2, q⃗3, q⃗4) ≡ ei(q⃗1+q⃗2+q⃗3+q⃗4)·r⃗i
∑

h⃗jih⃗kih⃗li

(r⃗j + h⃗ji − r⃗i)e
iq⃗2·(r⃗j+h⃗ji−r⃗i)eiq⃗3·(r⃗k+h⃗ki−r⃗i)eiq⃗4·(r⃗l+h⃗li−r⃗i)

(2.89)

Due to the resource limitations, J⃗4,lattice is reduced in q-space to

λJ⃗4,lattice =
1

4mVN

∑
ij

∑
αβ

∑
q⃗

∇⃗q⃗A
eff
αβ (q⃗)Qβ(q⃗)P

∗
α(q⃗) (2.90)

by creating an effective time-dependent FC2 matrix:

Aeff
αβ (⃗li, l⃗j) ≡

∑
kl

∑
γρ

Cαβγρ(⃗li, l⃗j, l⃗k, l⃗l)Qγ (⃗lk)Qρ(⃗ll) (2.91)

This reduces the selection rule imposed on the J⃗4,lattice from ∆(q⃗1+ q⃗2+ q⃗3+ q⃗4) to ∆(q⃗1+ q⃗2).

The possible implications of this selection rule reduction will be expanded upon later.

The heat flux used:

J⃗ ≈ J⃗2,lattice + J⃗2,displacement +W 1
34λJ⃗3,lattice +W 2

34λJ⃗4,lattice

= J⃗2,diagonal + J⃗2,off−diagonal + J⃗2,displacement +W 1
34λJ⃗3,lattice +W 2

34λJ⃗4,lattice

(2.92)

now requires weightsW 1
34 andW 2

34. These weights will account for the renormalization of both

the FC3 and FC4 and will be determined using a linear regression model of the q-projected

force:

fiα(q⃗) =
1√
N

∑
l⃗i

fiα(l)e
−iq⃗·(⃗li+r⃗i)

≈
∑
jβ

Aαβ(q⃗)Qjβ(q⃗) +W 1
34

1

2!

∑
jβ

∑
kγ

Bαβγ(−q⃗, q⃗2, q⃗3)Qjβ(q⃗2)Qkγ(q⃗3) +W 2
34

1

2

∑
jβ

Aeff
αβ (q⃗)Qjβ(q⃗)

(2.93)
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and Taylor series expansion up to the 4th order. The linear regression model will predict the best

weights in the series expansion to fit the full q-projected force. For this model to be accurate,

approximation of 2.93 must be valid and the dependent variable (full q-projected force) has

to be correlated to the independent variable (series expansion with weights). This model is

included in the machine-learning package scikit-learn [37] in python. The coding implentation

of these heat flux components utilize and expand upon many functions developed in Phono3py

[54]. Other perturbation contributions to the heat flux include lattice defects, boundaries, etc.

Due to the simulations being a periodic crystal with low defects, these other perturbations are

not discussed.
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Chapter 3

Molecular Dynamic Simulations

This chapter explains how Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

with a machine-learning based Gaussian Approximation Potential (GAP) is utilized to extract

the equilibrium atomic dynamics (force, velocity, displacement) necessary to predict the lat-

tice thermal conductivity κL. We use a finite displacement method to get the force constant

(FC) matrices. Lastly, we discuss projecting the atomic dynamics into q-space and the implicit

commensurate grid from the system size.

3.1 Governing Equation

Molecular dynamics (MD) simulations provide a numerical solution to all atomic trajectories

providing the evolution of a micro-system throughout time given initial conditions. Classi-

cal MD only considers the interactions between multiple atoms while ab-inito MD includes

internal contributions to the atomic evolution i.e. electronic-ion interactions. These extra inter-

actions of the internal interactions require solving the quantum Schrödinger equation of motion.

Classical MD typically uses an empirical force field to define the atom-atom interactions. New-

tonian equations of motion drives the atomic dynamics with the requirement of an interatomic

potential. Conservation of force using interatomic potentials dictates a Newtonian equation of

motion of a system with N atoms as:

Fi = −∇V (ri), i = 1, 2, 3..N (3.1)
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where F is the force, V is the potential energy, and r is the atomic coordinates. Expanding

Eq. 3.1 becomes:

m
d2ri
dt2

= −∇V (ri), i = 1, 2, 3..N (3.2)

with m being the mass of the particle. Since all other variables are a constant as a function

of time, the atomic coordinates describes the evolution of a MD system.

3.2 Interatomic Potential

Due to the necessity of an interatomic potential, the numerical accuracy of MD simulations rely

heavily on the supplied potential energy (or force-field) and initial constraints. Commonly used

empirical potentials, e.g. Tersoff [50], and Stillinger and Weber [45], approximates the surface

energy of the system from observed data. This improves the computational cost but comes with

a penalty on accuracy compared to ab-inio density functional theory (DFT) calculations. These

potentials use a qualitative approach to a potential and lack quantum accuracy. Recent advances

in machine-learning (ML) has provided new potentials for molecular dynamic simulations with

near quantum mechanics accuracy in Gaussian Approximation Potential (GAP) and Spectral

Neighbor Analysis Potential (SNAP)[3, 52]. Of these two, GAP is shown to have the lower

error with respect to DFT calculations across various testing properties while versions of SNAP

have significantly lower computational costs shown in Fig 3.1[57]. This work focused on GAP

due to the lower error to test the limits of molecular dynamic accuracy.

Machine-learning potentials aim to build a general interatomic potential by fitting their

kernel functions with DFT calculations. The kernels functions are means of mapping data or

basis function for atomistic potentials. Including different atomic configurations, e.g. isotopes,

defects, atomic structures, creates a more general purpose potential for uses of a material. This

prevents over-fitting by not focusing on particular aspects of a material but rather the predicted

pattern of a material. The GAP model uses a smooth overlap of atomic positions (SOAP) kernel

function with a Gaussian process regression (GPR) model to solve for the fitting parameters[3].
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Figure 3.1: Accuracy of various ML interatomic potentials and the corresponding computa-
tional cost by a 2020 study from Zuo et. al. [57]
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The basis functions for the SOAP kernel maps environments based on their neighbor den-

sity:

ρi(r) =
∑

′

fcut(rii′)e
r−rii′
2σ2

atom (3.3)

where σ is a smearing parameter, fcutt is a cutoff function, and i′ are neighbors of atom i in a

given cutoff radius. The neighbor density can be defined with spherical harmonic basis:

ρi(r) =
∑
nlm

cinlmYlm(r̂)gn(r) (3.4)

with the corresponding power spectrum:

ρ̃inn′l =
l∑

m=−1

ci∗nlmc
i
n′lm (3.5)

This power spectrum has rotation and permutation invariant necessary to create a unique basis.

The SOAP kernel mapping environments Ri and Rj becomes:

K(Ri, Rj) = 3|pi · pj|4eV (3.6)

with pi being the normalized power spectrum. The total energy of a system,E, can be decom-

posed to a pair and many-body potential terms:

E =
∑
i<j

Vpair(rij) +
∑
i

M∑
s

αsK(Ri, Rj) (3.7)

where rij is the distance between atoms i,j, M is all atomic sets from selected data, and α is

the fitting parameters of a set. Using a database of DFT calculation, the GAP model uses GPR

to solve for the fitting parameters, α, in Eg 3.7 as:

α∗ = [KMM + (LKNM)TΛ−1LKNM ]−1(LKT
NMΛ−1y) (3.8)
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where M is an atomic set within N environments of a testing set, Λ is a diagonal matrix of

weights given to the input data, L is a linear operator connecting a vector, y, of input data to an

unknown vector of atomic energies [3].

3.3 Solving Newtonian Equations

Solving for the Newtonian equation provides an evolution of the system at each time step.

Shown in Eq 3.2, this requires a description of the position at each time step. A common

technique for this is the Stoermer-Verlet time integration. Following kinematics for an object

with constant acceleration a, position as of function of time is:

r(t) = r0 + v0t+
1

2
a0t

2 +
1

6
b0t

2 +O(∆t4) (3.9)

or

r(t) = r0 +
dr
dt
t+

1

2

d2r
dt2

t2 +
1

6

d3r
dt3

t3 +O(∆t4) (3.10)

where v is velocity, b is jerk, and O(∆t4) are all higher order terms. A Taylor-series expansion

about time t with a small time step ∆t gives:

r(t+∆t) = r0 +
dr
dt

∆t+
1

2

d2r
dt2

∆t2 +
1

6

d3r
dt3

∆t3 +O(∆t4) (3.11)

Due to reversibility of time, a time step backwards means:

r(t−∆t) = r(t)− dr
dt

∆t+
1

2

d2r
dt2

∆t2 − 1

6

d3r
dt3

∆t3 +O(∆t4) (3.12)

Adding Eq 3.11 and 3.12, yields:

r(t+∆t) = 2r(t)− r(t−∆t) +
f
m
∆t2 +O(∆t4) (3.13)

with f = ma. Any subsequent time step of position is dependent only on the previous position,

and current position and force. By dropping the higher order terms, this gives error of the

position as O(∆t4). With positions at new time steps, solving for velocity at a subsequent time
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steps follows similar steps as the position by subtracting Eq 3.11 and 3.12. Velocity becomes:

v(t+∆t) =
r(t+∆t)− r(t−∆t)

2∆t
+

b∆t3

3∆t
(3.14)

Dropping the jerk term gives a velocity error of O(∆t2)

3.4 Running EMD Simulations

Discussed earlier, thermal conductivity can be expressed from thermal equilibrium dynamics

and statistical mechanics. Statistical mechanical systems have microscopic states that are con-

trolled by macroscopic properties. Three main thermal equilibrium ensembles are canonical

(NVT), isothermal-isobaric (NPT), and micro-canonical (NVE). A system of N particles and

volume V, in contact with a heat bath at temperature T makes an NVT ensemble. With constant

pressure P, a NPT ensemble allows a system to expand to a natural size. NVT and NPT are

useful for driving the system to thermal equilibrium at a given temperature. Temperature is

maintained by adding constraints to the velocity, thus fixing the temperature while altering the

system dimensions controls the pressure. These add extra constraints to the system and may

lead to unwanted manipulations to the system. With only conservation of energy E due to a

non-interacting system, NVE ensembles produces dynamics with Stoermer-Verlet time inte-

gration algorithm. Systems that undergone thermal equilibrium will have varying energies at

different time steps. Ensembles averages of these varying energy states reduce the numerical

uncertainty.

All molecular dynamics simulations for this works was done using the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) program [51] on Auburn’s Easley super-computing

cluster. The workflow for getting atom dynamics are shown in Fig 3.2. GAP must be ran with

the command:

units metal (3.15)

where time is measured in picoseconds with a default timestep (dt) of .001 ps. Although

LAMMPS has built-in commands for crystal lattices, the diamond lattices used were built with
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an auxiliary code called Latgen for consistency[30]. The following commands:

variable T equal 300

velocity all create $T 456783 mom yes rot yes dist gaussian
(3.16)

creates a temperature variable and initializes the velocity with a Gaussian distribution given a

random seed (456783) at that temperature. The total translational and rotational symmetry is

zeroed out to prevent any initial center of mass (COM) or rotational movement. With an initial

velocity configuration and Stoermer-Verlet algorithm, positions, velocity, and forces can be up-

dated at each time step. A thermalization allows the system to relax to a particular temperature

for 40,000 timesteps with a drag coefficient of (100×timestep) by the following commands:

fix NVT all nvt temp $T $T $(100*dt)

run 40000
(3.17)

Restart files are outputted every 1000 timesteps after NVT to create up to 10 unique ensembles

with:

restart 1000 restart.*

run 1000
(3.18)

Prior to running the NVE ensembles, the command

unfix NVT (3.19)

stops the NVT command and velocities are scaled to guarantee the NVE starts at the given

temperature with:

velocity all scale $T (3.20)
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Figure 3.2: Workflow used to create various ensembles of the atomic dynamics

Lastly, the per atom force, velocity, and unwrapped position is outputted per integer time step

during the NVE simulation with:

fix NVE all nve

run 100000
(3.21)

and multiple dump commands. The unwrapped positions are the positions of the atoms without

accounting for the periodicity of the simulation box. This is more useful than outputting the

raw displacement or position values since the reference position for the displacement used for

calculations can be adjusted as needed.

A simulation time step varies depending on the timescale of the system dynamics. For

lattice vibrations and similarly physical properties, a typical time step is on the order of 1

femtoseconds with a total run-time on the order of 1 nanoseconds (or 1 million fs). With

parallelization, a computer cluster can handle upwards of 1 million atoms depending on the

complexity of the interatomic potential. In comparison, first-principle calculations is restricted

to ∼100s of atoms. This number of atoms are significantly less than realistic number of atoms

in bulk systems. The limited size will create an inherent boundary effect in simulations since

many atoms will be at the boundary of the simulation box. To offset the size effect, a periodic
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boundary condition was used with the command:

boundary p p p (3.22)

on large atomic cells, supercells. The periodic boundary condition 1) adds virtual image atoms

outside the boundary, and 2) creates a continues pathway between ends of a simulation box.

A priority of this work was to achieve high accuracy with an efficient use of computational

resources. For reference, this 100000 NVE run-time with 4096 atoms and the GAP potential

takes about 8 hrs to finish with 480 cores of 3.00GHz processing power on the Easley super-

computing cluster. The selected NVE run-time was chosen to prevent any simulations from

terminating early due to lack of dedicated nodes. The simulation parameters to get the dynami-

cal properties are in Table 3.4. The GAP interatomic potential has a computational cost of 102

s/(MD step * atoms), which is order of magnitudes larger than some other ML potentials[57].

With non-dedicated node for parallelization on the super-computing cluster, a limit of ∼1000s

of atoms and ∼100s of ps simulation time was used for a reasonable run-time and storage

space. The choice of 4096 atoms allows for the commensurate q-point grid, discussed in the

next section, to sample all the high symmetry q-points to compare to other experimental results

while avoiding possible edge effects. The experimental lattice constant used for each temper-

ature was based on the experimental lattice expansion at constant atmospheric pressure [36].

This should reduce any lattice expansion contributions to the thermal conductivity. Since the

temperature is never changed throughout this process, the NVT ensemble does not need to have

a long simulation time and serves to provide different starting energies for unique NVE ensem-

bles. 5 ensembles are used per temperature/lattice constant pairing by saving the restart files

of the last (n-1)×1,000 time-steps of the NVT run-time. This has been shown to give better

ensemble average convergence for Green-Kubo calculations as compared to dividing a single

long run into multiple ensembles [18].
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Simulation Parameters

time-step 1 fs
# of steps 50,000 (NVT) 100,000 (NVE)

Crystal size 4096 atoms
Steps per output 1

Temperatures (Kelvin) 300 600 900 1200 1500
Lattice Constants (Angstroms) 5.431 5.437 5.443 5.450 5.458

Table 3.1: Simulation parameters for NVE and NVT runs for dynamical output

3.5 Getting Force Constants

The force constant matrices are the n-th order displacement derivative of the potential:

FCn =
∂nU

∂un
(3.23)

With a conservative force F = −∇U , the force constants can be rewritten with the force:

FCn =
∂n−1f

∂un−1
(3.24)

The partial derivative can be approximated using the finite displacement method by evaluating

the change in the n-1 force constant matrix after a small displacement ∆r in opposite directions:

FCn ≈ FCn−1(∆r)− FCn−1(−∆r)

2∆r
(3.25)

For example, the second order force constant matrix, FC2, is solved by displacing an atom in

one direction and measuring the change in the 0-th order FC matrix i.e. the force on the atom.

A reasonable value for the finite displacement is on the order of .01 Å.

The higher order FC matrix calculations will require all previous order FC matrices. With

a full FC calculation requiring two displacements in all 3 Cartesian directions for N atoms,

the next order FC matrix will have a computational time of 6N times the time of the previous

FC order. This restricts the number of atoms since the size of a full FCn matrix is (3N)n

and needs (6N)n calculations. All FC matrices can be represented in a reduced form since a

basis atom will have identical force constants with a basis atom in another position with shape
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(3Nbasis)(3N)n−1. A FC2 matrix for a 4096 atom supercell has the shape (4096 × 3)2 with

∼1 GB of storage space and ∼1 hr computational wall-time on 480 Intel Xeon Gold 6248R

3.00GHz nodes with LAMMPS. FC3 and FC4 use a 216- and 64-atom supercell, respectively,

with storage of ∼ 2 GB for the full FC3 and 300 MB for the reduced FC4. The 216 FC3 takes

∼26 hrs to compute with LAMMPS while there is no built-in modules for computing FC4.

Without parallelzing each 64-atom FC3 displacement calculation, a 64-atom FC4 only takes

about ∼12 hrs to compute.

3.6 Post-processing

LAMMPS can output theNa atom dynamical trajectories (force, velocity, position) any interval

t time-steps. These can be converted to a (t, Na, 3) dimensional array with the NumPy python

package. The atomic dynamics do not need to be output every time-step to preserve storage

space but this can be adjusted in future work. The time-step and total time will have a direct

impact on the frequency resolution of the 1-phonon spectra but the techniques shown later will

alleviate some of the resolution issues. With 100,000 fs time-steps, the dynamical trajectories

of a 4096 atoms supercell utilize ∼ 9 GB of storage.

These trajectories can be converted to q-space mesh of size Nq with a Fourier transforma-

tion:

viα(q⃗) =
1√
Nq

∑
l⃗i

viα(l⃗i)e
−iq⃗·(l⃗i+r⃗i) (3.26)

where i is the basis atom in the primitive cell and l⃗i ranges over all the atoms of the supercell

that maps to the i-th basis atom by translation and α is a Cartesian direction. In q-space, the

q-projected trajectory at a particular q⃗ is a superposition of normal modes b and eigenvectors

eb, such that for velocity v and displacement d:

viα(q⃗) =
∑
b

Pq⃗,beiα(q⃗, b)

diα(q⃗) =
∑
b

Qq⃗,beiα(q⃗, b)

(3.27)
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There is no rigid definition for the eigenvectors beyond the bare phonon approach. The eigen-

vectors will naturally vanish in the auto-correlation function (ACF) with a summations over the

primitive atoms:

gq⃗(t) ≡
∑
iα,jβ

√
mimj⟨vq⃗,i,α(t)v∗q⃗,j,β(0)⟩

=
∑
b,b′

⟨Pq⃗,b(t)P
∗
q⃗,b′(0)⟩

∑
iα,jβ

eiα(q⃗, b)e
∗
jβ(q⃗, b

′)

=
∑
b,b′

⟨Pq⃗,b(t)P
∗
q⃗,b′(0)⟩δb,b′,i,j

=
∑
b

⟨Pq⃗,b(t)P
∗
q⃗,b(0)⟩

(3.28)

Due to the supercell being a finite size, the q-projected trajectories only sample particular q-

points in the Nq mesh called commensurate points.

A particular q-point can be represented by reciprocal lattices from conventional b⃗c or prim-

itive b⃗ lattice vectors:

q⃗ = uc⃗bc,1 + vc⃗bc,2 + wc⃗bc,3

=
vc + wc

2
b⃗1 +

uc + wc

2
b⃗2 +

uc + vc
2

b⃗3

(3.29)

such that:

u =
vc + wc

2

v =
uc + wc

2

w =
uc + vc

2

(3.30)

With a N1×N2×N3 integer replication of the cubic cell,

uc =
n1

N1

, n1 ∈ [0, N1]

vc =
n2

N2

, n2 ∈ [0, N2]

wc =
n3

N3

, n3 ∈ [0, N3]

(3.31)
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which makes:

u =
1

2
(
n2

N2

+
n3

N3

), 0 ≤ u ≤ 1

v =
1

2
(
n1

N1

+
n3

N3

), 0 ≤ v ≤ 1

w =
1

2
(
n1

N1

+
n2

N2

), 0 ≤ w ≤ 1

(3.32)

For a (8×8×8)×8 atom diamond supercell model (4096 atoms), the commensurate q⃗-points,

q⃗0, are:

q⃗0 ⇒


u0 =

1
16
(n2 + n3), n1 ∈ [0, 8]

v0 =
1
16
(n1 + n3), n2 ∈ [0, 8]

w0 =
1
16
(n1 + n3), n3 ∈ [0, 8]

(3.33)

with 2048 total q-points in the Nq mesh. The full q-projected trajectories will be complex

values of shape (t, Nq, Nbasis, 3) and consequently requiring more space (∼ 18 GB).

Contrary to the sampling of q-projected trajectories, the FC matrices can be projected to

any q-point. This makes the mapping the smaller sized FC3 and FC4 to the trajectories possible.

The q-projected FC matrices are bound by the selection rule. As discussed before, the selection

rule for FC2(q⃗1, q⃗1) dictates q⃗1 = −q⃗2. By selecting two q-points from the commensurate grid

and searching for the last to satisfy the 3-phonon selection rule, q⃗1 + q⃗1 + q⃗1 = G⃗, a pattern

was found. If two q-points are chosen at random from the grid and then there is only one

unique q-point in the commensurate grid to satisfy the condition. This logic hold for the 4-

phonon selection rule as well. Thus, a q-projected FCn to have the shape (Nn−1
q , Nn

basis, 3
n).

This shape is manageable for a q-projected FC. Discussed later, the size will become an issue

for any q-projected calculations that require the FC4 and the reasoning behind the effective

time-dependent force constant matrix Aeff .

Inside the commensurate grid, there are many q-points that are equivalent to each other by

rotational transformation matrices. For example, the X-point (0.0, 0.5, 0.5) as two equivalent
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q-points: 
0.5

0

0.5

 =


0 −1 0

1 0 0

0 0 1



0.0

0.5

0.5

 (3.34)

and 
0.5

0.5

0.0

 =


0 0 −1

0 1 0

1 0 0



0.0

0.5

0.5

 (3.35)

The rotation transformations are not unique and two equivalent q-points can have multiple

transformation matrices. Symmetry of the cell determines all the possible rotations and libraries

like phonopy and spglib can output these transformations. The 2048 commensurate grid can be

reduced to an irreducible grid of 85 unique q-points by rotation with unique values of [1, 3, 4,

6, 8, 12, 24, 48], and a mean value of 24 equivalent q-points. The lowest equivalent q-points are

high symmetry points with the lowest 3 (1, 3, 4) belong to the Γ-,X-, and L-point, respectively.

Equivalent q-points will have similar information that can be averaged over to be used in lieu

of more ensemble runs. This work will show that combining results from equivalent q-points

while enforcing orthogonality between q-points and/or fitting the results with an equation can

make MD simulations viable as a primary source for phonon research.
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Chapter 4

MD Simulated Phonon Properties at Finite Temperatures

Since the early stage of quantum mechanics, researchers have sought to interpret experimental

lattice thermal conductivity data of crystals using the phonon-based kinetic Boltzmann Trans-

port Equation (BTE). At the single-model level (sm-BTE), the lattice thermal conductivity

(κL) can be expressed through terms derived from phonon dispersions (cv and v⃗g) and phonon

lifetimes (τ ). However, in practice, the sm-BTE approach’s applicability is restricted only to

moderate temperature ranges due to two commonly employed numeric approximations: the use

of bare phonon dispersions and perturbative evaluations of tau. Although some previous stud-

ies have reported molecular dynamics (MD) simulations to determine phonon frequencies and

lifetimes, the limited size of simulation cells (typically a few hundred atoms) and the relatively

short simulation times (less than 10 picoseconds) introduce significant numerical uncertainties

into the simulated data. Currently, there exists a notable gap in the literature concerning robust

simulation studies on renormalized phonon frequencies and lifetimes at very high temperatures,

specifically those just below the melting point. This chapter addresses this gap by present-

ing three key contributions: 1) demonstrating how q-space symmetry can mitigate numerical

noise in 1-phonon spectra, 2) introducing a reliable fitting algorithm for extracting temperature-

dependent frequency (ω) and lifetime (τ ) values across a range from room temperature to near

the melting point, and 3) reconstructing temperature-dependent force constant (FC) matrices

to obtain group velocity (v⃗g). Finally, the chapter delves into a discussion of the implications

of simulation parameters and the sensitivity of τ , drawing comparisons to perturbation theory

results
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4.1 Validating Phonon Gas Model

The temperature-dependent phonon properties of a crystal can be directly evaluated using

molecular dynamics (MD) simulated 1-phonon spectra. The underlined assumption is that

the phonon gas model remains valid even at high temperatures, i.e. the damp harmonic oscilla-

tor theory still holds. As stated previously, either the displacement or velocity auto-correlation

function (ACF) can be used to get the 1-phonon spectra. The displacement or velocity must be

zero-mean stochastic variables in time while the corresponding ACF should be a superposition

of under-damped harmonic oscillators.

The major numerical issue with calculating displacement ACFs in EMD simulations is

the reference point to subtract unwrapped position. Ideally, the time-averaged position that an

atom oscillates about, and the equilibrium lattice positions should be identical. The displace-

ment will be defined as the distance from the time-averaged position. The displacement and

velocity give similar results for the ACF shown in Fig 4.1. Discussed in Chapter 3, the dis-

placement has an error of O(∆t4) while the velocity had an error of O(∆t2) with a timestep of

∆t using a Stoermer-Verlet time integration. The remainder of the section will use the velocity

ACF by Eq 3.28 for the 1-phonon spectra although either would suffice. The damp harmonic

oscillator theory is a classical approach to phonons. At ambient pressure, the Debye temper-

ature of Silicon is roughly 650K, where the quantum effects of lattice vibration are usually

negligibly small. Unless specified otherwise, the adopted temperatures in our EMD simula-

tions are 300K, 600K, 900K, 1200K, and 1500K. Except at 300K, our simulations are within

the classical regime, where the damped harmonic oscillator theory is a reasonable classical ap-

proximation. While we also include 300K in our MD simulation, we are aware that quantum

corrections might be needed at this temperature even though the EMD with GAP calculations

has been shown to have relatively good agreement to experimental results up to 500K [40].

The highest simulated temperature is 1500K with the melting point of Silicon being around

1700K. Even near melting, the damp harmonic theory holds (Fig 4.2). There is no breakdown

of the sm-RTA approximation and should give reliable results even near melting. The peaks

are mostly Lorentzian with slightly more noise occurring at 1500K. The anharmonic effects
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Figure 4.1: The displacement, velocity, and corresponding ACF of the first basis atom at the
Γ-point (0,0,0) at 300K of one ensemble

Figure 4.2: Velocity-velocity (v-v) ACF and corresponding Fourier transformation (1-phonon
spectra) at 300K and 1500K with the Γ-point
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cause the spectra to slightly deviate from the DHO/Lorentzian shape. As expected, the shorter

lifetime (quicker decay) in the v-v ACF is inversely proportional to the broadening value of

the Lorentzian peak with a frequency downshift with increasing temperatures which occurs for

most q-points (excluding L-point). The only option to reduce the noise specifically for the

Γ-point is to have more ensembles since it is the zone-center with zero equivalent q-points.

Luckily, this point is easy to fit being a single peak while also having a very low impact on the

sm-RTA thermal conductivity (discussed later).

4.2 Equivalent q-point Averaging

Typically, the primary numerical noise reduction for MD simulations is averaging over a large

number of ensembles. Instead, an average over equivalent q-points can replicate an ensemble

average. For particular calculations, equivalent q-points are expected to give similar results

so an average over those calculations will reduce the numerical uncertainty. The v-v ACF of

equivalent q-points should give identical results by summing over all the basis atoms. Although

subtle, splitting the results by q-points enforces δq,q′ between the ACF and there is no interac-

tions between q-points. This will have a larger implications in the Green-Kubo approach. The

shape of the v-v ACF reduces from all commensurate q-points to 85 irreducible q-points. This

average can mimic (# of ensembles)×(# of equivalent q-points) for each irreducible q-point

with an average equivalent count of 24.

The q-point Q⃗ = ( 1
16
, 1
8
, 3
16
) has 3 unique acoustic branches (lower frequency modes)

and at most 3 unique optical branches with 24 total equivalent q-points. Shown in Fig 4.3, the

equivalent averaging over 4 ensembles greatly reduces the noise in both the DHO and 1-phonon

spectrum at 1500K. Parts of the early time-steps of the DHO are smoothed out while there is a

stronger decay in the long tail. This ends up effecting both the 3 acoustic branches and optical.

The base of the peaks become more smooth and have a more defined Lorentzian shape to it.

For the optical modes (∼55 meV range), the amplitude of the wiggles reduces as well.

Another approach to noise reduction is convolution the DHO by multiplying an exponen-

tial e−t/τsmooth . While this will reduce the wiggles of the graph, it adds an intrinsic broadening
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Figure 4.3: v-v ACF (top) and 1-phonon spectra (bottom) of single ensemble vs average of 4
ensembles and q-points equivalent to q⃗ = ( 1

16
, 1
8
, 3
16
) at 1500K
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to the spectra such that 1
τgraph

= 1
τconv

+ 1
τtrue

. Methods can be done to de-convolute the in-

trinsic broadening but the broadening will be shown to be a highly sensitive parameter. Unlike

the broadening, the convolution and equivalent averaging has little affect on the peak location.

This means that the methodology for extracting the peak locations (frequency), and broadening

(or lifetime) should use the least manipulated phonon spectra which the equivalent averaging

gives.

4.3 Fitting Algorithm

A fitting algorithm was used to extract the renormalized frequencies and lifetimes from the

1-phonon spectra at every irreducible q-point. A time domain fitting fits a superposition of

the DHO equation [48] while a frequency domain fitting fits a superposition of Lorentzian

functions. Ideally, an infinitesimally small resolution (or infinitely long run-time) would dictate

that both would yield the same results. The time domain resolution is the simulation time-step

or 1 fs while a 100 ps run time produces a 50 ps time period correlation functions resulting in

a 1
50

THz (0.0825 meV) frequency resolution. Also, any noise or intrinsic broadening from the

DHO gets added into the Lorentzian shapes. This means the time domain fitting have more

flexibility in the fitting algorithm while also giving less convoluted results by adjusting the

range of time to be fitted.

Each averaged irreducible v-v ACF was fitted as a superposition of DHO:

⟨v(t)|v(0)⟩ =
∑
λ

Wλe
−gλt(cos(pλt)−

gλ
pλ
sin(pλt)) (4.1)

where dλ is the weight of each mode λ, p is the peak location (frequency), and g is the decay

constant (half width half max) where τb = 1
2g

. LMFIT, the Non-Linear Least-Squares Min-

imization and Curve-Fitting python package, was used to fit these equations[35]. LMFIT is

a parameter based fitting tool that allows mathematical constraints as well as conditionals to

be considered while finding the least error between the fitting parameters and the data. For a

particular q-point, a minimum of 18 parameters are needed with a pλ, gλ,, and Wλ for each 6
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λ modes. The constraints and conditionals will invoke necessary physics to the fitting parame-

ters. The following physical constraints: 1) peaks are of ascending order, 2) degenerate peaks

have identical fitting parameters, 3) all the weights should sum to 1, and 4) all parameters are

non-zero, can be converted to the following equations:



pλ+1 − pλ > 0

pλ = pλ′ , gλ = gλ′ , Wλ = Wλ′ if degenerate

1−
∑

λ dλ = 0

pλ > 0, gλ > 0, Wλ > 0

(4.2)

Strictly fitting with these conditions with upper bounds of ∞,∞, and 1, for p, g, and d, respec-

tively, a few problems will arise: 1) there is no information on if peaks are degenerate, 2) fitting

can take too long without a more confined upper (and lower) bounds, 3) a fitted peak may have

a weight that is too small compared to surrounding peaks.

The first issue requires getting insights on degeneracy of peaks. This can be done with

the bare phonon frequency. As shown preciously, the bare phonon frequency can be derived

from the q-projected FC2 matrix. Any repeated frequency values will be degenerate and can

use the same values as the previous fitting parameter. Since the bare phonon FC2 is calculated

from MD, the frequencies will have some numerical uncertainty. A cutoff of .05 meV was used

where any frequencies that are within .05 meV of each other are considered degenerate. This

value was chosen based off the general distance between peaks and frequencies of the bare

phonon. Having the right number of unique peaks to fit is crucial for both the peak parameter

and broadening parameter. With too many peaks, the peaks that are close to each other will

have inconsistent peak location and broadening as a function of temperature, especially for

the optical branches.Too little peaks will over estimate the broadening values with close peaks

forming one large Lorentzian. To counteract this, the bare phonon frequencies are only used

for the lowest temperature calculation (300K) and the outputted parameters will be recycled

into the 300K fitting until the degeneracy issue is finalized. Then, the 300K degeneracy will be

added to the next temperature value.
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The upper and lower limits (as well as a good initial guess) help reduce the number of

iterations that LMFIT must perform by restricting the allowed parameter values. Although the

broadening is highly sensitive, the accuracy of both the peak location and broadening relies

on having a good initial guess on the peak location. If the bounds of the peak location is far

from the ’true’ location, then there will be no ideal broadening and it will be fitted with the

largest possible broadening since that will equate to a peak with no impact to the superposition.

Because the bare phonon frequency can represent a zero-temperature with infinite lifetime (zero

broadening), it can be reasoned the frequency differences between the adjacent temperature

runs should be closer than the bare phonon frequencies and 300K frequencies. This means the

upper and lower limit set on the lowest temperature range will have to be larger than those of

subsequent temperatures. The [upper, lower, guess], and initial guess for 300K are set as the

bare phonon frequency +[2,−3,−0.5] meV, respectively, while subsequent temperature takes

the previous temperature +[1.5,−3,−0.5] meV.

Lastly, the weights determines the relative heights of all the peaks. Ideally, all peaks

should have the same weight or 1
6

for the size total phonon modes. When only accounting for

unique peaks, degenerate peaks will have a weight of Nd

6
where Nd is the number of degenerate

peaks. In reality, the peaks do not equally distribute the weight. Using a lower bound of half

an equally distributed weights, the [upper, lower, guess] for the weights are [ 1
12
, 1, 1

6
].

After getting fitting parameters for all the temperatures (300K, 600K, 900K, 1200K, 1500K),

this process can be done again. Instead of starting with the bare phonon frequencies, the peak

locations and broadening for each temperature are now available. In the second run, the [up-

per, lower, guess] for all temperatures are reduced to that temperature peak location from the

first run +[1.5,−1.5, 0]. For 300K, the [upper, lower, guess] broadening scales the previous

300K broadening by [1e−1, 2, 1]. Other temperatures keeps the same upper limit broadening

but changes the [lower, guess] broadening to [1, 1.5]×(previous temperature broadening). With

restricted bounds from the first run information, the second run is much quicker and serves to

add a physical constraint that broadening increases with temperature dΓ
dT
> 0.

The last issue of peaks having huge discrepancies in the weight comes from the fitting

parameter prioritizing the matching the data. Even with reasonable bounds and degeneracy,
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Figure 4.4: a) Energy excitation (frequency), b) half-width half-max broadening, and c) 1-
phonon spectra of the neighboring acoustic branches with individual modes from .01 fre-
quency/degeneracy fitting and raw MD spectra (triangle) at various temperatures and q⃗ =
(1
8
, 3
16
, 3
16
)

the best fit parameters may come to the conclusion that the fitting is better if one peaks had

a much larger importance (weight) than the other. To counter unbalanced distribution, the

number of unique weights were independent of the number of unique peaks/broadening. The

total unique number of weights were determined by the distance between peaks. Similar to the

peak cutoff, the weight cutoff defines the distance between peaks for them to have a unique

weight parameter. This forces peaks that are close to each other to have identical weights, thus,

no highly unbalanced peak heights with surrounding peaks. Two weight cutoffs were used: one

for acoustic branches and another for optical branches with peaks higher than 45 meV being

considered optical branches. The acoustic weight cutoff was 1 meV with a slightly higher

optical cutoff of 1.5 meV. Although the same weight cutoff could be used, the optical weight

had a higher cutoff since the optical branches are less localized.

With this current implementation, an issue will occur with peaks that get too close to either.

If peaks start at some distance apart, they may downshift at different rates as a function of
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temperature. When the higher peak has a larger downshift, there may be a theoretical crossing

of the modes based on the patterns of the frequencies and broadening. A theoretical crossing has

an impact on both the frequencies and broadening. This happens more for acoustic branches

since they are much closer together but this can also be seen in some optical modes of the

irreducible q-points shown in Fig 4.4 c). For the q-point in Fig 4.4, there is a theoretical

crossing around 1200K. The final 1500K broadening for the lower mode takes an odd jump

compared to the previous temperatures which diverges from the visual pattern of the peaks.

When looking at the 1-phonon spectra, this behavior might be explained with a swapping

or ’collision’ of modes. The reasoning for swapping comes from the broadening and peak

height pattern of the peaks. The right peaks starts higher than the left then looks to decreases

at a faster rate than the left. After 1200K, it would reason that the faster decline would lead to

the right being lower than the left so the peaks must have swapped locations. With the assump-

tion of swapping, the higher mode (+ on Fig 4.4 b)) broadening would follow an exponential

function with the lower mode (× Fig 4.4 b)) being more linear. If mode swapping is seen as un-

physical, then the modes might have ’collided’ instead of crossing. An ’elastic’ collision may

cause the peaks to increase their separation while ’pushing’ one of the peaks to a higher broad-

ening value. For some optical branches, the peak increasing peak separation can be seen during

a theoretical crossing. With the ’elastic’ collision assumption, the swapping can be determined

by fitting the peak locations and broadening (with a 2nd order polynomial) and finding with

configuration gives the lowest error value. An ’inelastic’ collision would mean that the peaks

collide then stick together for the rest of the temperatures which will be called ’accidental’ de-

generacy. With accidental degeneracy enforcement, a new best fit states that the data would fit

better as a superposition of degenerate peaks at 1500K instead of two lopsided peaks. Although

the frequency does not change much, this causes a noticeable change in the broadening where

the accidental degeneracy broadening is in-between the two previous broadening values.
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The concept of accidental degeneracy in LMFIT takes the form of an if-else statement

constraint:

if dλ+1 < ∆ → then pλ+1 = pλ

else → pλ+1 = pλ + dλ+1

(4.3)

by adding 5 new parameters dλ+1 ≡ pλ+1 − pλ and ∆ is a degeneracy cutoff similar to the

frequency cutoff. While fitting, all peak locations are determined by the distance to the previous

peak such that p0 is the lowest reference point. This means that while fitting any peak location

after the first p1,2,3,4,5 can be replaced with the distances to the previous peak d1,2,3,4,5 when

determining the best fit. Thus, the total parameters to fit remains unchanged at 18. Then, the

actual peak location can be determined with pλ+1 = pλ + dλ+1

The degeneracy cutoff can vary but it was chosen to be .05 meV to coincide with the

frequency cutoff. While iterating, if two peak parameters are within that threshold, the best

fitting will be based on a superposition of the lower peak location while the broadening and

weights are unchanged. After the best fits are determined and if accidental degeneracy occurs,

the fitting will rerun with the new frequencies as inputs to make the broadening degenerate.

Both the degeneracy (and frequency) cutoff is an adjustable parameter that can be used to also

account for the precision of MD 1-phonon spectra. With the precision of the MD simulation

as 0.0825 meV, the 0.05 meV cutoff is slightly less than the resolution of spectra which should

not greatly affect the fitted peak broadening. Accidental degeneracy is implemented during the

second fitting run with the workflow shown by Fig 4.5

With the best fit parameters of the 1-phonon spectra, each 6 modes in the spectra can be

decoupled at each q-point. The temperature dependent spectra, seen in Fig 4.4, are well repre-

sented by the decoupled independent modes. The amount of noise from the MD tail is reduced

by fitting over the first 20 ps of the v-v ACF. The amount of time can become an adjustable

parameter to account for the relative decays per temperature or q-points. Also, the time fitting

allows for the DHO to be arbitrarily lengthened prior to Fourier transformation which increases
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Figure 4.5: Workflow for the fitting algorithm with LMFIT on the 1-phonon spectra

the resolution of the frequency domain. A frequency domain may cause discrepancies with fit-

ting the Lorentzian especially in acoustic peaks yet the lengthened DHO has excellent matches

to the sampled points of the raw MD spectra.

4.4 Experimental Comparison

With decoupled modes, the frequencies, lifetimes, dispersion curves, and temperature depen-

dency can be compared to both experimental inelastic neutron scattering (INS) and Raman

spectroscopy results. The frequencies and lifetimes are direct outputs of the fitting algorithm

while the dispersion can be derived through the eigenvectors and frequency values.

One of the most recent INS data (2020) gives the frequency and lifetime results of various

q-points at different of temperatures. [28]. Due to the limited nature of the commensurate

q-points, only 1-phonon spectra of the L-point and q⃗c ≡ (3
4
, 1
4
, 1
4
), which is equivalent to q⃗ =

(1
4
, 1
2
, 1
2
), at 300K are available for comparison. From in Fig 4.6, the general peak locations

match while the fitted spectra has much lower broadening. The difference in broadening mostly

comes from the intrinsic broadening of the experimental equipment. To remove the intrinsic
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Figure 4.6: Normalized 1-phonon spectra from the fitting algorithm, scaled peaks, and 2020
INS results (top) at the L-point, and (bottom) q⃗c = (1

4
, 1
2
, 1
2
) [28]
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broadening, a measurement of the spectra is done at the lowest possible temperature with the

assumption that all the broadening at this temperature comes from instrument broadening and

subtracting this calibration broadening from higher temperature broadening. For this INS data,

this calibration temperature was set to 100K. Even at 100K, the instrument broadening cannot

identify the two unique peaks of the highest optical branches at q⃗c. This means that when

the instrument broadening is greater than the separation distance between peaks, it would be

impossible to decouple these peaks without prior information on the peak degeneracy. With the

implemented fitting algorithm logic, bare phonon frequency could be used as a ’guess’ to the

degeneracy prior to fitting and the degeneracy constraint would clarify unique peak number.

Afterwards, the subtraction would still be viable assuming that the broadening are additive.

The agreement of the frequencies is dependent multiple factors including the accuracy of

the ML potential. Like all potentials, the accuracy depends on the values fitted and interested

material properties. The GAP potential is a general purposed potential with quantum accuracy

by adding DFT calculations. Any deviations between the type of DFT will translate to the ML

potential. Even so, the general patterns and behaviors are captured well while the absolute

values may differ. When fitting, the peak locations were fairly rigid especially at lower tem-

peratures due to the localization of the phonon modes. Without having a potential specifically

catered to phonons and phonon frequencies, it would be difficult to improve the accuracy of

the peak locations in the 1-phonon spectra. These frequency values are within reason to the

experimental INS data but it will be shown later that the difference in frequencies will have an

impact on the group velocity v⃗g term of the sm-RTA thermal conductivity.

It is possible to improve the frequency locations post-fitting though a boundary condition

approach using experimental results. 1963 experimental neutron data by Dolling provides a dis-

persion curve or frequencies along different q-point paths called band-paths [12]. Band-paths

go from one q-point to another with the dispersion curve usually going between high symmetry

points. The irreducible commensurate grid samples many of the points on the dispersion curve

and their points can be used as a boundary condition. With the help of Dr. Peng Zeng from

Auburn University, an iterative methodology was implemented that determined the scale fac-

tors between the MD fitting frequencies and experimental frequencies. This iterative method
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Figure 4.7: Dispersion curve (left) by rebuilding the FC2 matrix from the fitted peak locations
and scaled (experimental calibrated) peak locations, and (right) experimental dispersion curve
by INS [27]

uses the known scaled factors and predicts the rest of the irreducible q-point scale factors based

on the distance to an unknown q-point scale factor. This scale factors can be folded by out

to the entire commensurate grid to give a frequency comparison to other experimental results.

With the included scale factor shown in Fig 4.6, the calibrated frequencies have an excellent

agreement with more recent (2020) neutron results.

The frequencies from the commensurate grid only provides a discrete dispersion curve.

By rebuilding the FC2 matrix with the help of David Crawford, it is possible to use the fitted

frequencies and bare phonon eigenvectors to get a continuous dispersion curve to compare with

experimental dispersion curves. By rearranging Eq 2.21, dynamical matrix can be rewritten as

Di′j′(q⃗) = ηαω
2
αη

†
α with eigenvectors ηα and eigenvalues ω2

α of phonon mode α. The full

4096 atom FC2 can be rebuilt by combining the dynamical matrix at every commensurate q-

point. As shown previously, the full FC2 can be turned to a dynamical matrix which can be

projected to any q-point. Programs like phonopy can enforce symmetry operations and use this

projection to create the continuous renormalized dispersion curve of Fig 4.7. The symmetry

enforced FC2 becomes the renormalized FC2 at that temperature with the diagonalization of this

matrix giving the renormalized eigenvalues and eigenvectors. Ideally, the eigenvalues will be
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Figure 4.8: Frequency and broadening temperature shifts from 300K of MD fitting and 2020
INS data at q⃗c = (1

4
, 1
2
, 1
2
) [28]

nearly identical to the fitted MD frequencies with new orthogonal eigenvectors. The dispersion

curve calibrated with 1964 experimental neutron data has excellent agreement with 2018 INS

dispersion curves. The iterative technique mainly corrects the shape of the curve especially

the dips around the X-point and L-point. Also, the maximum height (Γ-point) matches better

with the calibrated dispersion as compared to the original (blue) dispersion curve at 300K.

The maximum frequency shows the contrast of frequencies even between similar experimental

procedures so typically, only the frequency (and sometimes broadening) shifts with temperature

are used for comparison in both experimental and theoretical results.

To account for the instrument broadening, an INS measurement at 100K is subtracted from

the broadening. Comparing the shifted broadening and peak from 300K by Fig 4.8, the MD

fitting slightly overestimates the broadening shift while underestimating the frequency shift yet
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mostly fall within the range of the error bars in the first 4 peaks. The resolution of the last

experimental peak, that combined two optical peaks, has a minor effect on the frequency shifts

but no the broadening shift. By fitting, the two highest optical modes become degenerate at

1200K. The conglomerate peaks has a broadening shift of about half of the mean separated

peaks shifts. This may arise from the sensitivity of 100K reference broadening since the ref-

erence broadening was already comparable to the absolute broadening at higher temperatures.

While the peak comparison remains promising, the lifetime comparisons may remain trouble-

some to compare to INS data without further breakthroughs in resolution or intrinsic broaden-

ing. Over convoluted data provides a valuable resource to determine peak locations especially

with MD fitting in the frequency (and time) domain while gives major issues for clarifying

the broadening/lifetime. Even MD may include intrinsic broadening due to finite size effect

and non-harmonic correlation that can be difficult to decouple. The low temperature reference

broadening reference point could be implemented into MD calculations of the sm-RTA with

either a lower temperature MD simulation or a DFT/experimental reference point.

4.5 sm-RTA Thermal Conductivity

With a renormalized eigenvalues and eigenvectors, the heat capacity cv is derived by the Eq

2.68 and substituting in the Bose-Einstein distribution while the group velocity v⃗g comes from

Eq 2.23 with the renormalized eigenvectors and derivative of the renormalized dynamical ma-

trix. Lastly, with the lifetime τ inversely proportional to the 1-phonon spectra broadening, the

impact of cv, v⃗g, and τ on the lattice thermal conductivity κlattice is shown in Fig 4.9. An

overall slightly higher frequencies, for the calibrated FC2 than the original renormalized FC2 at

300K, translated to both higher heat capacity and group velocity values. While calibration has

noticeable change in the frequency shifts, the relative effect on the κlattice is minor. The largest

impact on a difference between similar κlattice calculations is the phonon lifetimes τ .

To understand the reasoning behind the low predicted κMD value (45 W
m−K

), two perturba-

tion calculations, on a 32× 32× 32 mesh grid, were performed to compare the lifetime values.

A minimum mesh size of ∼ 11 × 11 × 11 converges the κ results with sufficient irreducible
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Figure 4.9: Lattice thermal conductivity (left) vs temperature using the sm-RTA approximation
with perturbation theory, and MD compared to full thermal conductivity measurements by
Glassbrenner & Slack [17] (black square) with an estimated lattice component by extrapolation
(dotted line). (right) Contribution to the total lattice thermal conductivity at each irreducible
q-point from MD and perturbation theory at 300K.

Thermal conductivity (κ) W/(m-K)
Perturbation MD

300K 125.51 (calibrated) 105.51(renorm) 44.90
600K 44.26 25.11
900K 25.46 15.83

1200K 16.89 10.99
1500K 11.08 7.59

Table 4.1: κ using the 1-phonon spectra and smRTA on the 2048 commensurate grid
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q-points. The commensurate grid is a subset of this mesh grid but is not converged. The per-

turbation calculations requires two force constants to calculated τ at a given temperature with

Fermi’s golden rule (Eq 2.25) : 1) an FC2 and FC3. The third order force constant matrix FC3

remained unchanged as the bare phonon values while the calibrated and un-calibrated FC2 were

applied for the two calculations, respectively. Calibrated FC2 are defined as FC2 rebuilt with

the calibrated frequencies ωcalibrated at 300K and temperature dependent shift from MD such

that:

ωcalibrated(T ) = ω300,calibrated + ωMD,300 − ωMD(T ) (4.4)

Table 4.1 is a comparison of the perturbation and MD results at each temperature. The differ-

ence in FC2 frequencies will change the energy values of the delta function in the scattering

calculations with E = h̄ω. The thermal conductivity κpert,calib, by the lifetime values from the

calibrated perturbated calculations, are 16% higher than the non-calibrated κpert,renorm. It is

plausible that adjusting the calibrating the ML potential similarly to the frequency calibration

will increase the predicted lifetime values without any other available experimental lifetimes

for calibration.

The acoustic branches have the highest contribution to κ as they typically have larger group

velocities (slope of dispersion curve), and lifetimes. With the same cv and vg from the renor-

malized FC2 at 300K, most of the underestimation from MD occurs at the acoustic branches

with the difference of the 3 highest modes contributions accounting for ∼13 W
m−K

. The lower

predicted conductivity translates to a lower predicted lifetime of the acoustic modes as shown

in Fig 4.10 (a)-(b). The lower predicted lifetime could arise from an intrinsic broadening of

MD, sampling/fitting issues, or stronger anharmonicity (even at 300K).

Two quick solutions can test the impact of any intrinsic broadening similar to experimen-

tal instrument broadening. The first solution assumes the peaks are delta functions (of zero

broadening) at 0K. The 1
T

prediction of κ comes from a 1
T

prediction of τ as a function of

temperature. By Matthiessen’s rule, the lifetime is approximated as:

τ =
1

2(Γintrinsic +∆ΓMD,0)
(4.5)
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Figure 4.10: Lifetime vs Frequency from MD and perturbation theory (a) at 300K, and (b)
1500K. First principle calculations by Gu et. al. (2020) of 3-phonon and 4-phonon lifetimes
(c) at 300K, and (b) 1500K [19]
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Figure 4.11: Thermal conductivity from (plus) fitting MD lifetimes as a function of temperature
and subtracting the constant value, (triangle) adding MD lifetime shift to perturbation theory
lifetime, (blue) 3-phonon scattering and 3-phonon plus 4-phonon scattering with first principle
calculations presented by Gu et. al. (2020) [19], and (black) experimental measurements by
Glassbrenner & Slack [17] with an estimated lattice component by extrapolation (dotted line)
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where ∆ΓMD,0 is the broadening shift from 0K. Without any rigorous theory to analytically

define broadening as a function of temperature, the MD broadening is fitted with a 2nd order

polynomial (AT 2 + BT + C) as a function of temperature (T). A linear term (B) accounts

for the 1
T

dependence, the quadratic term (A) absorbing any higher order dependence, and the

constant term C is the intrinsic broadening. The new lifetime τMD,0T becomes:

τMD,0T =
1

2(AT 2 +BT )
(4.6)

Although a 2nd order polynomial is used as a simplified case, there is no guarantee that any

non-linear dependence will not cause a zero broadening prediction at 0K since fitting perturba-

tion broadening gives non-zero constant values with a 2nd order polynomial for certain modes

especially those around ∼ 40 meV. A more reasonable equation could be used by finding a

broadening equation that gives a similar line shape to κ/τ when taking the reciprocal of said

equation.

The other quick solution assumes that the MD broadening shifts captures broadening shifts

but not the absolute value. Using the perturbation theory lifetimes with the calibrated FC2 at

300K as a reference point, a new lifetime is calculated by adding the MD broadening shift from

300K, ∆ΓMD,300, to the perturbation broadening from the calibrated FC2 at 300K, Γcalib,300,

such that:

τcalib,shift =
1

2(Γcalib,300 +∆ΓMD,300)
(4.7)

The thermal conductivity by the first approach, κMD,0T , is ∼ 150 W/(m-K) at 300K and much

closer to the experimental results than the perturbation results at 300K shown in Fig 4.11.

As temperature increases, both κMD,0T and κcalib,shift converge to the same result of ∼ 10

W/(m-K) at 1500K. Both are in-between the previously predicted 1500K MD prediction κMD

and perturbation prediction κpert,renorm in Fig 4.9 while also being far below the extrapolated

κlattice prediction.

These quick solutions proves that not only does MD predicted a lower thermal conductivity

at each temperature but also predicts an overall larger broadening shifts (especially for high κ

contribution modes). First principle calculations were done by Gu et. al. [19] to examine the
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contribution of 4-phonon scattering on κ. The phonon lifetime was decomposed as:

1

τphonon
=

1

τ3−phonon

+
1

τ4−phonon

(4.8)

or:

τphonon =
1

1
τ3−phonon

+ 1
τ4−phonon

(4.9)

where the 3-phonon and 4-phonon lifetimes are calculated by Fermi’s golden rule (Eq 2.25)

with the FC3 and FC4, respectively. By Fig 4.10, the 4-phonon lifetimes were about an order

of magnitude higher than the 3-phonon lifetimes at a given frequency at 300K but comparable

at 1500K at all frequencies except the region B on Fig 4.10 (the 200-350 cm−1 or 24.6-43.2

meV range). This means that the 3-phonon lifetime was the dominant factor at 300K at all

frequencies and region B at 1500K. The full phonon lifetime would be ∼ 1
2

the predicted

lifetime if only 3-phonon scattering was considered. With κMD being ∼ 1
3
κpert,renorm at 300K,

MD either predicts a larger 4-phonon contribution to the lifetime, 5+-phonon scattering, or

possible sampling issues with the lifetime. At 1500K, the thermal conductivity results by Gu

et. al. [19] with only 3-phonon and 4-phonon scattering approaches the extrapolated thermal

conductivity [17] while the original κMD is about half that value. This would mean that the

MD lifetime may have another lifetime (possibly 5+-phonon) that is comparable to both the

3-phonon and 4-phonon lifetime at higher temperatures.

Possible sampling issues would come from the total correlation time. The 100 ps run-time

gives a 50 ps correlation time with a .08 meV frequency resolution. When plotting the DHO

fitting, the time was extended by an order of magnitude to display smooth Lorentzian functions

in the 1-phonon spectra. The first 20 ps of the correlation function is fitted to not include

the end tail ’noise’. This means that any lifetime where τ >> 20 ps (mostly the acoustic

branches) may not be properly sampled in the correlation fitting. Although the fitting showed

great representation of the raw MD data in the frequency regime, a singular longer run that

is an order of magnitude longer (∼1 ns or 1,000,00 fs) could be done to clarify if the fitting

captures the high lifetime acoustic modes. Since anharmonicity rises with temperature, any

anharmonicity higher than the 4th order would be negligible at 300K meaning the predicted
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lifetimes are expected to be similar to the pattern seen at 1500K for the high lifetime acoustic

modes in Fig 4.10 (b). If a longer run would fix this issue, then that 300K MD simulation

could be used as the reference lifetime and create new predictions similar to the methodology

for κcalib,shift. The validity of the predicted τMD will be expanded upon in the next chapter by

comparing the sm-RTA results to the heat flux ACF calculations.

4.6 Conclusions

In conclusion, our novel algorithm, incorporating enforced q-point symmetry and accounting

for ”accidental” degeneracy, has proven to be a numerically robust and efficient method for

extracting temperature-dependent phonon properties, specifically frequency (ω), lifetime (τ ),

and group velocity (v⃗g), from molecular dynamics (MD) simulations. We have convincingly

demonstrated the robust predictive capability of our MD methods in capturing phonon fre-

quency renormalization even at very high temperatures. However, our findings underscore the

high sensitivity of τ for low-frequency (small wave numbers) acoustic phonons to numeric ar-

tifacts in MD simulations, significantly impacting the accuracy of lattice thermal conductivity

(κL) predictions.

In light of these observations, we recommend two avenues for future research. Firstly, ex-

tending simulation times beyond the duration employed in this study (100 ps) would enhance

our understanding of the convergence of numerically evaluated τ for low-frequency acoustic

modes at different temperatures. Secondly, we advocate for a mixed approach involving per-

turbative calculations for these modes with large τ , while τ for other phonon modes is directly

simulated using MD. The intricacies of this proposed hybrid methodology, combining MD and

perturbation theory, should be thoroughly developed to efficiently predict κL
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Chapter 5

Second-Order Heat Flux J2,lattice

The kinetic phonon transport theory, as discussed in Chapter 4, is known for a notable limitation

tied to its reliance on the Peierls’ heat flux model of phonons, J⃗ =
∑

λ fλh̄ωλv⃗gλ. As previously

discussed by various researchers, such as Hardy in 1963, Peierls’ model serves as merely a

first-order approximation of the total lattice heat flux. This approximation incorporates the

intra-mode phonon contribution to the heat flux associated with the harmonic force constant

FC2. According to Hardy, the second-order Hardy heat flux, J⃗2,lattice, when projected into q-

space, comprises two distinct components: the intra-phonon-mode and the inter-phonon-mode

part. Notably, the former aligns precisely with Peierls’ term.

Recent studies have introduced novel unified theories aiming to individually account for

contributions to total lattice thermal conductivity (κL) from inter-model and intra-mode inter-

actions. However, the interaction between intra-mode J⃗2,lattice and inter-mode J⃗2,lattice has been

largely overlooked without adequate justification. A significant numerical challenge in quanti-

tatively determining the individual contributions of various factors to total κL stems from nu-

meric fluctuations resulting from interactions between different q-points. Our study is carried

out under the hypothesis that the averaged interaction contribution between distinct q-points is

close to zero. We have verified that the implementation based on δ(q⃗−|q⃗|) proves to be pivotal

in addressing the ensemble issue of Green-Kubo (G-K) thermal conductivity. While Sun &

Allen associate this enforcement with the elimination of ”vertex corrections” [47], this chapter

aims to affirm the validity of this omission.

With our algorithm, we can quantitatively calculate self-correlation functions of intra-

mode J⃗2,lattice, self-correlation functions of inter-mode J⃗2,lattice, and cross-correlation functions
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Figure 5.1: Gordiz et. al. [18] Heat flux ACF (HFACF) calculations at 300K with LAMMPS
simulations of 500 atoms, 800 ps runtime (or 400 ps correlation time), and Tersoff potential.
Trajectories are the number of ensembles.

between inter-mode J⃗2,lattice and intra-mode J⃗2,lattice. The contribution to κL from this cross-

correlation has not yet been reported in the existing literature.

5.1 Real Space vs Q-space

The main downside of the Green-Kubo formalism (G-K):

κ =
V

kbT 2

∫ ∞

0

⟨J⃗(t)|J⃗∗(0)⟩dt (5.1)
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is the integral not converging without averaging over a large number of ensembles. Because

G-K requires an integration over the correlation function, the uncertainty of the thermal con-

ductivity κ is a direct result of the oscillations and time of integration. The heat flux ACF

(HFACF) calculated by Gordiz et al. (Fig 5.1) shows that a minimum of ∼100 ensembles is

needed to have a reliable convergence when ensemble averaging is implemented. The correla-

tion function must be as smooth as possible for the integration to saturate over time. Ensemble

averages with small sets (1, 4, and, 20) either decay too early or oscillate about zero which

halts the increase of the integration and lowers the predicted κ. Gordiz et al. predicts a thermal

conductivity of 183 W/(m-K) with only a correlation time of 400 ps [18]. Discussed later, an

optimal simulation time could be determined for efficiency at higher temperatures.

The real space J2,lattice can be defined as a summation over the commensurate grid Nq:

J2,lattice =
1√
Nq

∑
q⃗

J⃗q⃗ (5.2)

where:

J⃗q⃗ =
1

2mV

∑
ij

∑
αβ

∇⃗q⃗Aiα,jβ(q⃗)Qjβ(q⃗)P
∗
iα(q⃗) (5.3)

By Fig 5.2 a), real space J2,lattice of one ensemble followed the trends of the low ensemble

(trajectories) averages of Fig 5.1 with large oscillations that prevent the G-K integral from

converging. Also, the x,y, and z components of the G-K had a standard deviation of 85.71

W/(m-K) (or 79.71 W/(m-K) without zero-padding) at 300K, which a larger ensemble average

should reduce.

Typically, a simulation time produces a correlation function of half the simulation time

(due to periodicity forwards and backwards in time). A technique implemented in correlation

functions (especially signal processing) involves padding the end of the signal with extra zeros

to lengthen it and can give an artificial correlation function beyond the half the simulation

time. Without zero padding, the true correlation function (of half the simulation time) is the

truncation of the zero padded correlation function. As seen in Fig 5.2 b), zero-padding can
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Figure 5.2: a) Real space J2,lattice HFACF and b) corresponding G-K integration at 300K.
c) J2,lattice HFACF with enforcement of δ(q⃗ − |q⃗′|) between q-points and d) corresponding
G-K integration at 300K. Results beyond 50,000 fs (50 ps) are zero-padded. All correlation
graphs are scaled by the G-K integration factor V dt

T 2 so the integral directly computes thermal
conductivity

hurt the predicted value of the integration if the HFACF is already oscillating about zero (z-

direction) or improve the predictions where the decay is much slower than the oscillations

(x-direction). The latter will be shown to make zero-padding useful after greatly reducing the

oscillations by enforcing no cross q-point interactions δq,q′ . All graphed HFACF above 50 ps

(or 50,000 fs) are zero-padded results.
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The enforcement of δq,q′ can be explained by looking at the HFACF ⟨J⃗ J⃗∗⟩q⃗1,q⃗2,q⃗3,q⃗4 be-

tween 4 q-points, q⃗1 q⃗2, q⃗3, and q⃗4, where q⃗1 = −q⃗2, and q⃗3 = −q⃗4. By expanding the correla-

tion:

⟨J⃗ J⃗∗⟩q⃗1,q⃗2,q⃗3,q⃗4 = ⟨
∑
q⃗1...q⃗4

J⃗q⃗|
∑
q⃗1...q⃗4

J⃗∗
q⃗ ⟩

= ⟨J⃗q⃗1 + J⃗q⃗2 + J⃗q⃗3 + J⃗q⃗4|J⃗∗
q⃗1
+ J⃗∗

q⃗2
+ J⃗∗

q⃗3
+ J⃗∗

q⃗4
⟩

= ⟨J⃗q⃗1 + J⃗q⃗2|J⃗∗
q⃗1
+ J⃗∗

q⃗2
⟩+ ⟨J⃗q⃗3 + J⃗q⃗4 |J⃗∗

q⃗3
+ J⃗∗

q⃗4
⟩

+ ⟨J⃗q⃗1 + J⃗q⃗2 |J⃗∗
q⃗3
+ J⃗∗

q⃗4
⟩+ ⟨J⃗q⃗3 + J⃗q⃗4|J⃗∗

q⃗1
+ J⃗∗

q⃗2
⟩

(5.4)

By the definition of the heat flux, J⃗q⃗ = J⃗∗
−q⃗ with the summation over a grid with both q⃗ and −q⃗

only leaving a real component 2Re(J⃗q⃗). With this, Eq 5.4 becomes:

⟨J⃗ J⃗∗⟩q⃗1,q⃗2,q⃗3,q⃗4 = ⟨2Re(J⃗q⃗1)|2Re(J⃗q⃗1)⟩+ ⟨2Re(J⃗q⃗3)|2Re(J⃗q⃗3)⟩

+ ⟨J⃗q⃗1 + J⃗q⃗2|J⃗∗
q⃗3
+ J⃗∗

q⃗4
⟩+ ⟨J⃗q⃗3 + J⃗q⃗4|J⃗∗

q⃗1
+ J⃗∗

q⃗2
⟩

(5.5)

This demonstrates that the heat flux at q⃗ and −q⃗ can correlate with each other while all other

cross-terms are assumed to be zero meaning:

⟨J⃗ J⃗∗⟩ = ⟨
∑
q⃗

J⃗q⃗|
∑
q⃗′

J⃗∗
q⃗′⟩δ(q⃗ − |q⃗′|)

= 2
∑
q⃗

⟨J⃗q⃗|J⃗∗
q⃗ ⟩

(5.6)

The even-numbered commensurate grid, which samples the Γ-point, is not a symmetric grid as

the boundary points do not have a negative component. A new odd-numbered symmetric grid

could be produced by adding points to all the boundary points to include both 0.5 and −0.5

while the total irreducible q-points remains the same. Although this fixes the symmetry, the

new grid has little effect on the HFACF as the new boundary points contribute less than the

near zone-centered q-points while increasing the grid size Nq in Eq 5.2.

With Eq 5.6, the G-K integration of the HFACF in the x-, y-, and z-direction have an

improved standard deviation of 4.41 W/(m-K) at 300K. Zero-padding the correlation improves
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the results here (beyond 50 ps) since the HFACF has a smooth decay with no low frequency

oscillations. This cross-term enforcement HFACF resembles the 500 ensemble HFACF (by Gu

et. al. in Fig 5.1[18]) with only one ensemble without considering the relative decay lifetime.

As a result, ensembles can be used to refine the final value instead of a requirement to reduce

numerical uncertainty for convergence.

5.2 Intra-mode Heat Flux

As discussed previously, J⃗2,diagonal reduces to the Peris heat flux (J⃗rta ≡
∑

λ∆fλ,rtah̄ωλv⃗gλ)

using raising and lowering operators. Both currents should be match if the fitted lifetime is

true to the 1-phonon spectra. The diagonal heat flux J⃗2,diagonal is defined as the heat flux

from a dynamical matrix with the derivative having no cross mode components (∇⃗q⃗D(q⃗)λλ′ =

0 if λ ̸= λ′). This diagonal derivative ∇⃗q⃗D
diag
iα,jβ(q⃗) is a summation of modes λ such that:

∇⃗q⃗D
diag
iα,jβ(q⃗) =

∑
λ

2ωλv⃗gλe
∗
iα(q⃗, λ)ejβ(q⃗, λ) (5.7)

where eiα is the eigenvector of the i-th basis atom in the α-direction and 2ωλv⃗gλ is the expecta-

tion value of the dynamical matrix derivative:

2ωλv⃗gλ = ⟨eiα(q⃗, λ)|∇⃗q⃗D(q⃗)λ|ejβ(q⃗, λ)⟩ (5.8)

Substituting these terms into the diagonal heat flux,:

J⃗2,diagonal =
1

2V

∑
ij

∑
αβ

∑
q⃗

∇⃗q⃗D
diag
iα,jβ(q⃗)Qβ(q⃗)P

∗
α(q⃗) (5.9)

The HFACF with J⃗rta is:

⟨J⃗rta|J⃗rta⟩ =
∑
λ,λ′

⟨h̄ωλv⃗gλ∆fλ(t)|h̄ωλ′ v⃗gλ′∆fλ′(0)⟩ (5.10)
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By orthogonality, the group velocity (v⃗g), frequency (ω), and change in probability density

(∆f ) is assumed to have no cross mode correlations. Thus, Eq 5.10 reduces to:

⟨J⃗rta|J⃗rta⟩ =
∑
λ

(h̄ωλv⃗gλ)
2⟨∆fλ(t)|∆fλ(0)⟩ (5.11)

The change of probability distribution correlation ⟨∆fλ(t)|∆fλ(0)⟩ has a maximum value at

t = 0 of kBT 2cv,λ
(h̄ωλ)2

, then decays exponentially based on the phonon lifetime τλ. The HFACF with

the Peris heat flux becomes:

⟨J⃗rta|J⃗rta⟩ =
∑
λ

v⃗g
2
λkBT

2cv,λe
−t/τλ (5.12)

with the thermal conductivity κrta with G-K as:

κrta(q⃗) =
1

V

∑
λ

cv,λv⃗g
2
λ

∫ ∞

0

e−t/τλdt (5.13)

where:

lim
t→∞

∫ ∞

0

e−t/τdt = τ (5.14)

For both heat flux to be equivalent, the t = 0 HFACF should be identical but by Fig 5.3

not only does the initial correlation not match but the selected FC2 matrix has a larger impact

on the initial value. Previously with the smRTA, the calibrated and renormalized FC2 made

negligible change when using the same lifetime values. The thermal conductivity using G-K,

κG−K , predicted higher values at all temperatures seen in Table 5.1 even though it had lower

predicted mode contributions at some high contributing q-points seen in Fig 5.4. The calibrated

FC2 increases the κ by ∼10% has compared to the renormalized FC2 and ∼30% to the smRTA

with MD 1-phonon spectra at both 300K and 1500K. Normalizing the HFACF to 1 gives a

more accurate comparison of the total decay rates (lifetimes) with all of the MD predictions

being almost identical. This confirms that overall the results from the fitting algorithm was

reliable. The discrepancies (mainly at 300K) between MD and perturbation are most likely due

to sampling issues that could be resolved with a longer simulation or 4th order anharmonicity.
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Figure 5.3: b) HFACF with the Peierls heat flux and Hardy, a) normalized heat flux, and c)
resultant thermal conductivity from each HFACF at 300K
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Figure 5.4: Total mode contribution to κ at q-points, (left) q⃗ = (0, 1
16
, 1
16
) and (right) q⃗ =

( 1
16
, 1
16
, 1
8
), where perturbation predicted the highest κ values.

Although J⃗2,diagonal correlation has a higher initial position, the slower decay (long lifetime)

prediction of the perturbation theory causes the drastically higher thermal conductivity pre-

dictions κpert,calib and κpert,renorm. This prevents these HFACF integrations with perturbation

theory from converging to the limit of 125 W/(m-K) and 105 W/(m-K), respectively at 50 ps

correlation time (or even 100 ps zero-padded correlation time). For efficiency of resources

(and possible sampling), an ideal simulation time per temperature can be calculated based on

the percent convergence of the highest phonon lifetime. With the exponential integration in Eq

5.13, the κrta will reach 90% of the true integration value at some time t90% by evaluating the

integral: ∫ t90%

0

e−t/τλdt = .9τλ (5.15)

To capture 90% of the thermal conductivity of a phonon mode λ by integration, the integration

time must be 2.3×τλ, which corresponds to a 4.6×τλ simulation time without zero-padding.

The longest perturbation lifetime of 543 ps would need a simulation time of 2,500 ps (or 2.5

ns) to accurately predict the total κ contribution. With this being the upper limit, an integration
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Thermal Conductivity (κ) W/(m-K)
Temp κ = 1

V T 2

∫ 100ps

0
⟨J2,diagonalJ2,diagonal⟩dt κ = cvv⃗g

2τ
300K 55.29 (renormalized) 60.27 (calibrated) 44.90
600K 30.14 32.95 26.11
900K 18.09 19.70 15.83

1200K 11.38 12.62 10.99
1500K 8.69 9.63 7.59

Table 5.1: κ with J2,diagoanl HFACF and smRTA based on the 1-phonon spectra using MD

time of 100 ps, 500 ps, and 1,000 ps gives 69.1%, 91.7%, and 97.2% of the total predicted κ

with the calibrated perturbation lifetimes. Reliable G-K calculations have been performed at

much shorter simulation times than the estimated upper limit for Silicon [18, 7].

Assuming the heat flux as a zero-mean stochastic quantity, the HFACF at t = 0 (maximum

value) equates to the variance of the heat flux. The success of the G-K approach relies on

having a realistic measurement of the magnitude heat flux [4, 13], which alters variance of the

HFACF. Currently, the calibrated heat flux J calib
2 is defined by substituting the dynamical matrix

in Eq 5.9 with a dynamical matrix with experimentally calibrated frequencies at 300K and

MD frequency downshifts at higher temperatures. Based on the differences of the calibrated

and renormalized FC2 results with G-K, it can be reasoned that the displacement and velocity

must also be calibrated to have a true predictor of the thermal conductivity with G-K (after

accounting for sampling issues).

The calibration method took as inputs scale factors that matched the fitted MD mode fre-

quencies to the frequencies presented by Dolling [12] at 300K and output scale factors aλ

at all phonon modes λ. The new calibrated FC2 would have scaled eigenvalues of mω2
calib =

m(aλωrenorm)
2 compared to the renormalized FC2. The q-projected displacement xq and veloc-

ity vq are assumed to be a summation of orthogonal coordinate modes and conjugate momentum

modes, respectively. It can be reasoned, with harmonic representation of the coordinate mode

and conjugate momentum, that if the displacement follows a sinusoidal function with ampli-

tude A(ωrenorm) and the velocity is proportional to the derivative, then the displacement would

scale based on A(aλωrenorm) while the velocity would scale by aλA(aλωrenorm). If the ampli-

tude is independent of the frequency, then total calibrated heat flux would scale by an additional

scale factor including that from the calibrated FC2. Applying a scale factor, based on fraction
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Figure 5.5: Intra-mode and inter-mode heat flux within the second-order Hardy heat flux

between 1500K κ from J⃗2 HFACF and the extrapolated κlattice line of Glassbrenner & Slack

[17], of 1.96 to all the temperature results gives a 107.59, 57.60, 34.11, 21.21, 15.82 W/(m-K)

prediction at 300K, 600K, 900K, 1200K, and 1500K, respectively, thus, demonstrating the an

impact of a calibrated scale factor for the heat flux.

5.3 Inter-mode Heat Flux

By definition, the Peierls heat flux is an intra-mode heat flux (J⃗λλ′ = 0 when λ ̸= λ′) while the

Hardy J⃗2,lattice (shorted to J⃗2 for the remainder of the chapter) includes both intra-mode and

inter-mode components at a particular q-point shown in Fig 5.5. As such, each heat flux does

not consider any cross q-point terms. Separating J⃗2 as

J⃗2 = J⃗2,diagonal + J⃗2,off−diagonal ≡ J⃗inter−mode + J⃗intra−mode (5.16)

allows the J⃗2 HFACF to quantify the contribution of both the inter- and intra-mode heat flux to

the total thermal conductivity.
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As seen by the agreement between smRTA approximation and experimental conductivity

measurements, the intra-mode heat flux is the dominant term for a low defect ordered material

like diamond Silicon at ambient temperatures. For a disordered system like amorphous Sili-

con, there is no q-point projection due to the lack of translational symmetry. Phillips (1972)

proposed that the heat transfer in amorphous solids comes from the tunneling between phonon

states with thermal conductivity increasing then saturating at high temperatures[39]. By com-

bining the heat flux operator S⃗λλ′ by Hardy[21] and G-K formalism, Allen-Feldman (1993)

derives the thermal conductivity for disordered harmonic solids as [1]:

κdisordered =
1

V

∑
λ

Cλ(T )Dλ

Dλ =
πV 2

3h̄2ω2
λ

∑
λ ̸=λ′

|Sλλ′ |2δ(ωλ − ωλ′)

(5.17)

whereCλ(T ) is the heat capacity of the λ-th mode at some temperature T , andD is a diffusivity

term defined by the heat flux operator. The 1st order approximation of the S⃗λλ′ becomes [8]:

Sα
λλ′ =

ωλ + ωλ′

2
V̂ α
λλ′ (5.18)

where V̂ α
λλ′ is a velocity operator. The Wigner transport equation in the single mode approxi-

mation (SMA) [44]:

καβSMA =
h̄2

kBT 2

1

V Na

∑
q⃗

∑
λλ′

ωλ + ωλ′

2
V α
λλ′V

β
λλ′ ×

ωλfλ(fλ + 1) + ωλ′fλ′(fλ′ + 1)

4(ωλ′ − ωλ)2 + (Γλ + Γλ′)2
(Γλ + Γλ′)

where V α
λλ′ =

2
√
ωλωλ′

ωλ + ωλ′
V̂ α
λλ′

(5.19)

is a unified theory for the transport equation that reduces to the Peierls equation when λ = λ′

and Eq 5.17 with the 1st order heat flux operator when λ ̸= λ′. The Wigner transport equation

models the inter-mode thermal conductivity as a function of a linear combination of mode

frequencies ωλ and ωλ′ , which will be useful in understanding the J⃗off−diagonal HFACF.
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Figure 5.6: a) HFACF from the components of J⃗2 and b) resulting κ from the J⃗2,off−diagonal

HFACF at 1500K. c) Kang et. al. (2017) results [25] of amorphous HFACF and b) resultant κ
by integration at 300K

Thermal Conductivity (κ) W/(m-K)
Temp κJ⃗2 κdiagonal κoff−diagonal κcross
300K 54.88 55.29 0.66 -1.07
600K 29.38 30.14 0.42 -1.18
900K 17.40 18.09 0.36 -1.06

1200K 10.82 11.38 0.34 -0.90
1500K 8.07 8.69 0.32 -0.94

Table 5.2: κ from all the HFACF components of J⃗2
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Figure 5.7: κ from (left) the HFACF components of J⃗2 (excluding the cross terms) with (right)
a zoomed axes for the smaller J⃗off−diagonal HFACF integration values

The J⃗2,off−diagonal HFACF at 1500K resembles that of the amorphous HFACF at 300K

[25] with a quicker decay than the J⃗2,diagonal HFACF and causes most the oscillations of the

J⃗2 HFACF. At 1500K, κoff−diagonal, the thermal conductivity from the J⃗2,off−diagonal HFACF,

takes ∼15 ps to converge to .32 W/(m-K) while amorphous G-K calculations reached con-

vergence of 1.5 W/(m-K) at ∼4 ps [25]. κoff−diagonal decreases with temperature (from 0.66

W/(m-K) at 300K to 0.32 W/(m-K) at 1500K shown in Table 5.2), which is contrary to amor-

phous thermal conductivity increasing to a value between 1-2 W/(m-K) at temperatures up to

750K. [6, 56] Comparatively, the Wigner transport equation predicts a total inter-mode κλ ̸=λ′

of 0.23 W/(m-K) at 300K. Although the meaning of κoff−diagonal comes from a cross-mode

heat flux similar to the amorphous theory, κoff−diagonal behaves differently than the amorphous

thermal conductivity given the limited high temperature data for amorphous.

5.4 Intra/Inter-mode Cross Correlation κcross

Although κdiagonal and κoff−diagonal are positively defined, the thermal conductivity from the J⃗2

HFACF, κJ⃗2 , is slightly lower than κdiagonal for all temperatures. This is explained by separating
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Figure 5.8: (top) HFACF from J⃗2 (and its components) and (bottom) Fourier transformation at
q⃗ = ( 1

16
, 1
16
, 1
8
) and 300K. (dotted lines) All combinations of ωλ − ωλ′ and ωλ + ωλ′

the components of κJ⃗2 as:

κJ⃗2 =
1

V T 2

∫ ∞

0

⟨J⃗2J⃗2⟩ =
1

V T 2

∫ ∞

0

⟨J⃗diagonal + J⃗off−diagonal|J⃗diagonal + J⃗off−diagonal⟩dt

=
1

V T 2

∫ ∞

0

⟨J⃗diagonalJ⃗diagonal⟩+ ⟨J⃗off−diagonalJ⃗off−diagonal⟩+ 2⟨J⃗diagonalJ⃗off−diagonal⟩dt

= κdiagonal + κoff−diagonal + κcross

(5.20)

With no additional restrictions, there is no guarantee that the cross term, 2⟨J⃗diagonalJ⃗off−diagonal⟩,

is always positive or should be assumed zero. Even with κoff−diagonal ≪ κdiagonal, the combi-

nation κoff−diagonal + κcross causes an overall reduction in the predicted thermal conductivity

with κcross accounting for ∼1 W/(m-K). Thus, considering cross-mode heat flux contributions

lowered the total predicted thermal conductivity, which is contrary to the Wigner transport

equation.

Due to the importance of the κcross, a unified theory should reduce to a combination of

an inter-mode and intra-mode heat flux. A foundation for this proposed theory relies on an
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Figure 5.9: (top) Cross term 2⟨J⃗diagonalJ⃗off−diagonal⟩ HFACF and (bottom) Fourier transforma-
tion of cross term, J⃗diagonal and J⃗off−diagonal HFACF at (0, 1

8
, 1
8
) and 1500K

analytical analysis of the J⃗2 HFACF to decouple the J⃗diagonal and J⃗off−diagonal HFACF. The

current implementation of this work calculates J⃗diagonal with the renormalized eigenvectors

and J⃗off−diagonal = J⃗2 − J⃗diagonal. J⃗diagaonal HFACF has the shape
∑

λ e
− t

τλ which Fourier

transformations are Lorentzians centered at ω = 0 while J⃗off−diagonal resembles a series of

under-damped harmonic oscillators. The frequency of the oscillators (location of peaks in the

FFT Fig 5.8) sample all the ωλ − ωλ′ and ωλ + ωλ′ pairs with the renormalized frequencies

ω of modes λ. At 1500K, the q-point (0, 1
8
, 1
8
) exhibits only 3 unique frequency modes: 8.82,

14.14, and 55.74 meV. A closer look at the Fourier transformation of the J⃗diagonal HFACF at

this q-point (Fig 5.9) shows an excitation at ω =14.14 meV, which is unexpected by the Peierls

HFACF. Other q-points shows the same excitation mainly at acoustic renormalized frequency

locations. The Fourier transformation of the cross term 2⟨J⃗diagonalJ⃗off−diagonal⟩ has noticeable

peaks at locations 55.74 ± 8.82 meV. This leads to a reasoning that J⃗diagonal may include

all excitaion at the renormalized frequency locations with the acoustic frequencies being the

strongest. With the inclusion of the negative Lorentzian, 2⟨J⃗diagonalJ⃗off−diagonal⟩ could be
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modeled as a under-damped harmonic oscillator and a negative exponential decay such that:

2⟨J⃗diagonalJ⃗off−diagonal⟩ =
∑
λ

Ae
− t

τλ +
∑
λ ̸=λ′

e
− t

τλλ′ (Bcos((ωλ − ωλ′)t) + Ccos((ωλ + ωλ′)t))

(5.21)

where τλλ′ is a lifetime matrix between different modes λ and A/B/C are constants. To com-

bine the lifetime matrix, a possible reduction to Eq 5.22 is:

2⟨J⃗diagonalJ⃗off−diagonal⟩ =
∑
λλ′

Ae
− t

τλλ′ (cos((ωλ−ωλ′)t)+
ωλ − ωλ′

ωλ + ωλ′
cos((ωλ−ωλ′)t)) (5.22)

such that:

lim
ωλ′→ωλ

2⟨J⃗diagonalJ⃗off−diagonal⟩ =
∑
λ

Ae
− t

τλ (5.23)

reduces to the Peierls HFACF for degenerate states.

5.5 Conclusions

In summary, we show that the integral convergence issues of the Green-Kubo formalism can be

mitigated by enforcing δ(|q⃗1 − q⃗2|) since J⃗2,lattice has no imaginary component with a summa-

tion over q-space. We separated J⃗2,lattice into an intra-mode and inter-mode component. The

intra-mode self-correlation confirmed the lifetime predictions of Chapter 4 while the inter-mode

demonstrated how near-melting point diamond Silicon resembles room temperature amorphous

Silicon. Previous unified transport theories like Wigner transport equation predicts κL as a

summation of positively-defined intra-mode and inter-mode terms but we proved that adding

an inter-mode contribution also creates an inter-/intra-mode cross correlation term. This term,

neglected by previous theories, is: 1) larger in magnitude than the inter-mode term and 2)

negative at all simulated temperatures of this work. A unified transport theory should instead

define a unified definition of the heat flux (with intra- and inter-mode terms) to insert into the

Green-Kubo formalism to account for cross-term interactions.
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Chapter 6

Higher Order Heat Flux J⃗2,displacement,J⃗3,lattice, and J⃗4,lattice

As our primary research focus centers on simulating the heat transport properties of crystals

at elevated temperatures extending up to their melting points, we broaden our investigation to

encompass higher-order heat flux terms within the comprehensive framework of the general

Hardy heat flux. This expansion aims to discern whether anharmonicity significantly ampli-

fies these terms, consequently influencing the predicted thermal conductivity. Notably, con-

ventional kinetic phonon transport theory systematically overlooks the contribution of these

higher-order terms, addressing them only indirectly through discussions of phonon frequency

renormalization at elevated temperatures. Previous simulation studies on these higher terms

are sparse, often constrained by oversimplified material systems, such as hypothetical two-

dimensional Argon lattices. To the best of our knowledge, no direct reports exist on MD simu-

lations of these higher-order heat flux terms for realistic materials like Silicon crystals, utilizing

accurate interatomic potentials (IAP) of the caliber of DFT-IAPs or ML-IAPs. This chapter not

only introduces a technique for renormalizing the FC3/FC4 but also incorporates q-space or-

thogonality enforcement for higher-order Heat Flux Auto-Correlation Functions (HFACF). The

significance of the third-order heat flux, J⃗3,lattice, and its cross correlations will be emphasized,

shedding light on the need for further exploration to effectively handle the fourth-order heat

flux, J⃗4,lattice
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Figure 6.1: Workflow for a linear regression model without cross validation

6.1 Renormalized FC2 and FC4

Temperature dependent FC3 have been computed by fitting MD forces with a Taylor series

expansion of the force in real space. [23]. Two real space fittings:

f⃗ I ≈ −
∑
jβ

Arenorm
iαjβ ujβ −W 1

34

∑
jβ

∑
kγ

Biαjβkγujβukγ −W 2
34

∑
jβ

∑
kγ

∑
lρ

Ciαjβkγ,lρujβukγulρ

≈ f⃗ renorm
2 +W 1

34f⃗3 +W 2
34f⃗4

(6.1)

and

f⃗ II ≈ −
∑
jβ

Arenorm
iαjβ ujβ −W 1

34

∑
jβ

∑
kγ

Biαjβkγujβukγ

≈ f⃗ renorm
2 +W 1

3 f⃗3

(6.2)

were performed by finding the weights W on a single ith-atom with force f⃗ as a function of

displacement u⃗ using a linear regression model. In real space, each weightW is only a function

of temperature. The renormalized second order force f⃗ renorm
2 remained constant since it was

built from the 1-phonon spectra fitting. Eq 6.2 is used to adjusted the bare FC3 for perturbation

calculations while Eq 6.1 is a basis to compare to the q-projected force fitting.
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W 1
3 Linear Regression Values

Temp (K) Mean Std
300 0.956 0.00194
600 0.909 0.00430
900 0.853 0.00770

1200 0.797 0.00371
1500 0.740 0.00409

Table 6.1: Weights for the linear regression model by fitting the forces of a single atom in real
space

A linear regression model solves for a linear combinations of weights W to predict some

value Y from data X with i features with the equation:

Y = W 0 +
∑
i

W iXi (6.3)

The constant W 0 is f⃗ renorm
2 and the features are the 3rd order forces (and 4th order forces

depending on the equation). The steps to determine the weights are shown in Fig 6.1. To

prevent over-fitting and improve the generality of the model, a validation sets is usually used.

Validation sets are training/testing sets created by further splitting the training data in N total

validation sets. These sets are used to swap around the data used for training with both accounts

for possible outliers and prevents over-fitting to a specific trained data set. Since over-fitting

and accuracy of this model is not a priority for this work, no validation sets are used and an

ensemble average is taken over all the models. For the real space model with only the f⃗3 feature,

the model returned W 1
3 values listed in Table 6.1 and W 1

34 were 0.018 greater than W 1
3 at both

300K and 1500K.

This work determined another set of weights by fitting the q-projected force:

f⃗(q⃗) =
1√
N

∑
l⃗i

f⃗(l)e−iq⃗·(⃗li+r⃗i) (6.4)
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at each q-point such that:

f⃗(q⃗) ≈
∑
jβ

Aiαjβ(q⃗)ujβ(q⃗) +
W 1

34(q⃗)

2!

∑
jβ

∑
kγ

∑
q⃗2,q⃗3

Biαjβkγ(−q⃗, q⃗2, q⃗3)ujβ(q⃗2)ukγ(q⃗3)∆(−q⃗ + q⃗2 + q⃗2)

+W 2
34(q⃗)

∑
jβ

Aeff
iαjβ(q⃗)ujβ(q⃗)

≈ f⃗ renorm
2 (q⃗) +W 1

34(q⃗)f⃗3(q⃗) +W 2
34(q⃗)f⃗

eff
4 (q⃗)

(6.5)

with Aeff being a reduction of FC4 by Eq 2.91. In q-space, each weight W (q⃗) is a function

of both temperature and q-point. The q-projected forces are a complex number, which is not

supported by the scikit-learn package. The data points were split into a real component and

imaginary component. These components are fitted equally, thus, doubling the total training

data. Without a mode projection, two features are used per q-point for the 3rd and 4th order

anharmonicity for a total of (2048×2) total weights. No additional work was done to reduce

the total weights to the irreducible set of q-points. Although anharmonicity is mode dependent

at each q-point based on the smRTA analysis, two features per q-point provides flexibility to

capture the q-point anharmonicity as compared to the real space fitting. Two alternative equa-

tions was tested to check for possible double counting of anharmonicity: 1) allowing f⃗ renorm
2 to

be an adjustable parameter, and 2) changing f⃗ renorm
2 to an adjustable f⃗ bare

2 . There was no major

differences between any of the methods. This confirms that the renormalized FC2 resembles a

scaled bare FC2 since the renormalized FC2 is built with the bare eigenvectors as a basis.

6.2 Consequences of Selection Rule

As a means to reduce the computational cost of the q-projected FC4, an approximate FC2,

Aeff , was used by integrating over the FC4 twice in real space. One consequence of this

folding reduces the selection rule from ∆(−q⃗ + q⃗2 + q⃗3 + q⃗4) to ∆(−q⃗ + q⃗2) or q⃗ = q⃗2 for the

q-projected 4th order force f⃗4(q⃗) calculations. As a result, there is no noticeable change in the

q-space fitting at both 300K and 1500K as compared the changes seen in the real space fitting

shown in Fig 6.2. While the Γ-point forces give the best comparison to the real space since the
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Figure 6.2: Linear Regression Model fitting of a) real space forces of the first atom at 300K b)
and 1500K. Linear Regression Model fitting of q-space forces at the zone center Γ−point at c)
300K and d) 1500K. The force has no imaginary component at the Γ-point

imaginary component is zero, this low impact Aeff was present in all of the first 10 q-points of

the commensurate grid that were tested. Two of these points,q⃗ = (0, 1
16
, 1
16
) and q⃗ = ( 1

16
, 1
16
, 1
8
)

, were expected to have a higher 4th order anharmonicity based on the lifetime analysis. The

Aeff matrix does not fully capture the 4th order anharmonicity and the information lost is a

direct result of the reduced selection rule. Thus, anharmonicity (in q-space) is linked to the

selection rule and folding a FC4 into an approximate FC2 provides no added benefit alongside a

renormalized FC2. An alternative reduction method for the FC4 could be attempted with the q-

projected forces with a selection rule changed from ∆(−q⃗+ q⃗2+ q⃗3+ q⃗4) to ∆(−q⃗+ q⃗− q⃗3+ q⃗3).

While this would increase the computational cost close to the 3rd order calculations and should

provide more information than the previous Aeff , it would exclude any U-process-like (G⃗ ̸= 0)

selections. While U-process scattering at high temperatures have been found negligible at high

temperatures for κ calculations[33], more work could be done to study the importance of U-

process-like selection rule in the q-projected forces or correlation with U-process scattering in

κ calculations.
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Figure 6.3: Probability distribution of W 1
3 (q⃗) in q-space at 300K

With only f⃗3(q⃗) being the important feature during the fitting process, the q-space model

became:

f⃗(q⃗) ≈ f⃗ renorm
2 (q⃗) +W 1

3 (q⃗)f⃗3(q⃗) (6.6)

with one feature, W 1
3 (q⃗), per q-point per temperature. While W 1

3 in real space was 0.956 at

300K, the q-space equivalent had a distribution shown in Fig 6.3. W 1
3 (q⃗) values over 0.9 at

300K included the Γ-point and other high lifetime q-points. Lower values have smaller de-

viations from f⃗ renorm
2 with a q-point near the average value (W 1

3 = 0.682) shown in Fig 6.4.

W 1
3 (q⃗) attempts to fit the f⃗3 based on all higher anharmonicity and lower values do not necessar-

ily correlate to lower 3rd order anharmonicity. An improved methodology to account for the 4th

order forces would clarify whether all anharmonicity is small at the q-point or just the 3rd order.

The q-space W 1
3 (q⃗) is assumed to be the scale factor for the renormalized q-projected FC3 per

temperature such that the bare phonon FC3,B(q⃗1, q⃗2, q⃗3), is replace withW 1
3 (q⃗1)B(q⃗1, q⃗2, q⃗3) in

Eq 2.88 at q-point q⃗1 . This FC3 is used for the subsequent J⃗3 calculations while J⃗4 is neglected

since it is derived from Aeff .
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Figure 6.4: Linear Regression Model force fitting at q⃗ = (0, 5
16
, 5
16
) and 300K with a W 1

3 value
of 0.709

6.3 Orthogonality Enforcement of Higher Order HFACF

Cross q-point orthogonality was enforced in both the J⃗2,dis and J⃗3,lattice (shortened to J⃗3 since

J⃗3,dis is not calculated) HFACF. With the summation over a commensurate mesh, both J⃗2,dis

and J⃗3 are taken as real values. Similar to the J⃗2, the J⃗2,dis equation (Eq 2.85) is a function of

only one q-point. Thus the corresponding HFACF orthogonality rule is:

⟨J⃗2,disJ⃗∗
2,dis⟩ = ⟨

∑
q⃗

J⃗2,dis(q⃗)|
∑
q⃗′

J⃗∗
2,dis(q⃗

′)⟩δ(q⃗ − |q⃗′|)

= 2
∑
q⃗

⟨J⃗2,dis(q⃗)|J⃗∗
2,dis(q⃗)⟩

(6.7)

Although J⃗3 is a function of 3 q-points (q⃗1,q⃗2, and q⃗3), the domain of these q-points are restricted

by the selection rule ∆(q⃗1 + q⃗2 + q⃗3). Given two q-points q⃗′1 and q⃗1” with selection rules,

∆(q⃗′1+ q⃗
′
2+ q⃗

′
3) and ∆(q⃗1”+ q⃗2”+ q⃗3”), all cross mode interactions of q⃗′1 are assumed allowable

with the set ∆(q⃗′1+ q⃗
′
2+ q⃗

′
3) but not with the set ∆(q⃗1”+ q⃗2”+ q⃗3”). This defines the J⃗3 HFACF
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Figure 6.5: (top left) ⟨J⃗2J⃗∗
2 ⟩ HFACF and (top right) corresponding thermal conductivity by in-

tegration at all temperatures. (bottom left) ⟨J⃗3J⃗∗
3 ⟩ HFACF with (bottom right) resultant thermal

conductivity by integration.

orthogonality as:

⟨J⃗3J⃗∗
3 ⟩ = ⟨

∑
q⃗′

∑
q⃗′2q⃗

′
3

J⃗3(q⃗
′, q⃗′2, q⃗

′
3)|

∑
q⃗”

∑
q⃗2”q⃗3”

J⃗∗
3 (q⃗”, q⃗2”, q⃗3”)⟩δ(q⃗′ − |q⃗”|)

= 2
∑
q⃗′

⟨
∑
q⃗′2q⃗

′
3

J⃗3(q⃗
′, q⃗′2, q⃗

′
3)|

∑
q⃗′2q⃗

′
3

J⃗∗
3 (q⃗

′, q⃗′2, q⃗
′
3)⟩

(6.8)

By Fig 6.5, the orthogonality rule works to reduce the long time oscillations of the HFACF

even with the double summation of the J⃗3 heat flux. The amplitude of the J⃗2,dis HFACF dif-

fers by a factor of 2.3 when enforcing orthogonality where as the J⃗3 HFACF differences are

marginal. A factor of 2.3 could arise from the following cases between J⃗2(q⃗) and J⃗2(−q⃗): 1)

they do not correlate with one another or 2) there is a significant negative cross correlation

between these q-points. Although more work might need to be done to clarify the origin of the

deviation for the J⃗2,dis HFACF, both orthogonality rules saturate the integration for κ. Both κ

increasing with temperature are expected if 3rd order anharmonicity increases with temperature

and the total displacement of atoms increasing to an average of 12% of the lattice constant at

1500K.
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Temp (K) κ22 κ2dis2dis κ33 κ22dis κ23 κ2dis3 κsum
300 54.881 0.008 0.009 0.022 -0.699 -0.005 54.215
600 29.380 0.018 0.018 0.003 -0.719 -0.011 28.689
900 17.399 0.026 0.027 0.005 -0.669 -0.017 16.771

1200 10.814 0.038 0.035 -0.002 -0.552 -0.025 10.309
1500 8.066 0.054 0.046 -0.017 -0.549 -0.037 7.597

Table 6.2: All of the calculated thermal conductivity contributions up to the 3rd order.κab refers
to the integration of the ⟨J⃗a(0)J⃗b(t)⟩ HFACF while κsum comes from the addition of all the
calculated heat flux.

6.4 κ From All Orders

After applying the orthogonality rule to all the HFACF, all the component including the cross

terms as displayed in Table 6.2. While κ33, the thermal conductivity contribution from the

⟨J⃗3(0)J⃗3(t)⟩ HFACF, is 3 order of magnitudes smaller than κ22, the cross term κ23 is 6.8% of

the total κ22. Based on the absolute magnitudes of all the κ contributions and truncation of

heat flux of the order J⃗3,dis and above, only accounting for the lattice site heat flux J⃗3,lattice and

J⃗2,lattice would give a prediction within 1.05% of the total prediction. This might change for a

system with a higher percentage of the atomic displacement to the lattice constant.

The limitations of a heat flux truncation J⃗3 and possible importance of the J⃗4 heat flux

can be seen with a comparison of the J⃗3 cross terms (Figs 6.6 and 6.7) and inclusion of J⃗4

terms (Fig 6.6) calculated by Sun Allen [47] Even with the differences of dimensions (two- vs

three-dimensional) and potentials (Lennard-Jones vs GAP), similar large negative cross terms

with J⃗3 and J⃗2. Sun & Allen attributes all of the negative cross terms involving J⃗3 to the purely

imaginary 3rd order phonon-phonon interactions by Fermi’s Golden Rule based on the inversion

symmetry shown by Ipatova et. al. [24]. The inclusion of the J⃗4 terms led to an overall increase

in the predicted thermal conductivity after accounting for the negative cross components by

J⃗3.[47]. While this gives support for an improved implementation of the 4th order heat flux (and

renormalized forces), there is no guarantee that this will compensate for the underestimated κ22

compared to perturbation theory. However, this would clarify if the underestimated lifetimes

is due to 4th+ order anharmonicity or sampling issues due to the simulation time. Similar

work [40], up to 500K with EMD simulations and GAP with 200 ps HFACF, predicted the κ
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Figure 6.6: All HFACF and cross terms by combinations of J⃗2,J⃗2,dis, and J⃗3 averaged over
x,y,z at 1500K

Figure 6.7: Higher order heat flux calculations by Sun Allen with MD and a Lennard-Jones
potential of a two-dimensional triangular lattice.[48, 47] (a) HFACF with j(a) being the lattice
site heat flux with the ath order FC matrix at temperature T=.2 ϵ/kb and (right) corresponding
κ by G-K integration at all temperatures.

102



as 121 W/(m-K) at room temperature, which gives evidence a longer run-time of ∼ 400+ ps

simulation time.

6.5 Conclusions

In summary, our numeric analysis reported in this chapter emphasises the potency of the q-

projected force fitting as a robust tool for comprehending anharmonicity and constructing

temperature-dependent anharmonic force constant matrices at very high temperature, beyond

the perturbation approximation. This algorithm likely exhibits superior numerical robust-

ness compared to the real-space super-cell-based temperature-dependent-effective-potential ap-

proach, as it allows the enforcement of q-space symmetry to mitigate numeric noises effec-

tively. While the current study applied the q-projected force fitting to derive temperature-

dependent FC matrices, this technique holds promise for extending its utility to create inno-

vative inter-atomic potential fittings akin to the GAP potential. The resulting temperature-

dependent FC3, encapsulated by J⃗3,lattice, imparts an overall negative correction to thermal

conductivity (κL) when considering all cross terms, resembling behavior observed in 2D sys-

tems. Although the use of f⃗ eff
4 with the selection rule ∆(−q⃗+ q⃗2) yielded inconclusive results,

it nonetheless provided valuable insights into the significance of the selection rule and poten-

tially U-process-like selection rules. Future calculations should consider adopting a q-projected

f⃗ eff
4 , incorporating either the selection rule ∆(−q⃗ + q⃗ + q⃗3 − q⃗3) or ∆(−q⃗ + q⃗2 + q⃗3 + q⃗4),

contingent upon improved resources or parallelization. Validation of this approach with Linear

Regression Model fitting will further enhance its credibility and applicability.
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Chapter 7

Final Remarks

The rapid progression of machine-learning interatomic potentials (MLIAP) has opened avenues

for direct exploration of anharmonic lattice dynamics in molecular dynamics simulations, tran-

scending the constraints of perturbation approximations. Our primary objective is to quanti-

tatively improve our understanding of the complex heat conduction mechanisms in lattices

at elevated temperatures, where anharmonic effects, though significant, remain comparatively

smaller than their harmonic counterparts. In pursuit of this goal, we harness the capabilities

of GAP-type MLIAP, which is regarded as one of the most precise MLIAP models available,

despite the accompanying computational overhead. To mitigate the increased computational

costs, we implement an efficient q-space symmetrization technique, a strategic measure that

substantially diminishes the numerical uncertainty inherent in molecular dynamics simulations

applied to crystalline structures.

Our investigation, detailed in Chapter 4, unequivocally affirms the merit of employing q-

space symmetry to alleviate noise in the 1-phonon spectra in MD simulations, a methodology

we advocate for widespread adoption in future crystal studies. This not only expedites the fit-

ting algorithm but also elevates the numerical precision of both the renormalized frequency (ω)

and phonon lifetime (τ ). Our MD simulations, presented in this dissertation, underscore the dis-

tinct numeric sensitivities governing the renormalized phonon frequencies and lifetimes. While

ω exhibits minimal variation in response to changes in the fitting algorithm, τ proves more sus-

ceptible, leading to the formulation of an ”accidental degeneracy” rule during fitting. This rule

serves dual purposes: it succinctly encapsulates the success in capturing the temperature depen-

dence of ω and acknowledges the partial success in modeling τ , particularly for low-frequency
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acoustic phonons. However, the underestimation of lifetimes in these low-frequency acoustic

modes consistently results in the predicted lattice thermal conductivity (κL), derived from the

single-mode relaxation time approximation, falling below experimental and perturbation re-

sults, even at elevated temperatures. Exploring a hybrid approach that integrates perturbation

treatment of acoustic modes at the lowest frequencies or engages in a dedicated low-frequency

projected MD simulation might be a promising avenue for future research. This strategy has the

potential to generate more robust predictions of κL without incurring the substantial numerical

costs associated with conventional methods aimed at enhancing MD simulation accuracy, such

as expanding cell sizes and extending time periods in MD simulations.

Our investigations, as discussed in Chapters 5-6, showcase the promise of Molecular

Dynamics (MD) simulations based on Machine-Learning Interatomic Potentials (MLIAP) for

modeling thermal transport properties. In extending beyond the Peierls kinetic model of phonon

heat currents, our studies reveal that the contribution of anharmonic terms becomes non-negligible

at high temperatures. Furthermore, our introduced algorithm, projecting an approximate Hardy’s

lattice model of heat flux into q-space, proves instrumental in mitigating the numeric uncertain-

ties commonly encountered in conventional MD simulations.

The q-projection technique we have developed in this dissertation research effectively

resolves numerical challenges in the Green-Kubo method by employing heat flux summation

over commensurate grid symmetries. This approach asserts that all cross q-point correlations

are zero unless q⃗ = −q⃗. Demonstrated efficacy was observed even with a selection rule,

particularly with the 3rd order heat flux. The significance of cross correlations is evident in both

inter/intra-mode heat flux cross correlations and second/third-order heat flux cross correlations,

each contributing to a reduction in thermal conductivity predictions by 0.94 W/(m-K) and 0.549

W/(m-K), respectively, at 1500K, with the former being overlooked in the Wigner transport

equation.

While the attempt to calculate a renormalized FC4 encountered challenges with an effec-

tive FC2 folding in q-space, this emphasized the critical role of the selection rule in addressing

anharmonicity. A selection rule of ∆(−q⃗ + q⃗ + q⃗3 − q⃗3) or ∆(−q⃗ + q⃗2 + q⃗3 + q⃗4) could be

explored further through testing with q-projected forces. The q-projected 3rd order force fitting
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Figure 7.1: Mixed approach to calculating thermal conductivity with MD and perturbation
theory.

illustrated the flexibility of this approach in handling anharmonic systems compared to real

space force fitting. Additionally, it showcased how mode projection could determine anhar-

monicity per mode instead of per q-point. Alternatively, our proposed fitting technique could

be applied to generate innovative interatomic potentials utilizing a q-space fitting approach

instead of a real-space fitting.

Despite challenges in clarifying lifetime predictions within the reported MD simulation

parameters, the method found success in determining renormalized and calibrated frequencies.

A hybrid approach, combining MD and perturbation calculations as illustrated in Fig 7.1, capi-

talizes on the frequency-based temperature information from MD simulations and the reliability

of perturbation. The outcomes of this combined method, featuring only the renormalized FC2

and FC3, are depicted in Fig 7.2. Temperature-dependent calibrated FC2 values are defined

based on the calibrated FC2 at 300K, incorporating the temperature-dependent frequency shift

from MD simulations. While bare FC2 perturbation results predict values below the theoret-

ically theorized lattice conductivity according to experimental results, the renormalized FC3

perturbation outcomes align more closely with the total experimental measurements.

Currently, perturbation calculations incorporate the real space weight, W 1
3 , of the renor-

malized FC3, and further efforts are needed to integrate the q-space weight into these calcu-

lations. Considering the distribution of W 1
3 (q⃗) in q-space, incorporating the overall weights

would result in a downward shift, consequently lowering the renormalized FC3. According to

Fermi’s Golden Rule, the scattering matrix would be constituted solely of 3-phonon interac-

tions, with only an FC3 as an input. Consequently, the predicted lifetime and κ would increase,

given their inverse proportionality to the scattering matrix. The introduction of 4-phonon in-

teractions to the scattering matrix, involving a renormalized FC4, diminishes the lifetime, as
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expressed by 1
τ
= 1

τ3
+ 1

τ4
. This renormalized FC4 could potentially play a pivotal role in

solidifying lattice thermal conductivity through perturbation calculations, especially with FC4

implementations like FourPhonon.

In summary, the combination of highly accurate Machine-Learning Interatomic Potentials

(MLIPs) and Molecular Dynamics (MD) simulations establishes a promising computational

framework for the exploration of anharmonic lattice dynamics at exceedingly high temper-

atures, surpassing the limitations of perturbation approximations. Our study highlights the

paramount importance of leveraging crystal symmetries in MD-based simulations. For in-

stance, in the context of silicon crystals, our models comprising 4096 atoms prove sufficiently

large, aided by our q-space symmetrization algorithm, to capture anharmonicity-induced fre-

quency renormalization, even at temperatures as high as 1500K. However, our evaluation of

phonon lifetimes yields mixed results. While we can quantitatively predict lifetimes for most

mid and high-frequency modes with greater accuracy than achievable through inelastic neutron

scattering, our MD results for low-frequency acoustic phonons, characterized by longer life-

times, only reach a semi-quantitative level. Unfortunately, these low-frequency, long-lifetime

acoustic phonon modes exert a substantial influence on total thermal conductivity. Conse-

quently, it seems that significantly prolonged MD simulation times may be necessary to no-

tably enhance the numerical accuracy of predicted lifetimes for these modes. Under the current

simulation parameters, addressing the lifetimes for low-frequency acoustic modes at the per-

turbation theory level appears prudent, with the minimum inputs being the renormalized FC2,

FC3, and FC4.
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Figure 7.2: Thermal conductivity from (blue circles) MD with the RTA approximation, per-
turbation theory with (magenta triangle) renormalized FC2 and FC3, (blue square) calibrated
FC2 (300K with perturbation temperature prediction) and bare phonon FC3, (red square) cali-
brated FC2 (300K with MD temperature prediction) and bare phonon FC3, and (green square)
calibrated FC2 (300K with MD temperature prediction) and renormalized phonon FC3. Extrap-
olation lines (dashed by Glassbrenner Slack [17], and dotted by Fulkerson, et. al. [16]) are
proposed lattice thermal conductivity based on experimental results
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