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Abstract

This work examines the effectiveness of quadratic time-frequency methods in expos-

ing the presence of elastic wave reradiation in active sonar returns. Elastic wave reradia-

tion here means the coupling of elastic surface waves from an object under sonar interro-

gation into the surrounding water, where it is recorded in the sonar return—reradiation,

because the original excitation generating the elastic surface waves is assumed to be the

active sonar transmission. A brief survey of quadratic time-frequency representations and

their underlying theory is provided, and a novel representation is proposed. The suitabil-

ity and performance of the novel and existing representations are analyzed and compared

in view of this application. The analysis is supported by simulation and by processing

of data collected in a sonar experiment. In this experiment, air-filled cylinders of steel,

aluminum, and PVC with similar geometries were interrogated in a controlled acoustic

tank by a series of sonar waveforms which together span 5 kHz to 150 kHz in frequency

at a variety of incident angles. A summary of current acoustic literature guides the sim-

ulation design and informs conclusions. The accumulation of evidence and observations

identifies two distributions with strong advantages in relation to the elastic wave reradi-

ation application: the Born-Jordan and the proposed distributions. These demonstrably

facilitate acoustic discrimination based on elastic surface waves.
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Chapter 1

Introduction

The purpose of this study is to identify effective time-frequency (TF) signal process-

ing approaches for the active sonar-based detection of elastic surface wave reradiation.

Discrimination strategies are important in any detection and classification scheme, and

man-made objects of interest present to active sonar this underutilized discriminator as

a result of their geometries and material compositions. Recent papers, largely from The

Journal of the Acoustical Society of America, study the radiation of elastic waves from the

surfaces of canonically-shaped shells—spheres and cylinders [1, 4, 5, 12, 13, 15, 17–19, 21–

23,25–29,31–33,37,39,40,43]. A variety of physical experiments (though not at practical

sonar scale) and simulations are contained in this collection of papers, and the consensus

is that acoustic returns resulting from these elastic surface waves are distinguishable from

the specular, or direct path, echo from active sonar. The elastic response is delayed from

the specular return in time and is generally altered in its spectral composition compared

to the specular return.

While there has been much research on the physical acoustics of elastic waves, there

has been little systematic examination of the methods by which these phenomena may

be quantified and leveraged. In light of the informational interest in both the time and

frequency domains, time-frequency representations are useful in the isolation and iden-

tification of these elastic responses. Several different time-frequency methods are used

in the acoustic literature on elastic waves, but often there is little rationale provided

for the one chosen. In time-frequency analysis, the choice of method should depend

on the nature of the signal in question. This work informs that decision, with an eye
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toward practical application in sonar problems—both military and civilian. Naval ap-

plications include anti-submarine warfare and mine-countermeasure, but commercial and

humanitarian possibilities abound. Both simulated and in-water test data is examined

to provide a foundation for conclusions. This dissertation contributes a theoretical and

practical evaluation of various time-frequency methods (both existing and original) for

the purpose of elastic response identification, with special consideration given for future

automated classification.

Simplifying assumptions are made:

1. Acoustic behavior is linear.

2. Observations are in the far field.

3. Only underwater acoustics is considered.
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Chapter 2

Matched filter and deconvolution

One important methodological choice concerns the application of pulse compression before

any time-frequency method is applied.

2.1 Matched filter

Traditional sonar processing involves matched filtering to concentrate the echo energy in

the return for detection and classification. A matched filter is so-called since in signal

detection problems like sonar, the transmitted waveform serves as an optimal template

for exposing time-delayed versions of itself in a noisy signal, while maximizing the signal-

to-noise ratio (SNR) . To calculate the matched filter, it is necessary simply to convolve a

recorded signal y (t) with the time-reversed complex conjugate of the transmitted wave-

form x (t):

MFx [y (t)] =

∫ ∞
−∞

y (t− τ)x (−τ)dτ. (2.1)

Two important points should be made concerning the observability of elastic wave

reradiation (EWR) after matched-filter processing. First, the matched filter significantly

compresses typical sonar signals in time, a useful property since the reradiated waves can

follow closely on the heels of the specular return and thus need to be resolved in time.

Second, the spectral characteristics of the elastic wave reradiation are not spoiled by the

filtering operation. Assume that the returning signal y (t) is modeled as a convolution

between a transmitted waveform x (t) and a target response h (t). By the convolution

theorem Y (ω) = X (ω)H (ω), where H (ω) contains the spectral information of interest.
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The matched filter adds a convolution to the equation:

MFx [y (t)] = y (t) ∗ x (−t) = [x (t) ∗ h (t)] ∗ x (−t), (2.2)

which in the frequency domain becomes

F{MFx [y (t)]} = X (ω)X (ω)H (ω) = |X (ω)|2H (ω) , (2.3)

since x (−t) ↔ X (−ω) and since x (t) ↔ X (−ω). This demonstrates that the spectral

information of the target response remains after the process of matched filtering, meaning

one can do time-frequency analysis just as well on the matched-filtered signal, taking

advantage of the pulse compression, as on the target response convolution.

2.2 Deconvolution

Deconvolution is another approach to pulse compression and sonar scene estimation which

attempts directly to undo the model of convolution between the transmitted waveform

and the scene. In the ideal, no-noise situation, deconvolving the transmitted signal from

the return perfectly resolves each reflector in the scene down to a delta function, assuming

the scene is treated as a collection of point reflectors. In the presence of noise, the perfect

reproduction of the scene is not possible, and the process will amplify noise, especially

outside the bandwidth of the transmitted signal. This is due to the fact that undoing the

convolution of the sonar scene and the transmitted signal involves dividing the spectrum of

the recorded return by that of the transmitted signal. Thus, any region of the transmitted

spectrum which is at or near zero-amplitude will result in disproportionate weight being

given to the scene response estimate when noise is present in that region.

One method suitable for sonar is Wiener deconvolution, which seeks to counteract

this noise amplification by scaling the deconvolution divisor by the signal-to-noise ratio
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SNR (ω) (or an estimate thereof). The Wiener filter equation takes the form

G (ω) =
1

X (ω)

[
1

1 + 1
|X(ω)|2SNR(ω)

]
, (2.4)

where X (ω) represents the Fourier transform of the transmitted waveform. It is assumed

to be convolved with the time series representing the scene and so will be deconvolved

to estimate the scene. Since SNR (ω) is a function of ω, it is possible to avoid noise

amplification in portions of the sampled spectrum that are outside the support of X (ω).

In this application SNR will be given by

SNR (ω) =
|X (ω)|2

α
, (2.5)

yielding

G (ω) =
X (ω)

|X (ω)|2 + α
|X(ω)|2

. (2.6)

2.3 Comparison and conclusions

Since the SNR term in the Wiener deconvolution is adjustable, it is possible to tailor the

effect of the operation to the data at hand. The span of this adjustment is considerable,

allowing at one extreme identical performance to that of the matched filter, and at the

other the simple deconvolution which makes no attempt to prevent noise amplification

at all. Figures 2.1 through 2.4 provide a visual comparison of the matched filter and

the deconvolution for a linear frequency-modulated (LFM) chirp in the presence of noise.

This chirp has a pulse period T = 1 s, a bandwidth of 40 Hz, a center frequency of 50 Hz,

and is sampled at a rate of 200 Hz. Complex noise is added with a normal distribution

and a variance of 0.3.

Since the matched filter is designed for the express purpose of maximizing the signal-

to-noise ratio, the reliance upon that method for the purpose of measuring sonar elastic

wave reradiation will be advisable to the degree that SNR is of primary concern. It
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happens, however, that (at least for the data from the controlled tank environment con-

sidered in this study) SNR is not a chief barrier in the success of the processing. Rather

it is the ability to differentiate portions of the sonar return into components associated

with the physical theory of underwater acoustic interactions. The main dimension along

which this separation is achieved is that of time, since it is a central assumption that the

specular return arrives first at the sonar receiver and elastic surface wave reradiations are

subsequent. Depending on the transmitted waveform and the size and structure of the

ensonified object, the time separation between these acoustic components may be quite

brief, creating a concern about sidelobe contamination between components. It is for this

6



reason that the deconvolution begins to demonstrate its attractiveness—providing the

capacity to control the sidelobe levels and main lobe width and thus reducing ambiguity

in closely-spaced signals. Additionally, there is the simple flexibility afforded by the de-

convolution filter, permitting by tuning the achievement of a proper balance between the

interests of SNR and of sidelobe levels. Note that the deconvolution becomes increasingly

like the matched filter when α becomes large, as in Figure 2.4. The above considerations

lead this investigation to use primarily the deconvolution to analyze elastic wave reradi-

ation, and the tank-collected data in view contains very little noise, allowing for a small

α.
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Chapter 3

Time-frequency methods

Time-frequency methods are preferable when faced with identifying elastic wave rera-

diation in active sonar because the information of interest varies simultaneously across

frequency and time. Additionally, the two-dimensional nature of these methods provides

a couple of advantages. The desired phenomena may be more easily recognized in an

image, and the many tools of image processing would be available for quantifying subtle

information and eventually for automated classification algorithms.

One way to frame the question at hand is: how does the frequency content of this

signal vary over time? Before confronting the practical aspects of this, it is worthwhile

to consider the fundamentals of this question, as it hides some assumptions. In common

understanding, frequency refers to the periodic repetition of a particular event. In Fourier

analysis, an additional mathematical stricture is applied such that a pure signal of a single

frequency is infinite in duration. Using the Fourier transform to examine a signal in the

frequency domain involves an infinite integral or summation. Practical signals are not

infinite, however, so assumptions must be made in Fourier analysis. In the example of a

known mono-component yet finite sinusoid, the question is asked: what is the frequency?

Strictly speaking, the signal, since finite, cannot be comprised of a single frequency, but

the question has practical significance as the mono-component nature is known a priori,

and one could suggest that what is actually referred to in the query is extrapolation of a

finite cyclic event into infinity.

There is a very similar point to be made concerning the seemingly paradoxical con-

cept of instantaneous frequency, which is connected to a basic question in time-frequency
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analysis: What is the frequency of this signal at a particular moment in time? This

magnifies the assumption in the previous question. When one reduces the finitude to an

infinitesimal, there is a fair concern to be raised about whether the question even makes

sense. Can frequency be defined in the absence of duration?

It seems the answer to this question is yes, provided certain conceptual a priori

information. Consider frequency-sweeping waveforms and in particular the linear chirp.

If x (t) is a linear chirp, it takes the form:

x (t) = a (t) ej2πφ(t) = a (t) ejπ(
fe−fs
T )t2+j2πfst, (3.1)

where a(t) is the amplitude, typically a window function of width T ; fs and fe are the

starting and ending frequencies, respectively; and T is the duration of the chirp. Taking

the derivative of the phase term φ (t) yields:

dφ (t)

dt
=

(
fe − fs
T

)
t+ fs. (3.2)

This is commonly referred to as the instantaneous frequency of the chirp, and intuitively

so. The linear chirp is conceived with a constant linear frequency shift in mind, and indeed

the rate of change of the phase takes on the form of a linear equation. Evaluating dφ(t)
dt

at a

given time t provides the instantaneous frequency at t. This calculation, however, since it

derives from the definition of the linear chirp, is dependent on that prior knowledge. One

could work backward from a measured signal to estimate the instantaneous frequency at

a moment in time, but it would require assumptions about the nature of the signal—such

as there being a single frequency component and there being an identifiable frequency

sweep pattern and rate. If a signal is composed of multiple simultaneous frequencies, for

instance, could an instantaneous frequency be measured? Depending on the application,

it is likely that the most meaningful approach would be to isolate the multiple component

sinusoids or chirps and determine the corresponding instantaneous frequency for each.
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In other words, because of the assumptions inherent in the concept of instanta-

neous frequency, one must use application-specific knowledge which can inform the time-

frequency approach and best answer the relevant questions. Signals convey information,

to be sure, but the importance of the conceptual frameworks which undergird the un-

derstanding of the signals cannot be underestimated. Following is an overview of the

time-frequency methods to be considered in this dissertation to demonstrate their variety

and the importance of choosing the appropriate method for the given signal processing

problem. It should be noted that, because of the practical nature of this dissertation,

digital (or discrete) signals will be primarily considered.

3.1 Short-time Fourier transform

The short-time Fourier transform (STFT) is perhaps the most intuitive because it requires

only the discrete Fourier transform (DFT) and a sliding window function. The idea is

simply to divide a signal into small durations and calculate a DFT on each of them, thus

providing the change in the spectrum over time. It can be tuned by varying the window

size, window shape, and successive window overlap. A continuous-time representation of

the STFT is

Fws (t, f) =

∫ ∞
−∞

z (τ)w (τ − t) e−j2πfτdτ, (3.3)

where z (τ) is the complex signal and w (τ) is the window.

3.2 Time-frequency distributions

The following time-frequency distributions differ from the preceding representations in

that they are quadratic (or bilinear) and suffer from cross-terms that appear as artifacts

in the time-frequency image, or apparent components of the signal that are not really

present. In this section, z (t) represents a complex signal, w (t) a window function, z (t)

represents the complex conjugate of z (t), and α and σ are real and positive parameters.
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These representations can be usefully characterized in four different domains, one

of which would be called the time-frequency (t, f) domain. The others are the time-

lag (t, τ), the Doppler-frequency (ν, f), and the Doppler-lag (ν, τ) domains. They are

separated from each other by a Fourier transform along one or both of the axes. The

Fourier transform along the lag τ axis yields frequency f , and the Fourier transform along

the time t axis yields Doppler ν.

The basic form of the quadratic class of time frequency representations is:

ρz (t, f) = F
τ→f
{R (t, τ)} = F

τ→f
{G (t, τ) ∗

t
Kz (t, τ)}, (3.4)

where ρz (t, f) is the time-frequency distribution, R (t, τ) the smoothed instantaneous

autocorrelation function, G (t, τ) the time-lag kernel, and Kz (t, τ) the instantaneous

autocorrelation function. Kz (t, τ) is defined as

Kz (t, τ) = z
(
t+

τ

2

)
z
(
t− τ

2

)
. (3.5)

Each of the three elements of Eq. 3.4 (R (t, τ), G (t, τ), and Kz (t, τ)) has its own repre-

sentation in the four domains described above, and together they provide an illustration

of the functionality of the quadratic class. Kz (t, τ), simply a function of the signal it-

self, becomes the Wigner-Ville distribution Wz (t, f) in the time-frequency domain (after

time-convolution with the Wigner-Ville time-lag kernel, δ (t)), the symmetrical ambiguity

function Az (ν, τ) in the Doppler-lag domain, and the spectral autocorrelation function

kz (ν, f) in the Doppler-frequency domain.

Figures depicting an example signal for a visual comparison of the various time-

frequency methods will be included here and in the following subsections. (The signals

proposed for analysis in later chapters are much more complex, but this example will serve

for a simple demonstration.) The example signal consists of two frequency-modulated

chirps, one linear and one hyperbolic, of equal duration, overlapping but offset in time.

Each chirp spans the frequency range 50 Hz−250 Hz, and the signal is sampled at 600 Hz.
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Figure 3.2: Instantaneous autocorrelation
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Figure 3.3: Symmetrical ambiguity func-
tion of example signal

Refer to Figure 3.1 for the time-series and frequency domain representations of this exam-

ple signal. These representations demonstrate the need for the time-frequency approaches

in question, as the nature of the signal is not easily discerned in either the time or in

the frequency domain. For distributions making use of a windowing function, a Hann

window with a duration of 0.1 s (or 60 samples) has been applied.

For the described signal Kz (t, τ), Az (ν, τ), and kz (ν, f) are shown in Figures 3.2,

3.3, and 3.4, respectively.
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Figure 3.4: Spectral autocorrelation func-
tion of example signal
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Figure 3.5: Spectrogram of example signal

3.2.1 Spectrogram

The Spectrogram is simply the squared magnitude of the short-time Fourier transform,

ρz (t, f) =

∣∣∣∣∫ ∞
−∞

z (τ)w (τ − t) e−j2πfτdτ
∣∣∣∣2 , (3.6)

but is in fact also a quadratic time-frequency distribution with the time-lag kernel

G (t, τ) = w
(
t+ τ

2

)
w
(
t− τ

2

)
. It functions very similarly to the STFT and without

the drawback of cross terms. The disadvantage is the fact that the resolution is much

reduced compared with other options like, say, the Wigner-Ville distribution. Figure 3.5

shows how well the spectrogram performs on the above example signal using a window

size of 0.1 s; the two frequency-modulated components are clearly visible.

3.2.2 Wigner-Ville distribution

The Wigner-Ville distribution of a signal can be found using

ρz (t, f) =

∫ ∞
−∞

z
(
t+

τ

2

)
z
(
t− τ

2

)
e−j2πfτdτ. (3.7)

Its time-lag kernel is merely G (t, τ) = δ (t).
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In 1932, Wigner [41] developed a distribution in his work on quantum mechanics.

This was built upon by Ville [42] in 1948, who improved its usefulness in signal processing

by incorporating the analytic signal, significantly reducing artifacts. Note in Figure 3.6

that because of its formulation, this distribution is optimal for linear frequency-modulated

(LFM) chirps, resulting in a high-resolution image of the chirp in the time-frequency

plane. For time-frequency components which do not have the structure of the linear

chirp, considerable artifacts result, such as inside the arc of the hyperbolic chirp shown.

When compared with the spectrogram (Figure 3.5), the cross term situated between the

two chirp components is obvious. It is useful also to observe that the effect of the Wigner-

Ville distribution on the linear chirp itself can be thought of as producing internal cross

terms, it is just that this artifact lies along the line of the linear chirp component anyway,

and so does not obscure interpretation of linear chirps.

3.2.3 Windowed Wigner-Ville distribution

If instead a window is applied to the time-lag kernel such that G (t, τ) = δ (τ)w (τ), the

resulting distribution is given by

ρz (t, f) =

∫ ∞
−∞

w (τ) z
(
t+

τ

2

)
z
(
t− τ

2

)
e−j2πfτdτ. (3.8)

Time-limiting the Wigner-Ville distribution can help reduce cross-terms occurring

along the time axis. This is known as the windowed or pseudo-Wigner-Ville distribution.

In Figure 3.7 the sharp and defined edge of the linear chirp in Figure 3.6 is sacrificed

to reduce cross-term interference; however, this is time-limiting, and only reduces that

interference for components widely separated in time. When the linear chirp and the

hyperbolic chirp overlap, cross-terms remain.

3.2.4 Rihaczek distribution

Rihaczek derived a complex energy density [36] which has become known as the Ri-

haczek distribution. It also takes the form of a quadratic time-frequency representation

with time-lag kernel G (t, τ) = δ
(
t− τ

2

)
(Figure 3.8), resulting in an expression of the
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Figure 3.6: Wigner-Ville distribution of ex-
ample signal
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Figure 3.7: Windowed Wigner-Ville distri-
bution of example signal

distribution

ρz (t, f) =

∫ ∞
−∞

z (t) z (t− τ)e−j2πfτdτ. (3.9)

Figure 3.9 shows how markedly differently the Rihaczek distribution performs on

the example signal. Significant artifacts complicate the use of the distribution in many

practical applications. The reason for this is that, while it may separate components well

in time alone or in frequency alone, it has difficulty in separating in both dimensions

at once. This makes the distribution suitable only for a narrow range of applications,

but interestingly, distributions in this family (of which two more will be introduced in

following subsections) are potentially useful for signals which have been pulse-compressed,

such as sonar signals. This relevance will be discussed in later chapters.

3.2.5 Levin distribution

Taking only the real part of the Rihaczek distribution

ρz (t, f) = Re

[∫ ∞
−∞

z (t) z (t− τ)e−j2πfτdτ

]
, (3.10)

one is left with Levin distribution [24], which corresponds to a time-lag kernel of G (t, τ) =

1
2

[
δ
(
t+ τ

2

)
+ δ

(
t− τ

2

)]
(Figure 3.10). Figure 3.11 is substantially the same as Figure

3.9, since one is obliged when representing the Rihaczek in a visually meaningful way
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Figure 3.9: Magnitude of real part of Ri-
haczek distribution of example signal
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Figure 3.11: Levin distribution of example
signal

to use only the real part, as the magnitude alone (how most plots in this chapter are

produced) reveals little useful information about the nature of the components in the

example signal.

3.2.6 Page distribution

The Page distribution is similar in kind to both the Rihaczek and the Levin, and histor-

ically was the first to be developed [34]. It can be expressed as

ρz (t, f) = 2 Re

[∫ ∞
0

z (t)z (t− τ) ej2πfτdτ

]
, (3.11)

16



Page distribution

+t

+τ

–t

–τ

(0,0)

Figure 3.12: Graphical representation of
the Page time-lag kernel

Page Time-Frequency Dist. (
z
)

-1 -0.5 0 0.5 1

time t (s) [n]

0

50

100

150

200

250

300

fr
e
q
u
e
n
c
y
 f
 (

H
z
) 

[k
]

Figure 3.13: Page distribution of example
signal

with its time-lag kernel being G (t, τ) = δ
(
t+
∣∣ τ
2

∣∣) (Figure 3.12). Figure 3.13 shows the

result of the Page distribution performed on the example signal; it is worth noticing that

the one-sided kernel produces artifacts on only one side of distribution image.

3.2.7 Windowed Rihaczek, Levin, and Page distributions

Each of the Rihaczek, Levin, and Page distributions can be windowed to reduce the

impact of the cross term artifacts and make them more immediately useful for general

signals. Mathematically, these would be rendered thus:

1. Windowed Rihaczek distribution (Figure 3.14)

ρz (t, f) =

∫ ∞
−∞

w (τ) z (t) z (t− τ)e−j2πfτdτ (3.12)

G (t, τ) = w (τ) δ
(
t− τ

2

)
(3.13)

2. Windowed Levin distribution (Figure 3.15)

ρz (t, f) = Re

[∫ ∞
−∞

w (τ) z (t) z (t− τ)e−j2πfτdτ

]
(3.14)

G (t, τ) =
w (τ)

2

[
δ
(
t+

τ

2

)
+ δ

(
t− τ

2

)]
(3.15)
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Figure 3.14: Windowed Rihaczek distribu-
tion of example signal
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Figure 3.15: Windowed Levin distribution
of example signal

3. Windowed Page distribution (Figure 3.16)

ρz (t, f) = 2 Re

[∫ ∞
0

w (τ) z (t)z (t− τ) ej2πfτdτ

]
(3.16)

G (t, τ) = w (τ) δ
(
t+
∣∣∣τ
2

∣∣∣) (3.17)

3.2.8 B distribution

The B distribution is a newer distribution developed by Barkat and Boashash [3] with

an aim toward high time-frequency resolution and cross term reduction. Its time-lag

kernel G (t, τ) = |τ |β cosh−2β t is chosen for its narrow Doppler main lobe (Figure 3.17)

to aid frequency resolution and is also nearly constant in the lag dimension, excepting a

small notch at τ = 0. This kernel is separable, meaning that it can be treated as two

one-dimensional filters rather than one two-dimensional filter. This typically simplifies

the kernel design process. The authors note that the positive real parameter β, which

controls the amount of smoothing, is generally best chosen between 0 and 1, and they

recommend in particular a β of about 0.01. The distribution shown in Figure 3.18 (and

the kernel in Figure 3.17) uses β = 0.1 since smaller values appeared to sacrifice too much

in the way of resolution for this example signal. Noteworthy is the significant reduction

in artifacts just inside the arc of the hyperbolic chirp as compared to the Wigner-Ville

18



wind.-Page Time-Frequency Dist. (
z
)

-1 -0.5 0 0.5 1

time t (s) [n]

0

50

100

150

200

250

300
fr

e
q
u
e
n
c
y
 f
 (

H
z
) 

[k
]

Figure 3.16: Windowed Page distribution
of example signal
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Figure 3.17: B distribution Doppler-lag
kernel

distribution—while still retaining much of the achieved narrowness or resolution in the

time-frequency peak. The kernel results in the following expression for the time-frequency

distribution:

ρz (t, f) =

∫∫
|τ |β

cosh2β (t− u)
z
(
u+

τ

2

)
z
(
u− τ

2

)
e−j2πfτdu dτ. (3.18)

3.2.9 Modified-B distribution

The B distribution in the previous subsection was modified [20] to have a truly lag-

independent kernel (meaning the kernel has no dependence on τ), as it already was

nearly so,

G (t, τ) =
cosh−2β t∫∞

−∞ cosh−2β (ξ) dξ
. (3.19)

Boashash notes this modified-B distribution has optimal energy concentrations around

the components when the signal is a sum of tones. The example signal rendered with it

(Figure 3.19), also with β = 0.1, is very similar to the original B distribution, again since

the kernels are comparable. A full expression for the modified-B is

ρz (t, f) =

∫∫
cosh−2β (t− u)∫∞
−∞ cosh−2β (ξ) dξ

z
(
u+

τ

2

)
z
(
u− τ

2

)
e−j2πfτdu dτ. (3.20)
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Figure 3.18: B distribution of example sig-
nal
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Figure 3.19: Modified-B distribution of ex-
ample signal

3.2.10 Choi-Williams distribution

The Choi-Williams distribution [10] attempts to preserve the high time-frequency resolu-

tion of the Wigner-Ville distribution, while significantly reducing the amplitude of cross

terms. The time-lag kernel is given as G (t, τ) =
√
πσ
|τ | e

−π2σt2
τ2 (with Doppler-lag kernel

shown in Figure 3.20 with σ = 4), yielding an overall expression for the distribution

ρz (t, f) =

∫∫ √
πσ

|τ |
e
−π2σ(t−u)2

τ2 z
(
u+

τ

2

)
z
(
u− τ

2

)
e−j2πfτdu dτ. (3.21)

In Figure 3.21, the cross term artifacts between the two chirps can be seen less concen-

trated in the time-frequency plane than in the Wigner-Ville or B distributions.

3.2.11 Zhao-Atlas-Marks distribution

Zhao, Atlas, and Marks [44] proposed a distribution with the time-lag kernel G (t, τ) =

w (τ) rect
(
at
2τ

)
and general expression

ρz (t, f) =

∫ ∞
−∞

∫ t+| τa |

t−| τa |
w (τ) z

(
u+

τ

2

)
z
(
u− τ

2

)
e−j2πfτdu dτ. (3.22)

Choosing a = 8, as in the Doppler-lag kernel of Figure 3.22 and distribution of Figure

3.23, the latter figure shows what trade-off may be achieved in comparison to earlier
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Figure 3.20: Choi-Williams distribution
Doppler-lag kernel
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Figure 3.21: Choi-Williams distribution of
example signal
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Figure 3.22: Zhao-Atlas-Marks distribu-
tion Doppler-lag kernel
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Figure 3.23: Zhao-Atlas-Marks distribu-
tion of example signal

distributions, namely that cross term effects can be somewhat exchanged for auto-terms,

or artifacts one may say form within or around the real components themselves, rather

than halfway between them. In this case, they appear as a kind of sidelobe or ringing

about the two chirps.
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Figure 3.24: Born-Jordan distribution
Doppler-lag kernel
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Figure 3.25: Born-Jordan distribution of
example signal

3.2.12 Born-Jordan distribution

A special case of the Zhao-Atlas-Marks distribution above is the Born-Jordan distribution

[8] when a = 1
α

and w (τ) = 1
|2ατ | . It can be expressed as

ρz (t, f) =

∫ ∞
−∞

∫ t+|ατ |

t−|ατ |

1

2ατ
z
(
u+

τ

2

)
z
(
u− τ

2

)
e−j2πfτdu dτ, (3.23)

with a time-lag kernel of G (t, τ) = 1

|2ατ | rect( t
2ατ )

. The Doppler-lag kernel, very similar to

that of the Choi-Williams distribution with the choice of α = 0.1, is shown in Figure 3.24

along with its resulting performance on the previous example function in Figure 3.25.
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Chapter 4

A proposed time-frequency distribution

A quadratic time-frequency distribution is here proposed which is in much the same

vein as the Levin, Rihaczek, and Page distributions. While the Page distribution makes

use of a running transform of a signal s up to time t [6], a new approach is considered

here that uses instead a transform that runs from time t onward. The relevance is that

such a method allows better separation of cross-terms from the information in the time-

frequency plane which is important for elastic wave reradiation. It also retains the good

performance on pulse-compressed signals—those having wide-band content in a short

time duration—as will be seen. It is informative to follow the derivation model of the

Page distribution from Boashash [6] but with the necessary changes to arrive at a new

distribution.

4.1 Derivation

While the Page distribution begins with the left (or negative) side of a Fourier transform

of s,

S− (t, f) = F
θ→f
{st− (θ)} =

∫ t

−∞
s (θ) e−j2πfθdθ, (4.1)

here instead the corresponding right (or positive) side running onward from t will be

defined,

S+ (t, f) = F
θ→f
{st+ (θ)} =

∫ ∞
t

s (θ) e−j2πfθdθ. (4.2)
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Also to be defined is a running energy spectrum, which is the squared magnitude of S+:

es (t, f) = |S+ (t, f)|2 = S+ (t, f)S∗+ (t, f) . (4.3)

Differentiating with respect to time yields a new distribution Ns. Similar to the Page

distribution, it is a time-dependent power spectrum.

Ns (t, f) = − ∂

∂t

[
|S+ (t, f)|2

]
(4.4)

=
∂

∂t

[
−S+ (t, f)S∗+ (t, f)

]
(4.5)

= −S+ (t, f)
∂

∂t

[
S∗+ (t, f)

]
− S∗+ (t, f)

∂

∂t
[S+ (t, f)] . (4.6)

Substituting using Eq. 4.2 yields the alternative form

Ns (t, f) = S+ (t, f)

[
− ∂

∂t

∫ ∞
t

s∗ (θ) ej2πfθdθ

]
+ S∗+ (t, f)

[
− ∂

∂t

∫ ∞
t

s (θ) e−j2πfθdθ

]
(4.7)

= S+ (t, f) s∗ (t) ej2πft + S∗+ (t, f) s (t) e−j2πft (4.8)

= 2 Re
{
s∗ (t)S+ (t, f) ej2πft

}
(4.9)

Continuing with λ = t− θ,

Ns (t, f) = 2 Re

{∫ ∞
t

s∗ (t) s (θ) ej2πfte−j2πfθdθ

}
(4.10)

= 2 Re

{
−
∫ t

∞
s∗ (t) s (θ) ej2πf(t−θ)dθ

}
(4.11)

= 2 Re

{∫ 0

−∞
s∗ (t) s (t− λ) ej2πfλdλ

}
. (4.12)
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Proceeding onward to the time-lag kernel, Eq. 4.12 is recast using the unit step function

u (t) and with a τ = −λ substitution, where τ represents lag,

Ns (t, f) = 2 Re

{∫ ∞
−∞

s∗ (t) s (t− λ)u (−λ) ej2πfλdλ

}
(4.13)

= 2 Re

{
F
τ→f
{s∗ (t) s (t+ τ)u (τ)}

}
(4.14)

= F
τ→f
{s∗ (t) s (t+ τ)u (τ)}+

[
F
τ→f
{s∗ (t) s (t+ τ)u (τ)}

]∗
. (4.15)

Taking the inverse Fourier transform yields the smoothed instantaneous autocorrelation

function Rs,

Rs (t, τ) = s∗ (t) s (t+ τ)u (τ) + s (t) s∗ (t− τ)u (−τ) (4.16)

= u (τ)
[
δ
(
t+

τ

2

)
∗
t
Ks (t, τ)

]
+ u (−τ)

[
δ
(
t− τ

2

)
∗
t
Ks (t, τ)

]
(4.17)

=
[
u (τ) δ

(
t+

τ

2

)
+ u (−τ) δ

(
t− τ

2

)]
∗
t
Ks (t, τ) , (4.18)

where Ks is simply the instantaneous autocorrelation function. Separating the time-lag

kernel G (t, τ) unique to this distribution gives

G (t, τ) = u (τ) δ
(
t+

τ

2

)
+ u (−τ) δ

(
t− τ

2

)
(4.19)

= δ
(
t+
∣∣∣τ
2

∣∣∣) . (4.20)

The other kernels in this family of distributions are the Rihaczek, G (t, τ) = δ
(
t− τ

2

)
,

the Levin, G (t, τ) = 1
2

[
δ
(
t+ τ

2

)
+ δ

(
t− τ

2

)]
, and of course the Page, G (t, τ) = δ

(
t−
∣∣ τ
2

∣∣).
A graphical comparison of the Page kernel with this new one is provided in Figure 4.1.

4.2 Cross terms and rationale

To understand the reasoning behind the development of this distribution, it is necessary

to examine the role cross-terms play in this type of quadratic time-frequency distribu-

tion. Mathematically, these cross-terms arise in the same way a cross-term is produced

by multiplying together two linear polynomials. Graphically, they manifest as undesired
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Figure 4.1: Graphical comparison of Page and proposed distribution kernels

artifacts in the time-frequency image. Often in time-frequency analysis, one can con-

ceive of a signal being analyzed as a superposition (in time and/or frequency) of two

or more components, which can roughly be defined as sensible conceptual divisions of

the time-frequency energy comprising the signal. For instance, a frequency-modulated

chirp can be thought of as such a component, since, though its energy is spread across

time and frequency, it is described in a single mathematical expression with a particular

rule governing its instantaneous frequency. Any given signal may contain multiple com-

ponents which cannot be easily separated when examined solely in the time or in the

frequency domain, where a time-frequency representation may permit such a separation.

Cross-terms appear halfway between the signal components in the time-frequency image.

It then can become challenging to identify legitimate signal components in a quadratic

time-frequency distribution when the signal is not known beforehand. Examples of the

various appearances cross-terms can take are shown in Section 3.2.

Also important to note is that this distribution is designed specifically with the

analysis of elastic wave reradiation in mind. The relevant aspects of such a signal can be

approximated as a train of closely- but irregularly-spaced high-bandwidth, short-duration

sinc-like pulses—as a result of pulse compression on the echoes and reradiations from an
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object of some elasticity and physical extent. Interestingly, distributions in this Rihaczek-

Levin-Page family do well with these temporally-compressed signals in that they exhibit

high resolution along the time-axis. This permits specular echoes and reradiations to be

more easily separated in time when object size and waveform type may lead to tightly-

grouped time-domain pulses.

The simplest example of elastic wave reradiation would be two consecutive sinc

functions—the result of pulse compression on a specular and on a single elastic wave

return (Figure 4.2). The instantaneous autocorrelation function Kz (Eq. 3.5) of this

signal takes on the appearance of four points at the corners of a diamond, as shown

in Figure 4.3. Since the structure is foundational to this type of signal, it is useful to

consider briefly why it occurs. Approximate the sinc functions with delta functions, such

that the signal z (t) becomes

z (t) = δ (t) + δ (t− l) , (4.21)

where l is the time delay between the arrival of the specular return and the elastic return.

Kz is then

Kz (t, τ) =
[
δ
(
t+

τ

2

)
+ δ

(
t+

τ

2
− l
)] [

δ
(
t− τ

2

)
+ δ

(
t− τ

2
− l
)]

(4.22)

= δ
(
t+

τ

2

)
δ
(
t− τ

2

)
+ δ

(
t+

τ

2
− l
)
δ
(
t− τ

2
− l
)

(4.23)

+ δ
(
t+

τ

2

)
δ
(
t− τ

2
− l
)

+ δ
(
t− τ

2

)
δ
(
t+

τ

2
− l
)
.

Each term gives a two-dimensional delta in Kz, one each at (0, 0), (l, 0),
(
l
2
, l
)
, and(

l
2
,−l
)
. The latter two are the aforementioned cross terms. Moving into the smoothed

instantaneous autocorrelation function Rz by way of time-convolution with the Wigner-

Ville kernel G (t, τ) = δ (t), and then into the Wigner-Ville distribution through a Fourier

transform, the basic problem for use with elastic wave reradiation is apparent. The cross

terms produce a false component of the reradiation signature. (Compare the time series

in Figure 4.2 and its Wigner-Ville distribution in Figure 4.4.) The other kernels in this

27



-0.4 -0.2 0 0.2 0.4 0.6

time t (s) [n]

0

0.05

0.1

0.15

0.2

0.25
a
b
s
o
lu

te
 v

a
lu

e
Pulse-Compressed Signal (z)

Figure 4.2: Simple model of elastic wave
reradiation, time series, pulse-compressed
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Figure 4.3: Instantaneous autocorrelation
function of simple EWR model

distribution family under consideration place the Wigner-Ville kernel delta on a slope

through the time-lag plane. Significantly, this shifts the cross terms away from being

temporally situated between the specular and reradiated returns, and thus no longer in

danger of misconstrual. This is accomplished by variously shifting the terms forward

and backward to align with the specular and reradiated returns. (See Figures 4.5, 4.6,

4.7, and 4.8.) The downside is that the spectral content of the cross terms contaminates

that of the desired terms, meaning that a frequency-filtering effect of an elastic surface

wave interaction may be unobservable. (See Figures 4.9 and 4.10.) The Page distribution

(Figure 4.11) notably removes the false signature and keeps the cross terms off of the

specular return. While potentially useful, the theory of elastic wave reradiation for sonar

suggests that the spectral content of the reradiation may be much more informative for

target classification purposes than that of the specular return. What is needed is a sort

of mirror of the Page distribution which dumps the cross terms atop the specular return,

where the contamination is comparatively unimportant, while retaining the integrity of

the reradiated spectrum, and this is the time-frequency distribution here proposed (Figure

4.12). More realistic elastic wave return models of course generate a more complicated

collection of cross terms which is not so easily dealt with, but the simple case illustrates

the strategy of applying this distribution.
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Figure 4.4: Wigner-Ville distribution of
simple EWR model
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Figure 4.5: Smoothed instantaneous auto-
correlation function using Rihaczek kernel
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Figure 4.6: Smoothed instantaneous auto-
correlation function using Levin kernel
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Figure 4.7: Smoothed instantaneous auto-
correlation function using Page kernel
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Figure 4.8: Smoothed instantaneous auto-
correlation function using proposed kernel
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Figure 4.9: Rihaczek distribution of simple
EWR model
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Figure 4.10: Levin distribution of simple
EWR model
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Figure 4.11: Page distribution of simple
EWR model
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Figure 4.12: Proposed distribution of sim-
ple EWR model

It is true that windowing can improve the performance of the Rihaczek, Levin, and

Page family of distributions with respect to elastic wave reradiation. This, however,

requires a choice of window size which successfully separates the major elements of the

acoustic response, allowing them to be effectively treated in isolation. In that case,

the effect indeed is to retain the advantages of the family on pulse-compressed signals,

while avoiding the inconvenient placement of cross terms. In practice, though, it is

difficult to guarantee the window will isolate components sufficiently—especially in sonar

applications where reflectors of interest may take on a wide variety of shapes, sizes,

and internal structures. Time separation between the specular return and elastic wave
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reradiation may well be quite short, and to shorten the window too much is to reduce

the resolution with which the distribution can express the complexity of the spectrum.

For these reasons the proposed distribution is advantageous; it allows all the benefits of

windowing and when windowing is insufficient, it can move cross terms toward (or on top

of) the specular return, which is less important for classification in this application.
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Chapter 5

Elastic waves

As the application in view is the detection in sonar of reradiated elastic waves, it will

be useful to consider the physical phenomena which would facilitate this. Solid materi-

als possess a certain degree of elasticity and bending stiffness. Elasticity describes the

tendency of a material to recover its original shape when a deforming force has been

removed; it is commonly quantified by Young’s modulus (E). Bending stiffness is simply

the resistance of an object against bending; it depends upon Young’s modulus for the

material and the object’s moment of inertia.

In the case of sonar, a transmitted acoustic pulse is incident upon the surface of an

object, and as a longitudinal wave in the water, the pulse presents a deforming force to

that surface. This will be referred to as acoustic loading. Because the object will deform

or deflect under the loading and because its elasticity will restore its original shape, elastic

surface waves will be induced in the object. The three broad categorizations of elastic

surface waves are transverse, compressional, and shear, distinguishing the direction of

particle motion in relation to the direction of wave propagation.

For transverse (or Rayleigh) waves this motion is parallel to the surface normal.

When the object is a plate, these are called Lamb waves. Lamb waves are further divided

into antisymmetric (or flexural), denoted by a0, and symmetric (or extensional), denoted

by s0, depending on the relative phases of the waves on opposing sides of the plate. See

Figure 5.1 for an illustration. When the flexural surface waves propagate more slowly

than the acoustic waves in the surrounding medium, they are known as Scholte-Stoneley

and as subsonic, denoted by a0−. Waves denoted a0+ (and often simply a0) are mostly
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Figure 5.1: Antisymmetric Lamb waves compared to symmetric Lamb waves

supersonic. In the case of spherical or cylindrical shells, the propagation speed depends

on the ka product, where k = ω/c is the wavenumber and a is the outer radius of the

shell. Compressional (or longitudinal) waves have particle motion parallel to the direction

of propagation. Shear wave motion occurs perpendicularly to both the surface normal

and propagation direction.

Bruneau [9] notes that flexural waves are associated both with local changes in

volume and shape of a plate. Thus the flexural waves are well-suited to sound radiation

from the plate since acoustic loading creates them easily and since particle motion in the

surrounding fluid is highly compatible with them.

It appears bending stiffness, more than elasticity alone, is responsible for the ability

of an object to support and reradiate elastic surface waves capable of detection by sonar.

Observation suggests that steel shells in the ocean, such as submarine hulls and naval mine

shells, exhibit more elastic wave reradiation than a naturally-occurring and similarly-

sized object such as a rock. This fits with intuition, as it is easy to excite surface waves

which audibly couple into the air in an aluminum can and far more difficult to do so

with a rock of the same size. Indeed, striking a rock creates sound associated with

the impulse and little else; striking the aluminum can, however, generates a ringing as

the surface of the can vibrates and can be heard long after the strike (notwithstanding
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that this example involves non-linear acoustics and the proposed research will instead

assume a linear model). One might suppose elasticity explains some of the difference in

behavior, but it happens that aluminum and basalt, a common igneous rock in the ocean,

have comparable Young’s moduli. Another decisive difference in the objects is in their

thicknesses. Aluminum, being much more malleable and ductile (able to be permanently

deformed without breaking) than basalt, is found very thin in cans. Basalt, of course, is

not found in such a shape. A more informative approximation, then, is likely the bending

stiffness, which accounts additionally for the object’s thickness in the form of its moment

of inertia.

Consider a further illustrative example. [9] gives the bending stiffness B of a plate

as

B =
Eh3

12 (1− ν2)
, (5.1)

where h is the thickness of the plate, and ν is Poisson’s ratio. The most common stainless

steel is grade 304 (abbreviated SS304) and has a Young’s modulus approximately three

times greater than that of basalt and a comparable Poisson’s ratio. Consequently, given

two plates of the same shape, one of SS304 and the other of basalt, the latter will actually

have less bending stiffness than the former. The basalt plate would bend more easily

and would be better able to support elastic surface waves under acoustic loading. It

appears, then, that the h3 factor accounts for the discord with the above observation

that stainless steel is associated with elastic surface wave reradiation rather than rock in

acoustic research. The basalt plate would need only to be 50% thicker to have roughly the

same bending stiffness as the stainless steel; if the basalt were twice as thick, it would be

more than twice as stiff as the steel. The fact that stainless steel occurs in smooth, man-

made shells, while basalt occurs in irregular, relatively thick formations, likely explains

why the two materials may be differentiable in sonar—that is, the typical shape of the

material, rather than the material itself.

Imagine the limiting case. Suppose it were possible for a material to have an infi-

nite Young’s modulus. An object composed of such material would be perfectly rigid.

Regardless of the stress or loading applied, the object would exhibit no deformation—no
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internal strain. Because of the principle of conservation of energy, incident acoustic load-

ing would be entirely reflected (or be dissipated in the surrounding medium by another

means), but the acoustic wave could not couple into the object and travel either across

its surface or through its body. No bending of the rigid plate means no flexural waves.

No compression and rarefaction of the composing molecules means no longitudinal waves.

If, however, a plate has a finite Young’s modulus, then incident acoustic energy is par-

tially reflected on contact (known as the specular return) and partially absorbed into the

molecular structure of the material as deformation. Elasticity determines that the energy

absorbed in deformation is not permanently stored there, but rather that the restorative

tendency passes that energy through the material and back into the surrounding medium

(in addition to losses in the form of heat). As [9] notes and acoustic research concurs,

flexural waves represent the most prominent contribution to the reradiated energy from

an acoustically loaded shell.

In the case of thin elastic spherical shells researchers have observed a phenomenon

known as the mid-frequency enhancement [22,29]. Near the coincidence frequency (where

ka = a/h), constructive interference among circumnavigating a0− waves results in a

strong backscattering effect temporally removed from the specular return—an effect which

can have an amplitude three times that of the specular return. This elastic reradiation can

be observed at varying bistatic angles, although the amplitude is significantly reduced [1].

(Monostatic sonar has the transmitter and receiver co-located, whereas bistatic sonar has

them separated. The bistatic angle is measured at the point of reflection between the

transmitter and receiver.) Simple rearrangement and substitution of ka = a/h yields

f = c/2πh, where f = ω/2π, and this allows an estimation of where the mid-frequency

enhancement will be observed for various shell thicknesses. Figure 5.2 shows the approx-

imate coincidence frequency as a function of spherical shell thickness for a sound speed of

c = 1500 m/s. The important conclusion from this figure is that practical sonar systems

are in operation at the coincidence frequencies for shell thicknesses in common use. In

other words, extant systems should be able to observe this phenomenon.
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Figure 5.2: Coincidence frequency as a function of spherical shell thickness
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Chapter 6

Measurement

In order to measure the suitability of a given time-frequency method for identifying

the elastic wave reradiation it will be necessary to apply quantitative measures. These

will differ for the simulation and collected acoustic data processing chapters since the

numerical evaluations can only be made relative to known and objective criteria. The

criteria during simulation will rely upon the fact that the simulated signal is known

a priori, and therefore the fidelity of the distribution can be in at least three useful

ways directly calculated. What is unknown in simulation is how faithful the simulated

signal is to actual, physical elastic wave reradiation. Here, the collected acoustic data

is beneficial. This data contains recordings of echoes from three cylindrical shells which

differ only in material composition. The assumption will be that their shapes, sizes,

and the conditions of data collection are sufficiently similar that any differences in the

time-frequency representations will be due to the acoustic properties of the material. For

this reason the attempt will be to quantify the difference between the time-frequency

representations of different materials, holding the distribution constant.

6.1 Simulation

For the simulation portion of this study, this measurement will primarily involve quanti-

fying the following concepts for the EWR application:

1. Separability of the components of the time-frequency image—namely, how easily

the elastic wave reradiation can be isolated from the specular return.
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2. Accuracy with which spectral nuances in the elastic wave reradiation can be shown.

3. Signal-to-noise ratio.

Naturally, a time-frequency distribution will be preferable for analyzing elastic wave

reradiation to the extent that it clearly separates components of the signature without

cross term artifacts and to the extent that it accurately reveals the spectral composition

of the reradiation components.

6.1.1 Separation

Separation S between the spectral return and elastic wave reradiation will be measured

by the following weighted average:

S =

∑
k=BW

∑newr

n=nspec
|ρz [n, k]|

∣∣n− 1
2

(nspec + newr)
∣∣∑

k=BW

∑newr

n=nspec
|ρz [n, k]| · 1

2
(newr − nspec)

, (6.1)

where BW is frequency sample indices of the transmit waveform bandwidth, nspec the

time sample index centered on the specular return, newr the time sample index centered

on the elastic wave reradiation, and ρz [n, k] the discrete distribution indexed in time (n)

and frequency (k). Basically, this is a weighted average of the time difference magnitude

between each ρz sample and the time midpoint between the specular return peak and the

elastic wave reradiation peak, and this only for samples between the peaks and within the

bandwidth of the transmit signal. The weighting is the magnitude of ρz. Thus, when a

distribution concentrates energy at the points of the specular and elastic wave reradiation

returns and avoids intervening energy (like cross-terms) it will receive a higher separation

score. The denominator term 1
2

(newr − nspec) is merely a scaling factor representing the

maximum average. The maximum score of 1 arises when all energy occurs only at the

points of the specular return and the elastic wave reradiation return, in which case the

weighted average will be equal to the scaling factor. The worst score, when all energy

is concentrated at the midpoint, is 0; in practice, however, 0 is not really possible since

energy must necessarily exist at the point of the assumed specular return, which in any

meaningful score will not be the midpoint.
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6.1.2 Spectral accuracy

To estimate the error with which the time-frequency distribution represents the spectrum

of the elastic wave reradiation, the following straightforward metric will be used:

Err =
∑
k

∣∣∣∣ |ρz [newr, k]|
aρ

− |Xewr [k]|
aX

∣∣∣∣2 , (6.2)

where Xewr is the discrete Fourier transform of the elastic wave reradiation in isolation.

aρ and aX are scale factors defined based on the root-mean-square of the function to be

scaled:

aρ =

√
1

Nk

∑
k

|ρz [newr, k]|2, (6.3)

aX =

√
1

Nk

∑
k

|Xewr [k]|2, (6.4)

where Nk is the number of samples summed over k.

6.1.3 Signal-to-noise ratio

Concerning the signal-to-noise ratio of a time-frequency distribution, the results of Sed-

dighi et al. [38] are interesting. They derive an approach based on the distribution kernel.

In this case cross terms are considered as part of the signal rather than noise. For discrete

signals this SNR is given by

SNR =
Es
∑M

2

m=−M
2

∑N
2

n=−N
2

γ (m,n)

Nσ2
ε

∑M
2

m=−M
2

g (m)
. (6.5)

Es represents signal energy given by TPs for signal period T and average signal power

Ps = E
〈
|s (t)|2

〉
, where E is an expected value and 〈·〉 denotes an average across time.

M and N represent the time and frequency support of the distribution, respectively. σ2
ε

gives noise variance, and g (m) is a discrete version of g (t) =
∫∞
−∞G (t− u, 0) du. As in

previous chapters, γ gives the time-frequency kernel and G the time-lag kernel.
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For the present investigation, however, a simpler approach is afforded by the nature

of the simulation in that the signal and noise can be generated completely in isolation

from one another. This takes the form (as in [16]),

SNR =

∑M−1
m=0

∑N−1
n=0 |ρz (m,n)|2∑M−1

m=0

∑N−1
n=0 |ρN (m,n)|2

, (6.6)

where ρN is the time-frequency distribution under consideration but with only noise as

the input.

6.2 Acoustic tank data

Quantifying the performance of the distributions for the collected acoustic tank data

is not so simple, as the true breakdown of the recorded signal into its specular and

reradiated components is not known, nor is it known what effective frequency filtering is

performed on the reradiated component by the physical process. However, the difference

in material for the targets collected with the same waveforms at the same incident angles

is known, so the goal will be to find which distributions maximize the measurement of

that material difference. It is important to note that this metric should not be interpreted

in the absence of the simulation metrics, since this simple difference might be enhanced

by the presence of a prominent cross term artifact, for instance, when such an artifact

really provides no benefit (or is counterproductive) to the time-frequency analysis. Let a

root-mean-square normalized time-frequency distribution be defined as

ρ̂z,A [n, k] =
|ρz,A [n, k]|√∑N
n=1

∑K
k=1|ρz,A[n,k]|2
NK

, (6.7)

where ρz,A [n, k] is the discrete time-frequency distribution of the cylinder of material A

and the mean is performed over a region of interest bounded by the apparent specular

component of the acoustic response and by the bandwidth of the transmitted waveform.

This boundary shall be represented by 1 ≤ n ≤ N and 1 ≤ k ≤ K as the time and
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frequency indices, respectively. The difference metric D will be expressed as

D =
N∑
n=1

K∑
k=1

|ρ̂z,A [n, k]− ρ̂z,B [n, k]| . (6.8)

D will then be averaged across all incident angles and transmitted waveforms for each

pair of compared materials.

41



Chapter 7

Simulation

7.1 Preliminary

Simulations seem preferable for first addressing the evaluation of time-frequency methods

for identifying elastic wave reradiation. Any attempt to base the evaluation solely on real

data would be open to critique of the data collection methodology. By simulation is meant

an estimated fabrication of the return which does not involve calculations with acoustics

models, which would be beyond the scope of this work—rather only experimentation with

the simple variables at the point of recording. So the procedure will first be to simulate

signals with and without delayed reradiation in accordance with the manner in which the

acoustic literature predicts it. There will be two major variables examined:

1. Delay between specular return and reradiated return.

2. Frequency-dependent filters applied to the reradiated return but not the specular

return.

The purpose of the second is related to the degree to which the amplitude of the reradiated

return varies with frequency. The literature describes significant frequency-dependent

variation in the tendency for elastic surface waves to be excited under acoustic loading.

The most prominent feature is perhaps the mid-frequency enhancement. Frequency vari-

ation arises not only in the acoustic coupling from fluid to surface, but also as the elastic

surface wave propagates before reradiation. Anderson [1] describes the faster attenuation

of higher frequencies in the elastic solid. This results in an elastic reradiation of an ap-

parently lower center frequency. Characterizing this as a frequency shift is misleading, as
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there seems to be no mechanism of turning one frequency into another, but rather that

higher frequencies are suppressed through their more rapid attenuation. Certain time-

frequency methods may better highlight the nature of the apparent frequency filtration

applied to the reradiated return. Such information could be used to refine classification

strategies.

Many of the time-frequency methods under consideration introduce their own param-

eters to the simulations along with choices of window type and width. Selections should

be made in an attempt to reach the best possible performance of each time-frequency

distribution for the problem at hand. The goal is to maximize both the energy separa-

tion between the specular return and the elastic wave reradiation and the accuracy with

which a filter simulating the frequency-dependent effects of the reradiation process can be

estimated. Not every tested value for each parameter will be reproduced here in figures,

but instead the immediate vicinity of the best values will be shown. It is considered an

advantage if the distribution does not require particular fine-tuning in order to perform

well.

Signal parameters such as the time-bandwidth product, sample rate, and waveform

type could be varied, as well. Differences between the matched filter and deconvolution

have been previously discussed in Chapter 2, and for the reasons given there the deconvo-

lution will be chiefly used. The primary concern here, however, is, given a representative

sonar scenario, the determination of which distribution will perform best. There are al-

ready an abundance of variables in this simulation, so the simulation will be tailored to

the scope. Window width will be varied, but because differences are likely greater be-

tween the distributions than between window types, the hunt for the perfect window will

be postponed. A Hann window will be kept constant for the experiment. Also, rather

than vary all three major signal variables simultaneously, a typical value for each will

be chosen and kept constant while each other variable is swept independently across a

range of interest. A handful of distribution parameter values will be chosen in the region

of apparent best performance to optimize the distribution to the problem. Particular
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care will be taken with the Zhao-Atlas-Marks distribution, which is affected by both a

parameter and a choice of window width, and thus two variables to try to optimize.

There is, of course, the question: what does it mean to optimize a given time-

frequency distribution for this problem? Both separation and spectral accuracy are de-

sired. This is the reason simulations will not be restricted to a choice of one distribution

parameter value or to a choice of one window width. The range and sampling of chosen

values reflect the processing trade-off, and conclusions can be drawn afterward.

To keep the scope of the simulations under control, it is worth noting that it will not

be necessary to test many different combinations of waveform bandwidth fBW and pulse

duration T . Instead, the product of these two values, referred to as the time-bandwidth

product, determines the width of the main lobe in pulse compression output which is

fed into the time-frequency distribution. Thus, a given time-bandwidth product could

be achieved regardless of whether a high or low frequency sonar system is being used.

Secondly, changing the time-bandwidth product will only result in a change in the width

of the main lobe after pulse compression, and, the product being held constant for the

experiment, will not materially affect the relative performances of the time-frequency

distributions. An explanation of the dependence of the pulse compression main lobe

width on the time-bandwidth product is provided in Appendix B.

Five different types of frequency filter will be applied to the elastic wave reradiation

component to see how accurately the distribution is able to reveal the effects of this

filtering. The default will be no filter—meaning physically that the specularly reflected

and reradiated signals have the same frequency content—which shall be referred to as

flat. The other frequency filters will take the following shapes, mimicking the effect of

a suppression of certain frequencies within the waveform bandwidth in the process of

elastic waves reradiation:

1. A triangular window (TW), peaking in the center of the bandwidth and tapering

to zero at the edges.

2. A triangular notch (TN), zero in the center of the bandwidth and rising to the

edges.
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3. A Hann window (HW), peaking in the center of the bandwidth and tapering to

zero at the edges.

4. A Hann notch (HN), zero in the center of the bandwidth and rising to the edges.

7.2 Time-frequency distributions

This section will describe the performance of each quadratic time-frequency distribution,

including the one proposed in this dissertation, on simulated elastic wave reradiation

based on the above criteria. The last section in the chapter will describe conclusions drawn

therefrom. The primary simulated transmission waveform will be a linear frequency-

modulated chirp running from 50 Hz to 150 Hz over a pulse duration of 1 s, resulting

in a time-bandwidth product of 100. The sampling rate is simulated at 400 Hz. This

is the same as was used in the simple elastic wave reradiation model used in chapter

4 and which will build in complexity upon it. Noise will be Gaussian in distribution.

The instantaneous autocorrelation function Kz and the Wigner-Ville distribution Wz

of the basic model containing merely a specular echo component and one well-defined

elastic wave reradiation component of equal magnitude occurring 0.2 s later are shown

in Figures 4.3 and 4.4, respectively. The remaining two domains in the time-frequency

analysis quartet, that of Doppler-lag (Az, called the symmetric ambiguity function) and of

Doppler-frequency (kz, called the spectral autocorrelation function) are given in Figures

7.1 and 7.2.

In the course of the analysis, it will be preferable to examine each distribution at its

best, so appropriate values for the parameters and window sizes must be chosen. This

will be done by varying the parameters and selecting a value which reasonably results in

low spectral error and high separation scores, as defined above.

7.2.1 Spectrogram

Beginning with the spectrogram, a baseline of performance will be established. The

essential trade-off with the spectrogram comes from choice of window size. The narrower

the window, the more separation can be achieved between components of the return;
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Figure 7.1: Symmetric ambiguity function
of basic EWR model
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Figure 7.2: Spectral autocorrelation func-
tion of simple EWR model

however, the narrower window also reduces the frequency resolution, making it more

difficult to evaluate the spectrum of each component. Figures 7.3 and 7.4 illustrate this

choice with no spectral filtering applied to the elastic wave radiation. The advantage of

the smaller window is clear in the first of these, as a small window size produces good

separation scores across a wide range of delays. Figure 7.4 might entice one to choose

a particularly narrow window, such as 0.02 s or 0.03 s, but this would only work well if

there were not complicated variations in the spectral information. For instance, while the

separation and spectral error look much the same for the triangular window described

above, these smaller window sizes struggle with the triangular notch (see Figure 7.5).

The high error region in the bottom-right corner of the spectral error plots results from

the interaction of the specular component with the EWR component when the delay is

small, creating artifacts. The separation score is very similar across the types of spectral

filter placed on the EWR investigated here.

7.2.2 Wigner-Ville distribution

The Wigner-Ville distribution produces much finer time-frequency resolution than the

spectrogram but has a very prominent cross-term as shown in Figure 4.4, which heavily

penalizes the separation metric (see Figure 7.6). It is also deficient in its spectral accuracy

for this application. In this respect, auto-terms, rather than cross-terms, prove to be the
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filter

problem. While the frequency content along the vertical line of the EWR in the time-

frequency plane is nicely isolated from other content, the auto-terms resulting from the

interaction between each bit of energy on the vertical line and each other bit on that

same line cause the concentration of energy to be highest in the center of that vertical-

line component and taper to the ends. This can be misleading for evaluating the relative

intensities of the frequency content in the signal. When comparing the EWR filters, for

instance, errors vary significantly. If a triangular window filter is used, spectral errors

will be very low as the distribution naturally produces a triangularly-shaped intensity to

the components, but the triangular notch produces significant error since it opposes this

natural component shape (see Figure 7.7).

7.2.3 Windowed Wigner-Ville distribution

The windowed Wigner-Ville attempts to mitigate the cross terms of the Wigner-Ville,

adopting the window-size trade-off of the spectrogram. It does achieve generally better

separation between the specular and EWR returns than does the spectrogram on a wide

range of window sizes and delays (see Figures 7.8 and 7.3). It does still suffer considerably

when it comes to accuracy (see Figure 7.9), but this has more to do with the nature of

the distribution than the windowing. The explanation in Subsection 7.2.2 also applies

here. Figures 7.10 and 7.11 demonstrate this difference by comparing the reference FFT
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Figure 7.8: Windowed Wigner-Ville sepa-
ration; no filter

of the simulated EWR to the spectral cross-section of the time-frequency distribution at

the corresponding moment in time (EWR delay of 0.1 s and window width of 0.1 s).

7.2.4 Levin distribution

Regarding the separation score, the Levin distribution offers a substantial improvement

over the Wigner-Ville by removing the cross-term from between the components (see

Figures 4.10 and 7.12), but this compromises accuracy by essentially piling the cross-

terms atop the specular and EWR components. Note in Figure 7.13, that while not as

bad as the worst performance of the Wigner-Ville with the notched filters, it also does
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Figure 7.9: Windowed Wigner-Ville spec-
tral error; no filter
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Figure 7.10: Windowed Wigner-Ville EWR
spectral accuracy; TW filter
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Figure 7.11: Windowed Wigner-Ville EWR
spectral accuracy; TN filter
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Figure 7.12: Levin separation by EWR fil-
ter and delay

not achieve that distribution’s best results on the window filters, and would be difficult

to use effectively for this application.

7.2.5 Windowed Levin distribution

As with the Wigner-Ville distribution, windowing serves to remove cross-terms by iso-

lating components with a sufficient time separation. Compare Figure 7.14 with Figure

4.10 to observe the difference after applying a 0.1 s window. The separation scores are

relatively unchanged in comparison with the non-windowed Levin (see Figures 7.15 and
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Figure 7.13: Levin spectral error by EWR
filter and delay
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Figure 7.14: Windowed Levin EWR distri-
bution

7.12), but this is to be expected, since the Levin already keeps cross-terms from occur-

ring between two components. Interestingly, however, the fact that a cross-term is now

superimposed upon the EWR component makes windowing a proposition which reduces

spectral error for that component (see Figures 7.16 and 7.13). To the degree, then, that

the window sufficiently isolates the components, the spectral error is significantly reduced

over the non-windowed form. Adding the spectral filters to the EWR component does

not produce any substantially different result. Spectral errors with a filter applied tend

to be higher when the window is either much too narrow or when it is too long given the

EWR delay. The notch filters result in a somewhat lower separation score across window

size and delay.

7.2.6 Page distribution

The performance of the Page distribution looks very similar to that of the Levin since it

has the same issue of displacing the typical cross-term position—that of being between

the vertical components—to superposition with the EWR component. The primary dif-

ference, shown in Figure 4.11, from the Levin is that no cross-term is placed atop the

specular component. It was largely this observation (i.e. can the cross-terms be diverted
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Figure 7.15: Windowed Levin separation;
no filter
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Figure 7.16: Windowed Levin spectral er-
ror; no filter
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Figure 7.17: Page separation by EWR filter
and delay
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Figure 7.18: Page spectral error by EWR
filter and delay

to the specular component instead?) which led to the development of the proposed dis-

tribution, which will be examined later. Figures 7.17 and 7.18 show the performance

similarity with the Levin from Subsection 7.2.4.

7.2.7 Windowed Page distribution

As expected, windowing the Page distribution has a similar effect to that of windowing

the Levin, and in fact, the separation scores are very similar (compare Figures 7.19 and

7.15). Spectral error is generally higher with the windowed Page (see Figure 7.20) than

with the windowed Levin. This is a result of the fact that for EWR the cross-terms are all
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Figure 7.19: Windowed Page separation;
no filter
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Figure 7.20: Windowed Page spectral er-
ror; no filter
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Figure 7.21: Windowed Page EWR distri-
bution
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Figure 7.22: Windowed Page spectral er-
ror; TN filter

concentrated in the same time as the EWR component, unlike the Levin, which divides

the cross-terms between the spectral and EWR components. Compare Figures 4.6 and

Figures 4.7, observing the time axis for the off-zero lag components. Note also the artifacts

appearing on the right sides of the components in the time-frequency distribution itself in

Figure 7.21, hinting at that sidedness relative to the Levin in Figure 7.14. Spectral filters

also treat the windowed Page like the windowed Levin, with higher errors at the window

size extremities, except that the notch filters result in significantly higher errors across

delay and window size, as shown in Figure 7.22. Separation score is largely unchanged

regardless of spectral filter.
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Figure 7.23: Rihaczek separation by EWR
filter and delay
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Figure 7.24: Rihaczek spectral error by
EWR filter and delay

7.2.8 Rihaczek distribution

For the Rihaczek, the separation score is nearly identical to both that of the Levin and

that of the Page (see Figures 7.12, 7.17, and 7.23); however, the Rihaczek performs the

best of the three in regards to spectral error (see Figures 7.13, 7.18, and 7.24). Similar to

the Levin, the Rihaczek places cross-terms concurrently with both the specular and EWR

components (again leaving no cross-term between; see Figure 4.5), resulting in spectral

errors—even though they are smaller errors than the other two.

7.2.9 Windowed Rihaczek distribution

As mentioned with the non-windowed Rihaczek, separation scores mirror those of the

Levin and Page (see Figures 7.15, 7.19, and 7.25), but the Rihaczek’s superiority in

spectral error is clear in Figure 7.26 (see also Figures 7.16 and 7.20). Using any of the

described spectral filters results in increased spectral error when the window size is greater

than approximately twice the EWR delay. This is due to the fact that the window no

longer prevents the occurrence of the cross-term artifact pattern along the frequency axis

seen in Figure 4.9.
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Figure 7.25: Windowed Rihaczek separa-
tion; no filter
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Figure 7.26: Windowed Rihaczek spectral
error; no filter

7.2.10 B distribution

The B distribution is of a type different from the Levin, Page, and Rihaczek family

from the previous sections. Two variables will still be examined, but window size will

be replaced with the β parameter described in Subsection 3.2.8. The B distribution has

significant, early disqualification for EWR processing in its separation scores shown in

Figure 7.27. Figure 7.29 shows the cross-term contributing to the poor separation scores.

This is the nominal EWR processing case used before, and in this case β = 0.1. The

authors recommend β = 0.01 [3], but this seems unsuitable for the EWR scenario at hand,

as Figure 7.28 reveals that spectral errors become high across a wide range of EWR delays

as β approaches 0.01. The triangular and Hann window filters result in little change in

spectral error when compared with no filtering. The notch filters do increase the error

somewhat, especially in situations with short EWR delays (see Figure 7.30). Figure 7.31

shows the distortion from the B distribution resulting in the poor spectral error scores

for the triangular notch filter. The EWR delay is set to 0.1 s and β = 0.1.

7.2.11 Modified-B distribution

Modifying the B distribution as described in Subsection 3.2.9 provides no noticeable

improvement for the application of revealing elastic wave reradiation. Compare Figures
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Figure 7.27: B separation; no filter
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Figure 7.28: B spectral error; no filter
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Figure 7.29: B EWR distribution
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Figure 7.30: B spectral error; TN filter

7.27 and 7.28 with 7.32 and 7.33. There is no significant change in the cross-term or the

appearance of the EWR example in the time-frequency space at all (see Figure 7.34).

Note again that window size has been replaced as a variable by the β parameter.

7.2.12 Choi-Williams distribution

The Choi-Williams distribution offers a promising turn in this search through time-

frequency methods. While at first glance separation scores seem modest in Figure 7.35,

the score does not fully capture the performance. Figure 7.37 reveals that the distribution

spreads the energy remaining between the specular and elastic wave components quite

evenly—significantly reducing any risk that the cross-term energy could result in false
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Figure 7.31: B EWR spectral accuracy; TN
filter
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Figure 7.32: Modified B separation; no fil-
ter
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Figure 7.33: Modified B spectral error; no
filter
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Figure 7.34: Modified B EWR distribution

elastic components. Figure 7.36 shows that not only is separation good, but the spectral

error remains low across a range of delays and choices of σ, which takes the place of

window size in the two-dimensional scoring representations. Applying the TW spectral

filter has little impact on the separation score, but the spectral error still performs well

(see Figure 7.38), faltering only when the time spacing between the components becomes

small. The TN filter degrades performance further (see Figure 7.39), but this loss is

not, perhaps, decisive. The HW and HN filters perform analogously to the TW and TN,

respectively. Figure 7.40 shows the nature of the spectral error appearing when the TN

filter is used with EWR delay set to 0.08 s and σ to 0.12.
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Figure 7.35: Choi-Williams separation; no
filter
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Figure 7.36: Choi-Williams spectral error;
no filter
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Figure 7.37: Choi-Williams EWR distribu-
tion
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Figure 7.38: Choi-Williams spectral error;
TW filter
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Figure 7.39: Choi-Williams spectral error;
TN filter

0 20 40 60 80 100 120 140 160 180 200

frequency f (Hz) [k]

0

0.5

1

1.5

2

2.5

3
Spectral Accuracy Comparison Err=163.04

Reference

Distribution

Figure 7.40: Choi-Williams EWR spectral
accuracy; TN filter
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Figure 7.41: Born-Jordan separation; no
filter
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Figure 7.42: Born-Jordan spectral error; no
filter

7.2.13 Born-Jordan distribution

Like the Choi-Williams, the Born-Jordan distribution is one which has fairly diffuse

cross-term effects between the specular and EWR components, as shown in Figure 7.43.

Again, the separation scores in Figure 7.41 do not seem to completely capture the benefit

of this, since the focused cross-terms appearing halfway between the components in other

distributions are far more likely to be misinterpreted in noisy data as additional acoustic

components. The spectral error (see Figure 7.42) is perhaps not as impressive as the Choi-

Williams, but it is still quite good, getting noticeably worse when α (which has become

the horizontal axis variable) is small. The Born-Jordan performs well with the TW filter

(Figure 7.44) but has much more trouble with the TN (Figure 7.45). Performance on

components filtered by the HW or HN is comparable. The results suggest a choice of 1,

or slightly below, for the α parameter, where exists the region of lowest error and which

retains reasonable separation scores.

7.2.14 Zhao-Atlas-Marks distribution

The Zhao-Atlas-Marks distribution calls for less straightforward testing since it requires

searching across three variables—EWR delay, window size w, and choice of parameter

a. Holding the window size constant at 0.1 s to begin, a sweep of a reveals two differing
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Figure 7.43: Born-Jordan EWR distribu-
tion
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Figure 7.44: Born-Jordan spectral error;
TW filter

performance regions with respect to EWR. When a > 1 (Figures 7.46 and 7.47), spectral

error scores are generally poor, but separation is decent when the EWR delay exceeds

0.1 s. Performance under an EWR delay of 0.1 s is uniformly bad. The distribution fares

better when a < 1. Separation is worse, but the spectral error is significantly reduced,

making this likely preferable for EWR.

Here, two options will be compared: a low and a high option for a. Holding a at 0.35,

sweeping across window size produces Figures 7.50 and 7.51, and holding a at 1, Figures

7.52 and 7.53 are produced. Lest these plots incline one to choose a particularly narrow

window size, a brief look at Figures 7.54 and 7.55 reveal that the apparent advantage

at a < 0.01 is a product of the simple spectrum under consideration. When the EWR

component is filtered with the TN, it seems a better compromise to choose w = 0.03 s,

trying to get both a low spectral error and as much in the way of separation as possible.

And this is true for both a = 0.35 and a = 1. Examining Figures 7.56 and 7.57, the trade-

off in choice of a is made clearer. a = 0.35 provides a lower spectral error, and a = 1

produces better component separation. For comparison with the other distributions,

Figures 7.58 and 7.59 gives an idea of what the distribution looks like with w = 0.03 s

and with a = 0.35 and a = 1, respectively.
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Figure 7.45: Born-Jordan spectral error;
TN filter
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Figure 7.46: Zhao-Atlas-Marks separation;
no filter; a > 1; w = 0.1
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Figure 7.47: Zhao-Atlas-Marks spectral er-
ror; no filter; a > 1; w = 0.1
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Figure 7.48: Zhao-Atlas-Marks separation;
no filter; a < 1; w = 0.1

ZAM spectral error

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

E
W

R
 d

e
la

y
 (

s
)

0

50

100

150

200

250

300

Figure 7.49: Zhao-Atlas-Marks spectral er-
ror; no filter; a < 1; w = 0.1
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Figure 7.50: Zhao-Atlas-Marks separation;
no filter; a = 0.35
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Figure 7.51: Zhao-Atlas-Marks spectral er-
ror; no filter; a = 0.35
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Figure 7.52: Zhao-Atlas-Marks separation;
no filter; a = 1
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Figure 7.53: Zhao-Atlas-Marks spectral er-
ror; no filter; a = 1
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Figure 7.54: Zhao-Atlas-Marks spectral er-
ror; TN filter; a = 0.35
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Figure 7.55: Zhao-Atlas-Marks spectral er-
ror; TN filter; a = 1
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Figure 7.56: Zhao-Atlas-Marks separation;
TN filter; w = 0.03
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Figure 7.57: Zhao-Atlas-Marks spectral er-
ror; TN filter; w = 0.03
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Figure 7.58: Zhao-Atlas-Marks EWR dis-
tribution; a = 0.35; w = 0.03

7.2.15 Proposed distribution

Now the performance of the time-frequency distribution proposed in Chapter 4 will be

examined. Since the spectral fidelity of the EWR component is of such importance in this

application, it becomes clear why the proposed distribution was designed to move cross-

term influence away from it, at the acceptable cost of corrupting the specular component.

It will be noted that this isolation works well in the case of one specular and one EWR

component but not so, perhaps, when multiple EWR returns are arriving consecutively.

Indeed, perfect cross-term isolation will not be possible as an EWR component will be

corrupted by any additional component which happens to follow it.

Figure 7.60 shows that the proposed distribution makes no improvement over the

similar distributions—Page, Rihaczek, Levin—as expected. These all succeed in removing

the cross-term from between the specular and EWR components. The real advantage is

revealed in the reduced spectral errors in Figure 7.61. The distribution applied to the

example pulses has already been shown in Figure 4.12, but an example of the accuracy

achieved with the TN spectral filter, which has been a challenge for most distributions,

can be seen in Figure 7.62.
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Figure 7.59: Zhao-Atlas-Marks EWR dis-
tribution; a = 1; w = 0.03
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Figure 7.60: Proposed separation by EWR
filter and delay
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Figure 7.61: Proposed spectral error by
EWR filter and delay
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Figure 7.62: Proposed EWR spectral accu-
racy; TN filter

7.3 Multiple EWR components

A last element of the simulation which is necessary for completeness is the addition

of multiple EWR components. This will be accomplished by having one specular echo

followed two EWR echos at even spacing, providing the greatest opportunity for the first

and last components to interfere with the spectral accuracy of the one in the center. All

components will have the same amplitude, and when a spectral filter is applied, it will

be applied to both of the EWR returns. The spectral errors are recorded in Table 7.1.
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Table 7.1: Multiple EWR Spectral Errors

TF representation No filter TW TN HW HN Parameters
Spectrogram 60.1 22.5 55.7 17.0 42.1 w = 0.06 s
Wigner-Ville 419.1 228.7 593.2 225.1 629.2

Windowed Wigner-Ville 115.5 42.5 276.0 41.4 266.3 w = 0.06 s
Levin 286.6 288.3 335.1 312.7 356.1

Windowed Levin 12.2 2.7 32.3 2.5 28.6 w = 0.06 s
Page 286.6 347.7 413.7 410.3 471.0

Windowed Page 12.2 2.8 31.4 2.8 28.0 w = 0.06 s
Rihaczek 286.6 273.0 329.0 323.6 375.3

Windowed Rihaczek 12.2 2.7 32.3 2.5 28.6 w = 0.06 s
B 239.3 182.7 305.7 184.8 299.7 β = 0.1

Modified-B 333.2 220.9 333.8 230.5 336.9 β = 0.1
Choi-Williams 32.2 13.4 78.9 16.2 76.5 σ = 0.04
Born-Jordan 30.7 19.0 77.7 24.0 76.2 α = 1

Zhao-Atlas-Marks 39.6 31.2 61.7 22.3 67.7 w = 0.03 s, a = 0.35
Zhao-Atlas-Marks 109.0 101.5 91.6 99.1 102.4 w = 0.03 s, a = 1

Proposed 286.6 276.4 306.0 276.3 304.1
Windowed Proposed 12.2 2.7 33.0 2.3 29.0 w = 0.06 s

By far the best-performing distributions are the windowed versions of the Levin,

Page, Rihaczek, and proposed distributions. The spectral accuracy in this family is un-

surpassed, but they must have separation in time from the other components or the

cross-terms cause errors to skyrocket. Windowing succeeds here, except that, depending

on the object size and sonar frequencies involved, the spacing between the components

could be quite narrow. Assuming that windowing solves part of the problem, the remain-

der could be mitigated by using in parallel the counterpart distributions of the Page and

the one proposed. A comparison of the representations which shift cross-terms in opposite

directions may allow unraveling artifact interactions when the window happens not to be

small enough to separate components. Interestingly, even the windowing is not sufficient

to save the accuracy of the Wigner-Ville distribution, and neither of the B distributions

is competitive in this metric. In the middle are the spectrogram, and the Choi-Williams,

Born-Jordan, and Zhao-Atlas-Marks distributions, which perform acceptably. The earlier

observation about a = 0.35 performing better in terms of accuracy than a = 1 for the

Zhao-Atlas-Marks is borne out by this test.
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Table 7.2: Time-frequency SNR

TF representation SNR (dB) Parameters
Spectrogram 34.45 w = 0.06 s
Wigner-Ville 16.93

Levin 23.16
Page 23.82

Rihaczek 22.05
B 10.28 β = 0.1

Modified-B 15.81 β = 0.1
Choi-Williams 33.39 σ = 0.04
Born-Jordan 33.43 α = 1

Zhao-Atlas-Marks 29.50 w = 0.03 s, a = 0.35
Zhao-Atlas-Marks 32.77 w = 0.03 s, a = 1

Proposed 18.50

7.4 Signal-to-noise ratio

Using Equation 6.6, signal-to-noise ratios are given for each of the above time-frequency

representations using additive white Gaussian noise. The region of interest will surround

only the EWR component with a tight boundary, excluding the specular return and any

cross-terms not coincident with the EWR. One thousand trials of random noise for each

distribution will be used to estimate the expected value of the noise power. Results appear

in Table 7.2. Important for understanding this table is that cross-term energy appearing

inside the region will be counted as signal energy, while it may be argued this is not

necessarily part of the signal of interest. On the other hand, when considering SNR, the

pertinent question is whether one is able to discern the presence of the EWR component

against the background of noise at all. To this end any signal energy, cross-term or not,

within this highly restricted area is helpful.

Based on the results, there are three broad categories. First are the B, modified-B,

and Wigner-Ville distributions, which have the lowest SNRs of the lot. Taking also the

cross-terms present in each of them, the poor SNRs make a convincing case that they

are not appropriate for the sonar EWR application. The second category includes the

group having a related set of kernels and middling SNR performance—the Levin, Page,

Rihaczek, and the proposed distribution. The SNR deficiency of the proposed distribution
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compared to its sisters is likely due to the design choice to redirect the cross-term from

alignment with the EWR component, so then this loss is the cost of the spectral accuracy

gains. While these representations have good resolution along the time axis, they may

not be the best choice for revealing the signal in the presence of considerable noise. The

collected data investigated in Chapter 8 was generated under controlled circumstances

in an acoustic tank, so at least in that situation, noise is not much of a concern. The

last group performs the best in the SNR category. This includes the spectrogram, Choi-

Williams, Born-Jordan, and Zhao-Atlas-Marks distributions.

7.5 Conclusions

The next chapter examines the application of time-frequency representations to a set of

collected acoustic data. A common theme is that the choice of window size should be

on the order of the width of the pulse-compressed signal’s main lobe—a fairly intuitive

finding, which will be applied in processing of the sonar tank data. The foregoing simula-

tions will serve as a test for weeding out representations not worth further investigation

for the elastic wave reradiation application. Those ruled out include:

1. Wigner-Ville — The Wigner-Ville has fairly significant cross-term artifacts, result-

ing in a poor separation score. Spectral errors are high, except with TW or HW

spectral filters. Neither SNR or multiple EWR error levels provide any compelling

counter-argument.

2. Windowed Wigner-Ville — Windowing the Wigner-Ville helps with separation, of

course, but accuracy issues remain, and there are better options.

3. Levin, Page, Rihaczek, proposed — These distributions, in their un-windowed

forms, simply have too much of a problem with multiple EWR error. If one is

going to apply these at all for EWR, one may as well exercise control over a win-

dowing function.
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4. B, modified-B — These are perhaps the most ill-suited for the given application.

As discussed above, the cross-terms lead to poor separation scores, and neither the

SNR nor the multiple EWR errors prove redemptive.

5. Windowed Levin, windowed Page, windowed Rihaczek — These will be eliminated

simply because of their close similarity to the windowed proposed distribution and

because it does not seem necessary to send another from this family of distributions.

By process of elimination, the performance of the following will be further analyzed

in Chapter 8:

1. Spectrogram — The spectrogram serves as a good baseline for comparison, partic-

ularly since it does not suffer from cross-term issues.

2. Choi-Williams, Born-Jordan, Zhao-Atlas-Marks — These are grouped due to their

very similar performance. They have some of the highest SNRs of the bunch and

have respectable multiple EWR error scores. Additionally, these distributions solve

the problem of cross-terms by dispersing the energy rather than focusing the cross-

terms exactly halfway between components. Windowed distributions, including

the spectrogram, can achieve very high separation scores of around 0.9, where

the Choi-Williams and Born-Jordan do not. Subjectively, however, the latter do

apparently well at separation because of their diffuse cross-terms and sidelobes

(See again Figures 7.37 and 7.43). It seems sufficient energy is present to suppress

their separation scores, but the benefit of the diffuse energy is not captured in the

metric, as the diffuse energy is more easily ignored than the focused cross-term of

the Wigner-Ville distribution.

3. Windowed proposed — This maintains the advantages of others in its family but

with the added benefit of deflecting cross-terms toward the specular rather than the

EWR components. This latter property works hand-in-hand with the windowing

to ensure that, even if the window captures more than one component at a time,

the cross-terms are relatively controlled and shift in a preferable direction.
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Chapter 8

Acoustic tank data

This data set was collected in a tank in the Acoustics Test Facility at the Naval Undersea

Warfare Center (NUWC) in Newport, RI in August of 2012. It involved active sonar

recordings of three different 4 in.-diameter, 1 m-long air-filled cylinders with endcaps. The

geometries were identical, save minor variations in the endcaps, while the three different

materials were steel, aluminum, and PVC . Data was collected at incident angles θ of 0◦,

15◦, 30◦, 45◦, 60◦, and 90◦, where 0◦ indicates that the transmitted waveform is directly

incident upon the endcap and 90◦ that the incidence is broadside to the cylinder. The

intent was to demonstrate variation in the acoustic responses of materials with different

elasticities. The three have quite different Young’s moduli of elasticity: ≈ 200 GPa for

steel, 70 GPa for aluminum, and < 5 GPa for PVC. With the same shell thickness in

each, the differences will be carried forward into the respective bending stiffnesses. Six

incident angles, five transmitted signal bandwidths, and three acoustic targets make up

the data set, creating a total of 150 individual recorded transmissions. Figures 8.1-8.3

show the cylinders used during the data collection.

8.1 Transmitted waveforms

This data set used five non-standard wide-band waveforms with the frequency charac-

teristics detailed in Table 8.1. Figure 8.4 shows the nature of these signals in the time

domain. Figure 8.7 provides the frequency domain, and Figures 8.5, 8.6, 8.8, 8.9, and

8.11 provide the spectrogram time-frequency representations. In the latter figures it is

apparent that there is no simple structure underlying the time-frequency design of the
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Figure 8.1: Steel cylinder used in acoustic tank experiments

Table 8.1: Transmitted waveform frequency characteristics

Center frequency (kHz) Frequency span (kHz) Bandwidth (kHz)
20 5 – 35 30
50 20 – 80 60
65 35 – 95 60
85 55 – 115 60
120 90 – 150 60

signal. The waveform does not have a constant amplitude, nor does it have well-defined

boundaries at the limits of its bandwidth. Figure 8.10 shows the autocorrelation of these

waveforms to provide insight into the time resolution of the signal as a sonar transmis-

sion. The recorded data is purely real, and for the purposes of this analysis, the Hilbert

transform is used to generate corresponding imaginary data to form a complex analytic

signal. For brevity, the waveforms will be referred to by their center frequencies.

69



Figure 8.2: Aluminum cylinder used in acoustic tank experiments

Figure 8.3: PVC cylinder used in acoustic tank experiments
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Figure 8.4: Tank data transmitted waveforms shown in the time domain
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Figure 8.5: Spectrogram of tank transmit
waveform centered at 20 kHz
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Figure 8.6: Spectrogram of tank transmit
waveform centered at 50 kHz
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Figure 8.7: Tank data transmitted waveforms shown in the frequency domain
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Figure 8.8: Spectrogram of tank transmit
waveform centered at 65 kHz
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Figure 8.9: Spectrogram of tank transmit
waveform centered at 85 kHz
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Figure 8.10: Tank data transmitted waveform autocorrelations in dB
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Figure 8.11: Spectrogram of tank transmit
waveform centered at 120 kHz
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8.2 Methodology

The purpose of investigating this data is to examine whether an acoustic reflector’s mate-

rial composition alone may be enough to differentiate it from a similarly-shaped reflector,

whether the theory on elastic wave reradiation is consistent with experimental obser-

vation, and whether appropriate time-frequency representations are sufficient to enable

such differentiation. Unlike the foregoing simulations, there is no a priori knowledge of

the reflected and reradiated signals, so a determination of representation accuracy sim-

ilar to that used with the simulation data previously is not possible. This additionally

means that tuning of the distribution parameters cannot be done as previously. The

choice of values based upon the simulation will be carried forward into the tank data

processing—namely, σ = 0.04 for Choi-Williams, α = 1 for Born-Jordan, and a = 1 for

Zhao-Atlas-Marks. The latter is selected over a = 0.35 based on the need for better

temporal separation between components and is further explained in Subsection 8.3.1.

The assumptions for this approach are two: first, that choice of parameter is not overly

sensitive and being close to an “optimized” value is sufficient; and second, that hav-

ing the autocorrelation main lobe widths and the distribution kernel dimensions remain

comparatively proportional for the tank data as they were in the simulation is enough

to produce similar performance. Window sizes for this analysis will be on the order of

the autocorrelation main lobe widths (see Figure 8.10). This means a width of 250 µs

for the spectrogram and the proposed distribution and 125 µs for the Zhao-Atlas-Marks

distribution.

8.3 Observations

To begin, a representative sonar echo from the data set is selected to provide a general

sense of the performance of the different distributions. That echo will be shown in each

of the five distributions for comparison. First, the time series is shown in Figure 8.12.

Figures 8.13—8.17 show the corresponding TF distributions.
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Figure 8.12: Time series, PVC, 45◦, 50 kHz center frequency
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Figure 8.13: Spectrogram (dB), PVC, 45◦,
50 kHz center frequency
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Figure 8.14: Choi-Williams TF dist. (dB),
PVC, 45◦, 50 kHz center frequency
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Figure 8.15: Zhao-Atlas-Marks TF dist.
(dB), PVC, 45◦, 50 kHz center frequency
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Figure 8.16: Born-Jordan TF dist. (dB),
PVC, 45◦, 50 kHz center frequency
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Figure 8.17: Proposed TF dist. (dB), PVC,
45◦, 50 kHz center frequency
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Figure 8.18: Proposed TF dist. (dB), steel,
15◦, 85 kHz center frequency

The frequency content which appears in the upper frequencies outside the transmit-

ted signal’s bandwidth is related to the use of the deconvolution for pulse compression

and to the discrete Hilbert transform used to form the complex analytic signal. The con-

tent can be reduced by increasing α such that the operation becomes closer to a matched

filter (see Section 2.2), and using a matched filter nearly eliminates it. The remainder is

due to the imperfect removal of the mirrored half of a purely real signal’s spectrum in the

formation of the analytic signal through the Hilbert transform (see Appendix A). Some

of the transmitted waveforms are more likely to produce this effect, for instance, the

waveform with 85 kHz center frequency. This extra-band content can simply be ignored,

however; the advantage of suppressing much of the temporal sidelobe content through

the use of the deconvolution is preferable.

Generally speaking, there are significant differences among the acoustic responses of

the three materials, some of which are readily observable in the time domain. For incident

angles of θ ≤ 45◦, acoustic responses following the specular are much weaker for the PVC

than for the steel or aluminum. Further, aluminum displays a thick wave of apparent

EWR response for the intermediate incident angles. See the proposed distribution’s

representation of the three materials at 15◦ incidence and with the 85 kHz waveform in

Figures 8.18—8.20.
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Figure 8.19: Proposed TF dist. (dB), alu-
minum, 15◦, 85 kHz center frequency
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Figure 8.20: Proposed TF dist. (dB), PVC,
15◦, 85 kHz center frequency

8.3.1 RMS-normalized distribution difference scores

As described in Section 6.2, a quantification of the material differentiation provided by

the various TF distributions is sought. Figure 8.21 shows the roll-up of the difference

score D, averaged across all incident angles and transmitted waveforms for each pairing

of the three materials. Interestingly, the spectrogram performs best on this account, and

by a considerable margin. The Born-Jordan and Choi-Williams distributions come next,

and are nearly identical in this scoring, followed by the Zhao-Atlas-Marks with a = 1, the

proposed distribution, and the Zhao-Atlas-Marks with a = 0.35. Universally across the

distributions, aluminum and PVC are the easiest to distinguish, generally trailed by steel

versus PVC, and then steel versus aluminum, which are the most difficult to differentiate.

Based on the these results, the previous simulations, and initial examinations of the

processing results from the collected data, the Zhao-Atlas-Marks with a = 1 will be

primarily considered. Despite the increased spectral accuracy achieved by the smaller

choice for a (w = 0.03 is held constant for both choices), the gains do not outweigh the

disadvantages of the large and high side-lobes.

A caveat to interpreting these values is that this metric may penalize high-resolution

distributions. The calculation is a fairly direct normalized element-wise difference of

two materials in a given distribution. If a distribution forms TF components which are
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Figure 8.21: RMS-normalized distribution difference scores

large in the TF plane, and a competing distribution forms small components from the

same signal, that may result in increased element-wise difference between two materials

evaluated in that distribution, in spite of normalization. This is a possible explanation

for the good performance of the spectrogram, which is the weakest of the five in terms of

resolution. However, the Zhao-Atlas-Marks has a weaker resolution, but does not have

particularly good difference scores. At the very least, scores within a given distribution

are meaningful, and it is a useful confirmation that PVC is measured as the most outlying

material.

8.3.2 Identifying the cylinder ends

An initial important reference point for analyzing the time-frequency response of these

cylinders is the specular reflection, which, for the end of the cylinder nearest to the

hydrophone, is easy to identify as the chronologically first (and loudest) component. Since

the endcaps overhang the cylinder ends, however, it introduces an additional specular

component returning from the corner created by the furthest endcap (see Figure 8.22).
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Figure 8.22: Ray geometry of tank data primary acoustic paths

The approximate arrival times of these components can be determined from a geom-

etry calculation to find the difference in acoustic path length. For many of the recorded

returns, the pattern of the strong specular component followed by a secondary distinct

component (which, as will be discussed, is likely a combination of a specular return from

the far endcap and reradiation of a meridional a0 wave) is clearly observed. As the

cylinder’s supporting apparatus is rotated through increasing incident angles θ toward

broadside, these two components indeed converge in time, and thus range, in proportion

to the cosine of the angle θ. This pattern can be observed in Figures 8.23—8.28, which

contain the spectrograms of the steel cylinder with the 120 kHz waveform. Notice the

return from the further endcap is relatively obscured at end-on incidence, which is ex-

pected, and after rotation, it comes into the “view” of the sonar and produces a stronger

return. This return meets the initial specular return as the incidence angle reaches 90◦.

As similar as the geometries of the cylinders are, it is apparent from the provided

photographs that they are not identical. One difference that impacts the analysis of the

data in this case is the shape of the endcap. For the aluminum and steel cylinders, they

are generally flat, whereas the PVC endcap is more rounded. The impact of this is that,
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Figure 8.23: Spectrogram (dB), steel, 0◦,
120 kHz center frequency
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Figure 8.24: Spectrogram (dB), steel, 15◦,
120 kHz center frequency
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Figure 8.25: Spectrogram (dB), steel, 30◦,
120 kHz center frequency
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Figure 8.26: Spectrogram (dB), steel, 45◦,
120 kHz center frequency
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Figure 8.27: Spectrogram (dB), steel, 60◦,
120 kHz center frequency
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Figure 8.28: Spectrogram (dB), steel, 90◦,
120 kHz center frequency
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Figure 8.29: Proposed TF dist. (dB), steel,
0◦, 85 kHz center frequency
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Figure 8.30: Proposed TF dist. (dB), alu-
minum, 0◦, 85 kHz center frequency

in the end-on incidence situation, the specular return of the near end is slightly spread

in time, since the incident plane wave is not arriving at the entire surface of the endcap

at the same time. Compare the three materials under identical acoustic stimulation

by the 85 kHz waveform at θ = 0◦ represented by the proposed distribution in Figures

8.29—8.31.

Additionally, these figures show a component visible at the intermediate incident

angles at t ≈ 3 ms which is not as straightforward to attribute. Curiously, it is not

dependent upon incident angle for its arrival time, as other EWR components are observed

to be [31]. While not clearly visible at θ = 0◦ or θ = 90◦, it remains quite fixed in time

across the other angles. It is also chiefly present only for the steel and PVC cylinders—not

for aluminum. Additionally, it does not respond at the full bandwidth of the transmitted

waveform, preferring instead to respond primarily in regions around 125 kHz, 50 kHz,

and 20 kHz. The fact that its arrival time does not vary with incident angle suggests

that this may be an artifact of the support apparatus or the geometry of the cylinder in

the tank itself. Nevertheless, it exposes the importance of the spectral accuracy metric

developed for the simulation portion of this work. High bandwidth waveforms are known

to provide better discrimination and classification information in both sonar and radar,

and having a time-frequency distribution which faithfully describes the spectral content

across the duration of the return and with high temporal resolution is critical. Figures
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Figure 8.31: Proposed TF dist. (dB), PVC,
0◦, 85 kHz center frequency
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Figure 8.32: Born-Jordan TF dist. (dB),
PVC, 45◦, 65 kHz center frequency

8.32 and 8.33, reveal this final component’s absence in the aluminum cylinder and its

lack of wideband support.

8.3.3 Broadside incidence

Examination of the broadside incidence (θ = 90◦) offers a strong point of concurrence with

the acoustic literature. For both the steel and aluminum cylinders there are appearances

of the a0 and a0− Lamb waves (see Morse [31]). They are notably absent from the PVC

returns—a good sign for potential discrimination. First, consider the a0. It is a wideband

peak following closely upon the specular return. Comparing Figures 8.34-8.36, note that

this appears with the steel and aluminum cylinders at t ≈ 2.1 ms, but this feature is

missing for the PVC. The same is true with the a0−. See the narrowband response fading

over time out to t ≈ 2.7 ms in Figures 8.37 and 8.38, importantly in a lower portion of the

full, explored bandwidth, which is consistent with Morse’s observation. Each repetition

is the result of a subsequent circumnavigation of the cylinder. This occurs in a lower

portion of the band because of the lengthy traversal of the shell surface—possibly with

multiple laps. This results in greater attenuation of the higher frequencies, so they are

less likely to make the journey. Again, it is absent from the PVC response in Figure 8.39.
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Figure 8.33: Born-Jordan TF dist. (dB),
aluminum, 45◦, 65 kHz center frequency
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Figure 8.34: Proposed TF dist. (dB), steel,
90◦, 50 kHz center frequency
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Figure 8.35: Proposed TF dist. (dB), alu-
minum, 90◦, 50 kHz center frequency

PVC 90deg 50kHz wind.-new Time-Frequency Dist. (
z
)

0.5 1 1.5 2 2.5 3 3.5

time t (s) [n] 10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

fr
e

q
u

e
n

c
y
 f

 (
H

z
) 

[k
]

105

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 8.36: Proposed TF dist. (dB), PVC,
90◦, 50 kHz center frequency
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Figure 8.37: Proposed TF dist. (dB), steel,
90◦, 20 kHz center frequency
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Figure 8.38: Proposed TF dist. (dB), alu-
minum, 90◦, 20 kHz center frequency
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Figure 8.39: Proposed TF dist. (dB), PVC,
90◦, 20 kHz center frequency
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Figure 8.40: Spectrogram (dB), PVC, 45◦,
85 kHz center frequency

8.3.4 Meridional a0

The literature describes the contribution of the meridional ray, which arrives concurrently

with a specular return from the more distant end of a tilted (not end-on or broadside)

cylindrical shell [32]. It also predicts that the frequency of this component decreases as the

incidence angle approaches end-on. In the case of the current data set, this is potentially

a difficult feature to identify, since the endcap creates a strong specular return which is

difficult to disentangle. This is why the effect may possibly be observed in the PVC, as

its specular far-end returns are weak in comparison to those of the steel and aluminum.

Additionally, the meridional effect is traced across a very wide band in the literature,

which may well exceed the bandwidth used in the present data collection. Nevertheless,

it offers a potential discriminating feature which is identifiable in only one of the three

targets. See the shifting component move from t ≈ 2.5 ms and 100 kHz—120 kHz in

Figure 8.40 through 80 kHz—100 kHz in Figure 8.41 to 80 kHz—90 kHz in Figure 8.42.

8.4 Time-frequency distributions

8.4.1 Spectrogram

The straightforward spectrogram, here, as in many other applications, does not fail to

be a decent option. The most noticeable difference from the other distributions under
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Figure 8.41: Spectrogram (dB), PVC, 30◦,
85 kHz center frequency
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Figure 8.42: Spectrogram (dB), PVC, 15◦,
85 kHz center frequency

consideration is the lack of time-frequency resolution in the spectrogram. There are

two echo peaks closely spaced in time at t ≈ 1.6 ms which are visible and resolvable in

Figure 8.14. Such a differentiation is much more difficult with the spectrogram in Figure

8.13. This could be counteracted to some extent by reducing the window size, but the

simulations demonstrated that there is not much room for reduction without significant

costs to the spectral accuracy. Nevertheless, the ability to cut through noise and generate

a quantitative difference between the materials is noteworthy.

8.4.2 Choi-Williams and Born-Jordan distributions

The Choi-Williams and Born-Jordan distributions will be considered together as they

produce highly similar representations of the tank data. This is merely a continuation of

the similarities revealed in the simulation experiments in all respects—separation scores,

spectral accuracy, multiple EWR handling, and SNR. The primary difference appears

to be that the Born-Jordan TF distribution sidelobes are somewhat broader and exhibit

more rippling than those of the Choi-Williams. Such differences, however, are really only

visible at around 30 dB below the representation peak, and are relatively minor. Even

so, this is sufficient to recommend the Born-Jordan over the Choi-Williams, since the

latter has no apparent advantage. Compare Figures 8.43 and 8.44, which showcase the

differences.
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Figure 8.43: Choi-Williams TF dist. (dB),
aluminum, 30◦, 65 kHz center frequency
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Figure 8.44: Born-Jordan TF dist. (dB),
aluminum, 30◦, 65 kHz center frequency

8.4.3 Zhao-Atlas-Marks distribution

As discussed above, the sidelobe reduction gained by keeping a at 1 rather than 0.35

appears to be important for this EWR application. The resolution is necessary to compete

with the other distributions under consideration; the resolution, however, still seems

lacking. The fact that the choice of a = 1 is likely to reduce spectral accuracy does

little to recommend it over the alternatives, even if it does gain some ground on the

normalized difference scores. This is perhaps not surprising, as the ZAM is a special case

of the Born-Jordan, as discussed earlier. Since analysis of the Born-Jordan did not lead

to that special case for EWR, it is unlikely that restraining the Born-Jordan to be the

ZAM is going to result in better performance.

8.4.4 Windowed proposed distribution

The proposed distribution produces a fine resolution along the time axis and a more

delicate sidelobe pattern. There do not seem any major shortfalls in the representations

produced out of this data set, but the modest performance with regard to SNR and

the normalized difference scores must be noted. An interesting opportunity to observe

a previously noted distribution property appears with the 120 kHz waveform and the

aluminum cylinder in Figure 8.45. Notice that in the nearly single-component signal, the
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Figure 8.45: Proposed TF dist. (dB), alu-
minum, 0◦, 120 kHz center frequency

cross-term artifacts extend only to the left of the specular return. This helps protect the

EWR components from cross-term interference.

8.5 Conclusions

The first result is a simple verification of the acoustic literature that the material prop-

erties of a sonar target influence the nature of the elastic surface waves excited on it.

Two types (three, if the meridional is actually observed here) of waves described in the

acoustic literature are observed in the data set under consideration, and they indeed vary

across the different object materials, supporting the claim that this type of sonar discrim-

ination is possible. These experiments also demonstrate that a particular TF distribution

can perform better than other candidates at making different materials “look” different

across a range of frequencies and aspect angles when by design the primary variable is

material. Although EWR is a function of both geometry and material, controlling for

geometry helps ensure that observed differences are indeed the result of variations in the

reradiation of elastic surface waves.

For the processing of this tank data, this investigation supports the choice both

of the Born-Jordan and the proposed distributions, and the main driver of the choice

between those two is the amount of noise. SNR is the biggest weakness of the proposed

distribution, and although it performs well for this data, there is very little noise to speak
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of. In a more realistic sonar environment, the Born-Jordan is likely to be preferred. The

strength of the proposed distribution is in its reduced sidelobes. Both distributions,

however, acceptably represent the time-frequency features of interest in this data set.

A final note is that when using any of these distributions, one must be aware of

the inherent artifact patterns. They are different for each distribution and must not be

confused with legitimate spectral content. The Choi-Williams and Born-Jordan produce

a cross-hatched texture. The spectrogram is pock-marked in a dense time-frequency

scene. The proposed distribution tends to produce a series of vertical filaments, and the

Zhao-Atlas-Marks has its characteristic lobed structure. For this reason, the examination

of the data using a variety of distributions is enlightening; components that are common

to all are almost certain to be legitimate.
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Chapter 9

Innovation and Relevance

Research has been conducted on the acoustics of elastic waves in spherical and cylin-

drical solids and shells underwater. These efforts suggest that classification advantages

may be had in sonar signal processing, and the potential benefits have not been thor-

oughly explored as yet. Two major modern sonar applications, that of anti-submarine

warfare and that of naval mine countermeasures, involve the detection and classification

of man-made shells—often in roughly cylindrical and spherical shapes (though with com-

plex internal structures). These shells differ markedly in their abilities to support, and

therefore reradiate, elastic waves from naturally-occurring oceanic false alarms like rocks.

Interestingly, more than simply discriminating against rocks in favor of man-made shells,

this classification method could be used to differentiate metals (provided sufficient dif-

ference in elastic moduli). Two shells of the same thickness, one of aluminum and one of

stainless steel, may well be differentiable based on elastic wave reradiation. Further, such

an ability is not limited to military use. Humanitarian efforts to dispose of unexploded

naval ordnance would be enhanced by better sonar discrimination. Thousands of naval

mines remain in the Baltic Sea, for instance, from World Wars I and II. There is also

need for more effective discovery of wreckage on the sea floor, and acoustic concepts in

this dissertation might aid in searching for oil and natural gas beneath the sea floor. In

short, knowledge of the oceans is still quite limited, and a sonar sensitive to elastic wave

reradiation would make them more transparent.

While there has been some investigation of elastic responses for these sonar appli-

cations, what has received little attention, and what is undertaken in this dissertation,
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is an examination of the various quadratic time-frequency signal processing methods in

light of the physical phenomena to determine the best approaches. The research aim

has been to provide theoretical, practical, and quantifiable rationales for the methods

preferable in this application, supported by in-water test data. Theoretical justification

was also provided to reinforce confidence in the results. Additionally, given the extensive

time-frequency investigation necessary to this work, it was appropriate to develop a new

time-frequency representation, tailored especially to the sonar elastic response problem,

an innovation which may well see use outside its original purpose.

A major novelty is the confluence of information from three significant realms: the

study of elastic acoustic phenomena, the time-frequency signal processing theory, and

the effort to solve the practical sonar discrimination problem. The references provided in

this dissertation deal with one or at most two of these subjects at a time. Considerable

further convergence of these lines of work will be necessary to bring maturity and practical

efficacy to the technology.
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Chapter 10

Concluding remarks and future work

There are two primary questions answered by this work:

1. Can objects of differing materials be discriminated using the signal content in sonar

returns?

2. Which time-frequency representations best facilitate this discrimination?

A major line of investigation centers on whether EWR-based discrimination can be

effectively realized in practical sonar situations. The undersea environment is a notori-

ously fickle medium for remote sensing, and the signal components required to perform

this type of analysis can be subtle. The further complication is the fact that practical

subjects of sonar interrogation are not canonical shapes. Generally they are shells, which

is promising for the presence of elastic waves, but they sport complex internal structures.

Thus, identifying elastic waves of a particular type in what is certain to be a confused

web of echoes from a complicated structure will not at all be easy. That notwithstand-

ing, the acoustics literature—both in theory and in controlled experimentation—and the

experimental data reviewed above support the claim that such discrimination is possible;

numerous overt differences exist among the different materials, even if they are not all

easily attributable to a particular acoustic phenomenon. Future data collections should

consider other ways of truncating the cylinders which are more uniform across the materi-

als and should target particular EWR components with a bandwidth which helps ensure

their observation based on the acoustic theory.
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As described above, the TF representation comparison narrows down to the Born-

Jordan and the proposed distributions—the former to be preferable under noisy con-

ditions. First, the simulations and acoustic theory provided grounds for ruling out a

number of distributions as unsuited to the EWR problem. From there, application of

the remaining contenders to in-water EWR sonar data quantitatively and qualitatively

supported paring down the number to two. An interesting finding is the aptitude which

the proposed distribution (and, for that matter, its family of similar distributions) has

for accurately representing the spectrum of a short, pulse-type waveform. These two

quadratic TF distributions (at least) perform well at the types of tasks necessary to the

discrimination of sonar targets based on EWR.

This is quite early in the technology development process. Specific and reliable

discrimination features will need to be identified before an algorithmic approach can be

properly applied. This will necessitate further controlled experimentation and, if possible,

experimentation at the scale (in both sonar range and frequency) of the EWR application

in view. Computational complexity will become relevant. None of these is trivial, but

the groundwork laid here underpins further inquiry.

S.D.G.
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Appendix A

The discrete Hilbert transform

Oftentimes in waveform design a complex signal z (t) is produced which is known as the

analytic signal [6]. The Hilbert transform,

H{s (t)} = s (t) ∗ 1

πt
, (A.1)

relates the real and imaginary parts of this signal, such that

z (t) = s (t) + jH{s (t)}. (A.2)

A purely real version of the signal may be required, however, if it is to be physically

generated. This is most naturally done by using the real portion of the complex signal

and dispensing with the imaginary. In modern practice, such a signal is almost certain to

be discrete, so care must taken in leaving aside the imaginary part. The imaginary is said

to be in quadrature to the real, or at a π/2 phase offset for each sample. Naturally this

provides pertinent frequency information in signal analysis, as the frequency spectra of

complex signals are “one-sided” and of real signals, symmetrical. Regarding only the real

part of such a complex signal increases the frequency ambiguity and results in aliasing if

the sampling rate is sufficiently low.
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Appendix B

On the product of waveform bandwidth and pulse duration

A brief demonstration of the idea that the product of waveform bandwidth fBW and pulse

duration T , rather than either independently, determines the width of the main lobe in

matched filter output.

First, consider a linear frequency-modulated transmit waveform given by

x (t) = pT (t)
[
ejπ

fBW
T

t2+j2πfst
]
, (B.1)

where fs is the starting frequency and pT (t) is the rectangular pulse function, equal to 1

for −T
2
≤ t ≤ T

2
and 0 elsewhere. To determine what influences the main lobe width in

the matched filter, solve

MFx [x (t)] = x (t) ∗ x (−t). (B.2)

Instead of the typical convolution formulation

y (t) =

∫ ∞
−∞

f (τ) g (t− τ) dτ, (B.3)

consider

y (t) =

∫ ∞
−∞

f (τ) g (− (−t+ τ)) dτ (B.4)

=

∫ ∞
−∞

f

(
t

2
+ τ

)
g

(
−
(
− t

2
+ τ

))
dτ (B.5)

=

∫ ∞
−∞

f

(
t

2
+ τ

)
g

(
t

2
− τ
)
dτ, (B.6)
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where the t offset is distributed between the functions to help with the derivation. So,

MFx [x (t)] =

∫ ∞
−∞

x

(
t

2
+ τ

)
x

(
− t

2
+ τ

)
dτ, (B.7)

= ej2πfst
∫ ∞
−∞

pT

(
t

2
+ τ

)
pT

(
− t

2
+ τ

)
ej2π

fBW
T

tτdτ (B.8)

through substitution and simplification. The pulse functions can be used to simplify the

limits of integration, giving

MFx [x (t)] =


ej2πfst

∫ − |t|
2
+T

2
|t|
2
−T

2

ej2π
fBW
T

tτdτ, −T ≤ t ≤ T

0, otherwise

. (B.9)

After integration and the use of Euler’s formula and trigonometric identities, the nonzero

case becomes

MFx [x (t)] = ej2πfst
sin
(
π fBW

T
t (T − |t|)

)(
π fBW

T
t
) , −T ≤ t ≤ T. (B.10)

The two zeros of this function closest to t = 0 will give the width of the main lobe.

For that purpose, the sine term is relevant since the complex exponential has always a

magnitude of one. The sine is zero when its argument is zero, but that, of course, is the

peak of the main lobe due to t in the denominator. Moving outward, the next zeros occur

when the sine argument is ±π. Now a general solution is desired, which is not dependent

on T , so t
T

will be solved for instead, to demonstrate that the matched filter main lobe will

have the same width relative to T as long as the time-bandwidth product is constant. So

assume fBWT = c, where c is a constant. Now this admits that the main lobe width will

change in absolute terms for a constant time-bandwidth product, but generally a sonar

system’s sampling rate will depend directly upon the transmit waveform bandwidth. So

also assume a sampling rate σ is determined by the bandwidth and a percentage factor

pσ,

σ = pσfBW. (B.11)
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So how many samples N will occur in the period of 2T over which the matched filter is

defined?

N = 2Tσ = 2TpσfBW = 2pσc, (B.12)

so while the absolute duration of time spanning the width of the main lobe will change

with varying time-bandwidth product, the number of samples spanning that main lobe

will not, given the above assumptions.

Returning to the primary line of reasoning, it remains to be shown that the main

lobe width will in fact remain constant for t
T

. The argument then of the sine in Equation

B.10 is ±π when

fBW
t

T
(T − |t|) = ±1. (B.13)

This yields a set of four equations summarized by

fBW
t

T
(T ± t) = ±1, (B.14)

which are valid for different t, but the form of the equations is what is important here.

Assuming the constant time-bandwidth product, this can become

±c
(
t

T

)2

− c
(
t

T

)
± 1 = 0. (B.15)

Solving for t
T

with the quadratic formula, it is seen that the solutions depend only on the

time-bandwidth product, and variation in the absolute time duration of the main lobe

is accounted for by variation in the sampling rate, resulting in the matched filter output

looking effectively the same when the time-bandwidth product is kept constant.
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