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Abstract 

 

There has been a growing interest in neuroscience data, encompassing fields like 

engineering, bioengineering, and neurophysiology. Researchers increasingly utilize neural 

signals, including electroencephalography (EEG) signals and functional Magnetic Resonance 

Imaging (fMRI), for various applications like control systems, communication, and medical 

diagnostics. While numerous models have been developed to explain the relationship between 

these signals and motor or mental activities, it is still unclear how much information can be 

decoded from them. Thus, the exploration of neural signal data is still in progress.  

Neural signals are inherently characterized as time series data. Most analysis prioritize 

frequency domain information over time domain. Even when exploring the time domain, these 

signals are often treated as discrete time points for multivariate analysis, neglecting essential 

functional dynamics such as continuity and smoothness. Functional data analysis (FDA) 

facilitates the extraction of information from both the time and frequency domains while 

considering the temporal dependencies inherent in neural signals. Hence, employing FDA to 

analyze neural signals is a promising approach.  

In this dissertation, we focus on the development of neural signal data analysis with FDA. 

Specifically, we explore the application of FDA across every phase of signal processing for 

EEG data, which is a representative data type in neural signal analysis. Firstly, we develop a 

comprehensive three-stage classification algorithm rooted in functional data analysis, offering 

the distinct advantage of interpretability. Next, we introduce a robust determination method to 

automatically identifying the optimal number of ICs. Notably, this method is designed to 

seamlessly integrate with a variety of ICA techniques, thus ensuring the consistent and reliable 

generation of results. Furthermore, we propose a robust functional ICA (fICA) method, that 

significantly enhances the accuracy and reliability of subsequent analysis pertaining to 

recovered ICs. 

In summary, this dissertation encompasses the introduction of a functional classification 

algorithm, dimension reduction techniques, and robust fICA methods tailored for the 

neuroscience data analysis. 
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Chapter 1 

 General Introduction 

The human brain is a complex organ, influenced by various factors ranging from finger 

movement to heartbeat, and plays a crucial role in behavior control and emotional states. The 

analysis of neuro signals is of paramount importance in the realm of neuroscience and beyond. 

These intricate signals, often recorded through methods like EEG or fMRI, provide a window 

into the workings of the human brain. Understanding and interpreting neuro signals hold the 

key to unraveling the mysteries of cognition, behavior, and emotions. By studying these signals, 

researchers can gain valuable insights into neurological disorders, cognitive processes, and 

emotional states. Moreover, the application of neuro signal analysis extends to fields as diverse 

as brain-computer interfaces, mental health diagnostics, and the development of assistive 

technologies. In essence, the analysis of neuro signals not only deepens our comprehension of 

the brain but also has far-reaching implications for healthcare, technology, and our overall 

understanding of human nature. Despite the establishment of numerous models aimed at 

explaining the relationship between neural signals and motor activity, mental states, and 

cognitive processes, it remains uncertain to what extent information can be decoded from these 

signals. Hence, the exploration of neural signal data is an ongoing venture.  

Neuro signals are inherently treated as conventional time series data. However, in the 

majority of analytical investigations, researchers tend to pay more attention to information 

extracted from the frequency domain, compared to the time domain. Furthermore, even when 

delving into the time domain, neural signals are routinely treated as discrete time series and 

applied to multivariate analysis. Even though it is widely embraced, the classical multivariate 

approach overlooks the intricate functional dynamics inherent in the data generation process, 

including continuity and smoothness. Moreover, it also suffers from highly correlated 

measurements within each functional signal. Hence, the proposition of employing FDA for the 

analysis of neural signals emerges as a promising avenue. FDA, as an advanced analytical 

framework, offers the prospect of extracting comprehensive information from both the time 

and frequency domains while thoughtfully addressing the inherent temporal dependencies 

within neural signal dynamics. This approach holds the potential to unveil previously concealed 
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insights in perspective of time domain and enhance our understanding of the intricate processes 

underlying neuro signal data. 

Specifically, in this dissertation, we introduce three methods centered around addressing 

the following questions: 

1. How do we classify human behaviors based on neural signal data while considering the 

time dependence of data? 

2. How do we improve the preprocessing step for neural signals? 

To answer these two questions, we explore the application of FDA across every phase of 

signal processing for EEG data, which is a representative data type in neural signal analysis.  

Firstly, we perform classification analysis on neuroscience data, treating neuro signals as 

functional data, which allows researchers to leverage the temporal and spatial characteristics 

of these signals. Specifically, FDA provides a framework to work with continuous functions, 

enabling researchers and analysts to uncover hidden patterns, trends, and relationships within 

signals. This approach is particularly useful when dealing with complex and high dimensional 

data, such as time-series data from various domains including biology, finance, engineering, 

and more. Therefore, signal analysis methods based on functional data analysis represent a 

powerful approach to understanding and extracting meaningful information from signals that 

are inherently dynamic and continuous in nature. Traditional signal analysis techniques often 

treat signals as discrete data points, disregarding the temporal or spatial continuity present in 

the data. Functional data analysis, on the other hand, recognizes that signals can be better 

understood as functions, where each signal is a curve or trajectory that evolves over a 

continuous domain. 

After a comprehensive analysis of the results obtained from our proposed approach when 

applied to actual scalp EEG signals, we have observed that the neuro signal analysis is sensitive 

to outliers. Consequently, our focus shifts to the EEG signal pre-processing stage, with the 

objective of extracting essential information from raw signals. Given the pivotal role that ICA 

plays in signal analysis, as it excels in uncovering hidden sources of information within mixed 

signals, our objective is to create an ICA methodology that demonstrates robustness in the face 

of outliers. This quality is especially critical when working with neuroscience data, where 

outliers are an inherent and unavoidable challenge. In many real-world scenarios, signals are 

often convoluted or contaminated by noise, rendering them challenging to interpret accurately. 

ICA comes to the rescue by enabling the separation of these mixed signals into their underlying, 

statistically independent components. However, the effectiveness of ICA in signal analysis 
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hinges significantly on parameter tuning. The choice of parameters, such as the number of 

components to extract and the algorithm used, can profoundly impact the quality of the results. 

Careful parameter selection is essential to achieve a meaningful and accurate separation of 

sources, as incorrect choices may lead to either under- or over-extraction of components, 

potentially masking important information or introducing artifacts. Thus, the proper calibration 

of ICA's parameters is a critical step in the signal analysis process, influencing the overall 

success and reliability of the insights derived from this powerful technique. Hence, we firstly 

propose a determination method, named CW_ICA, to automatically determine the optimal 

number of ICs. In addition, we propose a robust functional ICA (FICA) method, named rFICA, 

to recover the pattern of EEG components while remaining impervious to the influence of 

outliers. 

In the forthcoming sections, I will provide introductory details on neuroscience data, FDA, 

and ICA algorithms. 

 

1.1 Neuroscience Data Analysis 

 

1.1.1 Electroencephalogram Data 

 

EEG is a powerful neuro-physiological technique that allows us to capture and study the 

electrical activity of the brain non-invasively[1]. Scalp EEG provides a window into the 

dynamic patterns of neural activity occurring in the outer layers of the brain. This technique 

has revolutionized our understanding of brain function, offering insights into cognition, 

emotion, sleep, and various neurological disorders. 

Scalp EEG data is obtained by placing electrodes on the scalp’s surface, which then detect 

and record the electrical signals produced by the firing of neurons in the brain (Figure 1.1[2]). 

These signals, known as EEG signals or brainwaves, represent the aggregate activity of millions 

of neurons and provide a time-sensitive view of brain activity. The raw EEG data is a 

continuous time-series of voltage fluctuations, reflecting the synchronized firing of neurons in 

response to various cognitive tasks, sensory stimuli, or internal mental processes. Through 

careful analysis of these data, researchers can extract valuable information about brain states, 

connectivity patterns, and temporal dynamics. For instance, one of the key features of scalp 

EEG data is the presence of distinct frequency bands. These frequency bands represent different 
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brain activities and states. For example, the delta band (0.5-4 Hz) is typically associated with 

deep sleep and unconsciousness, while the theta band (4-8 Hz) is linked to early stages of sleep, 

meditation, and memory processes. The alpha band (8-13 Hz) is prevalent during relaxed 

wakefulness with eyes closed, and the beta band (13-30 Hz) is associated with active thinking, 

problem-solving, and alertness. The gamma band (30-100 Hz) is thought to be involved in 

higher cognitive functions. Analyzing EEG data in these frequency bands can provide insights 

into the brain's functional states. 

 

 

Advancements in signal processing and computational techniques have facilitated the 

extraction of meaningful insights from scalp EEG data. Researchers can identify distinct 

frequency bands (e.g., delta, theta, alpha, beta, and gamma) associated with different cognitive 

functions and mental states. By studying the changes in these frequency bands, researchers can 

infer cognitive processes such as attention, relaxation, and alertness. Scalp EEG data has 

applications in various domains, including cognitive neuroscience, clinical neurology, 

psychology, and brain-computer interfaces. In cognitive neuroscience, it helps uncover the 

neural mechanisms underlying perception, learning, memory, and decision-making. In clinical 

settings, scalp EEG is used for diagnosing and monitoring neurological disorders such as 

epilepsy, sleep disorders, and brain injuries. 

As technology continues to advance, the analysis of scalp EEG data becomes increasingly 

sophisticated. Advanced techniques such as source localization, connectivity analysis, and 

 
 

Figure 1.1 The measurement and display of EEG on human brains with electrodes 
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machine learning algorithms enable researchers to uncover deeper insights into the intricacies 

of brain function and dysfunction. 

In this dissertation, we applied our proposed methods to an openly available EEG dataset. 

The researcher recruited 19 adults (7 females, 12 males) from the University of Arizona and 

recorded their scalp EEG*. When undergoing EEG recording, participants navigated in virtual 

reality through teleporters and track the spatial distances travelled inside teleporters. Data from 

48 repetitions of distance monitoring were collected. The 48 repetitions were split into two 

groups with two possible distances travelled: short (100 virtual meters) vs long (200 virtual 

meters) distances. To extract the time periods when participants were explicitly instructed to 

monitor the distance, researchers epoched the continuous data surrounding the teleportation 

periods. Epoch onsets (time 0) were defined as the moment when participants initiated a 

teleportation, or the moment when they were instructed to start monitoring distances. Epoch 

offsets (the end of epochs) were defined as the moment when participants exited the teleporter 

and stopped monitoring spatial distances. Each epoch was cropped for 5.656 seconds long. The 

scalp EEG signal was recorded with a 64-channel BrainVision ActiCAP system, which 

included a wireless transmission MOVE module, and two BrainAmp amplifiers (BrainVision 

LLC, Morrisville, 90 NC). The sampling rate was 500 Hz and the reference electrode was FCz. 

In Chapter 2, our focus lies in applying a functional classification model to neuroscience 

data. Consequently, we utilized the proposed classification algorithm on the meticulously 

preprocessed EEG dataset, as handled by neuroscientists. In Chapters 3 and 4, we are interested 

in the development of signal preprocessing methods. In this pursuit, we employed the proposed 

ICA dimensionality selection and functional ICA method on the collected raw EEG dataset. 

 

1.1.2 EEG signal analysis 

 

The EEG signal analysis basically performed in four steps: pre-processing, feature 

extraction, feature selection and finally being at the result analysis phase, the disease diagnosis, 

or the recognition of the different functional states of the brain is made through models or the 

statistical tests. 

Preprocessing of the EEG signal is essential to obtain only brain activity from the noisy 

EEG recordings. It aids to eliminate unwanted artifact from the EEG signal and makes it 

suitable for further processing. Preprocessing of EEG largely includes a number of processes, 

such as line noise removal, adjustment of referencing, elimination of bad EEG channels, and 
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artifact removal. Blind source separation (BSS) is one of commonly used signal preprocessing 

techniques[2]. Petrov et al.[3] proposed basic filtering techniques to remove the unwanted 

artifacts from the EEG signal. Campbell et al.[4] employed band-pass filtering to eliminate any 

signal that is not in the range of P300 frequency range of the EEG signal. Maki et al. proposed 

a new method, multichannel Wiener filter, for enhancement of EEG signal.  Jirayucharoensak 

and Israsena[6] proposed an artifact removal technique that incorporates Lifting Wavelet 

Transform. Various preprocessing techniques have been discussed by Vidaurre et al.[7] for 

effective artifact removal from EEG signals.  

 

 

Signal preprocessing also faces various challenges in modern data-driven applications. 

Specifically, in the context of biomedical signal processing, noise reduction and artifact 

removal are critical tasks. These challenges underline the need for robust and adaptive 

preprocessing techniques to enhance signal quality, which is essential for subsequent analysis, 

interpretation, and decision-making in various domains. In order to tackle these challenges, we 

discuss the development of independent component analysis (ICA), which is a widely used 

blind source separation method for signal pre-processing. Specifically, we propose a method 

to select the optimal number of ICs in Chapter 3 and explore methods for robustly extracting 

ICs that accurately recover true signals in Chapter 4. A more comprehensive introduction to 

ICA can be found in Section 1.3. 

Feature extraction of EEG signal is an important step in any BCI-based applications. It helps 

to extract the most relevant features from the EEG signal, thus giving a more precise description 

and hence making it suitable for further processing. An EEG is arbitrary and non-stationary 

signal, thus only fast Fourier transform (FFT) cannot efficiently differentiate EEG signals. 

Therefore, other nonlinear methods are used to extract features, namely, sample entropy [8], 

Hurst exponent [9], Lyapunov exponent (LLE) [10], and multi-fractal detrended fluctuation 

analysis [11] which are popular for feature extraction. Besides, an nondeterministic polynomial 

(NP) problem often arises out of optimal feature subset selection; hence, for optimal feature 

subset searching, genetic algorithm (GA) is often used [12]. The discrete Fourier transform 

 

 
Figure 1.2 Procedure of EEG signal analysis 

Pre-processing Feature 
Extraction

Feature 
Selection

Result 
Analysis
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(DFT) [13] is a digital signal that describes signal amplitude versus sampling time constant in 

time domain frequency. Discrete cosine transform (DCT) [14] is very useful for transforming 

the encoding video and audio tracks on computers. Continuous WT (CWT) [15] method is used 

to represent the translation and scale parameter for the wavelet continuously. DWT [16] 

method is used to transform any wavelet to discretely sample. WT [16],[17] performs a 

valuable role in the recognition and diagnostic field. As the EEG signal is a time-varying entity, 

this method is well suited for feature extraction from the raw data in time-frequency domain. 

In general, feature extraction method can be divided into three types: Time domain signal 

extraction [18], Spatial domain feature extraction[19] and Feature extraction transformation 

model. In Chapter 2, features containing time and frequency information are extracted from 

different frequency band across multiple channels and express as functions of time. 

One of the main challenges facing EEG signals is finding the right information for 

identifying cognitive states. Considering this, feature selection is utilized to reduce the 

dimensionality impact on the dataset through finding the subset of feature which efficiently 

define the data [20],[21]. It selects the important and relevant features to the mining task from 

the input data and removes redundant and irrelevant features [22],[23]. It is useful for detecting 

a good subset of features that is appropriate for the given problem [24],[25]. The main purpose 

of feature selection is to construct a subset of features as small as possible but represents the 

whole input data vital features [25],[26] re-selection provides numerous advantages: reduce the 

size of data, decrease needed storage, prediction accuracy improvement, overfitting evading, 

and reduce executing and training time from easily understanding variables. Feature selection 

algorithm phase is divided into two-phase such as Subset Generation and Subset Evaluation: 

In subset Generation, we need to generate subset from the input dataset and to use Subset 

Evaluations we have to check whether the generated subset is optimal or not [27],[28]. 

Originally evaluation methods in feature selection are divided into four kinds: filter, wrapper, 

embedded [29],[20], and hybrid [22],[30]. Recently, another type of evaluation method is 

developed, i.e., ensemble feature selection [31],[32]. In Chapter 2, the functional t-test is 

utilized to identify "functional" features that exhibit significant overall differences between the 

means of two trajectories. This test not only extracts signals that differ significantly between 

the two tasks but also provides interpretable insights into the temporal characteristics of 

cognitive components. The results of the functional test pinpoint the time intervals where 

significant differences exist between the two classes. 
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With the rapid growing application of Internet of Thing, diversity in the process of 

classification is being observed from EEG signal. It can be divided into two parts: Linear and 

Nonlinear. k-Nearest neighbor (k-NN) is a classifier [33] which follows a non-parametric 

approach; it used to classify a given data point according to the neighbor’s majority. For real-

time BCI applications, linear discriminant analysis is suitable for its lower time and space 

complexity [34]. In addition, this algorithm is quite simple from the users’ perspective. The 

decision tree (DT) is one of the most powerful and useful tools used for classification of data 

and prediction is the decision tree [35]. For instance, it can be used for classification of 

emotions from EEG signals, where each internal node of decision tree defines an attribute of 

test, each branch tree depicts a result of the test, and each leaf node shows a class label. 

Adaptive Boosting follows metadata algorithms of machine learning, which is used for weak 

learner and is adaptive in the sense. It is weak for the instances that are mis-classified by the 

previous classifiers. A multi-layer perceptron (MLP) follows feed forward method of artificial 

neural network. In general, propagation method for training in a supervised learning is used for 

MLP. Naive Bayes classifiers [36] belong to the family of classifier where the concept of 

probability is used. They require a number of parameters of linear variables that are highly 

scalable to a learning problem. In this dissertation, our focus centers on the classification of 

human behaviors based on scalp EEG signals. 

Currently, there is a lack of a systematic approach for analyzing EEG data through FDA, 

despite numerous studies on EEG signal classification. Existing FDA methods for EEG 

analysis typically focus on either time-related or frequency-related information. While some 

research has explored FDA with frequency-related data, it often implicitly incorporates spatial 

information among adjacent voxels in three-dimensional brain image data. To address this gap, 

we present a three-stage algorithm in Chapter 2. This algorithm leverages the power of FDA, 

taking into account both time and frequency information, to achieve an interpretable 

classification of scalp EEG signals. A more detailed introduction to FDA will be presented in 

Section 1.2. 

Furthermore, we employ the random forest classification method on IC scores and 

frequency information of ICs, extracted through various ICA techniques, to assess the 

robustness of the proposed rFICA method. 
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1.2 Functional Data Analysis 

 
Functional Data Analysis (FDA) is a specialized branch of statistics that deals with datasets 

consisting of continuous functions rather than traditional scalar or vector observations. In FDA, 

data is represented as curves or functions that vary smoothly over a continuous domain, such 

as time, space, or wavelength. This approach is particularly valuable in various fields, including 

economics, biology, neuroscience, and engineering, where data are naturally observed as 

functional observations. Over last two decades, many FDA techniques have been developed as 

extensions of multivariate data analysis techniques, such as functional principal component 

analysis (fPCA), functional classification and functional regression. FDA enables researchers 

to extract meaningful insights from complex datasets, uncover underlying patterns, and make 

accurate inferences from the continuous nature of the data. 

 

1.2.1 Elements of Functional Data Analysis 
 

Consider sample curves of the form 𝑥!", where 𝑖 = 1,… , 𝑝, 𝑡 = 1,… , 𝑇, denotes the 𝑖#$ trial 

at 𝑡#$  time point. The idea of FDA is to estimate the continuous function 𝑥!(t) using the 

observed signal 𝑥!" . By defiition, a basis function system is a set of known functions, 

-𝜙%(𝑡)/, 𝑗 = 1,… ,𝑁 , that are independent from each other with the property that one can 

approximate arbitrarily well any function by taking a linear combination of a sufficiently large 

number of these functions. Therefore, the assumed smooth functional observation, or linear 

expansion, 𝑥!(t), can be expressed as 

 

𝑥!(𝑡) = ∑ 𝑎!%&
%'( 𝜙%(𝑡)    (1.1) 

 

where, each 𝑎!%  is called a basis coefficient. 

Two important issues arise from this basis representation of a function. One of the important 

issues is the choice of the basis function system. The determination of the appropriate basis 

function system is based on the characteristics that are inherent in the data. There are many 

different basis systems that can be used in a basis expansion. In general, Fourier basis functions 

are used to model periodic data and B-spline basis is used for non-periodic data. Different basis 
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choices, such as wavelets, trigonometric functions, or even polynomial functions, can be 

considered if they align better with the inherent properties of the data [37]. 

The second important aspect in this representation is the dimensionality of the chosen basis,	
𝑁. Since the degree to which the data 𝑋!  is smoothed, is determined by the number of basis 

functions, therefore, 𝑁 can also be viewed as a smoothing parameter. When an appropriate 

basis function system is selected for the observed data, fewer basis functions are required to 

make a good approximation of the function. There are two opposing discussions when it comes 

to choosing the number, 𝑁, of basis functions. On the one hand, the larger the 𝑁, the better the 

fit. However, this comes with the expense of fitting unnecessary noise that should ideally be 

ignored. Conversely, a smaller value of 𝑁 results in a smoother function, as noted by Ramsay 

et al.[37] However, the drawback here is that if 𝑁 is set too low, there is a risk of overlooking 

significant features within the function being estimated. Therefore, a trade-off between fit and 

smoothness is necessary. A variety of algorithms are available for this purpose, encompassing 

methods like cross-validation and generalized cross-validation, as discussed by Craven and 

Wahba . 

The functional variable 𝑋(𝑡) ∈ 𝐿)(𝑇)  is endowed with the inner product < 𝑓, 𝑔 >	=

∫𝑓(𝑡)𝑔(𝑡)𝑑𝑡  and the induced norm >|𝑓(𝑡)|> =< 𝑓, 𝑓 >(/) . For 𝑠, 𝑡 ∈ 𝑇 , the covariance 

operator 𝐶𝑜𝑣 is an integral operator with kernel 𝐶𝑜𝑣(𝑠, 𝑡) = (
+
∑ 𝑥!(𝑠)
+
!'( 𝑥!(𝑡) admitting the 

Mercer decomposition. 

 

𝐶𝑜𝑣(𝑠, 𝑡) = ∑ 𝜂,𝛾,(𝑠)-
,'( 𝛾,(𝑡)    (1.2) 

 

where 𝜂,  and 𝛾,(𝑡)  are eigenvalues and associated orthonormal eigenfunctions. The 

functionas 𝑥!(𝑡) can also be approximated represented by a truncated serires of the Karhunen-

Loève (K-L) expansion. 

 

𝑥!.(𝑡) = ∑ 𝑧!,.
,'( 𝛾,(𝑡)    (1.3) 

 

where 𝑧!, =< 𝑥!(𝑡), 𝛾,(𝑡) >  are vairables with 𝐸[𝑧.,] = 0, 𝑉𝑎𝑟(𝑧.,) = 𝜂, , 𝐶𝑜𝑣(𝑧., , 𝑧.,!) =

0 for 𝑘0 	≠ 𝑘  . These variables are referred to as the principal components scores and are 

uncorrelated generalized linear combinations of the functional variable with maximum 

variance. 
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In FDA problems, the initial and fundamental step involves estimating mean functions [39], 

[40]. Rice and Wu [40] adopted the mixed effect models where the spline coefficients were 

estimated by the EM algorithm. The mean and covariance functions are estimated by 

application of the local linear smoothers in [41]. The functional mixed model framework, with 

model fitting done by using a Bayesian wavelet-based approach, is generalized from the linear 

mixed model by Morris et al.[42] A polynomial spline estimator is proposed for the mean 

function of functional data together with a simultaneous confidence band by Cao et al.[43] 

Moreover, the functional principal component analysis (fPCA), an extension of Principal 

Component Analysis (PCA), is a key dimension reduction tool for multivariate and functional 

data. A comprehensive framework for statistical inference in fPCA was initially developed by 

Dauxois et al.[44] Since then, fPCA has become a popular technique in FDA. It converts 

infinite-dimensional functional data into a finite-dimensional vector of random scores, referred 

to as functional principal components (FPCs). These FPCs, frequently truncated in practical 

applications, enable the utilization of established multivariate data analysis methods, 

effectively achieving dimension reduction [45],[46].  

Additionally, outliers in functional data present various challenges due to the high 

dimensionality of such data. These outliers can appear as unusual measurements at either single 

or multiple time points or as irregular patterns across an entire function. In order to handle 

outliers and contamination, there are many robust adaptations of FDA techniques [46]–[50]. 

In this dissertation, we conduct the functional data analysis with B-spline basis function, 

since the EEG data is non-periodic. Moreover, we incorporate the algorithm of functional 

ROBPCA [46] and KFPCA [50] in the development of a robust functional ICA method in 

Chapter 4. 

 

1.2.2 Functional Data Models 

 
There are various methods that nonparametrically estimate the regression function. In 

general, most functional regression models can be viewed as extension of the traditional 

regression models. Numerous functional regression models are accessible, which can be 

categorized into three classes: function-on-scalar regression, function-on-function regression, 

and scalar-on-function regression. Most work in functional predictor regression is based on a 

variant of the Functional Linear Model (FLM), first introduced by Ramsay et al. [51] and first 

written in its commonly encountered form by Hastie et al.[52] 
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1. Function-on-scalar regression. Supposed there are multiple functional covariates 𝑥!1(𝑡) 

and coefficient function 𝛽1(𝑡)  with domain 𝑇  where 𝑙 = 1,… , 𝐿 , we obtain the functional 

linear model as below: 

 

𝑌! = 𝛽2 + ∑ ∫ 𝑥!1(𝑡)3 𝛽1(𝑡)𝑑𝑡4
1'( + 𝜖!           (1.4) 

 

where 𝑌! , 𝑖 = 1,… , 𝑝 , is the scalar response, 𝛽2  is the intercept, 𝑥!1(𝑡), 𝑙 = 1,… , 𝐿 , is the 

functional predictor, 𝛽1(𝑡) is the functional coefficient associated with 𝑥!1(𝑡), 𝜖! is the residual 

error that assumed to be gaussian distribution with mean zero. 

2. Function-on-function regression. Given a sample of functional responses 𝑌!(𝑡)  and 

functional predictors 𝑋!1(𝑡), a general linear function-on-function regression model can be 

expresses as below: 

 

𝑌!(𝑡) = 𝛽2(𝑡) + ∑ ∫ 𝑥!1(𝑡)3 𝛽1(𝑡)𝑑𝑡4
1'( + 𝜖!(𝑡)           (1.5) 

 

where 𝑌!(t) is the functional response, 𝛽2(𝑡) is the intercept function, 𝛽1(𝑡) is the coefficient 

function and 𝜖!(𝑡) is the residual function. 

3. Scalar-on-function regression. Functional response regression involves the regression 

of functional responses on a set of scalar predictors. Suppose there is a sample of functional 

responses 𝑌!(𝑡) and scalar predictors 𝑥!1, a general linear scalar-on-function regression model 

can be expresses as below: 

 

𝑌!(𝑡) = 𝛽2(𝑡) + ∑ 𝑥!1𝛽1(𝑡)4
1'( + 𝜖!(𝑡)           (1.6) 

 

where functional coefficient 𝛽1(𝑡) represents the partial effect of predictor 𝑥.1 on the response 

at time 𝑡. The goal of scalar-on-functional response regression is often estimation of 𝛽1(𝑡) and 

then either testing whether 𝛽1(𝑡) = 0 or assessing for which 𝑡 is it true that 𝛽1(𝑡) ≠ 0. The 

𝜖!(𝑡) denotes the curve-to-curve residual error deviation. 

In this dissertation, we will restrict the discussion of functional regression with the first case, 

that is, with functional predictors and a scalar response. 

Moreover, another fundamental problem in FDA is classification of functional data. In 

functional classification, the goal is to categorize or classify these functions into different 



25 
 
 

groups or classes based on their shape, patterns, or other characteristics. Functional 

classification models are particularly useful in fields like biomedical signal analysis (e.g., 

classifying EEG or ECG signals), speech processing, image analysis, and more. They take into 

account the entire functional nature of the data, considering how it evolves over a range, rather 

than treating individual data points as independent entities. Common techniques for functional 

classification include functional regression models, support vector machines, decision trees, 

and deep learning approaches adapted for functional data. These models can provide valuable 

insights and predictions in a wide range of applications where functional data is prevalent. 

Specifically, we construct the penalized multiple functional logistic regression model in 

Chapter 2 to interpretably classify scalp EEG signals based on extracted time-frequency 

information.  

 

1.3 Independent Component Analysis 

 
Independent component analysis is a statistical tool to extract hidden information from 

observed signals. With the assumption that observed signals are linear combination of mutually 

independent non-Gaussian source signals, ICA is utilized to find a linear transformation of 

these mixed signals to recover source signals. Based on assumptions of ICA problem, the 

performance of ICA is measured by independence or non-Gaussianity of estimated ICs. ICA 

has been widely applied in various fields. In biomedical fields, ICA has been used to study the 

brain function via extracting temporal and spatial information from fMRI [53], [54] and EEG 

[55]. In pharmaceutical fields, ICA is used to examine the distribution of actives and major 

excipients within the tablet by comparing the calculated signals with the pure spectra of the 

formulation compounds [56]. In chemistry, ICA is widely applied for separation of unknown 

sample mixtures [57] via peak detection and matching in high-performance liquid 

chromatography. Besides, ICA is also widely used in the preprocessing of time series (or signals) 

to identify and remove noise and contamination to better extract qualified information. In this 

dissertation, we investigate the application of ICA methods on EEG data. 
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Suppose that observed signals are organized into a data matrix 𝑋+×3  with 𝑝  measured 

signals and signal length 𝑇, and assuming that these measured signals are linear mixtures of 

source signals. After preprocessing, the general model of ICA can be described as 𝑋T+×3 =

𝐴+×6𝑆6×3 , where𝑋T+×3  is preprocessed mixed signal, 𝐴+×6  is the mixing matrix, which 

specifies contributions of the source signals to each mixture, and 𝑆6×3  is the matrix of source 

signals. ICA aims to determine both mixing matrix 𝐴 and source signal matrix 𝑆, knowing only 

 
 

Figure 1.4 Procedure of ICA algorithm 

Input mixture signals:𝑋!×#

Pre-processing (Centering, Whitening):𝑋T!×#

Determine ICA method (𝑝 >,=,< 𝑞)

Determine the number of ICs (𝑞)

Perform ICA algorithm:𝑋T!×# = 𝐴!×$𝑆$×#

Measure results of estimated signals: 𝑆$×#

 
 

Figure 1.3 The measurement and display of EEG on human brains with electrodes 
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observed signal matrix 𝑋. According to the number of observations, 𝑝, and source signals, 𝑞, 

ICA methods can be divided into two cases: (over)determined ICA (𝑝 ≥ 𝑞) (e.g., FastICA [58], 

JADE [59], Infomax [60], etc.), and underdetermined ICA (𝑝 < 𝑞) (i.e., single channel ICA 

[61], MAICA [62], EMD_ICA [63], etc.). In this study, we focus on the case of (over-) 

determined ICA, where the mixing matrix 𝐴 is invertible. Therefore, the object of ICA can be 

achieved by estimating the de-mixing matrix 𝑊 = 𝐴7(, so that source signals (i.e., ICs) can be 

obtained by projecting the whitened data onto the de-mixing matrix.  

The procedure of ICA consists of five steps: pre-processing of ICA, determine the ICA 

method, determine the number of ICs, perform ICA and measure the result of ICA with cross 

validation. Firstly, we centered observed signals by subtracting the mean value of signals at 

each time point and transform the centered mixture signals to be uncorrelated and then scaled 

them to be with a unit variance. Next, the appropriate ICA method is chosen by the property of 

mixed and source signals, i.e., (over-) determined case or underdetermined case. The main goal 

of these methods is to extract independent components by maximizing the non-Gaussianity, 

minimizing the mutual information, or using maximum likelihood (ML) estimation method 

[64]. Besides the choice of ICA model, the main parameter in the ICA method is the number 

of ICs (i.e., number of dimensions), which is an important step before any modeling. Then, 

with determined ICA method and number of ICs, we can perform ICA to separate mixture 

signals. The results of ICA can be measured by comparison between estimated and true source 

signals if there exists or between models with different number of ICs.  

The determination of the number of independent components (ICs) is crucial for achieving 

optimal performance, as an incorrect choice can result in either under-decomposition or over-

decomposition. Commonly used determination techniques include information criteria, 

eigenvalue spectrum (ES), bootstrap resampling (BS), and cross-validation (CV), among others. 

Nevertheless, these methods have their drawbacks. For instance, information criteria may suffer 

from overfitting when the sample size is small or strict model assumptions are made. 

Eigenvalue spectrum methods can be subjective in the choice of threshold and may be affected 

by noisy signals. Bootstrap resampling techniques, although comprehensive, can be 

computationally expensive. Cross-validation, while generally reliable, may introduce data 

partition bias and incur computational costs. To address the issues with these determination 

methods, researchers have proposed several alternatives. However, there still exists some 

challenges, i.e., restriction of data structure, robustness, capability of diverse ICA methods, etc. 
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Giving these limitations, we propose a novel method to automatically determine the optimal 

number of ICs in Chapter 3. 

In recent years, researchers have expanded the application of ICA to functional data, referred 

to as Functional ICA (fICA). This extension is designed to decompose a collection of functional 

observations into statistically independent components or sources. fICA is particularly valuable 

when handling data characterized by intricate temporal dependencies, revealing hidden sources 

of variability and information with consideration of time-continuity. It's important to highlight 

a significant gap in the existing literature, which lacks emphasis on evaluating the recovery of 

extracted ICs in comparison to the true ICs. Moreover, there is a notable absence of discussions 

regarding the robustness of these fICA methods. In response to this gap, in Chapter 4, we 

propose a robust fICA method designed to investigate the analysis of EEG signals, particularly 

in the presence of contamination. 

 

1.4 Aims and Scope of the Thesis 

 

The overarching objective of this thesis is to improve the performance of neuroscience 

signal analysis. To achieve this goal, we involve a comprehensive investigation of the FDA 

methodology at each stage of processing EEG signals. By incorporating FDA techniques 

throughout the EEG signal processing pipeline, we aim to tackle traditional analytical 

constraints. Our focus is not only on improving the quality and robustness of the extracted 

insights but also on rendering the analytical models more interpretable, ensuring that the 

findings are not only accurate but also readily comprehensible to facilitate a deeper 

understanding of the underlying neural processes. Ultimately, this thesis aspires to equip the 

field of neuroscience signal analysis with cutting-edge tools and methodologies, enabling 

researchers to extract more reliable, meaningful, and interpretable insights from this complex 

and dynamic data domain. 

In Chapter 2, we introduce a three-stage algorithm designed for the classification of EEG 

signals, emphasizing interpretability through FDA and dimension reduction. Based on the 

extracted time-frequency information of EEG signal, we conduct functional testing to select 

features that are significantly different signals with specific time interval under the two tasks. 

While functional testing provides valuable temporal insights into EEG signals, it is important 

to acknowledge that its computational complexity increases with a growing number of features 



29 
 
 

and extended recording time. Additionally, EEG signals are susceptible to the influence of 

outlier factors, it is necessary to denoise the original signal to improve the signal-to-noise ratio 

as much as possible before formally analyzing the data. Thus, we move back to investigate the 

signal pre-processing. Consequently, we revert to the exploration of signal preprocessing 

methodologies, specifically, ICA methods. 

In Chapter 3, our primary focus lies in addressing a pivotal aspect of ICA – the determination 

of the optimal number of ICs. We introduce a robust and automated method for this critical task, 

which contributes significantly to the reliability of subsequent data analysis. Our method 

leverages the concept of a rank-based correlation matrix, incorporating specific quantitative 

measurements to identify the optimal number of ICs. The results affirm CW_ICA as a reliable, 

robust, and computationally efficient technique for determining the optimal number of ICs, that 

is required for accurate and meaningful analysis of the data. This method not only enhances the 

quality of the extracted components but also streamlines the data processing pipeline, ensuring 

its suitability for various ICA applications in the field of neuroscience signal analysis. 

Following the accurate determination of the true number of ICs, our exploration ventures 

into the realm of ICA with a specialized focus on the functional domain. In Chapter 4, we 

introduce a robust and innovative approach to fICA. This direction is motivated by a profound 

awareness of the susceptibility of neuroscience data to potential contamination stemming from 

both internal and external sources. Our novel approach incorporates robust covariance 

estimation techniques, with a specific emphasis on the Minimum Covariance Determinant 

(MCD) method, which enhances the overall robustness of the analysis. To further robustify our 

method against potential outliers, we introduce Kendall's τ function. This additional layer of 

analysis empowers our approach with a higher degree of resilience against anomalies, such as 

bumps and sample outliers that might exist in the data. Our approach not only enhances the 

reliability and robustness of the analysis but also represents a significant advancement in the 

field of neuroscience signal analysis. This advancement holds the promise of elevating the 

quality and reliability of the insights derived from neuroscience data, making it a valuable 

contribution to the field. 

In summary, this dissertation presents a comprehensive contribution to the field of 

neuroscience data analysis. It introduces a novel functional classification algorithm rooted in 

FDA, enabling accurate and interpretable classification of neural behaviors. Furthermore, we 

propose a robust dimension selection method that leverages rank-based correlation and 
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quantitative measurements. This approach not only streamlines subsequent analyses but also 

enriches the quality of insights obtained from neuroscience data. Additionally, the research 

extends into the development of robust fICA method, designed to address contamination in 

neuroscience data. By incorporating the Minimum Covariance Determinant (MCD) and 

Kendall's τ function, the method bolsters the accuracy and resilience of brain activity analysis. 

Collectively, these contributions aim to elevate the quality, interpretability, and reliability of 

neural signal analysis, marking a significant advancement in neuroscience research. 
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Chapter 2 

Interpretable EEG classification algorithm 

 

2.1 Introduction 

 

Scalp EEG signals can be analyzed in time domain, frequency domain or time-frequency 

domain. Time domain analysis1 is conducted based on how signals change with time whereas 

frequency domain analysis often gives an intuitive understanding of frequency components of 

EEG signals. Besides, time-frequency domain analysis studies EEG signals in both time and 

frequency domains simultaneously. Regardless of the domain of signals, EEG analysis methods 

can be roughly divided into traditional and modern models. The choice of traditional analysis 

method is based on properties of EEG signals. For instance, non-linear methods is used to study 

self-organization and pattern formation in the complex neuronal networks of the brain since the 

EEG data is nonlinear and non-stationary [66]. With the rapid development and popularization 

of machine learning techniques, EEG analysis has adopted modern machine learning (ML) 

methods such as deep neural networks [67], support vector machines [68], random forest [69], 

and other ML algorithms that use high-dimensional models [70],[71],[72] to better decode 

signals. 

Since the scalp EEG reflects the cortical electrical activity by continuous flow of voltages, 

it can be treated as functional data and analyzed using FDA techniques. Also, FDA is well 

suited for EEG signals which are recorded over long periods of time because it uses fixed or 

data-driven basis functions to handle high-dimensional data through basis expansion(e.g., B-

spline basis, Fourier basis and Wavelet basis [73]). Besides, FDA identifies the relationship 

between EEG signals recorded from multiple channels and human behaviors which can be 

characterized as a scalar (e.g., N-back task score [74]), binary (e.g., long/short distance task in 

our study), categorical (e.g., disease status [75]) variable. Most importantly, FDA helps to 

effectively describe and interpret the internal change of EEG signals and its relationship with 

human behaviors, which makes it an interpretable approach. 
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At present, researches have been using FDA to study EEG data, but most of them are only 

based on time domain or frequency domain [76],[77],[74]. Several papers have performed 

functional data analysis in the time-frequency domain [78],[79], but there is no thorough 

comparison of these methods in the literature. However, as mentioned earlier, the time domain 

information and frequency domain information contained in the signal are both very important 

for EEG analysis. Hasenstab et al.[76] proposed a multidimensional functional principal 

components analysis (MD-FPCA) technique which is shown to be useful for modeling 

longitudinal trends in the event-related potential functions. Happ and Greven [77] proposed the 

multivariate fPCA and applied to the neuroimaging study. Both studies focus on 

multidimensional data only in time domain with scalar response. Zhang et al. [74] proposed a 

multiple functional linear regression model based on EEG signals to predict working memory 

ability which is a scalar outcome variable. Shangguan et al. [80] recognized the driver fatigue 

state by conducting signal feature extraction based on FDA and performing classification via 

random forest and decision tree. The main advantage of using FDA on EEG signals is that it 

utilizes the information of functional covariates to interpretably explain the changes in time-

frequency domain in EEG signals and the relationships among multiple channels and response 

[82]. 

In this chapter, we proposed a three-stage algorithm based on functional data analysis, with 

the advantage of interpretability. Specifically, the time and frequency information are extracted 

by wavelet transform in the first stage. Then, functional testing is utilized to select channels 

and frequencies that show significant differences for different human behaviors. In the third 

stage, we propose to use penalized multiple functional logistic regression to interpretably 

classify human behaviors. With simulation and scalp EEG data as validation set, we show that 

the proposed three-stage algorithm provides an interpretable classification of the scalp EEG 

signals. Our primary contributions can be summarized as follows: 

1. Extract both time and frequency information from scalp EEG signals and treat 

them as functions. In this way, the information of EEG signal from different frequency band 

on multiple channels can be obtained and expressed as a function of time. 

2. Select features by functional testing methods. They can not only extract significantly 

different signals under the two tasks, but also interpretably identify the temporal characteristics 

of cognitive components. The result of functional testing points out the time interval which is 

significantly different among two classes. 
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3. Generate the functional classification model with group counterparts of penalty 

terms. It is more suitable for factor selection with multiple predictors, because group penalty 

terms allow for the joint selection of groups of covariates from the model [83]. 

The structure of Chapter 2 is organized as follows. We provide the background of application 

of functional data analysis in EEG signals in Section 2.1. Then, we propose the three-stage 

algorithm in Section 2.2 and validate our method in simulated EEG data in Section 2.3. The 

implementation of proposed methods in scalp EEG data can be found in Section 2.4. In Section 

2.5, we discuss our findings and the proposed methods, then we conclude this chapter in Section 

2.6. 

 

2.2 Proposed Algorithm 

 
In order to conduct interpretable classification in EEG analysis, we propose a method that 

consists of three stages. In the first stage, both time and frequency-related information are 

extracted by transforming EEG data into related domain as 𝑿(𝑡) of 𝑛 × 𝐿( × 𝑇, where 𝑛 is the 

number of subjects, 𝐿( is the number of features, and 𝑇 is the time length.  The next stage 

follows the feature selection for initial dimension reduction via functional testing. Penalized 

multiple functional logistic regression model is used to interpretably classify specific human 

behaviors at the final stage. The procedure of the proposed algorithm is summarized in Figure 

2.1. While the number of trials and recording duration are constant throughout the algorithm, 

the number of features changes at each step. Therefore, the structure of data frame also changes 

at each step. Our proposed algorithm is implemented through R language and the R code is 

freely accessed at https://github.com/yzy0080/pMFLR.git. 
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Figure 2.1 Procedure of three-stage algorithm. 
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2.2.1 Data transformation 
 
Time-domain analysis primarily examines how a signal changes over a duration, while 

frequency-domain analysis focuses on the mathematical representation of signal characteristics 

in relation to frequency, rather than time. It reveals the distribution of signal energy across 

different frequency bands within a defined frequency range. 

The most widely used analysis in frequency domain is power spectral density (PSD). PSD 

quantifies the power associated with each frequency component, contributing to the overall 

signal, providing valuable insights into signal characteristics. However, it lacks the ability to 

pinpoint when specific frequencies of interest occur within the signal's specific time point. 

Generally, time domain analysis provides better time information, but it is inferior in terms 

of frequency content information (such as amplitude and phase information) required for EEG 

classification, while frequency domain analysis provides sufficient frequency information, but 

ignores the property of EEG signals that the frequency spectrum changes over time, unless it 

can be performed at each sub-interval time. In order to extract the sufficient information from 

EEG oscillations, a new approach called "time-frequency analysis" is introduced, which 

includes decomposing the EEG signal into the amplitude and phase information of each 

frequency in the EEG and characterizing its change over time [84]. Since the wavelet analysis 

is especially suitable for non-stationary signal processing, we apply the Morlet wavelet 

transformation on EEG. Therefore, we can obtain the intensity information of each frequency 

band at different time positions. 

The value in data set is converted from representing voltage to representing power at 

different frequencies. As we know, each collected data contains information from low-

frequency to high-frequency oscillation and oscillations on different frequencies have different 

trend at different electrodes. Therefore, we also consider feature splitting based on the four 

brainwaves of the EEG signal, namely 𝛿(0.5-4Hz),  𝜃(4-8Hz), 𝛼(8-12Hz), 𝛽(12-28Hz).  

 
2.2.2 Initial Feature Selection 

 

As mentioned earlier, the human brain can be divided into several regions, each of which 

controls different behavioral state, such as movement, sleep, emotion, or memory. In other 

words, a change in a certain behavioral state has a more or less impact on each area and the 

magnitude of the change in the recorded EEG signal also varies depending on the position of 

the electrode. Therefore, one of the main purposes of EEG signal analysis is to find the efficient 
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information to identify or describe a certain state. Feature selection (FS) algorithm is developed 

to find a set of features that identifies or describes the relevant event to achieve best 

predictability. 

In order to determine the features which are significantly different across relevant events, 

several functional testing methods have been performed to choose the most suitable one for the 

given data, including functional t-test [85], Interval testing procedure (ITP) [86] and one-way 

ANOVA for functional data via globalizing the point-wise F-test( GPF test) [87]. For instance, 

we are interested in distance judgement in this paper, then we could claim two classes, which 

are long distance and short distance, for collected data and determine the features which are 

significantly different across classes by functional testing. Let 𝜇(1(𝑡) and 𝜇)1(𝑡), 𝑙 = 1,… , 𝐿( 

denote the trajectory means for feature 𝑙 under two distance classes, respectively. The statistical 

problem of interest in this stage focuses on hypothesis testing for each feature: 

 

𝐻2: 𝜇(1(𝑡) = 𝜇)1(𝑡)			𝑣𝑠.			𝐻8: 𝜇
(
1(𝑡) ≠ 𝜇)1(𝑡), 𝑙 = 1,… , 𝐿(	    (2.1) 

 

where 𝐻2 and 𝐻8 corresponding to the null and alternative hypothesis, 𝐿( denotes the number 

of features after data transformation.  

Functional t-test detects the existence of a significant overall difference between two 

trajectory means by calculating the test statistic, which is expressed as a function of time. The 

location of these differences can be identified by point-wise testing based on a permutation 

method. This procedure is distribution-independent and an exact level 𝛼 test because of the 

nature of permutation test. However, it is time-consuming for high dimensional data since 

functional test is performed on each feature. 

Interval Testing Procedure (ITP) is a novel technique for functional data which checks the 

p-values of each basis coefficient and generates a matrix of p-values for each basis function. 

Its power is comparable to those provided by global inference techniques (e.g., GPF test) and 

keeps the interpretability of test results, even with large number of components. However, it is 

time-consuming, especially for the experiments with large number of features. 

GPF test is a functional version of one‐way ANOVA problem, which globalizes the usual 

pointwise F‐test. It is implemented when the 𝑘 functional samples are sampled densely and 

noisily, irrespective of whether the sampling design is regular or irregular across subjects. 

Comparison of the three functional testing methods is summarized in Table 2.1. 
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2.2.3 Model Construction 
 

Suppose there are n trials of EEG signal collected from L features with time length N for 

each subject. We conduct functional data analysis to estimate the function 𝑥!1(𝑡) based on 

observed value 𝑥!%1 , which denotes the observed EEG signal value collected from the 𝑙"9 

feature of the 𝑖"9  trial at the 𝑗"9  time point. In this event, we assume that the functional 

covariates are observed with error, then the 𝑥!%1 can be expressed as 𝑥!%1 = 𝑥!1d𝑡%e + 𝜖!, 𝑖 =

1,… , 𝑛; 𝑗 = 1,… ,𝑁; 𝑙 = 1,… , 𝐿, where 𝜖! is random error that contributes to the roughness to 

the raw data. 

 
2.2.3.1 Multiple Functional Logistic Regression 

 

Logistic regression is a commonly used statistical model to perform binary classification. 

We can simply generate a logistic function to estimate the success probability by inputting 

predictors. Suppose we have a functional covariate as 𝑥!(𝑡), where 𝑖 = 1,… , 𝑛; 𝑡 ∈ Γ and Γ is 

the support of the covariate; and a random sample of a binary response variable Y to be 𝑌! ∈

{0,1}, 𝑖 = 1,… , 𝑛 Then the random variable 𝑌 is such that 𝑌! 	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑜(𝜋!), where 𝜋! =

𝑃(𝑌 = 1|𝑥!(𝑡), 𝑡 ∈ Γ). 

In this paper, data is recorded over a period at multiple electrodes, a more complex model 

is considered, which named Multiple Functional Logistic Regression (MFLR) model. 

FS 
Method 

Pros Cons R package-
function 

Functional 
t-test 

• Distribution independent 
• Exact p-values for each 

time point 

• Time consuming for 
high dimensional 
data 

Package: ‘fda’ 
Code: tperm.fd() 

ITP test • Distribution independent 
• Comparable power to the 

global inference 
techniques 

• Time consuming for 
high dimensional 
data 

Package: ‘fdatest’ 
Code: ITP2bspline()  

GPF test • Much less computation 
• Suitable for multi-class 

case 

• Less power for 
highly correlated 
functional data 

Package: 
‘fdANOVA’ 
Code: fanova.tests() 

 
Table 2.1 Summary of three functional feature selection methods used 
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Specifically, the conditional success probabilities can be expressed in terms of functional 

predictors 𝑥!1(𝑡) for 𝑡 ∈ Γ as 

 

𝜂! = 𝑙𝑜𝑔𝑖𝑡(𝜋!) = log r :"
(7:"

s = 𝛽2 + ∑ ∫ 𝑥!1(𝑡); 𝛽1(𝑡)𝑑𝑡4
1'(     (2.2) 

 

where 𝛽2 is an intercept parameter and 𝛽1(𝑡) is the regression slope function for signal function 

𝑥!1(𝑡) . Both unknown functional covariates 𝑥!1(𝑡)  and functional parameters 𝛽1(𝑡)  are 

assumed to be smooth functions, which can be estimated by taking linear combination of basis 

functions 𝜙,(𝑡), 𝑘 = 1,… , 𝐾<. We consider 𝑥!1(𝑡) ∈ 𝐿)(Γ) of squared integrable function with 

the inner product, such that 

 

𝑥!1(𝑡) = ∑ 𝑎!1,𝜙,(𝑡)
.#
,'(     (2.3) 

 

where the number of basis function 𝐾< is selected based on the features and characteristics of 

the data. In this case, where the functional covariate is observed with some noise, estimates of 

coefficients {𝑎!1(, … , 𝑎!14#}  are obtained from the discrete observations through the least-

square approximation approach to get the functional form of the covariates. 

Further, we also define the regression slope functions, 𝛽1(𝑡), in (2.4), as 

 

𝛽1(𝑡) = ∑ 𝑏1,𝜙,(𝑡)
.$
,'(     (2.4) 

 

where 𝜙,(𝑡), 𝑘 = 1,… , 𝐾= are basis functions; and 𝐾< ≥ 𝐾=. For simplicity, we assume that 

𝐾< = 𝐾= = 𝐾. 

By inserting (2.3) and (2.4), we further reduce the model defined in (2.2) to a standard 

multiple one 

 

𝜂! = 𝛽2 +∑ ∫ 𝑥!1(𝑡); 𝛽1(𝑡)𝑑𝑡4
1'( = 𝛽2 + ∑ [∑ ∑ 𝑎!1,(∫ 𝜙,(𝑡)𝜙%(𝑡); 𝑑𝑡).

%'(
.
,'( 𝑏%1]4

1'(  

(2.5) 

 

where 𝑎!1, are the basis coefficients to be estimated for each functional predictor 𝑥!1(𝑡) and 𝑏%1 

are the basis coefficients to be estimated associated with each 𝛽1(𝑡). 
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Generally, B-spline basis and Fourier basis are used for non-periodic and periodic data, 

respectively. Besides, there are some other basis, like wavelet, polynomial functions, also 

suitable for functional data with different characteristics [88]. 

Besides, the number of basis functions 𝐾 determines the appropriate estimation. The larger 

𝐾 is, the better fit but results in more complex computations as well as over-fitting.  Thus, the 

trade-off between fit and computation is necessary to approach an ideal approximation, which 

can be realized by cross-validation. 

 

2.2.3.2 Principal Component Analysis on Multiple Functional Predictors 

 

Since correlation-ship between observations at adjacent time points in each predictor will 

lead to the potential problem of severe multicollinearity, fPCA has been proposed to alleviate 

this issue [89]. Besides, the existence of multicollinearity will affect the participation of penalty 

term in the next step, which is found using a block co-ordinate gradient descent minimization 

algorithm. Therefore, it is necessary to remove the redundant information to obtain a more 

reliable estimation of regression slope function. 

Model (2.5) can be expressed in the form of vector and matrix multiplication 

 

𝑬 = 𝛽2𝟏>×( +∑ 𝑨𝒏×𝑲𝒍 𝚿𝑲×𝑲
𝒍 𝐛𝑲×𝟏𝒍4

1'(          (2.6) 

 

where 𝑬 = (𝜂(, … , 𝜂>)3, 𝑨𝒏×𝑲𝒍  denotes the matrix of basis coefficients for each 𝑙"9 predictor, 

𝚿𝑲×𝑲
𝒍  denotes the inner product of basis functions 𝜙,(𝑡), 𝐛𝑲×𝟏𝒍 = (𝑏(1 , … , 𝑏.1)3 is the vector 

of basis coefficients for each regression slope function. Next, principal component analysis is 

performed on each 𝑨𝒏×𝑲𝒍 𝚿𝑲×𝑲
𝒍  to reduce the dimension of each predictor. 

Let 𝑮𝒍 = {𝜉!,1 }>×. = 𝑨𝒍𝚿𝒍𝑽𝒍 be the matrix of principal components of the design matrix, 

where 𝑽𝒍 is a 𝐾 × 𝐾 matrix whose columns are eigenvectors of correlation matrix of  𝑨𝒍𝚿𝒍. 

The model (2.6) becomes 

 

𝑬 = 𝛽2𝟏>×( +∑ 𝑮𝒏×𝑲𝒍 𝐁𝑲×𝟏𝒍4
1'(               (2.7) 

 

where 𝐁𝑲×𝟏𝒍 = (𝑽𝑲×𝑲𝒍 )𝑻𝐛𝑲×𝟏𝒍 . 
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The number of PCs is determined by cumulative variance of each predictor. For simplicity, 

we select the same number of PCs, 𝑠, for each predictor. Then, model (2.7) can be expressed 

in terms of principal components 

 

𝑬 = 𝛽2𝟏>×( + ∑ 𝑮(E)𝒍 𝐁(E)𝒍4
1'(               (2.8) 

 

where 𝑠 denotes the number of selected PCs retained in the model. 

Therefore, model is transformed to a linear combination of FPC scores and the dimension 

is reduced in the within-variable level. 

 

2.2.3.3 Penalized Multiple Functional Logistic Regression 

 

Even though the initial feature selection has been conducted through functional testing to 

reduce the original large number of predictors by selecting the features which are significantly 

different between the two groups, there still exists some predictors providing similar 

information. Especially, in EEG data, signals that are time series of adjacent electrodes are 

expected to be similar. Therefore, in order to obtain correct interpretability and improve the 

prediction accuracy of the models, it is common to employ penalized regression techniques. In 

this study, we use three most commonly used penalized regression techniques with grouped 

predictors:  Group Least Absolute Shrinkage and Selection Operator (LASSO), Group Least 

Angle Regression (LARS) and Group Smoothly Clipped Absolute Deviation (SCAD). 

LASSO shrinks some of the coefficients all the way to zero, thereby delivering a sparse 

solution with just a few non-zero coefficients. LARS can be viewed as a version of stage-wise 

procedure that uses mathematical formulas to accelerate the computations. SCAD aims at 

solving the problem with LASSO that the penalty term is linear in the size of the regression 

coefficient, which tends to give substantially biased estimates for large regression coefficients. 

Firstly, we consider a linear regression model with grouped predictors 

 

𝒀 = ∑ 𝑿1𝜷14
1'( + 𝝐                (2.9) 

 

where 𝒀 is an 𝑛 × 1 vector of response, 𝝐	~	𝑁>(0, 𝜎)𝑰), 𝑿1  is the 𝑛 × 𝑝1  matrix of the 𝑙"9 

grouped predictors, 𝜷1  is the regression coefficient vector associated with the 𝑙"9  grouped 
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predictors. In order to eliminate the intercept from equation (2.9), response variable and each 

input variable can be centered, and the observed mean is 0. By Yuan and Lin [83], we conduct 

group LASSO which aims at selecting important grouped predictors which corresponds to 

decide which the 𝜷1 regression coefficient vector is set to zero vectors for each 𝑙. This aim can 

be achieved by optimizing the objective function  

 

argmin
G%
((
)
‖𝒀 − ∑ 𝑿1𝜷14

1'( ‖)) + 𝜆∑ ‖𝜷1‖)4
1'( )               (2.10) 

 

where 𝜆 ≥ 0  is a tuning parameter. The group LASSO penalty is a mixture of 𝐿(  and 𝐿) 

regularization methods, that is, the LASSO and the Ridge regression penalties. 

Group LASSO can be applied to multiple functional logistic regression model [90],  which 

performs single variable selection in the functional logistic regression model with multiple 

functional predictors. The estimation of coefficients can be obtained by minimizing 

 

𝑆H(𝜷) = −𝑙(𝜷) + 𝜆∑ 𝑑𝑓1
(/)‖𝜷1‖)4

1'(                  (2.11) 

 

where the tuning parameter 𝜆 ≥ 0 controls the amount of penalization, 𝑑𝑓1 is the degrees of 

freedom of the 𝑙"9 group of predictors, 𝑙(𝜷) is the log-likelihood of the multiple functional 

logistic regression model and we denote by 𝜷  the whole parameter vector, i.e. 𝜷 =

(𝜷𝟏! , … , 𝜷𝑳!)′. Similarly, group LARS and group SCAD can be defined for multiple functional 

logistic regression model. 

 

2.3 Simulation  

 
To validate the proposed algorithm, we firstly simulate two groups of data for 64 channels 

with 48 trials and the same time length as the collected data (around 5.656 seconds). Compared 

with the control group, an extra oscillation is added into channel 3 between 500	~	1500𝑚𝑠 in 

the experiment group. Based on settings, we generate data from a series of sine and cosine 

waves as below: 

 

Group1: 𝑦	 = 4 sin(4𝜋𝑡) + 5 sin(8𝜋𝑡) + 	𝜖 for all 64 channels                                  (2.12) 
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Group2: 𝑦	 = 4 sin(4𝜋𝑡) + 5 sin(8𝜋𝑡) + 3 cos(16𝜋𝑡) + 𝟏(J"J),L98>>M1	O,P,() + 	𝜖    (2.13) 

From Figure 2.2, there is no obviously difference between simulated signals from two 

groups.  

In the first step, each time series is transformed into time-frequency domain. The value in 

new data describes the power at specific frequency and time. From Figure 2.3, we observe that 

both two plots have peaks at 2 Hz and 4 Hz, the bottom one has one flatter peak at around 8 

Hz. From Figure 2.4, we find that in the plot for data in group1, higher power comes out at 2 

Hz and 4 Hz during the whole-time interval. Whereas in the plot for data in group2, higher 

power comes out at the same frequency as in group1 and it is higher at around 8 Hz from 

500~1000 time points. Moreover, from Figure 2.5, we notice that there is significant difference 

between 1~2s at 8 Hz among two groups, whereas no significant difference is observed at other 

frequency. 

Next, functional testing method is applied to conduct the feature selection and features with 

extra 8Hz oscillations are successfully identified and selected. For instance, there exists 

significant different during time 1~2s among two groups in Figure 2.6. 

Finally, we perform penalized Multiple Functional Logistic Regression on the data.  

With consideration of both time and frequency information, the channel and frequency with 

significant differences between the two groups during a specific time interval are successfully 

identified. Therefore, the result of simulation validates the interpretability of the proposed 

three-stage algorithm.  

 

 

 
 

Figure 2.2 Simulated signals in two groups. A. Time-series at Channel 3 in Group 1; B. 
Time-series at Channel 3 in Group 2.  
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Figure 2.3. Power spectrum in two groups for data in Channel 3. A. Group1, B. Group2. 

 

 
 

Figure 2.4. Wavelet power level at different frequency and time points in channel 3. 
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Figure 2.5 Data of channel 3 in time-frequency domain at different frequency. 
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2.4 Implementation of the Three-Stage Algorithm to Scalp EEG Data 

 

In the proposed three-stage algorithm, various methods are considered to assess the best and 

interpretable model based on some performance measures. In this study, we apply the proposed 

algorithm to the scalp EEG dataset, which has been preprocessed by neuroscientists. 

Specifically, 1-50Hz bandpass filter was applied to the continuous data. The 1Hz high pass 

edge was used to remove slow drift artifacts. The 50Hz low pass edge was selected to isolate 

oscillatory activities including delta, theta, alpha and beta bands, in accordance with the 

researchers' hypothesis. Artifact subspace reconstruction (ASR) was then applied for artifact 

amelioration. Independent component analysis and an automatic component selection 

procedure, ICLabel [91] were used to correct eye/muscle artifacts through EEGLAB. The data 

is available at https://osf.io/3vxkn/. For more details in experimental design and data 

preprocessing, please see [92]. In short, the structure of EEG data set for each person can be 

expressed as 48 × 64 × 2828, which means that EEG signals for each person are collected 

from 𝑛 = 48 trials and  𝐿2 = 64 electrodes with 𝑇 = 2828 time points.  

In the first stage, data is transformed through Morlet wavelet transformation from time 

domain to time-frequency domain. Next, each feature is split into four according to different 

frequency bands [93], and  the new  number of feature increases to be 𝐿(. In the second stage, 

features that are significantly different among two levels of response are extracted by 

functional testing. Therefore, we obtain a new dataset containing 48 observations, each of 

observation contains 𝐿)  time-series with 2828  time points, which denotes the power of 

different frequency. In the last stage, the penalized Multiple Functional Logistic 

Regression(pMFLR) model is fitted to this new dataset for classification.  

 
 
Figure 2.6 Plot of functional test result for feature that frequency= 8Hz in channel 3.  
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To prevent the model from overfitting and evaluate the model accurately, cross-validation 

method (CV) is required, which randomly splits data into two parts: training set and testing set. 

Training set is used to generate the model through the estimation of coefficients based on pre-

set conditions and testing set is used to validate the model and compare the output value with 

true value from the set. In addition, due to the insufficient sample size of the original data, we 

consider bootstrap method that uses repeated samples in the original data sample to increase 

the sample size of the training set and the testing set separately. Specifically, we randomly split 

 
 
Figure 2.7 Plots of collected scalp EEG signal for one of the subjects of electrode position 
FP1 under two spatial distance tasks. 
 

 
 

Figure 2.8 The structure of the experimental data set at each stage. 
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data into training and testing set firstly, then conduct bootstrap on each set, respectively, to 

increase the sample size. Furthermore, we repeat cross-validation with bootstrapping 300 times 

to avoid the test results contingency. The whole process of implementation of three-stage 

algorithm is summarized in algorithm below. 

 
Algorithm Implementation of Three-Stage Algorithm 

Preprocess the raw data 

a) Apply artifact subspace reconstruction (ASR) for artifact amelioration. 

b) Apply Independent component analysis (ICA) and an automatic component selection 

procedure to correct eye/muscle artifacts. 

c) Obtain the new dataset with structure: 𝒏 × 𝑳𝟎 × 𝑻. 

First Stage: Data Transformation 

a) Extract both time and frequency related information by Morlet wavelet 

transformation. 

b) Split features based on four brainwaves of EEG signals. 

c) the new dataset with structure: 𝒏 × 𝑳𝟏 × 𝑻. 

Second Stage: Initial Feature Selection via Functional Testing 

a) Set up hypothesis test to check the significance of difference between different class 

for each feature.  

b) Obtain the new dataset with structure: 𝒏 × 𝑳𝟐 × 𝑻. 

Third Stage: Penalized Multiple Functional Logistic Regression Model Construction 

a) Generate MFLR model. 

b) Perform functional PCA on each predictor to alleviate the problem of multi-

collinearity. 

c) Employ penalized regression techniques with grouped predictors. 

d) Obtain the new dataset with structure: 𝒏 × 𝑳 × 𝑻. 

Evaluate the model with cross-validation 

a) Randomly split dataset into training and testing set. 

b) Conduct bootstrapping onto two sets, respectively, to increase the sample size 

c) Repeat step a) ~ b) 300 times. 

 

2.4.1 Various Model Settings 

 



48 
 
 

Since EEG data is non-periodic, we conduct the functional data analysis with B-spline basis 

function. To select the most suitable model for the given EEG signal data, various models are 

generated based on the combinations of different methods for each stage. 

In this experiment, we are interested in the time-related information, thus, we use data either 

in the time-domain or transformed to a time-frequency domain at the first stage. There are three 

functional testing methods to be considered to perform initial feature selection at the second 

stage. Finally, at the last stage, we present three options for penalty terms in penalized MFLR 

model. Consequently, there are total 2 × 3 × 3 = 18 combinations considered in this setting.  

For the sake of simplicity, we only list six representative models for comparison, since the 

performance of remaining models are not good enough to report. More details about six models 

are listed in Table 2.2. Models 1 and 2 are set up to analyze data transformation. Models 2, 3 

and 4 are set up to compare different functional testing methods. Models 3, 5 and 6 are set up 

to compare three penalty terms. 

 

 

2.4.2 Results and Interpretations 
 
To assess the performance of the six models, we use three numerical measures: sensitivity, 

squared error (SE), and area under the ROC curve (AUC). Results for overall 19 subjects are 

summarized in the Table 2.3. Predictors in the final model provide the information about task 

related brain region. Sensitivity, squared error and AUC is helpful to compare models. 

In order to determine whether the information from the time-frequency domain further 

contribute to the analysis, we compare Models 1 and 2. As shown in the Table 2.3, two models 

have similar sensitivity and AUC values while Model 2 in time-frequency domain results in 

smaller squared error than Model 1. Therefore, we select Model 2, which is discussed in time-

frequency domain.  

Model Domain Initial Feature Selection Penalties 
Model1 Time GPF grpLASSO 
Model2 Time-Frequency GPF grpLASSO 
Model3 Time-Frequency ITP grpLASSO 
Model4 Time-Frequency FT grpLASSO 
Model5 Time-Frequency GPF grpLARS 
Model6 Time-Frequency GPF grpSCAD 

 
Table 2.2 Selected model construction. 
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From the results of models 2, 3, and 4, we also conclude about the comparison of three 

functional testing methods. As we can see, model 2 with the GPF test provides better 

performance in model 2 among three models, which indicates that GPF test performs best 

among three methods. Besides, the functional t and ITP tests are much more computationally 

expensive than the GPF test because the ITP test creates a p-value matrix for each basis function 

and the functional t-test generates test statistics for each feature. Hence, these two methods are 

particularly time-consuming when analyzing the data with large amounts of features. As a 

result, the GPF test is selected to conduct feature selection at this stage. 

Some claims about penalty terms are made by comparing the results of models 2, 5 and 6. 

The non-orthogonality of the selected features and the efficiency of the LARS algorithm make 

it an attractive method for group variable selection. In addition, considering the three ideal 

attributes of penalty estimation: sparsity, unbiasedness, and continuity, the SCAD is also within 

the scope of our discussion. However, as we observe in Table 2.3, model 2 has the highest 

sensitivity and AUC values compared to the rest of models and further, the squared error of 

model 2 is almost 40% lower than the other two. Therefore, it is evident that model 2 which is 

obtained from the group LASSO penalization method performs better than the rest based on 

the numerical measures of sensitivity, squared error and AUC values. 

We further investigate the AUC of each model based on the overall 19 individuals. As we 

can see (Figure 2.9), AUCs of models 5 and 6 are clearly lower than the rest, which might be 

a result of the use of different penalties. First four models are all obtained based on group 

LASSO used at the third stage of the algorithm, whereas the other two obtained from group 

LARS and group SCAD, respectively. 

Model # of Predictors Sensitivity Squared Error AUC 
Model1 9 0.63 0.41 0.67 
Model2 12 0.65 0.28 0.68 
Model3 10 0.62 0.32 0.68 
Model4 12 0.63 0.41 0.67 
Model5 6 0.50 0.49 0.57 
Model6 10 0.51 0.50 0.56 

 
Table 2.3 Performance of model is measured from several aspects. 
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Figure 2.9 Plots of AUC for each model. 
 

 
 
Figure 2.10. Distribution of overall selected features. A. Bar plot of the proportion of brain 
waves. B. Topographical map of selected features.  
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Based on the application of proposed three-stage algorithm, we find that the model, which 

transforms the original data to the time-frequency domain and selected features by GPF method 

and applied pMFLR model with group LASSO, is a suitable approach for collected EEG 

signals to conduct classification. From Figure 2.10 A, the proportion of Delta-Theta oscillation 

are slightly higher than the other two when we discuss data in time-frequency domain. The 

proportion of selected electrodes belonging Parietal and Frontal is obviously higher than the 

other regions from Figure 2.10 B. Thus, we conclude that results from the selected model 

showed that Frontal delta-theta and Parietal delta-theta oscillations are more related to distance 

judgment. If we use PSD technique, which is a typical method in EEG signal analysis, to 

conduct the feature selection, the results show that occipital alpha oscillation is more related 

instead of the Parietal delta-theta oscillation. This is because that the PSD technique focuses 

on the power and ignore the change of spectrum of oscillation over time, whereas the functional 

testing considers the time-related information in the feature extraction process. 

Besides, Figure 2.11 presents wavelet power spectrum at electrode P5, which provides both 

temporal and frequency information. Comparing these two plots, the power of low frequency 

is higher in Short distance task during the time 1~2s, the power of high frequency is higher in 

Long distance task during the time 3~4s. Thus, the data after time-frequency transformation 

can identify the temporal characteristics of cognitive components. Moreover, selected brain 

waves based on data after wavelet transformation can be found from Figure 2.12, some waves 

are obviously different under two tasks. 
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2.5 Discussion 

   

In this chapter, we propose to use FDA method with consideration of both time and 

frequency information to interpretably classify scalp EEG signal. There is no systematic 

method for analyzing EEG data via FDA, although there have been many studies on the 

classification of EEG signals. Currently, existing FDA methods for EEG analysis [74],[82] 

consider only either time or frequency related information. Even though some research [78], 

 
 
Figure 2.11. Wavelet power spectrum at electrode P5. A. Wavelet power spectrum at P5 
under Long distance task. B. Wavelet power spectrum at P5 under Short distance task.  
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[79] have discussed FDA with frequency-related information, they automatically take into 

account the spatial information among neighboring voxels due to the property of collected 

three-dimensional brain image data. As mentioned before, high classification rate of the EEG 

signal can be achieved by some machine learning methods [80]. However, such high-quality 

classification performance comes with the sacrifice of smoothness and interpretability. 

Therefore, we propose this novel three-stage algorithm to conduct interpretable classification 

on EEG signals via FDA considering both time and frequency. 

We apply the proposed algorithm on collected EEG signals for distance judgement. 

Throughout the past decades, research has supported a role for low frequency oscillations in 

 
 
Figure 2.12: Plots of selected brain waves based on data after wavelet transformation. 
(Black: short distance; Red: Long distance). 
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coding movement speed during navigation [94],[95],[96]. In order to extract both time and 

frequency-related information from EEG signals, data is transformed into time-frequency 

domain and expressed as functions of time in the first step. Time series from different 

frequencies for each channel are treated as different functions. Next, features which are 

significantly different among two distance tasks are selected by functional testing method. The 

testing results also point out the specific time interval when such differences happen. This 

temporal information can only be obtained by interpretable FDA method. Finally, functional 

logistic regression model is constructed with group counterparts of penalty terms to conduct 

the classification. It is more suitable for factor selection with multiple predictors (e.g., 

channels), because group penalty terms allow for the joint selection of groups of covariates 

from the model.  Results indicate that frontal delta-theta and parietal delta-theta have important 

implications in spatial coding (Figure 2.10, 2.11, 2.12). 

To better demonstrate the advantages of our proposed method, we also simulate two groups 

of data (Figure 2.2). Results show that the proposed three-stage algorithm successfully 

identifies the channels and the frequency which are significantly different in two groups. It also 

points out the specific time interval which are significantly different in two groups. Therefore, 

FDA techniques make the classification become more interpretable since we can directly see 

what the selected features look like by the estimations of smooth functions. 

Although functional testing provides good temporal information of EEG signals, the 

computing complexity increases as the number of features and recording time length increase, 

because it is performed on each feature. Besides, EEG signal is easily be affected by outlier 

factors, it is necessary to denoise the original signal to improve the signal-to-noise ratio as 

much as possible before formally analyzing the data. Even though the EEG data in this chapter 

has been pre-processed, there still exists measurement errors in discrete data [97]. In next two 

chapters, we will propose new methodology for signal preprocessing, to improve the 

classification performance. Further, three-dimensional functional data analysis and modeling 

can be carried out from the perspectives of time, space, and frequency, which considers the 

spatial correlations of electrodes. 

 

2.6 Conclusion 
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In order to reflect the continuity and internal dynamic changes of the EEG signal, we take 

advantage of the functional nature of it. Therefore, the development of an interpretable EEG 

classification method based on functional data analysis has significance and application value. 

In this Chapter, we propose a novel three-stage algorithm which provides a systematic way 

of analyzing EEG data via FDA techniques. To capture desired information from the EEG 

signals, we first propose using the FDA methods on EEG signals transformed in time-

frequency domain.  While using data transformed in time-frequency domain helps to extract 

more information from the EEG signals, it increases the dimensionality of the data. Therefore, 

applying FDA techniques directly to this transformed data is not feasible. To overcome this 

challenge, we propose the second stage in this algorithm, which employs the functional testing 

methods for the initial dimension reduction (i.e., feature selection) so that the number of 

features that will be used for modeling would be manageable for the functional modelling 

techniques. Further, we show that the proposed algorithm applied to the Scalp EEG data leads 

us to an interpretable classification and we conclude that frontal delta-theta and parietal delta-

theta oscillations are more related to distance judgment than other oscillations. 
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Chapter 3 

CW_ICA: An Efficient Dimensionality Selection Method for 

Independent Component Analysis 

 

3.1 Introduction 

 
Independent component analysis is a statistical tool to extract hidden information from the 

observed (mixed) signals. Assuming that these observed signals are linear combinations of 

mutually independent and non-Gaussian source signals, ICA seeks to discover the linear 

combination of these mixed signals to recover the original source signals. The performance of 

ICA is measured by the independence or non-Gaussianity of the estimated ICs. 

According to the number of observed signals (𝑝) and source signals (𝑞), ICA methods can 

be divided into two cases: (over)determined ICA (i.e., 𝑝 ≥ 𝑞) (e.g., FastICA[98], JADE[59], 

Infomax[99], etc.), and underdetermined ICA (𝑝 < 𝑞 ) (e.g., FastFCA[100], MAICA[62], 

OICD[101], etc.). In this paper, we focus on (over)determined ICA (𝑝 ≥ 𝑞), where the mixing 

matrix 𝑨 is invertible. The object of ICA can be achieved by estimating the de-mixing matrix 

𝑾 = 𝑨7(, and the estimated source signals (ICs) can be further obtained by projecting the 

whitened data onto the matrix 𝑾.  

For comparison purposes, we employed the three most commonly used ICA methods - 

FastICA, Infomax and JADE when combined with the determination methods. A brief 

description for each of these methods is given in the following. 

FastICA: Hyvärinen and Oja [102] proposed  the FastICA algorithm, the key point of which 

is to find the vector in an unmixing matrix by a fixed-point iteration that maximizes non-

Gaussianity measured by either kurtosis or negentropy. FastICA converges quickly as it seeks 

out each component one by one. However, it requires the selection of an appropriate 

nonpolynomial function and the random nature of  initial values might cause the instability of 

FastICA  result [103]. 
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 JADE:  This is another representative ICA method for extracting IC by maximizing non-

Gaussianity, which is based on the diagonalization of fourth-order cumulative tensors that 

contain all the data's fourth-order information. The key to JADE is to perform a joint 

diagonalization of the eigenmatrices computed from the fourth-order cumulants of the 

whitened signal and optimize them via plane rotation. JADE was first proposed by Cardoso 

and Souloumiac . This method usually performs well in low dimensional space. However, the 

computational load of JADE grows rapidly with the number of components  [103] and the 

computation of eigenmatrices limits the setting of the maximum number of ICs when one 

attempts to determine the optimal number of ICs. 

Infomax: Another approach to estimating the independent components is based on mutual 

information, which is given by the Kullback-Leibler (KL) divergence of the multivariate 

density from the product of the marginal (univariate) densities [105]. The mutual information 

is always positive and the value of zero indicates the independence of components. Amari et 

al.  proposed the Infomax to compute the unmixing matrix, which presents a natural gradient 

form for the IC computation and can separate high-dimensional signals. However, Infomax 

uses a stochastic gradient algorithm [107], which may require some manual tuning and often 

fails to converge [108], or only converges slowly. 

Both under-decomposition (too few ICs) and over-decomposition (too many ICs) can 

hamper effective source separation. Commonly used determination techniques include 

information criteria, eigenvalue spectrum (ES), bootstrap resampling (BS), and cross-

validation (CV), among others. Nevertheless, these methods have their drawbacks. For instance, 

information criteria may suffer from overfitting when the sample size is small or strict model 

assumptions are made. Eigenvalue spectrum methods can be subjective in the choice of 

threshold and may be affected by noisy signals. Bootstrap resampling techniques, although 

comprehensive, can be computationally expensive. Cross-validation, while generally reliable, 

may introduce data partition bias and incur computational costs. 

To address the issues with these determination methods, researchers have proposed several 

alternatives, that can be categorized into three classes. Firstly, methods leveraging original 

signal information have been introduced. Wang et al. [109] introduced Mean-field ICA (MF-

ICA), a Bayesian-based approach that determines the optimal number of ICs by evaluating the 

square-root sum of the residual between original and reconstructed data. This method excels in 

separating complex mixtures, such as those encountered in chemistry. Other approaches in this 

class, such as those proposed by Monakhova et al. [110] and Kassouf et al. [111] leverage 
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different metrics for the determination of the optimal number of ICs. Monakhova et al. 

introduced an index, known as the Amari Index, whereas Kassouf et al. employed a correlation 

method, referred to as ICA_corr_y. Both methods, however, necessitate prior knowledge of the 

ground truth or mixing matrix. Secondly, there are methods employing visual analysis. 

Bouveresse et al. [112] proposed two techniques, one of which is the ICA-by-Blocks method, 

employing a "signal-correlation" plot to determine the optimal number of ICs. The other 

method uses a heatmap generated by the Durbin-Watson criterion. Thirdly, there are methods 

that require specific data structures. Bach et al. [113] suggested a determination method based 

on a forest-structured graphical model, which is limited to dependencies among sources within 

a forest structure and may not apply to broader classes of dependencies. Kassouf et al. [111] 

presented a determination method using the Kaiser-Meyer-Olkin (KMO) index, a measure 

indicating the presence of a partial correlation among at least two residual signals. Nonetheless, 

if there is a small number of ICs, this method encounters a potential pitfall in cases of complete 

or high correlation among variables, which makes the correlation matrix non-invertible and 

further poses challenges to the analysis. While these methods offer computational efficiency 

and require fewer assumptions compared to other techniques, they do have certain drawbacks. 

For instance, they require enough mixed signals and structured signals (such as sparse, periodic, 

linear, etc.). Additionally, in some methods, the optimal number of ICs must be visually 

identified from a plot, which can be subjective. Furthermore, the existing methods for 

determining the number of ICs may not be universally applicable to all ICA methods, which 

introduce additional challenges, such as uncertainty and instability. It is also worth noting that 

the robustness of the determination method for signals with different characteristics plays an 

important role in determining the optimal number of ICs. However, this factor has not been 

extensively studied in the context of existing determination methods. (See Table 3.1 for a 

summary of advantages and disadvantages of these techniques categorized into three groups.) 

Given the limitations of current determination methods, we propose a method called 

column-wise independent component analysis (CW_ICA) to automatically determine the 

optimal number of ICs. Inspired by the ICA-by-Blocks approach, the proposed method 

addresses challenges related to computational efficiency, consistency, and robustness. Instead 

of using Pearson correlations, CW_ICA employs Spearman correlations among the ICs 

obtained from the different blocks. This choice offers advantages in terms of capturing 

monotonic relationships between ICs, which can be valuable in various scenarios. Moreover, 

we introduce a novel metric based on the column-wise maximum rank-based correlations 
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between the extracted ICs in CW_ICA. This metric serves as a criterion for determining the 

optimal number of ICs. Therefore, compared to the existing determination methods, the major 

advantages of CW_ICA are: 

1. Efficiency: the computational cost is significantly less than existing methods.  

2. Consistency:  the optimal numbers of ICs obtained by CW_ICA are consistent when it 

is coupled with different ICA methods.  

3. Robustness:  CW_ICA is robust for signals with different characteristics. 

The rest of this Chapter is organized as follows. In Section 3.2, we provide a brief 

introduction to the ICA method and review the current determination methods. Section 3.3 

presents the CW_ICA method, using a simple example for illustration. We also compare the 

CW_ICA method with existing determination methods using both simulation and real data in 

order to evaluate its performance in Section 3.4. A detailed discussion of our findings can be 

found in Section 3.5, and our conclusion is outlined in Section 3.6. 
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3.2 Existing methods 

 
The selection of determination methods is contingent upon the specific structure and 

characteristics of the data under consideration. In this section, we provide a concise summary 

of the current state-of-the-art in this field, highlighting key differences among these methods. 

For a detailed comparison of the pros and cons of the existing determination methods, please 

refer to Table 4.1. 

In each of the following algorithms, 𝑿𝒑×𝒏 denotes 𝑝 mixed signals and signal length 𝑛. The 

residual signal matrix is calculated by subtraction of mixed signals and estimated mixed signals, 

𝑿�, that is, 𝑹 = 𝑿 − 𝑿�. 𝐴T8< represents the maximum number of ICs.  

 

3.2.1 Durbin-Watson (DW) criterion 
 

The DW statistic is a well-known test statistic used for detecting the presence of 

autocorrelation in the residuals from a regression analysis [114]. It is also used as a measure of 

Category Selected 
Methods 

Pros Cons 

Require 
original 
source signals 
information 

MF-ICA Effective for separating 
complex mixtures, 
particularly in Chemistry 

Requires original source 
signals 

Amari index 
based  

A quantitative measure with 
intuitive interpretation 

Requires true mixing 
matrix 

ICA_corr_y A data-driven approach with 
computational efficiency  

Requires at least one 
original source signal 

Visual 
determination 

ICA-by-
Blocks 

Flexible in Block Size, easy 
interpretation via plot 

High computational 
complexity 

DW criterion Determine the number of IC 
based on signal/noise ratio 

fails if variance of DW 
values among mixed 
signals is large 

Require 
specific data 
structure 

FCA Model both inter-cluster 
independence and intra-
cluster dependence 

Requires forest structured 
signals 

KMO index 
based 

A quantitative measure with 
intuitive interpretation 

fails for cases where 
small number of ICs 
occurs. 

DW criterion Determine the number of IC 
based on signal/noise ratio 

Requires structured 
signals 

 
Table 3.1. Summary of existing determination methods. 
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the signal/noise ratio in signals, which provides a method for determining the number of ICs 

[115]. The value of DW criterion for 𝑖"9 mixed signal, 𝑋!, is defined as: 

 

𝐷𝑊! =
∑ VW",'7W",'()X

*+
',*

∑ VW",'X
*+

',)
, 𝑖 = 1,… , 𝑝     (3.1) 

 

where 𝑟!," denotes the value of 𝑖"9 residual signal at time point 𝑡. If the 𝐷𝑊! is close to 0, the 

signal is noise-free, implying that the extracted IC necessitates further decomposition, However, 

if it is near 2, the signal is inundated with noise, which indicates that the signal is over-

decomposed. The average of 𝐷𝑊! values over all 𝑝 signals is employed as a measurement for 

determining the number of ICs. Nevertheless, the variance of 𝐷𝑊!’s tends to be large in real 

datasets due to the non-linear behavior exhibited in real-world signals, which contradicts the 

linearity assumption inherent to ICA methods. In practice, heatmaps are used to depict DW 

values for each mixed signal produced by models with varying numbers of ICs. From the 

heatmap plot, 𝑞Y+" is determined to be the optimal number of ICs whenever a sudden increase 

occurs in the DW values of all mixed signals. The procedure that determines the optimal 

number of ICs based on the heatmap is summarized as below: 

 

Algorithm Method based on the Durbin-Watson criterion 

Input: Observed signals 𝑿, maximum number of ICs 𝑨𝒎𝒂𝒙 

Output: Optimal number of ICs 𝒒𝒐𝒑𝒕 

Initial: Number of ICs, 𝒒 = 𝟐 

While 𝟐 ≤ 𝒒 ≤ 𝑨𝒎𝒂𝒙 do 

Perform ICA with presetting number of ICs, 𝒒, on mixing matrix, 𝑿. 

Calculate residual matrices by subtracting estimated signals from initial signals, 

𝑹𝒒 = 𝑿 − 𝑿�. 

Calculate DW criteria for each signal: 𝑫𝑾𝒒,𝟏, … , 𝑫𝑾𝒒,𝒑. 

𝒒 = 𝒒 + 𝟏. 

End While 

Generate heatmap for -𝑫𝑾𝒊,𝒋/, 𝒊 = 𝟏,… , 𝑨𝒎𝒂𝒙, 𝒋 = 𝟏,… , 𝒑. The larger the value, the 

lighter the color. 
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If for most of the columns, blocks in row 𝒒 + 𝟏 is significantly lighter than the one 

in row 𝒒 then 𝒒𝒐𝒑𝒕 = 𝒒 

Return 𝒒𝒐𝒑𝒕 

 

Due to the large variance of DW values among mixed signals, especially for the large 

number of mixed signals, it becomes challenging to visually select the optimal number of ICs. 

Further, another limitation of Durbin–Watson criterion is that it can only be used for structured 

signals (i.e., sparse, periodic, linear, etc.). 

 

3.2.2 KMO_ICA_Residuals 
 

The Kaiser-Meyer-Olkin (KMO) index was first developed to check whether the factorial 

analysis of a data set is pertinent [116].  This measure is also used to measure the independence 

of extracted ICs [111]. The KMO index is calculated from the residual signal matrix 𝑹. The 

obtained value indicates whether at least two residual signals still have a partial correlation. 

The KMO index is calculated as follows:  

 

𝐾𝑀𝑂 =
∑ ∑ ="-

*
".-"

∑ ∑ ="-
*

".-" b∑ ∑ 8"-*".-"
   (3.2) 

 

where 𝑏!% is the (𝑖, 𝑗) element in the correlation matrix of residual signals and 𝑎!% is defined as  

 

𝑎!% = − c"-
dc""bc--

      (3.3) 

 

where 𝑣!% is the (𝑖, 𝑗) element of the inverse of the correlation matrix. If the KMO index is 

close to one, it indicates that not all pure sources have been extracted and additional ICs must 

be computed. If the KMO value is close to zero, it indicates that all source signals have already 

been extracted and the model might be over-decomposed.  

The algorithm of KMO_ICA_Residuals is summarized as below: 

 

Algorithm Method based on the KMO Index 

Input: Observed signals 𝑿, maximum number of ICs 𝑨𝒎𝒂𝒙 
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Output: Optimal number of ICs 𝒒𝒐𝒑𝒕 

Initial: Number of ICs, 𝒒 = 𝟐 

While 𝟐 ≤ 𝒒 ≤ 𝑨𝒎𝒂𝒙 do 

Perform ICA with presetting number of ICs, 𝒒, on mixing matrix, 𝑿. 

Calculate residual matrices by subtracting estimated signals from initial signals, 

𝑹𝒒 = 𝑿 − 𝑿�. 

Calculate KMO index for ICA model with 𝒒 ICs, 𝑲𝑴𝑶𝒒. 

If 𝑲𝑴𝑶𝒒 ≈ 𝟎 then 𝒒𝒐𝒑𝒕 = 𝒒 − 𝟏. 

Else 𝒒𝒐𝒑𝒕 = 𝒒. 

𝒒 = 𝒒 + 𝟏. 

End While 

Return 𝒒𝒐𝒑𝒕 

 

However, the correlation matrix is not invertible if there exists completely or highly 

correlated variables, which might occur with small numbers of ICs. Then, the KMO index 

method is inapplicable in this case. 

 

3.2.3 ICA_corr_y 
 

ICA_corr_y was proposed to select the optimal number of ICs, which requires a known 

source signal (𝑦) [111]. The key point of this method is to measure the correlation between the 

estimated source signals (𝑺�) and the known source signal (𝑦) of the mixed signal. For all models 

with different number of extracted ICs, if the model with 𝒒𝒐𝒑𝒕 ICs contains the IC which has 

the highest correlation to the known signal 𝑦,	𝒒𝒐𝒑𝒕 is claimed to be the optimal number of ICs. 

The highest correlation should be observed when the optimal IC number is extracted, even if 

there are some experimental errors.  

The algorithm to determine the optimal number of ICs using ICA_corr_y is displayed as 

below: 

 

Algorithm ICA_corr_y 

Input: Observed signals 𝑿, maximum number of ICs 𝑨𝒎𝒂𝒙, a source signal 𝒚 
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Output: Optimal number of ICs 𝒒𝒐𝒑𝒕 

Initial: Number of ICs, 𝒒 = 𝟐 

While 𝟐 ≤ 𝒒 ≤ 𝑨𝒎𝒂𝒙 do 

Perform ICA with presetting number of ICs, 𝒒, on mixing matrix, 𝑿. 

Calculate correlation coefficient between 𝒚 and each extracted ICs, respectively, 

𝒓𝟏, … , 𝒓𝒒.  

Record the maximal correlation coefficient 𝒄𝒐𝒓𝒓𝒒 = 𝐦𝐚𝐱
𝟏J𝒊J𝒒

(𝒓𝒊) for ICA model with 𝒒 

ICs. 

𝒒 = 𝒒 + 𝟏. 

End While 

If 𝒄𝒐𝒓𝒓𝒒 = 𝐦𝐚𝐱
𝟐J𝒊J𝑨𝒎𝒂𝒙

(𝒄𝒐𝒓𝒓𝒊) then 𝒒𝒐𝒑𝒕 = 𝒒 

Return 𝒒𝒐𝒑𝒕 

 

However, having at least one known source signal is a strong requirement, and uncommon 

in many scientific fields e.g., the scalp EEG signal. Although, it is a simple method, it is not 

widely used for this strong requirement.   

 

3.2.4 ICA-by-Blocks 
 

ICA-by-Blocks was proposed to determine the number of ICs based on the correlation of 

ICs between blocks [112]. The original data matrix is splitted into 𝑩  blocks, which is 

determined in advance. Then, 𝐴T8< ICA models with 1 to 𝐴T8< ICs are computed for each of 

these predefined blocks. ICs corresponding to “true” source signals are assumed to be found in 

all blocks. Such “true” ICs derived from different blocks should be highly correlated with each 

other. If all extracted ICs in each block are “true” ICs, the correlation between these ICs in 

different blocks will be close to 1. If too many ICs are extracted from the blocks, the extraneous 

ICs will contain a significant contribution related to noise, and so they will be significantly less 

correlated with all the ICs from other blocks.  

The ICA-by-Blocks algorithm is summarized below: 

 

Algorithm ICA-by-Blocks method 
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Input: Observed signals 𝑿, maximum number of ICs 𝑨𝒎𝒂𝒙, number of blocks 𝑩 

Output: Optimal number of ICs 𝒒𝒐𝒑𝒕 

Initial: Number of ICs, 𝒒 = 𝟐 

Randomly separate observed signals 𝑿	into 𝑩 blocks. 

While 𝟐 ≤ 𝒒 ≤ 𝑨𝒎𝒂𝒙 do 

Perform ICA with presetting number of ICs, 𝒒, on each block, respectively. 

Generate Pearson correlation coefficient matrix 𝑷𝒒𝑩×𝒒𝑩 for all 𝒒 × 𝑩 ICs from all 𝑩 

blocks. 

Vectorize correlation matrix 𝑷 and sort elements from the largest to the smallest, 

𝑽(𝒒𝑩)𝟐×𝟏 

Extract values from (𝒒 × 𝑩 + 𝟏)𝒕𝒉  to (𝒒 × 𝑩 + 𝒒 × (𝑩𝟐 − 𝑩)	)𝒕𝒉  in the vector 𝑽 , 

denote as 𝑳𝒒(𝑩𝟐7𝑩)	×𝟏 

Generate the signal-correlation plot for visualization based on every second value in 

the vector 𝑳. 

𝒒 = 𝒒 + 𝟏  

End While 

If most significant drop occurs at 𝒒𝒕𝒉  point in the signal-correlation plot, then 

𝒒𝒐𝒑𝒕 = 𝒒 

Return 𝒒𝒐𝒑𝒕 

 

However, this method is constrained by the number of mixed signals,𝑝 , since both the 

choice of the number of blocks, 𝐵, and maximum number of ICs, 𝐴T8<, are depending on the 

sample size (i.e., 𝐴T8< 	≤ 	
+
h
) . While multiple blocks are desired to better measure the 

correlation between ICs extracted from different blocks, too many blocks will restrict the 

maximum number of ICs and increase the computational complexity. Further, this method does 

not use a quantitative measure to determine the optimal number of ICs, instead a signal-

correlation plot is used visually to determine it, thus, is rather time-consuming and prone to 

subjective errors. 

 

3.3 Proposed CW_ICA method 
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3.3.1 Algorithm Development 

 

The CW_ICA method starts by randomly splitting the initial data matrix into two sample 

blocks (𝑩𝟏 and 𝑩𝟐) with approximately equal numbers of signals. (𝐴T8< − 1) ICA models are 

then performed with different number of ICs (from 2 to 𝐴T8<) on each block. 𝐴T8< is preset 

as the maximum number of computed ICs and assumed to be less than the number of signals 

in each block, (+
)
). When 𝑝 is an odd number, the mixed signals are randomly divided into two 

blocks, with one containing +b(
)

 signals and the other containing +7(
)

 signals. ICs 

corresponding to the true source signals are expected to be in both two blocks. We assume that 

for each true IC extracted from Block 1, there must be a highly correlated IC extracted from 

the Block 2.  In order to measure the relationship between ICs from different blocks, we use 

the rank-based correlation matrix, 𝚸)6×)6 , that measures monotonic relationship, not restricted 

to linear relationship as the Pearson correlation matrix does. Further, due to the symmetry of 

the correlation matrix, we only need to perform further analysis on any one of off-diagonal 

blocks, 𝚸′6×6 (see the steps of this process in Figure 3.1).  
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For each model with 𝑞 ICs, we record the maximum absolute value of each column in 𝚸′, 

indicating the strongest correlation between each pair of ICs (𝜌(, 𝜌), … , 𝜌6). Then, we record 

the smallest of these 𝑞 values to represent the least absolute correlation coefficient between a 

pair of ICs. This leads to a quantitative measurement for the ICA model with 𝑞 ICs, defined as 

 

𝑅6 =	 min(J!J6
{max{|𝜌!|}}  (3.4) 

 

where 𝑟! is the 𝑖"9 column of the matrix 𝐏′. When 𝑞 is small, it is likely to underestimate the 

source signals, resulting in highly correlated extracted ICs, i.e., 𝑅6  is closed to 1. As 𝑞 

 
 

Figure 3.1 Stages of data structures in CW_ICA method 
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increases, it tends to overestimate, introducing noise signals and causing some extracted ICs to 

be uncorrelated, i.e., 𝑅6 is closed to 0. Therefore, to identify the optimal number of IC, we 

observe the changes of 𝑅6 as q grows. The 𝑞Y+" is selected based on the pattern of 𝑅6, where 

𝑅6 is relatively high while 𝑅6b( is significantly lower. Specifically, when the number of ICs 

exceeds 𝑞Y+" , if 𝑅6  decreases significantly and remains consistently low as 𝑞 increases, we 

claim that the optimal number of ICs is 𝑞Y+". 

To quantify the “significant drop”, we calculate the first-order difference of 𝑅), … , 𝑅i34#  

 

𝐷!,6 = 𝑅!,6 − 𝑅!,67(, 𝑞 = 3,… , 𝐴T8< , 𝑖 = 1,… , 𝑅𝑒𝑝              (3.5) 

 

where 𝑅!,6  is the smallest column-wise maximum absolute correlation value, 𝑅𝑒𝑝  is the 

number of repetitions. A negative value of 𝐷!,6 signifies a decrease in the measurement, with a 

smaller value indicating a more substantial decrease. Thus, the optimal number of ICs is 

automatically selected out according to the index of the smallest first-order difference, that is 

min
OJjJi34#

{𝐷!,6}.  

We repeat this procedure multiple times, record the detected optimal number of ICs each 

iteration. The optimal number of ICs is the one that occurs most frequently over all repetitions. 

The steps are summarized below:  

 

Algorithm CW_ICA method 

Input: Observed signals 𝑿, maximum number of ICs 𝑨𝒎𝒂𝒙, number of repetitions 

𝑹𝒆𝒑 

Output: Optimal number of ICs 𝒒𝒐𝒑𝒕 

Initial: Number of ICs, 𝒒 = 𝟐 

For 𝟏 ≤ 𝒊 ≤ 𝑹𝒆𝒑 do 

Randomly and evenly split mixed signals into two blocks, 𝑩𝟏 and 𝑩𝟐. 

While 𝟐 ≤ 𝒒 ≤ 𝑨𝒎𝒂𝒙 do 

Perform ICA with presetting number of ICs, 𝒒, on each block, respectively. 

Generate Spearman correlation coefficient matrix 𝑷𝟐𝒒×𝟐𝒒 for all 𝟐𝒒 ICs from two 

blocks. 
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Calculate the smallest column-wise maximum value, 𝑹𝒊,𝒒, in one off-diagonal block 

matrix 𝑷′𝒒×𝒒. 

Calculate 𝑫𝒊,𝒒 = 𝑹𝒊,𝒒 − 𝑹𝒊,𝒒7𝟏. 

𝒒 = 𝒒 + 𝟏  

End While 

If 𝑫𝒊,𝒋 = 𝐦𝐢𝐧
𝟐J𝐪J𝑨𝒎𝒂𝒙

{𝑫𝒊,𝒒} then record 𝑸𝒊 = 𝒋 − 𝟏 as the optimal number of ICs for 𝒊𝒕𝒉 

replicate. 

Generate the signal-correlation plot for visualization based on recorded 

𝑹𝒊,𝟐, … , 𝑹𝒊,𝑨𝒎𝒂𝒙. 

𝒊 = 𝒊 + 𝟏  

If 𝒒𝒐𝒑𝒕 = 𝒎𝒐𝒅𝒆(𝑸𝟏, … , 𝑸𝒓𝒆𝒑) then 

Return 𝒒𝒐𝒑𝒕 

 

The signal-correlation plot shown in Figure 3.2C, which depicts the change in 𝑅6 	as 𝑞 

increases, can also be used to visually identify the optimal number of ICs via detecting a 

significant drop. However, this method could be time-consuming and may introduce subjective 

bias. 

 

3.3.2 Validation 

 

CW_ICA starts by randomly partitioning mixed signals into two blocks. This is pivotal as 

excessively dividing the data into numerous blocks might result in each block containing only 

a limited number of ICs[111]. In this method, we suggest using a rank-based correlation 

coefficient, specifically, the Spearman correlation coefficient, as a measure for determining the 

correlation between ICs. The Spearman correlation coefficient is a statistical measure used to 

assess the strength and direction of the relationship (i.e., the monotonic relationship) between 

two variables. As a nonparametric measure, the Spearman correlation coefficient refrains from 

making assumptions about data distribution or homoscedasticity. Instead of relying on the 

actual values, the Spearman correlation is based on ranking the data points for both variables. 

Moreover, the Spearman correlation is robust against outliers because it relies on ranking rather 

than actual values, making it less susceptible to the influence of extreme data points. The 

determination of the optimal number of ICs in the ICA-by-Blocks method heavily relies on 
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visual interpretation of a signal-correlation plot. However, this approach is inherently 

subjective and potentially time-consuming, particularly when the plot shows multiple 

significant drops at similar levels. In contrast, the proposed CW_ICA method automates this 

process by quantitatively defining what constitutes a "significant drop", thereby eliminating 

the need for manual interpretation or inspection.  

Additionally, the ICA-by-Blocks method lacks repetitions, which increases the risk of 

obtaining results by chance. To avoid the risk of biased random splitting due to specific row 

distribution, we propose repeating the entire process — randomization, equitable division of 

mixed signals into two blocks, and the subsequent steps — multiple times, denoted as Rep. 

This systematic repetition within the CW_ICA methodology ensures a more robust and reliable 

determination of the optimal number of ICs. 

 

3.3.3 Illustrative Example 

 

To provide a clear explanation of the CW_ICA procedure, we consider a dataset comprising 

𝑝 = 20  mixed signals, each with a length of 𝑛 = 500 , which are generated by linear 

combination of 5 source signals (𝑞Y+" = 5). Our objective is to determine the optimal number 

of ICs, 𝑞Y+".  

 CW_ICA starts with randomly dividing the 20 mixed signals into two blocks: 𝑩𝟏 and 𝑩𝟐, 

with the dimension of each block being +
)
× 𝑛	(𝑖. 𝑒. , 10 × 500). With the maximum number of 

ICs being 10 (𝐴T8< = 10), we perform ICA on each block using a range of preset IC numbers 

(𝑞 = 2,… ,10). For instance, when 𝑞 = 8, after applying ICA to both 𝑩( and 𝑩), we obtain 

two sets of ICs, one from each block, resulting in a combined matrix of 2𝑞 × 𝑛	(𝑖. 𝑒. , 16 ×

500). Then we compute the Spearman correlation coefficient between each pair of ICs and the 

correlation matrix is denoted as 𝑷  with dimension being 2𝑞 × 2𝑞	(𝑖. 𝑒. , 16 × 16) . 𝑷  is 

composed of four distinct blocks with each block being a 𝑞 × 𝑞	(𝑖. 𝑒. , 8 × 8) matrix. The 

diagonal blocks are indeed identity matrices because they are the correlation between ICs from 

the same block, which are orthogonal. The two symmetric off-diagonal blocks, which depict 

correlations between the ICs in 𝑩( and 𝑩), contains the same information. therefore, we only 

need to consider one off-diagonal matrix, 𝑷′, as shown in Figure. 3.2B, 

For each column of 𝑷′, we first record the highest absolute correlation value (𝜌(, 𝜌), … , 𝜌n), 

which indicates the strength of correlation between each IC in 𝑩( and each IC in 𝑩). Then, the 
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quantitative measurement of this model is 𝑅n = min
(JoJn

{𝜌!}. If 𝑅n is close to 1, it suggests that 

all extracted ICs in 𝑩(  have strong correlations with ICs from 𝑩) . This indicates that the 

optimal number of ICs is greater than or equal to 8. Conversely, if 𝑅n is close to 0, it implies 

that some extracted ICs from 𝑩( are not correlated with any ICs from 𝑩) These redundant ICs 

indicate that the optimal number of ICs should be less than 8. In Fig. 2B, we observe that 𝑅n 

is close to 0, which indicates that 𝑞Y+" is less than 8 in this iteration. Moreover, we also show 

the situation when 𝑞 is 5, which is indeed the true number of signals, in Fig 2A. 𝑅P	is close to 

1, suggesting that the 𝑞Y+" is greater than or equal to 5.  

To determine the 𝑞Y+", we look at 𝑅), … , 𝑅(2 and locate the significant drop. Specifically, 

we calculate the first order differences between these values. For instance, we compute 𝐷p =

𝑅p − 𝑅P, if 𝐷p is found to be the smallest value among all the differences, we conclude that the 

optimal number of ICs in the first iteration is 𝑞Y+",( = 5. Furthermore, we generate a signal-

correlation plot to visually examine if there is a significant drop at the 5th point. A significant 

drop in the plot suggests 𝑞Y+",(.  

In the simulation, we repeat the whole process 10 times, i.e., 𝑅𝑒𝑝 = 10, and record the 

optimal number of ICs from each iteration as 𝑞Y+",! , 𝑖 = 1,… ,10 . Based on previous 

observations, the performance of CW_ICA, regardless of combining with various ICA methods, 

become stable in 10 repetitions. Nevertheless, it is essential to adjust the number of repetitions 

based on the number of input signals to avoid excessive computation time while maintaining 

accurate outcomes. By examining the 10 signal-correlation lines overlaid on the plot (Figure. 

3.2C), we consistently observe the significant drop occurring at the 5th point from most 

iterations. Based on this frequent occurrence, we confidently conclude that the optimal number 

of ICs is 𝑞Y+" = 5.  
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3.4 Simulation 

 
Artifacts in the collected scalp EEG signals are inevitable and can affect the subsequent 

analysis of brain activity. To address this issue, ICA techniques are widely utilized to “clean” 

scalp EEG signals by filtering out artifacts (e.g., eye movements, cardiac activity, muscle 

activity, etc.) from brain signals. If too few ICs are used, the resulting brain signal may still 

contain artifacts, reducing the effectiveness of artifact removal. On the other hand, using an 

excessive number of ICs can lead to over-separation of the brain signal, potentially causing the 

loss of important features and information. Therefore, determining the accurate number of 

 
 
Figure 3.2 A. Correlation plot for the estimated ICs from two blocks (q=5). B. Correlation 
plot for estimated ICs from two blocks (q=8). C. Signal-correlation plot. 
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source signals is crucial when applying ICA to scalp EEG signals. In this section, we carry out 

simulations and implement the proposed method on real EEG data to assess the proposed 

CW_ICA. 

 

3.4.1 Simulation 
 

Firstly, we assess the performance of the proposed method by applying CW_ICA in 

conjunction with different ICA methods on simulated EEG signal data. Since the true number 

of source signals is known in simulation data, the accuracy of CW_ICA along with three 

determination methods, the DW, ICA-by-Blocks and ICA_corr_y methods, will be compared. 

We select three widely used ICA methods, namely FastICA, Infomax, and JADE, to combine 

with each determination method. However, it is important to note that JADE have convergence 

issues if the preset number of ICs is greater than the number of source signals. Therefore, JADE 

is only performed on the real data, where the true number of signals is unknown. 

 

 

3.4.1.1 Simulated Data Generation 
 

 
 

Figure 3.3   Simulated EEG signals plots 
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According to characteristics of EEG components[91], eight analog EEG source signals (i.e., 

true 𝑞 = 8), which consist of both periodic and non-periodic signals as shown in Figure 3.3, 

are simulated. Then, 𝑝 = 30 mixed signals, denoted as 𝑿, are generated by linearly combining 

the source signals as 𝑿 = 𝑨𝑺, where 𝑨 is a randomly generated mixing matrix whose elements 

are normally distributed. 

 

3.4.1.2 Impact of Correlation Coefficients on Determination Methods 
 

To assess the impact of different correlation coefficients on two determination methods, 

specifically ICA-by-Blocks and CW_ICA, we conduct this simulation study. Noting that the 

true optimal number of ICs is 𝑞Y+" = 8 in this simulation.  

We employ both CW_ICA and ICA-by-block coupled with Pearson and Spearman 

correlation to determine the optimal number of IC, 𝑞Y+" . Figure 3.4 shows the signal-

correlation plots. For ICA-by-Blocks, when it is coupled with Spearman correlation (Figure 

3.4 A2 and A4), the estimated 𝑞Y+"  is 8, which is the same as the true 𝑞. However, when 

coupled with Pearson correlation (Figure 3.4 A1 and A3), ICA-by-block determines 𝑞Y+" being 

10, which leads to over-decomposition. This discrepancy suggests that the choice of correlation 

coefficient greatly influences the determination accuracy of ICA-by-Blocks. On the other hand, 

CW_ICA, clearly exhibits a sharp drop at the true number of ICs (	𝑖. 𝑒. 𝑞Y+" = 8), which 

indicates that CW_ICA outperforms ICA-by-Blocks regardless of the type of correlation 

coefficient employed (Figure 3.4 B1-B4). Moreover, the result obtained by the Spearman 

correlation-based CW_ICA provides even much more compelling evidence for accurately 

identifying the true 𝑞Y+"  (Figure 3.4 B2 and B4). This is because Spearman correlation 

coefficient captures monotonic relationships that exist among ICs, providing enhanced 

performance in determining the optimal number of ICs. 
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Figure 3.4 Signal-Correlation plots for CW_ICA (A) and ICA-by-Blocks (B) methods. 
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3.4.1.3 Accuracy 

 

To show how accurately the proposed CW_ICA method detects the optimal number of the 

ICs, we compare our method with the ICA-by-Blocks and DW determination methods. 

Similarly, we randomly generate 𝑝 = 30 mixed signals  𝑿 by linear combination of 𝑞 = 6 

simulated EEG component signals. Multiple mixed-signal datasets, 𝑿 , are obtained by 

repeatedly and randomly generating the mixing matrix, 𝑨, while keeping the original source 

signal, 𝑺, unchanged. Accuracy in this context refers to the percentage of simulation runs that 

correctly identify the optimal number of ICs. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = T	
&
× 100%    (3.6) 

 

where 𝑚 is the number of simulations runs that correctly identify the optimal number of ICs 

and 𝑁 denotes the total number of simulations runs. To estimate the optimal number of ICs, all 

three determination methods (i.e., CW_ICA, ICA-by-Blocks and DW) are combined with 

FastICA and Infomax, respectively. We only compare the accuracy of three methods for limited 

number of simulations runs (i.e., 𝑁 = 5, 10, 25), due to the fact that the DW and ICA-by-

Blocks methods are time consuming since they require graphs to identify 𝑞Y+".  

 
 

Figure 3.5 Accuracy of three determination methods. 
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As shown in Figure 3.5, CW_ICA provides 100% accuracy combined with either FastICA 

or Infomax. The accuracy of ICA-by-Blocks combined with FastICA is also 100%, which is 

much higher than the result when combined with Infomax. DW performed worst, especially 

when combined with FastICA.  

 

3.4.1.4 Robustness 

 

To further understand the robustness of existing and proposed determination methods on 

datasets with different characteristics, we generated datasets with varying numbers of mixed 

signals, signal lengths, signal-to-noise ratio, and frequency ranges, respectively. A total of three 

methods for determining the number of ICs are compared with the combination of FastICA and 

Infomax. 

Figure 3.7 illustrates the estimated number of the source signals, 𝑞Y+", obtained by four 

methods as we vary the levels of mixed signals, signal lengths, signal-to-noise ratio, and 

frequency ranges. First, we conclude that DW coupled with FastICA is not suitable, since the 

Figure 3.7A1-A4 show that the results obtained using the DW criteria is inconsistent as the 

signal parameters change. Second, we observe that if ICA-by-Blocks is used in conjunction 

with Infomax, it generates inconsistent results in certain cases, for instance as the number of 

mixed signals increases, or the signal length changes (i.e., Figure 3.7B1, B3). Additionally, the 

results obtained by ICA_corr_y show variations with changes in the characteristics of mixed 

signals (i.e., Figure 3.7B3, B4). Furthermore, when combined with FastICA, ICA_corr_y 

produces incorrect results under certain conditions (i.e., Figure 3.7A2). In comparison, 

CW_ICA shows more consistent results regardless the characteristic of mixed signals and the 

ICA methods. 
 
 

3.4.2 Scalp EEG Data Application 
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Figure 3.6 Estimated number of source signals from the varying mixed signals. 
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Artifacts in the collected scalp EEG signals are inevitable, which affects the subsequent 

analysis of brain activity. ICA techniques are widely utilized in the scalp EEG signals to filter 

out artifacts (e.g., eye movements, cardiac activity, muscle activity, etc.) and extract brain 

signals. However, too few ICs results in a contaminated brain signal that still contains artifacts, 

while too many ICs causes the brain signal to be over separated, losing some relevant features. 

Therefore, it is important to determine the number of source signals when applying ICA on 

scalp EEG signals.  In this chapter, we applied our data to the raw scalp EEG dataset, introduced 

in Chapter 1.1. 
 

 

To validate the effectiveness and robustness of the proposed CW_ICA, we consider three 

selection methods for determining the optimal number of ICs (i.e., CW_ICA, DW, 

ICAbyBlock), and each is coupled with three ICA methods (Fast ICA, Informax, and JADE). 

We also consider determining the optimal number of ICs at two levels: subject-wise and 

channel-wise. First, the optimal number of ICs is determined for each subject respectively, with 

the dimension of mixed signals 𝑿 being 2828*48 (𝑛) by 64 (𝑝). The optimal ICs obtained using 

nine methods over 19 subjects are summarized in the heatmap (Figure 3.7).  In this plot, each 

entry denotes the estimated number of ICs, the redder the larger value is. Each column records 

the estimated number of ICs obtained by 9 methods for one subject. For each method, the 

 

Figure 3.7 Heatmap of estimated number of ICs. 
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number in the parenthesis summarizes the mode of IC number across all subjects. For each 

subject, the resulting ICs numbers selected by CW_ICA are more consistent across three ICA 

methods, compared to DW and ICAbyBlock. The variation of the determined IC number, 

quantified by the variance, is further summarized in Figure 3.8. Overall, CW_ICA shows the 

minimal variation when combining with different ICA methods, which indicates the 

consistency of CW_ICA. Besides, the optimal IC number obtained by CW_ICA for all subjects 

is around 7-10 while DW and ICAbyBlock give smaller IC number, around 5-8. In real data, 

there is no ground truth, therefore, we further investigate the corresponding ICs obtained using 

the optimal IC number determined by three selection algorithms. Take subject 18 as an example. 

The optimal IC number obtained by CW_ICA is 11 while the number determined by the other 

two selection methods is 5. Therefore, we preset the number of IC being 5 and 11 respectively 

when applying ICA on subject 18 and summarize the obtained ICs in Figure 3.9. With number 

of ICs being 5, some channel noise can be separated (e.g., IC 1 and 2). However, the rest three 

 

 
Figure 3.8 Precision Comparison of the estimated number of ICs for three determination 
methods for every individual. 
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ICs are still mixed signals. With IC number being 11, sources are much better separated, for 

instance, channel noise (IC 1 and 2) and muscle (IC 6 and 7).   

 

 

Besides subject-wise analyses, we also consider channel-wise determination of the optimal 

IC number. This approach accounts for the possibility that the number of source signals may 

 

 
Figure 3.9 Extracted EEG source signals from subject 18 with different number of ICs. 



82 
 
 

vary across different brain regions. For example, channels located near the eyes may have a 

higher number of sources compared to other regions. To determine the channel-wise optimal 

IC number we implement the nine algorithms on the mixed signals 𝑿, with dimensions of 2828 

(𝑛) by 48 (𝑝), for each subject and each channel. The average of obtained optimal IC number 

across all 19 participants is calculated and summarized in the heatmap given in Figure 3.10. In 

this plot, each entry denotes the estimated number of ICs, the redder the larger value is. Each 

column describes the estimated number of ICs by 9 methods at the same electrode.  

When examining the standard deviation (Std) of the determined IC numbers in Figure 3.11, 

it is evident that the CW_ICA method exhibits more consistent outcomes when combined with 

different ICA methods, even though the optimal IC number may vary across different 

electrodes. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.10 Heatmap of estimated number of ICs. 
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Topographical scalp maps (Figure 3.12) represent the channel-wise optimal number of ICs 

for all 19 participants and provide valuable insights into the distribution of the optimal IC 

numbers across different brain regions. Overall, the optimal IC number obtained by the 

CW_ICA method is relatively lower in the frontal cortex, indicating potentially less 

interference from physical artifacts. Whereas a larger number of ICs may be required to 

effectively separate the brain signals from the artifacts in prefrontal and temporal cortex. This 

pattern can be attributed to the fact that the prefrontal and temporal cortex regions are near 

facial muscles and signals are more susceptible to physical artifacts, such as muscle movements 

and eye blinking. In contrast, the other two determination methods, particularly ICA-by-Blocks, 

do not show significant variations in the optimal IC numbers across different electrodes.  

 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3.11 Heatmap of estimated number of ICs. 
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3.5 Discussion 

 
In this study, we propose a robust method, CW_ICA, to determine the optimal number of 

ICs. Although there have been many studies on determining the number of ICs, the ability of 

combination with different ICA methods and the comparison of their performance on signals 

with different natures have not been discussed. The current methods for determining the 

number of ICs are mainly used only in conjunction with JADE[112], and applied to the real 

data from some specific fields. There is no information about whether they can be combined 

with other simpler or widely used ICA methods, i.e., FastICA, Infomax, etc., and the robustness 

of these methods. Therefore, to fill in this missing information and address the shortcomings 

 

Figure 3.12 Topographical scalp maps. 
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of existing determination methods, we propose CW_ICA, which can be combined with 

multiple ICA methods and automatically determine the optimal number of ICs. 

We summarize the significant advantages of the proposed CW_ICA method over existing 

approaches here. First, its computational cost is significantly lower than the existing methods 

since it eliminates the need for source signal-related information. Moreover, it relies on a 

quantitative measurement instead of visual identification. Secondly, the CW_ICA method 

simplifies the process of determining the optimal number of ICs compared to the ICA-by-

Blocks method. Rather than determining the number of blocks in ICA-by-Blocks, CW_ICA 

divides mixed signals into only two blocks. This simplification eliminates potential challenges 

in selecting the maximum number of ICs when dealing with a large number of blocks. In 

addition to the aforementioned advantages, CW_ICA offers several other notable benefits. 

Firstly, CW_ICA extracts only one value from each column of the off-diagonal matrix, whereas 

ICA-by-Blocks preserves all values in the off-diagonal matrix. This streamlined approach 

significantly reduces complexity and computational overhead while maintaining the accuracy 

and reliability of determining the optimal number of ICs. Secondly, CW_ICA can be coupled 

with multiple ICA methods, consistently yielding reliable results. Researchers can focus solely 

on selecting an appropriate ICA method based on the properties of the mixed signal, without 

concerns about the compatibility of the determination method and the ICA method. Thirdly, 

CW_ICA is a robust method because it uses rank-based correlation instead of Pearson 

correlation coefficient as used in ICA-by-Blocks. The rank-based correlation measures the 

relationship between ICs from different blocks based on ranks, avoiding reliance on 

assumptions and generating more robust results. Finally, CW_ICA automatically determines 

the optimal number of ICs. Unlike ICA-by-Blocks and DW, which require visual identification 

from plots, CW_ICA quantifies the identification process. This quantification allows for 

automated determination, eliminating the time-consuming manual analysis required by the 

other methods. 

To better illustrate the advantages of CW_ICA, we apply it and some existing determination 

methods on both simulated signals and collected raw EEG signals, respectively. First, we 

compare the measurements of two correlation coefficients (Pearson and Spearman correlation 

coefficient) using ICA-by-Blocks and CW_ICA. Results show that CW_ICA with Spearman 

clearly display a significant drop at 6, which is the true number of ICs (Figure 3.4). Second, 

we check the accuracy of CW_ICA by applying it to multiple datasets and comparing it with 

ICA-by-Blocks and DW. Results imply that only CW_ICA keeps 100% accuracy rate, the 
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performance of the other two methods varies when they are combined with different ICA 

methods (Figure 3.5). Next, to verify the robustness of CW_ICA, it is applied to multiple sets 

of mixed signals with different properties (i.e., length, quantity, signal-to-noise ratio, and range 

of frequency), and compared with the results obtained by ICA-by-Blocks and DW. Results 

indicate that the correct number of ICs is identified by CW_ICA and not affected by changes 

of mixed signals (Figure 3.6). Further, we compare 9 combinations of determination methods 

(CW_ICA, ICA-by-Blocks, DW) and ICA methods (FastICA, Infomax, JADE) to determine 

the optimal number of ICs in raw EEG signals (Figure 3.7, Figure 3.8, Figure 3.10 and Figure 

3.11). Among these combinations, only the proposed CW_ICA provides the same number of 

ICs across each electrode, demonstrating its compatibility with different ICA algorithms and 

consistent determination capability. It is worth noting that our methods are adaptable and can 

be applied to other datasets for the determination of the number of source signals as well. 

Although the robustness of the proposed CW_ICA is proved by comparison with other 

methods under different conditions, the measurement difference between models with 

consecutive number of ICs in CW_ICA is not as significant as before, when the size of the 

signal matrix becomes larger (length or number of mixed signals increases). Besides, the 

computing complexity increases as the number of mixed signals and signal length increase, 

since it is measured by the correlation matrix. To tackle these issues, in the future work, the 

proposed method will be extended to functional methods to reduce the dimensionality of the 

data and obtain more robust and obvious results. Besides, we only discuss the classical ICA 

methods here, we will also consider performing functional ICA with the proposed CW_ICA 

method in next chapter. 

 

3.6 Conclusion 

 

The proposed CW_ICA method addresses limitations in current determination methods by 

introducing a quantitative measurement and a block splitting approach to reduce computational 

complexity. By focusing on the smallest column-wise maximum absolute value, CW_ICA 

offers a versatile solution that can be seamlessly integrated with various ICA methods. 

Moreover, it leverages the robustness of the Spearman correlation coefficient, which leads to 

reliable and consistent results in determining the optimal number of ICs automatically. To 

evaluate the performance of CW_ICA, it is compared with existing determination methods in 
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combination with multiple ICA methods using extensive simulated data and real raw EEG 

signals. In conclusion, the proposed CW_ICA method offers a versatile and robust approach 

for automatically determining the number of ICs in signal analysis. Its compatibility with 

multiple ICA methods, reduction in computational complexity, utilization of Spearman 

correlation coefficient, and strong performance in comparative evaluations make it a valuable 

tool for researchers in various fields. 
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Chapter 4  

Robust Functional Independent Component Analysis for Functional 

Data 

 

4.1 Introduction 

 

Functional Independent Component Analysis (fICA) holds a unique advantage over 

classical ICA methods in that it is specifically tailored for applications where the temporal 

dimension is critical, such as in neuroimaging. While classical ICA seeks to find statistically 

independent components in multi-dimensional data, fICA takes this a step further by 

considering context-specific patterns of activity. In domains like functional Magnetic 

Resonance Imaging (fMRI) and Electroencephalography (EEG), where the timing of neural 

responses is essential, fICA excels by extracting components that represent their corresponding 

temporal dynamics. This consideration of time continuity enhances the interpretability and 

relevance of the extracted components, making fICA a powerful tool for understanding 

complex data with inherent temporal dependencies. 

While there are several fICA methods available, the majority of them merely concentrate 

on the classification based on the extracted ICs. Mehta and Gray [117] firstly performed ICA 

on functional observations estimated by fPCA by minimizing entropy. D. Peña et al. [118] 

defined functional kurtosis operator to identify outliers and cluster structures, but classification, 

implementation and theoretical properties under mixtures of Gaussian processes rather than a 

functional version of ICA. Li et al. [119] defined functional Fourth-Order Blind Identification 

(fFOBI), using an estimation procedure stemmed from the finite Karhunen-Loève (K-L) 

expansion, orthogonal expansion is optimal in the least-squared error sense. Virta et al. [120] 

extended two ICA methods, FOBI and JADE, to vector-valued functional data. Lastly, in a 

more recent work by Vidal et al. [121], they proposed a functional independent component 

analysis, pFICA, based on the spectral decomposition of the kurtosis operator of a smoothed 

principal component expansion. However, a critical gap in the existing literature is the lack of 
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emphasis on evaluating the recovering of the extracted ICs in comparison to the true ICs. 

Additionally, there is a noticeable absence of discussions regarding the robustness of these 

methods. The need for a robust fICA method becomes particularly evident when considering 

signal preprocessing. In practical scenarios, such as the analysis of neuroscience data, the 

presence of noise is virtually unavoidable, e.g., sample outliers, bump outliers, peak outliers, 

etc. In this study,  we focus on  sample outliers, that are individual EEG recordings that exhibit 

patterns significantly different from the expected or other trials, potentially indicating the 

presence of noise, artifacts, or rare events in neural activity. These noise signals can 

significantly impact the subsequent steps of signal analysis.  

In this study, we propose a novel and robust functional Independent Component Analysis 

method, named rFICA. Unlike current approaches solely focused on IC classification, rFICA 

addresses the multifaceted challenges of accurately assessing the extracted ICs concerning the 

ground truth ICs while maintaining resilience to noise interference. To evaluate the robustness 

of rFICA, we conduct a comparative analysis, contrasting the performance of classical fICA 

and rFICA when applied to mixed signals subjected to varying levels of contamination. This 

assessment incorporates a representative type of outliers—sample outliers—to simulate real-

world scenarios encountered in datasets. Additionally, we extend the evaluation to real scalp 

EEG signals by comparing the proposed robust fICA method (i.e., rFICA) with existing fICA 

techniques. Notably, rFICA not only showcases the robustness but also demonstrates superior 

performance, yielding higher classification rates based on the extracted ICs. This 

groundbreaking development highlights the potential of rFICA to improve the quality of EEG 

signal analysis and interpretation, paving the way for more precise and efficient advances in 

neuroscience applications. 

The paper's contributions can be summarized as follows: 

1. Development of robust functional Independent Component Analysis (rFICA): We 

introduce a novel and robust method for Functional Independent Component Analysis (i.e., 

rFICA). Our approach incorporates Kendall's function and ROBPCA into the framework 

of fICA, enhancing its robustness and applicability. 

2. Algorithm for extracting functional ICs from contaminated mixed signals: We 

present a comprehensive algorithm designed to efficiently extract functional Independent 

Components (ICs) from datasets containing a mixture of various data types. This algorithm 

facilitates the extraction of meaningful insights from complex datasets. 
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3. Robustness validation through simulated and real data: We validate the robustness 

of rFICA by applying it to both simulated datasets with sample outliers and real EEG 

datasets. This empirical evaluation demonstrates the effectiveness and reliability of our 

method in real-world scenarios. 

The structure of Chapter 4 is organized as follows. We briefly introduce fICA method and 

provide a literature review of existing fICA methods in Section 4.1. In Section 4.2, we present 

the rFICA algorithm. Section 4.3 features a simulation study that assesses the performance of 

our proposed rFICA method. In Section 4.4, we apply this method to analyze a real-world 

dataset, demonstrating its practical applicability. In Section 4.5, we delve into discussions by 

summarizing our key findings, exploring their implications, and proposing potential directions 

for future research. Finally, in Section 4.6, we provide the concluding remarks for this chapter. 

 

4.2 Proposed Algorithm 

 
4.2.1 Algorithm Development 

 

ICA methods typically involve a crucial step of standardizing observed data by applying the 

inverse square root of the covariance matrix. This standardization process effectively 

eliminates linear dependencies and normalizes variance across different dimensions. However, 

when dealing with infinite-dimensional spaces, a challenge arises due to the non-invertibility 

of covariance operators, resulting in an ill-posed problem.  

To tackle this challenge, we refer to the definition of independence within the functional 

domain, as introduced by Gutch and Theis [122]. This definition states that a functional random 

variable demonstrates independent components when the coordinates, derived after projection 

onto a specified orthonormal basis, behave as independent variables. Thus, the aim of fICA is 

to find a linear operator Γ, such that for a truncated orthonormal basis {ϕ((t), …ϕq(t)} ∈

L)(T), the variables < ΓX,ϕr > are mutually independent. 

Suppose that we are given a dataset X, comprising p signals, each with a signal length of T. 

Firstly, signals are expressed as linear combination of N basis functions X(t) = Aϕ(t), where 

A = daore ∈ ℝs×q, ϕ(t) = (ϕ((t), …ϕq(t))t. Then, following the ICA pre-processing steps, 

we standardize the approximated curves by defining the whitening operator as  
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Ψ{X(t)} = XÍ(t) = Auϕ(t)    (4.1) 

 

where Au = AW , W = UΛ7(Ut, Σv =
(
s
(AAt) = UtΛ , Λ  is diagonal matrix that contains 

eigenvalues of A, U contains eigenvectors corresponding to the eigenvalues of A. 

Next, we employ robust fPCA approaches inspired by ROBPCA [123] and Kendall’s τ 

function [50] to estimate sample curves in terms of robust functional principal components 

based on sample covariance Mercer decomposition.  Let us consider the B-spline basis 

expansion of the eigenfunctions of covariance of XÍ(t) , γ(t) = ϕ(t)tb , where b =

(b(, … , bq)t. Let G = (< ϕo, ϕo! >), i, i0 = 1,… , N denotes the covariance of basis functions. 

Since B-spline basis functions are non-orthonormal with respect to the usual L) geometry, we 

can apply Cholesky factorization of the form G = LLt	to find a non-singular matrix that allows 

us to operate in terms of the B-spline geometrical structure induced into ℝq. Then, finding the 

coefficients of (b(, … , bq)t corresponds to solve the eigenvalue problem 

 

L7(GΣv5(L
7(G)ter = λrer    (4.2) 

 

where er = Ltbr, leading to a set of orthonormal functions. The j#$ PC is then given by zr =

AG(L7()ter, and the problem is reduced to the multivariate PCA of the matrix C = 	AuG(L7()t 

in ℝq (More detailed information can be found in [121]). In this study, we utilize two robust 

PCA algorithms that are particularly effective in handling sample outliers. The ROBPCA 

method combines ideas of both projection pursuit and robust covariance estimation based on 

Minimum Covariance Determinant (MCD) method. Based on the ROBPCA algorithm, we 

introduce specific modifications to effectively handle sample outliers. Specifically, we apply 

the ROBPCA method to the matrix C for the case of sample outliers. In addition to utilizing the 

ROBPCA method, we also incorporate Kendall’s τ function [50] into our approach to construct 

functional PCs. This integration leverages rank information and draws inspiration from both 

the Kendall's τ correlation coefficient and the spatial sign covariance function proposed by 

Gervini [49], enhancing the robustness of our methods (More detailed information can be found 

from Zhong et al. [50]). 
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After estimating the coefficients (b(, … , bw)t  and principal component scores Z , let's 

proceed by assuming that the principal component is truncated at the q-term, i.e., the number 

of functional ICs. Then, the column vector of sample curves is given by XÍj(t) = 	Zjβ(t), 

where Zj ∈ ℝs×j  is the matrix that contains first q PC scores with respect to the basis of 

principal component functions β(t) = (β((t), … βj(t))t. Let Dx6 = diag(ZjZjt), the kurtosis 

operator of XÍj(t) can be expressed as  

 

𝒦yz6(β(t)th) =
(
s
(ZjtDx6Zjh)tβ(t)    (4.3) 

 

The eigen-analysis of this kurtosis operator leads to the diagonalization of the kurtosis 

matrix of the principal components Zj 

 

Σ{,x6vr = urvr, j = 1,… , q    (4.4) 

 

where Σ{,x6 ∈ ℝj×j is defined as Σ{,x6 =
(
s
∑ ||zo

j||)zo
jzo

jts
o'( = (

s
ZjtDx6Zj.  

Thus, the robust function ICA of  X(t) ∈ L)(T)	can be obtained from the classical ICA of 

Zj ∈ ℝj. Then, the extracted independent components can be expressed as 𝒞r = Zjvr, and the 

operator Γ is  

 

ΓdXÍje = βtUt ∑ zo
j7(/)

x6     (4.5) 

 

where U ∈ ℝj×j is the matrix of eigenvectors of the kurtosis matrix Σ{,x6. 

The algorithm of rFICA is summarized as below: 

  Algorithm rFICA  

Input: Observed signals 𝑿, number of ICs 𝒒, robust term 𝑹(𝒓𝒐𝒃, 𝛕) 

Output: Extracted ICs 𝑺� 

Step 1: Functional data estimation 𝐗(𝐭) = 𝐀𝛟(𝐭) 

Step 2: Functional ICA pre-processing 𝚿{𝐗(𝐭)} = 𝐗Í(𝐭) = 𝐀𝐖𝛟(𝐭) 

Step 3: Construct robust fPCA 𝐗Í𝐪(𝐭) = 	𝐙𝐪𝛃(𝐭) 

If 𝑹 == 𝒓𝒐𝒃 then perform fPCA with ROBPCA on 𝐂 = 	𝐀𝐖𝐆(𝐋7𝟏)𝐓 
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Else if 𝑹 == 𝛕 then perform fPCA with Kendall’s 𝛕 function on 𝐗Í(𝐭) 

Step 4: Eigen-analysis of kurtosis operator 𝚺𝟒,𝐙𝐪𝐯𝐣 = 𝐮𝐣𝐯𝐣, 𝐣 = 𝟏,… , 𝐪  

Step 5: Independent components extraction 𝓒𝐣 = 𝐙𝐪𝐯𝐣, 𝐣 = 𝟏,… , 𝐪 

Return 𝑺� = 𝚪d𝐗Í𝐪e = 𝛃𝐓𝐔𝐓∑ 𝐳𝐢
𝐪7𝟏/𝟐

𝐙𝐪  

 

4.2.2 Validation 

 

The ROBPCA method, as introduced by Hubert et al. [123], seamlessly integrates the 

principles of projection pursuit and robust covariance estimation, primarily utilizing the MCD 

method, which is rooted in the pursuit of an h-subset with the smallest determinant for the 

classical covariance matrix (More detailed information can be found by Hubert et al. [123], 

[124]. Specifically, the key step of ROBPCA revolves around identifying ℎ(< 𝑝) data points 

that demonstrate the least outlying characteristics. Typically, ℎ is set to approximately 0.75𝑛, 

or it can be specified by the user. Then, we robustly estimate the covariance matrix for the 

mean-centered matrix obtained in the second step, by employing the MCD estimator. Similar 

to classical PCA method, ROBPCA also assumes that the data is approximately normally 

distributed. For case of sample outliers, we perform ROBPCA on the matrix C, to detect the 

data points that are far away from others and remove it.  

The robustness of Kendall's τ function stems from its utilization of rank information. The 

key point of this method is the construction of the Kendall’s 𝜏 covariance, which excels in 

handling sample outliers owing to its reliance on rank-based statistics. Specifically, Kendall's 

τ serves as a non-parametric measure of association, assessing the correspondence between the 

ranks of two variables without assuming any specific data distribution. This attribute renders 

it less sensitive to extreme values and outliers, particularly when contrasted with parametric 

methods tied to specific data distributions. Additionally, Kendall's τ considers tied values in 

the data, where outliers typically influence only a limited number of tied data points, thereby 

reducing their overall impact on the rank correlation. Therefore, the integration of Kendall's τ 

function into fPCA offers an effective approach for addressing sample outliers, especially when 

they exhibit similar patterns. 
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4.3 Simulation 

 
4.3.1 Simulated Data Generation 

 

Aligned with the ground truth of EEG components, source signals are generated with a 

sampling frequency of 1000 Hz and an epoch duration of 1 second. This simulation yields a 

total of p=30 EEG signals, each crafted through a linear combination of q=7 distinct source 

signals. These source signals encompass various components, including brain rhythms at 7, 10, 

and 15 Hz, an eye-related component at 4 Hz, a heart-related component at 1 Hz, a component 

attributed to line noise at 60 Hz, and a muscle-related component (Figure 4.1). 

 

 

In order to examine the robustness of proposed rFICA method, we introduce additional 

contaminations into simulated EEG signals, i.e., sample outliers (Figure 4.2). Sample outliers 

are generated based on gaussian noise with varying parameter setting. Detailed information 

about the contamination data can be found in Table 4.1 below. 

 
 

Figure 4.1 Simulated EEG component signals. 
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4.3.2 Simulation Performance Metrics 

 

The ideal extracted ICs are expected to encompass both temporal and frequency information. 

Consequently, the performance of fICA methods will be evaluated in both the time and 

frequency domains. In the time domain, the Cross-Correlation Function (CCF) is used to 

measure the similarity between signals. Let 𝑠%"  and �̂�!"  denotes the 𝑡"9  point of 𝑖"9  true and 

estimated signal, respectively. 

Sample Outliers Magnitude Proportion 

Contamination Level 1, 5, 10, 20 3%, 14%, 25%, 40%, 50% 

 
Table 4.1 Contamination Parameter setting. 

 
 

Figure 4.2 Simulated EEG signals with sample outliers. 
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𝐶𝐶𝐹!% = ∑ (�̂�!("b�) ∙ conj(𝑠%")3
"'( , 𝑖, 𝑗 = 1,… , 𝑝    (4.6) 

 

Following parameter tuning experiments, the delay parameter,	𝜏, is set as 10 in this study, 

allowing for up to a 10-time-point delay between two signals. 

To assess the frequency information of the extracted ICs, we employ the Fast Fourier 

Transformation (FFT) on extracted ICs and measure the similarity by Cosine Similarity (COS). 

Let 𝑓% and 𝑓þ! denotes the spectrum vector of 𝑖"9 true and estimated signal, respectively. 

 

𝐶𝑂𝑆!% =
��"∙�-

���"�∙��-�
, 𝑖, 𝑗 = 1,… , 𝑝    (4.7) 

 

While the Mean Square Error (MSE) is commonly employed as a metric, it has a limitation 

in that it does not consider the possibility of time shifts between true and estimated ICs, which 

can occasionally be unavoidable. Besides that, another option for capturing the frequency 

information of signals is the Euclidean Distance (EUC). Nevertheless, the COS, which falls 

within a range of -1 to 1, is generally preferred over EUC. This preference arises from COS's 

insensitivity to the magnitude of frequency, rendering it a more robust choice. 

 

4.3.3 Simulation result analysis 

 

Our analysis involves the comparison of two non-robust fICA techniques (i.e., pFICA, 

fFOBI) with newly proposed robust fICA method that incorporates three robust fPCA methods 

tailored to data with varying contamination levels. Our expectation is that under 

uncontaminated conditions, all fICA methods will yield similar results. Furthermore, we 

hypothesize that the robust fICA method will excel over other methods when applied to datasets 

containing contamination. 

We introduce sample outliers as additional mixed signals, simulating them using Gaussian 

signals. To thoroughly evaluate the robustness of the proposed method, we systematically vary 

the parameters associated with these sample outliers. Specifically, we adjust the magnitude of 
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sample outliers, ranging from 1 to 20. Additionally, we explore different scenarios by varying 

the number of sample outliers from 1 to 30. The result of each case can be found below (Figures 

4.3-4.4, Tables 4.2-4.5). 

 

Case 1: Varying magnitude of sample outliers 

 

From Figure 4.3 and Tables 4.2-4.3, we observe that the proposed rFICA that utilizes Kendall’s 

τ function and ROBPCA outperforms than others when mixed signals contain sample outliers, 

regardless of the magnitude of outliers. 

 

 

 

CCF fFOBI pFICA rFICA (𝛕) rFICA (rob) 

X 0.7400 0.7269 0.7298 0.7202 

Xs(1) 0.6439 0.5499 0.6883 0.6514 

Xs(5) 0.6428 0.5499 0.6839 0.6505 

Xs(10) 0.6422 0.5495 0.6833 0.6491 

Xs(20) 0.6411 0.5490 0.6825 0.6469 

 
Table 4.2 Performance of fICA methods based on CCF metric for varying magnitude of 
sample outliers (i.e., 1, 5, 10, 20). 
 

COS fFOBI pFICA rFICA (𝛕) rFICA (rob) 

X 0.7851 0.7649 0.7766 0.8046 

Xs(1) 0.7321 0.6251 0.7541 0.7658 

Xs(5) 0.7328 0.6250 0.7495 0.7651 

Xs(10) 0.7332 0.6248 0.7497 0.7649 

Xs(20) 0.7336 0.6245 0.7490 0.7627 

 
Table 4.3 Performance of fICA methods based on COS metric for varying magnitude of 
sample outliers (i.e., 1, 5, 10, 20). 
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Figure 4.3 Side-by-side boxplot of CCF and COS values for robust and non-
robust fICA methods with different with varying magnitude of sample outliers. 
magnitude of sample outliers (i.e., 1, 5, 10, 20). 
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Case 2: Varying contamination levels for sample outliers 

 

From Figure 4.4 and Tables 4.4-5, we find that both Cross-Correlation Function (CCF) and 

Cosine Similarity (COS) measurements exhibit a decrease as the number of sample outliers 

increases. In the presence of mixed signals containing sample outliers, the proposed rFICA 

method consistently outperforms other methods. Specifically, the rfICA(τ) demonstrates 

superior performance, irrespective of the number of outliers.  

 

 

 

CCF fFOBI pFICA rFICA (𝛕) rFICA (rob) 

X 0.7373 0.7281 0.7338 0.7215 

Xs(3%) 0.6999 0.6995 0.7259 0.7212 

Xs(14%) 0.6748 0.5883 0.7081 0.7204 

Xs(25%) 0.6399 0.5513 0.6877 0.6495 

Xs(40%) 0.5151 0.5167 0.6702 0.5201 

Xs(50%) 0.5024 0.5074 0.6196 0.5100 

 
Table 4.4 Performance of fICA methods based on CCF metric for varying contamination 
levels of sample outliers (i.e., 3%, 14%, 25%, 40%, 50%). 

CCF fFOBI pFICA rFICA (𝛕) rFICA (rob) 

X 0.7816 0.7639 0.7786 0.8042 

Xs(3%) 0.7633 0.7492 0.7755 0.8039 

Xs(14%) 0.7499 0.6503 0.7665 0.8032 

Xs(25%) 0.7313 0.6250 0.7549 0.7671 

Xs(40%) 0.6300 0.6085 0.7387 0.6509 

Xs(50%) 0.6198 0.6010 0.7022 0.6424 

 

Table 4.5 Performance of fICA methods based on COS metric for varying contamination 
levels of sample outliers (i.e., 3%, 14%, 25%, 40%, 50%). 
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Figure 4.4 Side-by-side boxplot of CCF and COS values for robust and non-robust 
fICA methods with different with varying contamination level of sample outliers. 
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In summary, irrespective of the magnitude and number of sample outliers, the proposed 

rFICA method, which incorporates Kendall's 𝜏  function and ROBPCA, consistently 

outperforms other techniques when dealing with mixed signals containing sample outliers. 

Notably, the rfICA(τ) consistently demonstrates superior performance, whereas the rfICA(rob) 

excels in extracting more accurate frequency. 

 

4.4 Implementation of the rFICA to Scalp EEG Data 

 

In this section, we apply the proposed rFICA method to a real EEG dataset, assessing its 

performance through the classification results of the extracted IC scores. Furthermore, we 

conduct a comparative analysis, contrasting our findings with those obtained using established 

fICA methods, specifically pFICA and FFOBI. 

In the scalp EEG dataset analyzed here, the researcher recruited a total of 19 adults (7 

females, 12 males) from the University of Arizona and recorded their scalp EEG signals. 

Participants navigated in the virtual reality and were asked to monitor the distances travelled: 

short (100 virtual meters) vs long (200 virtual meters) distances. Each task was repeated 24 

trials, and each trial lasted 5.656 seconds. Participants walked freely on an omnidirectional 

treadmill while wearing a wireless scalp EEG cap. The sampling rate was 500 Hz. Details of 

the experiment design can be found in [69], [92]. 

Using the extracted ICs, we conduct random forest classification that incorporated both 

frequency and IC score information. When comparing the results obtained from non-robust 

and robust fICA methods, we observe that the classification outcomes from rFICA are 

significantly better than those from non-robust methods (p-value (IC score) = 0.0117, p-value 

(Frequency) = 0.0002). In Figure 4.5, we present the highest classification results of 19 

individuals achieved by non-robust and robust fICA methods, respectively.  
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Furthermore, as illustrated in Figure 4.6, we observe that rfICA(rob) performs best from 

perspective of IC score, whereas rfICA(τ) performs best from perspective of frequency, which 

indicates the existence of sample outliers.  

In conclusion, our findings confirm that rFICA outperforms in classification, particularly in 

its capacity to detect both sample outliers. This finding is consistent with the notion that EEG 

signals often encompass various types of outliers, including mixed outliers that may pose visual 

identification challenges. Nevertheless, it is essential to recognize that individual subject 

variations may impact the selection of the most appropriate robust technique for implementing 

the rFICA method. Consequently, we advise a meticulous assessment of parameter tuning and 

the adjustment of robust techniques based on the unique signal characteristics inherent to each 

subject.  

 
 
Figure 4.5 Boxplot of classification results of 19 individuals based on A. IC score and B. 
Frequency.  
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4.5 Discussion 

 
The necessity for a robust functional Independent Component Analysis method becomes 

apparent when considering signal preprocessing. In practical scenarios, the presence of noise 

is virtually inevitable, and this noise can significantly impact subsequent signal analysis steps. 

While recent scientific developments have introduced several functional independent 

component analysis methods, most of them primarily focus on classification based on the 

extracted ICs. There is a noticeable gap in discussions regarding the robustness of these 

methods and their ability to accurately recover extracted ICs compared to true ICs. To bridge 

this gap and address the limitations of existing determination methods, we present a novel and 

robust fICA method named rFICA that incorporates two types of robust parameters.  

The key highlights of the proposed rFICA method are as follows. Firstly, rFICA tackles the 

complex task of precisely assessing the extracted ICs concerning the ground truth ICs. 

Secondly, by incorporating ROBPCA and Kendall's τ function, rFICA maintains resilience to 

 
 

Figure 4.6 Boxplot of classification results of 19 individuals based on A. IC score and B. 
Frequency.  
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noise interference, particularly in case involving sample outliers, which represent one of 

common types of outliers encountered in real-world scenarios. To better illustrate the 

advantages of rfICA, we apply it alongside some existing fICA methods to both simulated 

mixed signals subjected to varying contamination levels and collected raw EEG signals. This 

comprehensive evaluation demonstrates the effectiveness of rFICA in addressing the 

challenges posed by noisy data and highlights its potential in real-world applications, especially 

in EEG data analysis.  

To assess the robustness of rfICA, we initiate our analysis by applying it to mixed signals 

containing sample outliers, varying in terms of magnitude and quantity. In this scenario, we 

compare rFICA with pFICA and fFOBI. The results affirm the superior performance of rfICA, 

particularly the variant that incorporates Kendall's τ function and ROBPCA, when confronted 

with mixed signals featuring sample outliers. Furthermore, we have implemented the proposed 

rFICA method on a real EEG dataset and evaluated its performance by analyzing the 

classification results of the extracted IC scores. We also compare our method with pFICA and 

fFOBI. The superior classification results demonstrate the robustness of our approach, 

especially when applied to raw scale EEG data that contains outliers. 

While the robustness of our proposed rFICA has been validated through comparisons with 

other methods in scenarios involving sample outliers, there remain avenues for further 

exploration. Specifically, our current work has primarily focused on one type of contaminations, 

but there are other prevalent sources of noise that warrant investigation, such as channel noise. 

Channel noise encompasses correlated noise that uniformly affects all observations, posing a 

distinct challenge. Channel noise is not easily distinguishable from the genuine sources. This 

presents a critical issue since ICA assumes the statistical independence of sources. When 

sources are mixed with correlated noise like channel noise, it violates this independence 

assumption, resulting in dependencies between the sources. These dependencies present a 

significant hurdle for ICA methods in accurately separating the sources. 

Hence, our future endeavors should include an exploration of methodologies to address the 

unique complexities introduced by correlated noise, such as channel noise, in order to further 

enhance the applicability and robustness of rfICA. 

 

4.6 Conclusion 
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Many of the current functional ICA methods do not prioritize the recovery of extracted ICs. 

Hence, there is a significant need and practical value in developing a robust functional 

independent component analysis method. In this research, we introduce rfICA, which leverages 

ROBPCA and Kendall's τ function to extract ICs from mixed signals, even when they are 

contaminated, taking into account the temporal continuity of the signals. Through our 

experiments on simulated data and real raw EEG signals, we can confidently conclude that 

rFICA is a robust algorithm for the recovery of independent components. It exhibits remarkable 

resilience to contaminations, making it a valuable tool in the field of functional data analysis. 
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Chapter 5 

General Conclusion 

In this dissertation, we have advanced statistical methodologies for the interpretable 

classification of neuroscience data by leveraging both time and frequency information, as well 

as took into account the temporal continuity of signal data. Furthermore, we introduced an 

efficient approach for the automated identification of the optimal number of independent 

components, applicable across multiple ICA methods. Additionally, we have developed a 

resilient functional independent component analysis method that remains robust in the presence 

of outliers. This chapter offers a concise summary of these three projects and outlines potential 

avenues for future research endeavors. 

 

5.1 Summary 

 
In Chapter 2, we introduce an innovative three-stage algorithm that offers a structured 

approach to the analysis of EEG data using Functional Data Analysis (FDA) techniques. Our 

methodology starts by applying FDA methods to EEG signals transformed into the time-

frequency domain, enabling the extraction of rich information from the EEG signals. While 

this transformation enhances information capture, it also raises the data's dimensionality, 

making direct application of FDA techniques impractical. To address this challenge, we 

introduce the second stage of our algorithm, incorporating functional testing methods for initial 

dimension reduction, which involves feature selection. This ensures that the number of features 

used for modeling remains manageable within the context of functional modeling techniques. 

Through the application of this algorithm to Scalp EEG data, we demonstrate its effectiveness 

in achieving interpretable classification. Our findings indicate that frontal delta-theta and 

parietal delta-theta oscillations are more strongly associated with distance judgment compared 

to other oscillatory components. 

In Chapter 3, we introduce the CW_ICA method, which simplifies computation complexity 

by dividing the data into two blocks and recording the smallest column-wise maximum value. 
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This method not only offers compatibility with multiple ICA techniques but also capitalizes on 

the robustness of the Spearman correlation coefficient. It automatically identifies the optimal 

number of Independent Components (ICs) through a quantitative measurement. We conducted 

a comparative analysis of CW_ICA against other existing approaches, when used in 

combination with multiple ICA methods. Our assessments involved simulated data and real 

raw EEG signals. Based on the performance of these determination methods, we conclude that 

CW_ICA stands out as a robust algorithm for the automated determination of the number of 

ICs. It consistently yields results that can be effectively applied across various ICA methods. 

In Chapter 4, we introduce rFICA, an innovative method that combines the principles of 

ROBPCA with the utility of Kendall's τ function to extract functional ICs from mixed signals. 

What sets rFICA apart is its remarkable ability to perform this extraction even when the signals 

are contaminated, and it does so while accounting for the temporal continuity of these signals. 

Through a series of rigorous experiments that encompass simulated data as well as real raw 

EEG signals, we have gained profound insights into the capabilities of rFICA. It is clear from 

our findings that rFICA is not just a robust algorithm for the recovery of independent 

components; it is also highly resilient to contaminations. This resilience makes it an invaluable 

tool for signal analysis, especially in fields where data quality may be compromised, such as 

biomedical signal processing and environmental monitoring. The ability of rFICA to work 

under challenging conditions and still produce meaningful, interpretable results makes it a 

noteworthy contribution to the field of functional data analysis. Its capacity to uncover hidden 

patterns and information within complex and noisy data holds great promise for a wide range 

of applications, ranging from neuroscience and medical diagnostics to environmental science 

and beyond. 

 

5.2 Future Work 

 

Building upon the implementation of the interpretable classification algorithm outlined in 

Chapter 1, we have introduced innovative techniques focused on optimizing information 

extraction during the signal preprocessing stage. This effort is aimed at augmenting the efficacy 

of neuroscience data analysis. However, it's imperative to recognize that our current research 

primarily emphasizes the temporal and frequency domains, inadvertently sidelining the 

substantial spatial dimension. As we look to the future, our research endeavors will venture 
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into a promising domain: the development of three-dimensional functional data analysis and 

modeling. This comprehensive framework will span the dimensions of time, space, and 

frequency, affording us the capability to capture and account for the intricate spatial 

correlations among electrodes within the data. This holistic vantage point is expected to 

significantly enhance the precision and depth of our analyses, ushering in novel insights within 

the field of neuroscience. 

Furthermore, Chapter 3 raises important practical considerations that warrant further 

exploration. One such issue pertains to the diminishing distinction in measurement between 

models with consecutive numbers of Independent Components (ICs) within CW_ICA, 

particularly as the dimensions of the signal matrix expand, either in length or by an increase in 

the number of mixed signals. Moreover, there is an observable uptick in computational 

complexity, in tandem with the growth of mixed signals and signal length, as it is directly 

measured by the correlation matrix. To address these challenges, we will propose an extension 

of functional CW_ICA. This extension aims to mitigate data dimensionality while 

simultaneously enhancing the robustness and clarity of the results. By doing so, we intend to 

overcome the limitations associated with the increasing data size and pave the way for more 

effective and efficient signal analysis. 

Our investigation into robust functional independent component analysis in Chapter 4 has 

not only yielded valuable insights but also uncovered new research avenues. Our current focus 

has been primarily on one type of contaminations, yet there are other prevalent sources of noise 

that merit exploration, with channel noise being a notable example. Channel noise, 

characterized by correlated noise that uniformly impacts all observations, presents a distinctive 

challenge. Therefore, our future research should encompass the development of methodologies 

designed to tackle the specific complexities introduced by correlated noise, particularly 

channel noise. This pursuit aims to broaden the scope of applicability and enhance the overall 

robustness of rFICA. 
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