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Abstract 

 

Every year, many dolphins are found dead on the beaches and waterways of the Gulf of Mexico 

and Mississippi Sound. In 2019, an unusual mortality event (UME) happened, where 337 bottlenose 

dolphins were stranded between Louisiana, Mississippi, Alabama, and Florida. The National Oceanic and 

Atmospheric Administration (NOAA) determined that the cause of this UME was protracted exposure to 

low salinity waters, based on observations of skin lesions and the environmental conditions during that 

period of time. It is often unclear where dolphins initially died, as their carcasses are found stranded on 

beaches days after they die. To investigate this further, we used a hydrodynamic model (EFDC+) of the 

Mississippi Sound. Our goal was to track dolphin carcass movement and simulate salinity at the time and 

location of each predicted dolphin's death. I represented the movement of 19 dolphin carcasses using 

particles within the lagrangian particle tracking (LPT) module. The results enabled us to predict the original 

location of death for each dolphin. The average simulated salinity of all the dolphins' most probable original 

place of death was below five, except for two cases. I compared these results to the salinity of the 

Mississippi Sound during Bonnet Carré spillway opening and non-opening dates. Our findings highlight 

the significant impact of the spillway's opening on the reduction of salinity and its association with dolphin 

mortality. Furthermore, I calibrated our model simulating the movement of dead dolphins using data from 

GPS-tagged turtle carcasses and wooden effigies in April 2017 collected by NOAA in the same area as our 

study domain. Firstly, this data was used to conduct a sensitivity analysis on the previously configured LPT 

model, which involved altering certain parameters. The results from sensitivity analysis were then used to 

perform a calibration by adjusting the most sensitive parameters to get the best match between the modeled 

and observed trajectories. The analysis found that adding wind drag to the LPT model significantly 

improved its predictive capabilities. The study also investigated the effect of transitioning from a two-

dimensional (2D) to a three-dimensional (3D) model. The results revealed that in our study domain with 

smooth bathymetry a 2D model is good enough and more efficient for modeling purposes. 
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Chapter 1 

1.  Examining the Effect of Salinity on Dolphin Mortality Using Lagrangian Particle 

Tracking in a Hydrodynamic Model 

 

 

This chapter is a version of an article of the same title by Mehrzad Shahidzadehasadi, Anna 

Linhoss, Debra Moore, Stephen Reichley, Paul Mickle, and Mark Lawrence that has been 

submitted to the Estuarine, coastal, and shelf sciences journal. Shahidzadehasadi et, al. (2023) 

“Comparison of Two Dielectric Sensors in Coarse-Grained Soils of Increasing Salinity.” 

Estuarine, coastal, and shelf sciences journal [Manuscript in progress] The information contained 

in this chapter is exactly the same as the submitted manuscript. 

 

1.1 Abstract 

 

Numerous dolphins are found dead on beaches and waterways of the Gulf of Mexico and 

Mississippi Sound every year. In 2019 an unusual mortality event (UME) occurred when 337 

deceased bottlenose dolphins were stranded between Louisiana, Mississippi, Alabama, and 

Florida. According to NOAA (NOAA Fisheries, 2022), based on observations of skin lesions or 

distinct ulcerative dermatitis and other internal pathologic findings and the environmental 

conditions during that period of time, the identified cause of this UME was determined as 

protracted exposure to low salinity waters. Dolphin carcasses are often found stranded on beaches 

days after they die. Consequently, their initial place of death is unknown. In this study, we used an 

existing 2D hydrodynamic model (EFDC+ 11.2) of the Mississippi Sound simulated by Armandei 
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et al., (2021) to track dolphin carcass movement and to simulate salinity at the time and location 

of each predicted dolphin’s death. Particles within the Lagrangian particle tracking module were 

used to represent the movement of 19 dolphin carcasses. A large number of particles (virtual 

dolphin carcasses) were seeded throughout the model domain and tracked for five days. These 

results were used to hindcast each dolphin’s original location of death. The results indicate that the 

most likely place of death for 12 dolphins stranded on the beaches of Mississippi, along with the 

two found on Ship and Horn Islands, was west of their stranding location. For both of the dolphins 

stranded on Dauphin Island, the most likely place of death was in the Mobile Bay area north of 

where they were found. The remaining three dolphins found dead on barrier islands, most likely 

originally died in close proximity to their stranding locations. The average simulated salinity of all 

the dolphins’ most probable original place of death was below five except for two cases. These 

results are compared to the salinity of the Mississippi Sound during Bonnet Carré spillway opening 

and non-opening dates. They highlight the significant impact of the spillway’s opening on the 

reduction of salinity and its association with dolphin mortality.  

 

Keywords: Lagrangian particle tracking, Mississippi Sound, EFDC, Bonnet Carré spillway, 

Dolphin, Back-Tracking 
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1.2 Introduction 

 

Common bottlenose dolphins are found in many bays, sounds, and estuarine environments, 

which are characterized by shallow, brackish waters with variable salinity (Hayes et al., 2018). In 

the north-central region of the Gulf of Mexico, the Mobile Bay/Mississippi Sound (MSS) system 

is a large freshwater-dominated environment in which dolphin populations vary over spatial and 

temporal scales (Pitchford et al., 2016). The seasonal abundance and distribution of dolphins in 

the Mississippi Sound is complicated and might be related to changes in environmental conditions 

such as salinity (Pitchford et al., 2016).  

Low salinity is known to adversely affect dolphin health and cause immune deficiencies 

(Toms et al., 2021; Booth & Thomas, 2021; McClain et al., 2020; Takeshita et al., 2021). 

Freshwater causes health issues including skin lesions, electrolyte abnormalities, corneal edema, 

and hepatobiliary abnormalities (Deming et al., 2020; Toms et al., 2021). Also, testing the blood 

of dolphins exposed to low salinity waters for long periods of time showed significant increases in 

blood urea nitrogen and aldosterone and significant decreases in serum sodium, chloride, and 

calculated serum osmolality (McClain et al., 2020; Takeshita et al., 2021).  

Although common bottlenose dolphins can be found in low-salinity waters (<15), they 

cannot tolerate such conditions for long periods (Hornsby et al. 2017). Hornsby et al. (2017) 

matched dolphin telemetry data in Barataria Bay, Louisiana (USA), with contemporaneous salinity 

estimates to establish a salinity threshold and identify preferred dolphin habitats. Dolphins were 

found more frequently in areas where salinity higher than ~11 was recorded, though sometimes 

they were found in regions with predicted salinity of ~8 for short periods of time. They were found 

less frequently in areas with salinities below ~5 (Hornsby et al., 2017). Researchers predicted that 
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bottlenose dolphins exposed to low salinity waters (<5) for at least two days or areas with less than 

ten salinity for prolonged periods were more likely to have freshwater-like skin lesions and 

hepatobiliary abnormalities (Deming et al., 2020; Takeshita et al., 2021). The skin is frequently 

centrally eroded or ulcerated and has necrosis often with a target-like appearance. It sometimes 

has velvety matting that is thickened and rough, often green, yellow, or orange (Duignan et al., 

2020). 

Individual dolphins have different movement patterns, but those movements are not 

necessarily because of salinity changes or extreme events including Hurricane, algae bloom 

(Boehning et al., 2023), or flooding (McBride-Kebert & Toms, 2021) in their habitat. Research 

conducted on the relationship between dolphin movements and the salinity of their habitat revealed 

the common bottlenose dolphins’ tendency to return to their previous habitat regardless of low 

salinity exposure by monitoring satellite-telemetry tagged dolphins (Takeshita et al., 2021). 

Furthermore, Hubard et al. (2005) found evidence of site fidelity among dolphins in the Mississippi 

Sound. These findings collectively indicate that bottlenose dolphins exhibit high levels of site 

fidelity in their habitat. 

The MSS had unusually low salinities in 2019 in association with riverine flooding and 

two Bonnet Carré (BC) Spillway openings.  The BC Spillway is a flood diversion construction 

built for the purpose of transferring the Mississippi River’s freshwater into the Gulf of Mexico, 

whenever the River’s water level gets too high, in order to prevent flooding in New Orleans. The 

other major freshwater source in the MSS is the Pearl River (watershed drainage area of 22000 

km2), whose flow rates fluctuate between 86 and 2629 m3/s. According to NOAA, 337 bottlenose 

dolphins were found dead on the northern Gulf of Mexico beaches in 2019 (between Louisiana 

and the Florida Panhandle, ~1,400 km of coastline) (NOAA Fisheries, 2022). This event was 
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classified as an Unusual Mortality Event (NOAA Fisheries, 2022). ‘Under the Marine Mammal 

Protection Act, an unusual mortality event occurs when an unexpected stranding event happens 

involving a significant die-off of any marine mammal population and demands immediate 

response’ (NOAA Fisheries, 2023).  

Of the 337 carcasses recovered, 156 (46% of the total UME) were found in the MSS and 

Mobile Bay region (~200 km of coastline). It is notable that almost half of the dolphins associated 

with this UME were found in just 15% of the total area included for the UME.  Furthermore, the 

number of deaths that occurred at this time was approximately three times the yearly average 

number of dolphins stranded on the beaches in the MSS. The UME began in February and 

continued through November 2019, which coincided with two BC spillway openings. Forty-seven 

percent of the dolphins stranded on the beaches of Mississippi and 10% of those stranded on the 

shores of Alabama were identified with freshwater-like skin lesions (NOAA Fisheries, 2022). 

Since dolphin carcasses were mostly found on beaches, their initial place of death is unknown. 

This can be estimated using water currents which transport dolphin carcasses to the beach.  

The currents that move dolphin bodies after they die can be simulated using hydrodynamic 

models. Hydrodynamic models are tools for simulating fluid flow and may be equipped with a 

Lagrangian particle tracking module (LPT). Lagrangian particle tracking is a method of estimating 

the trajectory of individual solid particles utilizing a velocity field and can represent any number 

of objects. This method requires a decent representation of the velocity field. The only way to 

obtain such a velocity field is to use a high-resolution hydrodynamic model (Peltier et al., 2012; 

Quinlan, 1999). 

Lagrangian Drift models are widely used in the literature, simulating stranding events in 

different locations for a variety of large, floating aquatic species. The animals that have been 
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studied using LPT include sea turtles (Nero et al., 2013; Santos et al., 2018),  Portuguese man of 

war (Headlam et al., 2020), and stranded carcasses of cetaceans including pygmy sperm whales 

(Harlan, 2014), fin whales (Díaz-Gamboa et al., 2022), humpback and bryde whales (Junior et al., 

2019), harbour porpoise (Haelters et al., 2006; Peltier et al., 2012), cuvier’s beaked whale (Carlucci 

et al., 2020), Short-beaked common dolphins (Gilbert et al., 2021; Peltier et al., 2012), and 

bottlenose dolphins (Wirasaet et al., 2015). In this study bottlenose dolphins are going to be 

simulated. 

A large variety of software and modeling programs have been used in drift simulations; 

most of which are well-known hydrodynamic models. Some of these models have a back-tracking 

module, while others do not. If a back-tracking module is available, the software can track back 

an object for a specified time period. This allows the tracked object to be identified at the beginning 

of the time period which makes carcass back-tracking a simple task. On the other hand, models 

that only do forward tracking need to guess the location of an object at the beginning of the time 

period by planting numerous particles in the model domain and track them forward to identify the 

ones that eventually locate at the aforementioned object’s location at the end of the time period.  

Nero et al., (2013) used the American SEAS (AMSEAS) implementation of the Navy Coastal 

Ocean Model (NCOM) to simulate sea turtle carcass backtrack drifts in the north-central Gulf of 

Mexico.  Díaz-Gamboa et al., (2022); Headlam et al., (2020); and Santos et al., (2018) utilized the 

ICHTHYOP modeling tool within the Global HYCOM and Regional Ocean Modelling System 

(ROMS) hydrodynamics models to identify the geographical location of death for a fin whale, 

Portuguese men of war, and sea turtles.  Harlan, (2014) applied the General NOAA Operational 

Modeling Environment (GNOME) software, which is equipped with both forward-tracking and 

backtracking modules to estimate the original location of death for sperm whales.  Junior et al., 



16 

 

(2019) used MOHID to simulate the trajectory of humpback and bryde whales.  Haelters et al., 

(2006) simulated drifters of harbor porpoises with the Management Unit of Mathematical Models 

(MUMM) modeling program.  Carlucci et al., (2020) simulate the drifts of Cuvier’s beaked whale 

bodies using the Danish Hydraulic Institute’s model, MIKE 3 FM.  Wirasaet et al., (2015) used 

the Advanced Circulation (ADCIRC) program to hindcast dolphin carcasses. Peltier et al., (2012) 

simulated the trajectories of stranded dolphins and harbor porpoises using MOTHY (Modèle 

Océanique de Transport d’Hydrocarbures). However, EFDC+ software was never used to track 

any species as performed in this study. 

The objective of this research was to track the origins of dolphin carcasses using a revised 

version of an existing hydrodynamic model simulated by Armandei et al., (2021) that has been 

expanded to include Lake Pontchartrain and Mobile Bay and then identify the ranges of salinity in 

the area at the time of death. This project specifically investigates bottlenose dolphins stranded in 

the Mississippi Sound and Mobile Bay during the unusual mortality event of 2019.  

1.3 Study Area and Data 

 

1.3.1 Study Area 

 

The study area consists of the MSS and Mobile Bay. The Mississippi Sound is a large, 

shallow, and semi-open sound located in the north-central Gulf of Mexico with a surface area of 

2,129 km2, an average depth of 2.98 m at mean low water, and a salinity range of 0-35 according 

to USGS water data for several stations in the MSS from 2011 to 2020. From east to west, the 

MSS extends from Cedar Point, AL, to Half Moon Island, LA, and is bordered to the north by 

Mississippi and Alabama and to the south by Bay Boudreau, LA, and six barrier islands: Dauphin, 
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Petit Bois, Horn, East Ship, West Ship, and Cat. It connects with the Gulf through passes between 

a series of five barrier islands. Mobile Bay is a shallow estuary in the northern Gulf of Mexico, 

extending 48 km long and ranging from 14–34 km wide. The relatively shallow uniform 

bathymetry averages 3 m except for the shipping channel which is 12m deep. Mobile Bay is 

connected to the MSS through Pass Aux Herons outlet in the southwest.  

The BC Spillway is a flood diversion structure located on the Mississippi River 

approximately 52 km upriver from New Orleans. Its purpose is to prevent the Mississippi River 

from flooding southern Louisiana and New Orleans (Parra et al., 2020). It has been opened 15 

times between its construction date in 1931 and 2020, with openings usually occurring in the spring 

months. The discharge volumes for each opening have been between 2.1 and 30.1 km3, with 

openings lasting between 13 (in 1975) and 79 days (second opening in 2019); (US Army Corps of 

Engineers, 2016, 2020). The BC Spillway opening dates, duration, and estimated discharge from 

U.S. Army Corps of Engineers (USACE) Flood and Post-Flood reports in New Orleans District 

are presented in Table 1.1. 

Year of 

Opening 

Opening and Closing 

dates and Duration (days) 

Estimated total 

Discharge (km3) 

1937 Jan 28 – Mar 16 (48) 15.2 

1945 Mar 23 – May 18 (57) 30.1 

1950 Feb 10 – Mar 19 (38) 13.4 

1973 Apr 8 – Jun 21 (75) 23.5 

1975 Apr 14 – Apr 26 (13) 2.11 

1979 Apr 17 – May 31 (45) 13.9 

1983 May 20 – Jun 23 (35) 15.2 

1997 Mar 17 – Apr 17 (32) 11.7 

2008 Apr 11 – May 8 (28) 7.5 

2011 May 9 – Jun 20 (43) 21.9 

2016 Jan 10 – Feb 1 (23) 6.9 

2018 Mar 8 – Mar 30 (23) 5.8 

2019 Feb 27 – Apr 11 (44) 15.1 

2019 May 10 – Jul 27 (79) 23.0 

2020 Apr 3 – May 1 (29)  4.0 
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Table 1.1- History of the Bonnet Carré Opening dates, Duration, and estimated total discharge according 

to USACE (US Army Corps of Engineers, 2016, 2020). 

 

1.3.2 Dolphin Data 

 

The stranded dolphin data comes from the NOAA National Stranding Database Public 

Access database (NOAA, 2021). The data includes information on every stranded marine mammal 

in the United States according to the reports from members of the National Stranding Network. 

The dataset includes carcasses of about 7,000 stranded dolphins, the time and coordinates that they 

were found, and their decomposition code. For this project, 19 dolphin carcasses found in the 

model area (Mississippi Sound and Mobile Bay) in 2019 with decomposition codes of two, were 

simulated (Table 1.2 and Figure 1.1). More information regarding the decomposition codes can be 

found in Table 1.3. This year was selected because of the documented unusual mortality event and 

two BC spillway openings.  

 

Observation 

Date 
Latitude Longitude 

13/06/2019 30.253889 -88.193889 

05/06/2019 30.318083 -89.319077 

05/08/2019 30.35369 -89.12609 

18/07/2019 30.34367 -88.73274 

29/03/2019 30.393873 -88.914371 

27/05/2019 30.324009 -89.215909 

30/03/2019 30.38358 -89.01844 

28/03/2019 30.392549 -88.934972 

10/04/2019 30.22612 -88.58923 

03/11/2019 30.251175 -88.079107 

23/03/2019 30.25267 -88.88783 

29/05/2019 30.32752 -89.20377 

02/06/2019 30.24898 -89.06699 

02/02/2019 30.37343 -89.06442 

11/04/2019 30.30342 -89.2896 

23/03/2019 30.31175 -89.25088 

30/08/2019 30.288757 -88.049014 

04/02/2019 30.245 -88.958333 

12/04/2019 30.349377 -88.393576 
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Table 1.2- Stranded dolphin data location and mortality data (NOAA, 2021) 

 

 

Figure 1.1 - Study Area and Dolphin data in 2019 with decomposition codes 1 and 2 in Mississippi sound 

distinguished by month of observation. 

 

1.4 Methods 

 

1.4.1 Assumptions 

 

1.4.1.1 Floating after Death 
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After a dolphin dies it either sinks or drifts as it decomposes, is scavenged, or strands on a 

shoreline. When it sinks to the bottom of the water column, it often resuspends (Peltier et al., 

2012). Whether a carcass sinks or floats depends on the animal’s buoyancy. Buoyancy is a function 

of the animal’s body condition and content, including bone, blubber, and lung inflation (Moore et 

al., 2020). The buoyancy of air-breathing cetaceans is also influenced by gas bubbles created either 

during decompression when they were alive (Moore et al., 2009) or due to decomposition after 

death (Quirós et al., 2018). In a study by Woodcock & McBride (1961), the weight of a dolphin 

was measured after death, and the results indicated that the dolphin would float if it was 

approximately 5.4 kg and sink if it was slightly greater than 4.1 kg depending on the lung fullness. 

In an experiment by Peltier et al., (2012) a dolphin carcass and a harbor porpoise carcass were 

released into the water to test the immersion rate. It showed that both specimen carcasses remained 

at the sea surface in the first ten days after death and partially submerged after 20 days. In general, 

studies on whether marine mammals float or sink after death are very few. In this study, the dolphin 

data are from fresh dead dolphins, which have been dead for a maximum of five days, so it is 

assumed that all dolphins floated immediately after death.  

 

1.4.1.2 Time since Death 

 

In order to simulate the path of a stranded aquatic species, the time of death must be 

established. There is not a precise way to estimate the time since death for a stranded carcass. All 

the methods to address this issue provide a range of days according to the carcass’s condition. 

Some of the projects that have used Lagrangian particle tracking to backtrack the location of a 

carcass to the location of death assumed that a certain fixed time has passed since the animal’s 
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death (Díaz-Gamboa et al., 2022; Harlan, 2014; Junior et al., 2019; Wirasaet et al., 2015). But 

others considered the uncertainty in the time since death for their simulations (Carlucci et al., 2020; 

Haelters et al., 2006; Headlam et al., 2020; Nero et al., 2013; Peltier et al., 2012; Santos et al., 

2018). 

To overcome this challenge and identify the location of death from stranded carcasses, the 

number of days before each stranding dolphin died should be determined. The measured parameter 

that estimates this period of time is the decomposition code. The decomposition code is a condition 

system that classifies dolphin carcasses into five levels of decomposition. Code one is a live animal 

and code five is an animal that is mummified or has only skeletal remains. Table 1.3 shows the 

decomposition codes and death-to-stranding time using visual criteria describing skin erosion 

(Peltier et al., 2012, 2020). For this study only dolphin carcasses found in 2019 with decomposition 

code two (freshly dead) were used. These dolphins were chosen because they have been dead and 

drifting for a relatively short period of time, which reduces the uncertainty of the simulation results. 

 

DECOMPOSITION CODE CONDITION 
TIME PASSED 

SINCE DEATH 

CODE 1: 

ALIVE ANIMAL 

• Blood cells intact 

• Eyes are clear 

• No protrusion 

< 2 days 

CODE 2: 

FRESH DEAD 

• Minimal drying or wrinkling of skin, eyes, and mucus 

membranes 

• Tongue and penis not protruding 

• Eyes are clear 

• Carcass is not bloated 

2 to 5 days 

CODE 3: 

MODERATE 

• Bloated, usually intact carcass 

• Protruding Tongue & Penis 

• Skin may be cracked and sloughing 

• Dry Mucus Membranes 

• Eyes sunken or missing 

5 to 15 days 

CODE 4: 

ADVANCED 

• Carcass is often damaged by scavengers 

• Carcass may be intact 

• Body is collapsed 

• Skin sloughing or missing 

• Strong Odor 

15 to 30 days 
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CODE 5: 

SKELETON/ 

MUMMIFIED 

• No “wet” internal tissues 

• Skeleton remains 
> 30 days 

 

Table 1.3- Dolphin decomposition codes taken directly from (Peltier et al., 2012, 2020). 

 

1.4.2 Hydrodynamic Model 

 

          An existing 2D hydrodynamic and water quality model of the MSS simulated in 

Environmental Fluid Dynamic Code Plus (EFDC+) version 11.2 was used for this study. The 

Environmental Fluid Dynamics Code (EFDC+ 11.2) software is a multifunctional surface water 

modeling engine designed to simulate aquatic systems in one, two, and three dimensions. (DSI 

LLC., 2023; EFDC+ Source Code, 2022).  

This model is based on Armandei et al.'s (2021) model of the western Mississippi Sound. 

The grid has since been expanded to include Lake Pontchartrain and Mobile Bay. The model is 

composed of a computational curvilinear grid consisting of 70,964 cells (245 rows and 962 

columns) with the average grid cell dimensions of 238.52 m in x-direction and 331.88 in Y-

direction which covers an area of 5,678.8 km2 extending from Lake Pontchartrain (LA) in the west 

to Mobile Bay (AL) in the east (Figure 2B). The unit system is metric, the projection or horizontal 

datum is WGS 1984, and the vertical datum is NAVD88. The model’s data (boundary conditions, 

initial conditions, and validation data) were provided from USGS measurement gauge stations 

available within and near the computational grid (U.S. Geological Survey, 2023). The bathymetric 

variation of the models’ domain is relatively smooth, and the bathymetry data was provided from 

NOAA (NOAA Data access viewer, 2023) presented in Figure 1.2A. The model simulates 

temperature, salinity, currents, and water elevation from 2009 to 2020. There are 18 freshwater 

inflows and two open boundaries (Tables 1.4 and 1.5 and Figure 1.2B). These average flows are 
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based on 30 minutes data. The tides are not considered at the open boundaries. Where gauge data 

was not directly available to input freshwater flows, an area weighted approach was used. Five 

wind speed and direction time series data from NOAA were used in the model (NOAA National 

Centers for Environmental Information). The wind stations used are specified in Figure 1.3. 

Additional details about the model can be found in Armandei et al., (2021). 

 

Flow Boundary 
Average Flow 

2009-2020 (m3/s) 

Amite River 61.38 

East Pascagoula River 139.71 

East Pearl River 308.54 

Jourdan River 22.916 

Mobile River 317.49 

Tagniphoa River 170.23 

Tchnefunte River 35.30 

West Pascagoula River 326.13 

West Pearl River 185.12 

Wolf River 20.54 

Fowl River 6.06 

Fish River 3.34 

Magnolia River 3.12 

Old Fort Bayou River 5.72 

Bernard Bayou River 5.72 

Biloxi Tuxachanie & 

Tchoutacbouffa River 
29.11 

Bonnet Carré Spillway 3404.14 

 

Table 1.4- Flow boundary conditions used in the hydrodynamic model. 

 

 

Open 

Boundary 

Average 

Water Level 

(m) 

Salinity Time 

Series 

Average 

Salinity 

Temperature 

Time Series 

Average 

Temperature 

(°C) 

Near Grand 

Pass 
0.3085 

Near Grand 

Pass 
18.35 

Near Grand 

Pass 
22.22 

East Ship 0.3088 East Ship 24.61 East Ship 22.36 
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Table 1.5- Open boundary conditions used in the hydrodynamic model. 

 

 

 

Figure 1.2- A) Bathymetry of the Mississippi Sound. B) Model grid along with the freshwater flow 

boundary conditions and open boundaries. 
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A validation showing modeled and measured water surface elevation and salinity results is 

presented for 2019. The measured salinity and temperature time series data are 15-minute data. 

The model water surface elevation and salinity validation statistics, including root mean square 

error (RMSE) and coefficient of determination (R2) are calculated (Table 1.6). Validation plots for 

water surface elevation and salinity from three different USGS stations (Figure 1.3) are provided 

in Figures 1.4 and 1.5. At St. Joseph and Gulfport light stations, there was a vertical offset observed 

between the measured and simulated data. This offset can be attributed to the infrequent updates 

of the vertical datums. To address this issue, the measured data at these two stations were adjusted 

by removing the offset and aligning them with the NAVD88 vertical datum. This correction was 

applied to ensure comparability and consistency in the vertical reference for the data. To assess 

the quality of the hydrodynamic simulation and determine if it accurately represents the circulation 

patterns, a comparison is made between the salinity results of our model and a similar model 

simulated by Armstrong et al. (2021) and Hendon et al., (2020). While the statistics are not 

explicitly mentioned in Armstrong et al. (2021) and Hendon et al., (2020), a graphical comparison 

between their results and ours indicates that our model performs well and provides a realistic 

representation of the circulation patterns. The under-prediction of salinity in hydrodynamic models 

can occur due to various reasons, such as limitations in input data, parameterization choices, 

simplifications and assumptions in the model, inadequate calibration and validation, and 

uncertainties in physical processes. The hydrodynamic model used in this study is based on an 

existing model simulated by Armandei et al., (2021) and further elaboration and more detailed 

insights can be accessed in the Armandei et al., (2021).” 

The hydrodynamic model showed poor performance in terms of water surface elevation 

and salinity during the month of January due to a missing dataset of salinity and water level in the 
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Near Grand Pass open boundary from January 1st to February 1st. This gap in data is reflected in 

Figures 1.4 and 1.5. To mitigate the impact of this missing data, the statistical analysis was 

conducted again, this time excluding the January results. As presented in Table 1.6, this approach 

led to an improvement in the results. 

 

Figure 1.3- Wind stations used as external forcing data in the Hydrodynamic model and the USGS 

stations used for model validation. 

 

 Water Surface Elevation Salinity 

Station name 
RMSE 

(m)* 
R2* R2** 

RMSE 

(ppt)* 
R2* R2** 

St. Joseph 0.212 0.446 0.682 5.073 0.377 0.518 

Gulfport Light 0.134 0.441 0.624 9.281 0.632 0.632 

Merrill Shell 0.123 0.411 0.655 5.819 0.614 0.614 

Table 1.6- Water surface elevation and salinity validation statistics for  

January 1st to December 31st, 2019. 
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* Based on entire simulation period: January 1st to December 31st, 2019. 

** Missing data removed. Based on February 1st to December 31st, 2019. 

 

 

Figure 1.4- Water surface elevation validation time series for three USGS stations (A: St.Joseph, B: 

Gulfport light, C: Merrill Shell) from January 1st to December 31st, 2019. 
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Figure 1.5- Salinity validation time series for three stations (A: St. Joseph, B: Gulfport light, C: Merrill 

Shell) from January 1st to December 31st, 2019. 

 

1.4.3 Lagrangian Particle Tracking 

 

Lagrangian particles move with the fluid velocity field; therefore, the drifters’ simulation 

is coupled to a fluid flow model. Governing equations for fluid flow used in the EFDC+ modeling 

software are the Navier-Stokes and advection-diffusion equations for the salinity, temperature, 

mass transport, etc. (DSI LLC., 2023). The advection-diffusion equation for mass transport in a 

three-dimensional curvilinear orthogonal coordinate system is given in Equation 1.1 and the 

differential equations for the lagrangian movement of drifters in x, y, z coordinates are shown in 

Equations 1.2-1.4: 
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+
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(𝐴𝑏

𝜕𝐶

𝜕𝑧
)                                    Eq. 1.1 

𝑑𝑥 = (𝑢 +
𝜕𝐴𝐻

𝜕𝑥
) 𝑑𝑡 + (2𝑝 − 1)√2𝐴𝐻𝑑𝑡                                                                                Eq. 1.2 

𝑑𝑦 = (𝑣 +
𝜕𝐴𝐻

𝜕𝑦
) 𝑑𝑡 +  (2𝑝 − 1)√2𝐴𝐻𝑑𝑡                                                                                Eq. 1.3 

𝑑𝑧 = (𝑤 +
𝜕𝐴𝑏

𝜕𝑧
) 𝑑𝑡 +  (2𝑝 − 1)√2𝐴𝑏𝑑𝑡                                                                                 Eq. 1.4 

Where (u, ν, w) are the lagrangian velocity vectors in (x, y, z) directions, AH and Ab are the 

horizontal and vertical diffusion coefficients which specify the amount of substance that diffuses 

across a unit area in one second under the influence of a gradient, and C is the concentration. The 

time step is shown by dt, and p is a random number from a random variable generator. 

The numerical solutions in equations 1.2 to 1.4 are divided into two parts; the first term on 

the righthand side is related to the advective transport, and the second term calculates the random 

movements. Each of these terms can be separately modified, and the random movement term can 

be used or not.  

If the particles are on the water’s surface (such as is assumed for the dolphins), wind drag 

can play a role in moving those particles. The effect of wind drag was considered in addition to 

the advection-diffusion movements in EFDC+ by turning on the wind drag calculations in the 

module using the drag parameters from Kim et al. 2014. Another important set-up that made the 

simulation more realistic was considering no wall slippage. This means that the velocity of the 

particles becomes zero when they hit a close boundary; thus, they become beached particles. 
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1.4.4 Forward Tracking 

 

The research utilizes forward tracking methodology due to the absence of a backtracking 

module in the EFDC+ software. Consequently, instead of directly backtracking the stranded 

dolphins, the approach involves tracking forward particles across the entire model domain. By 

tracing these particles, the study aims to identify those that ultimately reach the vicinity of the 

stranded dolphin. This methodological choice allows for the investigation of potential pathways 

and sources leading to the observed dolphin strandings despite the software’s limitation in 

backtracking capabilities. 

A Lagrangian particle tracking (LPT) module simulating the floating dolphin carcasses was 

configured for tracking forward numerous particles representing dead dolphins in different time 

windows. 19 carcasses were investigated, one at a time. For each carcass, five days before the 

death of each individual dolphin, 63,084 particles (approximately one particle in each grid cell) 

were placed uniformly throughout the model’s spatial domain at the water surface, with each 

particle being 300 m away from its adjacent particles in the x and y directions. Each particle group 

was tracked forward for five days prior to each stranding date because a freshly dead dolphin 

(decomposition code 2) is estimated to be dead for a maximum of five days.  

Because there is uncertainty in the prediction of the initial location of death, a target zone 

of 50.26 km2, which is equal to a four km radius circle, was created around the location of each 

stranded dolphin. Particles that passed within the 4 km radius of the dolphin’s stranding location 

between two and five days prior to the date of stranding were flagged and considered to be potential 

dolphin carcasses. The two to five days range is based on the uncertainty in the time of death for 

the dolphins (Table 2.2). Figure 1.6 illustrates particle trajectories for a segment of the model over 
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four consecutive days.  The initial location of each flagged particle was mapped. The mapping 

process was done by assigning a number to each of the particles from 1 to 63,084. After identifying 

the flagged particles, their numbers were recorded, and their initial place at the LPT module’s start 

date was specified. The process was repeated for each of the 19 stranded dolphins. 

 

Figure 1.6- Particle trajectories in 4 consecutive days in the area between Bay St. Louis and Biloxi using 

the LPT module of a hydrodynamic model of Mississippi Sound; the dots are the particles, and the yellow 

lines are the trajectories. A shows time 0, B shows the location of the particles on day 1, C shows the 

location of the particles on day 2, and D shows the location of the particles on day 3. 

 

1.4.5 Kernel Density Analysis 

 

The results from the LPT gave numerous data points for the potential location of death for 

each stranded dolphin. To analyze these results, Kernel Density estimation analysis (KDE) in 

ArcGIS Pro was used (Esri, 2022). These results provide a heat map showing the likelihood of 

location of death for each dolphin. KDE uses a probability density function to fit a smoothly curved 
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surface over each point. The density surface shows the concentrated areas of point features. This 

surface value is highest at the point location and decreases as the distance from the point increases, 

and it becomes zero at the specified search radius for the analysis. The search radius used for this 

study was one km based on the general distance between the point data. Figure 1.7 gives an 

example of how KDE transforms raw point data into a heatmap that shows probability. 

 

Figure 1.7- An example of converting points to a heat map using KDE. A) The modeled locations of 

death for the dolphin found near Gulfport on February 2nd are shown with green points and the black 

circle is the stranding location. B) The result of KDE. 

 

1.4.6 Salinity Analysis 

 

Salinity analyses were conducted to demonstrate the salinity range at the probable locations 

of death for the dolphins during the estimated time of death period. Initially, the average salinity 

of the cells estimated to have the highest likelihood of being the origin of death for each dolphin 

during the estimated time of death was calculated. Then based on the absolute average differences 

between the salinities predicted by the hydrodynamic model and the real salinities at three USGS 

stations, an uncertainty band was created. This was done to account for any over or under-

predictions made by the model. The results were compared to the dangerous salinity range for 

dolphins. 
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Furthermore, the impact of the BC Spillway openings in 2019 on the low salinities at the 

dolphins’ locations of death was investigated. This was done by creating salinity boxplots based 

on the salinities extracted from the hydrodynamic model for each dolphin at three different time 

periods: 1) during the BC Spillway opening days in 2019, 2) during the non-opening days in 2019, 

and 3) during the likely time of death period for each of the 19 dolphins. These analyses allowed 

us to gain insight into the potential effects of the BC Spillway openings on the salinity levels in 

the MSS and the impact on the mortality of the dolphins.  

 

1.5 Results and Discussion 

 

There have been several papers published that use Lagrangian particle tracking to simulate 

the drift of marine mammals (ex. Díaz-Gamboa et al., 2022; Harlan, 2014; Headlam et al., 2020; 

Junior et al., 2019; Nero et al., 2013; Peltier et al., 2012; Santos et al., 2018; Wirasaet et al., 2015). 

There have also been a few papers that investigate the impact of salinity on dolphin health 

(Hornsby et al., 2017; Deming et al., 2020; Takeshita et al., 2021). This is the first study of its kind 

to use Lagrangian particle tracking to understand the relevance of anthropogenic impacts of 

salinity to changes in marine mammals. This novel study presents a new method for understanding 

how anthropogenic changes in salinity can affect marine species. 

Prior to using drifters to discover the original place of death for each dolphin and 

scrutinizing the salinity of that exact place and time, some general analyses have been performed 

to check if there is any potential relationship between measured salinity, BC Spillway opening, 

and dolphins’ death. Gulfport Light station is chosen for the measured salinity due to its location 

in the middle of the model domain and the absence of significant data gaps. Two graphs are 
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prepared for this purpose, Figure 1.8 shows daily salinity data of Gulfport Light station, MSS from 

2011 to 2020 extracted from USGS shown a Cumulative summation of dead dolphins found in the 

MSS from 2011 to 2020, and the BC spillway opening dates, the results indicate that there is a 

drop in salinity and a jump in the number of deaths during the BC opening dates. Figure 1.9 

compares the salinity levels of Gulfport Light station, MSS from 2011 to 2020 extracted from 

USGS during dolphin mortally dates to examine if dolphins usually die when salinity in the MSS 

is generally lower than average. The results indicate that more than 50% of the deaths happened 

when salinity was lower than the average of 20 ppt. 

 

Figure 1.8- Daily salinity data of Gulfport Light station, MS from 2011 to 2020 extracted from USGS 

shown in blue, Cumulative summation of dead dolphins found in the Mississippi Sound from 2011-2020 

in orange. And gray parts show the Bonnet Carre spillway opening dates. 
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Figure 1.9- Comparing salinity levels of Gulfport Light station, MS from 2011 to 2020 extracted from 

USGS during dolphin mortally dates. 

 

The particle tracking results, which are in the form of 19 heat maps (Figure 1.10) represent 

the probable origin of death for each individual dolphin. In each of the heat maps, red areas show 

the most probable origin of death, with 50% of the particles originating from the red regions. As 

the color changes from red to green, the probability of the origin of death decreases, and the green 

areas are the least probable origins with a probability of origin of 5%. According to Figure 1.10, 

the distance that each dolphin’s body traveled after death until it was beached ranges between 4 

and 80 km. The average distance is 38.5 km.  

The results show that the primary place of death for 14 of the 19 dolphins (12 stranded on 

the beaches of Mississippi and two stranded on barrier islands) was west of their stranding location. 

The two dolphins stranded around Dauphin Island on August 30th and November 3rd died in the 

Mobile Bay area north of the location they were found. The three remaining dolphins that were 

found on the barrier islands originally died in close proximity to their stranding location. These 

results should not be used to infer the direction of dolphin drift in other years. BC Spillway 
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openings divert an enormous amount of water and likely impact currents and resulting carcass 

drift.  

 

Figure 1.10- Hotspot maps indicating the likely initial locations of death for freshly dead dolphins from 

February to November 2019. Red areas are where the probability of the origin is the highest (50%) and 

green shows where the probability is the least (5%). 
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Next, the average salinity of the most probable location of death for each dolphin (red cells 

in Figure 1.10) was obtained from the hydrodynamic model of the MSS during the five-day 

tracking period for each of the stranded animals. Figure 1.11 shows a time series of the simulated 

average salinity for each individual carcass. The critical salinity for the dolphins to live for short 

periods of time is five and for longer periods is ten (Deming et al., 2020; Takeshita et al., 2021). 

As the plots show, in all the cases, the average salinity of the most probable origin in the tracking 

period is less than four. The only exceptions are the dolphins found stranded on February 2nd near 

the Gulfport, which died before the BC Spillway openings in 2019 and the dolphin found stranded 

on July 18th. Although there are numerous other factors that should be analyzed to come to a 

conclusion, these results reinforce that the low salinity in the Mississippi Sound is a potential 

reason for the unusually high number of dolphin deaths between February and November 2019. 

Due to salinity over or under prediction by the hydrodynamic model, an uncertainty band 

was created around each of the average plot lines in Figure 1.11 based on the absolute average 

salinity difference between the measured and modeled salinities using the data from Merrill Shell, 

St. Joseph, and Gulfport Light USGS stations. This method was used in order to account for the 

maximum uncertainty between the simulated and measured salinity. Even by considering the 

model’s uncertainty, the salinity is still lower than 10 in 16 cases out of the 19 examined. Also, 

two out of the three exceptions (Feb. 2nd and Aug. 30th) did not occur during the BC Spillway 

opening times. Also, the considerable uncertainty of these two dates (Feb. 2nd and Aug. 30th) is 

due to missing salinity data in the Near Grand Pass open boundary. 

One of the reasons for the decrease in the MSS salinity is the BC Spillway opening. 

According to the US Army Corps of Engineers, there were two openings in 2019. This event which 

released flood waters in both the spring and summer, had severe consequences. It led to the closure 
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of 25 Gulf Coast beaches due to a toxic algal bloom, a significant number of dolphin deaths, and 

the complete loss of shellfisheries in many areas of the MSS (Gledhill et al., 2020; Hendon et al., 

2020). The average flow from the BC during 2019 was 3830 m3/s in the first opening and 3370 

m3/s in the second opening.  

Another potential reason for low salinities in the region may be local riverine flows. The 

nearest large freshwater sources in the area are the Pearl River, and Pascagoula River. Average 

annual high flows varied between 1194 m3/s and 1583 m3/s in the Pearl River and between 1132.67 

and 3539.6 m3/s in the Pascagoula River in the years 2018 and 2019. The flows from the Pearl 

River, Pascagoula River, Mobile River and BC Spillway from March 2018 to April 2020 are 

compared and the flow from BC Spillway openings was more than two times the Pearl River and 

Pascagoula River flows in 2019 during the BC Spillway openings (Figure 1.12).  

 Armstrong et al., (2021) simulated the 2019 spillway openings (BCS) and compared them 

to a simulation with only riverine forcing. This allowed us to analyze the impact of spillway 

diversion and riverine forcing on oceanic variables separately. They found that the 2019 BCS led 

to an average of 17 cumulative days and 23 consecutive days of bottom salinity below 2 in the 

Mississippi Sound (MSS). Additionally, central and western MSS experienced over 40 

consecutive days of low salinity bottom water. Oyster reef locations near Bay St. Louis and Biloxi 

Bay, encountered 40 to 60 days of low salinity bottom water during the spring BCS opening and 

an additional 50 to 100 days during the summer opening.  

Boxplots in Figure 1.13 compares the distribution of salinity values associated with the 

most probable origin of death for each individual dolphin in three different scenarios, 1) during 

the BC Spillway opening days in 2019, 2) During the non-opening days in 2019, 3) and during the 

likely time of death period for each of the 19 dolphins. The results indicate that for all the dolphin 
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data, the average salinity of their original location of death is very low and similar to the average 

salinity of the BC Spillway opening dates. 
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Figure 1.11- Average salinity of the most likely locations of death (red areas in the previous figure heat 

maps) for each stranded dolphin data along with the uncertainty bounds created around the average 

salinity of the most likely locations of death to account for the model’s over and under predictions. 
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Figure 1.12- Flows from the Pearl River (Pearl River at Pearl station), Pascagoula River (Pascagoula 

River at Graham Ferry), Mobile River (Mobile River at River Mile 31) and BC Spillway from March 

2018 to April 2020 
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Figure 1.13- Boxplots comparing the salinity of the predicted initial locations of death for each individual 

dolphin at the Bonnet Carré opening dates, the time of death, and the non-opening dates. 
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1.6 Conclusion 

 

A drifter simulation representing floating dead dolphins was performed using Lagrangian 

particle tracking in a hydrodynamic model of the MS Sound. The results simulate the initial 

location of 19 freshly dead dolphins stranded on the beaches of MS in 2019. A Kernel density 

estimation analysis was performed, which shows the likelihood of each dolphin’s location at its 

time of death. In most cases, the dolphins died south and west of the stranding location and the 

average distance traversed by the particles was 38.5 km. Secondly, the average salinity of the 

probable time of death at the most probable location of death was calculated using the salinity data 

from the hydrodynamic model. The average salinity for 17 of the 19 dolphins was lower than five 

and considering the models under-predictions the average salinity for 16 of the 19 dolphins was 

lower than ten, which respectively is estimated to be the critical dangerous salinity for dolphins in 

short and prolonged periods of time (Deming et al., 2020; Takeshita et al., 2021). Finally, an 

examination was conducted to assess the impact of the BC spillway opening on the salinity levels 

at the initial locations of death. The findings reveal a greater alignment between the mean salinity 

levels at these locations and the salinity levels observed on days when the spillway was opened, 

as opposed to non-opening days. These results suggest a relationship between dolphin mortality 

and BC spillway openings in 2019. 
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Chapter 2 

2. Sensitivity Analysis and Calibration of Lagrangian Particle Tracking in a Hydrodynamic 

Model of the Mississippi Sound Using GPS-Tagged Drifters 

 

2.1 Abstract 

 

A hydrodynamic model of the Mississippi Sound incorporating a Lagrangian Particle Tracking (LPT) 

module is used. The current research utilizes six GPS-tagged drifter data collected on April 2017 by 

researchers in NOAA, to conduct a sensitivity analysis on the LPT model and further calibration. This 

analysis delves into the influence of specific parameters, notably the wind drag and model dimensionality. 

Alterations to these parameters resulted in observable changes in the trajectories of tracked particles. The 

results of the sensitivity experiments were compared using the Skill score (SS) proposed by Liu and 

Weisberg (2011). Adding wind drag to the LPT was found to be a pivotal alteration, substantially 

augmenting the model’s predictive capabilities by increasing the SS value from 0.4 to 0.7. In particular, an 

examination of the impact of varying wind drag coefficients implemented in the EFDC+ software, revealed 

that coefficient A has a larger impact on the models predictions compared to coefficient B. Finally, the 

results suggested that the transition from a two-dimensional (2D) to a three-dimensional (3D) model 

improves the model slightly, increasing the SS value by 0.02, but doesn’t have a notable influence on the 

model’s accuracy. The study’s results have valuable implications for coastal management, disaster 

response, and environmental monitoring including the cetacean stranding events. 

  

Keywords—Hydrodynamic model, Lagrangian particle tracking, Drifter data, Sensitivity analysis, 

EFDC+, Mississippi Sound, 2D vs. 3D model, Wind drag, Calibration. 
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 2.2 Introduction 

Lagrangian particle tracking (LPT) is a widely used technique in hydrodynamic modeling 

for tracing the origins and destinations of drifting objects or water masses (Mariano et al. 2002). 

In the realm of oceanography, this methodology finds application in assessing the risk of toxic 

algae blooms (Havens et al. 2010), investigating larval transport and connectivity for fishery 

management (Nicolle et al. 2013; Robins et al. 2013; Bidegain et al. 2013) and oil spill responses 

(Broström et al. 2011; Yang et al. 2013; Anguiano-García et al. 2019; Liu et al. 2013; Ribotti et 

al. 2018; De Dominicis et al. 2013).  Additionally, Lagrangian transport simulations play a crucial 

role in tracking plastic debris, contributing to an enhanced understanding of its dispersion within 

the ocean (Iskandar et al. 2022; Iskandar et al. 2021; Duhec et al. 2015; Kako et al. 2014; Lebreton 

and Andrady 2019; Liubartseva et al. 2018; Maximenko et al. 2012; Seo and Park 2020). 

Lagrangian Drift models are extensively utilized to simulate stranding events for various large, 

floating aquatic species, including sea turtles (Nero et al. 2013; Santos et al. 2018); Portuguese 

man-of-war (Headlam et al. 2020; Ferrer et al. 2015;  Ferrer and Pastor 2017); and stranded 

cetacean carcasses such as pygmy sperm whales (Harlan 2014), fin whales (Díaz-Gamboa et al. 

2022), humpback and bryde whales (Junior et al. 2019), harbor porpoises (Peltier et al. 2012; 

Haelters et al. 2006), cuvier's beaked whales (Carlucci et al. 2020), short-beaked common dolphins 

(Gilbert et al. 2021; Peltier et al. 2012), and bottlenose dolphins (Wirasaet et al. 2015; 

Shahidzadehasadi et al. 2023).  

In Lagrangian particle tracking studies, measured data is obtained from oceanographic 

instruments, known as drifters, which are small, floating buoys or devices designed to passively 

drift along with ocean currents. These drifters are often equipped with GPS or satellite tracking 

systems, enabling researchers to monitor their movement as well as collect additional data, 



46 

 

including surface currents, sea temperature, and wave characteristics. Drifter data plays a pivotal 

role in understanding ocean circulation patterns, examining marine ecosystems, and tracking the 

dispersion of pollutants or floating objects.  

Accurate calibration of LPT models is essential to ensure reliable predictions of particle 

trajectories and dispersion behavior. The calibration process involves refining the model 

parameters to match observed particle behavior and optimize the accuracy of simulated particle 

paths within the fluid flow. Calibration ensures that the simulated trajectories closely match real-

world particle movement, enhancing the model's reliability for various scientific and engineering 

applications. Sensitivity analysis (SA) is another vital tool in modeling, focusing on identifying 

key parameters influencing model performance. SA plays a crucial role in model parameterization, 

calibration, optimization, and uncertainty quantification. It evaluates how changes in input 

parameters impact model outcomes, helping prioritize calibration efforts for the most influential 

parameters (Song et al. 2015). 

SA, calibration. and validation of LPT models has been carried out in numerous studies 

using drifter data (Abascal et al. 2009; Callies et al. 2017; De Dominicis et al. 2013; Liu and 

Weisberg 2011; Ribotti et al. 2018; van der Mheen et al. 2020; Ferrer et al. 2015; Nero et al. 2013; 

Huntley et al. 2011). Various software tools were employed for LPT and hydrodynamic modeling 

in these studies. Abascal et al. (2009) used PICHI (Castanedo et al., 2006), while De Dominicis et 

al. (2013), as well as Ribotti et al. (2018) employed MEDSLIK-II. Callies et al. (2017) used the 

PELETS-2D module (U. Callies, 2016) alongside two independent models, BSHcmod and TRIM. 

Liu and Weisberg (2011) employed HYCOM, van der Mheen et al. (2020) used OceanParcels-v2 

(Lange and Sebille, 2017; Delandmeter and Van Sebille, 2019), Huntley, Lipphardt, and Kirwan 

(2011) used the US Navy’s EAS16 model which is adapted from the operational NCOM (Navy 
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Coastal Ocean Model) (P. Martin 2000), and Ferrer et al. (2015) made use of the Regional Ocean 

Modeling System (ROMS) (Debreu et al. 2012) in conjunction with the Sediment, Oil spill, and 

Fish Tracking model (SOFT). 

The cited publications cover a range of geographical areas. Abascal et al. (2009) and  Ferrer 

et al. (2015) focused their investigations on the Bay of Biscay extended from Cape Ortegal, 

northwestern Spain to the French coast. De Dominicis et al. (2013) conducted their study in the 

Mediterranean Sea. Callies et al. (2017) examined the German Bight in the North Sea, while Liu 

and Weisberg (2011) centered their research on the Gulf of Mexico. Ribotti et al. (2018) conducted 

their analysis in the Italian Sea, specifically the Sicily Channel and the Adriatic Sea areas. Huntley 

et al. (2011) study domain was the East China Sea. Finally, van der Mheen et al. (2020) explored 

the Rottnest Shelf in Western Australia. 

Among the aforementioned publications, only Abascal et al. (2009); Ferrer et al. (2015); 

and Nero et al. (2013) calibrated their LPT models, and only De Dominicis et al. (2013); and 

Huntley, Lipphardt, and Kirwan (2011) performed a SA. The remaining studies primarily focused 

on model validation through the use of drifter data. Abascal et al. (2009) used an automated method 

to calibrate wave coefficient (CH), current coefficient (CC), and α and β, which represent the wind 

drag coefficient (CD). The parameters that L. Ferrer et al. (2015) clibrated include CROMS and 

CWRF, which are the current coefficient and wind drag coefficient, respectively. Finally, Nero et 

al. (2013) calibrated their model by changing the leeway drift coefficient (K), which refers to the 

movement of sea turtles on the surface of the water due to the influence of wind and currents. De 

Dominicis et al. (2013) specifically conducted a SA on their model, examining its responsiveness 

to various factors such as horizontal current resolution, time frequency, depth of currents, local 

wind correction, and Stokes velocity. Huntley, Lipphardt, and Kirwan (2011) conducted SA on 
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the removal of the near-surface tidal velocities, changes in launch location, and changes in launch 

time. 

To our knowledge, there exists a notable research gap related to the simultaneous 

application of SA and model calibration within the context of LPT models, particularly in the 

context of calibrating dolphin carcass movement using drifter data. Furthermore, there is a lack of 

studies examining model sensitivity to dimensionality and the distinctions between 2D and 3D 

configurations. This research aims to bridge these knowledge gaps through a SA and calibration 

of a hydrodynamic Largangian particle tracking model that simulates bottlenose dolphin carcass 

movement using the EFDC+ model software within the Mississippi Sound and Mobile Bay, 

northern Gulf of Mexico. 

In this study, two types of GPS-tagged drifter data were provided by Cook et al. (2021), 

including turtle carcasses and wooden effigies designed to reproduce turtle carcass drift. Data from 

these drifters were utilized to: (1) conduct a SA on a LPT module to the wind drag existence, 

dimensionality (including 2D vs. 3D model), and wind drag coefficients A and B within an existing 

hydrodynamic model previously simulated by Shahidzadehasadi et al. (2023); and (2) calibrate the 

model using the results from the SA. This study contributes valuable insights into the applicability 

and reliability of LPT techniques in understanding ocean dynamics and ecological processes, with 

implications for various environmental and marine management applications. 

 

 

 2.3 Study Area and Data 
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2.3.1 Study Area 

 

The study area consists of the Mississippi Sound (MSS) and Mobile Bay. The MSS is a 

large, shallow, and semi-open sound located in the north-central Gulf of Mexico. The MSS has a 

surface area of 2,129 km2, an average depth of 2.98 m at mean low water and a salinity range of 

0-35. From east to west, the MSS extends from Cedar Point, AL, to Half Moon Island, LA, and is 

bordered to the north by Mississippi and Alabama and to the south by Bay Boudreau, LA, and five 

barrier islands: Dauphin, Petit Bois, Horn, Ship, and Cat. It connects with the Gulf through passes 

between a series of five barrier islands. Mobile Bay is a shallow estuary in the northern Gulf of 

Mexico, extending 48 km long and ranging from 14–34 km wide. The relatively shallow uniform 

bathymetry averages 3 m, except for the shipping channel, which is 12 m deep. Mobile Bay is 

connected to the MSS through the Pass Aux Herons outlet in the southwest. The MSS and Mobile 

Bay are ecologically and economically important areas (Scircle et al. 2020), hosting a diverse 

range of habitats and species, including oyster reefs (MacKenzie Jr 1997) and several species of 

fish and marine mammals (Mullin et al. 2004).  

 

2.3.2 Data 

 

In a previous investigation conducted by the National Oceanic and Atmospheric 

Administration (NOAA), GPS-tagged sea turtle carcasses and effigy drifters were deployed in the 

coastal and offshore waters of the northern Gulf of Mexico during May 2017 (Cook et al. 2021). 

While Cook’s original study represented turtle drift, I use the same data to represent dolphin drift 

due to similar the size and buoyancy of the carcasses. The drifters deployed by NOAA were not 

entirely contained within our model domain. Therefore, a subset (n = 6) of the larger NOAA data 



50 

 

was chosen that either remained within the domain throughout the observation period or entered 

the domain at some point during their trajectory (Table 2.1 and Figure 2.1). Moreover, preference 

was given to those drifters with relatively straightforward and uncomplicated trajectories. 

 

Figure 2.1- GPS-tagged sea turtle carcasses and effigy drifters data in the nGOM in 2017 collected by 

(Cook et al. 2021). A and B are the locations where the drifters were released from. 
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Drifter ID 
Release 

Station 

Drifter release 

time/date 

Stranding 

time/date 

Turtle-Green GC1 B 
4/12/2017  

11:19 

4/22/2017   

8:27 

Turtle-Green GC2 B 
4/12/2017  

11:19 

4/20/2017   

12:08 

Effigy EC1 B 
4/12/2017  

11:19 

4/20/2017   

9:36 

Effigy EA1 A 
4/12/2017  

9:18 

4/16/2017   

2:23 

Turtle-Green DGC2 B 
4/25/2017  

9:35 

4/29/2017   

10:20 

Turtle-Green GA2 A 
4/25/2017  

13:13 

4/26/2017   

8:10 

 

Table 2.1 - Turtle and effigy data provided by  (Cook et al. 2021). 

 

2.4 Methods 

 

2.4.1 Hydrodynamic Model  

 

An existing 2D hydrodynamic and water quality model of the MSS simulated in Environmental 

Fluid Dynamic Code Plus (EFDC+) version 11.2 was used for this study (Shahidzadehasadi et al., 

2023; Armandei, Linhoss, and Camacho 2021). The EFDC+ software is a modeling tool 

engineered for simulating aquatic systems across one, two, and three dimensions. (DSI LLC., 

2023; EFDC+ Source Code, 2022). The hydrodynamic model employed in this study was initially 

developed by Armandei, Linhoss, and Camacho (2021). Over time, the model's grid was expanded 

to encompass Lake Pontchartrain and Mobile Bay. Subsequently, Shahidzadehasadi et al. (2023) 

integrated an LPT module into the model to track the origins of mortalities for stranded dolphins 

along the shores of Mississippi and Alabama. In this study, the grid from Shahidzadehasadi et al. 

(2023) was modified to exclude the Isle Aux Herbes and Gaillard Island in the east and the Grand 

Island in the west of the model domain. Currently, the model is composed of a computational 

curvilinear grid consisting of 70,674 cells (245 rows and 962 columns), which covers an area of 

5,678.8 km2 extending from Lake Pontchartrain (LA) in the east to Mobile Bay (AL) in the west. 
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The unit system is metric, the projection or horizontal datum is WGS 1984, and the vertical datum 

is NAVD88. 

Several modifications have been implemented regarding the model's open boundary 

conditions. Firstly, the number of water level time series data was expanded from two to three, 

with the addition of water level data from the Dauphin Island station (Dauphin Island Sea Lab 

2023). These revised boundary conditions are depicted in Figure 2.2. Secondly, adjustments were 

made to eliminate the offset between the measured water level data from East Ship, Near Grand 

Pass, and Dauphin, ensuring uniformity and consistency in the data. Table 2.2 presents the amount 

subtracted from each water level data time series and average water level data after the removal of 

the vertical offset.  

 

Open Boundary 
Amount 

added (m) 

Average 

Water Level 

(m) 

Near Grand Pass - 0.5857 0.3085 

East Ship 0 0.3088 

Dauphin  - 1.7926 0.3085 

 

Table 2.2- Open boundary conditions used in the hydrodynamic model. 



53 

 

 

Figure 2.2- New model boundary conditions set-up. 

 

The hydrodynamic model utilized in Shahidzadehasadi et al. (2023) integrated data from 

five distinct wind stations, as depicted in Figure 2.3. Table 2.3 shows the average wind velocity 

and direction recorded at each of these stations. Notably, in this investigation, equal weighting was 

assigned to all wind stations, signifying that the data from each station held equal significance 

within the model's computations. A visual representation of this equitable weighting scheme for 

each station can be found in Figure 2.4.  
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Station Name 
Average 

velocity (m/s) 

Average 

Direction 

Slidell airport 2.228 192.04 

Bay St. Louis Stennis International Airport 4.061 198.24 

Gulfport Biloxi airport 2.964 205.03 

Biloxi Keesler AFB 3.384 185.73 

Pascagoula Lott international airport 1.992 193.09 

 

Table 2.3- Average wind velocity and direction of the wind stations used in the model 

 

 

Figure 2.3- Location of the wind stations used in the hydrodynamic model. 
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Figure 2.4- Wind weighting (%) of the five wind stations used in the hydrodynamic model. 

 

2.4.2 Lagrangian Particle Tracking 

 

The LPT is a powerful tool used to simulate the movement of particles or tracers in a fluid 

flow field. Lagrangian particles move along with the fluid velocity field, which means that the 

simulation of drifters is linked to a fluid flow model. The governing equations for fluid flow in the 

EFDC+ modeling software are the Navier-Stokes and advection-diffusion equations for salinity, 

temperature, dye, toxic substances and suspended sediment transport. (DSI LLC. 2023). The 

advection-diffusion equation for mass transport in a three-dimensional curvilinear orthogonal 

coordinate system is expressed in Equation 2.1, while Equations 2.2-2.4 illustrate the differential 

equations for the Lagrangian movement of drifters in the x, y, and z coordinates. 
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)                                  Eq. 2.1 

𝑑𝑥 = (𝑢 +
𝜕𝐴𝐻

𝜕𝑥
) 𝑑𝑡 + (2𝑝 − 1)√2𝐴𝐻𝑑𝑡                                                                              Eq. 2.2 

𝑑𝑦 = (𝑣 +
𝜕𝐴𝐻

𝜕𝑦
) 𝑑𝑡 +  (2𝑝 − 1)√2𝐴𝐻𝑑𝑡                                                                              Eq. 2.3 

𝑑𝑧 = (𝑤 +
𝜕𝐴𝑏

𝜕𝑧
) 𝑑𝑡 +  (2𝑝 − 1)√2𝐴𝑏𝑑𝑡                                                                               Eq. 2.4 

 

The variables (u, ν, w) in this equation correspond to the Lagrangian velocity vectors along 

the (x, y, z) axes. AH and Ab are the coefficients of horizontal and vertical diffusion, respectively. 

C denotes the concentration, dt represents the time step, and p is a random number produced from 

a random variable. Equations 2.2 to 2.4 contain numerical solutions that are comprised of two 

parts. The first term on the right-hand side accounts for advective transport, while the second term 

calculates random movements. Each of these terms can be modified independently, and the random 

movement term can be utilized or not. 

Wind drag indicates how much resistance the air exerts on the water's surface when wind 

blows over it and has a significant impact on how wind affects the flow of water. Wind drag 

directly influences the strength and direction of surface currents, which in turn affects the 

movement of water within the MSS. When particles are situated on the water's surface, such as 

drifters, wind drag can also influence their movement. To account for this effect, the EFDC+ 

module uses wind drag calculations according to the drag parameters from Kim et al. (2014) in 

addition to the advection-diffusion movements. 

𝑉particle =  𝑉current + (𝐶𝐷 × 𝑉wind)                                                                                      Eq. 2.5 

Where the wind speed used is at the height of 10 m, and CD is the wind drag coefficient in 

EFDC+, equation 5.  
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𝐶𝐷𝑥 =  𝐴 × 𝑉𝑤𝑖𝑛𝑑𝑥 + 𝐵                                                                                                          Eq. 2.6 

𝐶𝐷𝑦 =  𝐴 × 𝑉𝑤𝑖𝑛𝑑𝑦 + 𝐵                                                                                                         Eq. 2.7 

In equations 2.6 and 2.7, coefficient A has units expressed in s/m, while coefficient B has 

no unit of measurement. CD is also dimensionless, and the velocity terms are all given in m/s. If 

A is equal to zero, a constant drag coefficient is employed. The CD values can range from 0.0 to 

0.1 but generally fall between 0.02 to 0.03.  

Another crucial factor that contributed to a more realistic simulation was the inclusion of 

no wall slippage. This means that once particles hit a nearby boundary, their velocity becomes 

zero, causing them to become beached particles. 

 

  2.4.3 Seeding Particles 

 

In this research, an examination is conducted on six particles, each representing one of the 

six drifters. The initial positions of the drifters in their respective cells determine the starting 

locations for each particle group. Among the six sets of drifters, five have initial release points 

outside the model domain. To address this, the initial seeding point for each particle group was 

selected after the drifters entered the model domain. To avoid boundary effects, the drifters were 

not simulated until they were well within the spatial domain (Figure 2.5). These particles were 

released on the same date that the drifters were released within the respective cells. Subsequently, 

their trajectories were tracked forward in time until they either reached the shoreline or exited the 

model domain. This methodology enabled us to precisely simulate particle trajectories and draw 

comparisons with the observed paths of the drifters. It should be noted that although each grid cell 
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covers an approximate area of 69,000 m2, all the particles within the same group traverse a very 

similar path, and there is no need to seed them at the exact point where the drifters are released. 

 

 

Figure 2.5- six particle groups' initial locations are shown. 

 

 

  2.4.4 Sensitivity Analysis 

 

The sensitivity of model dimensionality, existence of wind, and wind drag parameters A 

and B were assessed. The SA was conducted by altering each parameter one at a time.  

The first parameter investigated in the SA was the number of vertical layers. In 

hydrodynamic simulations, water columns are often divided into multiple layers or vertical cells. 

In this research, the model was initially set up with a 2D configuration, having only one vertical 

layer. The model was converted to 3D, and the layer count was increased to three and then to five 
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in order to understand the influence that altering the number of layers has on the model results 

(Table 2.4). 

 Scenario 1 Scenario 2 Scenario 3 

Number of layers 1 3 5 

Wind Coeff A 0.005 0.005 0.005 

Wind Coeff B 0.015 0.015 0.015 

 

Table 2.4- Designing of three scenarios changing vertical layering. 

 

In the second experiment, the impact of the existence of wind on the predictive accuracy 

of the model was examined. A comparative analysis of the model's results was conducted under 

two different scenarios: one where wind drag was enabled and the other where it was disabled. By 

analyzing the differences between the two sets of results, insights into the extent to which wind 

affects the model's ability to make accurate predictions were gained. 

In the third and fourth experiments, the sensitivity of the model to variations in coefficients 

A and B was investigated, respectively. I adjusted A and B by +/- 80% from their default values, 

as originally determined by Kim et al. (2014) (Tables 2.5 and 2.6). The default value for A is 0.005 

and the default value for B is 0.015.  

 

 Scenario 1 Scenario 2 Scenario 3 

Number of layers 3 3 3 

Wind Coeff A 0.005 0.009 0.001 

Wind Coeff B 0.015 0.015 0.015 

 

Table 2.5- Designing of three scenarios changing coefficients A. 
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 Scenario 1 Scenario 2 Scenario 3 

Number of layers 3 3 3 

Wind Coeff A 0.005 0.005 0.005 

Wind Coeff B 0.015 0.027 0.003 

 

Table 2.6- Designing of three scenarios changing coefficients B. 

 

2.4.5 Calibration 

 

Once the most important parameters were identified in the SA, I moved on to model 

calibration. It is important to note that the calibration process was manually executed and not 

automated. Calibration began by adjusting the most influential parameter within their permissible 

ranges calculated in the previous section (A between 0.001 to 0.009, and B between 0.003 to 0.027) 

and progressively moving to those with lesser impact. After each adjustment, statistical metrics 

were computed, ultimately leading to the final calibrated model. 

The comparison between observed and simulated drifter trajectories in both SA and 

calibration was evaluated by two statistics. The first statistic is absolute error (AE), calculated from 

the separation distance between the observed and the simulated trajectories as a function of the 

simulation time (Eq. 2.8): 

𝐴𝐸 (𝑡𝑖) =  𝑑𝑖(𝑥𝑠(𝑡𝑖), 𝑥𝑜(𝑡𝑖))                                                                                           Eq. 2.8 

Where di is the distance between the simulated (xs) and the observed (xo) drifter positions 

at time step ti. This metric is useful for quantifying the evolving separation distance between the 

measured data and the model as the simulation time progresses.  
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The second statistic used is the skill score (SS) proposed by Liu and Weisberg (2011). It is 

a non-dimensional score that normalizes the cumulative separation distances by the lengths of the 

observed trajectories. In order to calculate SS, first, the s index should be calculated (Eq. 2.9). 

𝑠 =
∑ 𝑑𝑖

𝑁
𝑖=1

∑ 𝑙𝑜𝑖
𝑁
𝑖=1

                                                                                                                              Eq. 2.9 

Where loi is the length of the observed trajectory at the corresponding time, ti and N is total 

number of time steps. This statistic tends to reduce the evaluation errors that may arise using the 

Lagrangian separation distance. Then, s is used to define a model SS (Eq. 2.10): 

𝑆𝑆 = {
1 −

𝑠

𝑛
, 𝑠 ≤ 𝑛

0, 𝑠 > 𝑛
                                                                                                         Eq. 2.10 

Where n is a dimensionless positive number that defines threshold of no skill (SS = 0). In 

this study, n = 1 is used based on Liu and Weisberg's (2011) suggestion that the cumulative 

separation distance should not exceed the accumulated length of the drifter's trajectory. The higher 

the SS value, the better the performance, with an SS = 1 implying a perfect fit between observed 

and simulated data and an SS = 0 indicating the model simulations have no skill. This statistic is 

used in several studies comparing measured and simulated particle trajectories (Röhrs et al. 2012; 

Lars Robert Hole, Cecilie Wettre, and Röhrs 2012; L. Ferrer et al. 2015). 

 

2.5 Result and Discussion 

 

2.5.1 Sensitivity Analysis 

 

The sensitivity results are presented in three formats. The first format shows maps of the 

measured and simulated trajectories. The second format is the SS statistic, which provides a single 
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quantitative evaluation of the results. Lastly, the Absolute Error at a given time AE (ti) is shown 

using plots of separation distance against the simulation time for each drifter. 

In the first experiment the impact of the number of vertical layers in the hydrodynamic 

model was investigated. A 2D representation was employed in the initial model (1 layer), while in 

two subsequent scenarios, three and five layers were introduced (Table 2.4). In this experiment, 

wind was turned on and the A and B coefficients were set to the default values, 0.005, and 0.015 

respectively. Due to the relatively smooth bathymetric variation in the model domain, the vertical 

coordinate was discretized using a sigma layer approach. As shown in Figure 2.6, a marginal 

difference in most of the cases was revealed when transitioning from the 2D model to the 3D 

model, as the particles' paths shifted westward in the 3D model compared to the 2D model, and 

the SS value increased slightly. However, the change of the number of layers from three to five 

did not significantly affect the results. Overall, the model displayed limited sensitivity to the 

number of vertical layers, as shown by the calculated SS values for the three experiments (Table 

2.7). This demonstrates that the 2D model serves as a suitable representation of the study area, 

especially for running over longer periods of time where computational cost becomes an issue. 
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Figure 2.6- The result of changing the vertical layering. The pink line shows the 2D case, the green line 

shows the three vertical layers case, the blue line shows the five vertical layers case, and the dashed red 

line shows the drifter track line. 

 

Particle Group ec1 gc1 gc2 dgc2 ea1 ga2 Average 

SS (2D; 1 layer) 0.79 0.83 0.83 0.66 0.77 0 0.64 

SS (3D; 3 layers) 0.87 0.67 0.86 0.71 0.87 0 0.66 

SS (3D; 5 layers) 0.88 0.63 0.83 0.72 0.88 0 0.66 

 

Table 2.7- SS calculated for the 2D, 3D with three layers, and 3D with five layers models. 

 

In the second experiment the existence of wind drag was examined. The model used in this 

experiment was 3D with three vertical layers, coefficient A was set to 0.005, and coefficient B was 

set to 0.015. Figure 2.7 and Table 2.8 depict the trajectories and statistics comparing the model 

with and without wind. When wind was turned off, model results were notably poorer. In contrast, 

when wind drag was turned on, trajectory prediction accuracy was significantly enhanced.  
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Figure 2.7- Wind drag effect on the accuracy of predicting particle trajectory. The green line shows the 

case excluding wind drag, the blue line shows the case including the wind drag, and the dashed red line 

shows the drifter track line. 

 

Particle Group ec1 gc1 gc2 dgc2 ea1 ga2 Average 

SS (wind) 0.87 0.67 0.86 0.71 0.87 0 0.66 

SS (no wind) 0.62 0.39 0.62 0.09 0.78 0 0.42 

 

Table 2.8- SS calculated for the model incorporating wind drag, and the model which doesn’t incorporate 

wind drag. The last column shows the average of all the six cases. 

 

In the third experiment coefficient A was adjusted (Figure 2.8). In this experiment, wind 

was turned on, the model was set to 3D with three vertical layers, and the B coefficient was set to 

the default value 0.015. Increasing the A coefficient led to an eastward shift in particle movement, 

bringing their paths closer to those measured for gc1, gc2, ec1, and ga2. Conversely, reducing the 

A coefficient resulted in a westward movement of particles, more closely aligning the paths of 

dgc2 and ea1 with their measured trajectories. As such, a higher A coefficient aided in matching 

observed paths in four cases, while a lower A coefficient aided in matching observed paths in only 
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two cases. Statistical analysis supported these results and demonstrated that decreasing the A 

parameter to 0.001 resulted in a -0.04 change in the average SS value across the six cases. 

Increasing A to 0.009, resulted in no change in the average SS value across the six cases (Table 

2.9).  

 

 

Figure 2.8- The result from changing coefficient A. The green line shows the case a = 0.005, the blue line 

shows the case a = 0.009, the purple line shows the case a = 0.001, and the dashed red line shows the 

drifter track line. 

 

Particle Group ec1 gc1 gc2 dgc2 ea1 ga2 Average 

SS (A = 0.001) 0.74 0.45 0.74 0.87 0.92 0 0.62 

SS (A = 0.005) 0.87 0.67 0.86 0.71 0.87 0 0.66 

SS (A = 0.009) 0.85 0.72 0.88 0.66 0.87 0 0.66 

 

Table 2.9- SS calculated for a=0.001, a=0.005, and a=0.009 models. The last column shows the average 

of all the 6 cases. 
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In the fourth experiment coefficient B was adjusted. In this experiment, wind was turned 

on, the model was set to 3D with three vertical layers, and the A coefficient was set to the default 

value 0.005. Both Figure 2.9 and Table 2.10 reveal minor adjustments in trajectories when the B 

parameter was modified. Figure 9 shows that changing the B coefficient did not consistently steer 

the particles in a particular direction. Increasing B resulted in an eastward movement for gc1 and 

ga2 and a westward shift in all other cases. While increasing or decreasing B did change the travel 

time and trajectory length, the overall impact on the location of stranding was limited. Statistical 

analysis demonstrated that increasing the B parameter to 0.027 resulted in no change in the average 

SS value across the six cases. Decreasing B to 0.003, resulted in -0.03 change in the average SS 

value across the six cases (Table 2.10). In summary, the model demonstrated less sensitivity to 

changes in coefficient B compared to coefficient A.  
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Figure 2.9- The result from changing coefficient B. The green line shows the case b = 0.015, the blue line 

shows the case b = 0.027, the purple line shows the case b = 0.003, and the dashed red line shows the 

drifter track line. 

 

 

Particle Group ec1 gc1 gc2 dgc2 ea1 ga2 Average 

SS (B = 0.003) 0.81 0.58 0.82 0.70 0.87 0 0.63 

SS (B = 0.015) 0.87 0.67 0.86 0.71 0.87 0 0.66 

SS (B = 0.027) 0.86 0.67 0.83 0.70 0.87 0 0.66 

 

Table 2.10- SS calculated for the b=0.003, b=0.015, and b=0.027 models. The last column shows the 

average of all the 6 cases. 

 

To summarize the four experiments, the separation distances between the GPS-tagged 

drifter trajectories and the simulated trajectories were plotted against the simulation time for each 

drifter in each experiment (Figure 2.10). The most influential factor overall is turning wind on.  
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The main reason behind employing three distinct methods to analyze SA is that one method 

alone may not adequately represent model behavior. This is evidenced in the ga2 case, where the 

absolute errors show that none of the experiments were able to improve the simulated path of ga2 

with any degree of satisfaction (Figure 2.10). However, the mapped trajectory (Figure 2.7) shows 

that the scenario without wind predicted ga2 moving southward toward the Gulf of Mexico, 

whereas the scenario with wind showed ga2 moving northward toward the shore.  

 

Figure 2.10- Absolute Error in Drifter Trajectory Prediction Against Days of Simulation: Comparison of 

Eight Experiment Scenarios for Each Drifter. 

 

 

2.5.2 Calibration  

 

Based on the findings from the SA, during calibration the model was initially set to 3D 

with wind turned on. The A and B wind drag coefficients were then hand tuned to improve the 
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match between modeled and measured data. The A and B values that resulted in the best 

representation of the actual trajectories were 0.006 and 0.018, respectively. The trajectory graphics 

(Figure 2.11) show that the calibrated values of A and B performed better than the default values 

in 4 out of 6 cases, including ec1, gc1, gc2, and ga2. 

Once the A and B parameters were adjusted, model dimensionality was calibrated. It should 

be noted that the 2D model is not sensitive to changing the A and B coefficients. Consequently, 

when calibrating the 2D model, the only adjustment required is activating the wind component and 

there is no need to adjust the A and B wind coefficients. Figure 2.12 provides a representation of 

this calibration. Figure 2.12A shows that the 3D calibrated model outperformed the non-calibrated 

model in cases of ec1, gc1, gc2, and ga2. Furthermore, Figure 2.12B indicates that the calibrated 

model exhibited superior performance in scenarios involving ec1, gc2, and ea1 when compared to 

the 2D model. 

The calculated SS values from this analysis are cataloged in Table 2.11. Upon reviewing 

these SS values, notable trends emerged. The calibration of the 3D model enhanced trajectory 

predictions for the ec1, gc1, and gc2 cases, whereas it adversely affected predictions for the dgc2 

and ea1 scenarios when compared to the non-calibrated 3D model. Furthermore, comparing the 

calibrated 3D model with the 2D model, I observed improvements in trajectory predictions for ec1, 

gc2, and ea1 scenarios. However, the prediction for gc1 worsened, and the dgc1 case remained 

unaffected. Unfortunately, the trajectory predictions for the ga2 case were unsatisfactory in all 

three scenarios. Averaging the SS value for all six cases revealed that the calibrated 3D model 

performed virtually the same as the non-calibrated model and the average SS increased by 0.03 

when comparing the 2D and 3D calibrated models.  
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Finally, the separation distance between the modeled and measured trajectories was 

calculated for all the drifters at the 24-hour mark from the simulation start time, considering the 

3D calibrated, 3D non-calibrated, and 2D calibrated models. As shown in Table 2.12, the average 

value of this parameter for the six drifters indicated a significant improvement of 2.76 km 

compared to the 2D calibrated model and a 0.42 km enhancement compared to the 3D non-

calibrated model in the case of the calibrated model. 

 

 

Figure 2.11- Calibration results in comparison with the model with wind turned on and default A and B 

values. The green line shows the calibrated 3D case, the blue line shows the default, the pink line shows 

the 2D calibrated model, and the dashed red line shows the drifter track line. 
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Figure 2.12- Comparing the absolute error (distance) between the measured data and modeled results 

during the simulation time. c represents the distance between the modeled and measured in calibrated 

version, 2d represents the distance between the modeled and measured in the 2D version, and d represents 

the between the modeled and measured in the 3D non-calibrated version. In these plots, the solid lines 

depict the separation distances for the 3D calibrated model, while the dashed lines in Figure 12A 

represent the separation for the 2D model, and in Figure 12B, they indicate the separation for the 3D non-

calibrated model.  

 

Particle Group ec1 gc1 gc2 dgc2 ea1 ga2 Average 

SS (2D calibrated) 0.79 0.83 0.83 0.66 0.77 0 0.64 

SS (3D default) 0.87 0.67 0.86 0.71 0.87 0 0.66 

SS (3D calibrated) 0.90 0.68 0.90 0.68 0.86 0 0.67 

 

Table 2.11- SS calculated for the 2D model, 3D non-calibrated and 3D calibrated. The last column shows 

the average of all the 6 cases. 
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Particle Group ec1 gc1 gc2 dgc2 ea1 ga2 Average 

AE 24h (2D) (km) 10.95 3.21 9.25 18.26 10.33 18.44 11.74 

AE 24h (3D default) (km) 1.76 6.78 1.56 19.58 5.59 20.96 9.40 

AE 24h (3D calibrated) (km) 0.97 8.22 0.46 18.22 6.34 19.71 8.98 

 

Table 2.12- Separation distance after 24 hours passed simulation (AE 24h) calculated for the 2D model, 3D 

non-calibrated and 3D calibrated. The last column shows the average of all the 6 cases. 

 

The calibrated model's performance was compared to similar studies that evaluated LPT 

predictive skill. It's important to note that not all studies employed the same statistical metrics as 

used in this analysis; therefore, I focus only on those studies that utilized the 24-hour separation 

distance or SS value for comparison. Liu and Weisberg (2011) reported an average SS value of 

0.41 after one day of simulation in the Gulf of Mexico shelf. Ferrer et al. (2015) conducted an 

extensive analysis of calibrated models, reporting SS values ranging between 0.22 and 0.94 for 

different drifters released at different times. In comparison, the average SS value obtained in this 

study was 0.67, showcasing strong performance. Another study by Huntley et al. (2011) indicated 

that, on average, model trajectories diverged from observations by roughly 15 km after the first 

day. In our study, the average 24-hour separation distance for the six cases was 8.98 km.  

 

2.6 Conclusion 

 

In conclusion, this publication initially highlights the sensitivity of LPT in a hydrodynamic 

model to wind, dimensionality, and wind drag coefficients A and B. Then calibrate the LPT model 

using these parameters. The results can be summarized as below: 
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1- Incorporating wind into the LPT model greatly improves its predictive capacity, as 

evidenced by the average Skill Score (SS) increasing from 0.42 to 0.66.  

2- The wind drag coefficient A exerts a larger impact on model predictions compared to 

coefficient B (average SS changes 0.01 more changing A compared to B). 

3- Transition from 2D to 3D model offers marginal improvement (average SS increased by 

0.03), which could be because of the MSS’s smooth bathymetry. Importantly, this transition 

provides a valuable advantage to modelers as 2D models offer computational efficiency compared 

to 3D models. 

4- Calibrating the LPT model across an extensive area of 5,678.8 km² presents challenges, 

as enhancing the model's accuracy in one region may lead to a deterioration in performance in 

another. 

5- The calibrated A and B values in this study are 0.006 and 0.018, respectively, which are 

very close to the values used in Kim et al.’s study (2014) investigating the effects of the wind drift 

factor under strong tidal conditions in the western coastal area of Korea on the movement of oil 

slicks caused by the Hebei Spirit oil spill accident in 2007. As a result, I can conclude that these 

values are transferable to study areas, over time, and to different floating objects. 

6- Utilizing a combination of visual graphics and statistical analyses proves valuable in 

understanding the impact of varying parameters. 
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5. Appendices 
 

Appendix 1 

 

This supplemental document intends to ease the replication of results and help other researchers 

conduct similar studies using the methodology of this work. 

 

1. Set up the Lagrangian Particle Tracking module in EFDC+. 

• Activate the Lagrangian Particle Tracking (LPT) module by RMC on the Modules and then 

check the Lagrangian Particle Tracking box and click OK (Figure 5.1). 

• In the “LPT Main Options”, the “Compute Drifters” box should be checked (Figure 5.2). 

• The start and end date of the particle tracking and the frequency in which we need the 

output should be specified. 

• For the vertical placement of the particles, the “Particle Depths are FIXED at the Initial 

Seeding Depths” option is selected since the dolphins are assumed to be floating during the 

simulation period. 

• In the wind drift effect, “Separate Drag Coeff. For Each Wind Component” is selected, and 

coefficients A = 0.006 and B = 0.018 are the calibrated values. 

• Don’t turn on the random walk. 

• For the initial vertical position of the particles, select “Depth is specified”. 

• The Start and End Date of the LPT should also be specified. 
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Figure 5.1- EFDC+ modules menu. 

 

Figure 5.2- LPT main options menu. 

 

2. Seed one particle in each grid cell uniformly (Figure 5.3). 

 

v 

v 
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• In the Seeding Utility: By Group” menu, set the horizontal placement to uniform spacing, 

then click on “Set to Model Extents”. 

• Then, set Delta X to 250 m, and Delta Y to 300 m, which are the approximate grid 

dimensions. 

• In the “Number of Particles to Seed in Next Create”, put a number larger than the number 

of grid cells (70964). Here I put the number 90000. Remember that it doesn’t matter what 

number you put in this box as long as it is larger than the number of grid cells because it 

is going to seed the particles uniformly according to the model extents and the specified 

Delta X and Delta Y.  

• In the “Vertical (Depth) Options”, check “Fixed Depth” and put 0 in the “Fixed Depth 

(m)” box. This way, the particles are seeded on the surface of the water (Figure 5.4). 

• The Start and End Date of the LPT should also be specified here again. 

 

 

Figure 5.3- LPT seeding utility by group menu. 

v 
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Figure 5.4- LPT seeding utility by group, vertical (depth) options sub-menu. 

 

3. Run the model with at least 4 months of warm-up, starting 4 months prior to the stranding date 

and ending at the stranding date. 

4. start the LPT 5 days prior to each dolphin stranding event and end it on the stranding date for 

dolphins with code 2 and for other codes, use Table 5.1 for reference: 

 

DECOMPOSITION CODE TIME PASSED SINCE DEATH 

CODE 1: ALIVE ANIMAL < 2 days 

CODE 2: FRESH DEAD 2 to 5 days 

CODE 3: MODERATE 5 to 15 days 

CODE 4: ADVANCED 15 to 30 days 

CODE 5: SKELETON/ MUMMIFIED > 30 days 

 

Table 5.1- Time passed since death for different decomposition codes. 

 

5. Turn on the LPT in 2DH view and use extract particle, then extract the particles in 5, 4, 3, and 

2 days prior to the stranding and the initial seeding location as .txt files (Figure 5.5).  

 

  

2 days 

 

3 days 
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Figure 5.5- Exporting particles location in 5, 4, 3, and 2 days prior to the stranding and the initial seeding 

location 

6. Export the Grid Outlines from the EFDC+ software (Figure 5.6). 

• RMC on the “Model Grid” in the “Layer control”, in 2DH view. 

• Click “Export Grid Outlines”. 

• Select the format as .shp file. 

4 days 

 

5 days 

 

Particles Initial 

Locations 
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Figure 5.6- Exporting grid outline. 

 

7. Add those 5 .txt files into the ArcGIS pro along with the .shp file showing the dolphin 

stranding locations and the .shp showing the model outlines (Figure 5.7). 

• Clean up the .txt files by feeling the empty cells (time steps) with -99 and save them as 

.csv files. 

• Add the .csv files into the ArcGIS pro window. 

• RMC on each of them and click “Display XY Data”. 

• Select the XLA, and YLA for the X and Y fields, respectively, and choose the “UTM 

Zone 16” for the coordinate system. Then click OK. 

• Add the model_outline.shp file into the ArcGIS pro window. 

• Add the dolphin stranding locations file into the ArcGIS pro window. 
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Figure 5.7- Create XY data points from the particles text files in ArcGIS pro. 

 

8. Create a circle feature with a radius of 4km and the center of the stranded dolphin following 

these steps (Figure 5.8). 

• Open the catalog pane, RMC on the current database, navigate to New, and then click 

Feature Class. 

• In “Feature Class Type”, choose “Polygon” and name it Circle. 

• Enable Edit, then click “Create”, then click on the recently created feature named 

“Circle”, then among the suggested polygon shapes, choose a circle. 

• Click on the stranding location and draw a circle, then RMC and choose “Radius”. 

• Finally, enter the radius (4 km) and save edits. 

• Don’t forget to disable edits. 
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Figure 5.8- Creatin 4 km radius circle around the stranding location. 
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9. After the circle is created, a “join” is performed between the .shp file of the initial location of 

particles and the .shp files of 5 days, 4 days, 3 days, and 2 days prior to stranding using the object 

ID to join the attribute table of each of the 5 days, 4 days, 3 days, and 2 days prior to stranding 

files to their initial seeding location (Figure 5.9). 

 

Figure 5.9- Performing a join. 

 

10. Then select all the particles in the 5 days, 4 days, 3 days, and 2 days prior to stranding files 

that fall within the 4 km radius circle (Figure 5.10). 
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Figure 5.10- Selecting the particles entering the created circle. 

 

11. Then, the attribute tables of the selected points in each of the 5 days, 4 days, 3 days, and 2 

days prior to stranding files are copied into an Excel file. Since these files were joined to the file 

of initial locations of the particles, the second X, and Y columns specify the initial seeding 

location of the selected particles (Figure 5.11). 

• The Excel file should be cleaned in a way that there is no repeating particles. 

• Save the final Excel as a .csv file. 

All points selected 
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Figure 5.11- Copying the attribute tables of selected points. 

 

12. Then, the .csv file containing the initial location of the selected particles is added to the 

ArcGIS pro environment (Figure 5.12). 

• The .csv file in this step should be transformed into a point feature data exactly similar to 

step 7. 
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Figure 5.12- Adding the file containing initial location of the selected particles into ArcGIS pro. 

 

13. Finally, a Kernel Density Analysis is performed to show the locations where the density of 

particles is the highest (Figure 5.13). 

• For the input, choose the dataset of the initial location of selected points, created in Excel 

in the previous steps. 

• For the population Field, Select None. 

• Configure the output cell size to 30, and set the search radius to 1500 meters, with the unit 

area expressed in square kilometers. This choice of cell size ensures that the results remain 

smooth and free from pixelation artifacts. Furthermore, the selected search radius aligns 

with the margin of error considered for identifying particles in close proximity to the 

stranding location, which is approximately 4 kilometers. Notably, the default value 

generated by ArcGIS Pro, approximately 1500 meters, falls within the same order of 

magnitude (4 km) and is, therefore a logically consistent choice for use as the search radius 

across all cases. This approach maintains consistency in our analyses. 

• Add the model boundaries as an input barrier feature for the results to be created only inside 

the model domain. 
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Figure 5.13- Kernel Density Analysis setup. 

 

14. In the symbology of the Kernel Density layer, set the number of intervals to 5, then set the 

number of points in the first interval to zero and justify the 4 other intervals in a way that each 

color contains a certain percentage of points. 

• Red = 50%, Orange = 30%, Yellow = 15%, Green = 5% of the total points. 
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