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Abstract

The greater occurrence of signal interference on Global Navigation Satellite Systems

(GNSS) requires additional alternative navigation solutions to provide robust, reliable localiza-

tion of flight vehicles when measurements from GNSS are unavailable. This thesis proposes a

Flight Vehicle Dynamic Model (FVDM) that is deeply integrated with Global Positioning System

(GPS) correlator measurements for aircraft state estimates in GPS-challenged environments.

It is well-documented that large, modern aircraft feature an array of sensors that work in

tandem to provide robust positioning performance. However, the sizing limitations of low Size,

Weight, Power, and Cost (SWaP-C) do not allow for such redundant sensor suites, meaning

an alternative navigation solution is required. Furthermore, low cost flight vehicles typically

feature lower quality sensors that are subject to vibrations and subsequently faulty, unreliable

measurements that provide no benefit to the flight vehicle when GNSS measurements are also

considered unreliable.

The FVDM is a high-fidelity flight vehicle model based on the Diamond DA-40 single-

propeller fixed wing aircraft. The aircraft model features a piston engine model that generates

thrust power through a shaft that spins a numerically modeled 3-blade propeller. The speed of

the propeller is controlled through a electric governor, and the pitch is controlled to maintain

efficient propeller action onto the incident airflow. The aerodynamics of the aircraft are modeled

using a discretized aerodynamic coefficient technique, also known as strip theory. Although not

used in this work, a landing gear model incorporates the three landing gear on the Diamond

DA-40 and evaluates the forces and moments applied during landing as a second-order spring-

mass-damper system. An International Standard Atmosphere (ISA) model is used to calculate

the density, temperature, and ambient pressure based on aircraft altitude. To close the loop of

the FVDM, a set of controllers in collaboration with a waypoint manager are used to actuate the

control surfaces on the aircraft. Multiple planned paths are demonstrated during this work and

are presented in their respective sections.
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The proposed navigation filter presented in this work provides a closed loop solution fusion

of the vector tracking loop algorithms and the FVDM process model via a Vector Delay and

Frequency Lock Loop (VDFLL). Vector tracking loops are able to maintain channel lock on

satellite signals when either signal interference is present, or the dynamics of the collection

platform are too high for scalar loops to track the signal consistently.

The results within this work showcase the improvements in flight vehicle state estimates

when compared to a standard VDFLL zero-mean acceleration kinematic model. In simulation,

two trajectories are flown under varying levels of signal degradation. The first trajectory is

a steady-level, un-accelerated flight path where the aircraft is maintaining a constant altitude

and heading for the duration of the 60 second simulation. For this trajectory, it is expected

that the standard VDFLL implementation performs comparably to the proposed navigation

filter. The second trajectory features a more dramatic flight bath – full of oscillatory turns and a

constant climb segments. For the second trajectory, the proposed navigation filter out performs

the standard VDFLL due to its capability to predict the behavior of the aircraft given a set of

control inputs. Each of the trajectories and subsequent cases of signal degradation are tested in

100-run Monte-Carlo sims to further test the robustness of the proposed navigation filter.
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Chapter 1

Introduction and Background

Redundant, accurate flight vehicle localization has been well-documented over several

decades [1, 2, 3, 4]. However, as the threat to GPS signals continues to rise, the need for robust

pose estimation increases. While robust systems already exist to combat incoming interference,

these systems are either proprietary or government controlled, making them infeasible for

widespread use. Cheaper, robust systems are critical for the safe future of civilian and military

flight vehicles. Commercial aircraft feature a wide sensor suite that works in tandem to provide

redundancy and safety critical features to maintain safe flight. These aircraft have the space

to install robust sensor suites and the power to run them consistently in all phases of flight

(Figure 1.1), more importantly, the companies that design and build these aircraft also have the

budget to afford such expensive sensor suites.

Figure 1.1: Aircraft with a larger Max Takeoff Operating Weight (MTOW) typically have more
space for more complex sensor suites compared to their General Aviation counterparts [5].
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Smaller aircraft are not allowed these luxuries, being manufactured with fewer sensors,

overall making them less safe. Table 1.1 compares the different sensors onboard a commercial

airliner and a civilian general aviation aircraft.

Table 1.1: Inexhaustive list of sensors available to commercial and general aviation aircraft.
(Adapted from [6, 7])

Sensor Commercial General Aviation

Pitot Tubes 5 2
Distance Measuring Equipment 2 1
Ultra-High Frequency Sensors 2 1
Very-High Frequency Sensors 3 2
Communication Channels 2 2
Outside Air Temperature Sensors 4 1
Fuel Flow Gauge 4 1
GPS receivers 2 1
Inertial Measurement Units 3 1
Satellite Communications 1 –
Specific Impulse Sensors 6 –
Weather Radar 1 –
Traffic Collision Avoidance System 4 –
Radio Altimeter 3 –

Regardless of components, the sensor suite aboard any flight vehicle is able to provide

measurements more often than that of a GPS receiver, so a sensor fusion navigation algorithm

is optimal. Because sensor measurements have inherit errors due to a variety of factors, they

can wander or drift over time. GPS measurements, although slower, provide measurements that

do not drift at the cost of being noisier. Table 1.2 describes the most common sensor fusion

frameworks for GPS and INS platforms. More details on each these frameworks can be found in

Chapter 4.

Table 1.2: Common sensor fusion frameworks used for GPS and INS collection platforms

Name Level of Measurement Advantages

Loosely-Coupled Position and Velocity Simplicity, Redundancy
Tightly-Coupled Pseudorange and Doppler Observability, Robustness
Deeply-Coupled Inphase and Quadrature Correlators Robustness, Optimal Architecture

This work presents a deeply-coupled sensor fusion algorithm tied into a Vector Tracking

(VT) Software Defined Receiver (SDR). Of the three types of GPS and INS sensor fusion
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frameworks, it is well-documented that deep-coupling provides higher resistance to signal

interference and can operate with less than four satellites for a limited time [8]. The benefits of

the closed-loop navigation framework (vector tracking) enables a coupling of measurements

between satellites. This provides stronger tracking performance in GPS-challenged environments

where the signal to noise ratio is lower due to interference [9].

The proposed navigation filter is not considered a full-replacement of existing sensor

coupling solutions, but instead can be utilized as a short-term, reliable source of pose and

attitude estimation in scenarios of GPS degradation, or when the aforementioned sensors are

providing faulty measurements.

1.1 Prior Art

The objective of this thesis is to investigate the efficacy of flight vehicle state estimation

in GPS-degraded conditions by utilizing a deeply-coupled FVDM. This thesis will analyze

the performance through use of a deeply-coupled sensor fusion algorithm utilizing the state

propagation of a FVDM and GPS correlator measurements. The idea of fusing a vehicle dynamic

model and GPS measurements together on a flight vehicle is a recent development, tied with

increased computer performance. The following subsections highlight the work performed by

other authors and their contributions to the field.

1.1.1 Sensor Fusion Overview and Variation

Sensor fusion between GPS and other sensors aboard flight vehicles has existed for years

and continues to be developed. A precise, accurate, and robust navigation solution is achievable

when redundant, expensive, and high-quality sensor are installed. More information about the

sensors found aboard commercial aircraft and smaller aircraft can be found in [10] and [6],

respectively. Salmon [11] provides an exploratory analysis using ground vehicles and their

sensors complimented with a Ground Vehicle Dynamic Model (GVDM) in a tightly-coupled

GPS/INS/GVDM sensor fusion framework. The work of Rhudy [12] is similar to the research

presented in this thesis as they present use of known controller inputs into a propriety nonlinear

flight vehicle model to perform GPS sensor fusion with low-cost IMUs. The following section
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explores the work of previous authors and the advances of sensor fusion between GNSS

measurements and vehicle dynamic models.

1.1.2 Vehicle Dynamic Model Sensor Fusion

One of the more common ways to simulate and model a flight vehicle is to use known

aerodynamic coefficients tied in with classical flight dynamics to propagate the states in time. The

NAVION aircraft model is a nonlinear mathematical aircraft model that uses known aerodynamic

coefficients from a single propeller fixed wing Navion aircraft [13]. Rhudy [12] uses the

NAVION model included in a loosely-coupled sensor fusion framework with IMU and GPS

measurements. Rhudy [12] focuses on using a known aircraft model with incoming piloted

control inputs to predict the attitude of the aircraft in time. Khaghani and Skaloud [14] simulate

a UAV given, known initial aerodynamic coefficients but feature the coefficients in their loosely-

coupled framework to continuously estimate these variables in their vehicle model. Online

estimation of the aerodynamic coefficients allows the model to be generalizable, further allowing

it to be used on a wide array of aircraft with a similar configuration. Both papers fuse the

dynamic model with GPS and IMU measurements at the position and velocity level (loosely-

coupled). [12] uses an Unscented Kalman Filter (UKF) in the navigation filter for ease of

implementation while Khaghani [14, 15] uses a 47-state Extended Kalman Filter (EKF). Both

Rhudy and Khaghani use simulation environments to perform a Monte-Carlo analysis. Each

IMU measurement is modeled with a constant bias and integrated white noise as a first-order

Gauss-Markov process with numbers that mirror a MEMs quality IMU. Both [14] and [12]

models GPS measurement errors as white noise with a variance of 1 meter in the North, East,

and Down directions. Three years later, Khaghani and Skaloud [15] improve the original filter

implementation by adding a barometer sensor to the measurement update along with the already

standing IMU and GPS measurements. From their 2016 publication [14], the Monte-Carlo

analysis showed unbounded error growth once the GPS outage started, leading to growing

errors in aerodynamic coefficient estimates. The additional measurements provided by the

barometer aid the overall position solution by providing observability in the altitude estimates.

In 2020, [16] innovated upon the 2016 work of Khaghani by coupling the FVDM, IMU, and
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GPS measurements within a tightly coupled navigation filter. The focus of this work was the

performance of the state estimates in scenarios where the receiver had sparse satellite visibility

of two and three satellites for a short period. [16] further proved the efficacy of utilizing a FVDM

within a sensor fusion framework by conduction live-sky experiments via a modified remote

controlled aircraft.

1.1.3 Other Types of Flight Vehicle Sensor Fusion

Other research to localize flight vehicles in GPS-degraded environments revolves around

fusing together multiple sensors including Ultra Wide Band (UWB) radios, LiDAR and vision-

based algorithms. Dong [17] integrates IMU, UWB, and computer vision for the autonomous

approach and landing of a small UAV onto a moving platform. The vision framework operates

on identifying and tracking independent ArUco markers to calculate the size of the landing

zone. The IMU and UWBs work in tandem in estimating the states of the UAV and distance

to the landing platform. The UWB radio provide updates at a high frequency but suffer from

noise and dropouts when the UAV is farther away from the landing platform [17]. Gróf [18]

develops a similar algorithm for detecting a runway using a down-view monocular camera,

barometer readings, IMU, and previously recorded air data. Because of the camera, both of the

aforementioned papers provide bounded results for pose and attitude estimation. Also because

of the camera, the system is more complex and expensive, two things avoided in this work.

1.2 Vector Tracking

Signal tracking is the process of forming navigation observables from a received signal.

Typically, signal tracking revolves around feedback from the cross-correlation of a local repli-

cated signal and the incoming, received signal. Based on the power of the cross-correlation,

parameters of the locally replicated signal are adapted to match with the received signal, and sub-

sequently can be decoded for information. For GNSS signals, this process is performed through

scalar tracking algorithms (discussed in Chapter 3). Scalar tracking replicates each received

signal independent of each other to extrude measurements without sharing any information to

the other channels. From here, scalar tracking algorithms pass the navigation observables to
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a navigation module to propagate satellite positions and, through trilateration, will determine

the pose of the receiver. Given benign signal conditions, scalar tracking algorithms are efficient

and can produce accurate PVT solutions; however, in scenarios of signal interference, scalar

tracking loops can become unstable and lose lock on the signal they are receiving. Because of

this, navigation observables are unable to be obtained, and no PVT solution can be found. Facing

this problem head-on, Parkinson and Spilker [19] proposed a new tracking loop in which a EKF

would be utilized instead of standard scalar tracking loops. This was the onset of the Vector

Delay Lock Loop (VDLL) filter. For the VDLL, an EKF would be utilized to predict receiver

position to replicate the estimated code delay on the replicated signal. This was proposed in

1996, and computers were still in their infancy compared to today’s computers and as such,

no extensive performance analysis of the VDLL was cited. Eight years later, Benson from

MITRE [20], published one of the first key analyses of the VDLL compared to the scalar Delay

Lock Loop (DLL) filter. As expected, it showed significant improvements of degraded signal

environments. A few years later, the work of Lashley and Bevly [21, 22, 23], focused heavily on

the comparison of vector tracking loops and scalar tracking loops in different scenarios – mainly

collection platforms subject to high-dynamic stress and weak satellite visibility. Overall, their

work showed that vector tracking loops can provide a 2 to 6 dB improvement over standard scalar

tracking architectures. Regardless of the great benefits discussed, vector tracking has caveats

that discourage its use on commercial products. For one, it is still extremely computationally

expensive to run on even today’s modern computers. Furthermore, it relies on the receiver to

know its position, which cannot always be guaranteed. Because of the fundamental nature in

using an EKF, vector tracking also suffers from noise sharing, in which degraded channels can

have a negative impact on benign channels. Despite these drawbacks, vector tracking is the best

possible signal processing algorithm to use in scenarios of signal degradation, which is the focus

of this thesis.

1.3 Field Contributions

The focus of the research presented in this thesis is the development of a deeply-integrated

FVDM with GPS L1 C/A correlator-level measurements. An evaluation of pose and attitude
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estimation performance of the proposed navigation filter in GPS-degraded and GPS denied

environments is also provided. The following contributions to the field are made:

• Development of a flight vehicle model to use in the navigation algorithm considering

complexity and computational performance.

• Comparative analysis of multiple flight scenarios reflecting realistic flight plans and GPS

degradation.

• Analysis of deeply-coupled sensor fusion algorithm using the flight vehicle model and

simulated GPS measurements to determine the efficacy of safe localization.

1.4 Thesis Outline

For several decades, GPS has served as the backbone for attaining a global position solution

on a variety of collection platforms. This ubiquity is well-documented, making GPS a practical

and realistic signal to simulate for the focus of this thesis. Mainly used as medium for United

States government entities, including the military services, encourages foreign threats to develop

the technology needed to disrupt the GPS signal via jamming or spoofing. These imminent

threats catalyze the greater need for more research in this area on all collection platforms,

including flight vehicles. This thesis investigates the performance of pose and attitude estimation

of simulated flight vehicle in scenarios of GPS-degradation and GPS-denied environments.

Chapter 1 divulges prior art related to the investigation, while chapters 2, 3, 4, and 5 describe the

FVDM, scalar and vector tracking receiver architectures, along with adaptations made by the

proposed navigation filter, respectively. Chapter 6 presents the results, including a Monte-Carlo

analysis of the performance improvements compared to a standard zero-mean acceleration

kinematic process model for a VDFLL. Chapter 7 concludes the work followed by a section of

future work for interested parties.
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Chapter 2

Flight Vehicle Dynamics Model

The proposed navigation filter can be divided into two main modules, the flight vehicle

dynamics model and the vector tracking algorithm. This chapter covers the flight vehicle

dynamic model and how its predicts the forces and moments acting onto the airframe. The

aircraft modeled in this thesis is the Diamond DA-40 single propeller fixed wing aircraft

(Figure 2.1). The simulation is a full six Degrees of Freedom (DOF) and features 12 control

inputs – ranging from throttle and control surface inputs to propeller pitch and mixture levers.

The sections below detail the flight mechanics modules that propagate the aerodynamics, engine

and propeller, landing gear, and gravitational forces and moments during the simulation. Small

General Aviation (GA) aircraft are easier to model compared to commercial and military aircraft

as performance information for the mechanical components of the plane are not hidden through

government or proprietary documents. Using publicly available data, numerical tables can be

compiled before simulations to lower the computational burden. The equations of motions and

stochastic elements of the model are covered in a later chapter. Heavily important to modeling a

flight vehicle, this chapter begins with a discussion of reference frames and how they interact

with the proceeding flight mechanics.

2.1 Reference Frames

Reference frames and their transformations are a critical component to any navigation

algorithm. Reference frames describe the orientation of the flight vehicle with respect to a

global or local reference point. Because different components of the FVDM are physically
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Figure 2.1: Pilot flying Diamond DA-40 single propeller aircraft – the focus of the collection
platform for this thesis [6].

located and oriented at unique locations of the Diamond DA-40, multiple reference frames are

used to describe the forces and moments these components generate due to their position with

respect to the Center of Gravity (CG) of the aircraft. Reference frame transformations are used

to transform local forces and moments into a congruent reference frame such that they can be

summed together correctly. This section describes the different reference frames used in this

work for the development of the flight mechanics modules within the FVDM.

2.1.1 Flight Vehicle Reference Frame

The flight vehicle reference frame or body frame describes the reference frame with origin

at the center of mass of the modeled Diamond DA-40. The body frame maintains alignment

shown in Figure 2.2 and remains fixed to the flight vehicle at all times. The flight vehicle

reference frame is essential to the FVDM as all forces and moments are added together in this

frame before integration into global and local pose states. In the flight vehicle reference frame,

x always points through the nose of the aircraft, y points to the right, or starboard side of the

aircraft, and z points through the bottom of the aircraft.
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Figure 2.2: Standard flight vehicle reference frame used in this work. [24]
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2.1.2 Propeller Reference Frame

The propeller reference frame describes the axis about which the propeller rotates with

origin to the propeller nacelle, as seen in Figure 2.3. Propeller pitch, as it is referenced in this

thesis is a rotation about the y axis, while the blades of the propeller rotate about the x axis. This

axis remains fixed in orientation and position similarly to the flight vehicle reference frame. ϕ

from Figure 2.3 describes the twist of the blade and is the rotation of the blades about the x axis.

The twist of the blade helps the propeller produce more thrust, but is not used in any reference

frame calculations.

Figure 2.3: The reference frame used to model the dynamic of the propeller in this work [25].

2.1.3 Local Wind Reference Frame

The local wind reference frame is used to calculate the lift and drag generated from their

respective components with origin at the center of mass of the modeled Diamond DA-40. The

orientation of the reference frame changes such that β remains parallel with the trajectory of the

aircraft and α remains parallel to the ground below. In literature, β and α are referred to as the

sideslip and angle of attack of the aircraft during flight. Sideslip can be thought of as the left or

right direction of the aircraft with respect to the incident free stream and angle of attack is the

up or down direction of aircraft with respect to the incident freestream.
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Figure 2.4: Flight vehicle reference frame and local wind reference frame (dotted lines) (Adapted
from [26]).

2.1.4 Local Navigation Reference Frame

A local navigation frame is necessary to define the orientation of the flight vehicle. This

work implements a North-East-Down (NED) reference frame in which the axes are aligned with

the topographic directions as seen in Figure 2.5 by Xn, Yn, and Zn. The origin of the local

navigation reference frame is defined at the initial position in the FVDM and navigation filter.

The Euler attitude angles are used to describe the orientation of the Diamond DA-40 relative

to the local navigation frame. When the aircraft has no roll, pitch, or yaw, this equates to the

aircraft flying perfectly tangential to Earth’s ellipsoid, with the nose of the aircraft pointing

towards the North.

2.1.5 Global Reference Frames

Global Reference Frames are critical for GPS receivers to calculate position and velocity.

In summary, a position from a receiver is calculated based on distances between the receiver and

visible satellites (details about positioning using GPS satellites is provided in Chapter 3). As all

GPS satellites operate in orbit around the Earth, the global reference frame provides a suitable

solution that encompasses both satellite and receiver positions and velocities. In this thesis, two

global reference frames are used. The Earth-Centered, Earth-Fixed (ECEF) and the geodetic
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reference system (LLA). The ECEF reference frame is considered the standard global reference

frame as it works well for defining both positions and velocities for satellites and receivers, but

falls short when it comes to visualization as the origin of the ECEF frame is the center of the

Earth. The geodetic reference frame is an alternative frame that allows a visualization advantage

by defining positions based on the surface of the Earth. Both LLA and ECEF reference frames

utilize the World Geodetic System 1984 (WGS84) to describe Earth’s geoid and gravitational

field as function of parameters in Table 2.1. Visualization of both reference frames can be seen

in Figure 2.5.

Table 2.1: Properties describing the WGS84 ellipsoid

Property WGS84 Value Units

Equatorial Radius, R0 6,378,137.0 meters
Polar Radius, RP 6,356,752.31425 meters

Flattening, f 1/298.257223563
Eccentricity, e 0.0818181808425

Figure 2.5: ECEF and geodetic reference frames as used in this thesis.
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2.2 Reference Frame Transformations

Reference frame transformations are critical to any sensor fusion algorithm in order to

properly add vectors of different frames together. Reference frame transformations range in

complexity, the simplest being a transformation of the NED frame into the East-North-Up

reference frame. A more complex transformation could be the global ECEF frame into the body

frame. The reference frame transformations used in this thesis are described in the following

subsections.

2.2.1 ECEF to LLA

One of the more complicated reference frame transformations is between the two global

frames, ECEF and LLA. The conversion from LLA to ECEF is provided first in Equa-

tions 2.1, 2.2, 2.3, 2.4, and 2.5. The variables within these equations are defined in Table 2.1.

RN(L) =
R0 (1− e2)(

1− e2 sin2 (L)
)3/2 (2.1)

Equation 2.1, RN(L) describes the one the two radii of curvature. In this case, the meridian

radius of curvature describes the north to south radius. L is the estimated user longitude as

described by the geodetic reference system. The second radii of curvature (Equation 2.2)

describes the east to west radius and is known as the transverse radius of curvature (RE(L)).

RE(L) =
R0√

1− e2 sin2 (L)
(2.2)

After the transverse radius of curvature is calculated, it is used with the LLA positions to

calculate the ECEF X , Y , and Z positions as shown in Equations 2.3, 2.4, and 2.5.

XECEF = (RE(L) + h) cos (L) cos (λ) (2.3)

YECEF = (RE(L) + h) cos (L) sin (λ) (2.4)
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ZECEF =
[(
1− e2

)
RE(L) + h

]
sin (L) (2.5)

The ECEF to LLA conversion is more complicated. In order to calculate the longitude,L,

in Equation 2.6, the altitude, h, (Equation 2.8) must be calculated – and vice versa. Lastly, λ

describes the latitude of the user position as described by the geodetic reference frame. The

correct way to solve for positions in the LLA reference frame is to iterate until the difference

between positions from iteration to iteration is miniscule.

L = atan2

(
ZECEF [RE(L) + h]√

X2
ECEF + Y 2

ECEF [(1− e2)RE(L) + h]

)
(2.6)

λ = atan
(
YECEF
XECEF

)
(2.7)

h =

√
X2
ECEF + Y 2

ECEF

cos (L)
−RE(L) (2.8)

2.2.2 LLA to Local

The conversion from the LLA reference frame to the local navigation reference frame can

be done by forming a Direction Cosine Matrix (DCM),

Cn
e =


− sin (L) cos (λ) − sin (L) sin (λ) cos (L)

− sin (λ) cos (λ) 0

− cos (L) cos (λ) − cos (L) sin (λ) − sin (L)

 , (2.9)

and then multiplying the ECEF position vector to produce a position in the NED frame as

discussed previously. In Equation 2.9, Cn
e describes the DCM used for the transformation. The

notation follows such that the subscript (e) is the position in the original reference frame and the

superscript (n) is the reference frame the position is being rotated into. This thesis will always

follow this notation to avoid any confusion.
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2.2.3 Local to Body

Similar to the conversion of LLA to the local navigation frame, the conversion from

the local navigation to the flight vehicle reference frame can be done by forming the DCM

(Equation 2.10).

Cb
n =


cθcψ cθsψ −sθ

−cϕsψ + sϕsθcψ cϕcψ + sϕsθsψ sϕcθ

sϕsψ + cϕsθcψ −sϕcψ + cϕsθsψ cϕcθ

 (2.10)

In this case, the DCM comprises of the three Euler angles – roll (ϕ), pitch (θ), and yaw (ψ). To

allow the matrix to fit the width of the paper, c and s denote the cosine and sine trigonometric

functions, respectively.

If one wanted to convert position from the body to ECEF reference frame, multiplying

Equations 2.10 and 2.9 provides the user with a DCM to do this (Equation 2.11).

Cb
e = Cb

n C
n
e (2.11)

It should be noted that any of these DCM reference frame transformations can be inverted

by simply transposing the final transformation matrix.

2.3 Atmosphere Model

In order to more accurately calculate a handful of dynamics modeled in this work, a

model of Earth’s atmosphere is needed to provide ambient temperature, pressure, and density.

This thesis uses the ISA model to approximate ambient temperature, ambient pressure, and

ambient density given a certain height above Mean Sea Level (MSL) [27]. Using an assumed

linear distribution for temperature as a function of altitude, the ISA model assumes hydrostatic

equilibrium as seen by Equation 2.12,

dP

dh
= −ρ g, (2.12)
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where dP
dh

is the vertical pressure gradient as a function of air density, ρ, and acceleration

due to gravity, g. After integrating Equation 2.12, the ISA model uses the ideal gas law

(Equation 2.13)

P = ρRair T (2.13)

to solve for the ambient pressure P , and density, ρ. A complete form of the ISA model is

seen in Equations 2.14 and 2.15.

P = P0 exp

(
−g∆h
Rair T

)
(2.14)

ρ = ρ0 exp

(
−g∆h
Rair T

)
(2.15)

where P0 and ρ0 are atmospheric layer values for pressure and density, respectively; Rair is

the specific gas constant for air and ∆h is difference between the current altitude of the flight

vehicle and altitude of the current atmospheric layer. Figure 2.6 describes these atmospheric

parameters from MSL to 85,000 meters above sea level.

2.4 Aerodynamic Principles

In all phases of flight, the surfaces on any aircraft generate two aerodynamic forces – lift

and drag along with an aerodynamic moment vector. Prior to the modern computer, these

forces and moments were derived from swaths of wind tunnel data (Figure 2.7) under various

conditions. Today, during the research and development phase of modern production aircraft,

these aerodynamics components can be determined using Computational Fluid Dynamic (CFD)

programs such as FlightStream [28]. This subsection provides the modeling equations for the

surfaces of the airplane that generate lift, drag and moments during simulation.

A wing produces lift by allowing the air to move faster over the top of the airfoil. Bernoulli’s

principle equation (Equation 2.16)
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Figure 2.6: Absolute temperature, ambient pressure, air density, and speed of sound using the
ISA model.

Figure 2.7: Subsonic wind tunnel in Auburn University’s Aerodynamics Laboratory.

P1 +
1

2
ρ V 2

1 + ρ g h1 = P2 +
1

2
ρ V 2

2 + ρ g h2 (2.16)
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shows that a faster moving fluid leads to a lower pressure gradient. On the bottom side of

the wing, where the air is slower, a higher pressure gradient forms. This difference in pressure

creates a force on the wing that lifts the wing and entire airplane into the air (Figure 2.8) [29].

In equation 2.16, V represents the aircraft forward velocity.

Figure 2.8: Pressure gradient and subsequent lift produced onto an airfoil. The continuous white
line in the middle signifies the freestream incident wind [29].

The lift generated by the wing (and subsequently the aircraft) can be calculated using

Equation 2.17 [30],

L =
CL ρ V

2A

2
, (2.17)

where L is the lifting force, CL is the lift coefficient for the aircraft, ρ is the air density,

V is the velocity of the aircraft, and A is the surface area of aircraft. For the modeling of the

Diamond DA-40 presented in this thesis, the aerodynamic coefficients are approximated using

strip theory [31]. Strip theory is covered in great detail later in this chapter.

Lift is not the only force produced by the wing during flight. When any object moves

through air an opposing force known as drag is generated. For the purpose of the modeling

presented in this thesis, drag always opposes the motion of the aircraft. Similar to Equation 2.17,

drag can be calculated using Equation 2.18.
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D =
CDρV

2A

2
(2.18)

Above, CD is the drag coefficient and A is the surface area of the aircraft. The aerodynamic

moments generated during flight of any aircraft are the single reason that control surface

deflections cause the aircraft the roll, pitch or yaw in a certain direction. Just like the equations

for lift and drag, the total aerodynamic moments are described by equations 2.19, 2.20, and 2.21.

Ml =
ClρV

2A

2
(2.19)

Mm =
CmρV

2A

2
(2.20)

Mn =
CnρV

2A

2
(2.21)

In Equations 2.17, 2.18, 2.19, 2.20, and 2.21, the rolling (Cl), pitching (Cm) and yawing

(Cn) coefficients need to be defined in order to calculate the aerodynamic forces and moments

correctly. If known before hand, these coefficients can be calculated programmatically. Equa-

tion 2.22 describes the equation for finding the lift coefficient.

CL = CL0 + CLαα + CLq

qc

2V
+ CLδe

δe (2.22)

Where CL0 is the zero angle of attack lift coefficient, CLα is the lift coefficient due to angle

of attack, α is the angle of attack,CLq is the lift coefficient due to the dynamic pressure, q, and

CLδe
is the lift coefficient due to the elevator deflection, δe. c is the chord length of the wing

and V is the velocity of the aircraft. Equation 2.23 describes the equation for finding the drag

coefficient.

CD = CD0 +K C2
L (2.23)

Where CD0 is the zero angle of attack drag coefficient and K is the lift induced drag

coefficient of the aircraft.

20



The aerodynamic moment coefficient is split into three components, each defined by the

direction they act about the flight vehicle (described by Section 2.1.1). The rolling, pitching, and

yawing moment coefficients are described by their respective Equations 2.24, 2.25, and 2.26.

Cl = Clαα + Clββ +
b

2V

(
Clpp+ Clrr

)
+ Clδeδe + Clδaδa + Clδr δr, (2.24)

Cm = Cm0 + Cmαα + Cmβ
β +

c

2V

(
Cmα̇

α̇ + Cmqq
)
+ Cmδe

δe (2.25)

Cn = Cnαα + Cnβ
β +

b

2V

(
Cnpp+ Cnrr

)
+ Cnδe

δe + Cnδa
δa + Cnδr

δr (2.26)

In the above equations, C(.)(.)
are the coefficients relating to their respective aircraft states. p,

q, and r are the angular rates about the forward, right, and down direction in the flight vehicle

reference frame. δe, δa, and δr are control surface deflections of the elevator, ailerons, and

rudders, respectively. β is the sideslip angle of the aircraft and represents the angle between the

motion of the aircraft and the direction the aircraft is pointing. Finally, b describes the half-wing

span of the aircraft.

Unless these coefficients and their accompanying variables are somehow known a priori,

determining what they should be can be cumbersome. However, one way to approximate the

coefficients is to use a CFD program and collect tables of data for the aircraft under various

flight condition and control surface deflections. The remaining part of this section describes the

process of using FlightStream in combination with strip theory to approximate their true values.

For the aircraft presented in this thesis, strip theory is a means to better approximate the lift,

drag, and moments coefficients described earlier. Figure 2.9 draws the horizontal and vertical

strips the aircraft is discretized into. Their reference frame is static and is defined by the strips

position and orientation relative to the center of mass of the aircraft. To rotate the aerodynamic

forces generated from each strip, a simple yaw–pitch–row transformation is used.

Strip theory is a process in which a 3D model of the aircraft is discretized into independent

strips and then processed through a CFD program to approximate the performance of the aircraft

under various flight conditions. The discretization of the modeled aircraft allows for strip

classification where control surfaces are located on the aircraft. Identifying the control surfaces
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Figure 2.9: Horizontal and vertical strips that are analyzed for aerodynamic coefficients in
FlightStream [32].

allows the CFD analysis to test different deflection angles, giving a more realistic data set of

aerodynamic coefficients when a control surface is actuated (i.e. the deflection of the ailerons

during a banked turn results in a larger aerodynamic moment compared to flying straight.).

FlightStream [28] is used to generate aerodynamic coefficients for each strip. In FlightStream,

the aircraft was evaluated on a range of angles of attack and sideslips, along with different

control surface deflections. The aircraft was evaluated at a single velocity of 50 meters per

second as the velocity component for the coefficients is just a scaling value.

Downwash is an aerodynamic property where the finite length of the lifting surfaces results

in 3-dimensional flow fields causing reduction in effective angles of attack. To introduce down-

wash into the model and simulation, a reduced-ordered model utilizing integrated circulation

was implemented [33, 34].

2.5 Aero-Propulsive Forces

Calculating lift, drag, and aerodynamic moments are useless unless the aircraft is moving.

For any flight vehicle (except a glider), there is some form of engine or propeller that accelerates

the incident freestream around the aircraft, allowing the lift, drag, and moment calculations to

be of benefit. Similar to a ground vehicle, there is an infinite amount of complexity that can go

into the modeling of the propulsive elements within a flight vehicle. The work in this thesis

focuses on the engine, shaft, and propeller – followed by the effects these components have on

the aircraft. The following subsections describe the aero-propulsive flight mechanics that allow

aircraft to accelerate, take off, and maintain altitude during the length of the flight.
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2.5.1 Piston Engine Model

Small general aviation aircraft generate propulsive forces through use of an engine that

spins a shaft which is connected to a propeller. The engine modeled and simulated is a piston,

air-cooled engine. The typical aircraft piston engine is modeled as a four-stroke Otto cycle [30].

The Otto cycle is a well-known thermodynamic theory that relies on a large air mass flow rate to

generate power [35]. The components of the engine that produce the power are described below.

Because the engine is air-cooled, one of more important components is the engine manifold.

The engine inlet manifold is a set of vents that allow the ambient air to feed directly into the

combustion chambers where the oxygen in the air is combusted with the fuel to generate power.

Based on the commanded throttle input, these manifold vents can be open or closed to let in

more or less air, and in return the engine delivers a proportional amount of power to the shaft.

The power production from the engine is heavily reliant on the density of air. The Gagg and

Ferrar model,

power = power0

(
ρ

ρ0
− 1− ρ/ρ0

7.55

)
, (2.27)

relates power production to the density of air, where ρ is the density of the ambient air as

a function of altitude (Section 2.3), ρ0 is the density of ambient air at sea-level on a standard

day, and power0 is the max engine power provided the density ratio and the nominal power

production of the engine. From [36], the engine modeled in this work has a nominal power

output on a sea-level standard day of 600 horsepower (447.42 kW). Figure 2.10 shows the power

output of the engine modeled in this thesis based on the Gagg and Ferrar model and nominal

sea-level power production.

However, not all power generated by the engine is absorbed by the shaft. There are losses

that include shaft slippage or uneven distribution of fuel inside the combustion chamber. These

errors are modeled as a power factor and compares the the ideal power produced by the engine

to the power absorbed by the shaft. This proportional amount is queried at every time step in the

simulation as seen in Figure 2.11.
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Figure 2.10: Power output for modeled engine as a function of aircraft altitude.

Figure 2.11: Power factor look up table for modeled engine.

The governor that exists in ground and flight vehicles exists such that drastic changes

in throttle do not result in extreme ramps of torque that could structurally damage engine

components. It limits the rate of commanded throttle to be linear such that rotational acceleration

of the shaft and propeller is safely increased or decreased. The governor also controls fuel
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consumption of the engine by controlling the engine speed. The fuel consumption is queried

at every time step using a look up table that is pre-compiled before the simulation starts

(Figure 2.12).

Figure 2.12: Brake specific fuel consumption look up table for modeled engine.

2.5.2 Propeller Modeling

The purpose of an aircraft propeller is to accelerate the volume of ambient air in front of

the flight vehicle such that the lifting surfaces on the aircraft can generate lift and keep the

aircraft at altitude. There are 3 main components to focus on when designing and manufacturing

propellers. These are the materials used in building the propeller, the number of blades on the

propeller, and the curvature and shape of each blade. While the focus of this thesis is not on

details in propeller design, it is important to show how the history and differences between these

three items affect the efficiency and performance a propeller has in generating thrust power for

the aircraft.

The first modern propellers were designed in the early 1900’s [37]. Originally made of

wood, they featured 3 blades and crudely resembled airfoil shapes (Figure 2.13).

These propellers had a fixed pitch, meaning they could not rotate up and down during

flight – severely costing the propeller thrust power and lowering overall fuel efficiency. In 1929,
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Figure 2.13: Collection of historic wood and steel propellers [37].

Wallace Turnbull invented the variable pitch propeller (Figure 2.14), allowing pilots to control

the pitch of the propeller, dramatically increasing propeller efficiency during flight [38].

Figure 2.14: Illustration of the variable pitch propeller [39].

Through time and the advent of computers, CFD analyses shaped a handful of equations

that define the performance and efficiency of propeller design. In this work, a three-blade

Hartzell [40] composite propeller is used as it is the Original Equipment Manufacturer (OEM)

propeller on the Diamond DA-40 aircraft. This propeller is a variable-pitch, constant speed

propeller, meaning the pitch of the propeller is optimally adjusted for the current flight condition,
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while at the same time, maintaining a constant rotational speed to conserve fuel and hold a

consistent propeller efficiency.

Before the simulation is started, the propeller is analyzed through FlightStream [28], a

surface vorticity flow solver, to analyze the propeller for its lift coefficient (CL) at varying flight

conditions.

Once the lift coefficient is determined, numerical look up tables are generated such that the

calculation of the forces and moments generated by the propeller can be interpolated, allowing

the simulation to be run in real time.

AFper blade =
1× 105 croot

16D
(0.25 + 0.2λ− 0.2) (2.28)

To determine the amount of thrust and torque generated by the propeller, the activity factor

(Equation 2.28) of the propeller must first be determined. The activity factor is a measure of the

propeller’s ability to absorb power and the effectiveness of each blade’s width. AFper blade is the

activity factor per blade, croot is the length of a blade’s chord at the root, D is the diameter of the

propeller, and λ is the taper ratio. Table 2.2 describes the design characteristics of the propeller

used in this thesis.

Table 2.2: Characteristics of the propeller modeled for this work.

Characteristics Value Units

croot 0.1475 meters
Diameter (D) 1.9 meters

λ 0.8 –
CL 0.5 –

Because the dimensions of the propeller are known, we can determine the activity factor of

the blade to be (Equation 2.29, 2.30)

AFper blade =
1× 105 (0.1475)

16 (1.9)
(0.25 + 0.2 (0.8)− 0.2) (2.29)

AFper blade = 101.89. (2.30)
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Now that the Activity Factor is known for the modeled propeller, the power (Equation 2.31)

and thrust (Equation 2.32) coefficients can be calculated to show how well the propeller generates

thrust when the aircraft is static (i.e. starting takeoff). For this analysis, we assume the engine

to be producing a nominal 600 horsepower (447.42 [kW]) and applying a torque equivalent to

2200 [rpm] (36.6 [rev/s]).

CP =
P

ρn3D5
(2.31)

CT =
T

ρn2D4
(2.32)

In Equations 2.31 and 2.32, P is the engine power, denoted in kiloWatts, n is the rotational

speed of the shaft, denoted in revolutions per second, T is the thrust of the propeller, denoted in

kiloNewtons, and ρ is density of the ambient air. For these calculations, an assumed sea-level

density is used (1.225 [kg/m3]). Using Figure 2.15, nominal engine power and torque output,

we can approximate the thrust coefficient (Equations 2.33, 2.34, 2.35 and 2.36).

Figure 2.15: Static propeller thrust for the modelled propeller (Adapted from [41]).
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CP =
(447.42)(550)

(1.225) (36.6)3 (1.9)5
(2.33)

CP = 0.16547 (2.34)

CT
CP

(@CP == 0.16547) = 1.1544 (2.35)

CT = 0.18997 (2.36)

Mapping CT and CP allows for computationally inexpensive queries with calculating

propeller efficiency during flight (Equation 2.37).

ηP =
CT
CP

J (2.37)

Propeller efficiency, ηP compares the amount of power produced by the engine and shaft to

the amount of power applied to the ambient air. An ideal propeller efficiency would be 1, where

all of the produced engine power is used to accelerate the ambient air. The Advance Ratio, J

J =
V

nD
, (2.38)

describes how far the flight vehicle moves at each full revolution of the propeller.

The final step in calculating the forces and moments generated by the propeller is querying

the thrust based on the previous equations (Equation 2.39).

T =
P ηP
V

(2.39)

A handful of steps, provided below, list the necessary calculations needed to simulate the

thrust for the Diamond DA-40 modeled in this thesis. Because of some of the quantities are

constant (i.e. propeller diameter and lift coefficient), look up tables can be created before hand

to lower the computational load.

1. Calculate AFper blade for given propeller design (Equation 2.28).
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2. Query coefficients data table (Figure 2.15) to define CP and CT (Equations 2.31 and 2.32).

3. Query J (Equation 2.38) data table for given flight velocity and shaft rotational speed.

4. Calculate ηP (Equation 2.37), for given J , CP , and CT .

5. Calculate T using Equation 2.39.

6. The moment generated by the propeller is simply the cross-product between the thrust

power and moment arm.

2.6 Landing Gear Model

Although not calculated often, the modeling of the aircraft’s landing gear are important

and should not be overlooked. However, because of the flight paths investigated in this thesis

focus solely on the aircraft during flight, a simplified dynamic model is used to describe the

forces and moments acting on the landing gear during landing. It should be noted that the

aerodynamic calculations of the landing gear occur in the aerodynamically modeling section,

while this section focuses on the moments and forces generated from the runway opposing the

weight of the aircraft.

To describe the forces and moments generated during landing, a mass-spring damper system

(Figure 2.16) can be used in simulate the the struts, levers, and tire depression (Figure 2.17) that

absorb much of the forces, moments and vibrations that act onto the aircraft during landing.

Expanding Newton’s second law, the forces on each landing gear are solved in the vertical

direction (Equation 2.40)

∑
F i
z = maz = kit∆zt + kildg∆za/c + cildg∆żt, (2.40)

where kildg and cildg are the spring and damper coefficients of the struts and levers respectively

(see Table 2.3 for the values used in this simulated model). ∆za/c and ∆żt, are the deflection

and rate of deflection of the aircraft during landing. kit and ∆zt are the tire spring coefficient

and tire depression respectively. For a general aviation aircraft, the depression of the tire upon

landing is relatively small such that this term is thrown out.
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Figure 2.16: Mass-spring damper system, representing the components of landing gear on the
aircraft (adapted from [42]).

Figure 2.17: Identification of the landing gear components on the Diamond DA40.

Table 2.3: List of spring and damper coefficients for nose and rear landing gear.

i Location k
[
kN
m

]
c
[
kN s
m

]
1 Nose 50 11.3
2 Rear Right 80 14.3
3 Rear Left 80 14.3

The observed moments are solved by taking the cross product between the calculated forces

of each landing gear and the moment arm (Equation 2.41).

∑
M i = cross([ 0 ; 0 ; F i

z ], [x
i ; yi ; zi ]) (2.41)
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In Equation 2.41, xi, yi, and zi represent the moment arm that is derived from the center of

gravity for the aircraft down to where each tire makes contact with the ground.

As a final note, it should be made clear that the forces and moments generated from the

landing gear if and only if a tire has made contact with the ground.

2.7 Forces and Moments Calculations

The final product of the aforementioned systems sums to the total force and total moment

acting on the body of the aircraft. This work demonstrates the high-fidelity modelling of engines,

propellers, landing gear, and aerodynamic forces and moments the simulated flight vehicles

generates while in flight. The final step of these calculations is to add them together in the

body-fixed X , Y , and Z directions. This is demonstrated by Equation 2.42 and Equation 2.43.

∑
F = Fprop + Faero + FLDG + Fgrav (2.42)

∑
M = Mprop +Maero +MLDG +Mgrav (2.43)

It should be noted that FLDG and MLDG are only calculated when the aircraft is landing.

Once the forces and moments are calculated, they are used within the equation of motions

that propagate the position, velocity, angular rates, and Euler attitude during the simulation of

the flight.

2.8 Measures of Fidelity

This focus of this work is the development of a high-fidelity FVDM that closely resembles

the behavior of a Diamond DA-40. That being said, the fidelity of the model could always

be improved. There is a common question about how much fidelity is needed to provide

accurate predictions of the behavior for the modeled flight vehicle. The research performed

by [14] evaluates this question quite well, where the focus of the work was implementing a

47-state Extended Kalman Filter (EKF) in which 24 of the states were estimating aerodynamic
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coefficients. For systems where the navigation filter is not fully cognizant of the flight vehicle it

is installed on, this method can provide a more generalized solution when extensive knowledge

of the flight vehicle does not exist. The work of [16] showcases the value of estimating the

aerodynamic coefficients by presenting decent positioning estimates during periods of low

satellite visibility. For the focus of this thesis, the compilation of look up tables and data sheets

represents the DA-40 accurately to predict the behavior of the aircraft during flight given a set

of controller inputs.

2.9 Conclusions

This section provided an overview of the reference frames used heavily when calculating the

forces and moments the aircraft experiences during flight. Following a discussion of reference

frames, the ISA model used in this work was defined with accompanying equations. The bulk of

this chapter contains information about the use of strip theory for modeling the aerodynamics

of the aircraft and a discussion of the engine and propeller modeling that produces the thrust

for the Diamond-DA40 during flight. This chapter concludes with a description of the landing

gear model and the summation of the forces and moments generated from the aforementioned

sections that will be used in the equations of motions. Because the equations of motions are

embedded within the proposed navigation filter for this work, they will be discussed in chapter

4.
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Chapter 3

GPS Software Defined Receiver Architecture

Since 1993, GPS has provided users with capable hardware to determine their global

position within seconds. The focus of this chapter revolves around the inner-workings of a

scalar tracking SDR, capable of processing GPS L1 C/A (largely based on [43]). Split into four

sections, the chapter begins with an explanation on how the receiver discretizes and digitizes

the continuous, low-power signal collected by the antenna (Section 3.1). Following that, details

about how the receiver knows what satellite signals are received are described. The third

section draws on the different algorithms in scalar tracking that allow the received signal data

to be replicated and decoded for satellite orbital parameters that play an important role in

the navigation algorithms (Section 3.2, 3.3). Wrapping up this chapter, an overview on the

weighted nonlinear least squares algorithm is provided along with detailed descriptions of the

three measurements that each satellite is indirectly broadcasting to the receiver (Section 3.5).

3.1 Front End

The signals received by an antenna must be down converted and digitized before the

processing of the signal can take place. The Front End of the receiver performs this conversion

through a series of amplifiers, filters, and a Analog-to-Digital Converter (ADC) [44]. First, a

signal is received by a Right-Hand Circularly Polarized (RHCP) antenna. The antenna can be

passive, but for challenging scenarios, a powered, active antenna may be necessary. Because of

the low received signal power that GPS constellations provide, the signal is amplified through a

series of Low Noise Amplifiers (LNA) and Band Pass Filters (BPF). The LNA raise the power
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of the received GPS signal and the BPF act as a first-step in removing non-GPS signals from

processing. The last stage is passing the continuous received signal through the ADC where the

signal is converted to digitized samples at a frequency of the receiver-embedded oscillator. The

oscillator is filtered using a phase lock loop (PLL), described later.

The purpose in this mixing process is to transform the signal into a more manageable

intermediate frequency while still maintaining the same modulation and Doppler applied to the

signal [19]. Figure 3.1 describes the process on converting the analog, continuous signal into a

discrete, digitized IF signal in block diagram form.

Figure 3.1: Block diagram of a software defined receiver front end.

3.2 Acquisition

Once the received signals are converted to a discrete form, the receiver will determine which

satellites are transmitting and in-view. Acquisition correlates local replicas of a signal with

the received data [45]. In order for there to be a large correlation magnitude, Pseudo-Random

Number (PRN) codes must be within 1-chip and the frequency of the carrier wave must also be

within 250 hertz of the true frequency. Correlation with the carrier frequency can be difficult due

to the motion of the satellite, and even more difficult if the collection platform is also moving.

The motion of the satellites with respect to the receiver bring a change to the carrier frequency

known as the Doppler shift. For the algorithms in acquisition to successfully determine which

satellites are in-view of the receiver, it is beneficial to correlate with each satellite for the

specified constellation, at each code offset, and at a wide range of carrier frequency offsets [44].
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A modern, ubiquitous approach to correlating the local replica signals with the received

data is using a Parallel Code Phase Search (PCPS) algorithm in which the correlations occur in

the frequency domain [46]. PCPS parallelizes the PRN code offset search space by converting

the space from the time to frequency domain. This process is shown in Figure 3.2.

Figure 3.2: Block diagram of the PCPS acquisition algorithm applied to GPS L1 C/A signal
modulation.

To start, the local replicas of the carrier wave are multiplied with the received data across

both in-phase and quadrature channels in the complex domain. These resulting multiplications

are summed together and passed through a Fast-Fourier Transform (FFT) to convert the vectors

into the frequency domain. The second step involves converting the upsampled PRN codes of the

satellites to the frequency domain and then applying the complex conjugate to frequency-based,

PRN vectors. Multiplying the PRN replicas with the transformed carrier replicas provides the

user with a cross-correlation in the frequency domain. To appreciate the correlation magnitudes,

the output is passed through an inverse FFT, converting the correlation values from a frequency

domain, complex matrix to a time domain, matrix. The last step requires determining the

magnitude of each row and column in the matrix and then processing the next satellite until

all satellites in the constellation are processed. If a correlation exceeds a certain magnitude, its

location in the matrix of correlations indicates the estimated PRN code delay and Doppler shift

carrier frequency for that particular satellite (Figure 3.3).

The resolution of the PCPS algorithm greatly depends on the grid of Doppler search bins;

for a static receiver processing GPS L1 C/A transmissions, a typical resolution is −15, 000 to

15, 000 Hertz in bins of 500 Hertz [46].
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Figure 3.3: Successful acquisition of GPS SV:7 using the PCPS algorithm.

3.3 Tracking

Acquisition provides initial estimates of code delay and carrier frequency for each satellite

signal that is in-view of the receiver. However, because of the motion of the satellites and the

receiver, the delays of the code and changes in the carrier frequencies must continue to be

estimated. Scalar tracking performs this process by opening a channel for each in-view satellite.

For the duration of the recording, a number of algorithms within tracking continue to correlate

the local receiver replica with the received signal data. For scalar tracking, Figure 3.4 describes

the flow of how these algorithms produce accurate code replicas for the receiver to calculate

satellite Position, Velocity, and Time (PVT) solutions.

3.3.1 Correlators

For a receiver to know it is replicating the signal correctly, it generates several correlators

that are functions of the error in frequency, phase, and code phase between the replicated signal

and the received signal data (Equation 3.1).
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Figure 3.4: Flow diagram of scalar tracking algorithms.

IP (k) = AR(ϵ)D(k) cos (π ferr T + θerr) + ηIP

QP (k) = AR(ϵ)D(k) cos (π ferr T + θerr) + ηQP

IE(k) = AR(ϵ+ d)D(k) cos (π ferr T + θerr) + ηIE

QE(k) = AR(ϵ+ d)D(k) cos (π ferr T + θerr) + ηQE

IL(k) = AR(ϵ− d)D(k) cos (π ferr T + θerr) + ηIL

QL(k) = AR(ϵ− d)D(k) cos (π ferr T + θerr) + ηQL

(3.1)

Above, d is the offset specified in chips. This correlation process is also referred to as

integration and dump in the literature as receivers will calculate the different correlators and

dump the received signal data for that integration period, T . The integration period is usually set

as the number of seconds for a full code cycle. In GPS L1 C/A, the standard coherent integration

period, T , is 0.001 seconds [47]. The amplitude (Equation 3.2) is the measure of received signal

power as a function of the integration period, frequency error (ferr), and carrier-to-noise ratio(
C
N0

)
.
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A =

√
2T

C

N0

sin (π ferr T )

π ferr T
(3.2)

The rest of the terms in Equation 3.1 are as follows: θerr is the phase error, described as

the difference between phase of the replicated signal and the received signal data, R(ϵ) is the

auto-correlation function defined by Equation 3.3, where ϵ describes the error in code phase.

Finally, η describes additive white Gaussian process noise on each of the correlators.

R(ϵ) =


1− |ϵ| ϵ ≤ 1

0 ϵ > 1

(3.3)

3.3.2 Discriminators and Loop Filters

Once the correlators are calculated for a single integration period, discriminators use them

to calculate errors in carrier and code phase. While a number of discriminators exist for each

error term, the discriminators presented in this work are the most optimal for low and high

carrier-to-noise ratios at the cost of being computationally expensive. Hardware receivers that

must work in real-time may use simpler, faster discriminators.

The estimated error in carrier phase is generated using a Costas loop discriminator. It

applies an arc-tangent function to the in-phase and quadrature prompt correlators to calculate

the error in carrier phase from the most recent replicated signal (Equation 3.4)

ϕPLL = arctan

(
QP

IP

)
1

2π
≈ θerr + ηPLL (3.4)

The discriminator is divided by 2π to convert the error from radians to cycles. The Costas

discriminator differs from other PLL discriminators as it is immune to inversion of the data bit

integers. However, in more dynamic scenarios, the Frequency Lock Loop (FLL) discriminator

may be more heavily relied upon than the Costas discriminator due to its high sensitivity [44].

The FLL discriminator derives its error by analyzing the change in carrier phase error

across a single integration period
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ϕFLL = arctan 2 (cross, dot)
1

2π T
≈ ferr + ηFLL, (3.5)

where

cross = IP1QP2 − IP2QP1

dot = IP1 IP2 +QP1QP2.

(3.6)

Conventionally, (IP,QP )1 are correlators in the middle of the integration period, while

(IP,QP )2 are correlators at the end of the integration period. The FLL discriminator is not as

sensitive to dynamic stress and can handle changes in frequencies up to 500 Hertz.

The code phase error is determined using a DLL discriminator. It takes the early and late

correlators that are shifted by a constant chip spacing, d, to determine if the current replicated

signal is advanced or delayed relative to the received signal data. Equation 3.7 describes the

DLL discriminator utilized in this work.

ϕDLL =

√
IE2 +QE2 −

√
IL2 +QL2

2
√
IE2 +QE2 +

√
IL2 +QL2

≈ ϵ+ ηDLL (3.7)

The DLL discriminator produces code phase errors within 0.5 chips, but becomes unstable

if the correlator errors are greater than 1.5 chips from the true code phase. This is allowable as

errors of this magnitude are beyond the linear pull-in range of the DLL loop filter [44].

For scalar tracking, loop filters apply the aforementioned errors to more accurately replicate

the signal for the next integration period. For this work, a second-order PLL with a first-order

FLL assist is used to track changes in carrier frequency and phase (Figure 3.5).

Figure 3.5: Discrete block diagram of the PLL-FLL loop filters used in this work [44].
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The natural-radian frequency, ω0, is set by the user, and common values for processing GPS

L1 C/A exists in [44]. The subscripts f and p represent ω0 for the FLL and PLL, respectively.

The DLL loop filter works in a similar fashion, but without the FLL loop filter assist. The

output of the PLL-FLL loop filter (Figure 3.5) is used to aid in replicating the true code phase

(Figure 3.6).

Figure 3.6: Discrete block diagram of the DLL loop filter used in this work [44].

In Figure 3.6, ω0d is the natural-radian frequency for the DLL and sf is known as the scale

factor,

sf =
Rc

fL
, (3.8)

where Rc is the spreading (i.e. PRN) code rate, and fL is the signal carrier frequency. For

GPS L1 C/A, these are 1.023× 106 Hertz and 1575.420× 106 Hertz, respectively.

If the correlators, discriminators, and loop filters are correctly working in tandem, the

replicated signal should accurately represent the received signal data and the receiver can decode

the bits that translate to the broadcast navigation message from each satellite (Figure 3.7). Five

subframes in the navigation message provide satellite ephemeris, or orbital parameters, that the

receiver can use to propagate satellite PVT and determine its position through time [48].

3.4 Navigation Algorithms

Once the signal is accurately replicated and correctly decoded, the receiver begins to

estimate a PVT solution. A position solution is found by multi-late ration, meaning if there

exists at least three unique ranges from known locations, then a position solution exists [49].

Parallel to finding the position solution, receiver velocity can be found in the same way, using
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Figure 3.7: Tracked navigation message for GPS SV:7 using the ascribed methods.

range rates in place of range. This sections describes calculating the ranges and range rates, and

how they are used in the navigation processor for an estimated PVT solution.

3.4.1 GPS Measurements

There exists three main measurements from GPS satellites. The first of the three is

pseudorange. By definition, it is the total time of transit from transmission to reception of the

signal by the receiver. This value is then multiplied by the speed of light, providing this transit

time in units of meters (Equation 3.9).

ρ̃j = (tr − tjt) c (3.9)

In order to calculate a pseudorange, ρ, from the jth satellite the transmitted time of the

signal, tt, is subtracted from the received time, tr, and then multiplied by the speed of light

in vacuum, c, as described before. For the rest of the work presented in this thesis, variables

with (˜) represent a measurement. The pseudorange from Equation 3.9 is a measurement

because both the receiver clock and satellite clock have inherit biases and drifts that perturb their

values. In addition to the errors in the clocks, the signal in space travels through the atmosphere,
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delaying the signal until it reaches the receiver. We can model Equation 3.9 as a function of

errors and delays. Describing the pseudorange in meters gives us,

ρ̃j = rju + c tj + c tu + I iu + T iu +M i
u + ηiρ, (3.10)

where,

rju =

√
(xj − xu)

2 + (yj − yu)
2 + (zj − zu)

2, (3.11)

tu is the clock bias of the user, tj is the clock bias of the jth satellite, I is the ionospheric

delay, T is the tropospheric delay, M is the delay of multipath, and η is additive Gaussian white

noise all time i. In Equation 3.11, variables noted ( )u are the respective user positions and ( )j

are the respective satellite positions.

Positioning with GPS is possible because of the atomic clocks on board each satellite.

These clocks are highly stable and allow the Time Of Week (TOW) to be transmitted in the

data message. Although the on board clocks are incredibly stable, the PRN sequence cannot be

precisely transmitted at every millisecond. Fortunately, these clock errors are modeled in the

data message, so tj is known in the pseudorange equation. Clocks on board receivers are not

quite as stable, and the received time of the signal is not known upon a cold start. A solution to

this problem is initialize the received time to the first satellite transmit time and add a nominal

offset of 66.7 milliseconds. This offset stems from a back of the envelope calculation based on

the distance between MEO satellite orbits and the center of the Earth (Equation 3.12).

(
tu − tj

)i=0
=
dMEO

c
≈ 20000000

299792458
≈ 0.0667 (3.12)

The addition of the unknown receiver clock bias adds a fourth dimension to the trilateration

position solution. This effectively requires that the receiver needs the ranges from four satellites

to estimate xu, yu, zu, and tu.

The second measurement from GPS satellites is pseudorange-rate. By definition,

pseudorange-rate is the measurement of the line of sight velocity that can be directly de-

rived from changes in carrier frequency, also known as the Doppler frequency (Equation 3.13).
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˜̇ρ = −(fc − fIF ) c

ft
(3.13)

Above, fc is the estimated frequency of the carrier wave, fIF is the receiver intermediate

frequency, and ft is the nominal transmit frequency. Another way to represent pseudorange-rate

measurement is by deriving Equation 3.10 with respect to time. This geometric representation is

seen in Equation 3.14.

˜̇ρ = ṙju + c ṫu + İ iu + Ṫ iu + ηiρ̇ (3.14)

From Equation 3.14, it is assumed that the atomic clocks on board the satellites are stable

enough that the satellite clock drift term is 0. The same can be said for Ṁ i
u where the error-rate

due to multipath is miniscule.

Similar to the pseudorange measurement, if the receiver clock was perfect, only three

satellites would be needed to measure pseudorange-rate. However, because of the instability in

the receiver clock, the drift adds a bias to the frequencies. Therefore, four unique pseudorange-

rates are still required in order to calculate receiver velocity.

The last measurement from GPS satellites is the estimate of noise on a signal. The receiver

utilizes a Carrier-to-Noise density ratio (C/N0) to determine the quality of pseudorange and

pseudorange-rate measurements from each satellite. Equation 3.15 demonstrates how C/N0 is

calculated in this work.

C

N0

= 10 log10

(
Ã− 4σ̂2

η

2T σ̂2
η

)
(3.15)

From Equation 3.15,

Ã = (IE + IL)2 + (QE +QL)2 (3.16)

is the measured power of the accurately tracked signal using correlators defined in a

previous section. σ2
η is the variance in correlators that are the result of a shifting the replicated

signal far outside of any correlation with the data of the received signal data. This work shifts
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these correlators by 100, 200, and 300 chips each [8]. Furthermore, this variance is filtered with

a moving average using a ratio of 0.99 : 0.01 between the current calculated variance and the

previous filtered variance. Shifting the replicated signal by a large number of chips and then

correlating the shifted signal with the received signal data is computationally expensive, but is

necessary if using a Bayesian estimator or weighted least squares approach in both open-loop

and vector tracking navigation algorithms.

3.4.2 Open-Loop Architectures

Open-loop architectures are navigation algorithms that provide no feedback to the tracking

scheme described in the previous section. In benign, static and constant velocity scenarios, these

algorithms still provide accurate PVT solutions and are critical for a closed-loop architecture

like vector tracking to work properly. The following section covers Weighted Non-Linear Least

Squares (WNLS), the method used to initialize the vector tracking algorithms in this work.

The state vector for receiver initialization comprises the position and velocities of the

receiver in the ECEF frame, along with receiver clock bias and clock drift terms (Equation 3.17)

x̂ =

[
x̂u ˆ̇xu ŷu ˆ̇yu ẑu ˆ̇zu ct̂u cˆ̇tu

]T
(3.17)

For the rest of the work presented in this thesis, variables with a (ˆ) represent an estimate

of that variable. In Equation 3.17, T simply means the transpose of the array.

However, WNLS tries to estimate the errors between the true states and the estimated states

(Equation 3.18).

δx̂ =

[
δx̂u δ ˆ̇xu δŷu δ ˆ̇yu δẑu δ ˆ̇zu cδt̂u cδˆ̇tu

]T
(3.18)

These error states are then mapped to measurement residuals using the observation matrix,

H (Equation 3.22). H is defined by the Jacobian of Y with respect to δx̂, or in a mathematical

form,

H =
∂Y

∂δx̂
. (3.19)
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If we define Y as

Y =

[
ρ̃1 − ρ̂1 , ˜̇ρ1 − ˆ̇ρ1 , . . . ρ̃1 − ρ̂1 , ˜̇ρ1 − ˆ̇ρ1

]
(3.20)

and then find the Jacobian of H, a relationship forms between the pseudoranges and

pseudorange-rates and the ECEF position and velocity estimates of the receiver in the form of a

unit vector (Equation 3.21).

ujx,y,z =

[
xj − x̂u , yj − ŷu , zj − ẑu

]
r̂ju

(3.21)

Because the bias and drift of the clocks directly map to their estimated states, they are equal

to 1.

H =



−u1x 0 −u1y 0 −u1z 0 1 0

0 −u1x 0 −u1y 0 −u1z 0 1

...
...

...
...

...
...

...
...

−ujx 0 −ujy 0 −ujz 0 1 0

0 −ujx 0 −ujy 0 −ujz 0 1


(3.22)

The last piece in WNLS algorithm is defining the weights. W is utilized by the algorithm

to place more confidence in signals with a high C/N0 compared to satellite signals with lower

C/N0. The weighting matrix is shown in Equation 3.23.

W =



σ2
ρ1 0 0 0 0

0 σ2
ρ̇1 0 0 0

0 0
. . . 0 0

0 0 0 σ2
ρj 0

0 0 0 0 σ2
ρ̇j



−1

(3.23)

Where

σ2
ρj =

λ2code

2T 2
(
C
N0

2
) +

λ2code
4T C

N0

(3.24)
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is the variance of the pseudorange measurement from the jth satellite and

σ2
ρ̇j =

(
λcarrier
πT

)2
 2

T 2
(
C
N0

2
) +

2

T C
N0

 (3.25)

is the variance of the pseudorange-rate measurement from the jth satellite. In Equations 3.24

and 3.25, λcode is the wavelength of data signal and λcarrier is the wavelength of the carrier

signal. In this case, C/N0 is specified in dB-Hz.

Once the above matrices are created, the WNLS algorithm (Equation 3.26) can be performed

iteratively until the magnitude of the error state vector is small, meaning the algorithm has

converged.

δx̂ =
(
HTWH

)−1
WY (3.26)

Once an initial receiver position has been found, vector tracking channels can open and

a closed form PVT solution can start to be processed (Figure 3.8). Vector tracking loops and

algorithms are discussed in the next chapter.

3.5 Conclusions

The architecture of a scalar-tracking software defined received was explained. For more

information on any of the subsections discussed in this chapter, detailed descriptions of each can

be found in the literature. Because the focus of this thesis is vector tracking, the meaning of this

chapter was to provide the reader with a fundamental understanding of tracking loops that will

be expanded on further in the next chapter.
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Figure 3.8: Static position of receiver using a WNLS navigation algorithm.
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Chapter 4

Proposed Navigation Filter Architecture

Tracking loops discussed in Chapter 3 are critically important to receivers as they adapt the

replica signal to match the received signal data for proper decoding. However, traditional scalar

loop filters assume a static noise bandwidth, regardless of receiver or satellite dynamics. If either

platforms have unmodeled dynamics, these static bandwidths can permit too much noise into

the navigation solution, or neglect some of the dynamics by filtering too much of the signal.

One solution to this problem is implementing an adaptive Kalman filter to optimally select

bandwidths [50]. In the adaptive Kalman filter, the Kalman filter estimates the proper bandwidth

based on discriminator residuals and modeled variances, but is agnostic to the dynamics of the

receiver or the satellite dynamics. The addition of an adaptive Kalman filter is an improvement,

but leaves a lot to be desired as each channel is still being tracked individually, resulting in

low-powered channels having a high likelihood of being lost.

Another, more optimal, solution is to estimate the local replica signal from receiver and

satellite dynamics at every integration period. This requires an updated estimate of the navigation

solution at every integration period. This approach combines the adaptive bandwidth from [50]

along with knowledge of the receiver and satellite dynamics stemming from the navigation

solution. This closed-loop approach is known as vector tracking and will be discussed in greater

detail later on in this chapter. Specifically, the Vector Delay and Frequency Lock Loop (VDFLL)

is the vector tracking implementation used in this thesis.

To build on vector tracking, this work proposes an addendum to the existing navigation

filter architecture by adding a FVDM to predict the trajectory of flight vehicle. When coupling

external propagation schemes to GPS measurements, there are three common regimes.
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The simplest form is loosely-coupled, where receiver position and velocity measurements

are coupled with the predicted states from the external sensor to provide an improved receiver

state estimate (Figure 4.1). The advantages of loose coupling is that the GPS receiver does

not need to be modeled extensively; however, the noise provided by the receiver is not white,

making the Kalman filter sub-optimal [21]. Furthermore, a loosely-coupled architecture only

works with at least 4 satellites are transmitting to the receiver – which is not always the case for

GPS-challenged environments [51].

Figure 4.1: Loosely-coupled architecture between GPS and INS systems [52].

A more complicated coupling is tightly-coupled, where the navigation filter receives raw

pseudorange and pseudorange rate measurements from the GPS receiver [44] (Figure 4.2).

Because of this, tightly-coupled systems are still able to perform with less than 4 satellites, for a

limited time. The draw back to tightly-coupled navigation architectures is the complexity of

implementation. However, a working tightly-coupled system provides generous improvements

over loosely-coupled frameworks, especially in GPS-challenged environments [9].

Deeply-coupled, or ultra-tight coupling, is the last of the common methods to couple

external state predictions to GPS measurements. The downsides to deeply integrating an external

sensor or vehicle dynamic model to GPS measurements is increased complexity and the reliance

on the receiver to know its initial position – as is common with vector tracking. Generally, a

deeply integrated system revolves around adapting the EKF that exists for a vector tracking

architecture and appending the external dynamic model. This way, the GPS receiver and the

added dynamic model are tied together at the most basic level. The benefits of a complete
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Figure 4.2: Tightly-coupled architecture between GPS and INS systems [52].

deeply-coupled system allow continued tracking of a degraded signal 2 − 6 dB higher than

their scalar loop counter-parts [8]. Furthermore, the addition of external dynamics allows better

predictions of receiver pose due to the navigation filter acknowledging the dynamics of the

collection platform. This is especially beneficial for high-dynamic vehicles such as hyper-

velocity aircraft [53] or vehicles in GPS-challenged environments [54]. For these benefits, a

deep integration of the FVDM with GPS correlator-level measurements is the focus of this work.

4.1 Vector Delay and Frequency Lock Loop

Vector tracking first utilized a Vector Delay Lock Loop (VDLL) and was proposed by [55].

In a VDLL, the EKF provides continuous estimates of the code frequency, updating the DLL,

improving overall tracking performance. Later on, [19], explores tracking both code frequency

and carrier frequency in an EKF, coined the VDFLL. This method showed great improvements

over scalar tracking algorithms and moderate improvements over the VDLL. The VDFLL proves

best when tracking weaker GNSS signals under high dynamic stress [21]. Furthermore, recent

analyses from [56] prove the VDFLL has improved resilience to multipath delay as well. A

block diagram of the VDFLL is shown in Figure 4.3.

From Figure 4.3, the RF Front End block refers to the discussion in Section 3.1. The signal

correlation blocks represent Equation 3.1 and also the the FLL and DLL discriminators specified

in Equations 3.5 and 3.7, respectively. The basic flow of the VDFLL requires the receiver
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Figure 4.3: Block diagram of the VDFLL used in this work (Adapted from [9]).

to know its position and the positions of the satellites a priori. Preferably, initial positions

and satellite positions that are fed into the VDFLL are from processing the received signal for

a length of time required to decode the navigation message using an open-loop architecture

like the scalar tracking loops and WNLS discussed in Chapter 3. The measurement inputs of

the EKF in Figure 4.3 are residual pseudorange and pseudorange-rate errors in the form of

discriminator outputs. The EKF uses the measurements from the current signal correlations to

directly estimate the pose of the receiver. Using the ephemeris of the satellites and the corrected

position estimates, new code phase and carrier frequency estimates are generated for the next

integration period. To improve the estimated position from the EKF, the FVDM is used as the

process model to propagate the non-linear motion of the aircraft in time. The next section covers

the time update and measurement update within the EKF.

4.2 Deeply Coupled GPS and FVDM Navigation Filter

As stated previously, the VDFLL replaces the scalar DLLs and FLLs with a single EKF.

This sections describes the design of the EKF for the proposed navigation filter. The EKF for

this work represents a position-state filter where the state vector is defined by Equation 4.1.
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X =

[
XV Xω XP Xψ Xt

]T
(4.1)

The essential elements for the state vector are sectioned into five terms. XV (Equation 4.2)

describes the velocity states of the aircraft from Earth to body with respect to the Local Naviga-

tion frame.

XV =

[
VN VE VD

]
(4.2)

VN , VE , and VD are the velocity components of the aircraft in the North, East, and Down

directions, respectively. The angular rates (Xω) are represented from inertial to body with

respect to the body frame (Equation 4.3).

Xω =

[
pbib qbib rbib

]
(4.3)

pbib, q
b
ib, and rbib are the angular rates components of the aircraft about the body-fixed x,y,

and z axes. The position estimates of the aircraft are from Earth to body with respect to the

Local Navigation frame (Equation 4.4), similar to the velocity states.

XP =

[
λneb Lneb hneb

]
(4.4)

λneb, L
n
eb, and hneb are the latitude, longitude, and altitude of the aircraft with respect to the

geodetic reference frame described in Chapter 2. Equation 4.5 represents the Euler angles of the

aircraft, represented from body to the local navigation frame.

Xψ =

[
ϕbn θbn ψbn

]
(4.5)

ϕbn, θbn, and ψbn are the roll, pitch, and yaw of the aircraft from the body to the navigation

frame. Completing the state vector are the clock terms that represent estimates of the clock bias

and clock drift of the receiver during flight (Equation 4.6). The clock bias and clock drift are

scaled by the speed of light (c) to give them units of meters and meters/second, respectively.
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Xt =

[
cδt cδṫ

]
(4.6)

The dynamics of the aircraft are defined by

Ẋ = F
(
X, f bib,M

b
ib

)
+Bdynwdyn +Bclkwclk, (4.7)

where Bdyn is the noise distribution matrix related to the dynamics (Equation 4.8).

Bdyn =


∆t2

2
I6,6

∆tI6,6

02,2


14,8

(4.8)

wdyn is the disturbance vector for the aircraft dynamics, as shown in Equation 4.9. Equa-

tion 4.8 shows that only the linear and angular accelerations are affected by the disturbances,

but these errors trickle down into the kinematic equations for the position and Euler derivatives.

wdyn =

[
σ2
VN

σ2
VE

σ2
VD

σ2
p σ2

q σ2
r

]T
(4.9)

σ() are additive white Gaussian noise that characterizes the stochastic motion of the aircraft for

their respective, sub-scripted variables. The discretized process noise covariance matrix is a

function of the time step and phase and frequency clock variances for the specified oscillator

(Equation 4.10).

Qclk =

σ2
b∆t+ σ2

br∆t
2 + σ2

r
∆t3

3
σ2
br∆t+ σ2

r
∆t2

2

σ2
br∆t+ σ2

r
∆t2

2
σ2
r

∆t
+ σ2

br +
4
3
σ2
r∆t

 (4.10)

σ2
b is the variance of the noise process that drives the clock phase error in m2/s, σ2

r is

the noise variance that drives the clock frequency error in m2/s3 and σ2
br is the variance on

the noise process that drives both the phase and frequency error in units of m2/s2. For the

receiver simulated in this work, an Oven Controlled Crystal Oscillator (OCXO) is used. More
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information on calculating the clock variance based on oscillator type can be found in [57]. The

time step (∆t) is 200 Hz.

F is a set of non-linear equations that define the motion of the aircraft as a function of the

current state in time (X), the forces in the body frame (f bib) and the moments about the body

frame (M b
ib). Calculation of the forces and moments were discussed in Chapter 2.

Calculations of the forces and moments and moments must be done in the body frame.

Rotating all of the equations that build the total forces and moments acting onto the airframe

into a global or local navigation reference frame would be cumbersome and introduce more com-

plexity than necessary. However, because of the measurements generated from the correlators

and discriminators are composed in the ECEF reference frame, the FVDM must be propagated

with respect to the curvature of the Earth in a global frame. For this work, the equations of

motion are rotated into the local navigation frame.

The state derivatives of the velocity components are defined in Equation 4.11.


˙VN

V̇E

V̇D

 = Cn
b

f bib
m

− (2Ωn
ie −Ωn

en)


VN

VE

VD

 (4.11)

The first term above represents the forces acting onto the airframe with respect to the

body frame divided by the mass of aircraft, m. For the purposes of this work, the mass of the

aircraft is assumed constant. This specific force vector is rotated into the local navigation frame

using Cn
b , defined in Equation 2.9. The latter term in Equation 4.11 represents the rotation rate

(Equation 4.12) of the Earth in skew-symmetric form and the transport rate (Equation 4.13) in

skew-symmetric form, both rotated into the local navigation frame and multiplied by the current

velocity of the aircraft.

Ωn
ie = ωie


0 sin (Lneb) 0

− sin (Lneb) 0 − cos (Lneb)

0 cos (Lneb) 0

 (4.12)

Where ωie is 7.27× 10−5 radians/second.
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Ωn
en =


0 −ωnen,z −ωnen,y

ωnen,z 0 −ωnen,x

−ωnen,y ωnen,x 0

 (4.13)

Where

ωnen =


VE/(RE + hneb)

−VN/(RN + hneb)

VE tan(Lneb)/(RE + hneb)

 (4.14)

Above, RE and RN refer to the meridian and transverse radii of curvature as described in

Equations 2.1 and 2.2, respectively.

The derivatives of the angular rates are defined as


ṗbib

q̇bib

ṙbib

 = Ibcg
−1

Mb
ib −


p

q

r

×

Ibcg


p

q

r



 , (4.15)

where Ibcg are the mass moments of inertia for the aircraft. For the purpose of this work, the

aircraft is modelled symmetrically about each of the axes such that Ibcg only has terms along the

diagonal.

The local navigation frame position derivatives are described by Equation 4.16.


λ̇neb

L̇neb

ḣneb

 =


VN

RN+hneb

VE

(RE+hneb) cos(Ln
eb)

−VD

 (4.16)

The derivatives of the Euler angles are seen in Equation 4.17


ϕ̇bn

θ̇bn

ψ̇bn

 = Cω



p

q

r

−Cb
n (ω

n
ie + ωnen)

 (4.17)
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Calculation of the Euler rates is the difference between the current angular rates of the

aircraft and the rotation of the Earth along with the transport rate, similar to the calculation of

linear acceleration in Equation 4.11. This difference is rotated by Cω defined by Equation 4.18.

Cω =


1 tan(θ) sin(θ) tan(θ) cos(ϕ)

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ)/cos(θ) cos(ϕ)/cos(θ)

 (4.18)

The last of the state derivatives are the clock terms. Both the clock drift and clock drift rate

are scaled by the speed of light to give them units of ms−1 and ms−2.

cδṫ
cδẗ

 =

0 1

0 0


cδt
cδṫ

 (4.19)

Once the state derivatives are calculated using the aforementioned equations of motions,

they are integrated using Euler integrations to propagate the states forward in time. This provides

the EKF with the predicted states for the current time step.

The other part of the prediction step in the EKF is the formation of the predicted covariance

matrix P−
k . This is defined by Equation 4.20.

P−
k = ΦP−

k−1Φ
T +Qd (4.20)

Φ is defined as the state transition matrix. The state transition matrix is composed of X and

the relationship with each state derivative Ẋ. This done by taking the Jacobian and is represented

by Equation 4.21.

J =
∂Ẋ14,1

∂X14,1

(4.21)

The evaluated Jacobian, J, is a square 14 row, 14 column matrix that varies as function of

the forces and moments in time. These forces and moments can vary based on the disturbances

and the controls inputs, so J must be evaluated at every time step. Because of the complexity of

the Jacobian, it is solved using the symbolic toolbox in MATLAB.
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The state propagation is continuous, but Φ is discrete. This means that the Jacobian must

be discretized. The discretization of the Jacobian from continuous to discrete is introduced by

Equation 4.22

Φ = expm(J∆t) (4.22)

The discrete process noise covariance (Qd) encapsulates the disturbances onto the aircraft

dynamics such that the EKF can better correct the states during the measurement update. To

transform the process noise from continuous to discrete, Equation 4.23 is used.

Qd = blkdiag
([
ΦBdyn

(
wdynw

T
dyn

)
BT
dynΦ

T∆t
]
,Qclk

)
(4.23)

Once the state and covariance prediction are calculated, the a priori part of the EKF is

complete. The EKF will continue to predict the state and covariance until measurements from

the vector tracking receiver are available. The next subsection covers the measurement update

of the EKF, correcting the predicted covariance and predicted states.

4.2.1 Update a posteriori

The measurement update in the EKF utilizes the current predicted covariance and measure-

ment covariance to optimally correct the predicted states and predicted covariance. Equation 4.24

shows the calculation of the Kalman gain.

Kk = P−
kH

T
k

(
HkP

−
kH

T
k +Rk

)−1
(4.24)

The Kalman gain, K, is a function of the observation matrix, H, measurement covariance

matrix, R, and the predicted covariance, described previously. The observation matrix maps the

residual pseudorange and pseudorange rates to the local navigation states. This is demonstrated

by Equation 4.25.
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Hk =

un,j1,3 01,3 01,3 01,3 0 −1

01,3 01,3 hjρp1,3 01,3 −1 0


2j,14

(4.25)

Using the predicted estimate of the receiver position Euler attitude, H rotates the ECEF

residuals to the local navigation frame. There are arrays of zeros where the measurements do

not correlate to the corresponding states. The rotation of the unit vectors from ECEF to the local

navigation frame is shown by Equation 4.26 and the rotation for the position measurements is

given by Equation 4.27.

un,j = Cn
eu

e,j (4.26)

hjρp =


(RN + hneb)u

n,j
N

(RE + hneb) cos(L
n
eb)u

n,j
E

−un,jD

 (4.27)

The measurement covariance matrix, R, was described as the weighting matrix, W, in

Chapter 3. The variances of the measurements are still calculated as a function of the carrier-to-

noise ratio. Once the Kalman gain is calculated for the current time step, it can be used with the

measurement vector, ∆z, to update the predicted state estimate (Equation 4.28 and 4.29).

∆z =

[
∆ρ̇ 1 ∆ρ 1 . . . ∆ρ̇ j ∆ρ j

]T
(4.28)

X+
k = X−

k +Kk∆Z (4.29)

The last step in the measurement update is correcting the predicted covariance (Equa-

tion 4.30). The predicted covariance will drift based on the process noise covariance matrix and

correcting the covariance by using the newly calculated Kalman gain will inform the filter of the

confidence in the process model.
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P+
k = (I−KkHk)P

−
k (4.30)

After the measurement update of the EKF is complete, the estimated states and covariance

matrices redefine the predicted state and covariances, closing the loop in the proposed navigation

filter.

4.3 Conclusions

Vector tracking is a closed loop solution to estimating navigation states in a GPS receiver.

The proposed navigation filter augments the existing VDFLL architecture by instantiating the

FVDM as the process model in the EKF. This chapter covered the differences between scalar

and vector tracking loops and expanded on the utilization of the FVDM to propagates the states

of aircraft while also using correlator-level GPS measurements to correct the states and maintain

channel lock for the duration of the simulations. This chapter provided a general overview of

the VDFLL and covered the additions to the VDFLL architecture that did not exist before. For

a more nuanced implementation of the VDFLL, the reader is asked to read the sources cited

throughout the chapter for more information.

60



Chapter 5

Simulation Environment

Up until this point, this thesis has covered the navigation architecture in the overarching

Guidance, Navigation, and Control (GNC) flight vehicle model. This chapter will expand on

both the guidance and control architecture utilized for this work. Although these are not the

primary focus of this thesis, they are important to discuss if others wish to replicate the study.

5.1 Guidance System

The guidance system for a flight vehicle holds responsibility for providing reference points

to the controllers that provide actuation of the control surfaces and engine controls. These

reference points are a function of various flight conditions including the atmospheric conditions,

estimated pose of the aircraft, and engine efficiency. For the purposes of this work, the primary

goal of the guidance system is to accept a user-defined trajectory consisting of waypoints defined

in the local navigation frame and convert these into aircraft heading, pitch, throttle, and propeller

pitch reference commands for the controllers to interpret. The following subsection provides an

overview of creating trajectories for the guidance system.

5.1.1 Waypoint Generation

In this work, the generation of waypoints is a simple process where the user manually picks

a trajectory using Google Earth [58]. Once a trajectory is created (Figure 5.1) and saved as

a kml file, it can be brought into MATLAB and converted into a matrix of values in the local

navigation frame. Note, at this point, it may be beneficial to alter the altitude values such that
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the aircraft climbs, descends, or maintains a certain altitude during the length of the simulation.

The conversion of the kml file can be done using the KML Toolbox from [59].

Figure 5.1: A custom trajectory created in Google Earth for the guidance system discussed in
this work.

Once the trajectory is imported into the model, it is used within the guidance system to

produce reference commands of desired heading, pitch, throttle, and propeller pitch. This

work uses the uavWaypointFollower class provided by the UAV Toolbox in MATLAB. Other

methods of waypoint following can be used, as long as they output the aforementioned reference

commands.

The waypoint follower calculates the reference heading and pitch by using trigonometric

relationships between the flight vehicles current pose and the selected waypoints position.

The throttle is chosen such that time between waypoints is consistent. The propeller pitch

is controlled such that propeller efficiency is maximized (Equation 2.37). These reference

commands are passed to the control law, mapping commanded values to normalized aircraft

stick movements, throttle lever position, and propeller lever position. This processed in discussed

in the next section.
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5.2 Control Scheme

As stated previously, the guidance system and control law are not the primary focus of this

work. Because of this, classical Proportional-Integral-Derivative (PID) controllers are used to

actuate the controls surfaces to the desired values from the guidance system. During simulations

presented for this thesis, only four of the available eleven inputs are being controlled to maintain

the desired trajectory of the aircraft. Table 5.1 lays out the available inputs available for the

Diamond-DA40 modeled in this work.

Table 5.1: List of available, controllable inputs to the Diamond DA40 modeled in this thesis.

Input Definition Controlled

Lateral Stick L/R movement of pilot stick, maps to δa X
Longitudinal Stick Fwd/Aft movement of pilot stick, maps to δe X
Rudder Pedals In/Out position of left/right rudder pedals, maps to δr
Throttle Lever Lever % w.r.t. throttle, maps to engine RPM X
Propeller Lever Lever % w.r.t. propeller pitch normal to freestream X
Mixture Lever Lever % w.r.t. fuel-to-air ratio within engine
Left Brake Position of L rudder pedal when a/c is on ground
Right Brake Position of R rudder pedal when a/c is on ground
Aileron Trim δa needed to maintain a/c stability
Rudder Trim δr needed to maintain a/c stability
Elevator Trim δe needed to maintain a/c stability

Control of the lateral stick is a function of two closed-loop controllers based on the

commanded heading from the guidance system and the current heading and roll angle of the

aircraft. It is assumed that the nose of the aircraft always points in the direction of the aircraft’s

velocity. Figure 5.2 shows the two closed-loop controllers working in series with their listed

gains for more detail.

Figure 5.2: Block diagram of lateral stick control through two closed-loop, PID controllers.
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The movement of the pilot stick in the longitudinal direction is a function of the commanded

altitude from the guidance systems and the current altitude and pitch of the aircraft. Two closed-

loop PID controllers are used in series to control the pilot stick that actuates the elevator to the

correct deflection angle. Figure 5.3 shows a block diagram of the two controllers with their

proportional, integral, and derivate gains.

Figure 5.3: Block diagram of longitudinal stick control through two closed-loop, PID controllers.

The throttle and propeller lever controllers use a PID and PI controller to correct their inputs

(Table 5.2). The throttle control is based on the commanded and current airspeed of the aircraft

where the propeller lever is controlled based on maintaining at least 93% propeller efficiency.

The airspeed for the throttle control is defined as the magnitude of the aircraft’s velocity.

Table 5.2: Gains for the throttle and propeller lever closed-loop PID controllers.

Controller Proportional Integral Derivative

Throttle Lever 0.498 0.098 −0.184
Propeller Lever 0 1 0

The controllers provide inputs such that actuation of the control surfaces are deflected and

can guide the aircraft in the desired direction at the desired speed while maintaining lower fuel

consumption. With the implementation of the guidance system and control law, the full GNC

loop is now complete. The following section describes the disturbances modeled on the aircraft

so that controller inputs and outputs are different when running Monte-Carlo simulations for

further analysis of the proposed navigation filter architecture.
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5.3 Disturbance Modeling

As specified in Equation 4.7, the dynamics of the aircraft are disturbed by external forces

that changes the behavior of the aircraft between simulations of the same trajectory. Ultimately,

these changes lead to different control inputs and allow the Monte-Carlo analyses to emphasize

the improvements of the proposed FVDM navigation filter.

For the study presented in this thesis, two disturbances are modeled – a wind model and

uncertainties in the current altitude. The wind model is represented as a zero-mean white noise

process from [14]. Changes in the wind are important to simulation as wind greatly affect aircraft

trajectories in reality. The modeling of wind as a white noise process provides a stochastic

process that more closely resembles wind data collected from actual data collections [16].

In Chapter 2, it is clear that the pressure, temperature and density calculation stem from the

ISA model; however, aircraft do not use this model on board. To simulate changes in these

atmospheric parameters, measurements from a Pitot tube and temperature sensor are modeled

as a zero-mean white noise process from [60]. Similar to the white-noise wind model, the

measurements of pressure, temperature, and density must be variant enough to have different

control inputs over the course of many Monte-Carlo simulations. The variance in these white

noise models can be substituted for their respective variables in Qd (Equation 4.23).

5.4 Conclusions

The guidance systems and control laws provide the aircraft with meaningful control surface

deflection that guide the aircraft to the desired destination. This chapter provided an overview

about how the guidance system generates commanded control inputs from a user-defined

trajectory created using Google Earth. Following the guidance system, the control law used in

this thesis was covered with discussions about the PID control gains used for each of the four

piloted control inputs during simulation. Finally, a discussion of the disturbances on the aircraft

dynamics that influence different control inputs between simulations was described. The focus

of this work is not on the guidance or controls of the flight vehicle presented in this thesis, for
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better detail of each the sections discussed during this chapter, the reader is asked to follow-up

with the references cited above for more information.

66



Chapter 6

Scenario Implementation and Results

This chapter presents results of two trajectories using the proposed navigation filter and

its underlying components discussed in previous chapters. Each trajectory is subject to varying

degrees of signal interference across multiple Monte-Carlo simulations. First, an overview of the

Monte-Carlo analyses that will be presented for each trajectory is provided. Next, a discussion

of the first trajectory and configuration file used for the simulations is presented. Following

a description of trajectory one, Monte-Carlo analyses highlight the strong and weak points of

the proposed navigation filter. Once the analyses of the first trajectory conclude, a description

of trajectory two is presented, followed by a similar Monte-Carlo statistical analysis. Each

Monte-Carlo case is composed of 100-run simulations for each trajectory subject to seven cases

of signal degradation. To show the improved performance of the proposed navigation filter, a

constant-velocity, kinematic model VDFLL [9] is shown as a comparison. This standard VDFLL

processes the same trajectories at the same cases of signal degradation.

6.1 Monte-Carlo Analyses

Originally named after a famous casino in Monaco, the Monte-Carlo analysis is a model

to predict the probability of an outcome given the presence of random variables [61]. For the

deeply-coupled FVDM, a number of random variables exists. For one, the true states of the

aircraft are disturbed by wind, causing the aircraft to veer from the desired target line, that is,

between simulations, the simulated aircraft will not fly the same flight path every time, regardless

of having the same set of waypoints. For the purpose of this work, these wind disturbances
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are modeled with the same magnitude – interference and trajectory notwithstanding. Within

the VT algorithms, the correlator simulator features noise that occurs at every measurement

step, meaning no correlators (Equation 3.1) will be the same between simulations for the same

time step. For the correlator simulation tool presented in this thesis, the random noise placed

onto the correlators is a function of the interference level. As demonstrated by Equation 3.15,

higher variance noise when compared to the amplitude of the cross-correlated local and received

signal leads to an overall lower C/N0 ratio, which is demonstrated by the results later on in this

chapter.

For each of the trajectories presented in this chapter, the 100-run Monte-Carlo simulations

will evaluate the two different navigation filters for their probability to track the GPS signal given

C/N0 degradation. Furthermore, Monte-Carlo analysis on code phase and carrier frequency

error over a range of C/N0 values is presented. For the pose and attitude estimation results,

the Monte-Carlo simulation will provide an average Latitude, Longitude and Altitude estimate

compared to the true state of the receiver, along with velocity magnitudes (speed) for the same

comparison. As will be discussed later, one of the benefits in using the proposed navigation

solution is the ability to estimate angular rates and Euler attitude of the aircraft during simulation.

The Monte-Carlo analysis will present the average error in comparison with the true angular

rates and Euler attitude as well, but only for the deeply-coupled FVDM, as the standard VDFLL

implementation does not have this capability. Lastly, the Monte-Carlo analysis of the 100-run

simulations will compare the clock bias and clock drift estimates from both filters compared to

the true clock bias and clock drift of the embedded OCXO on board.

6.2 First Trajectory

For the first trajectory, the aircraft is simulated for a straight flight path while maintaining a

constant altitude of 500 meters above sea level (Figure 6.1).

It is assumed that the initial position of the receiver is known when the simulation begins,

avoiding the need to perform scalar tracking loops on the received signal data as discussed

previously. For the first trajectory, the receiver aboard the aircraft is subject to seven different
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Figure 6.1: (Left) Top-view of simulated flight path for trajectory one. (Right) Altitude of flight
path for trajectory one.

cases of interference that degrade the signals from the nine tracked channels (Table 6.1). The

receiver is subject to these degraded power levels for the entirety of the 60 second simulations.

Table 6.1: Signal power for each case applied to each trajectory.

Case C/N0 [dB-Hz]

1 45
2 35
3 25
4 22
5 20
6 18
7 16
8 15
9 10

10 5
11 2

From Table 6.2, several parameters are configurable to meet the desired simulation of the

user.

Date is used to pull the specified Rinex file from [62]. This Rinex file is then parsed for its

ephemeris and used to propagate the GPS satellites during the simulation. Figure 6.2 shows the

available satellites at the first time step for June 15, 2022 used in this work.

Duration and Monte-Carlo Runs specify the length of each simulation in seconds and

the number of simulations for each scenario and/or case. For the work presented in thesis,

100 simulation Monte-Carlo runs are used for analyses. Based on [15, 14, 16] and time to
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Table 6.2: Initial conditions for simulated trajectory from Figure 6.1.

Condition Value Units

Date June 15, 2022 DateTime Object
Duration 300 s
Monte-Carlo Runs 100 –
Frequency 200 Hz
Trajectory StraightFlightPath.mat See Chapter 5
Velocity Disturbance [300, 300, 0] m/s
Angular Rate Disturbance [10−12, 10−12, 10−12] rad/s
Clock Type OCXO –
Initial Velocity [75, 0, 0] m/s
Initial Angular Rate [0, 0, 0] rad/s
Initial Position [0.65617, −2.1376, 500] [rad, rad, m]
Initial Attitude [0, 0, 0] rad
Initial Clock Terms [0, 0] [m, m/s]
Channel C/N0 45, 35, 25, 22, 20, 18, 16, 15, 10, 5, 2 dB-Hz

Figure 6.2: Orange dots signify satellite locations at the start of the simulations given the date of
broadcast ephemeris. Black dots signify satellites that are in-view but are discarded due to the
10 degree mask angle used. The green triangle represents the initial receiver position.

completion for each simulation, 100 is enough to show the general trend for statistical purposes.

The trajectory is specified as a -mat file. The creation of the trajectory is detailed in Chapter 5.
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Trajectory one is a baseline case where it is expected that both the deeply-coupled FVDM and

constant-velocity kinematic model both perform well. As explained in Chapter 5, disturbances

are modeled onto the trajectory of the aircraft as the FVDM is not perfect. External conditions

such as wind and various atmospheric effects alter the behavior of the Diamond DA-40 slightly.

These disturbances are defined as Velocity and Angular Rate in Table 6.2. Clock Type is the

embedded receiver clock modeled during the simulation. More information on the different

types of clocks can be found in Chapter 4. For the purposes of this thesis, both trajectories and

all cases of signal interference will use the OCXO as the embedded receiver oscillator. The

initial states of the aircraft are defined by the given values. Since our trajectory specifies a

mostly-north flight path, the north velocity component is specified to be 75 meters per second,

while the other components are zero. Also, the pitch of the aircraft is specified as 4 degrees up,

this is so the aircraft generates lift at the beginning of the simulations and does not enter a stall

upon initialization. Lastly, the initial position of the aircraft is specified as the first waypoint

location, for simplicity. The last configurable parameter is the initial channel C/N0 of the

available satellites.

6.2.1 Monte-Carlo Analyses

From the Monte-Carlo results, several parameters can be analyzed for the performance

improvements of the proposed navigation filter over the standard VDFLL kinematic model.

This section begins with a comparison of the tracking-level results of the two filters subject to

different levels of signal degradation.

For the range of signal interference presented in Table 6.1, the Root Mean Square Errors

(RMSE) of both the code phase and carrier frequency shows the improved performance by using

the deeply-coupled FVDM in GPS-challenged environments (Figure 6.3). During simulations

where the signal was slightly degraded or benign (i.e. channel power greater than 35 dB-Hz)

the standard velocity implementation of the VDFLL actually performs better on average than

the proposed navigation filter. This is most likely due to the FVDM becoming over confident

during simulation. This is more evident from Tables 6.3 and 6.4 where the position RMSE,
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STandard Deviation (STD), and maximum error from the constant velocity kinematic model are

marginally better.

Figure 6.3: Code phase and carrier frequency RMSE as a function of signal power, specified in
dB-Hz.

Table 6.3: RMSE, STD, and maximum error from 100-run Monte Carlo simulation when the
deeply-coupled FVDM is subject to a degraded signal power level of 35 dB-Hz.

Position [m] Speed [m/s] Clock Bias [m] Clock Drift [m/s]

RMSE 0.23443 0.066059 0.013062 0.002834
STD 0.11305 0.030674 0.17509 0.0032795

Max Error 0.72197 0.22588 0.05835 0.009

Table 6.4: RMSE, STD, and maximum error from 100-run Monte Carlo simulation when the
standard VT receiver is subject to a degraded signal power level of 35 dB-Hz.

Position [m] Speed [m/s] Clock Bias [m] Clock Drift [m/s]

RMSE 0.093008 0.087402 0.013897 0.0032735
STD 0.048771 0.038728 0.015186 0.0040279

Max Error 0.25751 0.26045 0.033083 0.009487

However, when the signal power is less than 35 dB-Hz, the deeply-coupled FVDM presents

steady performance improvements as the interference grows stronger. For carrier frequency

error, the deeply-coupled filter breaks down at roughly 16 dB-Hz, where the theoretical 8.33

dB-Hz STD from [21] is met. For the standard VDFLL implementation, this criteria is met at

roughly 20 dB-Hz. The probability that the vector tracking loops are able to maintain channel

lock for an entire simulation is shown in Figure 6.4.
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Figure 6.4: The probability that each navigation filter is able to maintain channel lock throughout
the simulation across different levels of signal interference.

Based on Figure 6.4, the proposed navigation filter shows approximately 100% tracking

probability 5 dB-Hz greater than the standard constant-velocity kinematic model. As stated

previously, one of the benefits in utilizing the FVDM within a sensor fusion framework is the

acknowledgment of aircraft behavior given a set of control inputs. This allows the presented

filter to rely less on the degraded correlator measurements from GPS. The pose estimates from

the navigation filter reflect the performance of the vector tracking loops to maintain lock under

different levels of signal degradation (Figure 6.5).

Figure 6.5: Average Latitude and Longitude of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.
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Even with the straight, baseline trajectory, the standard constant velocity filter begins to

drift slightly when the GPS measurements are unreliable. This is partially due to the non-linear

velocity at the beginning of the simulation. However, even though this is the case, the proposed

navigation filter has no problem maintaining accurate tracking estimates. Based on Figure 6.3,

the deeply integrated FVDM maintains great position estimates with each channel’s signal

power down to 16 dB-Hz (Figure 6.6). For the position estimates from the standard VDFLL

implementation, the greatest error is shown in the downward direction (Figure 6.7).

Figure 6.6: Average Latitude and Longitude of the FVDM and standard VDFLL implementation
compared to the truth trajectory when subject to a degraded signal power of 16 dB-Hz.

Figure 6.7: Average altitude estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.
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This is simply due to the lack of geometric diversity between the satellites sending the

measurements. One way to solve this problem would be to include LEO satellites or signals

of opportunity for improved altitude estimates from more diverse measurements. The poor

assumption that the acceleration of the aircraft is zero-mean can be seen by the speed estimates

in the constant-velocity kinematic model (Figure 6.8)

Figure 6.8: Average speed estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

When the correlator measurements from the receiver become unreliable, the constant

velocity filter has no choice but to rely on its own prediction of aircraft velocity. On the

fundamental basis that the velocity is the integral of a zero-mean acceleration, it leads the

standard implementation to a heavily biased velocity prediction, thus deviating from the true

states. Apart from the position and velocities, both filters also estimate the bias and drift of

the embedded clock. As stated before, the clock used during the simulations is an OCXO.

Figure 6.9 presents the average clock bias estimates for each filter at both 20 and 25 dB-Hz

signal power, while Figure 6.10 presents the average clock drift estimates from each filter for

the same interference cases.

The clock model utilized from [63] is the same used on both filters, so similar performance

should be expected. However, the deeply-coupled navigation filter still out performs the constant-

velocity EKF in both cases. The errors in clock bias and clock drift are directly linked to position

and velocity estimates seen before (Figures 6.5 and 6.8). That is, the less error on the positional
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Figure 6.9: Average clock bias estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

Figure 6.10: Average clock drift estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

estimates means less likelihood of more error on the clock bias estimates. The same can be said

for the velocity and clock drift estimates between the two filters.

As mentioned previously, the first trajectory was a baseline, litmus test where it is expected

that both the proposed navigation filter and the constant velocity kinematic model would perform

similarly. Regardless of the objective for the trajectory, in cases where the signal interference left

the signal power to be less than 25 dB-Hz, the deeply-coupled FVDM begins to show improved

performance. This is further illustrated by Tables 6.5 and 6.6 where the RMSE, STD, and

maximum error found from the 100-run Monte Carlo analysis are shown for a subjected signal

power of 20 dB-Hz.
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Table 6.5: RMSE, STD, and maximum error from 100-run Monte Carlo simulation when the
receiver is subject to a degraded signal power level of 20 dB-Hz.

Position [m] Speed [m/s] Clock Bias [m] Clock Drift [m/s]

RMSE 0.83733 0.27649 0.14072 0.0087105
STD 0.32434 0.13394 0.13147 0.0072989

Max Error 1.8783 0.90375 0.48541 0.024451

Table 6.6: RMSE, STD, and maximum error from 100-run Monte Carlo simulation when the
receiver is subject to a degraded signal power level of 20 dB-Hz.

Position [m] Speed [m/s] Clock Bias [m] Clock Drift [m/s]

RMSE 24.567 0.88208 0.17748 0.0088036
STD 10.287 0.34973 0.14068 0.005286

Max Error 36.193 2.0585 0.50134 0.022316

6.3 Second Trajectory

For the second trajectory, the aircraft is simulated for a more dynamic flight pattern while

commanded to climb to an altitude of 1150 meters above sea level (Figure 6.11). The dynamics

induced by trajectory two show the effectiveness of the deeply-coupled FVDM to predict the

behavior of the aircraft due to the additional angular rates and Euler attitude being estimated. It

is assumed that the receiver knows it position beforehand when the simulation begins. Similarly

to the first trajectory, the receiver aboard the aircraft is subject to seven different cases of

interference that degrade the signals from the nine tracked channels (Table 6.1). The receiver is

subject to these degraded power levels for the entirety of the 60 second simulation.

It should be noted that the same cases of interference from the first trajectory still apply to

trajectory two (Table 6.1). Furthermore, the only change in configuration between the first and

second trajectory is the specified flight path. For this dynamic trajectory, SCurveFlightPath.mat

will be used in place of the StraightFlightPath.mat used previously. The satellites found in-

view utilizing the broadcast ephemeris file for the specified date are the same satellites used

during the following simulations (Figure 6.2). One of the benefits (on top of improved estimate

performance) of utilizing the deeply-coupled FVDM is the capability to estimate the attitude

and attitude rate of the aircraft during flight. This can be imperative for acrobatic or urban air

mobility aircraft that roll, pitch, and yaw as their nominal flight motion. Similar to IMU and
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Figure 6.11: (Left) Top-view of simulated flight path for the second trajectory. (Right) Altitude
of second flight path where aircraft is commanded to climb to 1150 meters and then maintain
the altitude for the remainder of the simulation.

other hardware sensors, the excitation caused by the rolling and pitching motion of aircraft for

trajectory two is expected to increase the performance of the position and velocity estimates

along with the capability to maintain channel lock at heavier signal degradation.

6.3.1 Monte-Carlo Analyses

From Monte-Carlo results, several parameters can analyzed for the performance improve-

ments of the proposed navigation filter over the standard VDFLL kinematic model. This section

begins with an analysis of the signal-level results between the two filters and follows with an

analysis of the state estimate performance for a range of C/N0 values. For the range of signal

interference presented in table 6.1, the RMSE of both the code phase and carrier frequency shows

improved performance by using the deeply-coupled FVDM in GPS-challenged environments

(Figure 6.12).

As previously mentioned, the excitation in the angular rates provides better observability

for those estimated states along with their integrated Euler attitude counter parts. Compared to

trajectory one, Figure 6.12 shows that the proposed navigation filter can track beyond 16 dB-Hz.

Unlike the previous trajectory, even in cases of little to no interference, the deeply-coupled

FVDM out performs the standard VDFLL implementation right up to benign signal power

(45 dB-Hz). This effective increase in performance is further shown in Figure 6.13 where the

probability to maintain lock across all channels is shown again for trajectory two.
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Figure 6.12: Code phase and carrier frequency RMSE as a function of signal power, specified in
dB-Hz.

Figure 6.13: The probability that each navigation filter is able to maintain channel lock through-
out the simulation across different levels of signal interference.

While the deeply integrated FVDM shows approximately 100% tracking probability at

the same 20 dB-Hz compared to Figure 6.4, the constant velocity kinematic model effectively

loses lock faster after the the signal power drops below 25 dB-Hz. Similar to trajectory one,

the same 5 dB-Hz improvement in tracking probability can be seen for trajectory two. The

position estimates reflect the improved ability of the deeply-coupled FVDM to maintain lock in

GPS-challenged environments. Figure 6.14 presents the Latitude and Longitude estimates for

both filters simulated for trajectory two.

When subject to a signal power of 20 dB-Hz, the average Latitude and Longitude estimates

for the constant velocity EKF shows a slight drift from the true location of the aircraft. Like
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Figure 6.14: Average Latitude and Longitude of the FVDM and standard VDFLL implemen-
tation compared to the truth trajectory. The left figure is when both simulations had a signal
power of 20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

before, this is likely due to the zero-mean acceleration assumption of the kinematic model.

Furthermore, the standard VDFLL implementation is unable to predict the attitude of the aircraft,

making it unable to correlate velocity and Euler attitude errors. For consistency, Figure 6.15

shows the Latitude and Longitude estimates when the receiver is subject to a signal power of 18

dB-Hz.

Figure 6.15: Average Latitude and Longitude of the FVDM and standard VDFLL implementa-
tion compared to the truth trajectory when subject to a degraded signal power of 16 dB-Hz.

At this level of interference, it is clear the constant velocity EKF faults just after initializa-

tion. With the lack of GPS correlator measurements to make corrections, the predicted location
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of aircraft quickly falls off target. The excited pitching motion of the aircraft brings about an

improvement on the altitude estimates of the aircraft during the simulation (Figure 6.16).

Figure 6.16: Average altitude estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

Again, the standard VDFLL implementation shows altitude errors of roughly 65 meters

when provided with unreliable GPS correlator measurements. The lack of diversity is to blame

and adding a ground station or fusing the solution with a external sensor or FVDM would

mitigate this problem. For a more detailed reference on the difference in pose estimates between

the two filters, Tables 6.8 and 6.7 are included at the end of this section for further inspection.

The dynamics of trajectory two prove ever more that the zero-acceleration assumption from the

constant velocity kinematic model is poor. Figure 6.17 presents the speed estimates of both the

proposed navigation filter and the standard VDFLL implementation subject to 20 and 25 dB-Hz

of signal power.

At roughly 10 m/s of error in the speed estimate (according to Table 6.8), The average

drift of the estimated position presented by Figure 6.15 is understandable. It should be noted

here that the throttle reference command (Chapter 5) is commanding the aircraft to keep a

consistent velocity of 70m/s, limitations on engine power and the advance ratio of the propeller

prevent it from reaching such speeds during the climb segment. One of the primary benefits of

the proposed navigation filter is the ability to estimate the angular rates and Euler attitude of

the aircraft during flight. Although these states are not directly measurable by the correlator
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Figure 6.17: Average speed estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

measurements, their correlation within the position and velocity equations (Equations 4.16

and 4.11) is substantial enough to hold accurate estimates (Figure 6.18).

Figure 6.18: Average angular rate estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
15 dB-Hz. The right figure is with a signal power of 20 dB-Hz.

Although the aircraft is commanded to reach an altitude of 1150 meters above sea level, this

does not equate to radical change in pitch rate. As seen from Figure 6.19, the aircraft reaches a

steady state pitch and maintains that pitch until the altitude command is met. Since the pitch
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command is near-constant, unlike the roll and yaw angles, leaves the pitch rate to be near-zero

for the duration of the simulation.

Figure 6.19: Average Euler attitude estimates of the FVDM and standard VDFLL implemen-
tation compared to the truth trajectory. The left figure is when both simulations had a signal
power of 15 dB-Hz. The right figure is with a signal power of 20 dB-Hz.

Because the Euler attitude estimates are the integral of the angular rate estimate, barring the

rotation of Cω (Equation 4.17), it is clear that worse estimates of angular rates lead to drifting

error in the Euler attitude estimates of the aircraft. If not corrected, this can lead to drifting

position and velocity estimation at lower C/N0 levels. To maintain better estimates of the

angular rates and Euler attitude, an IMU or additional hardware sensor could be tied-in with the

FVDM to provide direct measurements of those states. Another option, although sub-optimal,

would be the addition of a second GPS antenna, in which GPS course measurements could be

calculated and provided to the filter. It should further be noted that GPS course and the yaw of

the aircraft are not the same as discussed in Chapter 2.

The clock bias and clock drift estimates from both filters are analyzed for trajectory two.

Similar to trajectory one, the receiver in trajectory two is embedded with an OCXO. And as

mentioned previously, the performance of the clock bias and drifts estimates correspond with the

accuracy of the position and velocity estimates, respectively. Figure 6.20 presents the clock bias
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estimates for both filters subject to the dynamics of trajectory two and signal power degradation.

Figure 6.21 dictates the clock drifts estimates under the same circumstances.

Figure 6.20: Average clock bias estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

Figure 6.21: Average clock drift estimates of the FVDM and standard VDFLL implementation
compared to the truth trajectory. The left figure is when both simulations had a signal power of
20 dB-Hz. The right figure is with a signal power of 25 dB-Hz.

Lastly, Tables 6.7 and 6.8 provide the RMSE, STD, and maximum error calculated across

the 100-run Monte Carlo simulation when the receiver is subject to interference that leaves the

signal power at 20 dB-Hz.
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Table 6.7: RMSE, STD, and maximum error from 100-run Monte Carlo simulation when the
receiver is subject to a degraded signal power level of 20 dB-Hz.

Position [m] Speed [m/s] Clock Bias [m] Clock Drift [m/s]

RMSE 0.64521 0.2673 0.1911 0.010044
STD 0.34121 0.12531 0.18278 0.0073514

Max Error 1.5828 0.76501 0.5855 0.23049

Table 6.8: RMSE, STD, and maximum error from 100-run Monte Carlo simulation when the
receiver is subject to a degraded signal power level of 20 dB-Hz.

Position [m] Speed [m/s] Clock Bias [m] Clock Drift [m/s]

RMSE 196.98 6.0576 0.20098 0.010995
STD 126.68 0.92248 0.19358 0.0077631

Max Error 431.72 8.468 0.62891 0.024964

6.4 Conclusions

This chapter presented a detailed explanation of the two trajectories used for the perfor-

mance analysis of the proposed navigation filter compared to a standard, constant-velocity

kinematic model VDFLL. Trajectory one is the baseline case where the aircraft is commanded to

fly straight and maintain a constant altitude for the entirety of the simulation. Trajectory two is a

more dynamic trajectory with alternating, banking turns throughout the simulation on top of the

aircraft being commanded to climb and maintain an altitude of 1150 meters. Each trajectory was

subject to a range of interferences starting from benign signal power to low signal power. Results

from trajectory one show that when flying a standard, unexcited trajectory, the standard VDFLL

and the proposed navigation filter are comparable. Results from trajectory two showcase the

improved performance from the deeply-coupled FVDM because of the inability in the standard

EKF to predict angular rates and Euler attitude. However, the results from trajectory two also

show that the FVDM is not the sole-solution due to the unobservable angular states when

excitement is lost in the simulated trajectory. External sensors such as a IMU or multi-antenna

GPS system could improve the system observability for better estimates. Improvements to the

proposed navigation filter are discussed in greater details in the next chapter.
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Chapter 7

Conclusions and Future Work

This work described the development of a deeply-integrated flight vehicle dynamic model

within a GPS L1 C/A vector tracking software defined receiver. A performance analysis of the

proposed navigation filter in GPS-challenged environments compared to the standard VDFLL

was presented. The work presented in this thesis extends the state of the art by modeling a flight

vehicle dynamic model deeply-coupled with GPS correlator measurements. The fidelity of the

model stems from multiple flight mechanic modules presented in Chapter 2. The aerodynamic

module models aerodynamic forces and moments on the basis of strip theory, using pre-processed

CFD tables to propagate the aerodynamic coefficients based on the current flight condition of

the aircraft. The engine and propeller module comprise of pre-processed numerical tables based

on historical engine and propeller data sheets and performance charts. The FVDM improves the

extended Kalman filter time update by fully acknowledging the behavior of the presented flight

vehicle – this can be cumbersome with hardware sensors such as an IMU or barometer. The

presented FVDM can be run at any update frequency, typically a limiting factor for hardware

sensors. An increased update frequency for any vehicle dynamic model increases the likelihood

that changes in the states are linear between time steps, this is especially important for high-

dynamic systems such as hyper-velocity vehicles. Unlike hardware sensors, the FVDM is not

subject to vibration, which is a common amongst rotor craft and fixed-wing flight vehicles. The

downside to the FVDM is the requirement to have extensive knowledge of the flight vehicle in

order to model it with high fidelity. This can be difficult if modeling government or proprietary

vehicles.
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For the straight, constant altitude trajectory, the proposed navigation filter was shown to

have slight improvements over the standard VDFLL implementation in scenarios where the

signal power dropped below 25 dB-Hz. With signal power above 25 dB-Hz, the standard EKF

proved marginally better, likely due to an over confidence in the FVDM. When given a more

dynamic trajectory, the deeply-integrated FVDM shows improvement by at least double in

all scenarios of signal degradation. This is partly due to the FVDM being able to estimate

the angular rate and Euler attitude of aircraft, where as the standard VDFLL implementation

does not have this capability. For both trajectories, the proposed navigation filter improved

tracking performance 4-6 dB-Hz over the standard VDFLL implementation. Overall, the deeply

integrated FVDM is able to better predict the behavior of the aircraft given a set of control

inputs, especially in scenario where GPS measurements are less reliable.

7.1 Concerns of Observability

From the presented navigation filter, measurements of position and velocity appear in the

form of pseudorange and pseudorange-rates. These measurements are created based on DLL

and FLL discriminator outputs that are converted to meters and meters per second, respectively.

When a measurement update occurs within the EKF, these measurements indirectly correct the

current state estimate through the observation matrix, H (Equation 4.25). As stated previously,

one reason for faulty estimates of the aircraft in heavily GPS-degraded environments is the lack

of observability in the angular states. Once the estimated angular rates of the aircraft drift, and

through integration, their respective Euler angles, the FVDM will continue to propagate the

aircraft with these drifting estimates. For example, if the pitch angle estimate of the FVDM

starts to drift from 10 degrees to 20 degrees to 30 degrees, the aircraft will naturally begin

to pitch up and gain altitude. If the VT algorithm loses lock with signal channels, or the

channel measurements are poor, there is no other measurements to correct the FVDM and it will

continue to propagate worse estimates of the state. This can be further examined by exploring

the observability matrix, O through time.
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A system is fully-observable if the all of the states of the system can be known by the

outputs of the systems, that is, if the rank of Equation 7.1 is equal to the number of states in X

(Equation 4.1), then the observability matrix is full rank and the system is fully-observable. A

quick calculation of O shows that the deeply-coupled FVDM is not fully-observable. Improve-

ment upon the observability of the proposed navigation filter is expanded upon in the future

work section of this chapter.

7.2 Future Work

For future work, the author recommends several items, both relating to the proposed

navigation filter and to components of the FVDM presented in this work. With the complexity

of the model, a common question is asked: What level of fidelity is needed to acquire accurate

estimates? To answer this question, a new architecture of the FVDM is theorized (Figure 7.1),

with its benefits listed herein. One of the downsides to the presented FVDM is the extremely

catered modeling of one aircraft, the Diamond DA-40. The cascaded architecture would improve

this such that aerodynamic coefficients are estimated inside of the flight mechanics module

instead of being compiled beforehand using a CFD program. This would make the FVDM more

generalizable, theoretically allowing it to be applicable to any aircraft, barring any configuration

differences. The second improvement would be the fusion of other available sensors with the

FVDM. For the presented work, it was assumed that the sensor suite became faulty or the size

of the flight vehicle limited the capacity in which it could carry sensors. In reality, the form

factor of modern low-cost sensors allow them to fit within the casing of a smart phone, and as

such, should be fused with the FVDM for better estimates of forces and moments acting onto
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Figure 7.1: Cascaded architecture for an improved FVDM coupling.

the airframe. Typically, low-cost sensors are unable to update at high frequencies, discouraging

their use onto high-dynamic systems. However, the FVDM is able to run at higher frequencies,

so a fusion between the FVDM and low-cost sensors is intriguing and possible with the cascaded

architecture. If fusing multiple sensors with the FVDM using the cascaded architecture, it would

be possible to measure the effectiveness of each sensor. Through decades of prior research,

multi-sensor fusion algorithms have shown to provide robust pose estimates of the collection

platform for a variety of dynamics and signal interference. The cascaded architecture proposed

in this section would allow further fusion of sensors not typically used in navigation algorithms

(i.e. pitot tubes, engine temperature sensor) via the modeling equations from the FVDM.
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Appendix A
Extra Results from Trajectory Two

This appendix shows comparison of the proposed navigation filter to the standard kinematic

model VDFLL when neither are receiving any measurements from GPS for the dynamic flight

path of trajectory two. Without any GPS measurements to assist the kinematic model, it fails to

predict the motion of the aircraft. However, because of the capability for the FVDM to predict

the behavior of the aircraft given a set of control inputs, the state estimates of the aircraft are

much improved.

Figure 2: Latitude and longitude of the proposed navigation filter compared to the standard
constant velocity EKF VDFLL when receiving no GPS measurements for trajectory two.
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Figure 3: Altitude errors of the proposed navigation filter and the standard constant velocity
EKF VDFLL when receiving no GPS measurements for trajectory two.

Figure 4: Aircraft speed estimate from the proposed navigation filter compared to the standard
constant velocity EKF VDFLL when receiving no GPS measurements for trajectory two.
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Figure 5: Velocity components of the proposed navigation filter compared with the standard
constant velocity EKF VDFLL when receiving no GPS measurements for trajectory two.
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Figure 6: Angular rate estimates of the proposed navigation filter when receiving no GPS
measurements for trajectory two.
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Figure 7: Euler attitude estimates of the proposed navigation filter when receiving no GPS
measurements for trajectory two.
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