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Abstract 

 
 

Cross-frames are critical for the stability of steel bridges during construction and play a 

significant role in completed bridges. Historically, brace locations have been regions of fatigue 

concerns, and each brace requires significant handling and processing during fabrication. The 

braces represent one of the most expensive bridge components per unit weight. Therefore, there 

are significant benefits to minimizing the number of cross-frames in a bridge in terms of economics 

and structural performance.  

Lean-on bracing concepts replace select cross-frames in certain bracing lines with top and 

bottom struts, which allow a single cross-frame to brace several girders as a method of minimizing 

the number of cross-frames in a bridge. Lean-on concepts were developed for the Texas 

Department of Transportation (TxDOT) in the early 2000s. Previous studies developed design 

guidelines, but recent applications of lean-on bracing in TxDOT bridge designs demonstrated the 

need for improved efficiency and clarity.  

The stiffness and strength of a given line of bracing are functions of the number and 

location of cross-frames in the line, as well as the specific cross-frame geometry (X, K, or Z-

frames). While previous lean-on bracing equations were applicable to systems with one X- or Z-

shaped cross-frame positioned in an exterior bay, derivations and model validation have been 

completed to extend the application of the design guidance. Derived equations with simplified 

design expressions for lean-on brace stiffness and strength will be discussed in terms of stability 

implications, with consideration for future application. 
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Chapter 1. Introduction 

 
 

I-shaped girders are often utilized in steel bridge systems as an efficient and economical 

solution in a wide range of bridge applications. Steel girders provide significant flexibility for 

applications in highway bridges because the bridge girders can be fabricated in shorter lengths, 

shipped to the site, spliced together, and quickly erected. However, the high strength-to-weight 

ratio of steel often results in relatively slender components that are susceptible to stability-related 

limit states that must be considered in design. The primary stages for which stability is critical is 

generally during erection and other construction phases when the steel girders support the entire 

load, and the bracing conditions can be highly variable. The controlling stability limit state is 

generally lateral-torsional buckling (LTB) of the bridge girders, which is a failure mode that 

involves lateral movement of the compression flange and twist of the section, as depicted in Figure 

1-1. Once the composite concrete deck has cured, the deck and shear studs provide continuous 

lateral and torsional restraint to the girder. As a result, conventional LTB is not typically a concern 

in the completed bridge. 

 

Figure 1-1. Lateral-Torsional Buckling (Helwig and Wang, 2003) 
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An increase in the LTB capacity is achieved by providing bracing that reduces the 

unsupported length of the girders. Effective beam bracing can be achieved by either restraining 

lateral displacement of the compression flange (lateral bracing), or by controlling the twist of the 

section (torsional bracing). The most common form of bracing used in steel bridges consists of 

cross-frames or diaphragms that control girder twist and therefore are categorized as torsional point 

braces. Though the braces are necessary for girder stability, they introduce some complexities into 

the design and require strategic placement along the length and width of the framing system. These 

complexities range from difficulties during fabrication and erection to concerns regarding the 

fatigue performance during the service life of the bridge. Due to the significant handling and 

fabrication requirements, the braces are often the most expensive component of steel bridges per 

unit weight. Therefore, it is advantageous to refine the design and detailing of cross-frame systems. 

The AASHTO LRFD Bridge Design Specification (BDS) provides design, detailing, and 

analysis guidance for cross-frames and diaphragms, but this guidance is primarily limited to the 

fatigue limit state. The 9th edition of the AASHTO LRFD BDS (2020) provided no formal 

guidance on stability bracing requirements of cross-frames and diaphragms. A recent study 

(Reichenbach et al., 2021) that investigated the stability bracing characteristics of conventional 

cross-frames in steel I-girder systems resulted in recommendations that will be included in the 10th 

edition of the AASHTO LRFD BDS due out in 2024. However, due to the absence of formal 

design requirements in all current and previous editions of the AASHTO BDS, the typical practice 

has been to utilize standard brace details and layouts that are specified by state departments of 

transportation. Historically, the braces in straight bridges have not generally been sized for stability 

forces or demands. For example, a common member size in cross-frames specified by many bridge 

owners is an L4x4x3/8 angle.  
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For cross-frames in steel bridges, conventional detailing practice is to provide braces 

between adjacent girders across the full width of the bridge, as shown in Figure 1-2 (A). However, 

in some applications, such a layout can lead to large live-load induced forces, as well as difficulty 

installing bracing, particularly in bridges with significant support skew. Instead of providing cross-

frames across the full width of the bridge, selectively positioning cross-frames within the bridge 

cross-section and using top and bottom struts to “lean” other girders on the braced locations, as 

depicted in Figure 1-2 (B), can provide improved behavior and efficiency. This concept is referred 

to as lean-on bracing.  

  

Figure 1-2. (A) Conventional Cross-Frame System and (B) Lean-On System 

Lean-on concepts are often employed in steel building frames where column bracing may 

be located in a bay and provide stability to columns in adjacent bays connected through the beams 

in the frame. In the early 2000s, lean-on concepts were adapted for implementation into steel I-

girder bridges (Helwig and Wang, 2003). Lean-on braces offer a cost-effective solution by 

combining the versatility of a torsional bracing system with the simplicity of a lateral brace. In 

these systems, torsional braces (typically in the form of cross-frames) are strategically placed 

throughout the bridge and provide the primary source of stability to the girders.  
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As noted previously, the current AASHTO LRFD provides no guidance on the design of 

cross-frames for stability bracing requirements. The provisions approved for inclusion in the 10th 

edition of AASHTO focus on the stability bracing requirements for conventional bracing. 

Provisions for lean-on bracing are not included in the 10th edition of the AASHTO LRFD BDS; 

however, there is interest in inclusion of guidance on lean-on concepts for future editions. Based 

upon the recommendations from TxDOT project 0-1772 (Helwig and Wang, 2003; Romage, 2008) 

there have been successful applications of lean-on bracing in bridges with both skewed and normal 

supports, primarily in the state of Texas. Some of the more recent applications have identified 

aspects of lean-on bracing that would benefit from additional research. Furthermore, there has been 

an abundance of research conducted over the past few decades with respect to LTB and the bracing 

characteristics of cross-frames, but the application towards lean-on systems was not considered. 

Therefore, the present research investigation was conducted to refine the design process and 

develop improved guidance on design procedures for wider applications of lean-on bracing. 

The objective of TxDOT Project 0-7093-1 was to study the behavior of lean-on bracing 

systems for the development of improved guidance allowing engineers to better implement lean-

on bracing into steel bridge designs. If cross-frames are properly detailed and distributed along the 

bridge length and width, lean-on bracing systems can reduce the number of full cross-frames 

required while potentially improving the long-term bridge behavior. A well-designed and detailed 

lean-on bracing system potentially offers significant savings in fabrication costs, simplifies the 

erection process, and alleviates in-service cross-frame force demands in heavily skewed bridges. 

In short, the strategic use of lean-on braces can serve as an efficient alternative to traditional cross-

frame systems. 
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The work contained in this dissertation includes research conducted as part of TxDOT 

Project 0-7093-1 (Helwig et al., 2024) related to the refinement of lean-on brace stiffness and 

strength equations, field monitoring, and equation-based design methodologies. Additional 

information particularly related to the refinement of other stiffness components and parametric 

finite element analysis studies for lean-on layouts can be found in Bjelland (2024) and Fish (2021; 

2024).  

This dissertation consists of 13 chapters. Following this introductory chapter, a review of 

the literature and pertinent background information is provided in Chapter 2. While there are 

multiple components of the total stiffness of a lean-on bracing system, derivations and refinements 

for the lean-on brace stiffness equation are provided in Chapters 3-5. To accompany the theoretical 

study, results from the field instrumentation and testing of three bridges with lean-on bracing are 

provided in Chapter 6. The results from the field monitoring and tests provided valuable data for 

the validation of FEA models of lean-on bracing systems, which is summarized in Chapter 7. A 

summary of the parametric study of lean-on bracing layouts is provided in Chapter 8. The focus 

of Chapter 9 is the implementation of the revised stiffness equations in the calculation of the total 

system stiffness. The brace strength requirements are then covered in Chapter 10. Finally, Chapter 

11 outlines the proposed design methodology for lean-on bracing systems, and detailed equation-

based design examples are provided in Chapter 12. An overview of the research contributions is 

provided in Chapter 13.   
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Chapter 2. Background 

 
 

The lateral-torsional buckling (LTB) limit state is a critical consideration in steel I-girder 

bridges. Although the LTB resistance can be improved by increasing the section properties (by 

way of adjusting the girder geometries), a more economical approach is often to apply some kind 

of bracing, typically in the form of cross-frames, or a combination of cross-frames and lateral struts 

called lean-on bracing to reduce the unbraced length.  

This chapter outlines the past research that is most pertinent to the present study. The 

following sections provide background information on the critical conditions for bridge girder 

stability, as well as an overview of methods of stability bracing concepts. Solutions for determining 

the required system stiffness requirement are presented, as well as expressions for the stiffness and 

strength of bracing systems. Current bracing design provisions are discussed, including lean-on 

bracing adaptations to these provisions developed by Helwig and Wang (2003).  

2.1. Bridge Girder Stability 

2.1.1. Lateral-Torsional Buckling 

I-shaped girders are often utilized in steel bridge systems as an efficient and economical 

solution in a wide range of bridge applications. The exceptional strength-to-weight properties of 

steel provide desirable characteristics for bridge girders. The steel girders can be fabricated in 

shorter lengths, shipped to the site, spliced together, and quickly erected. However, the same 

properties can lead to slender elements and systems, which may cause difficulties during erection 

and other construction phases when the bracing conditions are highly variable. During construction 

stages, the steel section alone generally supports the full load. Construction stages are generally 
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critical for lateral-torsional buckling (LTB), a limit state that involves the lateral translation of the 

compression flange and twist of the section, as depicted in Figure 1-2. Stability of the finished 

bridge is rarely a concern due to the continuous bracing provided by the cured concrete deck to 

the composite system. The buckling occurs between bracing locations (unbraced length). 

Timoshenko (1961) derived the following exact elastic buckling solution for a simply supported, 

doubly-symmetric section with warping stiffness for the case of uniform moment loading: 

𝑀 = 𝐸𝐼 𝐺𝐽 +   2.1 

Where: 

𝑀  is the buckling moment 

𝐿  is the unbraced length 

E is the modulus of elasticity 

𝐼  is the weak-axis moment of inertia of a single girder 

G is the shear modulus of elasticity 

J is the torsional constant 

𝐶  is the torsional warping constant,  for a doubly symmetric I-shaped sections 

ℎ  is the distance between flange centroids 

In Equation 2.1, the first term under the radical is known as the St. Venant torsional 

resistance and is related to the uniform torsional stiffness. The second term under the radical is the 

warping torsional resistance and is related to the non-uniform torsional stiffness. In the original 

derivation of Equation 2.1, only the boundary condition of zero twist was enforced. Therefore, 

effective bracing against LTB can be achieved through solely restraining twist of the cross-section.  
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2.1.1.1. AASHTO Moment Gradient Factor 

While Equation 2.1 was derived for the case of uniform moment loading, the buckling 

capacity of a beam with non-uniform moment may be significantly larger. Although solutions can 

be derived for specific load cases, the benefits of moment gradient in design are typically 

accounted for by using moment gradient factors (𝐶 ). There are a variety of 𝐶  factors available to 

approximate the benefits of moment gradient. Expressions for 𝐶  are provided in AASHTO LRFD 

(2020) and AISC LRFD (2017). The equation found in AASHTO LRFD Appendix A6 is shown 

in Equation 2.2.  

𝐶 , = 1.75 − 1.05 + 0.3 ≤ 2.3  2.2 

Where: 

𝑀  is the smaller end moment 

𝑀   is the larger end moment 

There are several rules provided in AASHTO for determining the value of 𝑀  so that the 

expression can be used for “general” moment diagrams. As there is a great deal of work ongoing 

to incorporate more accurate 𝐶  factors, these rules are not included in this dissertation. The AISC 

expression is one solution that is under consideration for inclusion in AASHTO. However, some 

work is looking at the impact of mono-symmetry and the effects of non-prismatic sections on the 

behavior (Reichenbach et al., 2020).  

2.1.1.2. AISC Moment Gradient Factor 

The AASHTO specification in Equation 6.1 is only applicable to straight line moment 

diagrams, so its use becomes quite complicated when applying it to non-linear moment diagrams. 

As noted above, AASHTO includes several exceptions to the moments in an attempt to make the 
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expression applicable for general cases of moment gradient. In contrast, the specification provided 

in AISC LRFD Chapter F for 𝐶  is rather straightforward and is independent of the shape of the 

moment diagram. This is shown as Equation 2.3. Of course, if a designer wishes to simplify the 

calculation, they may take 𝐶  equal to 1.0, which is conservative for most cases. 

𝐶 , =
.

.
  2.3 

Where: 

𝑀  is the absolute value of the maximum moment within the unbraced segment 

(Lb) 

𝑀  is the absolute value of the moment at the quarter point of the unbraced segment 

𝑀  is the absolute value of the moment at the centerline of the unbraced segment 

𝑀  is the absolute value of the moment at the three-quarter point of the unbraced 

segment 

2.1.2. System (Global) Lateral-Torsional Buckling 

The system, or global, form of LTB has been investigated since the early 2000s. The studies 

in this area stemmed from issues encountered during the construction of a number of bridges. 

System LTB occurs when the girder system is interlinked by braces, such as cross-frames, and the 

overall system buckles as a unit. This mode often becomes more critical than conventional LTB 

(buckling between brace points) in narrow girder systems with larger span-to-width ratios. Yura 

et al. (2008) developed an expression for the elastic global buckling resistance of a doubly-

symmetric twin I-girder system, which is shown in Equation 2.4: 
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𝑀 = 𝐼 𝐼   2.4 

Where: 

𝑀  is the elastic global buckling resistance 

S is the girder spacing 

𝐿  is the span length 

𝐼  is the strong-axis moment of inertia of a single girder 

This expression assumes a simply supported, prismatic system. Although Yura et al. (2008) 

included a slightly more complex solution which included both St. Venant and warping terms, the 

St. Venant term does not significantly impact the behavior. Neglecting this term produces the 

simple expression shown in Equation 2.4. Although the solution was derived for doubly-symmetric 

sections, when considering singly-symmetric sections, 𝐼  in Equation 2.4 can be replaced with 𝐼  

as defined by Equation 2.5 (Yura et al., 2008): 

𝐼 = 𝐼 + 𝐼   2.5 

Where: 

𝐼  is the lateral moment of inertia of the compression flange 

𝐼   is the lateral moment of inertia of the tension flange 

𝑡 is the distance from the centroid of the tension flange to the neutral bending axis 

𝑐 is the distance from the centroid of the compression flange to the neutral bending 

axis 

Equation 2.4 was originally introduced into the interim AASHTO specifications in 2015. 

An upper limit of 50% of the value given by Equation 2.4 was adopted into AASHTO (Sanchez 
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and White, 2012). For cases with moments exceeding 50% of 𝑀 , changes in the girder sections 

or additional bracing were necessary. Subsequently, bridge owners found systems that had 

previously been constructed with no problems could not be constructed with the new provisions. 

Therefore, additional work was conducted by Han and Helwig (2016, 2020) considering the effects 

of girder continuity, imperfections and non-prismatic sections. Their work led to the following 

expression: 

𝑀 = 𝐶 𝑀 = 𝐶 𝐼 𝐼   2.6 

Where: 

𝑀  is the modified elastic global buckling resistance 

𝐶  is the system mode moment gradient factor: 

1.0 for simply supported or partially erected continuous girder systems 

2.0 for fully erected continuous girder systems 

To address the effects of imperfection, Han and Helwig suggest limiting the design moment 

(𝑀 ,) to 70% of 𝑀 , which is the current limit in AASHTO LRFD (2020). Though the limit of 

70% constituted an increase from the previous value of 50%, the increase was warranted because 

many bridge owners found that the original 50% reduction was perceived to be overly-conservative 

based upon field observations of previously constructed systems. The increase was justified in Han 

and Helwig (2016, 2020) based upon the assumed critical imperfection in comparison to the more 

likely value in erected girder systems with cross-frames fully installed. The critical shape is often 

assumed to include a lateral sweep of the compression flange with no sweep in the tension flange; 

however, such an imperfection would not generally be likely with cross-frames installed. The more 
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probable imperfection of a girder system with cross-frames installed consists of a “pure sweep” 

imperfection, which is much less sensitive to second-order amplification. 

An update was proposed to the global buckling moment capacity by Fish et al. (2024). The 

updated expression is shown in Equation 2.7. 

 𝑀 , = 𝐶
𝜋 𝑠𝐸

(𝐾𝐿)
𝐼 𝐼

𝛼

2𝑛
 

 

2.7 

Where:  

𝐾 is an effective length factor used to account for warping restraint added by 

modifications to the bridge system such as lateral trusses 

𝛼  is the system warping stiffness factor shown in Table 2-1 

Table 2-1. System Warping Stiffness Factor Values 

Number of Girders System Warping Stiffness Factor 

2 1 

3 4 

4 10 

5 20 

6 35 

7 56 

8 84 

9 120 

10 165 
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2.2. Stability Bracing 

Now that the limit states for girder and system stability have been outlined, the following 

sections will discuss methods of improving system performance against LTB. These bracing types 

include lateral bracing, torsional bracing, and lean-on bracing.  

2.2.1. Torsional Bracing 

Torsional bracing directly restrains the rotation of the girder section in order to resist LTB. 

Torsional bracing systems include cross-frames, diaphragms, and composite concrete decks 

because they prevent twist of the girders (Yura, 2001). The most common form of bracing in steel 

bridge applications is the use of torsional braces consisting of cross-frames or diaphragms to 

ensure adequate LTB resistance. Cross-frames can be found in the form of X-shapes, Z-shapes, 

and K-shapes, as shown in Figure 2-1. X-type braces work well with deep girders, such as in built-

up I-girder bridges, while K-type braces or diaphragms may be better suited for shallower girders. 

It is recommended that the angle of the diagonals is configured with a slope close to a 45-degree 

angle with the bottom strut. Significantly flatter or steeper slopes often reduce the effectiveness of 

the brace.  

 

Figure 2-1. Various Forms of Cross-Frames 
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2.2.2. Lateral Bracing 

While torsional bracing directly restrains the rotation of the girder section, lateral bracing 

restrains translation of the compression flange of the girder in order to prevent rotation. Bracing 

against LTB can be achieved by restraining the lateral deformation of the compression flange of 

the bridge girder. This essentially prevents twist of the section, as the lateral deformation of the 

compression element generally leads to twist of the section. Methods of lateral bracing include 

continuous bracing, such as metal deck forms, as well as discrete braces, such as top and bottom 

struts. The lateral braces are most effective when placed where it best offsets the twist (Yura, 

2001).  

2.2.3. Lean-On Bracing 

Lean-on bracing is a method utilizing strategically placed torsional braces in combination 

with in-line lateral struts to stabilize bridge girders. This allows one or a few cross-frames to 

effectively brace the whole system due to the struts used to “lean” the girders off of each other. 

An example comparison of a bridge cross-section with lean-on bracing compared to conventional 

bracing was shown in Figure 1-2. The schematic demonstrated the lean-on concept of selectively 

replacing cross-frames in a given bracing line with top and bottom struts to provide a load path to 

support the girders with fewer cross-frames.  

Lean-on bracing was introduced in the early 2000s as a way to address fatigue concerns in 

high-skew bridges (Helwig and Wang, 2003). The lean-on bracing system was first suggested for 

skewed bridges to help minimize the magnitudes of live load-induced forces, and was shown by 

Bechtel (2016) to decrease axial stresses in cross-frame members. Additionally, the reduction in 

the number of cross-frames can result in a significant reduction in material and fabrication costs, 

as these are typically the most expensive components per unit weight on steel bridges due to 
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complexities in fabrication and erection. Utilization of fewer cross-frames also generally 

corresponds to fewer complex details that must be inspected on routine bridge inspections, 

resulting in reduced inspection time, cost, and effort. The lean-on bracing applied in TxDOT 

Implementation Study 5-1772 is depicted in Figure 2-2.  

 

Figure 2-2. Lean-on Bracing in Lubbock, Texas Implementation Study (TxDOT Project 5-1772) 

As shown in the figure, torsional braces (i.e., cross-frames) provide the primary source of 

stability for the girders across the width of the bridge. In general terms, the top and bottom struts 

in the adjacent bays of a continuous bracing line effectively “lean” on the full torsional braces to 

stabilize these neighboring bridge girders. The top and bottom struts are then tasked with 

transferring the forces developed in the adjacent girders. This is analogous to the shear force that 

stabilizing columns in a frame must resist when adjacent columns lean on it for stability. Thus, the 

full cross-frames in a bracing line are subjected to increased demands for both stiffness and 

strength requirements to adequately stabilize more than two girders across the bridge width, as 

described in the next section.  
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Although lean-on concepts were initially proposed for systems with significant support 

skew, the approach can also be used for girder systems with normal supports. A typical bracing 

layout utilizing lean-on concepts is shown in Figure 2-3 and Figure 2-4 for a straight, three-span 

continuous bridge with normal supports. In skewed bridges, it has been shown to be advantageous 

to place the first cross-frame transversely in a given bracing line so as to position the brace as far 

from the support as possible (Romage, 2008). In these systems, cross-frames near the supports 

should be placed near the exterior girders that correspond to the acute angle of the skewed support. 

To maximize the in-plane stiffness of the girder system, the braces should be spread out across the 

full bridge width to fully engage the girder system. Near midspan, the use of a line of cross-frames 

across the full width of the system helps to engage all the girders for this purpose.  

 

Figure 2-3. Typical Lean-On Bracing Layout 

 

Figure 2-4. Lean-On Bracing Detailed Layout 
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Some research has investigated the use of “staggered” cross-frame placements in skewed 

bridges (Kamath, 2019). Such applications illustrate the benefit of strategic cross-frame placement 

within the bracing system, but do not include top and bottom lean-on struts to complete a full 

cross-frame line.  

2.3. Torsional Bracing Stiffness Requirement 

Bracing systems are important structural elements in steel I-girder bridges. These systems 

provide resistance to lateral-torsional buckling (LTB) in straight girder systems by reducing the 

unbraced length of the girders. Although construction of the bridge deck is usually the most critical 

stage, the condition during erection may also be critical. During this time, not all of the bracing 

may be installed, leading to larger unbraced lengths as compared to the condition during deck 

construction. In both cases, the non-composite steel girders must resist all construction loading. 

Torsional braces, typically cross-frames, assist the girders in resisting torsion due to the eccentric 

loading of deck overhang construction and distribute any lateral loads across the structure. This 

section provides background information on the general bracing requirements of I-girder bracing 

systems.  

2.3.1. Brace Stiffness Requirement  

Taylor and Ojalvo (1966) quantified the buckling capacity of a doubly-symmetric beam 

with continuous torsional bracing under uniform moment loading: 

𝑀 = 𝑀 + �̅� 𝐸𝐼   2.8 
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Where: 

 𝑀  is the buckling capacity of the unbraced beam (equivalent to 𝑀  in Equation 

2.1) 

 �̅�  is the continuous torsional brace stiffness 

Further research by Yura (1992, 2001) expanded the applicability of this equation to 

consider discrete torsional braces, moment gradient, load position, singly-symmetric sections, and 

the impact of cross-sectional distortion:  

𝑀 = 𝐶 𝑀 + �̅� 𝐸𝐼 ≤ 𝑀  𝑜𝑟 𝑀   2.9 

Where: 

 𝐶  is the 𝐶  factor corresponding to a beam with no intermediate braces 

 𝐶  is the 𝐶  factor corresponding to a beam fully braced at intermediate brace 

locations 

 𝐶  is the top flange loading modification factor: 

1.0 for centroidal loading 

1.2 for top flange loading 

 �̅�  is the equivalent effective continuous torsional brace stiffness = 𝛽 ×  

 𝛽  is the torsional stiffness provided by a single brace 

 𝑛 is the number of intermediate braces 

 𝐿 is the span length 

 𝑀  is the yield moment (this can be replaced by the plastic moment capacity) 
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 𝑀  is the buckling capacity of the girder when buckling occurs between the brace 

points 

2.3.2. Ideal Stiffness 

The ideal stiffness corresponds to the stiffness of the braces required to force the girders to 

buckle between the brace points, avoiding a system mode of buckling. In Figure 2-5, cases where 

the provided brace stiffness is less than the ideal stiffness (A) and greater than the ideal stiffness 

(B) are shown. The buckling mode shown in B, buckling between the brace points, results in a 

greater capacity of the system for equivalent girder geometries.  

 

Figure 2-5. (A) Brace Stiffness Less than Ideal Stiffness and (B) Brace Stiffness Greater than 

Ideal Stiffness 

The importance of sufficient brace stiffness was first demonstrated by Winter (1960). 

Winter utilized a model consisting of a column and lateral bracing system which was comprised 

of perfectly straight rigid links that were hinged at the points of bracing. The lateral bracing was 

represented as a spring with stiffness measured in units of force per unit displacement. Winter’s 

model provided a simple means of determining the “ideal brace stiffness,” which can be defined 

as the minimum required brace stiffness to force a perfectly straight member to buckle between its 
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braced locations. The ideal brace stiffness can be obtained by rearranging Equation 2.9 as shown 

in Equation 2.10.  

�̅� = (𝑀 − 𝐶 𝑀 )   2.10 

Adjusting for discrete torsional bracing, the ideal stiffness can now be written in terms of 

the continuous torsional bracing stiffness as shown in Equation 2.11 

𝛽 =   2.11 

In the bracing provisions of Appendix 6 AISC (2017), the buckling capacity of the 

unbraced beam (𝑀 ) is conservatively neglected. Taking this into account and substituting 

Equation 2.10 into Equation 2.11 results in Equation 2.12 for the ideal stiffness of a discrete 

torsional brace. 

𝛽 =   2.12 

2.3.3. Initial Imperfection 

Another benefit of Winter’s model was that the effects of imperfection could be readily 

investigated. Winter’s work demonstrated that when accounting for imperfections, the stiffness 

required to control brace forces and member deformations was higher than that of the ideal 

stiffness. Yura (2001) studied the effect of initial imperfection on braced columns, finding that two 

times the ideal stiffness was sufficient to restrain the initial imperfection, as shown in Figure 2-6. 

As a result, most bracing provisions currently recommend using two times the ideal stiffness. The 

assumption is that if twice the ideal stiffness is used, then deformations will be limited to the initial 
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imperfection imposed. Limiting the initial imperfection is important because the forces within the 

brace are directly related to its magnitude (Yura, 2001). Although Winter and Yura’s work focused 

on lateral bracing systems, the dual criteria of stiffness and strength are valid for all stability 

bracing systems, including torsional beam bracing.  

 

Figure 2-6. Braced Winter Column with Initial Out-of-Straightness (Yura, 2001) 

The imperfection that produces the largest brace force, generally, will have one less “wave” 

than the unbraced section’s buckled shape. For example, with one intermediate brace, the critical 

imperfection would be a half-sine curve, for two intermediate braces the critical imperfection 

would be a sine curve, etc. (Helwig and Wang, 2003).  

The initial imperfection assumed in the development of the current AISC design provision 

expressions is an assumption based on allowable fabrication and construction tolerances for girder 

out-of-straightness, as established by the AISC Code of Standard Practice (2017). The effect of 

initial imperfection on torsional bracing was studied by Wang and Helwig (2005). They 

demonstrated that in bridge girders the critical imperfection (i.e., the imperfection that maximizes 

force demands on the braces) usually involves a lateral sweep of the compression flange, with the 
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tension flange remaining straight (not displaced laterally). This effectively produces an initial twist 

of the cross-section. As a result of that research, the initial out of straightness of the compression 

flange is assumed to be . The current assumed value for initial imperfection (twist), as defined 

in AISC (2017), is: 

𝜃 =
𝐿

500ℎ
 2.13 

Where: 

𝐿  is the unbraced length of the girder section 

Finally, assuming top flange loading (𝐶  = 1.2) and adjusting for twice the ideal stiffness 

by setting the buckling capacity (𝑀 ) equal to the factored design moment (𝑀 ) results in the 

expression for required brace stiffness as shown in AISC (2017): 

𝛽  =
.

  2.14 

Where: 

 𝜑 is 0.75 (LRFD) 

Assuming that the brace stiffness is sufficient to limit the deformation to the initial twist, 

the relationship between the brace stiffness and brace moment can be described thus: 

𝑀 = 𝛽  𝜃 =
.

  2.15 

The use of twice the ideal stiffness works well for columns, but for beams stabilized by 

torsional braces, recent work by Liu and Helwig (2020) found that a higher stiffness was required 

to limit the deformation to that of the initial imperfection. The recommendation of their research 
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was to increase the stiffness requirement for torsional bracing to three times the ideal stiffness. 

The 2022 AISC Specification increased the required torsional brace stiffness to three times 𝛽 , 

resulting in a constant of 3.6 instead of 2.4. The AASHTO bracing provisions permit two times 

𝛽  (resulting in expressions identical to Equations 2.14 and 2.15) provided the depth of the 

torsional brace is at least 80% of the beam depth.  

Expressions based upon a moment equal to the stiffness times the initial imperfection such 

as that shown in Equation 2.15 are similar to past editions of AISC. In the 2017 AISC 

Specification, strength provisions for 𝑀  were changed to two percent of the beam design moment 

based off of work by Prado (2015). However, this approach was recently found to be 

unconservative in many cases (Liu and Helwig, 2020). Therefore, the 2022 AISC strength 

provisions returned to a required torsional brace strength equal to the stiffness times the initial 

imperfection, similar to what was shown in Equation 2.15. 

To summarize, the current 2022 AISC brace provisions require a stiffness equal to three 

times beta ideal (constant of 3.6 instead of 2.4 in Equation 2.13) and a strength requirement equal 

to the stiffness times the assumed initial imperfection (𝐿 /500ℎ ). The 10th edition AASHTO 

bracing provisions for required strength and stiffness are identical to the AISC specification for 

torsional brace depths less than 80% of the beam web depth. Provided a brace depth of at least 

80% of the beam depth is utilized, the 10th Ed. AASHTO bracing provisions require a stiffness of 

twice the ideal stiffness (constant of 2.4 in stiffness equation) and a strength equal to the stiffness 

times the assumed initial imperfection.  
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2.4. Lateral Bracing Stiffness Requirement 

Much like torsional and lean-on braces, lateral braces must possess adequate strength and 

stiffness to provide a suitable brace point for a beam or girder. It is important to note that discrete 

lateral bracing is most effective when placed as close to the compression flange as possible, 

keeping in mind that in reverse-curvature bending, lateral bracing must be attached to both flanges. 

Largely based on the work of Winter (1960) that investigated column buckling, Yura (1992, 2001) 

developed a simple design approach to estimate these stiffness and strength requirements. As such, 

the required stiffness of a lateral beam brace is estimated using Equation 2.16, where 𝑃 𝐶  can be 

approximated by  (AISC, 2022):  

𝛽∗ =  𝑜𝑟     2.16 

Where:  

 𝑁  is 4 −  or a coefficient depending on the number of braces within the span as 

provided in Table 2-2 

 𝑃  is the equivalent elastic buckling capacity of the compression flange =  

𝐶  is the top flange factor, as defined in Equation 2.17 

It was recognized that the required brace stiffness was a function of the number of 

intermediate braces provided along the length of the beam. Yura (1992, 2001) developed an 

accurate approximation of these effects (i.e., a definition for 𝑁 ), which is given in Table 2-2. It is 

important to note that this equation is analogous to the ideal stiffness formulation developed for 

the lateral bracing of columns (Winter, 1960). In general, an increase in the number of braces 

results in an increase of the ideal brace stiffness.  
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Table 2-2. Brace Coefficient used in Equation 2.16 

Number of Evenly 
Spaced Braces 

Exact Value of 𝑁  
Approximate Value of 

𝑁 = 4 −  

1 2 2 

2 3 3 

3 3.41 3.33 

4 3.63 3.5 

Many 4 4 
 

Helwig et al. (1997) found that if certain circumstances mitigate the effects of load height 

(i.e., tipping restraint or benefits of intermediate bracing), then a flange loading modification of 

1.0 may be used as in the case of centroidal or uniform moment loading. However, for top flange 

loading without mitigating factors, 𝐶  is given as Equation 2.17 (Yura, 1992), and alternatively 

may be conservatively assumed to be 2.0 (AISC, 2022).  

𝐶 = 1 +
.

  2.17 

2.5. Conventional Torsional Bracing System Stiffness 

There are three stiffness components of a bracing system that generally contribute to the 

overall torsional bracing behavior: the brace stiffness, in-plane girder stiffness, and cross-section 

distortional stiffness. The overall stiffness of a torsional bracing system must be greater than the 

required stiffness and is given by the equation (Yura, 1992): 

= + +   2.18 

Where:  

𝛽  is the total brace stiffness of the torsional system 
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𝛽  is the stiffness of the brace 

𝛽  is the in-plane girder stiffness 

𝛽  is the stiffness of the cross section related to cross sectional distortion 

Equation 2.18 indicates that 𝛽  is less than the smallest of the three individual stiffness 

components, which are assumed to interact as springs in series. From this relationship, it is evident 

that an otherwise stiff cross-frame can be adversely affected by poor in-plane girder stiffness or 

significant distortional effects in the girder webs. Thus, the overall stiffness of a torsional brace is 

effectively limited by the most flexible component in Equation 2.18. 

In design, the required torsional brace stiffness, 𝛽  , is found by using Equation 2.14. 

To serve as an adequate brace, the cross-frame and its connections shall be designed and detailed 

such that  𝛽  exceeds 𝛽  . Satisfying this requirement, in addition to the corresponding 

strength requirements, ensures that a cross-frame or diaphragm can act as a suitable brace point 

and, in turn, enhance the LTB resistance of the girder.  

2.5.1. In-Plane Girder Stiffness, 𝜷𝒈 

The in-plane (i.e., vertical) flexural stiffness of the bridge girders themselves contribute to 

the overall stiffness of the torsional bracing system. The stiffness contribution of the girders was 

first shown in twin-girder systems (Helwig, Yura and Frank, 1993). As shown in Figure 2-7, when 

the girders are subjected to a twist, the internal moment in the cross-frame is equilibrated by 

vertical shear forces acting at the ends of the brace. The vertical forces on the adjacent girders 

cause one girder to deflect upwards and the other to deflect downwards leading to a rigid body 

rotation. These deformations reduce the effectiveness of the brace. With a wider system, this 

displacement is reduced, as demonstrated by the four-girder system shown in the figure. 
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Figure 2-7. In-Plane Girder Stiffness 

This behavior was quantified for a twin-girder system in Equation 2.19 (Helwig, Yura and 

Frank, 1993):  

𝛽 =   2.19 

Where:  

𝐼  is the in-plane moment of inertia of the girder 

For a framing system with more than two girders, Equation 2.20 is instead used (Yura, 

2001; Helwig and Yura, 2015):  

𝛽 =   2.20 

Where:  

𝑛  is the number of girders in the system 
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The in-plane girder stiffness contribution is most critical in narrow systems, such as two or 

three-girder bridges, and is tied to the system buckling mode, which was discussed in Section 2.1.2 

(Yura et al., 2008; Han and Helwig, 2016). If 𝛽  is less than 𝛽 , full bracing cannot be achieved 

regardless of the stiffness of the brace that is utilized. From a buckling perspective, the system 

mode will control over buckling between the brace points. As noted previously, design guidance 

for the system failure mode has been incorporated into AASHTO LRFD (2020). However, it is not 

currently included in AISC (2017) because narrow systems are not frequently found in building 

applications, such that this stiffness component is comparatively large relative to the other 

components identified in Equation 2.18. Consequently, the failure mode is not likely to govern 

bracing design applications in buildings, except in cases such as walkways or other narrow girder 

systems that mimic highway bridge applications.  

Due to limitations related to quantifying the stiffness contribution of multiple girders and 

unconservative results produced with Equation 2.20, an update was proposed to the in-plane girder 

stiffness by Fish (2021). A final version was released by Fish et al. (2024) alongside an update to 

the global buckling moment capacity. The updated expression is shown in Equation 2.21, using 

the same variable definitions as in Equation 2.7. 

 𝛽 , = 𝐶
𝜋 𝐸𝐼 𝑠

2𝑛 (𝐾𝐿) (𝑛 + 1)
𝛼  

 

2.21 

2.5.2. Torsional Brace Stiffness, 𝜷𝒃𝒓 

The torsional brace stiffness, or the stiffness response of the brace when subjected to an in-

plane moment, provides additional stiffness to the bridge girder system to help resist LTB. Without 

torsional brace stiffness, bridge girders will deform in a “racking” shape, as shown in Figure 2-8. 
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The torsional stiffness of the brace can be estimated based on an idealized truss model (Yura 2001; 

Helwig and Wang 2003). Equations have been derived for each brace type and the derivation 

process is discussed in the following sections.  

 

Figure 2-8. Girder Deformation with Zero Brace Stiffness 

2.5.2.1. Twin Girder System Derivation for Tension Model 

Yura (2001) developed an equation to estimate the torsional brace stiffness of a Z-type 

cross-frame, or a tension-only X-type cross-frame, for which the compression diagonal is 

conservatively neglected (assuming that member might buckle). In many cases, cross-frames are 

constructed with slender angle sections whose compression load-carrying capacity is relatively 

small and therefore neglected. Virtual work was used to derive the expression. The idealization of 

this system is shown in Figure 2-9.  

 

Figure 2-9. Twin Girder Tension Model Brace Stiffness Idealization 
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In this approach, Equations 2.22 and 2.23 are combined to result in Equation 2.24, 

indicating that the displacement of the critical girder is the basis for calculating the provided 

stiffness.  

 𝑀 = 𝐹ℎ  2.22 

 𝛽 =   2.23 

 𝛽 =
∆

  2.24 

Where:  

𝑀 is the moment applied to the system 

𝐹 is a unit load applied at the top and bottom of each girder in the directions shown 

ℎ is the depth of the cross-frame 

𝜃 is the rotation of the girder 

 ∆  is the critical displacement of the girder (here, ∆ + ∆ ).  

From the virtual work procedure, ∆  is calculated, resulting in Equation 2.25 for 𝛽 . This is the 

equation currently accepted for typical Z-frame bracing or a conservative X-frame design. 

 𝛽 =   2.25 

Where: 

𝐿  is the length of the line of action of the cross-frame diagonal members 

𝐴  is the cross-sectional area of the cross-frame diagonals 

𝐴  is the cross-sectional area of the cross-frame struts. 
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When all the cross-frame members are of equal size (𝐴 = 𝐴 ), Equation 2.25 may be rewritten 

as shown in Equation 2.26. 

 𝛽 =   2.26 

2.5.2.2. Twin Girder System Derivation for Compression Model 

Yura (2001) also derived a compression system stiffness model. In this model, the top and 

bottom struts of the cross-frame are not required, as shown in Figure 2-10. As in the tension model 

derivation, ∆  is calculated from the virtual work procedure, resulting in Equation 2.27 for 𝛽 .  

 

Figure 2-10. Twin Girder Compression Model Brace Stiffness Idealization 

 𝛽 =
𝐴 ℎ 𝑆 𝐸

𝐿
 2.27 

2.5.2.3. Twin Girder System Derivation for K-Frames 

Yura (2001) additionally derived a stiffness equation for K-frames. In the K-frame system, 

the diagonals are designed for both tension and compression. As discussed previously, a virtual 

work method was applied to a system idealized as shown in Figure 2-11. The resulting stiffness 

equation is given by Equation 2.28.  
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Figure 2-11. Twin Girder K-Frame Brace Stiffness Idealization 

 𝛽 =   2.28 

2.5.3. Cross-Section Stiffness, 𝜷𝒔𝒆𝒄 

If the braces are shallow compared to the rest of the girder, the stiffness of the cross-section, 

𝛽 , may have a significant effect. For full-depth web stiffeners, Yura derived the following 

equation (1992, 2001): 

𝛽 =
.

(
( . )

+ )  2.29 

Where:  

𝑁 is the contact length of the torsional brace  

ℎ  is the height of the web 

𝑡  is the thickness of the web 

𝑡  is the thickness of the stiffener 

𝑏  is the width of the stiffener 

Since many bracing systems may not have “contact length,” N, Equation 2.29 may be 

rewritten as Equation 2.30 (Helwig and Yura, 2015). This form is included in AISC Appendix 6: 
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𝛽 =
.

(
( . )

+ )  2.30 

The first term in the equation accounts for the effective moment of inertia for the part of 

the web assumed to participate in the distortion, and the second term accounts for the moment of 

inertia of the stiffener, taken about the centroid of the web. When the distance from the top cross-

frame to the top of the girder is different than the distance from the bottom of the cross-frame to 

the bottom of the girder, then the below equations may be used to estimate 𝛽  (Yura, 2001): 

𝛽 =   2.31 

𝛽 =
. .

+   2.32 

𝛽 =
.

(
.

+ )  2.33 

Only the region outside of the brace depth contributes to the cross-sectional distortion. 

Because most cross-frames in bridge I-girder applications are relatively deep with respect to the 

girder depth, the cross-section stiffness component tends to be a large value, such that it is not 

usually a significant concern in Equation 2.18. Language in the 10th Edition of AASHTO (2024) 

for stability bracing will allow 𝛽  to be taken as infinity for braces deeper than 80% of the web 

depth. This provision recognizes the minimal impact of cross-sectional braces for relatively deep 

braces since the portion of the web above and below the brace is relatively small and doesn’t distort 

significantly. 



  

34 

2.6. Lean-On Torsional Bracing System Stiffness 

2.6.1. In-Plane Girder Stiffness, 𝜷𝒈 

Helwig and Wang (2003) recommended the reduction of the in-plane girder stiffness by 

50% when utilizing lean-on bracing as compared a system only utilizing traditional torsional 

bracing concepts, as expressed in Equation 2.19. It is assumed that a lean-on system would have 

an in-plane girder stiffness between that of a twin-girder system and of a traditional cross-frame 

layout, and finite element analysis solutions showed reasonable correlation with the 50% 

reduction.  

 𝛽 , , =    2.34 

However, as mentioned in the discussion of in-plane girder stiffness for conventional 

bracing, Equation 2.20, and thereby Equation 2.35, was derived based on a twin-girder system and 

did not account for the stiffness contribution of more than two girders. A modified version of 

Equation 2.21 was introduced as part of TxDOT Project 0-7093-1 to incorporate the effects of 

lean-on bracing on the in-plane girder stiffness (Bjelland, 2024; Helwig et al., 2024).  

 𝛽 , , = 𝐶 𝐶
( ) ( )

   2.35 

Where:  

𝐶  is a lean-on layout factor, discussed in Section 8.2.3 

2.6.2. Cross-Section Stiffness, 𝜷𝒔𝒆𝒄 

Equation 2.30 may be applied in lean-on cases as well as with conventional cases. 

However, as most lean-on configurations will use full-depth cross-frames, this term may also be 

taken as infinity, due to language in the 10th Edition of AASHTO (2020) for stability bracing 

allowing 𝛽  to be taken as infinity for braces deeper than 80% of the web depth. 
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2.6.3. Torsional Brace Stiffness, 𝜷𝒃𝒓 

Helwig and Wang (2003) derived a generalized equation for the brace stiffness contribution 

in a lean-on bracing system based on the tension-system idealization developed by Yura (2001). 

Based on virtual work calculations of the displacement of the critical girder, they determined the 

generalized displacement equation shown: 

 ∆ = 𝑛
𝐹𝐿

𝐸𝐴 𝑆
+ 𝑛 − 1

𝐹𝑆

𝐸𝐴
+ 𝑛 − 2 𝑛 − 1

𝐹𝑆

𝐸𝐴
   

 

2.36 

Where: 

𝑛  is the number of girders per cross-frame 

The first term corresponds to the displacement of the diagonal in the Z-frame, the second 

term corresponds to the displacement of the displacement of the top and bottom strut in the Z-

frame, and the third term corresponds to the displacement of the lean-on top and bottom struts. 

The expression may be rewritten as: 

 ∆ = 𝑛
𝐹𝐿

𝐸𝐴 𝑆
+ 𝑛 − 1

𝐹𝑆

𝐸𝐴
  2.37 

To result in the stiffness expression proposed:  

 𝛽 =
ℎ 𝑆 𝐸

𝑛 𝐿
𝐴

+
𝑆
𝐴

𝑛 − 1

 

 

2.38 

In this expression, the number of cross-frames per bracing line is assumed to be one, so 

𝑛  is effectively the number of girders. As an example, the idealization of a four-girder system is 

shown in Figure 2-12. The free body diagram shows the accumulation of forces that develop across 



  

36 

the width of the bridge. The bracing demand from the girders results in force couples that lead to 

the forces indicated in the figure. Some designs that have made use of Equation 2.38 have included 

more than one brace in a given line, which results in an erroneous estimate of the stiffness demand 

since the resulting value of 𝑛  in those cases is not representative of the force distribution across 

the cross-frame line. 

 

Figure 2-12. Force Distribution along Lean-On Bracing Line 

2.7. R-Factors 

From Equations 2.25 and 2.38, it is evident that the stiffness of the brace is a function of 

the axial stiffness of its individual members when the cross-frame is subjected to a moment. 

Although not explicitly presented, the inherent flexibility of the connections should also be 

considered in the evaluation of the overall brace stiffness, similar to what is done for cross-section 

distortional effects or in-plane girder flexibility. 

For many cross-frame applications, single-angle or tee sections are attached to connection 

or gusset plates along only one leg or flange, respectively. This, in turn, introduces an eccentric 

load path through the connection that can significantly impact the stiffness of the brace. In lieu of 

a more refined assessment of these softening effects, AASHTO LRFD (2020) recommends a 

simple reduction factor based on experimental and analytical studies conducted by Battistini et al. 

(2013, 2016) and Wang (2013). For stability bracing applications, a fixed factor of 0.65 can be 
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applied to the cross-sectional area of the diagonals and struts in the calculation of the brace 

stiffness. This reduction factor was calibrated to represent these softening effects for a wide range 

of common cross-frame configurations, connections, and member sizes.  

2.8. Torsional Bracing Strength Requirements 

In addition to being designed for adequate stiffness, cross-frames must be designed with 

adequate strength. The current strength requirements for both conventional and lean-on bracing 

systems are discussed in the following sections. 

2.8.1. Conventional Bracing 

In addition to stiffness requirements, the bracing also must satisfy strength requirements to 

effectively prevent LTB of a bridge girder. The forces in the cross brace are found based on the 

required moment in the brace, 𝑀 , that is calculated using the formulation shown in Equation 

2.15. The brace moment can be idealized as a force couple so that forces in the cross-frame 

members can be determined. The relationship between the torsional brace moment and forces 

induced in cross-frames are depicted in Figure 2-13 for X-frames in either a tension only cross-

frame or a compression system, as well as for K-frames.  

 

Figure 2-13. Idealized Cross-Frame Forces  
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As discussed previously, the AASHTO 10th Edition bracing provisions required twice the 

ideal stiffness for cross-frames at least equal to 80% of the girder depth, which will generally be 

the case. Provided that adequate stiffness is provided, the resulting girder twist is equal to the initial 

imperfection, 𝜃 , and the resulting bracing moment is 𝛽 𝜃 . This relationship is reflected by 

Equation 2.39.  

𝑀 = 𝛽 𝜃 = 𝐹 ℎ   
2.39 

The applied force couple in the brace results from the brace moment required to restrain 

girder twist. The couple is a  linear function of the required stiffness and an assumed initial 

imperfection (Helwig and Wang, 2003): 

𝐹 =
𝑀

ℎ
=

0.0048𝐿𝐿
𝑛𝐼 𝐸ℎ

𝑀
𝐶

ℎ
 

2.40 

Where:  

𝐹  is the force in the brace 

𝛽  is the bracing system stiffness 

From Equation 2.40, the force in each member can be estimated by evaluating the cross-

frame as an idealized truss subjected to a moment, or a resolved force couple at the top and bottom 

nodes of the truss. As shown in Figure 2-13, for a tension-only system, the force in the struts is 

equal to 𝐹  in compression, and the force in the tension diagonal is given by Equation 2.41 

(Helwig and Wang, 2003): 

𝐹 =   
2.41 
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After the stability-related member forces are calculated in accordance with Figure 2-13, 

cross-frame members can be sized for adequate strength. Note that the stability bracing forces in 

cross-frames are to be treated as any other load case such as wind or live load force effects in cross-

frames. As such, the stability bracing forces can and should be combined with other concurrently 

acting load cases via linear superposition.  

2.8.2. Lean-On Bracing 

Strength design for lean-on bracing is similar to conventional bracing. Helwig and Wang 

(2003) determined equations for the forces in lean-on bracing systems by conservatively utilizing 

the tension-model for cross-frames placed in exterior and interior bays. Equations 2.39 and 2.40 

are used to determine 𝐹 . In systems with the cross-frame placed in the exterior bay, the maximum 

force in the diagonals is: 

𝐹 =   2.42 

The maximum force in the struts in compression is: 

𝐹 = 𝑛 − 1 𝐹  2.43 

In systems with the cross-frame placed in the interior bay, the maximum force in the diagonals is: 

𝐹 =   2.44 

The maximum force in the struts in compression is: 

𝐹 = 𝐹  2.45 
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Chapter 3. Lean-On Brace Stiffness Derivations for One Exterior X- 
or K-Frame 

 
 

In the previous lean-on bracing studies outlined in Chapter 2, analytical equations were 

developed for the brace stiffness of conventional cross-frame applications as well as for lean-on 

bracing lines with a single cross-frame in the exterior bay. These equations are limited in scope of 

application by the number, type, and position of the cross-frame. In order to provide solutions 

appropriate for a wider range of applications, expressions were developed for the brace stiffness 

of lean-on cross-frame lines that are valid for Z-, X-, or K-shaped cross-frame geometries with any 

number of cross-frames in varying positions along the bracing line.  

3.1. Current Brace Stiffness Derivations 

This section begins with a detailed discussion of the stiffness expressions for conventional 

bracing as well as the lean-on applications overviewed in Chapter 2. Two particularly relevant 

derivations are provided for the brace stiffness: a single cross-frame, and a cross-frame line with 

a single exterior bay cross-frame and lean-on struts.  

3.1.1. Twin Girder System Derivation 

Yura (2001) developed expressions for the torsional brace stiffness of cross-frames with 

either Z-, X-, or K-shaped geometries. The Z-shaped cross-frame is also applicable to cross-frames 

with two diagonals, for which an engineer may conservatively neglect the compression diagonal 

due to the relatively low buckling strength of single-angle members that are frequently used for 

the braces. Such a cross-frame is often referred to as a tension-only diagonal system. The following 

discussion focuses on the derivation of the Z-shaped system. In the derivation, the cross-frame is 

idealized as a truss with axially loaded members. The method of virtual work can be used to derive 
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the expression. The idealization of this system is shown in Figure 3-1. The force demand on the 

cross-frame consists of a force couple on both ends, as shown in the figure.  

 

Figure 3-1. Twin Girder Brace Stiffness Idealization 

In this approach, Equation 3.1 and Equation 3.2 are combined to result in Equation 3.3, 

indicating that the displacement of the critical girder is the basis for calculating the provided 

stiffness. The critical girder is the one with the largest total displacement of the top and bottom. 

 𝑀 = 𝐹ℎ  3.1 

 𝛽 =
𝑀

𝜃
 3.2 

 𝛽 =
𝐹ℎ

∆
 3.3 

Where:  

𝑀 is the moment applied to the system 

𝐹 is a unit load applied at the top and bottom of each girder in the directions shown 

ℎ  is the depth of the cross-frame  

𝜃 is the rotation of the girder 

 ∆  is the displacement of the critical girder (here, ∆ + ∆ ) 
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From the virtual work procedure, ∆  is calculated, resulting in Equation 3.4 for 𝛽 . 

This equation represents the stiffness of a Z-shaped cross-frame. Yura (2001) presented similar 

derivations for X-type and K-type cross-frames.  

 𝛽 =
ℎ 𝑆 𝐸

2𝐿
𝐴

+
𝑆
𝐴

 3.4 

Where:  

𝑆 is the girder spacing 

𝐸 is the modulus of elasticity 

𝐿  is the length of the cross-frame diagonal members 

𝐴  is the cross-sectional area of the cross-frame diagonals 

𝐴  is the cross-sectional area of the cross-frame struts 

From Equation 3.4, it is evident that the stiffness of the brace is a function of the axial 

stiffness of the individual members when the cross-frame is subjected to equal force couples on 

either end. Although not explicitly presented, the inherent flexibility of the connections should 

also be considered in the evaluation of the overall brace stiffness, similar to what is done for cross-

section distortional effects or in-plane girder flexibility. 

As noted in Chapter 2, single-angle or tee sections are often used for cross-frames and are 

attached to connection or gusset plates with eccentric connections to the main member. These 

eccentricities lead to a reduction in stiffness, as covered in Battistini et al. (2013, 2016) and Wang 

(2013). The stiffness reduction is accounted for with a fixed reduction factor, R. The AASHTO 

LRFD (2020) recommends an R-value of 0.65 during construction and 0.75 in the completed 

bridge. The R-factor is applied to the cross-sectional area of the diagonals and struts in computer 
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analyses or stiffness equations. This reduction factor was calibrated to represent the softening 

effects for a wide range of common cross-frame configurations, connections, and member sizes. 

3.1.2. Original Lean-On Bracing Derivation 

Similar to the stiffness of a single cross-frame developed by Yura (2001), Helwig and 

Wang (2003) derived a generalized equation for the brace stiffness contribution in a lean-on 

bracing system that reflected the bracing load path of a series of adjacent girders restrained by top 

and bottom struts with a single cross-frame at one end of the bracing line. The expression is given 

by Equation 3.5.  

 𝛽 , =    3.5 

Where: 

 𝑛  is the number of girders per cross-frame 

Based on the specific geometry that was considered in the derivation, the number of cross-

frames per bracing line is assumed to be one, so 𝑛  is effectively the number of girders in this 

equation. The method of virtual work can be used to account for the axial shortening of the struts 

and diagonals based on the respective forces in the individual members. As an example, the 

idealization of a four-girder system is shown in Figure 3-2. The free-body diagram shows the 

accumulation of forces that develop across the width of the bridge. The bracing demand from the 

girders results in force couples that lead to the forces indicated in the figure.  
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Figure 3-2. Lean-On Bracing Stiffness Idealization 

The calculated brace stiffness of this system is shown in Equation 3.6. 

 𝛽 , (𝑛 = 4, 𝑛 = 1) =   3.6 

  
The expression in Equation 3.5 has been used in some designs for lean-on systems where 

more than one cross-frame in a given bracing line. Due to the definition for 𝑛  in Helwig and 

Wang (2003), which was the number of girders per cross-frame, designers simply divided the 

number of girders by the number of cross-frames. Although such an interpretation makes sense 

from the definition of the variable, the expression was not derived for such an application. 

Another limitation of the lean-on bracing stiffness and strength from Helwig and Wang 

(2003) is that only the Z-shaped cross-frame was considered in the derivation. When this equation 

is applied to X-shaped cross-frames, it is referred to as the tension model. One diagonal is assumed 

to act in tension, like the Z-frame, and the second cross-frame is conservatively neglected. 

However, this idealization can be overly conservative in many situations. Derivations for X-type 

and K-type cross-frames will improve the applicability to a wider array of systems. In the following 
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sections, the model validation process, derivation, and validation of lean-on bracing stiffness 

equations for K-frames and full X-frames are discussed. These derivations implicitly assume a 

placement of a single cross-frame on the outside bay of the bracing system, to mirror the approach 

utilized in the derivation of lean-on stiffness with the tension model. 

3.2. Derivations for Other Cross-Frame Shapes 

This section presents derivations of the lean-on stiffness equations considering one full X-

type or K-type cross-frame in an exterior bay of a cross-frame line. Modifications for lean-on 

applications with multiple cross-frames are discussed in Chapter 4.  

3.2.1. Two-Dimensional Model Validation 

In order to validate derived expressions, it was necessary to first develop models of cross-

frame system sections with the same assumptions as previous derivations (Yura, 2001; Helwig and 

Wang, 2003). SAP2000 was used to model the cross-frame line as a two-dimensional truss system. 

The fundamental assumption for truss members is that elements are subjected to pure axial load. 

The girders were assumed to have infinite stiffness (which was later shown to be inconsequential), 

and the cross-frame line was simply supported with lateral unit loads applied at the top and bottom 

of each girder to create a force couple on both ends of the cross-frame, as shown in Figure 3-3.  

  

Figure 3-3. Twin Girder Tension Model Idealization and Deformed Shape 
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In order to validate the modeling procedure for an analysis of the brace stiffness (𝛽 ), the 

computer models were compared with analytical solutions. First, a twin-girder system was 

considered. The current equation for the brace stiffness based on the shown tension model is given 

by Equation 3.4 (Yura, 2001). In order to calculate the stiffness of the model, Equation 3.3 was 

used, with ∆  indicating the sum of the respective displacements at the top and bottom of the 

right girder. Several cases were compared with an area of 6.45 in2 for all members, girder spacing 

of 96 inches, and cross-frame depth of 76 inches. The stiffness of a tension-only diagonal system 

was 2,185,000 kip-in/rad, which agreed exactly with the Z-frame stiffness model given in Equation 

3.4. The negligible error in the tension system SAP model relative to the tension system equation 

indicates the model is performing as expected.  

A model including the second diagonal in the cross-frame was also analyzed. It was 

observed that the full cross-frame model was more than twice as stiff as the tension model, 

indicating that the addition of the second cross-frame diagonal significantly improves the stiffness 

of the brace.  

3.2.2. Lean-On with K-Frames 

The derivation for lean-on with K-frames is based on Yura’s (2001) derivation for a K-

frame twin girder system. In this derivation, the diagonals are designed for tension and 

compression. The same assumptions as used for the tension model idealization apply, as shown in 

Figure 3-4.  
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Figure 3-4. Twin Girder K-Frame Idealization 

The real force distribution of the system is shown in Figure 3-5. 

 

Figure 3-5. Twin Girder K-Frame Real Force Distribution 

The virtual work force results for a unit force applied to the top of the right girder (T2) are shown 

in Figure 3-6.  

 

Figure 3-6. Twin Girder K-Frame Virtual T2 Force Distribution 

The virtual work force results for a unit force applied to the bottom of the right girder (B2) are 

shown in Figure 3-7. 

 

Figure 3-7. Twin Girder K-Frame Virtual B2 Force Distribution 
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The resulting displacement calculations are included in Table 3-1. 

Table 3-1. Virtual Work Calculations for Two Girders and One K-Frame 

Member Length Area 𝑭𝒓𝒆𝒂𝒍 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑻𝟐 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑩𝟐 ∆𝑻𝟐 ∆𝑩𝟐 

Top Strut 𝑆 𝐴  0 0 0 0 0 

Left Bottom Strut 𝑆/2 𝐴  𝐹 1 −1   −   

Right Bottom Strut 𝑆/2 𝐴  −𝐹 0 −1 0   

Left Diagonal 𝐿  𝐴  −   0 0 0 0 

Right Diagonal 𝐿  𝐴      0   0 

 From this, the total displacement of the critical girder is given by: 

∆ =  ∆ + ∆ = +   3.7 

This critical displacement can be used in Equation 3.3 to determine the stiffness of the system, as 

given by Equation 2.28.  

3.2.2.1. Lean-On Real Force Distribution 

It was necessary to develop a generalized force distribution for lean-on bracing with one 

K-frame. In order to accomplish this, the internal forces in systems with one K-frame and varying 

numbers of lean-on bays were compared. The forces vary based on the number of girders 

(effectively the number of lean-on bays) in the system. The distribution for one K-frame and one 

lean-on bay is shown in Figure 3-8. 
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Figure 3-8. Force Distribution for One K-Frame and Three Girders 

 
The distribution for one K-frame and two lean-on bays is shown in Figure 3-9. 

 

Figure 3-9. Force Distribution for One K-Frame and Four Girders  

A general form of the force distribution is shown in Figure 3-10.  

 

Figure 3-10. Generalized Lean-On K-Frame Force Distribution 

3.2.2.2. Lean-On Virtual Work Calculations 

Virtual work calculations were completed for systems with one K-frame and three or four 

girders. The forces in the girders are neglected because the modulus of the girders is assumed to 

be infinite. In SAP models with a girder modulus of 29,000 ksi as opposed to 29,000,000 ksi 

(multiplier of 1000), the difference in displacement was less than 1%, indicating that 𝛽  is 
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essentially the only stiffness component contributing. The calculations are shown in Table 3-2 and 

Table 3-3. 

Table 3-2. Virtual Work Calculations for Three Girders and One K-Frame 

Member Length Area 𝑭𝒓𝒆𝒂𝒍 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑻𝟑 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑩𝟑 ∆𝑻𝟐 ∆𝑩𝟐 

Top Strut 𝑆 𝐴  0.5F 0.5 0   0 

Left Bottom Strut 𝑆/2 𝐴  𝐹 1 −1   −   

Right Bottom Strut 𝑆/2 𝐴  −2𝐹 0 −1 0   

Left Diagonal 𝐿  𝐴  −   −   0   0 

Right Diagonal 𝐿  𝐴      0   0 

Lean-On Bottom Strut 1 𝑆 𝐴  −𝐹 0 −1 0   

Lean-On Top Strut 1 𝑆 𝐴  𝐹 1 0   0  

The total displacement of the critical girder in a three-girder system is given by Equation 3.8. 

∆ =  ∆ + ∆ = 6
𝐹𝐿

𝑆 𝐴 𝐸
+

16

4

𝐹𝑆

𝐴 𝐸
 3.8 
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Table 3-3. Virtual Work Calculations for Four Girders and One K-Frame 

Member Length Area 𝑭𝒓𝒆𝒂𝒍 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑻𝟒 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑩𝟒 ∆𝑻𝟐 ∆𝑩𝟐 

Top Strut 𝑆 𝐴  F 0.5 0   0 

Left Bottom Strut 𝑆/2 𝐴  𝐹 1 −1   −   

Right Bottom Strut 𝑆/2 𝐴  −3𝐹 0 −1 0   

Left Diagonal 𝐿  𝐴  −   −   0   0 

Right Diagonal 𝐿  𝐴      0   0 

Lean-On Bottom Strut 1 𝑆 𝐴  −2𝐹 0 −1 0   

Lean-On Top Strut 1 𝑆 𝐴  2𝐹 1 0   0  

Lean-On Bottom Strut 2 𝑆 𝐴  −𝐹 0 −1 0   

Lean-On Top Strut 2 𝑆 𝐴  𝐹 1 0   0  

The total displacement of the critical girder in a four-girder system is given by Equation 3.9. 

∆ =  ∆ + ∆ = 8 + 8   3.9 

3.2.2.3. Generalized Lean-On Stiffness Equation with One K-Frame 

A generalized displacement equation was determined for lean-on with one K-frame based 

on the virtual work calculations discussed previously. This expression is given by Equation 3.10. 

∆ = 2𝑛 + 𝑛 − 2 + + 𝑛 − 1 𝑛 − 2   3.10 

Where the first term corresponds to the displacements of the diagonals in the K-frame, the second 

term corresponds to the displacement of the top strut of the cross-frame, the third term corresponds 

to the displacement of the bottom strut of the cross-frame, and the last term corresponds to the 
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cumulative displacements of the top and bottom struts in lean-on bays. The equation may be further 

simplified to the form shown in Equation 3.11.  

∆ = 2𝑛 + 𝑛 − 𝑛 + 1   3.11 

This equation was validated against a model with six girders and one K-frame, with both 

the equation and the model computing a critical displacement of 0.0149 inches for the values 

included in Section 3.2. The resulting generalized stiffness equation for lean-on bracing with one 

exterior bay K-frame is given by Equation 3.12.  

𝛽 , =
( )

    3.12 

3.2.3. Lean-On with Full X-Frames 

Based on preliminary comparisons between the “full X-frame” and “tension model” SAP 

models discussed in Section 3.2, it was apparent that the tension model assumption was 

underpredicting the stiffness of the full cross-frame system by at least 50%. From these findings, 

it is necessary to include the contribution of the second diagonal member to accurately quantify 

the stiffness of the brace. Yura (2001) developed a “compression system” model which accounted 

for both X-frame diagonals, but assumed the top and bottom struts were zero-force members. 

When this model is applied to a lean-on bracing system, the system is unstable because the 

deflection of the cross-frame diagonals is not restrained laterally. Based on these observations, a 

new approach was developed to consider both of the diagonals, as well as the top and bottom struts 

of the X-frame for lean-on bracing lines.  
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3.2.3.1. Lean-On Real Force Distribution 

The idealization of a lean-on bracing line with one X-frame is an indeterminate system, so 

the derivation for a precise expression is reliant on pattern recognition in comparisons between 

models. Similar force paths as the Z-frame and K-frame were observed, with slightly different 

proportions. The distribution for one X-frame and one lean-on bay is shown in Figure 3-11. 

 

Figure 3-11. Force Distribution for One X-Frame and Three Girders 

The distribution for one X-frame and two lean-on bays is shown in Figure 3-12. 

 

Figure 3-12. Force Distribution for One X-Frame and Four Girders 

The general form of the X-frame force distribution is shown in Figure 3-13.  

 

Figure 3-13. Generalized Lean-On X-Frame Distribution 
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3.2.3.2. Lean-On Virtual Work Calculations 

Virtual work calculations were completed for systems with one X-frame and three or four 

girders. The member axial forces for the virtual force cases were obtained by applying a unit load 

to the appropriate model, and the values were converted into ratios of  𝐿, 𝑆, 𝐴 , and 𝐴 . As in 

previous derivations, the forces in the girders are neglected because the modulus of the 

girders is assumed to be infinite. The calculations for a three-girder system are shown in Table 

3-4, and the calculations for a four-girder system are shown in Table 3-5. 

Table 3-4. Virtual Work Calculations for Three Girders and One X-Frame 

Member Length Area 𝑭𝒓𝒆𝒂𝒍 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑻𝟑 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑩𝟑 ∆𝑻𝟐 ∆𝑩𝟐 

Top Strut 𝑆 𝐴  F         

Bottom Strut 𝑆 𝐴  − 𝐹    −   −    

Top Diagonal 𝐿  𝐴  − −    −    
_  

   

Bottom Diagonal 𝐿  𝐴       −      −   

Lean-On Bottom Strut 1 𝑆 𝐴  −𝐹 0 −1 0   

Lean-On Top Strut 1 𝑆 𝐴  𝐹 1 0   0  

The total displacement of the critical girder in a three-girder system is given by Equation 3.13.  

∆ =  ∆ + ∆ = +   3.13 
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Table 3-5. Virtual Work Calculations for Four Girders and One X-Frame 

Member Length Area 𝑭𝒓𝒆𝒂𝒍 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑻𝟑 𝑭𝒗𝒊𝒓𝒕𝒖𝒂𝒍𝑩𝟑 ∆𝑻𝟐 ∆𝑩𝟐 

Top Strut 𝑆 𝐴  𝐹         

Bottom Strut 𝑆 𝐴  −𝐹    −   −    

Top Diagonal 𝐿  𝐴  −2  −    −       

Bottom Diagonal 𝐿  𝐴  2      −     −   

Lean-On Bottom Strut 1 𝑆 𝐴  −2𝐹 0 −1 0 2   

Lean-On Top Strut 1 𝑆 𝐴  2𝐹 1 0 2   0  

Lean-On Bottom Strut 2 𝑆 𝐴  −𝐹 0 −1 0   

Lean-On Top Strut 2 𝑆 𝐴  𝐹 1 0   0  

The total displacement of the critical girder in a four-girder system is given by Equation 3.14. 

∆ =  ∆ + ∆ = 2 + 7   3.14 

3.2.3.3. Generalized Lean-On Stiffness Equation with One X-Frame 

A generalized displacement equation was determined for lean-on with one X-frame based 

on the virtual work calculations discussed previously. This expression is given by Equation 3.15. 

∆ = 𝑛 + 𝑛 − 2 + + 𝑛 − 1 𝑛 − 2   3.15 

Where the first term corresponds to the displacements of the diagonals in the X-frame, the 

second term corresponds to the displacement of the top strut of the cross-frame, the third term 

corresponds to the displacement of the bottom strut of the cross-frame, and the last term 

corresponds to the cumulative displacements of the top and bottom struts in lean-on bays. The 

equation may be further simplified to the form shown in Equation 3.16.  
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∆ = 𝑛 + 𝑛 − 𝑛 + 1   3.16 

This equation was validated against a model with six girders and one K-frame, with both 

the equation and the model computing a critical displacement of 0.0145 inches for the values 

included in Section 3.2. The resulting brace stiffness equation for lean-on bracing lines with one 

exterior bay X-frame is given by Equation 3.17. 

𝛽 , =
( )

  3.17 
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Chapter 4. Lean-On Brace Stiffness Equation Modifications for 
Multiple Cross-Frames 

 
 

Helwig and Wang (2003) derived a generalized equation for the brace stiffness contribution 

in a lean-on bracing system based on the tension model idealization developed by Yura (2001). In 

this expression, the number of cross-frames per bracing line is implicitly assumed to be one, so 

𝑛  is effectively the number of girders. As an example, the idealization of a four-girder system is 

shown in Figure 4-1. The corresponding value of 𝑛  is four.  

 

Figure 4-1. Four Girder, One Z-Frame Lean-On Bracing Stiffness Idealization 

Some designs that have made use of Equation 3.5 have included more than one brace in a 

given line, which results in an erroneous estimate of the stiffness demand since the resulting value 

of 𝑛  in those cases is not representative of the force distribution across the cross-frame line. In 

these cases, 𝑛  is calculated as the ratio of girders to cross-frames. For example, as shown in 

Figure 4-2, a bracing line with four girders and two Z-frames would be reduced to the same 

stiffness as a system with two girders and one Z-frame since both have a girder to cross-frame 

ratio of 2:1.  

 

Figure 4-2. Four Girder, Two Z-Frame Lean-On Bracing Stiffness Idealization 
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Currently, designers that have utilized lean-on bracing concepts often make use of more 

than one cross-frame in each line in their application of lean-on bracing. More than one brace per 

line is used in an attempt to reduce the demand on the cross-frame. However, the resulting 𝑛  that 

is used is not representative of the stiffness derivation for Equation 3.5. Therefore, it is necessary 

to develop an expression for the brace stiffness that accounts for the additional cross-frame relative 

to the Helwig and Wang expression in Equation 3.5. Four potential alternative approaches are 

described in the following sections in the context of a four-girder system with two Z-frames. As 

discussed in Gasser (2023), all four approaches were compared preliminarily, and the most 

promising approach was generalized to account for varying numbers of girders and configurations 

of cross-frames. A detailed parametric study was conducted to finalize the best approach and was 

validated for K and X-frames as well.  

4.1. Approaches for Multiple Cross-Frames 

4.1.1. Cross-Section Slice Approach 

The first method is called a “Cross-Section Slice Approach,” where a redundant cross-

frame is essentially ignored. This is shown for a four-girder system with two cross-frames in Figure 

4-3, where the left cross-frame is not considered in determining the brace stiffness. This results in 

∆  equal to the sum of ∆ , ∆ , ∆ , 𝑎𝑛𝑑 ∆ . The brace stiffness of the configuration is then 

calculated using Equation 3.5 or virtual work for a three-girder system, resulting in Equation 4.1.  
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Figure 4-3. Cross-Section Slice Approach 

 

 𝛽 =
∆

=   4.1 

4.1.2. Displacement Combination Approach 

A second method is called the “Displacement Combination Approach,” which is similar to 

the “Cross-Section Slice Approach,” but the displacement of the second girder is accounted for 

differently. In the “Cross-Section Slice Approach,” the displacement is ignored, whereas in 

“Displacement Combination Approach,” the displacement is accounted for by adding the second 

girder from the first cross-frame to the result obtained in the “Cross-Section Slice Approach.” This 

is shown in Figure 4-4, and the resulting stiffness is Equation 4.2. In this approach, ∆  is equal 

to the sum of ∆ , ∆ , ∆ , ∆ , ∆ , 𝑎𝑛𝑑 ∆ . 

 

Figure 4-4. Displacement Combination Approach 
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 𝛽 =
∆

=    4.2 

4.1.3. Stiffness Superposition Approach 

The third method is called the “Stiffness Superposition Approach” and is the least 

conservative of the four approaches. In this idealization, the cross-frame line is essentially broken 

into two single-cross-frame systems, and the respective stiffness values of each system are added 

together. This is shown for the four-girder, two-cross-frame system in Figure 4-5, with the 

resulting brace stiffness equation shown in Equation 4.3.  

 

Figure 4-5. Stiffness Superposition Approach 

 𝛽 = 𝛽 + 𝛽 = +   4.3 

4.1.4. Cross-Frame Coefficient Approach 

The fourth method is called the “Cross-Frame Coefficient Approach.”  In this idealization, 

the system is idealized as a cross-frame line with the same number of girders as the real system 

with a single exterior cross-frame and the remaining bays lean-on. The stiffness of that cross-frame 
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line is then multiplied by the number of cross-frames present. This is shown for the four-girder, 

two-cross-frame system in Figure 4-7, with the resulting brace stiffness equation shown in 

Equation 4.4.  

 

Figure 4-6.Cross-Frame Coefficient Approach 

 𝛽 = 2 × 𝛽 = 2 ×   4.4 

4.2. Comparison of Approaches 

Given that the equation variability from the model is insensitive to the geometry of the 

system, the same representative dimensions were used to run additional preliminary models in 

order to narrow down the approaches to include in a parametric study. In addition to the four-girder 

system with two cross-frames, the stiffnesses of six-girder systems with two and three cross-frames 

were calculated based on the four approaches and compared against the respective full cross-frame 

model. Results are shown in Table 4-1. The “Cross-Section Slice” approach was shown to be 

conservative in all cases without being excessively conservative, and thus was selected for further 

study.  
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Table 4-1. Preliminary Comparison of Approaches: 𝛽 , /𝛽 ,    

  4G 2 CF 6G 2CF 6G 3CF 

SAP Model - Tension System 1.0 1.0 1.0 

Helwig and Wang (1 CF) 0.5 0.6 0.4 

Lean-On Guide Interpretation (Holt et al., 2022) 1.6 2.3 2.8 

Cross-Section Slice 0.8 0.9 0.8 

Displacement Combination 0.6 0.7 0.4 

Stiffness Superposition 1.3 1.5 1.5 

Cross-Frame Coefficient 1.0 1.2 1.2 

4.3. Generalized Equation for Cross-Section Slice Approach 

The method selected to account for multiple cross-frames in the lean-on brace stiffness 

equation is the “Cross-Section Slice” (CSS) approach, where a redundant cross-frame is essentially 

ignored. In order to construct a universally applicable equation, the cross-section slice approach 

was applied to Equation 3.5, to result in Equation 4.5. The 𝑛  term was substituted for separate 

terms representing the number of girders and the number of cross-frames separately.  

 𝛽 , , =
( )

     4.5 

Where:  

𝑛  is the number of girders  

𝑛  is the number of cross-frames in the bracing line 

4.4. Detailed Validation of CSS Approach for Z-Frames 

A parametric study was conducted utilizing the representative cross-frame geometry 

discussed above. As discussed previously, the accuracy of the approach was found to be insensitive 

to the girder spacing, cross-frame height, and area of the cross-frame members. The remaining 

variable was the positioning of the cross-frame and lean-on struts along a cross-frame line. Various 
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cross-frame positions in girder systems ranging from two to sixteen girders were investigated. The 

results from the generalized CSS equation (Equation 4.5) were compared with finite element 

analysis results for varied cross-frame layouts. The stiffness obtained from the CSS equation was 

divided by the stiffness obtained from the SAP model to obtain a ratio where a value greater than 

one indicated the CSS equation was unconservative. Values less than or equal to one indicate an 

accurate or conservative expression. In all configurations, the equation was found to be exact or 

conservative. The analysis sets are discussed in detail below for a modulus of 29,000 ksi, an area 

of 6.45 in2 for all members, girder spacing of 96 inches, and cross-frame depth of 76 inches. A 

discussion of the CSS validation is available in Gasser et al. (2024).  

The exterior cross-frame position aligned to the left was studied first. One to nine cross-

frames were positioned next to each other on one side of two to ten girder systems. The stiffnesses 

resulting from each of the three calculations were normalized against the model stiffness, such that 

a value greater than 1.0 would indicate the equation giving a larger stiffness than the model, which 

is unconservative. In this configuration, the CSS approach was always conservative. For layouts 

with exactly one cross-frame, the equation predicted the exact same stiffness as the model. For 

cross-frame lines with more cross-frames, the conservatism of the equation relative to the model 

increased to a maximum of 25%. The results are depicted in Figure 4-7. Example cross-sections 

for six-girder bridges are shown to the left of the plot. Note that the right plot includes results for 

layouts with two to ten girders.  
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Figure 4-7. 𝛽 , , /𝛽 ,   for Exterior Z-Frames 

 Next, a similar approach was applied to a checkerboard pattern, with the cross-frame line 

bays alternating cross-frames and lean-on struts. In this layout, the least conservative configuration 

is an even number of girders missing cross-frames on ends. However, the equation was 

conservative for all layouts. The equation became increasingly more conservative with more 

girders, as shown in Figure 4-8. The left side of the figure illustrates six-girder layouts, and the 

right plot provides the result for layouts with two to eleven girders.  
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Figure 4-8. 𝛽 , , /𝛽 ,   for Checkerboard Z-Frames 

Cross-frame placements for interior and exterior bays were compared, as depicted in Figure 

4-9. Interestingly, the equation was most conservative for layouts with cross-frames placed in the 

two exterior bays, even compared to layouts with the same number of girders and more cross-

frames placed in interior bays. 

 

Figure 4-9. 𝛽 , , /𝛽 ,   for Interior and Exterior Z-Frames 
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In the next set of models, the number of cross-frames was kept constant, but the position 

of the cross-frame was changed. In the charts, the cross-frame axis was changed from the number 

of cross-frames to the position (or bay) of the first cross-frame in the line. In the case of the single 

cross-frame, the layouts with one cross-frame in the leftmost bay resulted in perfect agreement 

with the model, as this is the layout with which the equation was first derived. Results for cross-

frame lines with one, two, and three cross-frames are shown in Figure 4-10, Figure 4-11, and 

Figure 4-12, respectively. The equation was more conservative for cross-frames placed in interior 

bays, and most conservative for cross-frames placed furthest from the pin support. This confirms 

that the limiting cross-section pattern is cross-frames aligned to one side, near the pin support.  

 

Figure 4-10. 𝛽 , , /𝛽 ,   for One Z-Frame Varied Location 
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Figure 4-11𝛽 , , /𝛽 ,   for Two Z-Frames Varied Location 

 

 

Figure 4-12. 𝛽 , , /𝛽 ,   for Z-Frames Three Cross-Frames Varied Location 

Overall, the CSS equation results in perfect agreement with the SAP model for systems 

with only one exterior cross-frame and becomes increasingly conservative for systems 

approaching conventional bracing. The CSS approach results in the same stiffness value regardless 
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of cross-frame placement within the cross-frame line, as it is only dependent on the number of 

cross-frames and girders.  

The limiting cross-frame placement was found to be “cross-frames aligned exterior” 

(Figure 4-7), which is where all of the cross-frames were placed in adjacent exterior bays. This 

results in the largest possible number of adjacent lean-on bays. In other configurations, the model 

predicted greater stiffness values, indicating that the CSS equation is even more conservative for 

cross-frames positioned near the interior or spaced out along the cross-frame line. Quantification 

of these stiffness increases is discussed in Chapter 5.  

4.5. Validation of CSS Approach for Other Cross-Frame Shapes 

The CSS approach was validated for X-frames and K-frames in addition to the Z-frame 

shape. The equations derived in the previous section were modified and generalized to account for 

the CSS approach, and the procedure comparing SAP models with the equations used for Z-frames 

was applied.  

4.5.1. Lean-On K-Frames 

In the K-frame lean-on derivation, the generalized displacement of the critical girder is 

given by Equation 4.6.  

∆ = 2𝑛 + 𝑛 − 2 + + 𝑛 − 1 𝑛 − 2   4.6 

In order to apply the CSS approach and remove the implicit assumption of one cross-frame, 

the expression may be rewritten as Equation 4.7 



  

69 

∆ = 2(𝑛 − 𝑛 + 1) + 𝑛 − 𝑛 − 1 + + 𝑛 − 𝑛 𝑛 − 𝑛 − 1  4.7 

Which can be reduced to the form of Equation 4.8. 

∆ = 2𝑛 + 𝑛 + 𝑛 − 2𝑛 𝑛 − + −   4.8 

This form can be used to determine the stiffness as Equation 4.9. 

 𝛽 , , =
( )

  
 

4.9 

The result when the stiffness given by Equation 4.9 is divided by the stiffnesses from a K-

frame SAP model with the same cross-frames aligned exterior configuration is shown in Figure 

4-13. The agreement between the equation and the SAP model is better than with the Z-frames, 

likely due to the ability of K-frame members to carry compression as well as tension to better 

distribute the forces across the adjacent cross-frames. There is perfect agreement in systems with 

just one cross-frame, and the minimum value in the plot is 0.83.  

 

Figure 4-13. 𝛽 , , /𝛽 ,   for K-Frames Cross-Frames Aligned Exterior 
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The expression in Equation 4.9 contains many terms, so for the purposes of simpler 

application, an alternative form of the expression where the last three values in the second term of 

the denominator are neglected is given by:  

 𝛽 , , , =
( )

  
 

4.10 

The result for when the stiffness given by Equation 4.10 is divided by the stiffnesses from 

a K-frame SAP model with the same cross-frames aligned exterior configuration is shown in 

Figure 4-14. Similar trends are observed as for Equation 4.9, but the equation is more conservative, 

particularly for cross-frame lines with more cross-frames than lean-on bays. The maximum value 

in the plot is 0.98, and the minimum is 0.68.  

 

Figure 4-14. 𝛽 , , , /𝛽 ,   for Simplified K-Frame Equation Cross-Frames 

Aligned Exterior 
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4.5.2. Lean-On X-Frames 

In a similar fashion to the K-frame equation, in the X-frame lean-on derivation, the 

generalized displacement of the critical girder is given by Equation 4.11  

∆ = 𝑛 + 𝑛 − 2 + + 𝑛 − 1 𝑛 − 2   4.11 

In order to apply the CSS approach and remove the implicit assumption of one cross-frame, 

the expression may be rewritten as Equation 4.12.  

∆ = (𝑛 − 𝑛 + 1) + 𝑛 − 𝑛 − 1 + 𝑛 − 𝑛 𝑛 − 𝑛 − 1      4.12 

Which can be reduced to the form of Equation 4.13.  

∆ = (𝑛 − 𝑛 + 1) + 𝑛 + 𝑛 − 2𝑛 𝑛 − + −   4.13 

This form can be used to determine the stiffness as Equation 4.14.  

 𝛽 , , =
( )

  
 

4.14 

The result for when the stiffness given by Equation 4.14 is divided by the stiffnesses from 

an X-frame SAP model with the same cross-frames aligned exterior configuration is shown in 

Figure 4-15. The agreement between the equation and SAP model is again better than with the Z-

frames, likely due to the X-frame members ability to carry compression as well as tension to better 

distribute the forces across the adjacent cross-frames. There is perfect agreement in systems with 

just one cross-frame, and the minimum value in the plot is 0.85.  
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Figure 4-15. 𝛽 , , /𝛽 ,   for X-Frames Cross-Frames Aligned Exterior 

The expression in Equation 4.14 contains many terms, so for the purposes of simpler 

application, an alternative form of the expression where the last three values in the second term of 

the denominator are neglected is given by:  

 𝛽 , , , =
( )

     4.15 

The result for when the stiffness given by Equation 4.15 is divided by the stiffnesses from 

an X-frame SAP model with the same cross-frames aligned exterior configuration is shown in 

Figure 4-16. Similar trends are observed as for Equation 4.14, but the equation is more 

conservative. The maximum value in the plot is 0.97, and the minimum is 0.57.  
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Figure 4-16. 𝛽 , , , /𝛽 ,   for Simplified X-Frame Equation Cross-Frames 

Aligned Exterior 

4.6. Summary of CSS Equation 

The reduced expressions for all three cross-frame types are similar in form. Therefore, it is 

possible to write the generalized brace stiffness equation given by Equation 5.2, which accounts 

for any shape and number of cross-frames. The varying coefficients for each cross-frame type are 

implemented with the cross-frame type coefficient 𝐶 .  

 𝛽 , , = 𝑅
( )

   4.16 

Where:  

𝑅 is the stiffness reduction factor for connection eccentricity, 0.65 

𝐶  is the cross-frame type coefficient: 1.0 for Z-Frames, 0.5 for X-Frames, and 2.0 

for K-Frames 

𝑛  is the number of girders 

𝑛  is the number of cross-frames in a given bracing line  
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Chapter 5. Lean-On Brace Stiffness Equation Modifications for 
Interior Bay Cross-Frames 

 
 

The appropriate modification to the brace stiffness equation to account for the inclusion of 

more than one cross-frame in a given bracing line was discussed in the previous chapter. While 

the cross-section slice equations significantly decreased the excessive conservativism in the 

equations for multiple Z, X, and K-frames, the location of the cross-frame in the line was not 

precisely accounted for. The cross-frames were conservatively assumed to be located in adjacent 

exterior bays. The impact of this assumption and appropriate adjustments to the expression for the 

placement of the cross-frames are discussed in the following sections.  

5.1. Performance of Cross-Section Slice with Interior Cross-Frame Placement 

When a single cross-frame is placed near the middle bay of the cross-frame line, as opposed 

to in an exterior bay, the forces in several of the top and bottom struts are reduced. This reduction 

in the force distribution results in an increased stiffness of the system. However, the equations 

derived in Sections 3.1 and 3.2 and with the CSS approach do not take this into account. A 

comparison of stiffness results from SAP models with the equation for constant cross-frame 

dimensions is shown in Figure 5-1 for one, two, and three Z, X, or K-frames positioned in the 

middle of the cross-frame line. As shown, in some cases, the equation indicates as low as one-third 

of the stiffness of the model due to only changing the location of the cross-frame(s) in the bracing 

line. The different cross-frame shapes are shown to behave similarly, but the equation is 

consistently most conservative for X-Frames and least conservative for Z-frames. 
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Figure 5-1. Brace Stiffness Increase due to Interior Cross-Frame Placement 

The plots in Figure 5-1 are superimposed in Figure 5-2 to compare the significance of the 

number of cross-frames on the stiffness of the system. Overall, the equation predicts 34 to 73% of 

the stiffness indicated by the model. The results vary depending on the number of bays in the 

system. For systems with an even number of bays, systems with two cross-frames have the highest 

stiffness relative to the equation, while systems with an odd number of bays have the highest 

stiffness relative to the equation for one or three cross-frames. These are configurations where the 

cross-frames are perfectly centered in the bracing line. Additional study was conducted in order to 

reduce the variation in performance of the equation and reduce the level of conservativism to a 

more reasonable level.  
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Figure 5-2. Overlay of Brace Stiffness Increase due to Interior Cross-Frame Placement 

5.1.1. Revised Idealizations and Equation 

An updated idealization of the cross-frame line was proposed in order to account for the 

stiffness variance depending on the cross-frame position. Examples are shown in Table 5-3. A 

revised equation reflecting these changes is given by Equation 5.1. An 𝑛  term was introduced 

in the denominator of the equation in the term corresponding to the lean-on struts. This value is 

defined as the maximum number of adjacent lean-on bays in the cross-frame line and helps account 

for the stiffness increase (reduced number of adjacent lean-on bays) provided by an interior cross-

frame placement. The coefficient of the second term in the denominator of the CSS equation was 

𝑛 − 𝑛 . When all of the cross-frames are aligned to one side, this is equal to 𝑛 + 1. When the 

cross-frames are moved to an interior bay, 𝑛  is reduced, unlike the coefficient 𝑛 − 𝑛 . This 

allows the expression to account for the effect of cross-frame placement along the bracing line.  
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Table 5-1. Revised CSS Idealization 

 

 𝛽 , =
( ) ( )

   5.1 

Where:  

𝑛  is the maximum number of adjacent lean-on bays (or leaning girders) 

5.1.2. Modified Equation Performance 

The revised expression substantially reduces the error relative to the model for Z, X, and 

K-frames, while still maintaining a conservative value. The revised equation predicts 66 to 100% 

of the value indicated by the model, which is a significant improvement in performance. Layouts 

that have perfectly centered cross-frames are most conservative, while layouts with off-center 

cross-frames approach the same value as the model. Additionally, some of the conservatism is due 

to the simplification of the expression for X- and K-frames.  



  

78 

 

Figure 5-3. Modified Brace Stiffness Equation with Interior Cross-Frames 

5.2. Adjustments for Nonadjacent Cross-Frames 

The cross-section slice approach was observed to be excessively conservative for cross-

frame lines with nonadjacent cross-frames, such as in the checkerboard and X layouts (discussed 

in Chapter 8). The equation was studied and adjusted to increase precision without compromising 

the simplicity of the equation application.  

5.2.1. Checkerboard Layouts 

Cross-frame patterns that would be included in a Checkerboard layout using Z-, X-, or K-

frames were modeled. The respective stiffnesses were calculated using the displacement of the 

critical girder, which is consistent with the method used previously. These values are shown in 

Figure 5-4, where the cross-frame line patterns are indicated using “0” to designate lean-on bays 

and “1” to designate cross-frames. The stiffnesses of the models of the full cross-frame lines were 

compared with the stiffnesses of models of a single cross-frame.  
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Figure 5-4. Model Stiffness of Checkerboard Bracing Lines 

 
A significant reduction in stiffness can be observed for cross-frame lines with lean-on bays 

on both exterior bays. With this distinction, checkerboard cross-frame lines can be split into two 

groups: (1) lines with cross-frames in one or both of the exterior bays, or (2) lines with lean-on 

struts in both of the exterior bays. The cross-frame lines in the first group may be idealized as a 

single cross-frame, while the lines in the second group may be idealized as a single cross-frame 

with a lean-on bay on each side. To confirm this, the SAP model stiffnesses were divided by the 

idealized stiffness equation and plotted, as shown in Figure 5-5. Values in the plot that are less 

than or equal to 1.0 indicate the equation predicts a lower stiffness than the model, and the two 

values greater than 1.0 are within 10%.  
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Figure 5-5. Checkerboard Model Stiffness/Idealized Stiffness 

As a result, it is appropriate to use “effective” values of 𝑛 , = 2, 𝑛 , = 1, and 

𝑛 , = 0 for checkerboard cross-frame lines with at least one exterior bay with a cross-frame. 

For lines with two lean-on exterior bays, 𝑛 , = 4, 𝑛 , = 1, and 𝑛 , = 1 are the effective 

values. These findings are summarized in Table 5-2. 

Table 5-2. Effective Values for Checkerboard Patterns 
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5.2.2. Other Nonadjacent Cross-Frame Patterns 

A similar analysis was conducted for other nonadjacent cross-frame patterns. These 

remaining instances are grouped into cross-frame lines where greater than 50% of bays contain 

cross-frames and both exterior cross-frames contain cross-frames, cross-frame lines where less 

than 50% of bays contain cross-frames and both exterior cross-frames contain cross-frames, and 

instances where one or both exterior bays are lean-on. For cross-frame lines where greater than 

50% of bays and both exterior bays contain cross-frames, the twin girder idealization may be used. 

When less than 50% of bays contain cross-frames, and both exterior bays contain cross-frames, 

the effective number of adjacent lean-on bays in the system may be reduced to reflect the governing 

section, meaning that the maximum number of adjacent lean-on bays may be divided by two, and 

rounded up to the nearest whole number. When an exterior bay contains lean-on with any 

percentage of cross-frames, the effective numbers of girders and cross-frames may not be reduced, 

but the effective number of adjacent lean-on bays may be treated as in the previous case if adjacent 

lean-on bays are bounded on both sides by cross-frames. Examples of these three cases are shown 

in Table 5-3. 
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Table 5-3. Example Idealizations for Non-Checkerboard Nonadjacent Cross-Frame Patterns 

 

5.3. Summary of Brace Stiffness Equation 

With the adjustment for effective numbers of girders, cross-frames, and lean-on bays, the 

final generalized brace stiffness equation is given by Equation 5.2.  

 𝛽 , = 𝑅
𝐸𝑆 ℎ

𝐶 (𝑛 , − 𝑛 , + 1)
𝐿
𝐴

+ 𝑛 , + 1
𝑆
𝐴

  5.2 

Where:  

𝑅 is the stiffness reduction factor for connection eccentricity, 0.65 

𝐶  is 1.0 for Z-Frames, 0.5 for X-Frames, and 2.0 for K-Frames 

𝑛 ,  is the effective number of girders 

𝑛 ,  is the effective number of cross-frames in a given bracing line 

𝑛 ,  is the effective number lean-on bays 
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It is important to note that in lean-on systems, even when a full cross-frame line is present, the 𝐶  

factor for conventional bracing cannot be used. Examples of correct 𝑛 , , 𝑛 , , and 𝑛 ,  

values for given bracing lines are shown in Table 5-4. 

Table 5-4. Correct Values for Brace Stiffness Equation 
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Chapter 6. Field Instrumentation 

 
 

With revised brace stiffness equations validated for individual cross-frames, the next step 

was to develop detailed models of complete bridge systems to assess the performance of the brace 

stiffness in combination with the in-plane girder stiffness. This chapter includes detailed 

descriptions of the instrumentation and field assessment of three bridges utilizing lean-on bracing, 

with the validation of detailed ABAQUS models for each included in Chapter 7.  

6.1. Identification of Existing Lean-On Bridges 

In an effort to identify existing bridge designs utilizing lean-on bracing, as well as to gather 

information about the experiences of bridge engineers with existing design guidance, the research 

team conducted interviews and released an electronic survey in 2021. Three Texas Bridges 

utilizing lean-on bracing were identified in addition to the Lubbock bridges, of which the research 

team was already familiar.  

Engineers who were engaged in recent lean-on design applications provided information 

regarding the issues with interpreting and applying existing lean-on expressions in the design of a 

bridge over the Brazos River on SH 105. The lean-on system was designed primarily using the 

existing design expressions as developed by Helwig and Wang (2003). As a result of discussions 

with the engineers involved in the design, there were a few specific points of difficulty (specifically 

regarding the application of the current design expressions):  

1. The role/implementation of multiple cross-frames within a given bracing line  

2. Impact of girder continuity 

3. Effect of non-prismatic girder cross-sections  
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Based upon uncertainties in the potential behavior of the bridge during construction, the 

design team revisited their original analysis and design. During this process, concerns were raised 

about the stability of the system during deck casting. Due to the girders and cross-frames having 

already been fabricated, coupled with the simplistic nature of the existing design expressions, the 

design team conducted detailed finite element analyses (FEA) of the system to confirm that the 

bridge would be sufficiently stable.  

Another application of lean-on bracing was a bridge on Chisholm Trail Parkway at FM 

1902B, south of Fort Worth, Texas. The designer provided information from an electronic survey 

documenting the experience with lean-on bracing. The bridge was designed using the FEA 

program LARSA. Lean-on bracing was chosen for the purpose of handling heavy skew and 

minimizing fatigue effects. The designer utilized the Steel Bridge Design Handbook (Helwig and 

Yura, 2015) and previous project documents to complete the design. 

Lean-on bracing was also used on an overpass to IH35 E south of downtown Dallas. The 

lean-on system was designed primarily using finite element analysis. With proper modeling 

decisions, a 3D model inherently accounts for the impact of many of the parameters not yet fully 

accounted for in the original design expressions as developed by Helwig and Wang (2003). The 

existing design expressions, however, were used as a “check” of the FEA results.  

The survey received responses from several states, including engineers from Alaska, 

Arkansas, Connecticut, Florida, Illinois, Kentucky North Carolina, Pennsylvania, Tennessee 

Texas, Virginia, and Wisconsin. Of these responses, only a few had completed lean-on bracing 

projects, and fewer still had designed bridges while primarily utilizing the existing design 
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expressions. Concerns were raised by those who had completed lean-on bracing projects about 

how to appropriately calculate the brace stiffness at various locations within the structure.  

In response to a question about the reason for choosing lean-on bracing for their project, 

the primary reason identified was the benefit in heavy skew scenarios, followed by economy and 

facilitating erection, and the lowest priority was general fatigue performance. There were other 

reasons mentioned, including bridge widening and controlling deflection differentials. Designers 

utilized TxDOT Report 0-1772 (Helwig and Wang, 2003), the Steel Bridge Design Handbook 

(Helwig and Yura, 2015), previous project documents, and class notes to aid in the design process, 

but survey respondents noted that designing lean-on bracing required similar or more effort relative 

to conventional bracing.  

Regarding the responses from those who had not been a part of a lean-on bracing design 

project, all desired additional insight into lean-on bracing design concepts. However, many of the 

respondents noted the lack of confidence in lean-on bracing from government DOTs and practicing 

engineers due to the following reasons:  

1. A formal procedure for designing all types of bracing 

2. A dependence on knowing a contractor’s erection plan and the discrepancies between an 

assumed and desired erection sequence 

3. Lack of coverage in the AASHTO Bridge Design Specifications 

Although the research team continued the effort to identify a lean-on bridge currently in 

the construction phases, no active projects were identified that coincided with the duration of the 

research project. As such, the team moved forward with the field instrumentation of two completed 

Texas bridges. A brief background on prior instrumentation of a lean-on bracing system and the 
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instrumentation of the SH 105 Brazos River Bridge and the Chisholm Trail bridge are provided in 

the next sections. The research team had access to data from TxDOT Project 5-1772 on bridges in 

Lubbock, Texas, a field monitoring study on the first lean-on bridges constructed in Texas. Data 

gathered from the field instrumentations was used to validate models to be utilized in parametric 

studies on lean-on bracing, and findings are discussed in Chapter 7.  

6.2. Lubbock Bridge 

6.2.1. Background 

The 19th Street West Bound Bridge in Lubbock, TX (referred to as the Lubbock bridge), 

was instrumented as part of TxDOT Project 5-1772, which was the implementation study for 

TxDOT Project 0-1772, Cross-Frame and Diaphragm Behavior in Bridges with Skewed Supports. 

Romage (2008) provides a detailed discussion of the sensor layout for the project, where the 

instrumented cross-frames were chosen based on the critical design cases. The critical locations 

were the intermediate brace near the support and the braces closest to midspan, due to the girder 

moments and bracing layout. The lean-on equations discussed in Chapter 2 were used to size the 

cross-frame members, and the controlling angle size was used throughout the structure. It is 

important to note that this bridge has a 60-degree skew, resulting in different critical cases 

compared to a non-skewed bridge.  

These governing cases resulted in the instrumentation of the cross-frames designated in 

Figure 6-1. Because a given bracing line consists of bays with cross-frames and bays with only top 

and bottom struts, it is necessary to use specific designations to present the bracing layout. The 

cross-frames (designated X#), struts (designated S#), and girders (designated G#) were 

instrumented with strain gages, as shown in Figure 6-2 and Figure 6-3. The # following each 

member designator provides an indication of the strut or cross-frame number. Tilt sensors were 
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used to measure girder rotations at locations labeled “TS,” and laser distance meters were used to 

measure global deflections at locations designated A through K. “M” and “D” are used to designate 

multiplexers and dataloggers used for data acquisition. The laser distance meters provide distance 

measurements used to estimate girder deflections with a reading accurate to 1/32 in. Readings at 

each location are taken with the bridge unloaded and with the trucks in position, and the girder 

deflection is determined from the difference. Three readings are taken and averaged to obtain each 

measurement. The elastic strain readings from the sensors were used to determine the 

stresses/forces in the cross-frames during deck placement and during a live load test after the deck 

had cured.  

 

Figure 6-1. Lubbock Bridge Instrumentation Plan (Romage, 2008) 

  

Figure 6-2. Lubbock Bridge (a) Brace Angle and (b) Girder Gage Locations (Romage, 2008) 
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Figure 6-3. Lubbock Bridge Strut and Cross-Frame Strain Gage Locations (Romage, 2008) 

6.2.2. Data Archive 

Two cross-frame lines (CFL) were instrumented on the Lubbock Bridge: CFL #3 and CFL 

#7. Construction and live load data were collected for these cross-frames (Romage, 2008). During 

construction, a timeline for the pour is estimated based on field notes, and the assumed rate is 48 

feet per hour over approximately 6 hours. Strain data was collected during the pour, but deflections 

were not. 

Live load testing occurred in several stages due to the substantial number of cases tested, 

which can be subdivided by gridline number and truck positioning. The gridlines were positioned 

every 20 feet perpendicular to the longitudinal axis of the bridge, as shown in Figure 6-4. In total, 

there were 24 gridlines. The trucks were positioned in 6 different configurations with schematics 

provided in Appendix A.  

 Staggered ahead station 

 Staggered behind station 

 Side-by-side south 

 Side-by-side north 

 End-to-end south 

 End-to-end central 
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For a preliminary analysis, the research team on this project focused on the gridline subset 

with the largest axial forces, Grid #7. 

 

 

Figure 6-4. Lubbock Bridge Truck Positions (Romage, 2008) 

6.3. SH 105 Bridge at Brazos River 

6.3.1. Overview 

The bridge on SH 105 at the Brazos River is a three-span steel plate girder structure 

utilizing lean-on bracing, with prestressed concrete girder approach spans. A plan view of the three 

steel spans (denoted 6, 7, and 8) are shown in the framing plan in Figure 6-5, and a typical 

transverse section is shown in Figure 6-6. The spans are 234 feet, 300 feet, and 234 feet, 

respectively. The bridge is a five-girder system, with each bay braced by a full cross-frame 
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(denoted by a thicker line in the framing plan) or struts (denoted by a thinner line). The bracing 

layout of span 8 is a mirror image of span 6.  

 

 

Figure 6-5. SH 105 Bridge Framing Plan 

 

 

Figure 6-6. Typical Transverse Section on SH 105 Bridge 

 
Prior to instrumentation, the research team visited the SH 105 bridge to inspect the site for 

accessibility. Figure 6-7 and Figure 6-8 are photographs taken by the research team on September 
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24, 2020. As shown in the pictures, Spans 7 and 8 cross over the Brazos River, and as such, are 

not conveniently accessible. Span 6, however, extends over a flat grassland, which allowed for a 

simpler method of accessing the bridge members for instrumentation.  

     

Figure 6-7. SH 105 Bridge Span 7-8 

 

    

Figure 6-8. SH 105 Bridge Span 6 

6.3.2. Sensor Layout 

The purpose and scheme for the instrumentation of the bridge on SH 105 at the Brazos 

River is similar to that of the 19th Street Westbound Bridge discussed in the previous section. 
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Measurements from strain gages were utilized for determining the force distribution in select 

girders, cross-frames, and struts. Girder displacements were also measured in order to quantify 

global behavior.  

To determine an efficient placement of the strain gages, a preliminary analysis to estimate 

the girder moments and global displacements was considered, as differential vertical movement of 

the girders induces cross-frame and strut forces. As a result, locations of relatively high positive 

bending moment were selected. For this continuous end span, relatively large positive moments 

(and vertical deflections) occur approximately in the range of 25-55% of the span length from the 

exterior support. Therefore, bridge cross-sections within this portion of the span were selected. 

Other motivating factors for the instrumentation locations included the number and position of the 

cross-frames. The finalized strain gauge layout for Span 6 of the SH 105 bridge is shown in Figure 

6-9, and the layout for the girder displacement readings is shown in Figure 6-10. Girder deflections 

were determined with a laser distance meter using the same method applied in the Lubbock Bridge 

load testing discussed in the last section. Cross-frame line 5 was chosen because it is close to 

midspan, while line 3 was selected to compare the behavior of cross-frames centered in the cross-

section as compared to near the edge. 
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Figure 6-9. SH 105 Bridge Span 6 Strain Gauge Layout 

 

Figure 6-10. SH 105 Bridge Span 6 Girder Displacement Layout 

A more granular look at the sensor layout for each member type is provided below. These 

sensor placements are again similar to the locations used on the 19th Street Westbound Bridge 

discussed in the last section. Each cross-frame is composed of angles, so four strain gauges were 

required to accurately capture out-of-plane behavior and twist for each member cross section. As 

such, the conventions “OH” for outer horizontal, “IH” for inner horizontal, “OV” for outer vertical, 
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and “IV” for inner vertical describe the sensor placement on each angle. A visual representation 

of the location of the four strain gauges on each angle is shown in Figure 6-11. 

 

Figure 6-11. Strain Gage Placement on Angles  

During field instrumentation, a slight revision was made to the sensor positioning on the 

top struts. With the deck in place, access to the top of the top strut was excessively difficult. Instead 

of placing the OH strain gauge as indicated in Figure 6-11, this sensor was placed as indicated in 

Figure 6-12 for all top struts.  

 

Figure 6-12. Revised Strain Gauge Placement on Top Struts 

The top struts were instrumented to obtain a measure of the role of the composite bridge 

deck, and to observe the lateral force distribution between the cross-frames and lean-on bays. The 

composite bridge deck represents a relatively rigid element, and the forces in the top struts should 
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be small. This meant each instrumented cross-frame required 16 strain gauges, while each 

instrumented lean-on bay required eight strain gauges. The labeling convention is shown in Figure 

6-13, where “ST” denotes strut, top; “SB” denotes strut, bottom; “XT” denotes cross-frame, top; 

and “XB” denotes cross-frame, bottom. 

 

Figure 6-13. Strain Gage Placement on Cross-Frames and Struts 

To capture global behavior, each girder was instrumented with two strain gages at the 

bottom flange, with the center girder instrumented with two additional strain gauges at mid-height. 

Although this girder instrumentation was not as extensive as on the 19th Street bridge, the SH 105 

bridge is not skewed, and thus out-of-plane bending and distortion of the girders were not the 

primary concerns. As shown in Figure 6-14, N and S were used to denote the North and South 

sides of the girder, with the number 1 designating a flange location and 2 designating a web 

location.  
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Figure 6-14. Strain Gage Placement on Center Girder 

All sensor list conventions are provided in Appendix B, while the full sensor list is located 

in Appendix C.  

6.3.3. Data Acquisition 

Two Campbell Scientific CR6 dataloggers (DAQ) and seven Campbell Scientific 

AM16/32B multiplexers (MUX) were used to collect data from the 108 strain gauges specified in 

the layout. Each DAQ was coded and powered independently, with DAQ 1 collecting data from 

MUX 1-4 for cross-frame line 5, and DAQ 2 collecting data from MUX 5-7 for cross-frame line 

3. The wiring diagram is shown in Figure 6-15. 
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Figure 6-15. SH 105 Bridge Wiring Diagram 

Both DAQs were programmed to sample data at 30-second intervals, and timestamps were 

manually recorded at the start of each load case to allow for continuous data collection as trucks 

were moved to specific locations and paused to collect data. The data was sampled a minimum of 

5 times for each loading and unloading position to allow for stable readings to be taken, and select 

sensors were monitored throughout the test to ensure values were properly recorded (Figure 6-16).  

 

Figure 6-16. Sensor Monitoring During Loading 



  

99 

6.3.4. Live Loading 

Before live load testing could occur, load case patterns were determined based on the 

position of the cross-frame lines instrumented. Identifiers were provided on the deck using spray 

paint and duct tape to assist in positioning the trucks into the proper position for each load case. 

The load case patterns are provided in Appendix D, along with actual truck positions during these 

load cases.  

Truck loading was conducted on July 13, 2021, using four trucks loaded with sand/gravel. 

Prior to testing, each truck was measured and weighed using two vehicle scales. The scales 

provided a measure of the wheel loads and were positioned in front of each select wheel, and the 

truck drove onto the scale. Measurements for each truck are shown in Figure 6-17, while the axle 

weights are listed in Table 6-1.  

 

Figure 6-17. SH 105 Bridge Truck Dimensions for Live Load Testing 
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Table 6-1 SH 105 Bridge Measured Truck Weights 

Truck # 
Steer Axle 

(lb) 
Forward Drive 

Axle (lb) 
Backward Drive 

Axle (lb) 
Gross Vehicle 

Weight (lb) 

1 11250 16800 16000 44050 

2 12050 20450 19900 52400 

3 12200 19850 19900 51950 

4 12650 21650 20600 54700 

 
Each truck was labeled with a number to keep track of the position of each truck during 

each test. The numbers were attached on the rear of each truck and also on the front bumper, as 

shown in Figure 6-18.  

 

Figure 6-18. Truck Setup for SH 105 Bridge Load Case #1 

During testing, the following four-step process was followed for the nine load cases tested: 

1. Collect unloaded deflection at midspan and strain measurements for five minutes. 

2. Position trucks into desired load case. 

3. Collect loaded deflection at midspan and strain measurements for five minutes. Collect 

truck distances from the ideal location using measure tape (Figure 6-19). 

4. Remove trucks from the span. 
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After testing was complete, the duct tape markers for positioning trucks were removed from the 

deck, and all trucks were cleared of any markings. 

 

Figure 6-19. Measuring the Distance Between Trucks 

6.4. Chisholm Trail Bridge at FM1902 

6.4.1. Overview 

The FM 1902B Overpass at Chisholm Trail Parkway is a six-girder bridge located in 

Johnson County, Texas, south of Fort Worth, which is in use for the Chisholm Trail Parkway toll 

road. The girders are spaced at 10 feet, and each side of the bridge has a 4-foot overhang. The 

bridge consists of three spans of 180.5 feet, 235 feet, and 195 feet for a total length of 611 feet. 

The bridge has a width of 58 feet and has a 45-degree skew at the supports. The use of lean-on 

bracing resulted in a replacement of 155 of the 203 intermediate cross-frames with lean-on struts, 

a reduction of approximately 76% cross-frames. The cross-frames are spread out across the width, 

as shown in Figure 6-20.  

  



  

102 

 

Fi
gu

re
 6

-2
0.

 C
hi

sh
ol

m
 T

ra
il

 B
ri

dg
e 

Fr
am

in
g 

P
la

n 

 



  

103 

A typical transverse section of the bridge is shown in Figure 6-21. The Chisholm Trail 

bridge has an interior barrier that separates north and southbound traffic, which was recognized by 

the researchers as a factor impacting live load testing by limiting load cases across the width of 

the bridge.  

 

Figure 6-21. Chisholm Trail Bridge Typical Transverse Section 

During a site visit, the research team was able to determine that both Spans 1 and 3 were 

accessible to instrumentation from beneath the bridge without the need for traffic closures. The 

flat grass areas under these spans are ideal for access during instrumentation and are shown in 

Figure 6-22. The research team selected Span 1. 
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Figure 6-22. Chisholm Trail Bridge Spans 

6.4.2. Sensor Layout 

The instrumentation plan of the Chisholm Trail bridge was focused on monitoring two key 

locations: midspan and near the interior pier. Similar to the data collection for  the SH 105 and the 

19th Street Westbound Bridges, strain gauges were placed and deflections were measured near 

midspan to capture the effect of the high positive bending moment and maximum bridge 

deflection. Strain gauges placed at the interior pier were used to collect data related to the effect 

of the system’s skew and cross-frame detailing on the pier. 

The research team used 128 strain gauges. The final strain gauge layout for the Chisholm 

Trail bridge is illustrated in Figure 6-23, while the locations for deflection measurements are 

shown in Figure 6-24. The deflection readings were determined with the laser distance meter in 

the same way as for the Lubbock and SH 105 Bridges.  
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Figure 6-23. Chisholm Trail Bridge Span 1 Strain Gauge Layout 

 

 

Figure 6-24. Chisholm Trail Span 1 Girder Displacement Layout 

As discussed in the section outlining the instrumentation plan for the SH 105 bridge, the 

typical convention for each sensor is “OH” for the outer horizontal, “IH” for the inner horizontal, 

“OV” for the outer vertical, and “IV” for the inner vertical. Numbers are added to the double angle 

members to further distinguish sensor locations.  
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The sensor locations on the double-angle top and bottom struts are displayed in Figure 

6-25. Due to the detailing on these members, the double angle members are assumed to function 

as a built-up member with a concentric connection, and only four total sensors were used. The 

sensor location on the horizontal was selected based on accessibility. 

      

Figure 6-25. Chisholm Trail Double Angle Top and Bottom Strut Strain Gauge Placement 

Figure 6-26 displays the sensor locations on single-angle top and bottom struts. The sensor 

location on the horizontal was based on accessibility and was similar to the selected locations used 

for the SH 105 Bridge.  

       

Figure 6-26. Chisholm Trail Single Angle Top and Bottom Strut Strain Gauge Placement 

Similar to the SH 105 Bridge, the labeling convention is shown in Figure 6-27, where “ST” 

denotes strut, top; “SBE” denotes strut, bottom east; “SBW” denotes strut, bottom west; “XT” 

denotes cross-frame, top; and “XB” denotes cross-frame, bottom. Two of the three instrumented 

K-frames include a top strut sensor set for a total of 20 sensors (16 for the third K-frame). Each 
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lean-on bay has eight sensors. Girder sensor placements remained unchanged from Section 6.3.2. 

All labeling conventions can be found in Appendix D, while the full sensor list is given in 

Appendix E. 

 

Figure 6-27. Chisholm Trail Strain Gauge Placement on Cross-Frames and Struts 

6.4.3. Data Acquisition 

Data acquisition for the Chisholm Trail bridge was similar to the systems used for 

collecting data from the SH 105 Bridge. Two Campbell Scientific CR6 dataloggers (DAQ) and 

eight Campbell Scientific AM16/32B multiplexers (MUX) were used to collect data from the 128 

strain gauges specified in the layout. Each DAQ was coded and powered independently, with DAQ 

1 collecting data from MUX 1-4 (cross-frame line 8), and DAQ 2 collecting data from MUX 5-8 

(primarily cross-frame lines 13 and 15). The wiring diagram is shown in Figure 6-28.  
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Figure 6-28. Chisholm Trail Strain Gauge Placement on Cross-Frames and Struts 

6.4.4. Live Loading 

The live load cases for the Chisholm Trail Bridge were selected based on preliminary Finite 

Element Analyses (FEA), data collected during the testing of the Lubbock bridge, and the position 

of the instrumented cross-frame lines. All live load cases for the Chisholm Trail Bridge are 

included in Appendix F.  

Live load testing was conducted on November 14, 2021, utilizing four trucks supplied by 

TxDOT. Trucks were measured via tape measure and weighed using two vehicle scales. 

Measurements are displayed in Figure 6-29, and axle weighs are listed in Table 6-2. To avoid data 

contamination from other bridge traffic, the researchers worked with the toll authority to have the 

bridge shut down to traffic for approximately three hours. The traffic was diverted from the toll 

road via detour.  
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Figure 6-29. Chisholm Trail Bridge Truck Dimensions for Live Load Testing  

Table 6-2 Truck Weights for Live Load Testing of the Chisholm Trail Bridge 

Truck # 
Steer Axle 

(lb) 
Forward Drive 

Axle (lb) 
Backward Drive 

Axle (lb) 
Gross Vehicle 

Weight (lb) 

1 11000 15800 16050 42850 

2 11750 14200 14800 40750 

3 11200 14700 15100 41000 

4 11100 14500 14650 40250 
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Figure 6-30. Chisholm Trail Bridge Load Case 4 

After labeling the trucks to keep track of their positions, live load testing occurred using 

the same four-step procedure previously discussed: 

1. Collect unloaded deflection at midspan and strain measurements for five minutes. 

2. Position trucks into desired load case. 

3. Collect loaded deflection at midspan and strain measurements for five minutes. Collect 

truck distances from the ideal location using measure tape. 

4. Remove trucks from the span. 

In total, six load cases were completed for the Chisholm Trail Bridge. Upon completion of 

the testing, all markings and duct tape were removed from the bridge. 
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6.5. Data Processing 

6.5.1. Strain Gauge Readings to Axial Forces 

In order to convert the measured strains from the cross-frames into axial forces and stresses, 

a linear regression procedure outlined in Helwig and Fan (2000) Appendix B was used. The cross-

frames were made up of angle sections. According to the mechanics of thin-walled structures, no 

warping stresses are induced in these cross-sections when members are subjected to torsional 

moments. Therefore, longitudinal stresses are caused exclusively by axial force and bending 

moment and are distributed linearly along the cross-section of the bracing members. The 

longitudinal stress distribution is described by the following equation:  

 𝑓 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 6.1 

Where: 

 𝑓 is the longitudinal stress (determined from Hooke’s Law as the measured strain 

multiplied by the modulus of elasticity E) 

 𝑥, 𝑦 are locations on the coordinate system of the cross-section 

 𝑎, 𝑏, 𝑐 are constants 

The Regression Method is used to determine constants b and c using the following 

equations:   

 𝐼 𝑏 + 𝐼 𝑐 = 𝐼  6.2 

𝐼 𝑏 + 𝐼 𝑐 = 𝐼  6.3 

Where: 

 𝐼 = ∑  (𝑥 − �̅�)   
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 𝐼 = ∑  (𝑦 − 𝑦)   

 𝐼 = 𝐼 = ∑  (𝑥 − �̅�)(𝑦 − 𝑦) 

 𝐼 = ∑ (𝑥 − �̅�) 𝑓 − 𝑓̅  

 𝐼 = ∑ (𝑦 − 𝑦) 𝑓 − 𝑓̅  

 �̅� = ∑  𝑥  

 𝑦 = ∑  𝑦   

 𝑓̅ = ∑  𝑓  

The constant 𝑎 from Equation 6.1 is then calculated using: 

𝑎 = 𝑓̅ − 𝑏�̅� − 𝑐𝑦 6.4 

The axial force in the member can be derived using beam-column theory after the constants 

in Equation 6.1, are determined. If the origin of the x-y coordinate system passes through the 

centroid of the cross-section, the axial force is given by: 

𝑁 = 𝑎𝐴 6.5 

Where: 

 𝑁 is the axial force 

 𝐴 is the cross-sectional area of the member 

Detailed sample calculations for this method are included in Appendix H. Calculated axial 

forces based on strain measurements for Lubbock Bridge, SH 105 Bridge, and Chisholm Trail 

Bridge are included in Appendices I, J, and K. 
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6.5.2. Deflection Measurements 

Deflection readings were measured using laser distance meters from ground level beneath 

the span. Quick-setting Hydrostone was used to create a level surface in holes dug directly below 

the reading locations. The laser distance meters were positioned on the hardened Hydrostone 

surface next to a marked location to ensure consistency in the readings. Upon taking a 

measurement, the meters collected three rounds of data from each position. Readings were taken 

with each bridge loaded and unloaded between each truck position. During post-processing, these 

three data points were averaged and rounded to the nearest unit able to be collected by the strain 

gauge. After all data points were averaged, the deflection measured during a load case was 

subtracted by the deflection measured during the last zeroth case (no load on bridge). The 

difference in these quantities signified the deflection of the bridge. Deflection measurements for 

the SH 105 Bridge and Chisholm Trail Bridge are included in Appendices J and K. 
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Chapter 7. Bridge Model Validation 

 
 

Parametric finite element models were used in the study to develop an understanding of 

the system behavior and provide comprehensive results that could be used to establish consistent 

design guidance for a broad range of lean-on bracing applications. Therefore, accurate modeling 

methods are crucial for the development of correct guidance. The data from the field monitoring 

of bridges under construction (Lubbock Bridge) and the completed bridges (SH105 and Chisholm 

Trail Bridges) were used for validation of the modeling procedures.  

The model validation process consists of of modeling the subject of the experimental data 

in a finite element analysis program, identifying key validation parameters affecting the results, 

and determining the minimum complexity of the model required to get representative results of 

the real system. The SH 105, Chisholm Trail, and Lubbock bridges were modeled using ABAQUS 

2022 based on design drawings and field measurements. The key validation parameters affecting 

the results were identified as the support conditions, the deck and barrier stiffnesses, as well as the 

R-factors for the cross-frame members. The identification of these parameters led to adjustments 

to the model’s element structure, mass distribution, and material properties. With accurate values 

for these parameters, high-fidelity models of SH 105, Chisholm Trail, and Lubbock bridges were 

developed.  

This dissertation includes the validation of the three bridge models. This work was 

conducted in collaboration with Aidan Bjelland. In order to test the variables described previously, 

a Python script was developed by Bjelland to efficiently build and analyze hundreds of detailed 

models with varied parameters in Abaqus. The models were compared with field instrumentation 
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data in an objective function produced and processed by the author. Details regarding the Abaqus 

modeling procedures and Python scripting logic may be found in TxDOT Report 0-7093-1 (Helwig 

et al., 2024) and Bjelland (2024).  

7.1. Objective Functions 

The data points from the models were compared with measured values of the girder 

displacements in order to validate the support conditions and concrete modulus of elasticity. 

Models of each bridge were built and analyzed using ranges of values for the stiffness of the 

support conditions and the modulus of elasticity. In order to determine the most accurate 

combination of values for the support conditions and modulus, the displacement of the girders in 

the model was compared with the measured values for several truckload cases. In order to 

effectively compare these values, an equation for a square root sum of squares objective function 

was used, as shown in Equation 7.1. The resulting value represents the total sum of the error from 

every data point measured in inches.  

𝑜𝑏𝑗 = ∆ − ∆  
 

7.1 

Where:  

T is the number of load cases considered 

𝑛  is the number of girders 

∆  is the experimental girder deflection (in) 

∆  is the model girder deflection (in) 
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7.2. SH 105 Bridge Model Validation 

The geometry of the SH 105 at the Brazos River bridge and the layout of instrumentation 

were discussed in Section 6.3. This section provides the steps that were utilized to validate the 

FEA model based on the field data. In order to validate an Abaqus model of the SH 105 bridge, 

emphasis was placed on the spring and deck stiffness parameters. Parametric studies were run in 

order to determine the effect of the elastic modulus of the deck, elastic modulus of the bridge rails, 

and the support conditions. The test range of the elastic modulus was 1000 ksi to 5000 ksi in 

increments of 100 ksi. The bearing stiffness was adjusted based on a normalization of the default 

values in increments of 10% of the base value within a range of 80% to 120%. After analysis of 

the results, the models were determined to be insensitive to the modulus of the barrier and 

insensitive to the spring stiffness value. Overall, the displacement results were primarily affected 

by the deck modulus. The range of objective function values can be seen in Figure 7-1, with an 

optimum deck modulus of 5200 ksi and 100% spring stiffness. Plots of the girder deflections for 

this model are shown in Figure 7-2 through Figure 7-5. The agreement between measured and 

predicted values is reasonable and well within the resolution of the laser distance meter used to 

measure displacement, which was 1/16.  
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Figure 7-1. SH 105 Spring and Deck Stiffness Objective Function 
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Load Case 1 Displacements [in] 

G Experimental Model 
Exp/Model 
Difference 

1 -1.04 -0.98 0.06 

2 -1.05 -1.02 0.03 

3 -1.15 -1.04 0.11 

4 -1.10 -1.04 0.06 

5 -1.10 -1.02 0.08 

  Average 0.07 

Figure 7-2. SH 105 Bridge Girder Displacements Load Case 1  

 
 

Load Case 2 Displacements [in] 

G Experimental Model 
Exp/Model 
Difference 

1 -0.10 -0.05 0.05 

2 -0.43 -0.40 0.03 

3 -0.73 -0.77 0.04 

4 -1.04 -1.13 0.09 

5 -1.29 -1.48 0.19 

  Average 0.08 

Figure 7-3. SH 105 Bridge Girder Displacements Load Case 2 
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Load Case 3 Displacements [in] 

G Experimental Model 
Exp/Model 
Difference 

1 -1.73 -1.70 0.03 

2 -1.43 -1.38 0.05 

3 -1.01 -1.01 0.00 

4 -0.60 -0.62 0.02 

5 -0.21 -0.24 0.03 

  Average 0.03 

Figure 7-4. SH 105 Bridge Girder Displacements Load Case 3 

 

Load Case 4 Displacements [in] 

G Experimental Model 
Exp/Model 
Difference 

1 -0.16 0.10 0.26 

2 -0.18 -0.24 0.06 

3 -0.62 -0.59 0.03 

4 -1.05 -0.95 0.10 

5 -1.38 -1.31 0.07 

 Average 0.10 

Figure 7-5. SH 105 Bridge Girder Displacements Load Case 4  

7.3. Chisholm Trail Bridge Model Validation 

The Chisholm Trail Parkway overpass at FM 1902B is a completely constructed six-girder 

bridge located in Johnson County, Texas, south of Ft. Worth. The bridge geometry and 

instrumentation were discussed in Section 6.4. The validation of the Chisholm Trail bridge was 

conducted similarly to the SH 105 bridge model. However, there are two key differences between 

the two bridges. The Chisholm Trail bridge has a large barrier in the middle of the deck and utilizes 

some double-angle members, while SH 105 does not. The interior barrier greatly affected the 
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stiffness of the system and thus was a significant focus in the stiffness validation. The parametric 

studies varied the elastic modulus of the deck, the elastic modulus of the barrier, and the stiffness 

of the support conditions. The range of the elastic modulus evaluated was 1000 ksi to 5000 ksi. 

The spring stiffness was adjusted based on a normalization of the default values in increments of 

10% of the base value from 80% to 120%. Similar to the findings from SH 105, the behavior of 

the model was found to be insensitive to the spring stiffness value, and the base approximation 

was acceptable. Unlike the SH 105 model, however, both the modulus of the deck and barrier 

influenced system performance. The analysis of the system was conducted with variations of the 

modulus of the deck and barrier/rails from 2000 to 5000 ksi in increments of 750 ksi. The objective 

function results are provided in Figure 7-6. The modulus of the deck with the best correlation is 

shown to be 4250 ksi, and the modulus of the barrier and rails is 5000 ksi. The resolution of the 

laser distance meter used to measure displacement is 1/16, and many of the model values are 

within or close to that tolerance.  

 

Figure 7-6. Chisholm Trail Deck and Barrier Stiffness Objective Function  
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Load Case 1 Displacements [in] 

G Experimental Model 
Exp/Model 
Difference 

1 0.01 -0.04 0.05 

2 -0.05 -0.07 0.02 

3 -0.10 -0.12 0.02 

4 -0.20 -0.20 0.00 

5 -0.31 -0.31 0.01 

6 -0.49 -0.45 0.04 

 Average 0.02 

Figure 7-7. Chisholm Trail Girder Displacements Load Case 1 

 
 

Load Case 2 Displacements [in] 

G Experimental Model 
Exp/Model 
Difference 

1 0.00 -0.06 0.06 

2 -0.09 -0.12 0.02 

3 -0.19 -0.19 0.00 

4 -0.32 -0.31 0.01 

5 -0.46 -0.45 0.01 

6 -0.58 -0.57 0.02 

 Average 0.02 

Figure 7-8. Chisholm Trail Girder Displacements Load Case 2 
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Load Case 3 Displacements [in] 

G Experimental Model 
Exp/Model 
Difference 

1 -0.07 -0.11 0.04 

2 -0.16 -0.17 0.01 

3 -0.26 -0.24 0.02 

4 -0.34 -0.29 0.05 

5 -0.30 -0.29 0.01 

6 -0.25 -0.28 0.03 

 Average 0.03 

Figure 7-9. Chisholm Trail Girder Displacements Load Case 3 

 

Load Case 4 Displacements [in] 

G Experimental Model 
Exp/model 
Difference 

1 -0.21 -0.18 0.03 

2 -0.24 -0.23 0.01 

3 -0.26 -0.27 0.02 

4 -0.28 -0.30 0.02 

5 -0.30 -0.30 0.01 

6 -0.23 -0.29 0.06 

 Average 0.02 

Figure 7-10. Chisholm Trail Girder Displacements Load Case 4 

7.4. Lubbock Bridge Model Validation 

7.4.1. Overview of Lubbock Bridge 

The 19th Street West Bound Bridge in Lubbock, TX, was instrumented as part of TxDOT 

Project 0-1772. The bridge has a 60-degree skew, resulting in different critical cases compared to 

a non-skewed bridge. The bridge has three spans and six girders across the width. Data for this 

bridge was recorded for the lean-on bracing during the deck pour, as reported by Romage (2008). 

The data from this bridge is valuable to the present study because no bridges with lean-on bracing 
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under construction during the duration of this study. Romage (2008) provides a detailed discussion 

of the sensor layout for the project, and a summary is provided in Section 6.2. Sensor readings 

from the deck pour were used for model validation.  

7.4.2. Field Instrumentation and Testing 

The instrumentation plan utilized for assessment of the Lubbock bridge is discussed in 

Section 6.2. Two cross-frame lines were instrumented: one in the support region and one at the 

midspan of the bridge. Three sets of lean-on struts and two cross-frames were instrumented with 

strain gauges.  

As previously stated, the Lubbock data is currently the only data set available for lean-on 

bracing during construction. The data includes several hours of deck pour, which was the focus of 

the validation. Unlike SH 105 and the Chisholm Trail bridge, modeling construction phases 

requires the consideration of the loads applied by overhangs, screed, scaffolding bridges, and 

concrete. Figure 7-11 is a picture taken during the deck pour highlighting these construction 

components. 

 

 

Figure 7-11. Lubbock Bridge During Deck Pour (Romage, 2008) 
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Based upon the field notes (Romage, 2008), a deck pour timeline was constructed and is 

shown in Figure 7-12. Gaps in the field notes prevented a full timeline from being prepared. There 

was some uncertainty in the timeline; however, the focus of the validation readings is based on the 

readings with no concrete and the changes when all of the concrete was placed on the bridge. 

Therefore, the timeline is not a major factor in the resulting data. An overview of the deck casting 

sequence is provided in Figure 7-12. The concrete placement started on the West end of the bridge 

and progressed across the positive moment region close to 7am. Concrete was placed on the 

support region at the East end of the bridge to prevent uplift. The casting then proceeded from the 

span on the West end of the bridge towards the East end with a continuous deck casting sequence.  

 

Figure 7-12. Lubbock Bridge Deck Pour Sequence Timeline (Helwig et al., 2024) 
 

A mockup of the applied loads for the construction condition is shown in Figure 7-13 based 

on the field notes from the instrumentation and typical construction values. The overhangs were 

placed every 72".  
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Figure 7-13. Lubbock Overhang Loading During Construction (Helwig et al., 2024) 
 

The horizontal loads applied to the girders at each overhang brace can be categorized by 

the source of the load: 

 The concrete (C) contributed 0.5 kips. 

 The screed (S) contributed 12.5 kips. 

 The first bridge (B1) contributed 6.2 kips. 

 The second bridge (B2) contributed 3.3 kips. 

Based upon the field notes, these loads were applied at the following positions relative to 

each other and to the skew of the system, as shown in Figure 7-14. The exact position of these 

components was not measured throughout the deck pour. As such, the research team used the 

estimated rate of the deck pour and consistent spacing based on the initial few hours of field notes. 
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Figure 7-14. Lubbock Overhang Load Positions of Screed and Deck Pour (Helwig et al., 2024) 

The Lubbock model was designed to fit the 6:00 AM deck pour condition based upon the 

previously stated modeling assumptions and can be seen in Figure 7-15. The figure illustrates all 

of the potential locations for the overhang forces based on the overhang bracket positions. 

However, only brackets in the deck pour region were given load magnitudes. The self-weight of 

the concrete was included in the concrete properties. 
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Figure 7-15. Lubbock Model used for Validation (Bjelland, 2024) 

7.4.3. Validated Model Results 

The research team conducted a parametric study varying the R-factor for lean-on bracing 

from 0.4 to 0.6 for both the lean-on struts and full cross-frames, and the modulus of the deck (0 to 

200 ksi). The results demonstrated the best settings involved a lower stiffness of 36 ksi was 

preferred, but the results were generally insensitive to the R-factor. 

However, the reason the results were indifferent to the R-factor was due to the conflicting 

behavior of the two cross-frames instrumented in the model. When the results of one cross-frame 

line improved, the results of the other cross-frame line strayed further from the experimental 

results. Figure 7-16 highlights this by showing relatively comparable results in CFL #7 at the loss 

of comparable results in CFL #3. 
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Figure 7-16. Results from 6:00 AM Model  
(created in collaboration with Aidan Bjelland) 

 
The research team attempted to adjust the model by introducing a linear concrete stiffness 

distribution and manipulating the support conditions. These alterations did little to change the 

conflicting results. Based on the validation of SH 105 and Chisholm, the research team concluded 

that the uncertainty in the loading and deck pour timeline was likely the cause of the discrepancy 

and was not something the research team could overcome by altering the model.   
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Chapter 8. Study of Bridge Models 

 
 

With FEA modeling procedures validated for the SH 105, Chisholm Trail, and Lubbock 

bridges, additional models were analyzed to evaluate the live-load response of lean-on compared 

to conventional bracing, as well as to determine optimal cross-frame layouts for lean-on systems. 

The additional Abaqus models were constructed utilizing a Python script developed by Bjelland 

(2024) to ensure consistent modeling techniques. Findings from these studies are summarized in 

the following sections.  

8.1. Live Load Stress Response of Lean-on Systems 

 
Historically, cross-frames have been members affected by fatigue concerns. In AASHTO 

LRFD BDS (2020), bridge details are categorized for allowable constant-amplitude fatigue 

thresholds. An E′ detail category was introduced in the 9th edition, which applies to welded cross-

frame members and lean-on struts. E′ details have a threshold of 2.6 ksi for infinite life. For this 

reason, it is necessary to assess the live-load stress performance of lean-on bracing as compared 

to conventional bracing.  

Models were created for the SH 105 and Chisholm Trail bridges with conventional bracing. 

They were loaded with the same truck cases used during live loading of the system, and the 

resulting forces in the bracing members were compared with the forces from the lean-on models. 

In order to facilitate equitable comparison between the systems, the maximum tensile force value 

for each cross-frame line was determined, including cross-frames and lean-on struts. The lean-on 

value was subtracted from the conventional value, such that a positive value indicates that 

conventional bracing had a higher maximum bracing line force, and a negative value indicates that 
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the lean-on bracing had a higher maximum bracing line force. This eliminated the issue of not 

being able to directly compare member-to-member, due to the varying numbers of cross-frames. 

However, this also dismisses an intrinsic benefit of lean-on bracing, which is the reduced number 

of cross-frames in the bracing line. The maximum member force for each bridge and load case is 

generally close to 10-15 kips. Percent differences were not used because for some cases, the 

maximum cross-frame line member force was less than one kip.  

8.1.1. SH 105 Bridge 

Load cases one, two, and four were analyzed for span six of SH-105, which is the span 

instrumented during field testing. Bridge layout information for the SH 105 bridge is discussed in 

section 6.3, while truck placement information is included in Appendix D. Load case one included 

four trucks lined up side-to-side between cross-frame lines five and six. The results of the 

comparison between conventional and lean-on bracing are shown in Figure 8-1. For this load case, 

lean-on bracing resulted in lower maximum brace forces for seven of the eleven cross-frame lines 

in span six. The maximum brace force was higher for lean-on bracing in four of the cross-frame 

lines. Overall, the maximum difference between conventional and lean-on bracing for load case 

one is less than three kips.  
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Figure 8-1. SH 105 Load Case One Conventional vs. Lean-On Bracing Line Forces 

Load case two consisted of the four trucks clustered in a two-by-two configuration over 

cross-frame line three. The trucks were directly above the cross-frames in the lean-on bracing 

configuration. The comparison results for load case two are shown in Figure 8-2. The difference 

between the maximum brace force for lean-on compared to conventional bracing in eight of the 

eleven cross-frame lines is within one kip. Two cross-frame lines had a reduction in maximum 

brace force between two and three kips for lean-on bracing. However, one cross-frame line had a 

maximum member force increase of over eight kips for lean-on. The maximum brace force in 

cross-frame line four was 7.9 kips for conventional bracing and 16.4 kips for lean-on bracing.  
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Figure 8-2. SH 105 Load Case Two Conventional vs. Lean-On Bracing Line Forces 

Load case four is similar to load case two, except the trucks were placed over the lean-on 

bays of cross-frame three. The results are shown in Figure 8-3. In contrast to load case two, in load 

case four, the difference between the maximum brace force for lean-on compared to conventional 

bracing is within one kip for ten of the eleven cross-frame lines. One cross-frame line has a 

difference slightly greater than one kip, indicating the maximum force in the lean-on cross-frame 

line is less than the maximum force in the conventional bracing. From the comparison between 

load-cases two and four, it seems that the position of the truck along the cross-frame line, as well 

as the span, will have an impact on live-load induced brace forces.  
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Figure 8-3. SH 105 Load Case Four Conventional vs. Lean-On Bracing Line Forces 

8.1.2. Chisholm Trail Bridge 

Comparisons of the maximum cross-frame line member forces were conducted with load 

cases three, two, and five for conventional and lean-on bracing models of the Chisholm Trail 

bridge. Bridge layout information for the Chisholm Trail bridge is discussed in section 6.4, while 

truck placement information is included in Appendix G. Load case three consisted of four trucks 

aligned front-to-back over bay three, centered along the cross-section. The trucks were centered 

over cross-frame line nine along the span. The results of comparing the maximum cross-frame 

member forces are shown in Figure 8-4. The maximum bracing line forces between the 

conventional and lean-on bracing are similar. Six of the seventeen bracing lines have higher 

maximum forces for lean-on bracing, but still within two kips. The remaining eleven cross-frame 

lines have higher maximum forces for conventional bracing, within three kips of the lean-on 

maximums.  
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Figure 8-4. Chisholm Trail Load Case Three Conventional vs. Lean-On Bracing Line Forces 

Load case two consisted of four trucks in a two-by-two configuration over cross-frame 

lines nine through eleven. The trucks were slightly closer to the pier than they were to the 

abutment, with the trucks on the side of the bridge with the skew region. The results are shown in 

Figure 8-5. The maximum cross-frame member forces tended to be reduced for the lean-on model, 

with twelve cross-frame lines, and five cross-frame lines had reduced maximum cross-frame 

member forces for conventional bracing.  

 

Figure 8-5. Chisholm Trail Load Case Two Conventional vs. Lean-On Bracing Line Forces 
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Load case five is similar to load case two. The four trucks were again positioned in a two-

by-two configuration, but over bays four and five of cross-frame lines seven, eight, and nine. The 

trucks were slightly closer to the abutment than the pier. With the bridge layout and truck position 

essentially symmetrical to load case two, similar performance is expected. As shown in Figure 8-6, 

the distribution of the differences in the maximum cross-frame force between the lean-on and 

conventional models is similar to what was observed for load case three. However, a few more 

cross-frame lines have lower forces than the conventional layout.  

 

Figure 8-6. Chisholm Trail Load Case Five Conventional vs. Lean-On Bracing Line Forces 

Overall, the live-load force study shows that the maximum tensile member forces in lean-

on bridges are generally comparable to the maximum member forces in equivalent bridges with 

conventional bracing. Additionally, lean-on bracing has the added benefit of fewer brace members 

required for installation and inspection. However, the position of the truck on the cross-section of 

the bridge may play a significant role in determining governing load cases for fatigue in lean-on 

bridges.  
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8.2. Cross-Frame Layout Study 

A parametric study was conducted by Bjelland (2024) as part of TxDOT Project 0-7093 

(Helwig et al., 2024) to determine ideal cross-frame layouts for lean-on systems. The study was 

conducted in three phases:  

1) Initial Layout Study 

2) Layout Effect Study with Isolated Brace Stiffness 

3) Layout Effect Study with Isolated In-Plane Girder Stiffness 

8.2.1. Findings From Phase 1: Initial Layout Study 

The research team considered several possible bracing configurations and compared the 

relative performance of each layout. Plan view schematics for the initial cross-frame layouts tested 

are shown in Figure 8-7, where cross-frames are represented by solid lines and lean-on struts are 

represented by dashed lines. Single and two-span continuous bridges were studied with unbraced 

lengths of either 25 or 40 feet. Bridge systems were considered with 4 or 5 girders spaced at 10 or 

12 feet. The spans were non-skew, with lengths of 150 or 250 feet, with span-to-depth ratios of 25 

for single-span bridges and 35 for continuous systems. Girder sections with a girder-to-flange 

width ratio ranging from four to six were considered.  

 

Figure 8-7. Phase 1 Lean-On Layouts (Bjelland, 2024) 
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The effectiveness of the lean-on bracing configurations was evaluated based on the 

performance relative to the conventional bracing configurations (no lean-on bracing). These 

comparisons were conducted by examining the maximum moment capacity and the minimum 

brace area required to cause buckling between the brace points with uniformly distributed loads 

for the lean-on systems relative to the conventional bracing configuration. The primary metric used 

to compare the configurations is the average minimum brace area obtained from the eigenvalue 

buckling analyses, where a lower required brace area indicated a more efficient system. From the 

preliminary study, ZigZag-𝝍 and Checkerboard patterns were shown to require the lowest average 

brace area.  

8.2.2. Findings From Phase 2: Layout Effect with Isolated Brace Stiffness 

As noted in Chapter 2, the total system stiffness is a function of the stiffness of the brace, 

the in-plane stiffness of the girders, and the cross-sectional stiffness to control distortion. Phase 1 

of the study was insufficient for the identification of governing factors behind the system behavior, 

so it was necessary to perform additional studies isolating the system behavior due to a particular 

component. In Phase 2, the brace stiffness was isolated for study. To accomplish this, the cross-

sectional distortion component, 𝛽 , and in-plane stiffness component, 𝛽 , were modeled so that 

they could be taken as infinite. To eliminate the effects of the cross-sectional distortion component, 

full-depth cross-frames were used. To eliminate the effects of the in-plane stiffness, extremely 

wide girder spacings of 40 and 80 feet were used. By analyzing systems governed by the brace 

stiffness, 𝛽 ,  the effectiveness of the cross-frames and struts layouts could be the focus of the 

study. The performance of a layout was assessed based on the buckling behavior of the girder 

system. As a result, five general recommendations were made as to guidelines for optimal cross-

frame placement:  
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1) Ensure that cross-frames are equally distributed about the bridge centerlines, along the 

span, and along the cross-section. 

2)  Ensure all cross-frame lines are linked with girder pairs to allow for a direct lateral load 

path. 

3) Ensure a cross-frame is included in every bay such that no bay is fully leaning along the 

span. 

4) Ensure the number of adjacent leaning girders never exceeds a maximum of three in each 

cross-frame line. 

5) Ensure a full cross-frame line is installed at the midspan of the bridge in order to facilitate 

erection and maximize the vertical warping stiffness of the girders. Diaphragms should be 

included at the supports. 

8.2.3. Findings from Phase 3: Layout Effect with Isolated In-Plane Girder Stiffness 

In Phase 3, a complementary study to Phase 2 was conducted to assess the impact of the 

in-plane girder stiffness, 𝛽 . To accomplish this, the cross-sectional distortion component, 𝛽 , 

and brace stiffness component, 𝛽 , were modeled so that they could be taken as infinity. To 

eliminate the effects of the cross-sectional distortion component, full-depth cross-frames were 

used. To eliminate the effects of the brace stiffness, the area of the bracing components was 

increased beyond typical sizing to provide at least 10 times the ideal stiffness. 

As discussed in section 2.6.1, the in-plane girder stiffness had previously been shown to be 

reduced compared to conventional bracing when lean-on bays were introduced to the system 

(Helwig and Wang, 2003). However, Fish (2021) showed that the original in-plane girder stiffness 

expression led to increasing errors for larger numbers of cross-frame lines relative to FEA 

solutions. The updated expression derived by Fish (2021) and later verified by Fish et al. (2024), 
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considered the effects of multiple girders and the stiffness of multiple inline cross-frames. The 

formulation of the new 𝛽  expression from Fish et al. (2024) is directly related to the derivation of 

the new 𝑀  equation discussed in section 2.5.1. As such, a layout factor, referred to as 𝐶 , that 

encompasses the effects of cross-frame configurations on 𝑀 , can be squared and applied to 𝛽 . 

The use of such a factor allows the intricate complexities of layout effects to be represented by a 

reduction that provides good accuracy with FEA solutions. 𝐶  is defined by Equation 8.1.  

 𝐶 , =
𝑀 ,

𝑀 ,
 

 

8.1 

Where:  

𝑀 ,  is the global lateral torsional buckling capacity of the lean-on system 

analyzed 

 𝑀 ,  is the global lateral torsional buckling capacity of the conventional 

system analyzed 

In skewed systems, the bracing lines adjacent girders at varying locations along the length 

of the girder. The stability of the system is improved because many of the bracing lines frame 

directly into the support, so the distance of a bracing line from a support is reduced, compared to 

a nonskew span of identical length. The bracing lines in skew systems provide similar performance 

benefits as flange-level lateral trusses. Both increase the system warping stiffness, which is 

quantified by an effective length factor, 𝐾. The appropriate values for 𝐶  and 𝐾, depending on 

the cross-frame layout and skew, are shown in Table 8-1. The equations for system buckling 

moment and in-plane girder stiffness are given by Equations 8.2 and 8.3.  
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Table 8-1. Lean-on 𝛽  and 𝑀  Recommendations adapted from Bjelland (2024) 

Skew Angle (𝜽) 
in Degrees 

Layout 𝑪𝑳𝑶 𝑲 
Effective 

𝑴𝒈 
Effective 

𝜷𝒈 

𝜃 < 20 
Conventional 1.00 

1.0 
1.00 1.00 

Lean-On 0.95 0.95 0.90 

20 ≤ 𝜃 < 30 
Conventional 1.00 

0.8 
1.56 1.95 

Lean-On 0.85 1.33 1.41 

𝜃 ≥ 30 
Conventional 1.00 

0.7 
2.04 2.92 

Lean-On 0.85 1.73 2.11 

 

 𝑀 , = 𝐶 𝐶
𝜋 𝑠𝐸

(𝐾𝐿)
𝐼 𝐼

𝛼

2𝑛
 

 

8.2 

 𝛽 , = 𝐶 𝐶
𝜋 𝐸𝐼 𝑠

2𝑛 (𝐾𝐿) (𝑛 + 1)
𝛼  

 

8.3 

General recommendations as a result of the in-plane girder stiffness isolation study include:  

1) As a general rule, lean-on bracing should not be used with bridges with only three girders 

since there is very little savings in eliminating braces. An exception to this would be the 

removal of individual cross-frames near a support in a heavily skewed bridge.  

2) The checkerboard layout should be limited to cases with 4 or 5 girders since wider systems 

become dominated by local layout effects.  

3) The diagonal layout should not be utilized for bridges with nonskewed supports, ZigZag 

should be used instead. 

4) The X-layout should not be used for systems with less than six girders, as using the layout 

would lead to situations that either include too many cross-frames (effectively 
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conventional) or too few cross-frames (poor distribution of cross-frames to maximize lean-

on bracing).  

8.2.4. Summary of Recommended Layouts  

A summary of the recommended cross-frame layouts is shown in Table 8-2 for varying 

skew angle, number of girders, and additional span length and erection considerations.  

Table 8-2. Recommended Lean-On Layout Summary adapted from Bjelland (2024) and Helwig 
(2024) 

Layout 
Name 

Nonskew  
(< 𝟐𝟎°) 

Skew 
(≥ 𝟐𝟎°) 

# 
of

 G
ir

d
er

s 

# 
of

 C
F

L
 

A
dd

it
io

n
al

 
N

ot
es

 

ZigZag 

 

Not  
Recommended 

4-5 7+ 
Optional layout 

for nonskew 

Diagonal 
Not 

Recommended  
4-5 Any 

Preferred layout 
for skew 

Checker- 
board 

  
4-5 Any 

Preferred layout 
for nonskew 

Optional layout 
for skew 

X 

 
 

6+ 5+ 

Position cross-
frames of 

second diagonal 
to minimize 
clusters of 

leaning girders 
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Chapter 9. System Stiffness Equation Performance Comparison 
with 3D Models 

 
 

The final step for validating the revised lean-on brace stiffness equation was to perform 

comparisons between full bridge models and the calculated system stiffness using the revised brace 

stiffness and in-plane girder stiffness expressions. Data for the full bridge system models was 

provided by Aidan Bjelland and comparisons were made by the author. Differences between the 

brace system equation derivation and the full system behavior, the system performance resulting 

from the worst lean-on cross-frame layouts, mitigation strategies to improve cross-frame 

placements, equation accuracy with the recommended layouts, and considerations for the design 

of ideal lean-on systems are discussed in the following sections.  

9.1. Differences Between Brace Stiffness Derivation and 3D Bridge System 
Models 

The derivation of the previous 𝛽 ,  equation and new 𝛽 ,  equation assume an 

idealization of the cross-frame line behavior. The idealization includes vertical supports at each 

girder, preventing any vertical displacement of the girders. The deformed shape and loading of the 

cross-frame line is shown in Figure 9-1.  

 

Figure 9-1. Bridge Cross-Frame Line Displacement with Supports Under Each Girder 
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However, in a full bridge system, the idealization of zero vertical displacements at each 

cross-frame line is not true. The girders are supported at the ends of the span, which allows the 

section of the cross-frame line to deflect vertically. An example displacement profile of a span 

with a single cross-frame line is illustrated in Figure 9-2. This disjointed behavior is mitigated by 

distributing cross-frames in different bays along the length of the span.  

 

Figure 9-2. Bridge Cross-Frame Line Displacement with Supports at Ends of Span 

Mechanisms of poor system performance, referred to as layout effects, can be mitigated by 

distributing cross-frames equally along the cross-frame line and opposite along the span, as well 

as linking cross-frame lines together, as discussed in section 8.2. In the cases where these layout 

effects are minimized, the idealized cross-frame line assumption is accurate.  

Additionally, layout effects can have a negative impact on the assumptions behind the 

derivations for the in-plane girder stiffness, 𝛽 . The research behind the revised 𝛽  equations 

applied a similar cross-frame line assumption regarding rigid rotation. If a layout is extremely 

ineffective (poorly distributed cross-frame layout), the fundamental assumptions behind the 

𝛽 ,  and 𝛽  expressions may not be applicable. With the recommended layouts, the equations 

will perform as intended to calculate the total system stiffness. Validation of this assertion is 

discussed in the following sections.  
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9.2. Equation Validation for Constant Cross-Frame Placements 

One way to invalidate the fundamental cross-frame line behavior assumptions is to 

maximize the number of leaning girders along the span and minimize the distribution of cross-

frames. A study was conducted to show the impacts of this behavior using a single cross-frame 

line. FEA was used to determine an applicable 𝐶  value using the same method discussed in 

section 8.2.3. Pairs of models were analyzed for each girder system in order to compare the global 

buckling moment capacity for a given lean-on system was compared with the moment capacity of 

an identical system with conventional bracing, as shown in Equation 8.1. The 𝐶  value was used 

to calculate 𝛽  by use of Equation 8.3. The minimum brace area corresponding to buckling 

between the brace points was obtained using a genetic algorithm (Bjelland, 2024). In these tests, 

standard-sized girders for a span length of 50 feet were spaced at 10 feet. There was only one line 

of lean-on bracing, resulting in an unbraced length of 25 feet. A single cross-frame was provided 

on one side of the cross-frame line, with additional adjacent lean-on bays added with additional 

girders. The data is included in Table 9-1, with layouts indicated using “1” for cross-frame 

locations and “0” for lean-on bays.  
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Table 9-1. Results for 1 CFL with 10 Foot Girder Spacing 

CFL Layout 𝑨𝒃𝒓 𝜷𝒃𝒓,𝒍𝒆𝒂𝒏 𝑪𝑳𝑶
𝟐  𝜷𝒈 𝜷𝑻 

𝜷𝑻

𝜷𝒊𝒅𝒆𝒂𝒍
 1 CFL (𝒊𝒏𝟐) 𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

FEA 
Results 

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

[1] 1.1 253,000 1.00 1,617,000 219,000 0.99 

[1,0] 2.1 222,000 0.26 1,130,000 186,000 0.84 

[1,0,0] 3.8 224,000 0.11 872,000 178,000 0.81 

[1,0,0,0] 6.3 239,000 0.05 712,000 179,000 0.81 

[1,0,0,0,0] 10.2 265,000 0.03 603,000 184,000 0.84 

[1,0,0,0,0,0] 15.9 303,000 0.02 525,000 192,000 0.87 

[1,0,0,0,0,0,0] 24.6 356,000 0.01 466,000 202,000 0.92 

[1,0,0,0,0,0,0,0] 38.3 435,000 0.01 419,000 213,000 0.97 

[1,0,0,0,0,0,0,0,0] 61.3 562,000 0.01 382,000 227,000 1.03 

*𝛽 = 220,000  

The brace stiffness is directly affected by the brace area, so despite the increase in the 

number of adjacent leaning girders, 𝛽 ,  increases due to the unreasonable brace area required 

for the system to achieve 𝛽 . As indicated by the 𝐶  values in Table 9-1, the lean-on system 

is unable to benefit from the warping stiffness provided by additional girders. Instead, the leaning 

girders become parasitic to the stiffness of the system, as they effectively pull on the system 

without contributing substantial stiffness, which results in a significant reduction of 𝛽 . 

Additionally, the 𝛽 ,  equation is limited by the assumption that the girders and cross-frames 

do not deflect downward vertically.  

9.3. Performance Improvement for Staggered Layouts 

To further highlight the impact of poor layouts, bridge systems with three cross-frame lines 

were studied. Each of the three cross-frame lines had the same pattern of cross-frames and lean-

on bays. The girders were extended to 100 feet in length and spaced at 80 feet in order to maximize 
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𝛽  after observing the previous results. The unbraced length of 25 feet stayed the same for each of 

the three cross-frame lines. The results from these models are shown in Table 9-2. 

The data in Table 9-2 indicates that the calculated system stiffness is conservative relative 

to the ideal stiffness. 𝛽 ,  for the layouts with three cross-frame lines is less than in the layouts 

with one cross-frame line. The distance of the midspan from the supports increases the difference 

in vertical deflection along the cross-frame lines, which appears to increase the effective stiffness 

of the single brace. The effectively infinite 𝛽  value is reduced by the leaning girders such that 𝛽  

influences system behavior.  

Table 9-2. Results for 3 CFL with 80 Foot Girder Spacing 

CFL Layout 𝑨𝒃𝒓 𝜷𝒃𝒓,𝒍𝒆𝒂𝒏 𝑪𝑳𝑶
𝟐  𝜷𝒈 𝜷𝑻 

𝜷𝑻

𝜷𝒊𝒅𝒆𝒂𝒍 ∗
 3 CFL 

(no stagger) 
(𝒊𝒏𝟐) 𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

FEA 
Results 

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

[1] 6.2 224,000 1.00 6,467,000 216,000 0.98 

[1,0] 11.3 175,000 0.26 4,518,000 169,000 0.77 

[1,0,0] 19.0 159,000 0.11 3,486,000 152,000 0.69 

[1,0,0,0] 29.3 151,000 0.05 2,848,000 144,000 0.65 

[1,0,0,0,0] 42.5 149,000 0.03 2,414,000 140,000 0.64 

[1,0,0,0,0,0] 59.5 150,000 0.02 2,100,000 140,000 0.64 

[1,0,0,0,0,0,0] 80.1 153,000 0.01 1,862,000 141,000 0.64 

[1,0,0,0,0,0,0,0] 104.3 155,000 0.01 1,676,000 142,000 0.65 

[1,0,0,0,0,0,0,0,0] 132.5 158,000 0.01 1,526,000 143,000 0.65 

*𝛽 = 220,000  

Based on the layout recommendations provided in section 8.2.2, a “staggered” layout, 

meaning the placement of the cross-frame in the second cross-frame line is opposite the first and 

third lines, is likely to improve the overall system behavior by improving the girder connectivity 

and reducing the global layout effect. A schematic of staggered layouts is shown in Figure 9-3. 

For girder systems with more than three girders, local layout effects may still be present due to the 
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interior girders not being connected by cross-frames. The results for staggering the same layouts 

used in Table 9-2, by reversing the middle cross-frame line, are listed in Table 9-3. 

 

Figure 9-3. Schematic of Non-Staggered vs. Staggered Lean-On Layouts 

Table 9-3. Results from 3 staggered CFL parametric study on leaning girders 

CFL Layout 𝑨𝒃𝒓 𝜷𝒃𝒓,𝒍𝒆𝒂𝒏 𝑪𝑳𝑶
𝟐  𝜷𝒈 𝜷𝑻 

𝜷𝑻

𝜷𝒊𝒅𝒆𝒂𝒍 ∗
 3 CFL 

(stagger) 
(𝒊𝒏𝟐) 𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

FEA 
Results 

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

[1] 6.2 224,000 1.00 6,467,000 216,000 0.98 

[1,0] 11.5 179,000 0.71 8,731,000 175,000 0.80 

[1,0,0] 19.4 162,000 0.44 6,365,000 158,000 0.72 

[1,0,0,0] 30.4 157,000 0.32 5,229,000 153,000 0.69 

[1,0,0,0,0] 44.6 156,000 0.24 4,442,000 151,000 0.69 

[1,0,0,0,0,0] 61.9 156,000 0.19 3,866,000 150,000 0.68 

[1,0,0,0,0,0,0] 82.6 157,000 0.16 3,425,000 150,000 0.68 

[1,0,0,0,0,0,0,0] 106.6 159,000 0.13 3,078,000 151,000 0.69 

[1,0,0,0,0,0,0,0,0] 134.2 160,000 0.11 2,797,000 152,000 0.69 

*𝛽 = 220,000  

The calculated 𝛽 ,  is the same for the staggered and unstaggered layouts, as regardless 

of the orientation, all of the cross-frame lines contain the same 𝑛 , , 𝑛 , , and  𝑛 , . As a 

result, the staggering of the cross-frames had minimal impact on the minimum brace areas needed 

to obtain buckling between the brace points. However, the corresponding layout factors and, thus, 

the 𝛽  of the staggered layouts were greatly increased.  
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9.4. Performance of Recommended Layouts 

Although examining the effects of extreme systems often leads to discoveries with system 

behavior, practical applications often will never encounter these extreme scenarios. As such, the 

new 𝛽 ,  expression was examined using models with optimized cross-frame line brace areas. 

Two recommended layouts were tested, covering a wide array of typical cross-frame lines. The 

results for these two layouts are shown in Table 9-4. For simplicity, lateral trusses were included 

due to insufficient 𝛽   provided by the girder geometry and covered 25% of the span length. Due 

to the length covered by the lateral trusses and thus the large amount of warping restraint provided, 

the K value is assumed to be ~0.5 instead of the design recommendation of 0.7 (Fish et al., 2024). 

Table 9-4. Results from recommended layout study 

Layout 

CFL 

𝑨𝒃𝒓 𝜷𝒃𝒓,𝒍𝒆𝒂𝒏 𝑪𝑳𝑶
𝟐  𝜷𝒈 𝜷𝑻 

𝜷𝑻

𝜷𝒊𝒅𝒆𝒂𝒍 ∗
 Lateral Trusses 

Included (𝑲 =
𝟎. 𝟓) 

𝒊𝒏𝟐  
𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

FEA 
Resu

lt 

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅

𝒌𝒊𝒑 − 𝒊𝒏

𝒓𝒂𝒅
 

 

[1,1,0,0] 7.5 445,000 0.99 406,000 212,000 0.97 

[0,1,1,0] 5.5 497,000 0.99 406,000 224,000 1.02 

[1,1,1,1] 1.3 287,000 0.99 406,000 168,000 0.76 

[1,1,0,0,0,1] 3.3 258,000 0.99 813,000 196,000 0.89 

[0,1,1,0,1,0] 5.0 396,000 0.99 813,000 288,000 1.21 

[0,0,1,1,0,0] 7.6 381,000 0.99 813,000 260,000 1.18 

[1,1,1,1,1,1] 4.5 1,032,000 0.99 813,000 455,000 2.07 

*𝛽 = 220,000  

 
The results in Table 9-4 highlight the behavioral differences between narrow and wide 

bridge systems. Note that 𝛽 ,  is conservative for bracing lines that approach conventional 

bracing. The narrow zigzag system produced results that were in accord with expected values. 

However, the full cross-frame line at midspan in the wider X system requires nearly two times the 
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expected stiffness value. The reason for this increased stiffness requirement can be better 

understood by examining the buckled shape in Figure 9-4. 

 

Figure 9-4. Buckled Shape of Optimized X Bridge System (Bjelland, 2024) 

The buckled shape in Figure 9-4 illustrates how the full cross-frame line at midspan 

preserves the system stiffness by being rigid enough to maintain the vertical system warping 

stiffness needed for 𝛽 . Due to the nonlinear behavior of the system and the optimization 

algorithm, the resulting optimized system minimized the brace stiffness of the cross-frame lines 

with lean-on bays at the expense of increasing the stiffness requirement of the full cross-frame 

line. As such, in this permutation of the system, the full cross-frame line at midspan is forced to 

effectively be the sole contributor to the vertical system warping stiffness, maintaining the girder 

pairs. For typical bridge systems, this likely will not be an issue as the moment distribution is less 

critical (non-uniform), and the moment corresponding to buckling between the brace point will 

generally exceed the deck pour loading. Overall, these results emphasize that designers will need 
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to be cognizant of nonlinear behavior of these systems and how the full cross-frame line at midspan 

is vital in preserving 𝛽 . 

9.5. Relationship of 𝜷𝒈 and 𝜷𝒃𝒓 for Design 

A plot of the springs-in-series relationship of the minimum brace stiffness and in-plane 

girder stiffness is highlighted in Figure 9-5. The total system stiffness in the models discussed in 

this chapter needed to satisfy exactly the ideal stiffness, and in design must satisfy two times the 

ideal stiffness. 𝛽 ,  and 𝛽  both play a vital role in determining the system stiffness.  

If the brace stiffness and in-plane girder stiffness are similar in quantity to each other and 

the ideal stiffness, the minimum stiffness for both is approximately two times the ideal (~4 times 

with imperfection). If one component is much greater than the ideal stiffness, for example, the in-

plane girder stiffness for wide systems or the brace stiffness for conventional systems, the other 

component requirement reduces to the ideal stiffness. This is relevant for design, since the 2𝛽  

design requirement may lead to a design being insufficient due to an individual stiffness 

component.  

In the application of the equations in the design process, this principle is essential to 

understand, as an insufficient girder stiffness (𝛽 ) will result in a negative or impossible brace area 

requirement with lean-on, or even conventional bracing.  
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Figure 9-5. Relationship Between Stiffness Components Relative to the Ideal Stiffness (Bjelland, 

2024)   
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Chapter 10. Revised Expressions for Brace Strength Design  

 
 

Stability bracing must satisfy both stiffness and strength requirements, so it was necessary 

to update the form of the strength design equations to reflect the layouts permitted by the revised 

stiffness equations. Updated strength design equations were derived based on the models used to 

derive the stiffness equations for lean-on bracing with Z-, X-, or K-frames discussed in Chapter 3, 

Chapter 4, and Chapter 5. The following sections provide an overview of the previous equations 

and the rationale for the revised expressions. As discussed in section 2.8, all force requirement 

equations include the total brace force, denoted by 𝐹 or 𝐹 . 𝐹 is calculated using the brace 

moment, 𝑀 , which is given by Equation 10.1 as a simplified version of Equation 2.15.  

 𝑀 =
.

   10.1 

Where:  

𝐿 is the span length 

𝐿  is the length of a diagonal brace member 

𝑛  is the number of cross-frame lines 

𝐼  is the effective moment of inertia about the y-axis 

𝐸 is the modulus of elasticity 

ℎ  is the distance between flange centroids 

𝑀  is the applied moment 

𝐶  is the moment gradient factor 

𝐹 is calculated using Equation 10.2. 

 𝐹 =    10.2 
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Where:  

 ℎ  is the height of the brace 

10.1. Previous Strength Requirement Equations 

Helwig and Wang (2003) developed strength equations for lean-on bracing lines with a 

single Z-frame. Like the stiffness equations developed at the same time, the strength equations 

included the term 𝑛 , which limited the application to lines with a single cross-frame, as shown 

in Figure 10-1.  

    

Figure 10-1. Brace Forces (Helwig and Wang, 2003) 

Equations for the maximum force demand in a diagonal, 𝐹 , and the maximum force 

demand in the top and bottom struts, 𝐹 , are given by Equations 10.3 and 10.4, respectively.  

 𝐹 , =    10.3 

 𝐹 , = (𝑛 − 1)𝐹   10.4 

Where:   

𝑛  is the number of girders per cross-frame 

𝐿  is the length of the diagonal member 

𝑆 is the girder spacing 
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10.2. Z-Frame Revised Strength Equations 

In the revised equations, the coefficients are defined in terms of the same values used in 

the refined stiffness equation: the effective number of girders, 𝑛 , , the effective number of 

cross-frames, 𝑛 , , and the effective number of adjacent lean-on bays, 𝑛 , . The maximum 

forces are induced when the cross-frame is positioned in the exterior bay, as shown in Figure 10-2. 

The forces for a bracing line with a single exterior cross-frame were derived using static analysis, 

and were verified using the modeling software SAP2000, utilizing modeling practices validated 

previously for stiffness analysis.  

 

Figure 10-2. Z-Frame Single Brace Forces Exterior Bay 

The models were used to develop member forces in more complex bracing layouts. For 

bracing lines with more than one cross-frame, the diagonal force is reduced and distributed 

between them. The diagonal forces shown in Figure 10-3 are conservative bounds, as the 

proportion of force in each cross-frame varies depending on the number and geometry of the cross-

frames.  
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Figure 10-3. Z-Frame Brace Forces Multiple Cross-Frames 

When the cross-frame(s) are moved to an interior bay, the maximum force in the struts is 

reduced, and the maximum force in the diagonal remains constant, as shown in Figure 10-4.  

 

Figure 10-4. Z-Frame Brace Forces Interior Bay 

By incorporating together all of these considerations, the force requirements for Z-Frames 

are given by Equations 10.5 and 10.6.  

 𝐹 =
( , , )

   10.5 

 𝐹 = (𝑛 , + 1)𝐹   10.6 

10.3. X-Frame Revised Strength Equations 

Strength equations were developed for X-shaped cross-frames by following a process 

similar to that used for Z-frames. The governing cross-frame position is again a single cross-frame 

in an exterior bay. The force path for this configuration is shown in Figure 10-5 
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Figure 10-5. X-Frame Single Brace Forces 

In order to account for the reduction in member forces due to multiple cross-frames and 

interior cross-frame placement, the cross-frame forces were rewritten as shown in Figure 10-6 

 

Figure 10-6. X-Frame Generalized Brace Forces 

By taking the maximum force for the diagonals and struts, respectively, the force 

requirements for X-Frames are given by Equations 10.7 and 10.8.  

 𝐹 =
( , , )

   10.7 

 
𝐹 = (𝑛 , )𝐹   10.8 

10.4. K-Frame Revised Strength Equations 

Like Z- and X-frames, the maximum forces for K-frames are induced in a cross-frame line 

with a singular cross-frame in an exterior bay, as shown in Figure 10-7 
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Figure 10-7. K-Frame Single Brace Forces 

In order to account for reduced member forces with the presence of multiple K-frames, or 

K-frame positioning in interior bays, the force terms may be rewritten as shown in Figure 10-8. 

 

Figure 10-8. K-Frame Generalized Brace Forces 

The maximum forces for the diagonals and struts in K-frame lines are given by Equations 

10.9 and 10.10.  

 𝐹 =
( , , )

   10.9 

 𝐹 = (𝑛 , + 1)𝐹   10.10 

10.5. Summary of Brace Force Equations 

The lean-on member force equations for Z-, X-, and K-frames are similar, but not exactly 

the same for all cross-frame shapes. The correct expressions for the forces in Z- and K-frame 

members are given by Equations 10.11 and 10.12.  

 𝐹 , =
( , , )

   10.11 

 𝐹 , = (𝑛 , + 1)𝐹   10.12 
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The correct expressions for the forces in X-frame members are given by Equations 10.13 

and 10.14.  

 𝐹 , =
( , , )

   10.13 

 𝐹 , = (𝑛 , )𝐹   10.14 
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Chapter 11. Refined Design Methodology for Lean-On Bracing 

 
 

The design process for a lean-on bracing system subject to vertical loading during 

construction is outlined and discussed in the following sections. An approach utilizing derived 

expressions is intended for direct application by design engineers. Numerical design examples for 

each methodology are included in Chapter 12.  

11.1. Determine Girder Layout and Geometry 

First, the girder design must be completed. This design should follow the AASHTO LRFD 

BDS. For a given girder with stepped flanges (also called a nonprismatic section), effective girder 

dimensions may be used in the design of the bracing system. An approach for the calculation of 

effective flange thickness is provided by Reichenbach et al. (2020) and is shown in Equation 11.1. 

The effective flange width can be calculated using the same equation and substituting 𝑡 values for 

𝑏 values.  

 𝑡 = 𝑡 [1 − (1 − 𝑥 ) ] + 𝑡 (1 − 𝑥 )    11.1 

Where:  

𝑡  is the effective flange thickness 

𝑡  is the smallest flange thickness 

𝑥  is the fraction of the span with smallest flange thickness 

𝑡  is the second smallest flange thickness 
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11.2. Determine Cross-Frame Locations Based on Recommended Layouts 

To ensure the optimal placement of cross-frames in layouts, the research team has outlined 

four lean-on layouts for designers as the most effective options. These layouts and their appropriate 

application are shown in Table 11-1.  

Table 11-1. Recommended Lean-On Layout Summary 

Layout 
Name 

Nonskew  
(< 𝟐𝟎°) 

Skew 
(≥ 𝟐𝟎°) 

# 
of

 G
ir

d
er

s 

# 
of

 C
F

L
 

A
dd

it
io

n
al

 
N

ot
es

 

ZigZag 

 

--- 4-5 7+ 
Optional layout 

for nonskew 

Diagonal --- 
 

4-5 --- 
Preferred layout 

for skew 

Checker- 
board 

  
4-5 --- 

Preferred layout 
for nonskew 

Optional layout 
for skew 

X 

 
 

6+ 5+ 

Position cross-
frames of second 

diagonal to 
minimize 
clusters of 

leaning girders 

11.3. Determine Moment Demands at Each Brace Line 

The next step is to calculate the moment demand at each brace line. This should be known 

in advance from the girder design process. The maximum applied moment needs to be checked 

against the maximum system global buckling moment, as well as the braced buckling moment. 
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11.3.1. Calculate the Moment Loading at Each Cross-Frame Line  

The applied moment at each brace line is determined using load tables or other software 

for construction loads.  

11.3.2. Check System Global Buckling Moment 

The global system buckling moment defines the capacity of the full system, assuming 

sufficient bracing between the girders. It is impossible for the full bridge to exceed this capacity, 

even with additional bracing, so the global system buckling moment must be greater than the 

maximum applied moment. 𝑀  is given by Equation 11.2.  

 𝑀 = 𝐶 𝐶
( )

𝐼 𝐼    11.2 

Where:  

𝐶  is 0.95 for nonskew bridges or 0.85 for skew bridges 

𝐶  is 1.1 for single span, 2.0 for continuous span 

𝑆 is the girder spacing  

𝐸 is the modulus of elasticity of the girders 

𝐾 is 1.0 for systems without lateral trusses, 0.7 for single span systems with lateral 

trusses 

𝐿 is the span length 

𝐼  is the effective moment of inertia of the girder about the y-axis 

𝐼  is the effective moment of inertia of the girder about the x-axis 

𝑛  is the number of girders 

𝛼  is the system warping stiffness factor shown in Table 11-2.  
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Table 11-2. System Warping Stiffness Factor (𝛼 ) Values 

Number of Girders 
𝒏𝒈 

System Warping Stiffness Factor 
𝜶𝒙 

2 1 

3 4 

4 10 

5 20 

6 35 

7 56 

8 84 

9 120 

10 165 

Check 𝑀 < 0.7𝑀  as discussed in Section 2.1.2. 

11.3.3. Check the Conventional Lateral-Torsional Buckling Moment 

Another limit on the maximum moment capacity is the conventional lateral-torsional 

buckling moment of the braced girder. Therefore, the maximum applied load cannot exceed the 

𝑀  capacity given by Equation 11.3.  

 
𝑀 = 𝐸𝐼 𝐺𝐽 +   

  
 11.3 

Where:  

𝐿  is the unbraced length of the girder (maximum distance between cross-frame 

lines) 

𝐺 is the shear modulus of elasticity 

𝐽 is the torsional constant 
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𝐶  is the torsional warping constant: 𝐼 ≅  for a doubly symmetric I-shaped 

section 

ℎ  is the distance between flange centroids 

𝐼  is the local strong-axis moment of inertia of the compression flange 

Check 𝑀 < 1.0𝑀  

11.4. Determine Minimum Brace Area for Each Bracing Line 

Now that the demand is known and the girders meet the global and lateral-torsional 

buckling criteria, the bracing system can be designed.  

11.4.1. Determine Required System Stiffness 

The required system stiffness is calculated using Equation 11.4. 

 𝛽 , =
.

φ ,
   11.4 

Where:  

φis the LRFD reduction factor (0.8) 

𝐶  is the moment gradient modifier 

𝑛  is the number of bracing lines in the span 

𝐼 ,  is the effective moment of inertia about the y-axis 

11.4.2. Calculate In-Plane Girder Stiffness 

The provided in-plane girder stiffness is calculated using Equation 11.5.  

 𝛽 = 𝐶 𝐶
( ) ( )

   11.5 
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11.4.3. Calculate Cross-Sectional Stiffness 

Language in the draft AASHTO ballot for stability bracing suggests that 𝛽  can be taken 

as infinity for braces deeper than 80% of the web depth.  

If the braces are shallow compared to the rest of the girder, the stiffness of the cross-section, 

𝛽 , may have a significant effect. The provided cross-section stiffness for shallow braces may be 

calculated using Equation 11.6 (Helwig and Yura, 2015).  

 
𝛽 =

.
(

( . )
+ )   11.6 

Where:  

ℎ  is the height of the web 

𝑡  is the thickness of the web 

𝑡  is the thickness of the stiffener 

𝑏  is the width of the stiffener 

When the distance from the top cross-frame to the top of the girder is different than the 

distance from the bottom of the cross-frame to the bottom of the girder, then Equations 11.7, 11.8, 

and 11.9  may be used to estimate 𝛽  (Yura, 2001): 

𝛽 =   11.7 

𝛽 =
. .

+    11.8 

𝛽 =
.

(
.

+ )     11.9 



  

165 

11.4.4. Use Brace Stiffness Equation to Determine Minimum Brace Area 

The required system stiffness is calculated using a variation of Equation 11.10 

 
𝛽 , = R

( , , ) ,

  

 

 11.10 

Where:  

𝑅 is a factor accounting for connection eccentricity (0.65) 

ℎ is the height of the brace 

𝐶  is 1.0 for Z-frames, 0.5 for X-frames, and 2.0 for K-frames  

𝑛 ,  is the effective number of cross-frames in the bracing line 

𝑛 ,  is the effective number of girders in the bracing line 

𝑛 ,  is the effective number of lean-on bays in the bracing line 

𝐴  is the area of the diagonal braces 

𝐴  is the area of the top and bottom struts 

𝐿  is the length of a diagonal brace 

The total provided brace stiffness of the system is given by Equation 11.11 

 𝛽 , =
1

𝛽
+

1

𝛽 ,
+

1

𝛽
  11.11 

For a given in-plane girder stiffness, a required brace stiffness can be determined with 

Equation 11.12. If 𝛽 ,  is negative, 𝛽  is insufficient and not even conventional bracing will 

pass. The girders must be redesigned with a larger 𝐼 . 

 𝛽 , =
1

𝛽 ,
−

1

𝛽
−

1

𝛽
  11.12 
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When the provided brace stiffness is set equal to the required brace stiffness, and assuming 

the area of the diagonals and struts are equal, the result is Equation 11.13, which can be used to 

calculate the minimum brace area for each cross-frame line.  

 𝐴 , = , ( , , , )
  11.13 

11.4.5. Select Brace Member Size 

Select a member size such that 𝐴 , >  𝐴 , . 

11.5. Check Strength Requirements 

The strength of the brace members must be sufficient for each bracing line.  

11.5.1. Determine the Total Brace Force Demand in Diagonals and Struts 

The moment in the brace, 𝑀 , is calculated with Equation 11.14.  

 𝑀 =
.

   11.14 

Where:  

𝐿 is the span length 

𝐿  is the length of a diagonal brace member 

𝑛  is the number of brace lines 

𝐼  is the effective moment of inertia about the y-axis 

𝐸 is the modulus of elasticity 

ℎ  is the effective depth 

𝑀  is the applied moment 

𝐶  is the moment gradient factor 

The total brace force, 𝐹, is calculated using Equation 11.15. 
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 𝐹 =    11.15 

Where:  

 ℎ  is the height of the brace 

The maximum force in the cross-frame diagonals and struts is calculated using Equations 

11.16 and 11.17, respectively, for Z or K-shaped braces. Equations 11.18 and 11.19 are used with 

X-shaped cross-frames. 

 𝐹 , =
( , , )

   11.16 

 𝐹 , = (𝑛 , + 1)𝐹   11.17 

 𝐹 , =
( , , )

   11.18 

 𝐹 , = (𝑛 , )𝐹   11.19 

   

11.5.2. Check Strength Capacity 

The tensile and compressive capacity of each member should be determined with standard 

design procedures to ensure it is sufficient.  

11.5.2.1. Tensile Capacity of Diagonals and Struts 

11.5.2.1.1. Gross Section Yield 

The yield capacity of the bracing members must be greater than the forces calculated using 

Equations 11.16 and 11.17. The yield capacity is given by Equation 11.20.  

 𝜑 𝑃 = 𝜑 𝐹 𝐴 ,    11.20 

Where:  

 𝜑  is the resistance factor for yielding (0.95) 

𝐹  is the yield strength of the brace members 
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11.5.2.1.2. Net Section Fracture 

The fracture capacity of the bracing members must be greater than the forces calculated 

using Equations 11.16 and 11.17. The yield capacity is given by Equation 11.21.  

 𝜑 𝑃 = 𝜑 𝐹 𝐴 𝑅 𝑈  11.21 

Where:  

 𝜑  is the resistance factor for fracture (0.8) 

 𝑅  is the reduction factor for holes (1.0) 

 𝑈 is the shear lag reduction factor  

 𝐴  is the nominal area of the brace member 

11.5.2.2. Compressive Capacity of Cross-Frame Diagonals and Struts 

The compressive capacity of the bracing members must exceed the member forces 

calculated using Equations 11.16 and 11.17. The effective slenderness ratio should be calculated 

per AASHTO LRFD (2020) Article 6.9.4.4. The factored compressive resistance of a single angle 

should be calculated using the provisions in AASHTO LRFD Section 6.9.4.1.  

11.5.3. Other Design Requirements 

The system must be checked to ensure that it satisfies all other applicable design 

requirements including but not limited to connection designs, varied load conditions, construction 

phasing, etc.  
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Chapter 12. Design Examples 

 
 

12.1. Design Example 1 

An application of lean-on bracing for a nonskew, single span, five-girder bridge and checkerboard 

cross-frame layout is illustrated in this example. The girder sections are shown in Figure 12-1.  

 

Figure 12-1. Example 1 Girder Elevation View 

12.1.1. Determine Girder Layout and Geometry 

Span Information 

𝑛 = 5  Number of girders 

𝑆 = 10.5 𝑓𝑡  Girder spacing 

𝐿 = 250 𝑓𝑡  Span length 

𝐸 = 29,000 𝑘𝑠𝑖  Modulus of elasticity 

𝜃 = 0°  Skew angle 

Web Information 

𝑡 = 1.5 𝑖𝑛  Thickness of girder web 

ℎ = 120 𝑖𝑛  Height of girder web 
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Bottom Flange Information 

𝑏 = 36 𝑖𝑛  Width of bottom flange 

𝑡 = 1.75 𝑖𝑛  Thickness of thinnest section of girder flange 

𝑡 = 2 𝑖𝑛  Thickness of second thinnest section of girder flange 

𝑥 =
  

 
= 0.6  Fraction of span with 𝑡  

Top Flange Information 

𝑏 = 36 𝑖𝑛  Width of top flange 

𝑡 = 1.75 𝑖𝑛  Thickness of thinnest section of girder flange 

𝑡 = 2.0 𝑖𝑛  Thickness of second thinnest section of girder flange 

𝑥 =
  

 
= 0.72  Fraction of span with 𝑡  

Calculated Girder Section Properties, as defined in AASHTO LRFD BDS 

𝑡 = 𝑡 (1 − 1 − 𝑥 ) ) + 𝑡 (1 − 𝑥 ) = 1.79 𝑖𝑛    

𝑡 = 𝑡 (1 − 1 − 𝑥 ) ) + 𝑡 (1 − 𝑥 ) = 1.77 𝑖𝑛  

Bottom Flange Top Flange Web 

𝑦 =
𝑡

2
= 0.9 𝑖𝑛 𝑦 =

𝑡

2
= 122.7 𝑖𝑛 𝑦 = 𝑡 +

ℎ

2
= 61.8 𝑖𝑛 

𝐴 = 𝑏 𝑡 = 64.4 𝑖𝑛  𝐴 = 𝑏 𝑡 = 63.7 𝑖𝑛  𝐴 = 𝑏 𝑡 = 180 𝑖𝑛  

𝐼 =
𝑏 𝑡

12
= 17.2 𝑖𝑛  𝐼 =

𝑏 𝑡

12
= 16.6 𝑖𝑛  𝐼 =

𝑏 𝑡

12
= 216000 𝑖𝑛  

𝐼 =
𝑡 𝑏

12
= 6960 𝑖𝑛  𝐼 =

𝑡 𝑏

12
= 6880 𝑖𝑛  𝐼 =

𝑡 𝑏

12
= 33.8 𝑖𝑛  
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𝑑 = = 61.6 𝑖𝑛  

𝑑 = 𝑡 + ℎ + 𝑡 − 𝑑 = 61.9 𝑖𝑛  

𝐼 = 𝐼 + 𝐴 𝑑 − 𝑦 + 𝐼 + 𝐴 (𝑑 − 𝑦 ) + 𝐼 + 𝐴 𝑑 − 𝑦 = 690,980 𝑖𝑛   

𝐼 = 𝐼 + 𝐼 + 𝐼 = 13,870 𝑖𝑛   

𝑐 = 𝑑 − = 61.0 𝑖𝑛  

𝑡 = 𝑑 − 𝑦 = 60.7 𝑖𝑛  

𝐼 = 𝐼 + 𝐼 = 13,800 𝑖𝑛   

𝐽 = + + = 270 𝑖𝑛   

12.1.2. Determine Cross-Frame Locations Based on Recommended Layouts 

Because the bridge is nonskew with five girders, checkerboard is a recommended cross-frame 

layout. X-frames are used because the web depth is greater than 75% of the girder spacing. Nine 

cross-frame lines are used to keep the spacing close to 25 feet. In Figure 12-2 and following 

calculations, CFL represents “cross-frame line,” dashed lines represent lean-on struts, and thick 

lines represent cross-frames. A cross-section view of CFL 1 is shown in Figure 12-3. Lateral 

trusses were implemented in order to increase the in-plane girder stiffness of the relatively slender 

girder system.  
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Figure 12-2. Example 1 Cross-Frame Layout 

 

Figure 12-3. Example 1 CFL 1 Section View 

Connection Plate Information 

𝑏 = 9 𝑖𝑛  Width of connection plate 

ℎ = 11 𝑖𝑛  Distance from top of cross-frame to bottom of top flange 

𝑡 = 0.5 𝑖𝑛  Thickness of connection plate 

Brace Information 

𝑛 = 9  Number of intermediate cross-frame lines in the span 

𝐿 = = 25 𝑓𝑡  Unbraced length (cross-frame spacing) 

ℎ = ℎ − 2ℎ = 98 𝑖𝑛  Height of cross-frame 

𝐿 = (𝑆 − 2𝑏 ) + ℎ = 146 𝑖𝑛  Length of diagonal braces 

𝐿 = 𝑆 − 2𝑏 = 108 𝑖𝑛  Length of top and bottom struts 
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12.1.3. Check Moment Demands 

12.1.3.1. Calculate the Moment Loading at Each Cross-Frame Line 

Loading Information 

𝜌 = 150   Unit weight of concrete  

𝑡 = 10 𝑖𝑛  Thickness of deck 

𝜌 = 490   Density of steel 

𝐷𝐿 = 5   Load of formwork 

𝑤 = 𝜌 + 𝑡 ∗ 𝑆 = 1310   Self-weight of fresh concrete 

𝑤 = 𝐴 + 𝐴 + 𝐴 ∗ 𝜌 = 1050     Self-weight of girder 

𝑤 = 𝐷𝐿 ∗ 𝑆 = 53   Self-weight of formwork 

𝑤 = 150   Construction live load 

𝑤 = 1.4 𝑤 + 𝑤 + 𝑤 + 𝑤 = 3590   Total line load (factored) 

The maximum moment for a single span with uniformly distributed load is:  

𝑀 = = 28,000 𝑘𝑖𝑝 − 𝑓𝑡  

The moment at each cross-frame line for a uniformly distributed load is: 

 𝑀 =
( )

 [𝑘𝑖𝑝 − 𝑓𝑡] 
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 𝒙 𝑴𝒖 

𝑪𝑭𝑳 𝟏 25 𝑓𝑡 10,100 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟐 50 𝑓𝑡 18,000 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟑 75 𝑓𝑡 23,600 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟒 100 𝑓𝑡 27,000 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟓 125 𝑓𝑡 28,000 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟔 150 𝑓𝑡 27,000 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟕 175 𝑓𝑡 23,600 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟖 200 𝑓𝑡 18,000 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟗 225 𝑓𝑡 10,100 𝑘𝑖𝑝 − 𝑓𝑡 

12.1.3.2. Check System Global Buckling Moment 

𝐶 = 0.95  
Lean-On Factor - 0.95 for bridges with less than 30° skew and 0.85 

greater than or equal to 30° skew 

𝐶 = 1.1  1.1 for single span, 2.0 for continuous span 

𝛼 = 20  System warping stiffness factor from Table 11-2 

𝐾 = 0.7  1.0 if lateral trusses are not used, 0.7 if lateral trusses are used 

0.7𝑀 = 0.7𝐶 𝐶
( )

𝐼 𝐼 = 69,000 𝑘𝑖𝑝 − 𝑓𝑡  

𝑀 < 0.7𝑀  OK 

NOTE: In the event 𝑀 > 0.7𝑀 , no number of cross-frames will be satisfactory. The girders 

must be resized or spacing increased to resist the system mode of buckling.  

12.1.3.3. Check Conventional Lateral-Torsional Buckling Moment 

𝐶 = 1  LTB moment gradient factor 

𝐶 =
,

∗ = 24,768,700 𝑖𝑛    Torsional warping constant 
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𝐺 = 11150 𝑘𝑠𝑖  Shear modulus 

𝑀 = 𝐶 𝐸𝐼 𝐺𝐽 + = 157,900 𝑘𝑖𝑝 − 𝑓𝑡  

𝑀 < 𝑀  OK 

12.1.4. Determine Minimum Brace Area for Each Bracing Line  

12.1.4.1. Determine Required System Stiffness at Each Bracing Line 

φ = 0.8  Resistance factor for stability bracing 

 
The required stiffness at each bracing line is given by:  
 

𝛽 , =
2.4𝐿

φ 𝐶 𝑛 𝐼 𝐸
𝑀 = 282,800

𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
 

 

 𝜷𝑻,𝒓𝒆𝒒 

𝑪𝑭𝑳 𝟏 36,600   

𝑪𝑭𝑳 𝟐 115,800   

𝑪𝑭𝑳 𝟑 199,500   

𝑪𝑭𝑳 𝟒 260,600   

𝑪𝑭𝑳 𝟓 282,800   

𝑪𝑭𝑳 𝟔 260,600   

𝑪𝑭𝑳 𝟕 199,500   

𝑪𝑭𝑳 𝟖 115,800   

𝑪𝑭𝑳 𝟗 36,600   

 

12.1.4.2. Calculate In-Plane Girder Stiffness (Constant) 

𝛽 = 𝐶 𝐶
𝜋 𝐸𝐼 𝑆 𝛼

2𝑛 (𝐾𝐿) (𝑛 + 1)
= 699,300

𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
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12.1.4.3. Calculate Cross-Sectional Stiffness (Constant) 

The cross-frames are greater than 80% of the web depth, so the cross-sectional stiffness may be 

taken as infinite.  

𝛽 = ∞
𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
 

12.1.4.4. Use the Brace Stiffness Equation to Determine the Minimum Brace Area for Each 
Line 

 
𝐶 = 0.5  Cross-frame coefficient: 1.0 for Z-frames, 0.5 for X-frames, 2.0 for K-frames 

𝑅 = 0.65  Connection eccentricity factor 

 
Use these equations to determine the minimum area requirement for each cross-frame line:  
 

𝛽 , =
1

𝛽 ,
−

1

𝛽
+

1

𝛽
 

 

𝐴 , =
𝛽 , (𝐶 𝑛 , − 𝑛 , + 1 𝐿 + 𝑛 , + 1 𝑆 )

𝑅𝐸𝑆 ℎ
 

 

 𝒏𝒈,𝒆𝒇𝒇 𝒏𝒄,𝒆𝒇𝒇 𝒏𝒍𝒆𝒂𝒏,𝒆𝒇𝒇 𝜷𝒃𝒓,𝒓𝒆𝒒  𝑨𝒃𝒓,𝒓𝒆𝒒 

𝑪𝑭𝑳 𝟏 2 1 0 38,700   0.19 𝑖𝑛  

𝑪𝑭𝑳 𝟐 2 1 0 138,800   0.69 𝑖𝑛  

𝑪𝑭𝑳 𝟑 2 1 0 279,100   1.38 𝑖𝑛  

𝑪𝑭𝑳 𝟒 2 1 0 415,300   2.05 𝑖𝑛  

𝑪𝑭𝑳 𝟓 5 4 0 474,600   0.84 𝑖𝑛  

𝑪𝑭𝑳 𝟔 2 1 0 415,300   2.05 𝑖𝑛  

𝑪𝑭𝑳 𝟕 2 1 0 279,100   1.38 𝑖𝑛  

𝑪𝑭𝑳 𝟖 2 1 0 138,800   0.69 𝑖𝑛  

𝑪𝑭𝑳 𝟗 2 1 0 38,700   0.19 𝑖𝑛  
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The minimum brace area is dictated by CFL 4 and 6. 𝐴 , = 2.05 𝑖𝑛 .  

12.1.4.5. Select Brace Member Size 

 An L5x5x1/2 angle is selected for all brace lines, resulting in 𝐴 , = 4.79 𝑖𝑛 . 

12.1.5. Check Strength Requirements for Each Bracing Line  

12.1.5.1. Determine the Force Demand in Diagonals and Struts for Each Cross-Frame Line 

It is simplest to use the maximum moment in the span to check all brace lines.  

𝑀 , =
0.0048𝐿𝐿

𝑛 𝐸𝐼 ℎ

𝑀

𝐶
= 2,300 𝑘𝑖𝑝 − 𝑖𝑛  

𝐹 , =
𝑀

ℎ
= 24 𝑘𝑖𝑝 

 
The force in the struts and diagonals is dependent on 𝑛  and 𝑛 , so it will vary depending on 

the cross-frame pattern in each bracing line. The force equations for X-frames are: 

𝐹 , =
𝑛 , − 𝑛 , + 1 𝐹 𝐿

2𝑆
 

𝐹 , = 𝑛 , 𝐹  

 

 𝒏𝒈,𝒆𝒇𝒇 𝒏𝒄,𝒆𝒇𝒇 𝒏𝒍𝒆𝒂𝒏,𝒆𝒇𝒇 𝑭𝒅  𝑭𝒔 

𝑪𝑭𝑳 𝟏 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟐 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟑 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟒 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟓 5 4 0 27.3 𝑘𝑖𝑝  0 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟔 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟕 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟖 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟗 2 1 0 54.5 𝑘𝑖𝑝  23.6 𝑘𝑖𝑝 
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The maximum force in the diagonals is 𝐹 = 54.5 𝑘𝑖𝑝 and the maximum force in the struts is 𝐹 =

23.6 𝑘𝑖𝑝.  

12.1.5.2. Check Strength Capacity 

Brace Angle Information 

𝐹 = 70 𝑘𝑠𝑖  Tensile strength 

𝐹 = 50 𝑘𝑠𝑖  Yield strength 

�̅� = 1.42 𝑖𝑛  Centroid of angle 

𝑟 = 1.53 𝑖𝑛  Radius of gyration 

𝑡 =  𝑖𝑛  Thickness of leg 

Brace Connection Information 

𝑑 = 1 𝑖𝑛  Bolt diameter 

𝐹 = 120 𝑘𝑠𝑖  Tensile strength of bolt 

𝐹 = 70 𝑘𝑠𝑖  Yield strength of bolt 

𝐿 = 3 𝑖𝑛  Bolt spacing 

𝐴 = 𝑑 = 0.785 𝑖𝑛  Area of bolt 

12.1.5.2.1. Tensile Capacity of Diagonals and Struts 

Gross Section Yield 

𝜑  = 0.95  Resistance factor for yielding 

𝜑 𝑃 = 𝜑 𝐹 𝐴 , = 228 𝑘𝑖𝑝  

 𝜑 𝑃 > 𝐹  OK, 𝜑 𝑃 > 𝐹  OK 
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Net Section Fracture 

𝜑  = 0.8  Resistance factor for fracture 

𝑅 = 1.0  Reduction factor for holes 

𝑈 = 1 −
̅

= 0.5  Shear lag reduction factor 

𝐴 = 𝐴 , − 1 𝑑 +  𝑖𝑛 𝑡 = 4.2 𝑖𝑛   Nominal area of brace member 

𝜑 𝑃 = 𝜑 𝐹 𝐴 𝑅 𝑈 = 125 𝑘𝑖𝑝 

𝜑 𝑃 > 𝐹  OK, 𝜑 𝑃 > 𝐹  OK 

12.1.5.2.2. Compressive Capacity of Cross-Frame Diagonals 

As per AASHTO LRFD Article 6.9.4.4:  

𝐿

𝑟
= 95.3 

Hence, effective slenderness ratio is calculated as:  

AASHTO LRFD Eqn. 6.9.4.4-1: 

𝐾𝐿

𝑟
= 72 + 0.75

𝐿

𝑟
= 143.5 

Elastic critical buckling resistance of single angle is calculated as:  

AASHTO LRFD Eqn. 6.9.4.1.2-1: 

𝑃 =
𝜋 𝐸

𝐾𝐿
𝑟

𝐴 = 67 𝑘𝑖𝑝 

Nominal yield resistance:  

AASHTO LRFD Article 6.9.4.1 

𝑃 = 𝐹 𝐴 , = 239 𝑘𝑖𝑝 

As per AASHTO LRFD Article 6.9.4.1:  
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𝑃

𝑃
= 3.6 > 2.25 

Hence, nominal compressive resistance of a single angle is:  

AASHTO LRFD Eqn. 6.9.4.1-2  

𝑃 = 0.877𝑃 = 58.4 𝑘𝑖𝑝 

Factored compressive resistance of a single angle is:  

𝜑  = 0.95  Resistance factor for compression 

𝜑 𝑃 = 55.5 𝑘𝑖𝑝 > 𝐹  𝑂𝐾 

12.1.5.2.3. Compressive Capacity of Top and Bottom Struts 

As per AASHTO LRFD Article 6.9.4.4:  

𝐿

𝑟
= 70.6 

Hence, effective slenderness ratio is calculated as:  

AASHTO LRFD Eqn. 6.9.4.4-1: 

𝐾𝐿

𝑟
= 72 + 0.75

𝐿

𝑟
= 125 

Elastic critical buckling resistance of single angle is calculated as:  

AASHTO LRFD Eqn. 6.9.4.1.2-1: 

𝑃 =
𝜋 𝐸

𝐾𝐿
𝑟

𝐴 = 87.8 𝑘𝑖𝑝 

Nominal yield resistance:  

AASHTO LRFD Article 6.9.4.1 

𝑃 = 𝐹 𝐴 , = 240 𝑘𝑖𝑝 

As per AASHTO LRFD Article 6.9.4.1:  
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𝑃

𝑃
= 2.7 > 2.25 

Hence, nominal compressive resistance of a single angle is:  

AASHTO LRFD Eqn. 6.9.4.1-2  

𝑃 = 0.877𝑃 = 77 𝑘𝑖𝑝 

Factored compressive resistance of a single angle is:  

𝜑 𝑃 = 73.2 𝑘𝑖𝑝 > 𝐹  𝑂𝐾 

12.1.5.2.4. Limiting Slenderness Ratio Check 

𝐾𝐿

𝑟
= 70.6 < 140 𝑂𝐾 
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12.2. Design Example 2 

An application of lean-on bracing for a 56° skew, single span, seven-girder bridge with a cross-

frame layout resembling an X is illustrated in this example. The girder sections are shown in Figure 

12-4.  

 

Figure 12-4. Example 2 Girder Elevation View 

12.2.1. Determine Girder Layout and Geometry 

Span Information 

𝑛 = 7  Number of girders 

𝑆 = 12 𝑓𝑡  Girder spacing 

𝐿 = 208 𝑓𝑡  Span length 

𝐸 = 29,000 𝑘𝑠𝑖  Modulus of elasticity 

𝜃 = 56°  Skew angle 

Web Information 

𝑡 = 1 𝑖𝑛  Thickness of girder web 

ℎ = 120 𝑖𝑛  Height of girder web 

Bottom Flange Information 

𝑏 = 30 𝑖𝑛  Width of bottom flange 
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𝑡 = 1.75 𝑖𝑛  Thickness of thinnest section of girder flange 

𝑡 = 2 𝑖𝑛  Thickness of second thinnest section of girder flange 

𝑥 =
  

 
= 0.52  Fraction of span with 𝑡  

Top Flange Information 

𝑏 = 30 𝑖𝑛  Width of top flange 

𝑡 = 1.5 𝑖𝑛  Thickness of thinnest section of girder flange 

𝑡 = 1.75 𝑖𝑛  Thickness of second thinnest section of girder flange 

𝑥 =
  

 
= 0.67  Fraction of span with 𝑡  

Calculated Girder Section Properties, as defined in AASHTO LRFD BDS 

𝑡 = 𝑡 (1 − 1 − 𝑥 ) ) + 𝑡 (1 − 𝑥 ) = 1.81 𝑖𝑛   

𝑡 = 𝑡 (1 − 1 − 𝑥 ) ) + 𝑡 (1 − 𝑥 ) = 1.55 𝑖𝑛  

Bottom Flange Top Flange Web 

𝑦 = = 0.9 𝑖𝑛  𝑦 = = 122.3 𝑖𝑛  𝑦 = 𝑡 + = 61.8 𝑖𝑛  

𝐴 = 𝑏 𝑡 = 54.2 𝑖𝑛   𝐴 = 𝑏 𝑡 = 46.6 𝑖𝑛   𝐴 = 𝑏 𝑡 = 120 𝑖𝑛   

𝐼 = = 14.8 𝑖𝑛   𝐼 = = 9.4 𝑖𝑛   𝐼 = = 144000 𝑖𝑛   

𝐼 = = 4068 𝑖𝑛   𝐼 = = 3495 𝑖𝑛   𝐼 = = 10 𝑖𝑛   

 

𝑑 = = 59.6 𝑖𝑛  

𝑑 = 𝑡 + ℎ + 𝑡 − 𝑑 = 63.7 𝑖𝑛  

𝐼 = 𝐼 + 𝐴 𝑑 − 𝑦 + 𝐼 + 𝐴 (𝑑 − 𝑦 ) + 𝐼 + 𝐴 𝑑 − 𝑦 = 514,843 𝑖𝑛   
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𝐼 = 𝐼 + 𝐼 + 𝐼 = 7573 𝑖𝑛   

𝑐 = 𝑑 − = 63.0 𝑖𝑛  

𝑡 = 𝑑 − 𝑦 = 58.7 𝑖𝑛  

𝐼 = 𝐼 + 𝐼 = 7289 𝑖𝑛   

𝐽 = + + = 137 𝑖𝑛   

12.2.2. Determine Cross-Frame Locations Based on Recommended Layouts 

Because the bridge is skewed with seven girders, the X-layout is recommended. X-frames are used 

because the web depth is greater than 75% of the girder spacing. Eight cross-frame lines are used 

to keep the maximum spacing close to 25 feet. In Figure 12-5 and following calculations, CFL 

represents “cross-frame line,” dashed lines represent lean-on struts, and thick lines represent cross-

frames. A cross-section view of CFL 1 is shown in Figure 12-6.  

 

 

Figure 12-5. Example 2 Cross-Frame Layout 
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Figure 12-6. Example 2 CFL 4 Section View 

Connection Plate Information 

𝑏 = 9 𝑖𝑛  Width of connection plate 

ℎ = 11 𝑖𝑛  Distance from top of cross-frame to bottom of top flange 

𝑡 = 0.5 𝑖𝑛  Thickness of connection plate 

Brace Information 

𝑛 = 8  Number of intermediate cross-frame lines in the span 

𝐿 = 27 𝑓𝑡  Unbraced length (maximum cross-frame spacing) 

ℎ = ℎ − 2ℎ = 98 𝑖𝑛  Height of cross-frame 

𝐿 = (𝑆 − 2𝑏 ) + ℎ = 160 𝑖𝑛  Length of diagonal braces 

𝐿 = 𝑆 − 2𝑏 = 126 𝑖𝑛  Length of top and bottom struts 

12.2.3. Check Moment Demands 

12.2.3.1. Calculate the Moment Loading at Each Cross-Frame Line 

Loading Information 

𝜌 = 150   Unit weight of concrete  

𝑡 = 10 𝑖𝑛  Thickness of deck 

𝜌 = 490   Density of steel 
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𝐷𝐿 = 5   Load of formwork 

𝑤 = 𝜌 + 𝑡 ∗ 𝑆 = 1500   Self-weight of fresh concrete 

𝑤 = 𝐴 + 𝐴 + 𝐴 ∗ 𝜌 = 751     Self-weight of girder 

𝑤 = 𝐷𝐿 ∗ 𝑆 = 60   Self-weight of formwork 

𝑤 = 150   Construction live load 

𝑤 = 1.4 𝑤 + 𝑤 + 𝑤 + 𝑤 = 3466   Total line load (factored) 

Each bracing line must be designed for the maximum moment demand along the bracing line. For 

a simply supported skew bridge, these locations may be grouped as support regions and midspan 

regions, as shown in Figure 12-7. The girder locations with the maximum moment demand for 

each cross-frame line are indicated by stars.  

 

Figure 12-7. Example 2 Maximum Moment Locations 

  The maximum moment in the support regions is governed by the girder closest to the 

skew. This is given by: 
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𝑀 =
𝑤 𝑥(𝐿 − 𝑥)

2
 [𝑘𝑖𝑝 − 𝑓𝑡] 

For the midspan region, the governing moment is 𝑀 . The maximum moment for a 

single girder with uniformly distributed load is:  

𝑀 =
𝑤 𝐿

8
= 18,600 𝑘𝑖𝑝 − 𝑓𝑡 

 

 Support 1 𝒙𝟏 Midspan  Support 2 𝒙𝟐 𝑴𝑪𝑭𝑳 

𝑪𝑭𝑳 𝟏 27 𝑓𝑡   8,400 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟐 54 𝑓𝑡   14,300 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟑 81 𝑓𝑡   17,700 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟒  𝑀   18,600 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟓  𝑀   18,600 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟔  𝑀   18,600 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟕  𝑀   18,600 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟖  𝑀   18,600 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟗   81 𝑓𝑡 17,700 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟏𝟎   54 𝑓𝑡 14,300 𝑘𝑖𝑝 − 𝑓𝑡 

𝑪𝑭𝑳 𝟏𝟏   27 𝑓𝑡 8,400 𝑘𝑖𝑝 − 𝑓𝑡 

12.2.3.2. Check System Global Buckling Moment 

𝐶 = 0.85  
Lean-On Factor - 0.95 for bridges with less than 30° skew and 0.85 greater 

than or equal to 30° skew 

𝐶 = 1.1  1.1 for single span, 2.0 for continuous span 

𝛼 = 56  System warping stiffness factor from Table 11-2 

𝐾 = 0.7  1.0 if lateral trusses are not used, 0.7 if lateral trusses are used or skew ≥ 30° 

0.7𝑀 = 0.7𝐶 𝐶
( )

𝐼 𝐼 = 91,960 𝑘𝑖𝑝 − 𝑓𝑡  



  

188 

𝑀 < 0.7𝑀  OK 

NOTE: there is no additional stiffness benefit of adding lateral trusses to this bridge, since 𝐾is 

equal to 0.7 for bridges with ≥ 30° skew.  

12.2.3.3. Check Conventional Lateral-Torsional Buckling Moment 

𝐶 = 1  LTB modification factor 

𝐶 = ∗ = 26,239,000 𝑖𝑛    Torsional warping constant 

𝐺 = 11150 𝑘𝑠𝑖  Shear modulus 

𝑀 = 𝐶 𝐸𝐼 𝐺𝐽 + = 100,400 𝑘𝑖𝑝 − 𝑓𝑡  

𝑀 < 𝑀  OK 

12.2.4. Determine Minimum Brace Area for Each Bracing Line  

12.2.4.1. Determine Required System Stiffness at Each Bracing Line 

φ = 0.8  Resistance factor for stability bracing 

 
The required stiffness at each bracing line is given by:  
 

𝛽 , =
2.4𝐿

φ𝐶 𝑛 𝐼 𝐸
𝑀 = 221,500

𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
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 𝜷𝑻,𝒓𝒆𝒒 

𝑪𝑭𝑳 𝟏 45,200   

𝑪𝑭𝑳 𝟐 131,000   

𝑪𝑭𝑳 𝟑 200,300   

𝑪𝑭𝑳 𝟒 221,500   

𝑪𝑭𝑳 𝟓 221,500   

𝑪𝑭𝑳 𝟔 221,500   

𝑪𝑭𝑳 𝟕 221,500   

𝑪𝑭𝑳 𝟖 221,500   

𝑪𝑭𝑳 𝟗 200,300   

𝑪𝑭𝑳 𝟏𝟎 131,000   

𝑪𝑭𝑳 𝟏𝟏 45,200   

 

12.2.4.2. Calculate In-Plane Girder Stiffness (Constant) 

𝛽 = 𝐶 𝐶
𝜋 𝐸𝐼 𝑆 𝛼

2𝑛 (𝐾𝐿) (𝑛 + 1)
= 2,196,900

𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
 

12.2.4.3. Calculate Cross-Sectional Stiffness (Constant) 

The cross-frames are greater than 80% of the web depth, so the cross-sectional stiffness may be 

taken as infinite.  

𝛽 = ∞
𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
 

12.2.4.4. Use the Brace Stiffness Equation to Determine the Minimum Brace Area for Each 
Line 

 
𝐶 = 0.5  Cross-frame coefficient: 1.0 for Z-frames, 0.5 for X-frames, 2.0 for K-frames 

𝑅 = 0.65  Connection eccentricity factor 
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Use these equations to determine the minimum area requirement for each cross-frame line:  
 

𝛽 , =
1

𝛽 ,
−

1

𝛽
+

1

𝛽
 

𝐴 , =
𝛽 , (𝐶 𝑛 , − 𝑛 , + 1 𝐿 + 𝑛 , + 1 𝑆 )

𝑅𝐸𝑆 ℎ
 

 

 𝒏𝒈,𝒆𝒇𝒇 𝒏𝒄,𝒆𝒇𝒇 𝒏𝒍𝒆𝒂𝒏,𝒆𝒇𝒇 𝜷𝒃𝒓,𝒓𝒆𝒒  𝑨𝒃𝒓,𝒓𝒆𝒒 

𝑪𝑭𝑳 𝟏 7 1 0 46,100   0.21 𝑖𝑛  

𝑪𝑭𝑳 𝟐 7 1 1 139,200   0.97 𝑖𝑛  

𝑪𝑭𝑳 𝟑 7 2 2 220,400   2.29 𝑖𝑛  

𝑪𝑭𝑳 𝟒 7 2 3 246,300   3.94 𝑖𝑛  

𝑪𝑭𝑳 𝟓 7 2 2 246,300   2.56 𝑖𝑛  

𝑪𝑭𝑳 𝟔 7 6 0 246,300   0.46 𝑖𝑛  

𝑪𝑭𝑳 𝟕 7 2 2 246,300   2.56 𝑖𝑛  

𝑪𝑭𝑳 𝟖 7 2 3 246,300   3.94 𝑖𝑛  

𝑪𝑭𝑳 𝟗 7 2 2 220,400   2.29 𝑖𝑛  

𝑪𝑭𝑳 𝟏𝟎 7 1 1 139,200   0.97 𝑖𝑛  

𝑪𝑭𝑳 𝟏𝟏 7 1 0 46,100   0.21 𝑖𝑛  

The minimum brace area is dictated by CFL 4 and 8. 𝐴 , = 3.94 𝑖𝑛 .  

12.2.4.5. Select Brace Member Size 

 A L5x5x1/2 angle is selected for all brace lines, resulting in 𝐴 , = 4.79 𝑖𝑛 . 

12.2.5. Check Strength Requirements for Each Bracing Line  

12.2.5.1. Determine the Force Demand in Diagonals and Struts for Each Cross-Frame Line 

It is simplest to use the maximum moment in the span to check all brace lines.  

𝑀 =
0.0048𝐿𝐿

𝑛 𝐸𝐼 ℎ

𝑀

𝐶
= 1172 𝑘𝑖𝑝 − 𝑖𝑛  
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𝐹 =
𝑀

ℎ
= 12 𝑘𝑖𝑝 

 
The force in the struts and diagonals is dependent on 𝑛  and 𝑛 , so it will vary depending 

on the cross-frame pattern in each bracing line. The force equations for X-frames are: 

𝐹 , =
𝑛 , − 𝑛 , + 1 𝐹 𝐿

2𝑆
 

𝐹 , = 𝑛 , 𝐹  

 

 𝒏𝒈,𝒆𝒇𝒇 𝒏𝒄,𝒆𝒇𝒇 𝒏𝒍𝒆𝒂𝒏,𝒆𝒇𝒇 𝑭𝒅  𝑭𝒔 

𝑪𝑭𝑳 𝟏 7 1 0 46.4 𝑘𝑖𝑝  0 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟐 7 1 1 46.4 𝑘𝑖𝑝  12 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟑 7 2 2 39.8 𝑘𝑖𝑝  23.9 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟒 7 2 3 39.8 𝑘𝑖𝑝  35.9 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟓 7 2 2 39.8 𝑘𝑖𝑝  23.9 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟔 7 6 0 13.3 𝑘𝑖𝑝  0 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟕 7 2 2 39.8 𝑘𝑖𝑝  23.9 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟖 7 2 3 39.8 𝑘𝑖𝑝  35.9 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟗 7 2 2 39.8 𝑘𝑖𝑝  23.9 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟏𝟎 7 1 1 46.4 𝑘𝑖𝑝  12 𝑘𝑖𝑝 

𝑪𝑭𝑳 𝟏𝟏 7 1 0 46.4 𝑘𝑖𝑝  0 𝑘𝑖𝑝 
 
The maximum force in the diagonals is 𝐹 = 46.4 𝑘𝑖𝑝 and the maximum force in the struts is 𝐹 =

35.9 𝑘𝑖𝑝.  

12.2.5.2. Check Strength Capacity 

Brace Angle Information 

𝐹 = 70 𝑘𝑠𝑖  Tensile strength 

𝐹 = 50 𝑘𝑠𝑖  Yield strength 
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�̅� = 1.42 𝑖𝑛  Centroid of angle 

𝑟 = 1.53 𝑖𝑛  Radius of gyration 

𝑡 =  𝑖𝑛  Thickness of leg 

Brace Connection Information 

𝑑 = 1 𝑖𝑛  Bolt diameter 

𝐹 = 120 𝑘𝑠𝑖  Tensile strength of bolt 

𝐹 = 70 𝑘𝑠𝑖  Yield strength of bolt 

𝐿 = 3 𝑖𝑛  Bolt spacing 

𝐴 = 𝑑 = 0.785 𝑖𝑛  Area of bolt 

12.2.5.2.1. Tensile Capacity of Diagonals and Struts 

Gross Section Yield 

𝜑  = 0.95  Resistance factor for yielding 

𝜑 𝑃 = 𝜑 𝐹 𝐴 , = 228 𝑘𝑖𝑝  

 𝜑 𝑃 > 𝐹  OK, 𝜑 𝑃 > 𝐹  OK 

Net Section Fracture 

𝜑  = 0.8  Resistance factor for fracture 

𝑅 = 1.0  Reduction factor for holes 

𝑈 = 1 −
̅

= 0.5  Shear lag reduction factor 

𝐴 = 𝐴 , − 1 𝑑 +  𝑖𝑛 𝑡 = 4.2 𝑖𝑛   Nominal area of brace member 

𝜑 𝑃 = 𝜑 𝐹 𝐴 𝑅 𝑈 = 125 𝑘𝑖𝑝  
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 𝜑 𝑃 > 𝐹  OK, 𝜑 𝑃 > 𝐹  OK 

12.2.5.2.2. Compressive Capacity of Cross-Frame Diagonals 

As per AASHTO LRFD Article 6.9.4.4:  

𝐿

𝑟
= 104 

Hence, effective slenderness ratio is calculated as:  

AASHTO LRFD Eqn. 6.9.4.4-1: 

𝐾𝐿

𝑟
= 72 + 0.75

𝐿

𝑟
= 150 

Elastic critical buckling resistance of single angle is calculated as:  

AASHTO LRFD Eqn. 6.9.4.1.2-1: 

𝑃 =
𝜋 𝐸

𝐾𝐿
𝑟

𝐴 = 61 𝑘𝑖𝑝 

Nominal yield resistance:  

AASHTO LRFD Article 6.9.4.1 

𝑃 = 𝐹 𝐴 , = 240 𝑘𝑖𝑝 

As per AASHTO LRFD Article 6.9.4.1:  

𝑃

𝑃
= 3.9 > 2.25 

Hence, nominal compressive resistance of a single angle is:  

AASHTO LRFD Eqn. 6.9.4.1-2  

𝑃 = 0.877𝑃 = 53 𝑘𝑖𝑝 

Factored compressive resistance of a single angle is:  
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𝜑  = 0.95  Resistance factor for compression 

𝜑 𝑃 = 50.6 𝑘𝑖𝑝 > 𝐹  𝑂𝐾 

12.2.5.2.3. Compressive Capacity of Top and Bottom Struts 

As per AASHTO LRFD Article 6.9.4.4:  

𝐿

𝑟
= 82.4 

Hence, effective slenderness ratio is calculated as:  

AASHTO LRFD Eqn. 6.9.4.4-1: 

𝐾𝐿

𝑟
= 72 + 0.75

𝐿

𝑟
= 134 

Elastic critical buckling resistance of single angle is calculated as:  

AASHTO LRFD Eqn. 6.9.4.1.2-1: 

𝑃 =
𝜋 𝐸

𝐾𝐿
𝑟

𝐴 = 77 𝑘𝑖𝑝 

Nominal yield resistance:  

AASHTO LRFD Article 6.9.4.1 

𝑃 = 𝐹 𝐴 , = 239.5 𝑘𝑖𝑝 

As per AASHTO LRFD Article 6.9.4.1:  

𝑃

𝑃
= 3.1 > 2.25 

Hence, nominal compressive resistance of a single angle is:  

AASHTO LRFD Eqn. 6.9.4.1-2  

𝑃 = 0.877𝑃 = 67.2 𝑘𝑖𝑝 

Factored compressive resistance of a single angle is:  
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𝜑 𝑃 = 63.8 𝑘𝑖𝑝 > 𝐹  𝑂𝐾 

12.2.5.2.4. Limiting Slenderness Ratio Check 

𝐾𝐿

𝑟
= 82.4 < 140 𝑂𝐾 
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Chapter 13. Conclusions 

 
 

The project successfully addressed many of the previous limitations of design methods for 

lean-on bracing. At the outset of the study, a comprehensive literature review was performed to 

capture the current state of knowledge. Detailed derivations for expanded application of the brace 

stiffness equation for lean-on systems were completed and revised. Then, field instrumentation 

and live-load testing of two Texas bridges with lean-on bracing were conducted, and 

corresponding finite element analysis models were developed and validated based on the recorded 

data. These models were used to determine relationships between bracing components for optimal 

lean-on bridge system stiffness behavior. Revised strength equations for lean-on bracing were 

developed, along with a detailed lean-on bracing design methodology.  

13.1. Research Contributions 

The primary research contributions were in five areas, which are summarized below. 

1) Lean-on brace stiffness equation (𝛽 , ): Prior lean-on stiffness equations were limited 

to a single exterior cross-frame in every cross-frame line. These equations also assumed 

only one diagonal was active (tension-only model) and ignored the contribution of a second 

diagonal (X frames). As part of this study, a revised equation was derived for the brace 

stiffness, which now can account for any number, position, or shape of cross-frames. 

2) Lean-on strength equations: The original strength equations for lean-on systems had similar 

limitations to the brace stiffness equations, as previously mentioned. Revised cross-frame 

diagonal (𝐹 ,  or 𝐹 , ) and strut (𝐹 ,   or 𝐹 , ) strength design equations 

were developed to correspond with the brace stiffness expression. These strength equations 
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were updated for varied cross-frame geometry, number, and position along the cross-frame 

line.  

3) Data and behavior analysis from field testing: Prior field testing of lean-on bracing systems 

only included data from one bridge during construction. Field testing of two additional 

lean-on bridges added to the collection of data, and processed data was used to validate 

models and confirm the performance of lean-on bracing systems.  

4) Relationship between stiffness components: The relationship between the brace stiffness 

and in-plane girder stiffness was not previously well understood. Advancements were 

made in identifying how varying cross-frame patterns (and potentially brace stiffnesses) 

along the span affect the system behavior.  

5) Detailed design methodology and examples: Practical contributions were included for the 

application of the revised design expressions. A detailed design methodology was 

provided, as well as two design examples to convey a conventional nonskew and skew 

lean-on bracing design using the equation-based methodology.  

13.2. Future Work 

The project resulted in several significant contributions to lean-on bracing design. The 

resulting design equations and procedures are applicable to straight bridges with any skew angle. 

In order to expand the application of lean-on bracing and remove some built-in conservativism of 

the approach, there are several avenues that should be pursued as part of future research: 

 The scope of this research did not include curved bridges. Lean-on bracing is a viable 

concept for curved bridges, but additional study is recommended to quantify additional 

considerations induced by the curvature of bridge girders. 
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 Connection eccentricity factors (R-factors) were studied in detail for conventional bracing 

systems (Reichenbach et al., 2021). These recommendations were applied directly for lean-

on bracing. An additional study is recommended to refine connection eccentricity factors 

for lean-on bracing.  

 In calculating the brace stiffness for bracing lines for skew systems, 𝑛 ,  and 𝑛 ,  

may be able to be reduced, as there are realistically fewer girders being braced by that 

cross-frame line. This would increase the calculated stiffness provided by these cross-

frame lines due to the reduction in the number of leaning girders. These bracing lines 

typically do not govern for single spans, but this may be consequential for the design of 

continuous spans.  

 It has been suggested that it is inconsequential to remove approximately 10% or less of the 

cross-frames in a conventional bracing system. Further study in quantifying a maximum 

value of cross-frames that may be removed without the application of lean-on equations is 

worthwhile.  

 Finally, the girder erection process may be streamlined with additional study of 

construction phasing for the recommended lean-on layouts.  
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Appendix A. Lubbock Bridge Live Load Testing Layouts 

 
 

 

Figure A-1. Lubbock Bridge Load Case 1: Staggered Ahead Station 

 

Figure A-2. Lubbock Bridge Load Case 2: Staggered Behind Station 

 

Figure A-3. Lubbock Bridge Load Case 3: Side-by-Side South 
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Figure A-4. Lubbock Bridge Load Case 4: Side-by-Side North 

 

Figure A-5. Lubbock Bridge Load Case 5: End-to-End South 

 

Figure A-6. Lubbock Bridge Load Case 6: End-to-End Central 
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Appendix B. SH 105 Bridge Sensor List Conventions 

 
 

Table B-1. SH 105 Bridge Sensor List Conventions 

Sensor List Conventions 

Bay/ Girder # G# girder # 
B# bay # 

Member Type GR girder 
ST strut, top 
SB strut, bottom 
XT cross-frame, top 
XB cross-frame, bottom 

Location on Member: Girders N1 north bottom 
S1 south bottom 
N2 north middle 
S2 south middle 

Location on Member: Angle OH outer horizontal 
IH inner horizontal 
OV outer vertical 
IV inner vertical 
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Appendix C. SH 105 Bridge Sensor List 

 
 

Table C-1. SH 105 Bridge Sensor List  
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1 D1 M1 C01 L5 G1 GR N1 D1M1C01-L5G1-GR-N1 
2 D1 M1 C03 L5 G1 GR S1 D1M1C03-L5G1-GR-S1 
3 D1 M1 C05 L5 B1 ST OH D1M1C05-L5B1-ST-OH 
4 D1 M1 C07 L5 B1 ST IH D1M1C07-L5B1-ST-IH 
5 D1 M1 C09 L5 B1 ST OV D1M1C09-L5B1-ST-OV 
6 D1 M1 C11 L5 B1 ST IV D1M1C11-L5B1-ST-IV 
7 D1 M1 C13 L5 B1 SB OH D1M1C13-L5B1-SB-OH 
8 D1 M1 C15 L5 B1 SB IH D1M1C15-L5B1-SB-IH 
9 D1 M1 C17 L5 B1 SB OV D1M1C17-L5B1-SB-OV 

10 D1 M1 C19 L5 B1 SB IV D1M1C19-L5B1-SB-IV 
11 D1 M1 C21 L5 G2 GR N1 D1M1C21-L5G2-GR-N1 
12 D1 M1 C23 L5 G2 GR S1 D1M1C23-L5G2-GR-S1 
13 D1 M1 C25 L5 G3 GR N1 D1M1C25-L5G3-GR-N1 
14 D1 M1 C27 L5 G3 GR S1 D1M1C27-L5G3-GR-S1 
15 D1 M1 C29 L5 G3 GR N2 D1M1C29-L5G3-GR-N2 
16 D1 M1 C31 L5 G3 GR S2 D1M1C31-L5G3-GR-S2 
1 D1 M2 C01 L5 B2 ST OH D1M2C01-L5B2-ST-OH 
2 D1 M2 C03 L5 B2 ST IH D1M2C03-L5B2-ST-IH 
3 D1 M2 C05 L5 B2 ST OV D1M2C05-L5B2-ST-OV 
4 D1 M2 C07 L5 B2 ST IV D1M2C07-L5B2-ST-IV 
5 D1 M2 C09 L5 B2 SB OH D1M2C09-L5B2-SB-OH 
6 D1 M2 C11 L5 B2 SB IH D1M2C11-L5B2-SB-IH 
7 D1 M2 C13 L5 B2 SB OV D1M2C13-L5B2-SB-OV 
8 D1 M2 C15 L5 B2 SB IV D1M2C15-L5B2-SB-IV 
9 D1 M2 C17 L5 B2 XT OH D1M2C17-L5B2-XT-OH 

10 D1 M2 C19 L5 B2 XT IH D1M2C19-L5B2-XT-IH 
11 D1 M2 C21 L5 B2 XT OV D1M2C21-L5B2-XT-OV 
12 D1 M2 C23 L5 B2 XT IV D1M2C23-L5B2-XT-IV 
13 D1 M2 C25 L5 B2 XB OH D1M2C25-L5B2-XB-OH 
14 D1 M2 C27 L5 B2 XB IH D1M2C27-L5B2-XB-IH 
15 D1 M2 C29 L5 B2 XB OV D1M2C29-L5B2-XB-OV 
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16 D1 M2 C31 L5 B2 XB IV D1M2C31-L5B2-XB-IV 
1 D1 M3 C01 L5 B3 ST OH D2M3C01-L5B3-ST-OH 
2 D1 M3 C03 L5 B3 ST IH D2M3C03-L5B3-ST-IH 
3 D1 M3 C05 L5 B3 ST OV D2M3C05-L5B3-ST-OV 
4 D1 M3 C07 L5 B3 ST IV D2M3C07-L5B3-ST-IV 
5 D1 M3 C09 L5 B3 SB OH D2M3C09-L5B3-SB-OH 
6 D1 M3 C11 L5 B3 SB IH D2M3C11-L5B3-SB-IH 
7 D1 M3 C13 L5 B3 SB OV D2M3C13-L5B3-SB-OV 
8 D1 M3 C15 L5 B3 SB IV D2M3C15-L5B3-SB-IV 
9 D1 M3 C17 L5 B3 XT OH D2M3C17-L5B3-XT-OH 

10 D1 M3 C19 L5 B3 XT IH D2M3C19-L5B3-XT-IH 
11 D1 M3 C21 L5 B3 XT OV D2M3C21-L5B3-XT-OV 
12 D1 M3 C23 L5 B3 XT IV D2M3C23-L5B3-XT-IV 
13 D1 M3 C25 L5 B3 XB OH D2M3C25-L5B3-XB-OH 
14 D1 M3 C27 L5 B3 XB IH D2M3C27-L5B3-XB-IH 
15 D1 M3 C29 L5 B3 XB OV D2M3C29-L5B3-XB-OV 
16 D1 M3 C31 L5 B3 XB IV D2M3C31-L5B3-XB-IV 
1 D1 M4 C01 L5 G4 GR N1 D2M4C01-L5G4-GR-N1 
2 D1 M4 C03 L5 G4 GR S1 D2M4C03-L5G4-GR-S1 
3 D1 M4 C05 L5 B4 ST OH D2M4C05-L5B4-ST-OH 
4 D1 M4 C07 L5 B4 ST IH D2M4C07-L5B4-ST-IH 
5 D1 M4 C09 L5 B4 ST OV D2M4C09-L5B4-ST-OV 
6 D1 M4 C11 L5 B4 ST IV D2M4C11-L5B4-ST-IV 
7 D1 M4 C13 L5 B4 SB OH D2M4C13-L5B4-SB-OH 
8 D1 M4 C15 L5 B4 SB IH D2M4C15-L5B4-SB-IH 
9 D1 M4 C17 L5 B4 SB OV D2M4C17-L5B4-SB-OV 

10 D1 M4 C19 L5 B4 SB IV D2M4C19-L5B4-SB-IV 
11 D1 M4 C21 L5 G5 GR N1 D2M4C21-L5G5-GR-N1 
12 D1 M4 C23 L5 G5 GR S1 D2M4C23-L5G5-GR-S1 
1 D2 M5 C01 L3 B1 ST OH D3M5C01-L3B1-ST-OH 
2 D2 M5 C03 L3 B1 ST IH D3M5C03-L3B1-ST-IH 
3 D2 M5 C05 L3 B1 ST OV D3M5C05-L3B1-ST-OV 
4 D2 M5 C07 L3 B1 ST IV D3M5C07-L3B1-ST-IV 
5 D2 M5 C09 L3 B1 SB OH D3M5C09-L3B1-SB-OH 
6 D2 M5 C11 L3 B1 SB IH D3M5C11-L3B1-SB-IH 
7 D2 M5 C13 L3 B1 SB OV D3M5C13-L3B1-SB-OV 
8 D2 M5 C15 L3 B1 SB IV D3M5C15-L3B1-SB-IV 
9 D2 M5 C17 L3 B1 XT OH D3M5C17-L3B1-XT-OH 

10 D2 M5 C19 L3 B1 XT IH D3M5C19-L3B1-XT-IH 
11 D2 M5 C21 L3 B1 XT OV D3M5C21-L3B1-XT-OV 
12 D2 M5 C23 L3 B1 XT IV D3M5C23-L3B1-XT-IV 
13 D2 M5 C25 L3 B1 XB OH D3M5C25-L3B1-XB-OH 
14 D2 M5 C27 L3 B1 XB IH D3M5C27-L3B1-XB-IH 
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15 D2 M5 C29 L3 B1 XB OV D3M5C29-L3B1-XB-OV 
16 D2 M5 C31 L3 B1 XB IV D3M5C31-L3B1-XB-IV 
1 D2 M6 C01 L3 B2 ST OH D3M6C01-L3B2-ST-OH 
2 D2 M6 C03 L3 B2 ST IH D3M6C03-L3B2-ST-IH 
3 D2 M6 C05 L3 B2 ST OV D3M6C05-L3B2-ST-OV 
4 D2 M6 C07 L3 B2 ST IV D3M6C07-L3B2-ST-IV 
5 D2 M6 C09 L3 B2 SB OH D3M6C09-L3B2-SB-OH 
6 D2 M6 C11 L3 B2 SB IH D3M6C11-L3B2-SB-IH 
7 D2 M6 C13 L3 B2 SB OV D3M6C13-L3B2-SB-OV 
8 D2 M6 C15 L3 B2 SB IV D3M6C15-L3B2-SB-IV 
9 D2 M6 C17 L3 B2 XT OH D3M6C17-L3B2-XT-OH 

10 D2 M6 C19 L3 B2 XT IH D3M6C19-L3B2-XT-IH 
11 D2 M6 C21 L3 B2 XT OV D3M6C21-L3B2-XT-OV 
12 D2 M6 C23 L3 B2 XT IV D3M6C23-L3B2-XT-IV 
13 D2 M6 C25 L3 B2 XB OH D3M6C25-L3B2-XB-OH 
14 D2 M6 C27 L3 B2 XB IH D3M6C27-L3B2-XB-IH 
15 D2 M6 C29 L3 B2 XB OV D3M6C29-L3B2-XB-OV 
16 D2 M6 C31 L3 B2 XB IV D3M6C31-L3B2-XB-IV 
1 D2 M7 C01 L3 B3 ST OH D4M7C01-L3B3-ST-OH 
2 D2 M7 C03 L3 B3 ST IH D4M7C03-L3B3-ST-IH 
3 D2 M7 C05 L3 B3 ST OV D4M7C05-L3B3-ST-OV 
4 D2 M7 C07 L3 B3 ST IV D4M7C07-L3B3-ST-IV 
5 D2 M7 C09 L3 B3 SB OH D4M7C09-L3B3-SB-OH 
6 D2 M7 C11 L3 B3 SB IH D4M7C11-L3B3-SB-IH 
7 D2 M7 C13 L3 B3 SB OV D4M7C13-L3B3-SB-OV 
8 D2 M7 C15 L3 B3 SB IV D4M7C15-L3B3-SB-IV 
9 D2 M7 C17 L3 B4 ST OH D4M7C17-L3B4-ST-OH 

10 D2 M7 C19 L3 B4 ST IH D4M7C19-L3B4-ST-IH 
11 D2 M7 C21 L3 B4 ST OV D4M7C21-L3B4-ST-OV 
12 D2 M7 C23 L3 B4 ST IV D4M7C23-L3B4-ST-IV 
13 D2 M7 C25 L3 B4 SB OH D4M7C25-L3B4-SB-OH 
14 D2 M7 C27 L3 B4 SB IH D4M7C27-L3B4-SB-IH 
15 D2 M7 C29 L3 B4 SB OV D4M7C29-L3B4-SB-OV 
16 D2 M7 C31 L3 B4 SB IV D4M7C31-L3B4-SB-IV 
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Appendix D. SH 105 Bridge Live Load Testing Layout 

 
 

 

 

Figure D-1. SH 105 Bridge Load Case 1 

 

 
Figure D-2. SH 105 Bridge Load Case 2 

 

 

 

Figure D-3. SH 105 Bridge Load Case 3 
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Figure D-4. SH 105 Bridge Load Case 4 

 

 

 

Figure D-5. SH 105 Bridge Load Case 5 

 

 

 

Figure D-6. SH 105 Bridge Load Case 6 
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Figure D-7. SH 105 Bridge Load Case 7 

 

 

 

Figure D-8. SH 105 Bridge Load Case 8 

 

 

 

Figure D-9. SH 105 Bridge Load Case 9 
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Appendix E. Chisholm Trail Bridge Sensor List Conventions 

 
 

Table E-1. Chisholm Trail Bridge Sensor List Conventions 

 
Sensor List Conventions 

Bay/ Girder # G# girder # 
B# bay # 

Member Type GR girder 
ST strut top 
SB strut bottom 
SBE strut bottom east 
SBW strut bottom west 
KE k-frame east 
KW k-frame west 

Location on Member: Girders N1 north bottom 
S1 south bottom 
N2 north middle 
S2 south middle 

Location on Member: Single Angle OH outer horizontal 
IH inner horizontal 
OV outer vertical 
IV inner vertical 

Location on Member: Double Angle OHN/S outer horizontal north/south 
IHN/S inner horizontal north/south 
IVN/S inner vertical north/south 
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Appendix F. Chisholm Trail Bridge Sensor List 

 
 

Table F-1. Chisholm Trail Bridge Sensor List  

 

S
tr

ai
n 

G
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C
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nt
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ti
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ex
er

 

C
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nn
el

 

C
ro

ss
-f

ra
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e 
L
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B
ay

/G
ir

de
r 

N
um

be
r 

M
em

be
r 

T
yp

e 

L
oc

at
io

n 
on

 
M

em
be

r 

L
ab

el
 

1 M1 C01 L8 B1 ST OH M1C01-L8B1-ST-OH 
2 M1 C02 L8 B1 ST IH M1C02-L8B1-ST-IH 
3 M1 C03 L8 B1 ST OV M1C03-L8B1-ST-OV 
4 M1 C04 L8 B1 ST IV M1C04-L8B1-ST-IV 
5 M1 C05 L8 B1 SB OH M1C05-L8B1-SB-OH 
6 M1 C06 L8 B1 SB IH M1C06-L8B1-SB-IH 
7 M1 C07 L8 B1 SB OV M1C07-L8B1-SB-OV 
8 M1 C08 L8 B1 SB IV M1C08-L8B1-SB-IV 
9 M1 C09 L8 B2 ST OH M1C09-L8B2-ST-OH 

10 M1 C10 L8 B2 ST IH M1C10-L8B2-ST-IH 
11 M1 C11 L8 B2 ST OV M1C11-L8B2-ST-OV 
12 M1 C12 L8 B2 ST IV M1C12-L8B2-ST-IV 
13 M1 C13 L8 B2 SB OH M1C13-L8B2-SB-OH 
14 M1 C14 L8 B2 SB IH M1C14-L8B2-SB-IH 
15 M1 C15 L8 B2 SB OV M1C15-L8B2-SB-OV 
16 M1 C16 L8 B2 SB IV M1C16-L8B2-SB-IV 
1 M2 C01 L8 G3 GR N1 M2C01-L8G3-GR-N1 
2 M2 C02 L8 G3 GR S1 M2C02-L8G3-GR-S1 
3 M2 C03 L8 G3 GR N2 M2C03-L8G3-GR-N2 
4 M2 C04 L8 G3 GR S2 M2C04-L8G3-GR-S2 
5 M2 C05 L8 B3 ST OH M2C05-L8B3-ST-OH 
6 M2 C06 L8 B3 ST IH M2C06-L8B3-ST-IH 
7 M2 C07 L8 B3 ST OV M2C07-L8B3-ST-OV 
8 M2 C08 L8 B3 ST IV M2C08-L8B3-ST-IV 
9 M2 C09 L8 B3 SBE OH M2C09-L8B3-SBE-OH 

10 M2 C10 L8 B3 SBE IH M2C10-L8B3-SBE-IH 
11 M2 C11 L8 B3 SBE OV M2C11-L8B3-SBE-OV 
12 M2 C12 L8 B3 SBE IV M2C12-L8B3-SBE-IV 
13 M2 C13 L8 B3 SBW OH M2C13-L8B3-SBW-OH 
14 M2 C14 L8 B3 SBW IH M2C14-L8B3-SBW-IH 
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15 M2 C15 L8 B3 SBW OV M2C15-L8B3-SBW-OV 
16 M2 C16 L8 B3 SBW IV M2C16-L8B3-SBW-IV 
1 M3 C01 L8 G4 GR N1 M3C01-L8G4-GR-N1 
2 M3 C02 L8 G4 GR S1 M3C02-L8G4-GR-S1 
3 M3 C03 L8 G4 GR N2 M3C03-L8G4-GR-N2 
4 M3 C04 L8 G4 GR S2 M3C04-L8G4-GR-S2 
5 M3 C05 L8 B3 KE OH M3C05-L8B3-KE-OH 
6 M3 C06 L8 B3 KE IH M3C06-L8B3-KE-IH 
7 M3 C07 L8 B3 KE OV M3C07-L8B3-KE-OV 
8 M3 C08 L8 B3 KE IV M3C08-L8B3-KE-IV 
9 M3 C09 L8 B3 KW OH M3C09-L8B3-KW-OH 

10 M3 C10 L8 B3 KW IH M3C10-L8B3-KW-IH 
11 M3 C11 L8 B3 KW OV M3C11-L8B3-KW-OV 
12 M3 C12 L8 B3 KW IV M3C12-L8B3-KW-IV 
13 M3 C13 L8 B4 ST OH M3C13-L8B4-ST-OH 
14 M3 C14 L8 B4 ST IH M3C14-L8B4-ST-IH 
15 M3 C15 L8 B4 ST OV M3C15-L8B4-ST-OV 
16 M3 C16 L8 B4 ST IV M3C16-L8B4-ST-IV 
1 M4 C01 L8 B4 SB OH M4C01-L8B4-SB-OH 
2 M4 C02 L8 B4 SB IH M4C02-L8B4-SB-IH 
3 M4 C03 L8 B4 SB OV M4C03-L8B4-SB-OV 
4 M4 C04 L8 B4 SB IV M4C04-L8B4-SB-IV 
5 M4 C05 L8 G5 GR N1 M4C05-L8G5-GR-N1 
6 M4 C06 L8 G5 GR S1 M4C06-L8G5-GR-S1 
7 M4 C07 L8 B5 ST OH M4C07-L8B5-ST-OH 
8 M4 C08 L8 B5 ST IH M4C08-L8B5-ST-IH 
9 M4 C09 L8 B5 ST OV M4C09-L8B5-ST-OV 

10 M4 C10 L8 B5 ST IV M4C10-L8B5-ST-IV 
11 M4 C11 L8 B5 SB OH M4C11-L8B5-SB-OH 
12 M4 C12 L8 B5 SB IH M4C12-L8B5-SB-IH 
13 M4 C13 L8 B5 SB OV M4C13-L8B5-SB-OV 
14 M4 C14 L8 B5 SB IV M4C14-L8B5-SB-IV 
15 M4 C15 L8 G6 GR N1 M4C15-L8G6-GR-N1 
16 M4 C16 L8 G6 GR S1 M4C16-L8G6-GR-S1 
1 M5 C01 L8 G1 GR N1 M5C01-L8G1-GR-N1 
2 M5 C02 L8 G1 GR S1 M5C02-L8G1-GR-S1 
3 M5 C03 L8 G2 GR N1 M5C03-L8G2-GR-N1 
4 M5 C04 L8 G2 GR S1 M5C04-L8G2-GR-S1 
5 M5 C05 L13 B1 ST OH M5C05-L13B1-ST-OH 
6 M5 C06 L13 B1 ST IH M5C06-L13B1-ST-IH 
7 M5 C07 L13 B1 ST OV M5C07-L13B1-ST-OV 
8 M5 C08 L13 B1 ST IV M5C08-L13B1-ST-IV 
9 M5 C09 L15 B1 SBE OH M5C09-L15B1-SBE-OH 
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10 M5 C10 L15 B1 SBE IH M5C10-L15B1-SBE-IH 
11 M5 C11 L15 B1 SBE OV M5C11-L15B1-SBE-OV 
12 M5 C12 L15 B1 SBE IV M5C12-L15B1-SBE-IV 
13 M5 C13 L15 B1 SBW OH M5C13-L15B1-SBW-OH 
14 M5 C14 L15 B1 SBW IH M5C14-L15B1-SBW-IH 
15 M5 C15 L15 B1 SBW OV M5C15-L15B1-SBW-OV 
16 M5 C16 L15 B1 SBW IV M5C16-L15B1-SBW-IV 
1 M6 C01 L13 B1 SBE OH M6C01-L13B1-SBE-OH 
2 M6 C02 L13 B1 SBE IH M6C02-L13B1-SBE-IH 
3 M6 C03 L13 B1 SBE OV M6C03-L13B1-SBE-OV 
4 M6 C04 L13 B1 SBE IV M6C04-L13B1-SBE-IV 
5 M6 C05 L13 B1 SBW OH M6C05-L13B1-SBW-OH 
6 M6 C06 L13 B1 SBW IH M6C06-L13B1-SBW-IH 
7 M6 C07 L13 B1 SBW OV M6C07-L13B1-SBW-OV 
8 M6 C08 L13 B1 SBW IV M6C08-L13B1-SBW-IV 
9 M6 C09 L13 B1 KE OH M6C09-L13B1-KE-OH 

10 M6 C10 L13 B1 KE IH M6C10-L13B1-KE-IH 
11 M6 C11 L13 B1 KE OV M6C11-L13B1-KE-OV 
12 M6 C12 L13 B1 KE IV M6C12-L13B1-KE-IV 
13 M6 C13 L13 B1 KW OH M6C13-L13B1-KW-OH 
14 M6 C14 L13 B1 KW IH M6C14-L13B1-KW-IH 
15 M6 C15 L13 B1 KW OV M6C15-L13B1-KW-OV 
16 M6 C16 L13 B1 KW IV M6C16-L13B1-KW-IV 
1 M7 C01 L13 B2 ST IHE M7C01-L13B2-ST-IHE 
2 M7 C02 L13 B2 ST IVE M7C02-L13B2-ST-IVE 
3 M7 C03 L13 B2 ST IHW M7C03-L13B2-ST-IHW 
4 M7 C04 L13 B2 ST IVW M7C04-L13B2-ST-IVW 
5 M7 C05 L13 B2 SB IHE M7C05-L13B2-SB-IHE 
6 M7 C06 L13 B2 SB IVE M7C06-L13B2-SB-IVE 
7 M7 C07 L13 B2 SB IHW M7C07-L13B2-SB-IHW 
8 M7 C08 L13 B2 SB IVW M7C08-L13B2-SB-IVW 
9 M7 C09 L13 B3 ST IHN M7C09-L13B3-ST-IHN 

10 M7 C10 L13 B3 ST IVN M7C10-L13B3-ST-IVN 
11 M7 C11 L13 B3 ST HIS M7C11-L13B3-ST-HIS 
12 M7 C12 L13 B3 ST IVS M7C12-L13B3-ST-IVS 
13 M7 C13 L13 B3 SB OHN M7C13-L13B3-SB-OHN 
14 M7 C14 L13 B3 SB IVN M7C14-L13B3-SB-IVN 
15 M7 C15 L13 B3 SB OHS M7C15-L13B3-SB-OHS 
16 M7 C16 L13 B3 SB IVS M7C16-L13B3-SB-IVS 
1 M8 C01 L15 B1 KE OH M8C01-L15B1-KE-OH 
2 M8 C02 L15 B1 KE IH M8C02-L15B1-KE-IH 
3 M8 C03 L15 B1 KE OV M8C03-L15B1-KE-OV 
4 M8 C04 L15 B1 KE IV M8C04-L15B1-KE-IV 
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5 M8 C05 L15 B1 KW OH M8C05-L15B1-KW-OH 
6 M8 C06 L15 B1 KW IH M8C06-L15B1-KW-IH 
7 M8 C07 L15 B1 KW OV M8C07-L15B1-KW-OV 
8 M8 C08 L15 B1 KW IV M8C08-L15B1-KW-IV 
9 M8 C09 L15 B2 ST IHE M8C09-L15B2-ST-IHE 

10 M8 C10 L15 B2 ST IVE M8C10-L15B2-ST-IVE 
11 M8 C11 L15 B2 ST IHW M8C11-L15B2-ST-IHW 
12 M8 C12 L15 B2 ST IVW M8C12-L15B2-ST-IVW 
13 M8 C13 L15 B2 SB OHN M8C13-L15B2-SB-OHN 
14 M8 C14 L15 B2 SB IVN M8C14-L15B2-SB-IVN 
15 M8 C15 L15 B2 SB OHS M8C15-L15B2-SB-OHS 
16 M8 C16 L15 B2 SB IVS M8C16-L15B2-SB-IVS 
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Appendix G. Chisholm Trail Bridge Live Load Testing Layouts 

 
 

 

Figure G-1. Chisholm Trail Bridge Load Case 1 

 

Figure G-2. Chisholm Trail Bridge Load Case 2 

 

Figure G-3. Chisholm Trail Bridge Load Case 3 
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Figure G-4. Chisholm Trail Bridge Load Case 4 

 

Figure G-5. Chisholm Trail Bridge Load Case 5 

 

Figure G-6. Chisholm Trail Bridge Load Case 6 
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Appendix H. Axial Force Sample Calculations 
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Appendix I. Lubbock Bridge Axial Forces  

 
 

 

Figure I-1. Lubbock Bridge Load Case 1 CFL 7 Axial Force [kip] 

 

 

Figure I-2.Lubbock Bridge Load Case 1 CFL 3 Axial Force [kip] 

 

 

 

 

 

  



  

223 

 

Figure I-3. Lubbock Bridge Load Case 2 CFL 7 Axial Force [kip] 

 

 

Figure I-4. Lubbock Bridge Load Case 2 CFL 3 Axial Force [kip]  
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Figure I-5. Lubbock Bridge Load Case 3 CFL 7 Axial Force [kip] 

 

 

Figure I-6. Lubbock Bridge Load Case 3 CFL 3 Axial Force [kip]  
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Figure I-7. Lubbock Bridge Load Case 4 CFL 7 Axial Force [kip] 

 

 

Figure I-8. Lubbock Bridge Load Case 4 CFL 3 Axial Force [kip]  
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Figure I-9. Lubbock Bridge Load Case 5 CFL 7 Axial Force [kip] 

 

 

Figure I-10. Lubbock Bridge Load Case 5 CFL 3 Axial Force [kip]  
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Figure I-11. Lubbock Bridge Load Case 6 CFL 7 Axial Force [kip] 

 

 

Figure I-12. Lubbock Bridge Load Case 6 CFL 3 Axial Force [kip]  



  

228 

Appendix J. SH 105 Bridge Axial Forces and Deflections 

 
 

 

Figure J-1. SH 105 Bridge Load Case 1 CFL 3 Axial Force [kip] 

 

 
Figure J-2. SH 105 Bridge Load Case 1 CFL 5 Axial Force [kip] 

 

 

Figure J-3. SH 105 Bridge Load Case 1 CFL 5 Deflections [in] 
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Figure J-4. SH 105 Bridge Load Case 2 CFL 3 Axial Force [kip] 

 

  

Figure J-5. SH 105 Bridge Load Case 2 CFL 5 Axial Force [kip] 

 

 

Figure J-6. SH 105 Bridge Load Case 2 CFL 5 Deflections [in] 
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Figure J-7. SH 105 Bridge Load Case 3 CFL 3 Axial Force [kip] 

 

  

Figure J-8. SH 105 Bridge Load Case 3 CFL 5 Axial Force [kip] 

 

 

Figure J-9. SH 105 Bridge Load Case 3 CFL 5 Deflections [in] 
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Figure J-10. SH 105 Bridge Load Case 4 CFL 3 Axial Force [kip] 

 

  

Figure J-11. SH 105 Bridge Load Case 4 CFL 5 Axial Force [kip] 

 

 

Figure J-12. SH 105 Bridge Load Case 4 CFL 5 Deflections [in] 
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Figure J-13. SH 105 Bridge Load Case 5 CFL 3 Axial Force [kip] 

 

  

Figure J-14. SH 105 Bridge Load Case 5 CFL 5 Axial Force [kip] 

 

 

Figure J-15. SH 105 Bridge Load Case 5 CFL 5 Deflections [in] 
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Figure J-16. SH 105 Bridge Load Case 6 CFL 3 Axial Force [kip] 

 

  

Figure J-17. SH 105 Bridge Load Case 6 CFL 5 Axial Force [kip] 

 

 

Figure J-18. SH 105 Bridge Load Case 6 CFL 5 Deflections [in] 
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Figure J-19. SH 105 Bridge Load Case 7 CFL 3 Axial Force [kip] 

 

  

Figure J-20. SH 105 Bridge Load Case 7 CFL 5 Axial Force [kip] 

 

 

Figure J-21. SH 105 Bridge Load Case 7 CFL 5 Deflections [in] 
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Figure J-22. SH 105 Bridge Load Case 8 CFL 3 Axial Force [kip] 

 

  

Figure J-23. SH 105 Bridge Load Case 8 CFL 5 Axial Force [kip] 

 

 

Figure J-24. SH 105 Bridge Load Case 8 CFL 5 Deflections [in] 
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Figure J-25. SH 105 Bridge Load Case 9 CFL 3 Axial Force [kip] 

 

  

Figure J-26. SH 105 Bridge Load Case 9 CFL 5 Axial Force [kip] 

 

 

Figure J-27. SH 105 Bridge Load Case 9 CFL 5 Deflections [in]  
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Appendix K. Chisholm Trail Bridge Axial Forces and Deflections 

 

 

Figure K-1. Chisholm Trail Bridge Load Case 1 CFL 9 Axial Forces [kip] 

 

 

Figure K-2. Chisholm Trail Bridge Load Case 1 CFL 13 Axial Forces [kip] 

 

 

Figure K-3. Chisholm Trail Bridge Load Case 1 CFL 15 Axial Forces [kip] 
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Figure K-4. Chisholm Trail Bridge Load Case 1 CFL 8 Deflections [in] 

 

 

Figure K-5. Chisholm Trail Bridge Load Case 1 CFL 10 Deflections [in] 
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Figure K-6. Chisholm Trail Bridge Load Case 2 CFL 9 Axial Forces [kip] 

 

 

Figure K-7. Chisholm Trail Bridge Load Case 2 CFL 13 Axial Forces [kip] 

 

 

Figure K-8. Chisholm Trail Bridge Load Case 2 CFL 15 Axial Forces [kip] 
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Figure K-9. Chisholm Trail Bridge Load Case 2 CFL 8 Deflections [in] 

 

 

Figure K-10. Chisholm Trail Bridge Load Case 2 CFL 10 Deflections [in] 
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Figure K-11. Chisholm Trail Bridge Load Case 3 CFL 9 Axial Forces [kip] 

 

 

Figure K-12. Chisholm Trail Bridge Load Case 3 CFL 13 Axial Forces [kip] 

 

  

Figure K-13. Chisholm Trail Bridge Load Case 3 CFL 15 Axial Forces [kip] 
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Figure K-14. Chisholm Trail Bridge Load Case 3 CFL 8 Deflections [in] 

 

 

Figure K-15. Chisholm Trail Bridge Load Case 3 CFL 10 Deflections [in] 
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Figure K-16. Chisholm Trail Bridge Load Case 5 CFL 9 Axial Forces [kip] 

 

 

Figure K-17. Chisholm Trail Bridge Load Case 5 CFL 13 Axial Forces [kip] 

 

 

Figure K-18. Chisholm Trail Bridge Load Case 5 CFL 15 Axial Forces [kip] 
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Figure K-19. Chisholm Trail Bridge Load Case 5 CFL 8 Deflections [in] 

 

 

Figure K-20. Chisholm Trail Bridge Load Case 5 CFL 10 Deflections [in] 
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