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Abstract

A simple graph, G, avoids a k-rainbow edge coloring if any color appears on at least

k + 1 edges of G. For any positive integer k, the k-Anti-Ramsey Number, ARk(G,H), is

the maximum number of colors in an edge coloring of the graph H such that no k-rainbow

edge colored copy of G is a subgraph of H. This work will discuss ARk(G,H) where H is

various types of graphs. In particular, this work will focus on ARk(G,Kn) and define G as

ARk-bounded if ARk(G,Kn) is bounded by some positive integer c for all n sufficiently large.

Additionally, we will say G is ARk-unbounded is no such positive integer exists. In this work

we will determine which simple graphs are ARk-bounded for any k. We will provide a lower

bound for ARk(G,Kn) if G is ARk-unbounded and an upper bound for ARk(G,Kn) if G is

ARk-bounded. We will also determine ARk(G,H) for various graphs G, H where H is not

a complete graph.
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Table of Notation

G A graph. In this work, a simple graph with no isolates.

V (G) The vertices of graph G.

E(G) The edges of graph G.

Kn A complete graph on n vertices.

Kn,m A complete bipartite graph with vertex sets of size n and m.

Pn A path on n vertices.

Cn A cycle on n vertices.

[A,B] A complete bipartite graph with vertex sets A and B.

mH m disjoint copies of graph H.

G +H A disjoint copy of G and H.

d(v) Degree of vertex v.

∆(G) The maximum degree of G. That is, max{d(v)∣v ∈ V (G)}.

α′(G) The size of the maximum matching in a graph G. That is, the

maximum number of mutually disjoint edges in G.

χ′(G) The chromatic index of G. That is, the minimum number of colors

that may properly edge-color a graph.

AR(G,H) The maximum number of colors that may be used on an edge color-

ing of H so that every copy of subgraph G has some color appearing

on at least two edges.

ARk(G,H) The maximum number of colors that may be used on an edge color-

ing of H so that every copy of subgraph G has some color appearing

on at least k + 1 edges.
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Chapter 1

Introduction

1.1 Common Definitions and Notation

Throughout this work we will be using some established definitions from graph the-

ory and their typical notations. We will also include some less well known definitions and

introduce new definitions and their notations. We have included a list of terms and their

definitions that will be helpful to know.

Graph: A graph G = (V,E) is a collection of vertices, denoted V (G) = V , and a collection

of edges, denoted E(G) = E, such that each edge connects two vertices. An edge e that

connects vertices u and v is incident to u and v. We say that vertices u and v are adjacent

if some edge connects u and v. In this work we will consider only simple graphs, so if v ≠ u

then v and u may be connected by at most one edge, denoted vu or uv, and no vertex is

connected to itself by an edge, i.e. uu can not be an edge.

Complete Graph: The complete graph Kn is a graph with n vertices such that every

vertex is adjacent to every other vertex. These may also be referred to as cliques.

Subgraph: A subgraph G′ = (V ′,E′) of graph G = (V,E) is a graph such that V ′ ⊆ V and

E′ ⊆ E.

Degree: The degree of a vertex v ∈ V (G) is the number of edges of G to which v is incident.

Maximum Degree: The maximum degree of a graph G, denoted ∆(G), is the greatest of

the degrees of vertices of G.

Matching: A matching in a graph G is a set of edges in G such that no two distinct edges

in the set are incident to the same vertex.
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Maximum Matching: A maximum matching in a graph G is a largest matching in G. We

will denote the size of the maximum matching in a graph G by α′(G). In this paper we will

commonly use the abbreviation “max matching” for a maximum matching.

Edge Coloring: An edge coloring of a graph G is the assignment of colors c1, ...cn to the

edges of the graph G. In this work we will only discuss edge colorings of graphs and thus

references to colored graphs refer to a graph with edges that have been assigned colors.

1.2 History

Ramsey Theory

In the 1930 paper “On a Problem in Formal Logic” [15] British mathematician F.

P. Ramsey proved the following theorem that has inspired many questions and the field

known as Ramsey Theory [11]. We will state Ramsey’s specific theorem and then discuss its

meaning. [15]:

Theorem 1.1 Given any r, n, and µ we can find an m0 such that, if m ≥ m0 and the r-

combinations of any Γm are divided in any manner into µ mutually exclusive classes Ci

(i = 1,2, ..., µ), then Γm must contain a sub-class ∆n such that all the r-combinations of

members of ∆n belong to the same Ci.

In more broad terms, he introduced the question “How large a structure must be to admit

a certain trait?” and concluded that the solution would be finite (although potentially very

large) [11] [6].

In Ramsey’s theorem, by “the r-combinations of any Γm” Ramsey means “the r-subsets

of any m-set.” (For a non-negative integer k, a k-set is simply a set with k elements).

By “divided in any manner into µ mutually exclusive classes Ci (i = 1,2, ...µ)” he means

“partitioned into classes C1, ...,Cµ.” What shocked and amazed the mathematicians of the

1930’s - that made this theorem something really new - is that, given r, n, and µ, the

conclusion is not about µ-partitions of m-sets, but about µ-partitions of the collection of
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r-subsets of a given m-set. The conclusion is that for m sufficiently large, no mater how the

set of r-subsets of an m-set are partitioned into µ parts, there must be an n-subset of the

given m-set of all of whose r-subsets are elements of one of those parts.

This result is powerful and concludes that these finite numbers exists, although they

are difficult to find. Hungarian mathematician Paul Erdős was only 17 years old in 1930

[2]. He and others of that era quickly derived the corollary of Ramsey’s theorem that is the

foundation of Ramsey Theory in Graph Theory. To understand this corollary, observe that

an edge in a simple graph can be considered to be a 2-subset of the set of vertices, and that

in all of combinatorics, partitions are equivalent to colorings. Thus we have the following

corollary of Ramsey’s Theorem.

Corollary 1.1.1 Given positive integers n and µ, for all positive integers m, sufficiently

large, for every edge coloring of Km with µ or fewer colors, there must be a monochromatic

Kn subgraph in the Km.

The last part of the conclusion is, in other words, that for some color there are n vertices of

the Km such that all edges among those n vertices are that color.

Anti-Ramsey Theory

Ramsey theory has inspired many directions of research. In 1975, Erdős, Simonovits,

and Sós introduced the idea of the anti-Ramsey number where the goal is to avoid a certain

trait and established some preliminary results [5].

Definition 1 A rainbow subgraph R of an edge colored graph G is a subgraph such that no

two different edges of R bear the same color.

Over time, results have been found for cycles, trees, bipartite graphs, and, most com-

monly, complete graphs.

Definition 2 The Anti-Ramsey number of a graph G on graph H, AR(G,H), is the maxi-

mum number of colors that can be used on an edge coloring of H such that no rainbow copy

of G occurs as a subgraph of H.
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Many mathematicians have worked on exploring the anti-Ramsey number of graphs

on complete graphs, AR(G,Kn). These authors include Erdős [5] and Simonovits and Sós

[16], Alon [1], Chen [4], Fujita [6], Jiang [9] and West [10], Manoussakis [12], Montellano-

Ballesteros [13] and Neumann-Lara [14]. Many more have worked on this problem for various

families of graphs other than complete graphs.

Rainbow-Subgraph Avoiding Edge Colorings

In the complete graph version of rainbow-subgraph avoiding edge coloring problem, we

look for the maximum number of colors we can use in an edge coloring of Kn such that no

copy of a given graph G is rainbow in the coloring of Kn. That is, each copy of G in Kn has

at least two edges colored using the same color. We notate the maximum number of colors

allowed on a copy of Kn that omits no rainbow copy of G using AR(G,Kn), consistent with

the notation and definition given previously.

In an interesting example, we learn that Kn can be edge-colored with n − 1 or fewer

colors so that no rainbow K3 is present, but not with n colors. Gyárfás and Simonyi proved

AR(K3,Kn) < n [8]. To illustrate Gyárfás and Simonyi’s results we can use two colorings:

Coloring 1:[Gyárfás and Simonyi [8]] Partition V (Kn) into two parts, A and B. Color all

[A,B] edges green, that is the edges between A and B are colored green. Iterate this process

using a new color each time you iterate. For instance, at the first iteration, partition each

X ∈ {A,B} such that ∣X ∣ > 1 into two parts X1, X2, and color the [X1,X2] edges with a

new color. This partitioning process, down to the unpartitionable singletons in V (Kn), is

encodable as the formation of a full binary tree with n leafs. The colors are in one-to-one

correspondence with the acts of partition, and thus with the non-leafs of the tree. Therefore,

there are exactly n − 1 colors appearing.

For each 3-set T ⊆ V (Kn), as the partitioning proceeds, there will be a “last” partition

set U ⊆ V (Kn) such that T ⊆ U ; U is partitioned into U1, U2, neither containing T . Therefore

one of the elements of T is in one of U1, U2, and the other two are in the other. Suppose
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T = {u, v,w} and u ∈ U1, v,w ∈ U2. Then the edges uv, uw will not bear the color assigned

to vw in a subsequent partition that will separate v and w. Thus no K3 in Kn is rainbow in

such a coloring - and, although the result will have no application in this dissertation, it is

worth noting that, also, no K3 is monochromatic.

Coloring 2:[Hoffman and Johnson] Order the vertices of Kn as {v1, v2, ..., vn}. Color each

edge vjvi using color cj−1 for j > i. Now let us show that every copy of K3 in Kn will have

some color on two edges, avoiding rainbow copies of K3. Every copy of K3 must have a

vertex with a largest label, vk, that is adjacent to two other vertices vi and vj. Without loss

of generality, i < j < k. Notice edge vivj receives color cj−1 while edges vivk and vjvk receives

color ck−1. Thus, two edges have the same color and no rainbow copy of K3 occurs and n− 1

colors were used. Therefore, AR(K3,Kn) ≥ n − 1.

Theorem 1.2 (Gyárfás and Simonyi (2004)) AR(K3,Kn) = n − 1.

Proof: Since AR(K3,Kn) < n is proven in [8], it suffices to show that there is some coloring

of E(Kn) with exactly n − 1 colors appearing such that no rainbow copy of K3 exists.

Using either Coloring 1 or Coloring 2 will show that AR(K3,Kn) ≥ n − 1. ∎

Using either of these two coloring methods, we see that AR(K3,Kn) = n − 1.

Edge colorings of type 2 are known as lexicographic colorings. They are a special case

of type 1 colorings; if, in each partition in a type 1 coloring, one of the partition sets is a

singleton, then the result will be a lexicographic coloring.

Although the result will have no application in this dissertation, it is worth noting that

it is proven in [7] that every edge coloring of Kn which forbids rainbow K3’s and in which

n − 1 colors appear is of type 1.

D.G. Hoffman defined the following to initiate a new way of studying the anti-Ramsey

numbers of graphs.

Definition 3 We call a graph AR-bounded if there exists some fixed integer d such that

AR(G,Kn) ≤ d for all n.

5



Definition 4 We call a graph AR-unbounded if it is not AR-bounded.

K3 is a nice example of an AR-unbounded graph since the maximum number of colors

that can be used without permitting a rainbow copy of K3 increases as n increases. We do

not know if this holds, for n increasing from ∣V (G)∣, for all AR-unbounded graphs G.

D.G. Hoffman worked on the question of which graphs are AR-unbounded. Though

some of the results on Hoffman’s question were known by authors mentioned previously,

such as Erdős [5] and Simonovits and Sós [16], Alon [1], Chen [4], Fujita [6], Jiang [9] and

West [10], Manoussakis [12], Montellano-Ballesteros [13] and Neumann-Lara [14], he found

a clever proof that solved the problem completely. This proof can be found in Appendix A.

We will extend this question into one of our own, concerning the avoidance of k-rainbow

copies of G on Kn.

We define the following to follow the extension of this problem:

Definition 5 Suppose k is a positive integer and G is an edge-colored graph. G is k-rainbow

in, or with, the coloring if and only if no color appears on more than k edges of G.

That is, G is not k-rainbow in a coloring of E(G) if and only if some color appears on

at lease k + 1 edges of G.

Definition 6 Suppose that k ∈ Z+, G and H are graphs, and G has no isolated vertices

and at least k + 1 edges. The k-Anti-Ramsey Number ARk(G,H) is the largest number of

colors that can appear in a coloring of E(H) such that no subgraph of H isomorphic to G

is k-rainbow in the restriction of the coloring to its edges. We will say that such a coloring

avoids, or forbids, k-rainbow (copies of) G. When H =Kn for some integer n, we abbreviate:

ARk(G,Kn) = ARk(G,n).

By this definition, if H contains no copy of G then ARk(G,H) = ∣E(H)∣.

Definition 7 We call a graph G ARk-bounded if there exists some integer d such that

ARk(G,n) ≤ d for all n.

Definition 8 We call a graph ARk-unbounded if it is not ARk-bounded.
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1.3 Early Results

Some results follow fairly simply from the definitions.

Proposition 1 For n < ∣V (G)∣, ARk(G,Kn) = (n2).

Proof: Since Kn contains fewer vertices than G, there can be no copy of G in Kn. Thus,

the edges may be colored with different colors, that is, by using (n2) colors, and there will be

no k-rainbow copy of G in Kn because there is no copy of G at all. ∎

Proposition 2 For a graph G and k ∈ Z+,

(a) If ∣E(G)∣ ≤ k then ARk(G,Kn) is undefined, for n ≥ ∣V (G)∣.

(b) If ∣E(G)∣ = k + 1 and n ≥ ∣V (G)∣ then ARk(G,Kn) = 1.

(c) If ∣E(G)∣ ≥ k + 2 and n ≥ ∣V (G)∣ then ARk(G,Kn) > 1.

Proof:

(a) Suppose that ∣E(G)∣ ≤ k. Because n ≥ ∣V (G)∣, Kn contains copies of G. For any edge

coloring of Kn, every copy of G will be k-rainbow with respect to the coloring, as no

color can appear k +1 or more times on a set of k edges. Therefore there is no number

of colors with which the edges of Kn can be colored so that k-rainbow copies of G are

forbidden.

(b) Again, whatever ∣E(G)∣ may be, n ≥ ∣V (G)∣ implies that there are copies of G in Kn.

Since ∣E(G)∣ = k + 1, coloring E(Kn) with one color will forbid k-rainbow copies of G.

If E(Kn) is colored with more than one color then a copy of G can be found in Kn

with at least 2 colors on its edges. But then such a copy of G is k-rainbow, since none

of the colors can appear k+1 times on that copy of G. Therefore, a coloring with more

than 1 color cannot forbid k-rainbow copies of G.
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(c) If ∣E(G)∣ ≥ k+2 (and n ≥ ∣V (G)∣), color E(Kn) with red and blue, with blue appearing

on only one edge. Any copy of G in Kn will have all red edges, or one blue edge and

the rest red. In either case, the copy is not k-rainbow. Thus ARk(G,Kn) ≥ 2.

∎

In the remainder of this dissertation we will be mainly concerned with ARk(G,Kn),

n ≥ ∣V (G)∣. The following is an exception.

Proposition 3 If ∣E(G)∣ ≥ k + 1 then ARk(G,G) = ∣E(G)∣ − k

Proof: Color G so that ∣E(G)∣ − (k + 1) colors appear on one edge each and so that the

remaining k + 1 edges are colored with some new color, c. Then, since every edge is used in

every copy of G, there is no k-rainbow copy of G since k + 1 edges are all colored the same.

Thus ARk(G,G) ≥ ∣E(G)∣ − k.

On the other hand, if E(G) is colored with ∣E(G)∣−k+1 colors or more appearing, then

the greatest number of edges that any one color can appear on is ∣E(G)∣ − (∣E(G)∣ − k) = k,

and thus G itself is k-rainbow. ∎

1.4 Outline of Work

In the remainder of this work we will show the following results. In Chapter 2 we will

prove the primary result of this dissertation by characterizing ARk-bounded graphs for every

positive integer k. The main results are in Theorem 2.1, Corollary 2.1.3, Corollary 2.1.4,

Proposition 4, Theorem 2.3. In Chapter 3 we will discuss anti-Ramsey numbers, ARk(G,H),

for H some graph that is not a complete graph. Finally, in Chapter 4 we will discuss future

directions of this work.

8



Chapter 2

ARk-Bounded Graphs

2.1 Introduction

In this chapter we will find for any given k ∈ Z+ the finite graphs G with no isolates that

are ARk-bounded. When we can, we will also find ARk(G,n). In order to avoid a k-rainbow

edge coloring, at least k+1 edges must all be colored with the same color, see Proposition 2.

Therefore, we will assume all graphs G have at least k + 1 edges. Additionally, since isolates

do not change any edge colorings, we will assume all graphs are isolate-free.

2.2 ARk-Unbounded Graphs

Definition 9 In a star coloring of Kn (n > 1), single out a single vertex and color the edges

incident to that vertex with n − 1 colors appearing - i.e., make a rainbow K1,n−1. Then color

all other edges of Kn with a different color, c. Number of colors appearing: n−1+1 = n. See

example below.
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Figure 2.1: Star coloring example

Definition 10 In a max matching coloring of Kn, take a maximum matching, M , in Kn,

with ⌊n2 ⌋ edges, and make it rainbow. Then color all other edges with a new color, c. Number

of colors appearing: ⌊n2 ⌋ + 1. See example below.

Figure 2.2: Max Matching coloring example

Theorem 2.1 Suppose that n, k are integers, n ≥ ∣V (G)∣, k > 0, and G is an isolate-free

graph with at least k + 1 edges.

1. If ∆(G) ≥ k + 2, then ARk(G,n) ≥ ⌊n2 ⌋ + 1.

2. If ∣E(G)∣ −∆(G) ≥ k + 1, the ARk(G,n) ≥ n.

3. If α′(G) ≥ k + 2, then ARk(G,n) ≥ n.

4. If ∣E(G)∣ − α′(G) ≥ k + 1, then ARk(G,n) ≥ ⌊n2 ⌋ + 1.
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Proof: In 1 and 4, consider a max matching coloring of Kn. In 2 and 3, consider a star

coloring of Kn. ∎

Corollary 2.1.2 If any of the following conditions hold for G a finite graph with no isolated

vertices, then G is ARk-unbounded.

1. ∆(G) ≥ k + 2

2. ∣E(G)∣ −∆(G) ≥ k + 1

3. α′(G) ≥ k + 2

4. ∣E(G)∣ − α′(G) ≥ k + 1

Lemma 1 If G is an isolate-free graph and ∣E(G)∣ ≥ 2k+2, then either ∣E(G)∣−α′(G) ≥ k+1

or ∣E(G)∣ −∆(G) ≥ k + 1.

Proof: We shall prove the contrapositive. Suppose that ∣E(G)∣ − α′(G) ≤ k and ∣E(G)∣ −

∆(G) ≤ k. Then α′(G),∆(G) ≥ ∣E(G)∣ −k. Let M be a matching in G with ∣E(M)∣ = α′(G)

and let v ∈ V (G) be a vertex of degree d(v) = ∆(G) in G. Clearly at most one edge

of M can be incident to v. Therefore ∣E(G)∣ ≥ ∣E(M)∣ + d(v) − 1 = α′(G) + ∆(G) − 1 ≥

2(∣E(G)∣ − k) − 1 Ô⇒ ∣E(G)∣ ≤ 2k + 1. ∎

Corollary 2.1.3 If ∣E(G)∣ ≥ 2k + 2, then G is ARk-unbounded.

Corollary 2.1.4 For an isolate-free graph G, with k + 2 ≤ ∣E(G)∣ ≤ 2k + 1, a necessary

condition for G to be ARk-bounded is ∣E(G)∣ − k ≤X(G) ≤ k + 1 for X ∈ {∆, α′}.

Proof: Follows from Theorem 2.1 and the corollaries above that for a graph to be ARk-

bounded, the following must be true:

1. k + 1 ≤ ∣E(G)∣ ≤ 2k + 1,

2. ∣E(G)∣ −X(G) ≤ k, and

3. X(G) ≤ k + 1

for X ∈ {∆, α′}. ∎
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2.3 ARk-Bounded Graphs

Proposition 4 Graphs with exactly k + 1 edges are ARk-bounded.

See Proposition 2 in Chapter 1.

Proposition 5 If G is an isolate-free graph, has exactly k + 2 edges, and n ≥ ∣V (G)∣, then

ARk(G,Kn) ≥ 2.

Proof: See Proposition 2 in Chapter 1. ∎

Proposition 6 If G is an isolate-free graph, has k+2 edges, and contains P4 as a subgraph,

then for n ≥max{∣V (G)∣,5}, ARk(G,n) = 2.

Proof: By Proposition 5, ARk(G,Kn) ≥ 2. It remains to be seen that if E(Kn) is colored

with exactly 3 colors appearing, then in some copy of G in Kn none of the 3 colors appear

more than k times on its edges. Let the colors be red, blue, and green, and suppose that

E(Kn) is colored with these colors, with no k-rainbow copy of G. Under the assumption

that there is no k-rainbow copy of G, we shall show the contrary, which will finish the proof.

Let uv and vw be adjacent edges of different colors in some copy of G. Without loss of

generality, suppose that uv is red and vw is blue. If all three colors appear on the edges of

some P4 in any copy of G, then each color can appear at most k − 1 times on the remaining

k − 1 edges of that copy of G and thus at most k times in that copy of G. Since every P4 in

Kn can be considered to be a subgraph in copies of G, it follows that there are no rainbow

P4’s in Kn. Therefore, each edge ux, x ≠ v, is either red or blue, and the same holds for

edges wy, y ≠ v.

But the color green appears somewhere.
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Case 1: vx is green for some x.

Figure 2.3: Case 1 Coloring with a Rainbow P4

Edge ux is either red or blue; if red, then the path uxvw is a rainbow P4. Therefore, ux

is blue. Symmetrically, wx is red. Since n ≥ 5, there is a vertex y ∉ {u, v, x,w}. If wy is red,

then xvwy is a rainbow P4. If wy is blue, then vxwy a rainbow P4. But wy must be either

red or blue so we have a contradiction.

Case 2: All edges incident to v are either red or blue, and some edge xy, {x, y}∩{u, v,w} = ∅,

is green.

Figure 2.4: Case 2 Coloring that admits a Rainbow P4

Then vx is either red or blue; whichever, we see a rainbow P4, either yxvu or yxvw.

Case 3: No edge incident to v is green, and uw is green.

Then, by the reasoning originally applied to uvw, every edge vx, x ∉ {u,w}, must be

red or green, and must be blue or green. Therefore, every edge must be green, and, since

there are such edges, we are back in Subcase 1.1. ∎

Proposition 7 If G is an isolate-free graph, has k + 2 edges, and contains P3 ∪ P2 as a

subgraph, then for n ≥max{∣V (G)∣,8}, ARk(G,n) = 2.

Proof: By Proposition 6, ARk(G,Kn) ≥ 2. It remains to be seen that if E(Kn) is colored

with exactly 3 colors appearing, then in some copy of G in Kn none of the 3 colors appear
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more than k times on its edges. Let the colors be red, blue, and green, and suppose that

E(Kn) is colored with these colors, with no k-rainbow copy of G. Under the assumption

that this cannot happen, we shall show that it must happen, which will finish the proof.

Suppose that the edges of Kn (n ≥max{∣V (G)∣,8}) are colored with red, blue, and green

so that no copy of G in Kn is k-rainbow. As in the previous proof, because P3 ∪ P2 in Kn

will be a subgraph of copies of G in Kn, no copy of P3 ∪ P2 in Kn is rainbow.

Let u, v,w and the coloring of the path uvw be as in Case 1. Since there can be no

rainbow P2 +P3 in Kn, all edges xy, {x, y} ∩ {u, v,w} = ∅, are either red or blue. Therefore,

each green edge must be incident to at least one of u, v,w.

Case 1 For some vertex x ∉ {u, v,w}, vx is green.

Figure 2.5: Case 1 Coloring that admits a Rainbow P3 + P2

For all edges yz, y, z ∉ {u, v, x,w}, the edge yz must be colored one of red, blue, but

also one of blue, green, and also one of red, green. Since n ≥ 8, such edges exist so this case

is impossible.

Case 2: There is no rainbow K1,3.

Returning to u, v,w, now we have that each green edge must be incident to either u or

w, and all edges xy, x, y ∉ {u,w}are either red or blue. The edge uw cannot be green:

Figure 2.6: Case 2 Coloring
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If uw were green, as in Figure 2.6, then there would be a rainbow P3 + P2 in Kn, either

xy + vuw or xy + vwu.

Without loss of generality, suppose that ux is green, for some x ∉ {u, v,w}.

Figure 2.7: Case 2 Coloring that admits a Rainbow P3 + P2

Because n ≥ 8, there are independent edges st, yz with s, t, y, z ∉ {u, v,w, x}; both must

be colored red, because, if not, we have a rainbow P2 + P3, P2 = yz or st and P3 = xuv or

uvw. But, whatever wz is colored, there will be a rainbow P2 + P3 in Kn. ∎

Lemma 2 If G has k + 2 edges, is isolate-free, and is none of K3 (when k = 1), K1,k+2, or

(k + 2)K2, then G has either P4 or P3 ∪ P2 as a subgraph.

Proof: Observe that all the four-edged graphs with no isolated vertices except 4K2 and

K1,4 have one of the two graphs P4, P3 ∪P2 as a subgraph and extend this principle: if k > 1

and G has k+2 ≥ 4 edges then unless G ∈ {K1,k+2, (k+2)K2}, G has a subgraph with 4 edges

other than 4K2,K1,4 and, therefore either P4 or P3 ∪ P2 as a subgraph. ∎

Figure 2.8: Lineage of 4-edged graphs
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Theorem 2.2 If ∣E(G)∣ = k + 2, is isolate-free, and G is none of K3 (when k = 1), K1,k+2,

or (k + 2)K2, then G is ARk-bounded.

Proof: This is a corollary of Propositions 6 and 7, and Lemma 2. ∎

Lemma 3 For an isolate-free graph G with k + 2 ≤ ∣E(G)∣ ≤ 2k + 1, such that ∣E(G)∣ − k ≤

X(G) ≤ k + 1 for X ∈ {∆, α′}, at least one of the following graphs from each class must be

a subgraph. Class 1 subgraphs have ∆(G) + 1 edges and Class 2 subgraphs have α′(G) + 1

edges.

Figure 2.9: Necessary Subgraphs

Proof: Consider a vertex of maximum degree in G. It is adjacent to exactly ∆(G) edges.

Since ∆(G) ≤ k + 1 and ∣E(G)∣ ≥ k + 2, there must be some edge e not adjacent to the vertex

of maximum degree. This edge must go somewhere and the three graphs in Class 1 represent

the only possible configurations.

Likewise, consider a maximum matching in G, call it M ; ∣E(M)∣ = α′(G). Since α′(G) ≤

k + 1 and ∣E(G)∣ ≥ k + 2, there must be some edge e of G not in the maximum matching.

This edge must go somewhere and the two graphs in Class 2 represent the only possible

configurations. ∎
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Lemma 4 Under the hypothesis of Lemma 3, if G is edge-colored and any one of the five

graphs in Lemma 3 is a rainbow subgraph of G, then G is k-rainbow.

Proof: Since ∣E(G)∣ − k ≤ X(G), for X ∈ {α′,∆}, it follows that ∣E(G)∣ ≤ X(G) + k. The

subgraphs all have edge sets of size X(G) + 1. Thus, if any of these subgraphs is rainbow,

then the maximum number of edges remaining to be colored is k − 1 and even if they all

receive some color already on the subgraph, no color appears in E(G) more than k times,

so G is k-rainbow. ∎

Lemma 5 Suppose that E(Kn) is colored and H is a rainbow subgraph of Kn with a max-

imum number of edges. [Equivalently, H is formed by taking one edge of each color class.]

Then any e ∈ E(Kn)/E(H) bears a color appearing in H.

The proof is left to the reader.

Lemma 6 Suppose that the hypotheses of Lemmas 3 and 5 hold, and F1, F2, and F3 are the

Class 1 graphs in Figure 2.9,reading left to right.

(a) If ∆(H) >∆(G) and n ≥∆(G) + 4 then Kn contains a rainbow F3.

(b) If ∆(H) > ∆(G), n ≥ ∆(G) + 3, and Kn contains no rainbow F1, then Kn contains a

rainbow F3.

Proof: (a) Since ∆(H) > ∆(G), H contains a D = K1,∆(G)+1; let w be the central vertex

and x1, ..., x∆(G)+1 be the leafs. Since n ≥∆(G)+4 there are two vertices y, z ∈ V (Kn)/V (D).

If yz ∈ E(H) then we have our rainbow F3 = (D − x∆(G)+1) ∪ yz. Otherwise, if yz ∉ E(H),

then by Lemma 5 yz must bear the same color as some e ∈ E(H). Then H ′ = (H − e) ∪ yz is

rainbow, and, whether e ∈ {wxi∣i = 1, ...,∆(G) + 1} or not, H ′ contains an F3 =K1,∆(G) + yz.

(b) Because ∆(H) > ∆(G), H contains a D = K1,∆(G)+1 subgraph as in (a). Because

n ≥ ∆(G) + 3, there is a vertex y ∈ V (Kn)/{w,x1, ..., x∆(G)+1}. If xiy ∈ E(H) for some

i ∈ {1, ...,∆(G) + 1} then Kn would contain a rainbow F1. Therefore, we may assume that
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xiy ∈ E(Kn)/E(H) for each i. Let x = x1. Then xy bears a color appearing on some edge

e ∈ E(H). Then H ′ = (H − e) ∪ xy is rainbow. Unless e = wx1, we will have an F1 subgraph

in H. Therefore, e = wx1 and H ′ contains an F3, (K1,∆(G)+1 − x1) ∪ x1y. ∎

Lemma 7 Suppose that the hypotheses of Lemmas 3 and 5 hold, and ∆(H) > ∆(G) + 1.

Then Kn contains a rainbow F1.

Proof: Since ∆(H) > ∆(G) + 1, H contains a subgraph D = K1,∆(G)+2, with vertex w of

degree ∆(G) + 2 and leafs x1, ..., x∆(G)+2. If x1x2 ∈ E(H) then ((D −wx1) − x∆(G)+2) ∪ x1x2

is a rainbow F1 in Kn.

Otherwise, if x1x2 ∉ E(H) then x1x2 bears a color appearing on an edge e ∈ E(H).

Then H ′ = (H − e) ∪ x1x2 is rainbow.

If e ∉ E(D) ∪ {xixj ∣1 ≤ i < j ≤ ∆(G) + 2} then ((D − wx1) − x∆(G)+2) ∪ x1x2 is an F1

subgraph of H ′, which is, therefore, rainbow. If e ∈ {xixj ∣1 ≤ i < j ≤∆(G)+2} then a rainbow

F1 in H can be found by repeating the first part of this proof with the edge xixj playing

the role played by x1x2 there. If e ∈ {wxi∣3 ≤ i ≤∆(G) + 2} then ((D −wx1) − xi) ∪ x1x2 is a

rainbow F1 subgraph ofH ′. If e ∈ {wx1,wx2} – say e = wx1 – then ((D−wx1)−x∆(G)+2)∪x1x2

is a rainbow F1 subgraph of H ′. ∎

Lemma 8 Suppose that k > 1. Suppose that the hypotheses of Lemmas 3 and 5 hold, and,

in addition, n ≥ max{∆(G) + 4, ∣V (G)∣} and the hypothetical coloring of E(Kn) forbids k-

rainbow copies of G. Then ∆(H) ≤∆(G) + 1.

Proof: Since n ≥ ∣V (G)∣, any subgraph of G in Kn can be embedded as a subgraph of a

copy of G (possibly many different copies of G) in Kn. Since the coloring of E(Kn) forbids

k-rainbow copies of G, by Lemma 4 it follows that for i ∈ {1,2,3}, if Fi is a subgraph of G,

then no Fi in Kn can be rainbow. Since n ≥ ∆(G) + 4 and ∆(H) > ∆(G) + 1 > ∆(G) then

by Lemma 6(a), Kn contains a rainbow F3. Therefore, F3 is not a subgraph of G.

By Lemma 3, then either F1 or F2, or both, are subgraphs of G. By Lemma 7, F1 is

ruled out. This leaves us with one possibility: G contains F2 as a subgraph but neither F1
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nor F3.

In this case, we will need only the assumption that ∆(H) > ∆(G). Assuming this,

let D = K1,∆(G)+1 be a subgraph of H with, as before, vertex w of degree ∆(G) + 1 and

leafs x1, ..., x∆(G)+1. Because G contains no F1 or F3 as a subgraph, and G has no isolated

vertices, every K1,∆(G) subgraph of G is spanning, in G. Therefore ∣V (G)∣ = 1 +∆(G) and

every K1,∆(G) subgraph of D is a spanning subgraph of a copy of G in Kn.

For every pair i, j satisfying 1 ≤ i < j ≤ k + 1, D ∪ xixj contains subgraphs isomorphic

to F2, none of which can be rainbow because k-rainbow copies of G are forbidden in the

coloring of Kn. Therefore xixj ∉ E(H); therefore xixj bears a color on some e ∈ E(H). Then

Hij = (H − e) ∪ xixj is rainbow. By arguments deployed previously, the non-existence of

rainbow F2’s in Kn forces e ∈ {wxi,wxj}.

For every copy ofG inKn, some color must appear at least k+1 times on the edges of that

copy, because the coloring of E(Kn) forbids k-rainbow copies of G. Because D is rainbow

and the only colors that could possibly appear on any leaf-to-leaf edge xixj are the colors on

wxi,wxj, it follows that for each subgraph G of the graph D′ =D∪{xixj ∣1 ≤ i < j ≤∆(G)+1}

with w having degree ∆(G) in that copy of G, for some xi ∈ V (G) there are k values of

j ∈ {1, ...,∆(G) + 1}/{i} such that xixj ∈ E(G) and the edge xixj is colored with the color

on wxi.

Then xi has degree at least k+1 in that copy of G (taking into account its adjacency to

w) so ∆(G) ≥ k + 1. By hypothesis, ∆(G) ≤ k + 1. Therefore, ∆(G) = k + 1. Also, counting

just the edges of (this copy of) G that we know of, that are incident to w or xi, we have

∣E(G)∣ ≥∆(G) + k = k + 1 + k = 2k + 1.
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On the other hand, by hypothesis, ∣E(G)∣ ≤ 2k + 1. Therefore, ∣E(G)∣ = 2k + 1, and G is

the graph depicted in Figure 2.10.

Figure 2.10: G, with edges colored as any copy of G in Kn must be colored, in this case.

In Figure 2.10 we have indicated the necessary coloring of the edges of any copy of G

in D′, under the assumptions of this case. We can now derive a contradiction by consider-

ing just the edge-colored graph in Figure 2.10. Consider another copy of G on the vertices

w,x, y1, ..., yk, obtained by leaving all the edges incident to w, deleting all the edges incident

to x except wx, and adding the edges y1x and y1yj, j ∈ {2, ..., k}. That is, we demote x to

the role of y1 and promote y1 to the role of x. But in this copy of G, the edge y1x is required

to bear the color on wy1, c2. However, because of y1’s role in the copy of G in Figure 2.10,

the color of y1x has already been determined to be c1 ≠ c2. ∎

Comment on the requirement that k > 1 in Lemma 8:

When k = 1, the only graphs G satisfying 3 = k + 2 ≤ ∣E(G)∣ ≤ 2k + 1 = 3 and 2 =

∣E(G)∣ − k ≤ ∆(G) ≤ k + 1 = 2 are K3, P4, and P3 +K2. Of these K3 is an F2, P4 is an F1,

and P3 +K2 is an F3. The proof of Theorem 1.2 shows that for all n ≥ 3, E(Kn) can be

colored with n−1 colors appearing so as to forbid a rainbow K3 but with a rainbow K1, n−1

present. Therefore, the conclusion of Lemma 8 cannot be extended to k = 1 when G = K3;

but Propositions 6 and 7 affirm that the conclusion does hold when k = 1 in all other cases.
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Lemma 9 Suppose that the hypotheses of Lemmas 3 and 5 are satisfied, and

α′(H) > α(G) + 1. Then Kn contains a rainbow F5.

Proof: Let M be a maximum matching in H, with edges xiyi, i = 1, ..., α′(H). Note

that by the hypotheses of Lemma 3, α′(H) ≥ α′(G) + 2 ≥ 4. Consider the edge x1x2. If

x1x2 ∈ E(H), then the graph F with edges {x1x2} ∪ {x2y2, ..., xα′(G)+1yα′(G)+1} is a rainbow

F5 in Kn. Otherwise, if x1x2 ∉ E(H), then x1x2 bears the same color as some e ∈ E(H).

Then H ′ = (H − e) ∪ x1x2 is rainbow. If e ∉ E(M) then H ′ contains the graph F ≃ F5

described above; the same holds if e ∈ {x1y1} ∪ {xiyi∣α′(G) + 2 ≤ i ≤ α′(H)}. If e = xiyi for

some i ∈ {3, ..., α′(G) + 1}, then H ′ contains (F − {xi, yi}) ∪ xα′(G)+2yα′(G)+2 ≃ F5. Finally, if

e = x2y2 then H ′ contains (F − y2) ∪ x1y1 ≃ F5. ∎

Lemma 10 Suppose that the hypotheses of Lemmas 3 and 5 are satisfied, and, in addition,

n ≥ ∣V (G)∣ and the hypothesized coloring of E(Kn) forbids k-rainbow copies of G. Suppose

that, for k ∈ {1,2,3,4}, G is not among the following graphs:

Figure 2.11: List of graphs G cannot be for Lemma 10

Then α′(H) ≤ α′(G) + 1.
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Proof: As in the proof of Lemma 8, because n ≥ ∣V (G)∣ and the coloring of E(Kn) forbids

k-rainbow copies of G, Lemma 4 decrees that for i ∈ {4,5}, if Fi is a subgraph of G then

there can be no rainbow Fi in Kn with the hypothetical coloring.

Suppose that α′(H) > α′(G) + 1. It follows from Lemma 9 that F5 is not a subgraph

of G. Therefore F4 must be, by Lemma 3. We shall finish the proof by showing that the

assumption that α′(H) > α′(G)1 together with F5 not being a subgraph of G implies the

existence of a rainbow F4 in Kn, unless G is one of the excluded graphs listed in the lemma

statement.

Remarks: We do not claim that the lemma’s conclusion fails for these graphs, but this

proof does not work for these particular graphs. Additionally, for the final part of the proof

we only need the assumption that α′(H) ≥ α′(G) + 1.

Since G contains no F5 and G has no isolated vertices, it follows that ∣V (G)∣ = 2α′(G)

and G has a perfect matching. Supposing that α′(H) ≥ α′(G) + 1, let M be a maximum

matching in H, as in the proof of Lemma 9. Let E(M) = {x1y1, ..., xα′(H)yα′(H)}. Any

matching N with edges E(N) ⊆ E(M), and ∣E(N)∣ = α′(G) can be a spanning subgraph of

a copy of G in Kn - possibly, in fact, of several different copies of G - and, therefore, can

contain a copy of an F4, a subgraph of the copy of G. Let us examine one of these F4’s: for

convenience, and without loss of generality, let it be the F4 with edge set {x1x2} ∪ {xiyi∣1 ≤

i ≤ α′(G)}. If x1x2 ∈ E(H) then this F4 is rainbow. Therefore x1x2 ∉ E(H) and x1x2 bears

the same color as some e ∈ E(H). By arguments previously involved in the proof of Lemma

9, the non-existence of a rainbow F4 in Kn forces e ∈ {x1y1, x2y2}.

Thus, for all 1 ≤ i < j ≤ α′(H), because the edges xiyi, xjyj can be part of a submatching

N of M such that ∣E(N)∣ = α′(G), each of the four edges xixj, xiyj, yixj, yiyj must bear

either the color on xiyi or the color on xjyj.

For every copy of G containing such a submatching N of M , some color must appear on

the edges of G at least k+1 times. N itself is rainbow and the only colors on the other edges

of G are among the colors on N , with the color on an edge with one end in {xi, yi} and the
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other in {xj, yj}, i ≠ j, forced to be either the color on xiyi or the color on xjyj. Therefore,

a color c that appears at least k + 1 times on G must be the color on some xiyi ∈ E(N) and

the edges on which it appears are xiyi and at least k other edges of N , each with one end

in {xi, yi}. Let us call such an edge xiyi ∈ E(N) a k-splendid edge of the copy of G. Let us

call edges with one end in {xi, yi} and the other in {xj, yj}, i ≠ j, cross-edges.

No such G can have two different k-splendid edges: suppose xiyi, xjyj ∈ E(N), i ≠ j,

bearing colors ci, cj, are both k-splendid in G. The sets of edges in G colored ci, cj are

disjoint, so ∣E(G)∣ ≥ (k + 1) + (k + 1) = 2k + 2; but, by hypothesis, ∣E(G)∣ ≤ 2k + 1.

Now suppose that we have, without loss of generality, a copy of G containing the edges

xiyi, i = 1, ..., α′(G), with x1y1 as its unique k-splendid edge.

Call this copy of G, G1. G1 has α′(G) matching edges, with xiyi colored, say, ci,

i ∈ {1, ..., α′(G)}, and at least k cross-edges edge-adjacent to x1y1, all colored c1. Let t be

the number of cross-edges in G not colored c1. Then

∣E(G1)∣ = ∣E(G)∣ ≥ α′(G) + k + t Ô⇒ ∣E(G)∣ − k ≥ α′(G) + t ≥ α′(G).

But, also, by hypothesis,

∣E(G)∣ − k ≤ α′(G).

Therefore, α′(G) + k = ∣E(G)∣ and t = 0.

Therefore, every copy of G consists of a matching of α′(G) edges, with exactly k cross-

edges, all edge-adjacent to one of the matching edges.

Back to G1: for i ∈ {1, ..., α′(G)} let fi denote the number of cross-edges in G1 adjacent

to xiyi. Without loss of generality, f2 ≥ ... ≥ fα′(G). We have

α′(G)

∑
i=2

fi = k.
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Let s ∈ {2, ..., α′(G)} be the largest index such that fs > 0.

Suppose that k > 1 and s > 2.

For 2 ≤ i ≤ s consider the copy G1i obtained by interchanging the roles of xi and yi in

G1. Thus, if x1xi ∈ E(G1) then x1yi ∈ E(G1i) and similarly for x1yi, y1xi, and y1yi. All

other edges of G1 are as they were. Clearly the only candidate for k-splendid edge in G1i

other than x1y1 is xiyi. But since s > 2 there are cross-edges in E(G1i) not adjacent to xiyi.

Therefore, x1y1 is k-splendid in each graph G1i, i = 2, ..., s. Therefore, each cross-edge in G1i

is colored c1.

Now consider the copy of G obtained by interchanging roles of x1 and y1 in G1. Again,

only x1y1 can possibly be the k-splendid edge in this new copy of G, G′1. Again considering

the graphs G′1i, we find that for each i, 2 ≤ i ≤ s, all four of the edges adjacent to both x1y1

and xiyi must be colored c1.

Therefore, s = 2: for if s ≥ 3 consider G2, the copy of G obtained from G1 by inverting the

roles of x1y1 and x2y2 - this G will not have the same edges of G1 but it will have cross-edges

between x1y1 and x2y2, which will bear color c1, not c2, and it will have cross edges between

x2y2 and x3y3. Thus, G2 can have no k-splendid edge in the matching x1y1, ..., xα′(G)yα′(G),

so the coloring of Kn fails to forbid k-rainbow copies of G.

We have concluded that s = 2 under the assumption that k > 1. But if k = 1 then we

have, as before,

3 = k + 2 ≤ ∣E(G)∣ ≤ 2k + 1 = 3,

so

2 = ∣E(G)∣ − k ≤ α′(G) ≤ k + 1 = 2,

so s = 2 and G can only be P4, the first of the excluded graphs in the Lemma statement.

For k > 1, the k cross-edges of G1 are between x1y1 and x2y2 so 2 ≤ k ≤ 4, and, for each

k, ∣E(G)∣ = α′(G) + k, so 2 ≤ ∣E(G)∣ − k = α′(G) ≤ k + 1, which gives us eleven more (besides

P4) possible exceptions to the Lemma’s conclusion. However, four of these do not qualify as
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exceptions because they do not satisfy the hypotheses of Lemma 3. The four are as follows:

Figure 2.12: List of exempted graphs

in each case, ∆(G) < ∣E(G)∣ − k. The seven of the eleven remaining graphs are excluded

graphs other than P4 in the statement of the lemma. ∎

We shall soon deal with the eight exceptional graphs excluded from the conclusion of

Lemma 10, after the statement and proof of what is our main result, Theorem 2.3, below.

For the proof we need two well known results in graph theory, which are stated in Lemma

11. As elsewhere in this section, G is a finite simple graph and k is a positive integer.

Lemma 11 (a) (Vizing’s Theorem) χ′(G) ≤∆(G) + 1

(b) ∣E(G)∣ ≤ χ′(G)α′(G).

Theorem 2.3 Suppose that k > 1,

(i) k + 2 ≤ ∣E(G)∣ ≤ 2k + 1, and

(ii) for each X ∈ {∆, α′}, ∣E(G)∣ − k ≤X(G) ≤ k + 1.

Suppose that n ≥ max{∆(G) + 4, ∣V (G)∣} and suppose that G is isolate-free and not one of

the eight exceptions listed in Lemma 10. Then ARk(G,n) ≤ (∆(G) + 2)(α′(G) + 1).

Proof: Let E(Kn) be colored with exactly ARk(G,n) colors so that k-rainbow copies of

G are forbidden, and let H be a rainbow subgraph of Kn such that ∣E(H)∣ = ARk(G,n). By

Lemmas 8 and 10 we have that ∆(H) ≤∆(G) + 1 and α′(H) ≤ α′(G) + 1.
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Therefore, by Lemma 11,

ARk(G,n) = ∣E(H)∣ ≤ χ′(H)α′(H)

≤ (∆(H) + 1)α′(H)

≤ (∆(G) + 2)(α′(G) + 1).

∎

From the proofs of the lemmas preceding it is easily seen that the inequality in Theorem

2.3 can be sharpened for graphs satisfying certain additional requirements. For instance, if G,

k, and n satisfy the hypothesis of the theorem and, in addition, G contains no F5 subgraph,

then ARk(G,n) ≤ (∆(G) + 2)α′(G).

Concerning the exceptional graphs listed in Lemma 10, we have the following.

Theorem 2.4 If G and k are any of:

Figure 2.13: Partial list of exempted graphs from Lemma 10

then ARk(G,n) = 2 for all n ≥ 5.
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Proof: For each graph G listed, ∣E(G)∣ = k + 2 and G contains a P4 as a subgraph. The

conclusion follows from Proposition 6. ∎

Corollary 2.4.5 With the possible exceptions of

Figure 2.14: List of Possibly Excepted Graphs from Corollary 2.4.5

for every positive integer k and a graph G with no isolated vertices and more than k + 1

edges, for G to be ARk-bounded it is necessary and sufficient that ∣E(G)∣ ≤ 2k + 1 and

∣E(G)∣ − k ≤X(G) ≤ k + 1, for each X ∈ {∆, α′}.

Let us call these three exceptions Zi for i ∈ {2,3,4} such that i = k for the positive

integer k values listed with each graph.

Theorem 2.5 For n ≥ 6, AR2(Z2, n) = 3.

Proof: To show that AR2(Z2, n) ≥ 3, we will construct a coloring of Kn, n ≥ 6, using 3

colors where no 2-rainbow copy of Z2 exists. Make a K3 in Kn rainbow with colors red,

blue, and green. Let all other edges in Kn be green. Since no subgraph of Kn with this

coloring has more than 2 non-green edges, each copy of Z2 in Kn must have 3 green edges,

and therefore is not 2-rainbow.

Now it suffices to show that no edge coloring of Kn with 4 colors appearing can forbid

2-rainbow copies of Z2. Suppose the contrary, and assume that E(Kn) is colored with colors

red, blue, green, and yellow so that no copy of Z2 is 2-rainbow.

Since ∣E(Z2)∣ = 5, and k = 2, if any 3-edge subgraph of Z2 is rainbow in this supposed

4-coloring, then in any copy of Z2 containing those three edges, the other two edges must be
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colored with one of the 3 colors on the rainbow subgraph; this is the only way that the copy

of Z2 with a rainbow 3-edge subgraph can avoid being 2-rainbow.

We shall prove the theorem by showing that no 3-edge subgraph of Z2 can be rainbow.

However, every graph with 3 edges and no isolates is a subgraph of Z2, and with 4 colors

appearing, there is no difficulty in finding 3 edges in Kn of different colors.

Suppose there is a rainbow K3 in Kn, say uvwu with colors red, blue, and green on the

edges, as depicted in Figure 2.15.

Figure 2.15: Rainbow K3

Then, to avoid a 2-rainbow copy of Z2, for any distinct p, q, t ∈ V (Kn)/{u, v,w} and

a ∈ {u, v,w}, the edges pq and ta bear the same color, one of red, blue, or green. Note such

p, q, t must exist since n ≥ 6. Letting p, q, t, and a vary, we find that every edge of Kn is

colored with one of the colors red, blue, or green, contradicting the assumption that E(Kn)

is colored with 4 colors appearing.

By similar arguments, we can conclude there is no rainbowK1,3 inKn, with the supposed

edge coloring. Suppose there is a rainbow K1,3 = [{v},{u,w, z}] in Kn colored using red,

blue, and green as depicted in Figure 2.16.
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Figure 2.16: Rainbow K1,3

Let p, q ∈ V (Kn)/{v, u,w, z}, p ≠ q. Then edges pq and uz must bear the same color, one

of red, blue, green. Without loss of generality, we can suppose that both edges are colored

red. Replacing uz by wz we conclude that wz must be red. Now, there exists a rainbow K3,

vzwv, which has already been excluded as a possibility.

Now, suppose there is a rainbow P4 in Kn, as depicted in Figure 2.17.

Figure 2.17: Rainbow P4

Since there can be no rainbow K3, the color on vx must be either blue or green and the

color on uw must be either red or blue. Considering the triangles uxvu and uxwu, and the

K1,3’s with central vertices v,w, u, x, we see that we are forced to color all 3 edges vx, uw,

and ux with the color blue, as seen in Figure 2.18.
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Figure 2.18: Coloring of K4

Now we see that if there is any edge in Kn independent of the 6 edges above which bear

a color other than blue, then there will be a 2-rainbow Z2 in Kn. Therefore, every such edge

is blue.

So the only edges that could possibly be colored yellow are edges with one end in

{u, v, x,w} and the other not. But if any such edge is colored yellow then there is a rainbow

K1,3 in Kn.

Now suppose there is a rainbow P3 +K2, as shown in Figure 2.19.

Figure 2.19: Rainbow P3 +K2

Notice that to avoid a rainbow P4, edges xv and yv must receive color green. However,

now edges ux and wy cannot be colored in any way to avoid a rainbow P4. Thus, any coloring

of Kn with a rainbow P3 +K2 will also have a rainbow P4, a previously excluded possibility.

Last, suppose there is a rainbow 3K2, as shown in Figure 2.20.

Consider the edge ux. It must be colored red, blue, or green to avoid the existence of a

2-rainbow Z2. However, if colored green or red, it permits a rainbow P3 +K2, a previously

excluded possibility. If it is colored blue, it permits a rainbow P4, also previously excluded.
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Figure 2.20: Rainbow 3K2

Thus, E(Kn) may not be colored with 4 colors appearing so that 2-rainbow copies of

Z2 are avoided. ∎

Lemma 12 Suppose that F is a subgraph of G and ∣E(G)∣ − ∣E(F )∣ = ∣E(G)/E(F )∣ = r,

1 ≤ r < k. Suppose that n ≥ ∣V (G)∣, a ∈ Z+, a ≤ ARk(G,n). Then ARk−r(F,n) ≥ a.

Proof: Let ϕ ∶ V (Kn) → {1, ..., a} be a coloring with a colors appearing such that no copy

of G is k-rainbow with respect to ϕ. We shall see that with respect to ϕ, no copy of F is

(k − r)-rainbow.

Let F ′ be a copy of F in Kn. Since F is a subgraph of G and n ≥ ∣V (G)∣, we can

“complete” F ′ to a copy of G by adding some r edges of Kn. Because this copy of G is not

k-rainbow, some color appears on k+1 edges of G. Then at least k+1−r = (k−r)+1 of these

edges are in F . Therefore, F ′ is not (k − r)-rainbow. Since the copy of F was arbitrary, it

follows that a ≤ ARk−r(F,n). ∎

Corollary 2.5.6 For n ≥ 6,

(a) AR3(Z3, n) = 3

(b) AR4(Z4, n) = 3

Proof: Let k ∈ {3,4}. To show that ARk(Zk, n) ≥ 3, we will construct a coloring of Kn,

n ≥ 6, using 3 colors where no k-rainbow copy of Zk exists. Make a K3 in Kn rainbow

with colors red, blue, and green. Let all other edges in Kn be green. Since no subgraph of
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Kn with this coloring has more than k non-green edges, each copy of Zk in Kn must have

∣E(Zk)∣ − 2 = k + 1 green edges, and therefore is not k-rainbow.

Now, let us show that 4 > ARk(Zk, n), k ∈ {3,4}.

(a) Suppose 4 ≤ AR3(Z3). Because 1 = ∣E(Z3)∣ − ∣E(Z2)∣, and Z2 is a subgraph of Z3, then

AR3−1(Z2) = AR2(Z2) ≥ 4, contradicting Theorem 2.5. Thus, AR3(Z3, n) = 3.

(b) Similarly, suppose 4 ≤ AR4(Z4). Because 2 = ∣E(Z4)∣ − ∣E(Z2)∣, and Z2 is a subgraph of

Z4, then AR4−2(Z2) = AR2(Z2) ≥ 4, contradicting Theorem 2.5. Thus, AR4(Z4, n) = 3. ∎

2.4 Example: AR1-bounded Graphs

Dean Hoffman solved the question of which graphs are AR-bounded with a proof pro-

vided in Appendix A. His theorem is as follows:

Theorem 2.6 If a graph is one of the following four, it is AR1-bounded. Otherwise, it is

AR1-unbounded.

Figure 2.21: Four AR1-bounded graphs

Using the results proven in this Chapter, a graph G is AR1-bounded if and only if

2 ≤ ∣E(G)∣ ≤ 3 and ∣E(G)∣ − 1 ≤X(G) ≤ 2 for X ∈ {∆, α′}.

For ∣E(G)∣ = 2, 1 ≤X(G) ≤ 2 permits both the two edged graphs: P3 and 2K2.

Figure 2.22: Three Edged Graphs

For ∣E(G)∣ = 3, 2 ≤X(G) ≤ 2 permits two of the three edged graphs: P4 and P3 +K2.
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These are exactly the graphs Hoffman found to be AR1-bounded. His proof is detailed

in Appendix A.
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Chapter 3

ARk on Various Graph Families

A natural extension of the question of which graphs are ARk-bounded on complete

graphs of sufficient size is the question of which graphs are ARk-bounded on other families

of graphs. In this section we will discuss some preliminary results on various families of

graphs. Reminder G must have at least k + 1 edges, otherwise we cannot avoid a k-rainbow

copy of G. Additionally, recall that ARk(G,H) is the maximum number of colors that can

be used in an edge coloring of H such that there is no k-rainbow copy of G in some edge

coloring of H using ARk(G,H) colors.

3.1 General

Proposition 8 For G with at least k + 1 edges and no isolates, ARk(G,G) = ∣E(G)∣ − k

Proof: Color G so that ∣E(G)∣ − (k + 1) colors appear on one edge each and so that the

remaining k + 1 edges are colored with some new color, c. Clearly this is not a k-rainbow

coloring of G.

If E(G) were colored with ∣E(G)∣ − r different colors appearing, with r < k, then the

greatest number of appearance possible of any single color would be r + 1 < k + 1, so the

coloring would be k-rainbow. ∎

3.2 Complete Bipartite Graphs

Lemma 13 ARk(K1,k+1,Kn,m) = 1 for min{n,m} ≥ k + 1.
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Proof: In an edge coloring of Kn,m in which no K1,k+1 is k-rainbow, every K1,k+1 is

monochromatic. From this and the assumption that n,m ≥ k + 1 it follows that any two

adjacent edges must be the same color, and from there it is plain that only one color can

appear. ∎

Lemma 14 ARk(K1,k+1,Kn,m) = n for 1 ≤ n ≤ k <m.

Proof: In an edge coloring in which no K1,k+1 is k-rainbow, every K1,k+1 is monochromatic.

Since 1 ≤ n ≤ k ≤m every copy of K1,k+1 in Kn,m must have its central vertex on the part of

Kn,m with n independent vertices. From these two facts we see that all edges adjacent to a

vertex in the part of Kn,m with n independent vertices must be monochromatic. With the

n vertices, we get there can be n colors. See the coloring below for an example of how the

edges may be colored.

Figure 3.1: K1,k+1 k-rainbow avoiding coloring of Kn,m for 1 ≤ n ≤ k ≤m

So, ARk(K1,k+1,Kn,m) ≥ n. It remains to show that ARk(K1,k+1,Kn,m) ≤ n. Let us

assume for contradiction that there exists some coloring of Kn,m with n + 1 colors. Then by

the pigeonhole principle at least two colors are incident to a vertex on the part of Kn,m with

n independent vertices, which contradicts what we have already stated.

∎
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Proposition 9 ARk(K1,r,Kn,m) ≥min{n,m} + 1 for min{n,m} ≥ r ≥ k + 2.

Proof: Color Kn,m using one color, c. Find a maximum matching in Kn, call it M . Notice

the size of the maximum matching in G is α′(G) =min{n,m}, so ∣M ∣ =min{n,m}. Recolor

the edges in this matching using new colors, c1, c2, ..., cmin{n,m}. See the image below for an

example.

Figure 3.2: K1,r k-rainbow avoiding coloring of Kn,m for min{n,m} ≥ r ≥ k + 2

Notice each vertex in Kn,m has at most one adjacent edge not colored c. Thus, in each

copy of K1,k+2 there is at most one edge not colored c and at least k+1 edges colored c which

ensures there is no k−rainbow copy of K1,k+2 in Kn,m. There are min{n,m} + 1 colors used

in this coloring of Kn,m which is k−rainbow avoiding. ∎

Lemma 15 ARk((k + 1)K2,Kn,m) = 1 for min{n,m} ≥ k + 1 unless k = 1 and n =m = 2, in

which case AR1(2K2,K2,2) = 2.

Proof: Clearly, if k = 1, n = m = 2, we have AR1(2K2,K2,2) = AR1(2K2,C4) = 2. See

Figure 4.3.
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Figure 3.3: 2K2 k-rainbow avoiding coloring of C4

Otherwise: Assume that m ≥ n ≥ k + 1, k ≥ 1, and we are not in the case above. Assume

k + 1 ≤ n ≤ m. In any edge coloring of Kn,m with no k-rainbow (k + 1)K2, every (k + 1)K2

must be monochromatic. Suppose Kn,m is so colored. Let the vertices on one side of Kn,m be

v1, ..., vn and on the other side, w1, ...,wm. Consider the matching M = {v1w1, ..., vk+1wk+1}.

Let c be the color on the edges of this matching. If n > k + 1, and n ≥ i > k + 1, then

(M/{v1w1}) ∪ {viwi} is also a matching with k + 1 edges, all of whose edges except viwi are

colored c. Therefore viwi must be colored c.

Given 1 ≤ i < j ≤ k + 1, we can replace viwi, vjwj in M by viwj, vjwi and conclude both

of these are colored c, if k > 1. Otherwise, if k = 1 but, say m > 2 we can use the fact that

viwj, i ≤ k + 1, j > i must be colored c, by the arguments above, we can still conclude that

viwj, vjwi are colored c. And similarly for viwj, i, j > k + 1. ∎

Lemma 16 ARk(rK2,Kn,m) ≥max{n,m} + 1 for min{n,m} ≥ r ≥ k + 2.

Proof: Color Kn,m using one color, c. Now color the edges adjacent to some vertex, v, with

d = d(v) = max{m,n} colors such that each edge is one of the colors c1, c2, ..., cd. See Figure

4.4 for an example.

Figure 3.4: rK2 k-rainbow avoiding coloring of Kn,m for min{n,m} ≥ r ≥ k + 2
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Notice at most one edge adjacent to v can be in a copy of rK2. Thus, only one edge

not colored c can be in any rK2 and the remaining r ≥ k + 1 edges must be colored with c

which ensures there is no k−rainbow copy of rK2 in Kn,m. There are max{n,m} + 1 colors

used in this coloring of Kn,m which is k−rainbow avoiding. max{n,m} + 1 is an unbounded

sequence so rK2, r > k + 2, is ARk-unbounded. ∎

3.3 Cycles

Since G must be a subgraph of H, notice that G can only be some collection of paths

or the cycle itself, that is G =H.

Lemma 17 ARk((k + 1)K2,C2(k+1)) = 2.

Proof: Find a maximum matching M in C2(k+1). Then ∣M ∣ = k + 1. Then if M is not

k-rainbow, M must be colored a single color c1. Notice E −M = N is a second matching of

size k + 1, and so must be colored either with c1 or a second color c2, if the edge coloring of

C2(k+1) is to avoid k-rainbow (k + 1)K2’s.

Figure 3.5: (k + 1)K2 k-rainbow avoiding coloring of C2(k+1)

∎

Lemma 18 ARk((k + 2)K2,C2(k+2)) ≥ 4

Proof: We will color the edges of C2(k+2) with four colors so that no subgraph (k + 2)K2 is

k-rainbow. Clearly E(C2(k+2)) can be partitioned into two matchings (k + 2)K2, call them

M and N . Notice ∣M ∣ = k + 2. Then k + 1 edges in M must be colored a single color c1 and
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one edge can be colored c2. Notice E −M = N , a second matching of size k + 2. Color k + 1

edges in N with color c3 and one edge with color c4.

Figure 3.6: (k + 2)K2 k-rainbow avoiding coloring of C2(k+2)

Notice that we cannot “mix and match” the edges between N and M to create other

matchings of size k+2 and thus each may keep their own colors without allowing a k-rainbow

copy of (k + 2)K2. ∎

Lemma 19 ARk((k + 2)K2,C2(k+2)) ≤ 4

Proof: Suppose that the edges of C2(k+2) are colored with v colors so that no matching

(k + 2)K2 is k-rainbow. Clearly, for every such matching M in C2(k+2), E(C2(k+2))/M =M−

is another such matching. Take any such M : k + 1 of its edges must bear the same color, so

at most 2 colors can appear on M , and the same goes for M−. Thus, v = 4. ∎

Corollary 3.0.7 ARk((k + 2)K2,C2(k+2)) = 4

3.4 Paths

Since G must be a subgraph of H, notice that G can only be some collection of paths.

Lemma 20 ARk((k + 1)K2, P2k+3) = 2

Proof: Notice ∣E(P2k+3)∣ = 2(k + 1). To see that ARk((k + 1)K2, P2k+3) ≥ 2, find a maximal

matching M in P2k+3. ∣M ∣ = k + 1. Color every edge in it c to avoid a k-rainbow copy of

(k+1)K2. Notice P2k+3−M = N , another maximal matching of size k+1. It must be colored

all the same to avoid a k-rainbow copy of (k+1)K2. However, it can be colored a new color,
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Figure 3.7: (k + 1)K2 k-rainbow avoiding coloring of P2k+3

c1, since no edge can be in M and N .

To see that ARk((k + 1)K2, P2k+3) ≤ 2 suppose that the edges of P2k+3 are colored with

v colors so that no matching (k + 1)K2 is k-rainbow. Clearly, for every such matching M

in P2k+3, E(P2k+3)/M =M− is another such matching. Take any such M : k + 1 of its edges

must bear the same color, so at most 1 colors can appear on M , and the same goes for M−.

Thus, v = 2. ∎

Lemma 21 ARk((k + 1)K2, P2k+2) = k + 1.

Proof: Notice ∣E(P2k+2∣ = 2k + 1. There is only one copy of (k + 1)K2 in P2k+2. Color it

with color c to avoid a k-rainbow copy of (k + 1)K2. Notice no other edge in P2k+2 can be in

a copy of (k + 1)K2 other than those colored c. Color these 2k + 1 − (k + 1) = k edges with k

colors. Thus, k + 1 colors can be used but no more. ∎

Figure 3.8: (k + 1)K2 k-rainbow avoiding coloring of P2k+2

Lemma 22 ARk((k + 2)K2, P2k+5) = 4.

Proof: Notice there are only two copies of (k + 2)K2 in P2k+5 and they are edge disjoint.

Call one copy G and the other G′. Thus, each copy can be colored independently of the

other. In each copy, k + 1 edges must be colored the same leaving one edge to be colored

using a new color. Thus, a coloring of G can use 2 colors and a coloring of G′ can use 2

colors giving a total of 4 colors. ∎
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Figure 3.9: (k + 2)K2 k-rainbow avoiding coloring of P2k+5

Lemma 23 ARk(rK2, P2r+1) = 2(r − k) for r ≥ k + 1.

Proof: Notice there are only two copies of rK2 in P2r+1 and they are edge disjoint. Call

one copy G and the other G′. Thus, each copy can be colored independently of the other. In

each copy, k + 1 edges must be colored the same leaving r − (k + 1) edge to be colored using

new colors. Thus, a coloring of G can use r − (k + 1) + 1 = r − k colors and a coloring of G′

can use r − k colors giving a total of 2(r − k) colors. ∎

Figure 3.10: rK2 k-rainbow avoiding coloring of P2r+1 for r ≥ k + 1

Lemma 24 ARk(Pk+2, Pr) = 1 for all r ≥ k + 2.

Proof: Notice ∣E(Pk+2)∣ = k + 1. All of these edges must be colored the same to avoid a

k-rainbow copy of Pk+2. Suppose for contradiction 2 colors can be used on the edges of Pr

that avoid a k-rainbow copy of Pk+2. Call these colors c1 and c2, respectively.

Then at some point an edge colored c1 and an edge colored c2 are adjacent. Then there

exists at least one copy of Pk+2 with edges colored both c1 and c2, which means at most k

edges are colored the same and this copy of the Pk+2 is k-rainbow.

Thus, only one color may be used to color Pr. ∎

Lemma 25 ARk(Pk+3, Pk+4) = 3

Proof: Color a copy of Pk+4 as shown in Figure 4.11. That is, so that the internal Pk+2 are

colored c and the end edges are colored c1 and c2.

41



Figure 3.11: Pk+3 k-rainbow avoiding coloring of Pk+4

Thus, ARk(Pk+3, Pk+4) ≥ 3. Now let us assume we can use 4 colors. Notice there are only

two copies of Pk+3 in Pk+4. One uses the left-most edge and the k + 1 edges adjacent to the

right, and the other uses the right-most edge and the k+1 edges adjacent to the right. Should

four colors be used on the edges of Pk+4, then at most ∣E(Pk+4)∣−4+1 = k+3−4+1 = k edges can

be colored the same and thus no subgraph can avoid a k-rainbow. Thus, ARk(Pk+3, Pk+4) = 3.

∎

Lemma 26 ARk(Pk+3, Pk+5) = 3

Proof: Assume for contradiction that there is some coloring of Pk+5 using 4 colors that

avoids a k-rainbow copy of Pk+3. Notice Pk+3 can only have one edge not colored that same

as all the others.

Notice, k+4
4 < ⌊k4 ⌋+1. So, by the pigeonhole principle, there must be some path of length

k + 3 with 3 colors present, meaning only k edges can be colored the same and a k-rainbow

copy of Pk+3 exists, a contradiction.

Now, let us show there is some coloring of a Pk+5 using 3 colors where no k-rainbow

copy of Pk+3 exists. Let us use the coloring of Pk+4 shown, such that every edge is colored c

except the two at the ends, colored c1 and c2.

Figure 3.12: Pk+3 k-rainbow avoiding coloring of Pk+5

Thus, ARk(Pk+3, Pk+5) = 3. ∎

3.5 Complete r-Partite Graphs

Lemma 27 AR1(K3,Kr,s,t) ≥max{rs, rt, st} + 1.
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Proof: Without loss of generality, let max{rs, rt, st} = rs. Let us call the sets of indepen-

dent vertices R,S, and T respectively, such that ∣R∣ = r, ∣S∣ = s, and ∣T ∣ = t.

Color every edge uv with color c if either

1. u ∈ R and v ∈ T or

2. u ∈ T and v ∈ S.

Now let us color all edges uv such that u ∈ R and v ∈ S; there are rs of these edges. Color

these edges with rs colors. Then, since a K3 can only be formed by using an edge from each

group and two groups have all edges colored c, a rainbow copy of K3 is avoided and rs + 1

colors were used.

Figure 3.13: K3 k-rainbow avoiding coloring of Kr,s,t

Thus for all cases, ARk(K3,Kr,s,t) ≥max{rs, rt, st} + 1. ∎

Lemma 28 AR(K3,Kr,s,t) ≥max{rs, rt, st} +min{r, s, t}.

Proof: Use the following coloring. Without loss of generality, let r ≥ s ≥ t. Thus, rs =

max{rs, rt, st}. Color every edge with one vertex in the independent set of size r and the

other vertex of size s with rs colors. Label the vertices in the independent set of size t as

v1, v2, ..., vt. color every edge adjacent to vi using some new color ci, 1 ≤ i ≤ t. See coloring

in Figure 4.14.

43



Figure 3.14: K3 k-rainbow avoiding coloring of Kr,s,t

Then, no rainbow copy of K3 exists since every copy of K3 must include a vertex in

the independent set of size t and each vertex in the independent set of size t has only one

color present, meaning two edges in every K3 must be colored the same and a rainbow K3

is avoided. Thus ARk(K3,Kr,s,t) ≥max{rs, rt, st} +min{r, s, t}. ∎

Lemma 29 AR(K3,Kr,s,t) ≤max{rs, rt, st} +min{r, s, t}.

Proof: Assume for contradiction that there is some coloring of Kr,s,t using max{rs, rt, st}+

min{r, s, t} + 1 colors that permits no rainbow copy of K3.

Without loss of generality, let r ≥ s ≥ t. Thus rs = max{rs, rt, st} and t = min{r, s, t}.

So, we need to show that when we use rs + t + 1 colors, that there is a copy of K3 with 3

different colored edges.

Notice, E(Kr,s,t) = rs + rt + st. Additionally the number of triangles in Kr,s,t = rst.

Since we are inKr,s,t for a triangle to form each vertex must be in a different independent

set, which we will call R,S,T , respectively.

Notice to avoid a rainbow copy of K3, some vertex in the triangle must have only one

color present. Thus, rst triangles must be colored such that at some vertex there is only one

color present using rs + t + 1 colors. ∎
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Chapter 4

Future Work

This section details some remaining questions and potential extensions of the work done

in this dissertation.

The first question arises from the definition of ARk-bounded graphs.

Question 1: Given a fixed ARk-bounded graph G and a fixed k, is ARk(G,n) eventually

monotone in n for all n ≥ N? That is, eventually, is ARk(G,n + 1) ≥ ARk(G,n)?

Additionally, we are interested in the connections between n and k when the k-anti-

rainbow bound is known. Question 2 gives an example of a question on this relationship.

Question 2: For a given graph G, what is the smallest value of k for a fixed n such that

ARk(G,n) = 1?

Another future direction for this work could be the extension into multi-graphs with K

and G permitting multiple edges and loops. This would introduce several new restrictions

but also many more possibilities.

In Chapter 2 we provided an upper bound for ARk-bounded graphs in edge colorings of

complete graphs and several conditions that can decrease that bound. There may exist other

conditions that decrease this bound. As seen in the result by the tree exempted graphs from

Theorem 2.3, many of the actual ARk numbers are much lower than the bound we found.

Much more work can be done to decrease this bound and determine ARk(G,n) for graphs

this work has determined are ARk-bounded.

Additionally, we established lower bounds for ARk-unbounded graphs in Theorem 2.1.

For certain graphs these bounds are tight although for most graphs more colors may be used.
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More work can be done to increase these limit for graphs of undetermined conditions.

Finally, there are many unknown bounds of ARk(G,H) whenH is not a complete graph.

This work has found some values of ARk(G,H) for certain graphs. However, since the defi-

nition and idea of ARk-bounded does not apply in a natural way to families of graphs besides

the complete graph, it would be useful to find some extension similar to ARk-bounded that

arises from the bounds seen on various families, such as trees, paths, and r-partite graphs.
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Appendix A

Dean Hoffman’s Proof for k = 1

This is Dean Hoffman’s unpublished proof on the graphs that AR1-bounded on complete

graphs.

Theorem A.1 If a graph is one of the following four, it is AR1-bounded. Otherwise, it is

AR1-unbounded.

Figure A.1: Four AR-bounded graphs

1. Let G be a sequence of graphs. G = (Gn∣n ∈ P).

2. Def: G = (Gn∣n ∈ P) is good if each Gn is a graph on n vertices, and ϵn edges where

{ϵn∣n ∈ P} is unbounded.

3. Def: H is a G-graph if for all n ∈ P, every graph isomorphic to subgraph of both H

and Gn has at most ϵ(H) − 2.

4. Need to find a sequence of graphs so H is G-graph to prove H is unbounded.

Theorem A.2 If H is a G-graph, then H is not AR-bounded.

Proof: We will show the lower bound gets arbitrarily large for every n ∈ P.

We will show, for every n ∈ P, n ≥ ϵ, that AR(H,n) ≥ ϵn+1 (which is an unbounded sequence
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and implies AR is unbounded).

We need to find an edge coloring of Kn with ϵn + 1 colors, having no rainbow copy of H.

Color a copy of Gn in Kn so it is rainbow.

Notice ϵn < (n2).

Color all other edges of Kn with a new color, c.

Claim: There is no rainbow copy of H in this edge-colored Kn.

Proof: Let H ′ be a copy of H in Kn. Let K be the subgraph with edges H ′ ∩Gn.

So, ϵ(K) ≤ ϵ − 2 but H ′ has ϵ edges. So at least two edges of H ′ are c. ∎ ∎

Theorem A.3 The following sequences are good.

1. Let Gn be a graph consisting of a matching with ϵn = ⌊n2 ⌋.

2. Let Gn be the star K1,n−1.

Proof: Case 1: Gn is the matching graph.

Notice: ϵn edges and ϵn is unbounded.

If ϵ ≥ n, H is G-good iff α′(H) ≤ ϵ(H) − 2 (where α′(H) is the max matching number of H).

Can H contain a cycle C?

Assume so. Then at least two edges of H are not in any one matching. Thus, if H contains

a cycle, it is unbounded.

Likewise, if H has a vertex of degree 3 or more, then H contains at least 2 edges not in any

matching. Thus, if H contains a vertex of degree 3 or more, it is AR-unbounded.

Thus, H must be a forest with no vertices of degree 3 or more.

Thus, every component of H must be a path if H is AR-bounded.

Case 2: Gn is the star K1,n−1.

Notice: ϵn = n − 1 and ϵn is unbounded.

H is a G-graph iff ϵ(H) ≥∆(H) + 2 (where ∆(H) is the max degree of H).

If H is AR bounded, then ϵ(H) ≤ 3 (since max degree of a path is 2).
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Notice the graphs remaining are precisely the graphs listed as the four possible (assuming

ϵ ≥ 2). ∎

Theorem A.4 P3 is AR-bounded.

Table A.1: AR1 values for P3

n AR(G,n)
1 0
≥ 2 1

Proof: n = 2 has only one edge. Kn is connected so there exists vertex v such that 2 edges

at v are 2 different colors, a contradiction. ∎

Theorem A.5 2K2 is AR-bounded.

Table A.2: AR1 values for 2K2

n AR(G,n)
1 0
2 1
3 3
4 3
≥ 5 1

Proof: If ∣V (G)∣ > n, then AR(G,n) = (n2) so n = 1,2,3 proved.

If n = 4, see the coloring below.

Figure A.2: Coloring of K4 that avoids rainbow copies of 2K2
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If n ≥ 5, color Kn with two colors. Then there is a rainbow P2 by Theorem A.4.

Figure A.3: Coloring of P3 ∪ P2 that cannot avoid a rainbow copy of 2K2

If the dashed line is pink, there is a rainbow G. And if the dashed line is blue, there is a

rainbow G. Thus, there can be only one color. ∎

Theorem A.6 P4 is AR1-bounded.

Table A.3: AR1 values for P4

n AR(G,n)
1 0
2 1
3 3
4 3
≥ 5 2

Proof: For n = 1,2,3, ∣V (G)∣ ≥ n Ô⇒ AR(G,n) = (n2).

If n = 4, opposite edges of K4 cannot be different colors or there is a rainbow. Thus, the

three sets of opposite edges provide maximum of three colors. See image:

Figure A.4: Coloring of K4 that avoids rainbow copies of P4

If n ≥ 5, color Kn with three colors.
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Can all colors at a vertex be the same?

Figure A.5: Example of all colors at one vertex being the same color

Notice c2 and c3 must be present in the graph. If they meet at a vertex, there is a rainbow

P4.

Figure A.6: Coloring of a vertex with monochromatic incident edges that permits a rainbow
copy of P4 Version 1

If they do not meet at some vertex, what color is the dashed line? Regardless of choice, we

will get a rainbow P4.

Figure A.7: Coloring of a vertex with monochromatic incident edges that permits a rainbow
copy of P4 Version 2
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Thus, no vertex can have all the same color.

Can all three colors appear at one vertex?

Figure A.8: Coloring of a vertex with three colors incident to a single vertex

So we see we must color the dashed line blue.

So, we see a K3 coloring such as the one below. We see, we cannot color the dotted line

without getting a rainbow P4.

Figure A.9: Coloring of a vertex with three colors incident to a single vertex that permits a
rainbow P4

Thus, we cannot have all three colors on one vertex.
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Can two colors appear at a vertex?

Group vertices according to which two colors appear.

Figure A.10: Grouping of vertices by the two colors incident

A set cannot be empty, otherwise there is a rainbow P3, see below.

Figure A.11: Groups of two sets of vertices with two colors incident

Thus no sets can be empty. So, by the pigeonhole principle, at least one set must have at

least two vertices. Thus, there is a rainbow P3.

Thus, we cannot color Kn with three colors. ∎
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Theorem A.7 P3 ∪ P2 is AR1-bounded.

Table A.4: AR1 values for P3 ∪ P2

n AR(G,n)
1 0
2 1
3 3
4 6
≥ 5 2

Proof: For n = 1,2,3,4, ∣V (G)∣ ≥ n Ô⇒ AR(G,n) = (n2).

For n ≥ 5, assume we can use 3 colors.

By Theorem 3.6, there is a rainbow P4.

Figure A.12: Extension of rainbow P4 that permits a rainbow P3 ∪ P2

There is no way to color the dashed lines to avoid a rainbow G. Thus, we cannot use 3

colors. ∎
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