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Abstract 

In the United States, many people rely on private wells, and a constellation of risk factors 

affect the nature and severity of well water pollution, including the capacity of the well user to 

effectively manage their water supply. Identifying well user communities at risk of contaminant 

exposure remains a complex and underexplored area of research. The primary objective of this 

research is to better understand the spatial distribution and correlation of risk factors associated 

with the potential contamination of private well water. We developed a framework to evaluate this 

“risk-scape” using an unsupervised multivariate clustering approach and spatial autoregressive 

models to evaluate three key risk factors - socio-economic vulnerability, flood risk, and 

anthropogenic activity – with well water dependence. Our findings show that approximately 15% 

of Alabama's communities with high well dependence also have a higher flood risk and a large 

minority group with population below poverty line while 29% of high well use communities are 

composed of a high percentage of agricultural land with a large child population. This framework 

highlights where policy intervention or targeted resource allocation should be focused to mitigate 

well contamination in these communities. The framework’s flexibility allows for application to 

any geographical area, offering a pathway for broad adoption. 
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Chapter 1 

Perspective on private well water contamination risk 

1.1 Introduction 

Ensuring  access to a safe and reliable water supply is recognized globally as a human right 

(United Nations, 2016). For many, the water used for drinking, bathing, and cooking is regulated 

by a government agency such as Environmental Protection Agency (EPA) that provides oversight 

and regulations to ensure that public water systems  are readily available and free of harmful 

impurities (US EPA, 2019). For others living in areas that are not serviced by municipal supplies, 

a primary water source can be groundwater extracted by a private well.  According to the United 

States Geological Survey (USGS), over 43 million people in the US rely on private wells as their 

primary source of drinking water (DeSimone et al., 2009). Importantly, private wells in the US are 

not subject to the same regulations as municipal water supplies, and it is the responsibility of the 

well users to ensure that their well is functioning properly and that water is in sufficient supply 

and of sufficient quality to serve the household needs  (EPA, 2015).  

Overall, private wells are more vulnerable than public supplies to a range of contaminants, 

including nitrate (Wheeler et al., 2015), pathogenic bacteria (Mapili et al., 2022), viruses 

(Borchardt et al., 2003), and parasites (Borchardt et al., 2021).  The general hypothesis is that 

contaminant sources in the environment can be mobilized and transported to aquifers in which 

private well users draw from. These contaminant sources can be both geogenic or anthropogenic 

in nature. For many anthropogenic sources, fate and transport pathways are dominated by 

precipitation that drives groundwater infiltration, moving the pollutants from the surface into the 

aquifer. The groundwater is then extracted and consumed by well users. Environmental factors like 

geologic recharge potential (the rate that water moves down through the sub-surface) and climate 

events, such as floods, significantly impact the risk of groundwater contamination by facilitating 

the transport of pollutants from surface to groundwater sources (Geological Survey of Alabama, 

2007). Human activities, especially in agriculture and industry, are major contributors to 

groundwater pollution, with proximity to these activities increasing the risk of contamination by 

substances like E. coli, poly- and perfluorinated alkyl substances (PFAS), and nitrate (Nolan & 

Hitt, 2006; Resek, 1996). 
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Floodwater can carry a variety of contaminants, including bacteria, viruses, chemicals, and 

heavy metals, into private wells. This contamination can lead to serious health risks for residents 

relying on these wells for drinking water (Ramesh et al., 2023). Areas with high rates of 

groundwater infiltration are particularly vulnerable to contamination during flooding. The soil and 

geological conditions in these regions allow floodwaters to seep quickly into the ground, carrying 

contaminants directly into the aquifers that feed private wells (Ledien et al., 2017). Monitoring 

flood impacts and well contamination over large and often remote areas is challenging. Remote 

sensing technologies and machine learning models can provide data and improve the ability of 

policymakers to identify and respond to high-risk zones effectively. These tools can be crucial in 

prioritizing areas for intervention and ensuring the safety of drinking water supplies. 

Previous research has linked water contaminants to a variety of health problems such as 

gastrointestinal illnesses, skin infections, and conjunctivitis (Craun et al., 2010). Poor health 

outcomes among private well users may be exacerbated by financial constraints, limited 

knowledge of maintenance strategies, and skewed risk perceptions around contamination (Fizer et 

al., 2018; Imgrund et al., 2011). Additionally, these challenges disproportionately impact low-

income and marginalized communities due to socioeconomic factors such as income, education, 

and access to educational resources that limit a households ability to mitigate contaminant 

exposure from well water (Martinez-Morata et al., 2022). Studies show that demographic factors, 

including age, can influence well management practices, with older adults being more vigilant 

about water quality (Flanagan et al., 2016). Furthermore, Rowles III et al. (2020) recently 

identified counties with high rates of arsenic (environmental risk) and flooding (infiltration risk), 

and compared that to areas with high concentrations of mobile homes (socio-economimc 

vulnerability indicator) to uncover the areas most susceptible to experiencing (negative) shifts in 

groundwater quality.  

1.2 Research questions and hypothesis 

Generally speaking, research regarding exposure risks for private well users focus on one 

of three domains: the socioeconomic characteristics of the well user (Malecki et al., 2017), the 

anthropogenic contaminant sources (Roostaei et al., 2021), or the natural/environmental 

contamination risks (Eccles et al., 2017). On their own, each has been shown to contribute to an 

increased risk of contaminant exposure, however, it is at the confluence of these factors that more 
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attention is needed. The first objective for this research is to evaluate the spatial distribution of 

known risk factors across the landscape and determine the areas where these risks may be most 

likely to influence private well water resources. The objective answers the following research 

question: 

Research Question 1: How do the spatial distributions of socioeconomic vulnerabilities, 

anthropogenic contamination sources, and natural/environmental contamination risks converge to 

risk the private well water in Alabama? 

Hypothesis 1: Areas in Alabama where high socioeconomic vulnerabilities, dense 

anthropogenic contamination sources, and significant natural/environmental contamination risks 

intersect will exhibit poorer private well water quality compared to areas where these risk factors 

are not as prevalent. 

In order to address this objective, a spatially explicit analysis framework has been applied 

to develop what has been coined as a “risk-scape” of well water quality. Risk-scape, in the context 

of this research, refers to the spatial landscape where various risk factors such as anthropogenic 

contamination sources, socioeconomic vulnerabilities, and natural/environmental contamination 

risks converge to influence well water quality. 

The second objective of the research shifts towards utilizing remote sensing methods rather 

than spatial analysis, adopting machine learning models to detect flooding in Mobile and Baldwin 

counties in Alabama. Since flooding is a major environmental risk factor for private well 

contamination, this research extensively explores flood monitoring in smaller scale areas and 

identifies zones where high flooding coincides with high private well use. The objective answers 

the following two research question: 

Research Question 2: How multiple open-source remote sensing datasets can support each 

other and adopt machine learning models to improve inland flooding? 

Hypothesis 2: Machine learning models will enhance the ability to monitor floods by 

effectively analyzing large volumes of open-source remote sensing data that will lead to more 

precise identification and prediction of flooded areas in the study region.  
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Research Question 3: To what extent do high flood zones overlap with high private well 

use zones? 

Hypothesis 3: There will be a significant overlap between high flood zones and areas of 

high private well use in Mobile and Baldwin counties, indicating that these regions are at an 

increased risk of private well water contamination due to flooding. 
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Chapter 2 

Applying a geospatial modeling framework to evaluate private well water contamination 

risk 

2.1 Background 

2.1.1 Contamination Risk Factors 

2.1.1.1 Socioeconomic characteristics  

While the risks associated with contaminated well water are important considerations for 

all well water users, they disproportionately affect historically underrepresented communities 

(Martinez-Morata et al., 2022). Socioeconomic factors, including income levels, race, and access 

to information, have been identified as significant determinants of the likelihood and severity of 

well contamination incidents. Specifically, the ability to monitor private well water quality and 

take steps to mitigate any contamination depends, at least in part, on a household’s demographics 

and socioeconomic status (Flanagan et al., 2016). Recent studies reveal that although people may 

recognize the factors contaminating well water quality, they are not confident enough to manage 

their wells effectively (Osidach, 2021). For example, they may lack a complete understanding of 

the extent to which contaminants threaten their water supply (Flanagan et al., 2015, 2016; Osidach, 

2021). Mooney et al. (2022) also revealed that demographic factors such as the age of household 

members also influence well management. Specifically, older adults tend to be more aware of their 

household's water quality, which acts as a mitigating factor against well contamination. 

Conversely, young people are often more apathetic, leading to a possible risk of improper well 

stewardship. 

The study by Flanagan et al. (2016)  indicates that while socially vulnerable groups may 

not inherently be at a higher risk of water contamination, their increased vulnerability is largely 

due to socio-economic factors. These groups, which often include low-income families and 

marginalized communities, may lack sufficient education or resources to fully understand the 

importance of proper well maintenance. Additionally, financial constraints can hinder their ability 

to regularly test water quality and maintain well systems. This combination of limited knowledge 

and financial barriers means that these groups are more likely to consume contaminated water as 

they might not have the means to ensure their drinking water is safe. Considering recent research 
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that finds minority populations (e.g., Hispanic/Latino and American Indian/Alaskan Native 

residents) tend to reside closer to areas with high concentrations of well-known groundwater 

contaminants such as arsenic and uranium (Martinez-Morata et al., 2022; Rowles et al., 2020), it 

is increasingly important to identify socially vulnerable well owner communities in relation to 

known well water contamination risks. 

2.1.1.2 Environmental considerations  

Contaminants on the ground surface can infiltrate into the subsurface, which is largely 

driven by gravitational forces, permeability of the soil, and existing moisture content (Geological 

Survey of Alabama, 2007). As the water moves through the soil profile, contaminants can be 

attenuated by processes such as adsorption, biodegradation, and chemical reactions, reducing their 

concentration. However, some contaminants, especially those that are highly soluble in water or 

non-reactive, can accumulate in groundwater over time. For instance, in agricultural areas, 

excessive use of fertilizers can lead to high concentrations of nitrate in the groundwater, posing a 

risk to drinking water sources (Nolan & Hitt, 2006). Similarly, improper disposal of industrial 

waste can introduce harmful chemicals into the subsurface, which can eventually migrate to 

groundwater resources (Resek, 1996).  

Environmental factors like geography and climate significantly influence the risk of well 

water contamination. For example, in a study examining a 2013 flood event in Alberta, Canada, 

Eccles et al., 2017 reported a significant increase in the presence of Escherichia coli (E. coli) in 

private drinking wells post-flood, demonstrating the connection between flooding and the transport 

of contaminants to well water. Similar work by Rowles III et al. (2020) characterized the same 

effect, finding that seasonal contamination of wells in flood prone areas was signifncant and, 

importantly, was dependent on the amount of precipitation. A U.S.-based study focused on the 

impact of four major natural disasters— the 2016 Louisiana Floods, Hurricane Harvey in 2017, 

Hurricane Irma in 2017, and Hurricane Florence in 2018 found elevated levels of bacteria—such 

as Legionella, Mycobacterium, L. pneumophila, and M. avium—that are responsible for 

waterborne diseases in private well samples taken after these events (Mapili et al., 2022; Pieper et 

al., 2021). Together, this research suggests that areas prone to frequent flooding are at a higher risk 

for contaminant exposure compared to regions with lower flood potential. 
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2.1.1.3 Anthropogenic contaminant sources  

Given the previously discussed mechanisms of contaminant transport to private wells, 

human activities, particularly those involving toxic release facilities and agriculture, have a long 

history of increasing risks to groundwater contamination.  For example, a 1997 study conducted 

in Ontario, Canada, found an inverse relationship between the presence of E. coli in household 

wells and the distance of these wells from adjacent farmland (Goss et al., 1998). The 

transformation of grasslands into cultivated fields has also been shown to increase the occurrence 

of nitrate in private well water which was attributed to the application of nitrate-rich agricultural 

chemicals on the fields (Keeler & Polasky, 2014). More recent studies note similar spatial 

relationship related to PFAS emitters. Private wells closer in proximity to PFAS facilities were 

more likely to test positive for PFAS (Hu et al., 2021; Roostaei et al., 2021) and maintain higher 

concentrations of PFAS compared to background wells. Roostaei et al. (2021) indicates that PFAS 

contamination risk was driven by air deposition rate, wind direction, and by the distance the well 

was to the emission source. They also noted that PFAS occurrence in the wells was driven less by 

groundwater recharge potential or high-water events, highlighting the importance of considering 

multiple transport mechanisms in the evaluation of contamination risk. 

It is important to acknowledge that pollutants related to anthropogenic processes have been 

known to interact synergistically with natural processes that exacerbate overall contamination risk 

(X. Li et al., 2020). For instance, industrial activities can introduce contaminants like sulfonamide 

antimicrobials into groundwater, as evidenced by their detection in private wells in areas near 

confined animal feeding operations (CAFOs) (Batt et al., 2006). Agrichemicals, such as herbicides 

and nitrate, are significant sources of diffuse pollution in groundwater, particularly in agricultural 

regions. This type of pollution is caused by runoff from agricultural fields and can lead to elevated 

levels of nitrates and other harmful chemicals in groundwater sources (Burkart et al., 1999). In 

addition, industrial activities, particularly those related to petrochemical enterprises, can discharge 

polluted wastewater into the environment. This wastewater often infiltrates the soil, contaminating 

the groundwater with various pollutants like total petroleum hydrocarbons, total dissolved solids, 

chlorides, and sodium (Radelyuk et al., 2021). 
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2.1.2 Well contamination risk assessment methods 

In evaluating the risk of well contamination, researchers have adopted a multi-disciplinary 

approach, integrating insights from both social and environmental sciences. The primary objective 

of these studies is to predict and map the locations of contamination risks, providing critical 

support for understanding the broader patterns of risk. However, despite the progress, there is a 

notable gap in fully integrating these diverse approaches into a unified model. 

Regression analysis, notably logistic regression, stands as a cornerstone in this domain. For 

instance, Eccles et al. (2017) employed regression models to uncover a significant link between 

flood conditions and E. coli presence in groundwater wells, revealing that well maintenance, often 

influenced by the socioeconomic status of users, plays a more crucial role in contamination risk 

than geographic location. Similarly, Ayotte et al. (2017) achieved over 80% accuracy in predicting 

geogenic contamination risks in private wells using logistic regression, emphasizing the method's 

effectiveness in identifying risk areas. 

Emerging machine learning (ML) techniques, such as boosted regression trees and random 

forest classification, have shown even greater promise. Lombard et al. (2021) reported accuracy 

rates exceeding 90% in predicting contaminant exposure, while sensitivity analyses have enhanced 

the reliability of these assessments (Spaur et al., 2021). These advanced methods underscore the 

potential of ML in refining risk assessment, although they often lack integration with socio-

economic data. The U.S. EPA's Priority Setting Approach represents a more holistic framework, 

considering various factors such as contaminant release, transport, and toxicity. However, this 

approach falls short in integrating hydrogeological variables like hydraulic conductivity, that 

others have identified as a significant contamination factor elsewhere in the U.S (Harman et al., 

2001).  

The integration of the Groundwater Relative Risk Model (RRM), Groundwater 

Contamination Risk Assessment (CRA), and Human Health Risk Assessment (HHRA) in studies 

by Teng et al. (2019) and Sresto et al. (2021) demonstrates the potential of cumulative approaches. 

These models utilize risk values and the Groundwater Vulnerability Index based on the Depth to 

groundwater, Recharge rate, Aquifer, Soil, Topography, Vadose zone's impact, Aquifer's hydraulic 

conductivity (DRASTIC) model to yield regional assessments (Aller et al., 1987). Additionally, 

statistical cluster analysis and Binary Hierarchical Logistic Regression, as explored in studies by 
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Hynds et al. (2014), Krolik et al. (2013), and Mooney et al. (2021), pinpoint ground-level risk 

areas, providing insights into the distribution of individual pathogenic contamination risk factors 

such as E. coli.  

Despite these advancements, existing studies have not fully explored how social, natural, 

and anthropogenic risk sources combine to form comprehensive patterns of risk across landscapes. 

The deficiency in integrating all these elements into a single, comprehensive model hinders the 

complete understanding of contamination risk sources and the communities vulnerable to 

exposure. This highlights the need for a more inclusive approach that combines data describing 

social condition, environmental and anthropogenic contamination sources to form a holistic 

understanding of well water contamination, thereby aiding in the effective prediction and 

management of the risks. Such integration is essential for addressing the current gap in knowledge 

and for developing robust strategies to mitigate well contamination risks. 
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2.2 Methods 

2.2.1 Study area 

This study focuses on the state of Alabama in the US. Alabama has a total population of 

around 5.04 million people, with approximately 16% of the population using private well water 

Figure 1 Block groups of Alabama and estimated rate (categorized using 

standard deviation) of housing units using private water supply sources. (A. 

H. Murray & Kremer., 2023) 
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for domestic use (ADPH, 2021). Figure 1 shows the study extent with the block group wise 

estimated distribution of private well use rate. The use rate is the estimated number of households 

reliant on a private well divided by the total number of households in the unit of analysis. 

Approximately 14% of people in Alabama have a high school education or less, 32% of the 

population is of minority groups, and 16% of people in Alabama are living below the poverty line 

(US Census, 2021). According to the Alabama Department of Economic and Community Affairs 

(ADECA), the southwest coastal regions of Alabama has the highest water surface elevation areas, 

which increases the risk of floods (ADECA, 2020).  

2.2.2 Data background and preprocessing 

 We leveraged a recently published dataset of estimated counts of housing units using 

private well water sources from Murray & Kremer (2023) for the analysis. The original approach 

for creating this data set estimated well use rate for all US Census block groups (CBGs) in the US 

based on information from the 2010 US census. The approach utilized two methods. First, a 

reported wells method combined housing unit change with private well drilling logs for a sample 

of 20 states and considered variable well use rates from 1990 (the last time the US census asked 

about household water supply) to 2010. Second, the net housing unit (NHU) method was 

developed that assumed a constant well use rate based on household density. Their analysis showed 

a reliable relationship between well users and house hold density (R2 of .78) which was used to 

extrapolate well estimates to all CBGs across the US (A. Murray et al., 2021). The 2010 model 

employed a simple linear regression that worked to an extent but struggled in areas with high 

housing unit growth. To address these complexities the authors have more recently adopted a 

machine learning approach that uses decision trees to estimate where census blocks have access to 

public water systems while validating it against known public water system boundaries (Murray 

& Kremer, 2023). The new model is more robust and has been recently applied to the 2020 census 

data. We use this new data set to estimate the percentage of housing units reliant on private wells 

across our study extent (A. H. Murray & Kremer., 2023). 

Generally speaking, few CBGs contained the majority of the well users in a region, 

resulting in a highly right-skewed distribution. The vast majority of CBGs will not have any 

households using well water. To prepare for spatial and statistical analysis that require near-normal 

distributions, we applied a Box-Cox transformation to stabilize the variance (Box & Cox, 1964). 
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This transformation not only made the dataset more Gaussian but also paved the way for a more 

robust statistical interpretation, in line with the principles outlined by Johnson (2000). 

Socioeconomic data for each CBG were sourced from the National Historical Geographic 

Information System (NHGIS), a project funded by the National Science Foundation for a five-year 

term (Manson et al., 2023). NHGIS aggregates U.S. census data across various geographic 

aggregations offering both geographic and attribute data that come equipped with the same unique 

IDs provided in the well use dataset (McMaster & Noble, 2005; Schroeder & McMaster, 2007). A 

variety of socioeconomic variables were considered, each of which related in some way to the 

social vulnerability of the CBG. We detail the complete list of socioeconomic variables in Table 1.  

To investigate flood risk factors, we considered a variety of conditioning variables such as 

Digital Elevation Models (DEM), streamline density, and net recharge rates, as described by 

Tehrany et al., (2019) and presented in Table 1. In hydrology, a streamline is a path that water 

follows in a stream or river, typically influenced by the topography and shape of the riverbed. The 

connection between streamlines and floods is significant, as changes in streamlines, such as 

blockages or alterations in riverbed geometry, can influence the flow of water and potentially lead 

to flooding, especially during heavy rainfalls or sudden water input events. For instance, the 

disruption of streamlines can increase water contributions during flooding and affect the transport 

times of water flows, magnifying the risks and impacts of flood events (Hasenmueller & Robinson, 

2016).  

We also incorporated 30-year average net recharge data from the Geological Survey of 

Alabama and combined it with 30-year average precipitation data from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) (Geological Survey of Alabama, 2007; 

PRISM Climate Group, 2022). The PRISM raster, initially at an 800-meter spatial resolution 

(PRISM Climate Group, 2022), was resampled with the Nearest Neighbor method to 30 meters 

(Ver Hoef & Temesgen, 2013) because there are block groups with sizes of less than 800 square 

meters. To extract data accurately for a feature, it is important to have the raster grid cell smaller 

than the feature (Lechner et al., 2009). We additively integrated block group wise average of all 

these factors to calculate flood risk. 

We utilize two primary indicators of anthropogenic risk in our analysis which include areas 

of agricultural activity and the location of facilities that emit toxic chemicals into the environment. 
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Agricultural activities utilize fertilizer that contains known groundwater contaminants such as 

nitrate. To account for these areas we collected 2020 agriculturally active areas for Alabama from 

the National Agricultural Statistics Service (NASS)  (USDA, 2020) which is provided at 30 m 

resolution. We recognize that groundwater contamination from agricultural land use practices is a 

time-delayed effect that is difficult to predict at large (and heterogeneous) spatial scales. Still, we 

follow the precedent set by Kolpin (1997) using land use classifications to define agricultural areas 

as proxy for contaminants associated with land use practices.  

Next, we leveraged the Toxic Release Inventory (TRI) dataset made available through the 

EPA to identify facilities and industrial sites known for releasing toxic chemicals (US EPA, 2023). 

The TRI program is a key resource for tracking and managing environmental releases of toxic 

chemicals in the US. Established under the Emergency Planning and Community Right-to-Know 

Act of 1986, the TRI program mandates that facilities in certain industries report annually on the 

quantity of toxic chemicals they release into the air, water, and land. This data includes information 

on waste management activities and pollution prevention efforts. The TRI dataset provides a 

comprehensive overview of environmental releases, but more importantly, offers valuable insights 

into the types, quantities, and locations of chemicals released by these facilities. Following 

previous work on the strong distance decay effect related to toxic emitters and groundwater 

contaminant concentration (Roostaei et al., 2021), we assume that distance and prevalence of these 

facilities is a strong indicator of potential well contamination. We calculated the kernel density of 

the facilities across Alabama as a proxy for contamination risk.    

All contaminant risk factors were aggregated to Alabama CBGs for further analysis. Before 

proceeding with the analysis, it is essential to standardize the values of each factor from 0 to 1. 

This standardization process ensures uniformity in the scale of measurement for each factor, 

facilitating a more accurate and comparable assessment across different variables. It also 

minimizes potential biases arising from different units of measurement and varying ranges of data. 

Table 1 details all the variables that have been used in this study along with the source of the data.  

 

 



24 

 

Table 1 Variables for the model, description, and source of the data 

Data Description (Per block groups) Source 

Domestic Well Data  

Well Data 

Estimated rate of housing units using 

private water supply sources within 

the census block in 2020. 

(A. H. Murray & 

Kremer., 2023) 

Socio-economic and Demographic Data 

Minority Percentage 

Estimated percentage of 

Black or African 

American, American 

Indigenous, Asian, Native 

Hawaiian, Hispanic, and 

Other National Historical Geographic 

Information System (NHGIS) 

database from Integrated Public Use 

Microdata Series (IPUMS). 

American Community Survey 

(ACS) 2018-2022 (U.S. Census 

Bureau, 2022). 

Education less than high 

school 

Estimated percentage of 

people who have attained 

not more than high school 

Income less than poverty 

line 

Estimated percentage of 

people who have less than 

0.99 ratio of income to 

poverty level in the past 

12 months.  

Child population 

Estimated total 

percentage of children 

(Age<18) 

Flood Risk Data 

Precipitation 
30-year average (800 

meter) 
PRISM Climate Group 

DEM 
Average DEM (30 meter) 

(Reversed) 

NASA Shuttle Radar Topography 

Mission (SRTM) 

Streamline 
Average streamline 

density 
(U.S. Census Bureau, 2020) 

Net recharge 
30-year average (30 

meter) (Reversed) 

(Geological Survey of Alabama, 

2018) 

Anthropogenic Risk Data 

TRI TRI Density  (US EPA, 2023) 

Agriculturally active 

areas 

Percentage of 

agriculturally active areas 

per block groups 

(Herbaceous, 

(USDA, 2020) 
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Pasture/Hay, and 

Cultivated Crops) 

 

2.2.3 Spatial Analysis 

Different configurations of contaminant risk variables can come together to influence 

contaminant exposure differently. For example, some CBGs may have high well use, high 

environmental risk, and high anthropogenic risk but occur in CBGs that are well equipped from a 

socio-economic standpoint and therefore more likely (or able) to mitigate the risks. On the other 

hand, you could have the same high values of well use, environmental risk, and anthropogenic risk 

but in an area that is less likely to be able to mitigate the risks due to socio-economic constraints. 

There are many configurations of variables that contribute to differences in contaminant exposure 

and in order to capture these dynamics we leverage an unsupervised cluster segmentation process 

to group CBGs of “like” values to create a typology for evaluating how communities vary in their 

level of contaminant exposure.  

2.2.4 Multivariate clustering 

We have used Multivariate clustering analysis (Caliñski & Harabasz, 1974; Jain, 2010), a 

form of unsupervised classification, to aggregate CBGs into distinct groups that share similar 

attribute patterns that contribute to varying levels of private well contamination risk. Specifically, 

we were interested in identifying CBGs associated with relatively high well use rate and their 

relationship to each of the factors identified as contributing to well contamination risk.  The goal 

of multivariate clustering is to identify groupings where the features within each cluster exhibit 

maximum similarity, while the clusters themselves remain as distinct as possible. Of particular 

importance is the identification of well use communities associated with low socioeconomic status, 

high flood potential, and a comparatively high density of TRI facilities or surrounding agricultural 

land. We used the K-Medoids algorithm for the clustering process and implement it in ArcGIS Pro 

(ESRI, 2024). This form of multivariate clustering uses Calinski-Harabasz pseudo-F-statistic 

(Caliñski & Harabasz, 1974) to determine the optimal number of clusters in the dataset. It is a ratio 

reflecting within group similarity and between group differences:   



26 

 

𝑅𝑎𝑡𝑖𝑜 =  

𝑅2

𝑛𝑐 − 1

1 − 𝑅2

𝑛 − 𝑛𝑐

 

(1) 

Where, 

𝑅2 =
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇
 

(2) 

SST is a reflection between cluster differences and SSE reflects within-cluster similarity. 

𝑆𝑆𝑇 = ∑ ∑ ∑(𝑉𝑖𝑗
𝑘 − 𝑉𝑘̅̅̅̅ )

2

𝑛𝑣

𝑘=1

𝑛𝑐

𝑗=1

𝑛𝑖

𝑖=1

 

(3) 

𝑆𝑆𝐸 = ∑ ∑ ∑(𝑉𝑖𝑗
𝑘 − 𝑉𝑡

𝑘̅̅ ̅̅ )
2

𝑛𝑣

𝑘=1

𝑛𝑐

𝑗=1

𝑛𝑖

𝑖=1

 

(4) 

n = the number of features 

ni = the number of features in cluster i 

nc = the number of classes (clusters) 

nv = the number of variables used to cluster features. 

𝑉𝑖𝑗
𝑘 = the value of the kth variable of the jth feature in the ith cluster 

𝑉𝑘̅̅̅̅  = the mean of the kth variable 

𝑉𝑡
𝑘̅̅ ̅̅  = the mean of the value of the kth variable in cluster i 

The clusters are generated by iteratively grouping each CBG with the cluster centroid in 

which it is closest. When subsequent iterations no longer improve the Total Sum of Square (SST) 

or the Sum of Square Error (SSE) – that is differences between and similarities within are 

maximized, the iterations stop and you are left with k-groupings of CBGs based on their attribute 

values.  Following the pseudo-F-statistics our analysis resulted in two clusters. However, given 

our desire to distinguish CBGs based on our list of contaminant risk factors (Table 1) and in an 

effort to provide more nuance into where and why CBGs were at risk of contaminant exposure, 
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we opted to increase the final k-cluster number to 5. Given this choice we provide a deeper 

interrogation of the clusters to determine whether they are significantly different from one another 

using a series of statistical tests and exploratory spatial regression.   

2.2.5 Spatial Autoregressive Model 

The interpretation of clusters has an inherent limitation due to the aggregation. While we 

are able to assess the characteristics of the cluster members on average, it is difficult to tease apart 

the specific intra-cluster relationships across their characteristics. To that end, after identifying the 

clusters we employ several regressions to investigate the relationship between social and 

environmental factors and private well water use within the different clusters. The autocorrelative 

nature of private well use necessitates the use of spatial auto regressive models (SARM). We model 

the spatial relationship of the cluster members using a Queen Contiguity weighted matrix and 

combine that with Lagrange Multiplier (LM) tests to determine the specific model form spatial lag 

model (SLM) or a spatial error model (SEM) that is appropriate for the data. The SLM is expressed 

as: 

𝑌 =  ρ𝑊𝑌 +  𝑋β +  ϵ (5) 

 

where 𝑌 is the dependent variable vector representing well water use, 𝜌 is the spatial lag 

coefficient, 𝑊 is the spatial weights matrix, 𝑋 is the matrix of independent variables, 𝛽 is the 

vector of coefficients, and 𝜖 is the error term. The spatial weights matrix 𝑊 is a key component, 

defining the spatial relationship between observations based on proximity, with closer observations 

assigned higher weights. The Spatial Error Model (SEM) is formulated as follows: 

𝑌 =  𝑋β +  μ (6) 

μ =  λ𝑊μ +  ϵ (7) 

 

Where μ is the vector of spatially autocorrelated error terms. λ is the spatial autoregressive 

coefficient for the error term, and β is a matrix of explanatory variables of interest. 
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2.3 Results 

2.3.1 Multivariate clustering map 

Figure 2 displays the multivariate clustering map illustrating well use in conjunction with 

various risk variables outlined in Table 1 and Table 2. The characteristics of each cluster were 

summarized through the box plot presented in Figure 3. Each box represents the overall 

distribution of the variable, the points represent the cluster medoid for that attribute (median), and 

each line connecting the cluster centers helps to illustrate high/low changes across clusters centers. 

In addition, we performed additional statistical evaluations (ANOVA, MANOVA, and Tukey 

HSD) to determine the uniqueness of variables making up the clusters included, which are detailed 

in Appendix I. 
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Figure 2 Multivariate clustering map of well use and all the risk factors. 
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Clusters 1, 2, and 4 are associated with the highest median well use rate denoted with the 

overlapping points on well use in Figure 2. The distribution of well use rate in each cluster is 

illustrated in Appendix I. We can therefore assume that the CBGs making up these clusters have 

some of the highest numbers of well users in Alabama on average. Hence, they warrant further 

attention.  

CBGs within cluster 1 are associated with relatively high minority populations, high 

poverty, less education and a large percentage of these CBGs are at heightened flood risk. The 

CBGs in cluster 1 contain a low TRI density on average and high well use. There are comparatively 

fewer children making up the population, and low agricultural land use. From these groupings 

we’d expect households in these CBGs to have a high cumulative risk among the high well use 

clusters.  

CBGs making up cluster 2 are less at risk of contaminant exposure than CBGs in cluster 1. 

This is predominately due to these CBGs having the lowest flood risk combined with moderate 

Figure 3 Multivariate clustering boxplot. Each box shows the distribution of each variable, 

and the five lines represent each cluster in the map. 
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agricultural land, minority and poverty. However, households in cluster 2 CBGs have the second 

highest percentage of people with less education.  

CBGs in cluster 4 make up the highest well-use cluster. Compared to cluster 1, we view 

this cluster as having a low risk of contaminant exposure. Flood risk is not as prevalent among 

cluster 1 CBGs, however, the child population is relatively high compared to cluster 1 and 2. The 

percentage of CBG area devoted to agricultural land use practices is the highest. TRI density is 

moderate among these cluster along with the number of people with less education. CBGs in 

cluster 4 also have low minority community and poverty as well.  

The R-squared values depicted in Table 2 offer insightful information regarding each 

variable’s contribution to separating and assigning CBGs to each cluster. These values range 

between 0 and 1, where a higher value denotes that a greater proportion of variance in the model 

is accounted for by the variable. In other words, high values indicate importance for distinguishing 

the clusters from one another. The variable for well use rate demonstrates the highest R-squared 

value indicating that approximately 56.3% of the variance in the clustering is accounted for by the 

well use rate variable. Following well use, the TRI density accounts for roughly 39.3% of the 

variance within the model followed by minority population that explains approximately 37.2% of 

the variance in the model. Other variables such as flood risk, poverty, level of education, and child 

population have R-squared values of 35.1%, 30.4%, 20.6%, and 10.6%, respectively. Agricultural 

area has the lowest discriminatory power, only explaining approximately 10.2% of the variance. 

Table 2  R-squared value of multivariate clustering 

Variable R-squared value 

Well use 0.563 

TRI density 0.393 

Minority population 0.372 

Flood risk 0.351 

Household below poverty level 0.304 

Education 0.206 

Child population 0.106 

Agricultural area 0.102 
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2.3.2 Intra-cluster well use rate and risk factors. 

 The use of clusters and their centroids provide a broad, aggregate understanding of the risks 

associated with each cluster. However, the aggregation can mask some of the specific relationships 

between the risk variables of interest and private well dependence within each cluster. Moreover, 

any inferences made at the cluster level risks violating the ecological fallacy. To help address this 

deficiency, we performed several regressions using those CBGs that make up each cluster. Prior 

to running the analysis, we perform several spatial diagnostic tests which indicated the presence 

of spatial autocorrelation and therefore required the use of a SARM which can account for this 

spatial dependence. We performed LM tests to identify the specific SARM form most suitable for 

addressing the autocorrelation in the data set. The results of the tests are indicated in Table 3. The 

LM test that was most significant was chosen for the analysis. The Variance Inflation Factor (VIF) 

for each independent variable indicates no significant multicollinearity among the models 

(Appendix I).   

Table 3 Spatial dependence diagnostic test results. LM and Robust LM. 

Cluste

r 

Moran's I 

(error) LM (lag) 

Robust LM 

(lag) LM (error) 

Robust LM 

(error) 

1 0.242*** 14.192** 7.893** 31.545*** 25.246*** 

2 0.275*** 7.098** 1.419 58.087*** 52.407*** 

3 0.113** 0.010 0.435- 7.024** 7.449** 

4 0.236*** 0.570 4.645* 47.336*** 51.411*** 

5 -0.083 0.418 0.172 1.279 1.032 

Significance levels are indicated as: *<.05, **<.01, ***<.001.  

 

Table 4 displays the results from spatial regression models that provide additional nuance 

to the characteristics of the population that fall within each of the clusters. As previously 

mentioned, clusters 1, 2, and 4 contain the highest well users while clusters 3 and 5 have relatively 

modest well user populations. Because the clustering algorithm produces unequal numbers of 

cluster members, we report the total number of CBGs used for each regression along with R2, Rho 

or Lambda. Coefficients for poverty are negative for cluster 1 and 3, however, positive for cluster 

2, 4, and 5. Coefficients for education is significant 3 (p < 0.05) and 4 (p < 0.01) with a positive 
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values, however, not significantly positive for cluster 2 and 5. The number of minority households 

relying on private wells does not significantly increase on average across cluster 2 and 5 at the 

level of the CBG, while the portion of the population composed of children varies across clusters  

with no significant positive or negative relation with well use rate.  

The TRI variable, which measures the density of known toxic chemical emitters, 

consistently shows a significant negative relationship with well use rates in Clusters 1 (p < 0.001), 

2 (p < 0.001), and 4 (p < 0.001) and cluster 5 (p < 0.05). However, in Cluster 3, the effect is non-

significant. The variable representing agricultural area within each CBG is significant and positive 

in Cluster 3 (p < 0.001) and Cluster 5 (p < 0.001), indicating that within these regions  private well 

locations are commonly found among agriculture areas. In other clusters, the effects are non-

significant, with coefficients ranging from -0.010 to 0.014. Flood risk does not significantly affect 

well use rates in any of the clusters. The coefficients range from -0.047 to 0.032, all of which are 

non-significant, suggesting no statistical evidence for an impact of flood risk on well use. That 

said, the relationship between flood risk and private well use, although insignificant, is positive in 

clusters 2, 4, and 5.  

Table 4 Spatial regression model results 

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

CBGs Count 321 531 469 621 162 

Model Type SEM SEM SEM SEM OLS 

Constant 1.069*** 0.928*** 0.729*** 0.945*** 0.574*** 

Poverty -0.043 0.015 -0.045 0.009 0.049 

Education -0.007 0.033 0.060* 0.049** 0.038 

Minority -0.046* 0.007 -0.028 -0.025* 0.042 

Child Pop -0.030 -0.029 0.008 -0.016 -0.020 

TRI -0.209*** -0.098*** -0.024 -0.073*** -0.092* 

Agri Area 0.014 -0.007 0.119*** -0.010 0.243*** 

Flood Risk -0.026 0.032 -0.047 0.025 0.028 

Lambda/Rho 0.402*** 0.374*** 0.148** 0.307*** - 

R-squared 0.358 0.189 0.111 0.158 0.251 
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Significance levels are indicated as: *<.05, **<.01, ***<.001.  

 

2.4 Discussion 

This study takes a geospatial approach to generate a risk landscape, or risk-scape, 

associated with private well use across Alabama. We evaluated three different risk categories with 

this approach: socio-economic, flood potential and anthropogenic. The cluster-based approach 

allows one to understand the risk-scape across the study area by showing where, for example, 

socio-economically vulnerable well users are co-located with areas of high flood risk and toxic 

release facilities. One of the benefits of this approach is that it does not make any assumptions 

regarding the magnitude of risk posed by any of the indicators. Rather, it provides a mechanism 

for clustering well communities by similar risk categories while disentangling the most likely 

source of contamination that well users within that community may face. We therefore see this 

approach as a prospective decision support tool that enables one to communicate and deploy 

groundwater contamination mitigation strategies that meet the needs of the specific well user 

community more effectively. There are several important facets of this work worth further 

discussion.  

First, one key contribution of this study is the development of a mechanism for evaluating 

the interconnections of several risk factors and associated demographics simultaneously. In effect, 

it allows one to determine the number and type of risk factors a community may face. For instance, 

socio-economically disadvantaged communities are often more vulnerable to environmental risks 

and less equipped to respond to contamination incidents (Flanagan et al., 2016).  The approach 

used here helps clarify where and to what extent this might be taking place. It is also worth 

mentioning that in segmenting the population by risk variables, this approach does not make any 

assumptions about which risk factors contribute more to well water contamination than others. It 

merely provides an illustrative risk-scape that decision makers may use to identify and deploy 

resources that reflect the likely risks and needs of the underlying populations.  

Second, by incorporating both a cluster analysis and regression, this framework is at once 

exploratory and explanatory. As noted previously, the location of private wells is uncertain. The 

best we can currently do is rely on estimates generated from statistical relationships (A. Murray et 

al., 2021). However, what we know from those relationships is that well users tend to cluster in 
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space, so it is therefore important to incorporate well use estimates directly into a broader risk-

based approach to develop a baseline understanding of well dependence. In addition, while the 

clustering of well use rate and socio-economic characteristics do not actually explain well use 

prevalence, it nevertheless provides an excellent starting point for conducting explanatory analyses 

regarding the factors that may pose contamination risks. In this sense, our combined approach of 

generating clusters and subsequently evaluating them through regressions minimizes the potential 

for violating the ecological fallacy while confirming (or refuting) the larger trends at the highest 

level of CBG aggregation (clusters). The value of this multi-method approach was demonstrated 

by our results that revealed some mismatch between the aggregated risk factors at the cluster level, 

and the coefficient estimates generated from the intra-cluster regression analysis. However, it also 

provided additional evidence that well users in clusters 2, 4, and 5 are especially at risk from flood 

related well water issues. This relationship was partially revealed in the cluster analysis but was 

made clear when performing the regressions.  

Finally, and perhaps the most important point, is that in the US the location of private well 

users is difficult to know for certain. Many estimates rely on well water location data spread across 

multiple data sets of varying quality, age, and information. This, in turn, makes the use of a cluster-

based risk approach even more important. As detailed previously, we determined that patterns of 

well users cluster in space. This suggests that even if we do not know exactly where well users are 

located, it is likely that they are within the same general area as other well users. Moreover, it 

means that they face the same risks (if any) as the well users within each cluster. Developing a 

baseline for knowing where private well use is most prevalent and the risks that those well users 

are likely to face can help inform preventative mitigation strategies for well water contamination. 

Although it is difficult to speculate the degree that well use rate may be under- or overreported, 

there is enough evidence from this analysis to help private well water programs and other 

stakeholder groups to create and deploy outreach activities in the cluster segments with the highest 

well use rate and multiple contaminant threats. 

2.5 Conclusion  

The study, while comprehensive in its approach to understanding private well water 

contamination risk, presents certain challenges that open avenues for future research and 

improvement. One of the primary concerns is the reliance on existing datasets, which may not fully 



36 

 

capture the current state of well water usage and contamination risks. For example, the use of 

historical data might not accurately reflect recent demographic and land use changes which can 

change the resulting patterns of where contaminant exposure risk is highest. In addition, we chose 

to demonstrate this approach using communities across Alabama and as a result the specific 

findings may not be directly transferable to other regions with different socio-economic and 

environmental contexts. That said, the methodology and approach is adaptable. Researchers and 

policymakers in other regions can gain similarly nuanced insights into the spatial dynamics of 

environmental risks and their intersection with socio-economic vulnerabilities across well user 

communities by employing similar methods.  

Another limitation for this study is the inherent complexity and variability of natural 

processes and human activities that influence groundwater quality. While the study attempts to 

account for various factors, there are numerous other confounding variables that were not included. 

For example, emerging contaminants such as pharmaceuticals and personal care products, which 

are increasingly detected in groundwater, were not considered (Khan et al., 2022; Stuart et al., 

2012; Stuart & Lapworth, 2013). Similarly, the study does not account for geogenic risks like 

arsenic or uranium contamination or the impact of climate change, which could significantly alter 

precipitation patterns, flooding risks, and consequently, groundwater contamination dynamics 

(Amini et al., 2008; Coyte et al., 2018; Lemonte et al., 2017). Some studies suggest that 

characteristics like well depth, which relate to well contamination, have not been considered 

(Wheeler et al., 2015). Furthermore, resampling the raster data to align with other datasets may be 

suitable for small-sized CBGs (Lechner et al., 2009). However, the unavailability of all the data at 

the same spatial resolution is another limitation of the study. 

Regarding future opportunities, there is a clear need for more dynamic and real-time data collection 

methods to accurately monitor well water use and contamination levels. Advances in remote 

sensing technologies could provide more precise and up-to-date information on flood risk. 

Additionally, expanding the scope of the study to include a broader range of contaminants and risk 

factors, especially in the context of climate change, would enhance the understanding of well water 

contamination risks. Finally, there is an opportunity for more participatory research approaches 

that involve local communities in monitoring and managing their well water resources. Engaging 

well users in data collection, risk assessment, and decision-making processes can lead to more 
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sustainable and community-centric solutions that help ensure a sustainable water future for users 

of private wells. 

 

  



38 

 

Chapter 3 

A machine learning approach to predict flooding in Mobile and Baldwin Counties, 

Alabama 

3.1. Introduction 

Flooding remains one of the most pervasive natural disasters across the globe, affecting 

millions of lives and causing extensive damage to property, infrastructure, and ecosystems 

(Aldardasawi & Eren, 2021; W. Du et al., 2010; Tingsanchali, 2012; Watson et al., 2016). Flooding 

can significantly impact private and public well water quality primarily through contamination by 

pathogens and pollutants when the well head becomes overtopped by flood water or through 

natural infiltration. Prior research has shown that, in the aftermath of Hurricane Harvey, a 

quantitative microbial risk assessment for private wells in flood-impacted areas of Texas revealed 

increased contamination from fecal indicator bacteria. This finding underscores the need for 

improved testing and management practices for well water, as well as greater public awareness 

about the impact of floodwater on wells. (Gitter et al., 2023). A cross-sectional study in the 

Republic of Ireland revealed that private well users are largely unprepared to cope with flood-

triggered contamination risks (Musacchio et al., 2021). It is therefore important to accurately 

identify flood-prone areas for educating and informing vulnerable populations about the potential 

for flood-induced well water contamination. This proactive approach helps communities take 

necessary precautions to ensure safe drinking water. Moreover, the frequency and severity of 

flooding events is expected to increase as a result of climate change which will increase the 

vulnerability of groundwater sources to contamination (Andrade et al., 2018; Musacchio et al., 

2021). 

There are several established datasets that represent flood boundaries, flooding extent, and 

inundation. The FEMA 100-year flood hazard boundary represents areas with a 1% annual chance 

of flooding, focusing on regulatory standards and floodplain management (Drewry et al., 2024). 

In contrast, Height Above Nearest Drainage (HAND) models use elevation data to predict 

inundation extents based on terrain and proximity to drainage channels, which provide a more 

dynamic flood prediction tool tailored to the local topography (Jafarzadegan et al., 2018). The 

Dartmouth Flood Observatory utilizes satellite-derived extents to monitor real-time flood events 

globally, offering crucial data for regions lacking ground-based hydrological data (Awadallah & 
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Tabet, 2015). These datasets are designed to predict and map flood extents based on river stream 

behaviors, making them well-suited for understanding and managing flood risks in areas close to 

rivers (Jafarzadegan et al., 2018). However, they may not fully capture the extent of inland flooding 

(van Leeuwen et al., 2017), particularly in areas where flooding is caused by intense localized 

rainfall that does not immediately flow into river systems. 

The dynamic and often rapid onset of inland flood events, compounded by climate change 

underscores the urgent need for effective monitoring of flooded areas and management strategies 

for flood-induced challenges. In this context, remote sensing technologies have emerged as 

invaluable tools. Moderate spatial resolution (10-30 m) earth observation satellites like Landsat 

and Sentinel provide critical regional data for flood monitoring, management, and damage 

assessment, enabling timely and informed decision-making. Studies highlight the advancement in 

remote sensing methods, including the integration of multispectral, radar, and optical data for 

enhanced flood mapping and monitoring, underscoring their importance in disaster management 

and mitigation efforts (Domeneghetti et al., 2019; Lo et al., 2015; Schumann, 2015). 

The integration of remote sensing techniques for flood monitoring has improved with the 

advent of threshold-based models and the comparison of pre- and post-flood imagery, specifically 

from satellite imagery gathered by the Sentinel mission (Liang & Liu, 2020). Sentinel-1 stands out 

from other freely available satellite data sources, such as Landsat and Sentinel-2, due to its unique 

capabilities. As a Synthetic Aperture Radar (SAR) system, Sentinel-1 can acquire data regardless 

of weather conditions and daylight, making it particularly invaluable for emergency response and 

disaster management. This all-weather, day-and-night imaging capability ensures continuous 

monitoring, which is critical during flood events when optical sensors may be obstructed by clouds 

or darkness (DeVries et al., 2020a). In comparison, Landsat and Sentinel-2 rely on optical sensors, 

which can be limited by cloud cover and the need for daylight. This limitation can hinder their 

effectiveness in capturing real-time data during floods, especially under adverse weather 

conditions (Solovey, 2020). Furthermore, Sentinel-2, while offering high spatial resolution (10-20 

meters) and frequent revisits (every 5 days), still faces challenges in continuous monitoring due to 

cloud cover (Bontemps et al., 2015). The revisit frequency of Sentinel-1 is significantly enhanced 

due to the constellation of two satellites, Sentinel-1A and Sentinel-1B, which together offer a 

revisit interval of 6 days globally. This high revisit frequency ensures more consistent and timely 
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data acquisition for flood monitoring (J. Li & Roy, 2017). In contrast, Landsat-8, despite its long 

historical record and valuable data continuity, has a revisit interval of 16 days when considered 

alone, though it can be combined with Landsat-7 to achieve an 8-day interval (Chastain et al., 

2019).  

Unmanned Aerial Vehicles (UAVs) offer valuable capabilities for flood monitoring, 

including high-resolution data acquisition and rapid deployment. However, they come with notable 

limitations. The cost of operating UAVs can be significant, making widespread deployment 

expensive (Song et al., 2022). Furthermore, flying UAVs over disaster-impacted areas poses 

challenges, including navigation in adverse weather conditions and potential damage to the drones 

themselves (Guo et al., 2021). UAVs also struggle to cover larger flood-affected regions effectively 

due to their limited battery life and range (Casaseca-de-la-Higuera et al., 2018). In contrast, the 

use of Sentinel-SAR offers distinct advantages over UAVs, particularly in its ability to provide 

extensive coverage and operate under all weather conditions, including night-time and cloudy 

scenarios, which are often encountered during floods (Goudarzi et al., 2021). Therefore, while 

UAVs are beneficial for localized and detailed monitoring, Sentinel-SAR is more effective for 

comprehensive flood assessments. 

Threshold-based models, especially those relying on local thresholding approaches using 

Sentinel-1 SAR imagery, have proven effective in delineating water extents by considering the 

complexity and variability of different land surface types within an image, thus offering a more 

accurate and detailed analysis of flood events (Liang & Liu, 2020). A threshold-based model in 

remote sensing refers to a technique used to separate different types of land cover, such as water 

and land, based on specific pixel intensity or backscatter value thresholds in satellite imagery 

(Liang & Liu, 2020). Furthermore, methodologies incorporating multi-temporal SAR statistics 

with historical surface water class probabilities have been utilized to distinguish unexpected floods 

from permanent or seasonally occurring surface water, offering a new method for near-real-time 

flood monitoring  (Sharifi, 2020).  

Despite these advantages, the reliance on threshold-based models for flood detection using 

Sentinel-1 data presents limitations. For example, threshold-based methods require the selection 

of specific backscatter values (i.e. pixel values) to distinguish between water and non-water 

surfaces, which can be challenging due to the variability of land surface conditions and the 
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presence of vegetation or urban structures that also influence backscatter. Such models often 

struggle with the heterogeneous nature of the terrain, where the same threshold may not apply 

uniformly across different regions or under different ambient conditions. This can lead to over- or 

under-detection of flooded areas, especially in complex environments that features of the built 

environment and dense vegetation. For these locations the backscatter response might be similar 

for water and non-water surfaces due to interference from the surrounding environment (Liang & 

Liu, 2020). The development of more sophisticated, automated approaches that can adapt to these 

challenges is essential for improving the accuracy and reliability of flood maps derived from 

Sentinel-1 and other SAR data. 

Beside the limitations of threshold-based model, Sentinel-1 SAR lacks the ability to 

generate a wide range of exploratory variables. While Sentinel-1 is excellent for capturing flood 

extents due to its all-weather capabilities, it does not provide the same level of detail and variety 

of data as Sentinel-2, making it less versatile for comprehensive flood mapping and analysis 

(Solovey, 2020). Therefore, the integration of Sentinel-2’s multispectral imagery with Sentinel-1’s 

SAR data is often necessary to achieve the best results in flood monitoring and mapping (Tuo et 

al., 2022). Sentinel-2 has the ability to generate various exploratory indices to predict flooding, 

such as NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), 

NDWI (Normalized Difference Water Index), GCI (Green Chlorophyll Index) and so on. These 

indices are valuable for machine learning models as they provide comprehensive data on 

vegetation health, water bodies, and chlorophyll concentration, which are essential for accurate 

flood detection and monitoring (Y. Du et al., 2016). 

The use of ML models, such as Random Forest (RF) regression, for spatial prediction of 

flooding represents a significant advancement over traditional threshold-based models. For 

example, a study by Mosavi et al. (2018) emphasized the significant contributions of ML methods, 

including Random Forest, in enhancing the prediction systems for flood risks. The study 

showcased the effectiveness and efficiency of ML models in capturing the complex dynamics of 

flood processes, thus providing a more accurate and cost-effective solution compared to traditional 

methods like using thresholds (Mosavi et al., 2018). Similarly, Tayfur et al. (2018) discussed the 

application of various ML methods, including RF, for predicting flood hydrographs. The study 

highlighted the power of ML models in offering high accuracy in flood prediction using less and 
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easily measurable data, overcoming significant parameter estimation problems associated with 

conventional models (Tayfur et al., 2018). Additionally, Sampurno et al. (2022) used an integrated 

hydrodynamic and ML approach to predict compound flooding in an estuarine delta in Indonesia, 

identifying RF as the most accurate algorithm for flood hazard prediction (Sampurno et al., 2022). 

Moreover, Rajab et al. (2023) leveraged historic climatic records to apply ML models, including 

RF, for flood forecasting in Bangladesh, highlighting its superior performance in predicting rainfall 

and flood risks compared to other models (Rajab et al., 2023). These studies collectively 

underscore the advanced capabilities of ML models, particularly RF, in providing accurate and 

efficient flood prediction, thus offering substantial improvements over traditional threshold-based 

methods. 

This study aims to expand on these advances to develop a ML-based model to predict 

flooding in Mobile and Baldwin Counties in Alabama; two counties where rate of households using 

private well is moderately high on average (A. H. Murray & Kremer., 2023). The primary objective 

of this research is to enhance the accuracy of flood detection in suburban and rural areas by 

integrating the strengths of threshold-based models with ML-based models. This approach aims to 

leverage the robustness of threshold-based techniques in initial water delineation while employing 

ML models to refine and improve these predictions. By combining the simplicity and efficiency 

of threshold methods with the predictive power and adaptability of ML algorithms, this integrated 

model seeks to provide more accurate and detailed mapping of flooded area estimates, particularly 

in environments with complex land surface characteristics.  

3.2. Methods 

3.2.1 Conceptual diagram 

Figure 4 illustrates the concept diagram of datasets used, analysis, and respective outcomes. 

Details of each diagram component are discussed from section 3.2.2. 
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3.2.2 Data 

This study uses satellite imagery datasets collected through Google Earth Engine (GEE), 

specifically the Sentinel-1 SAR imagery, which were used to develop the primary threshold-based 

flood model (Google Developers, 2022). The Sentinel-1 mission provides data from a C-band SAR 

operating at 5.405GHz and capable of dual-polarization. These data are encapsulated in the 

Sentinel-1 Ground Range Detected (GRD) scenes collection on GEE, which undergoes daily 

updates. A "scene" in the context of Sentinel-1 SAR imagery refers to a single, discrete image 

captured by the Sentinel-1 satellite's SAR over a specific geographic area at a particular moment 

in time. The Sentinel-1 image collection is filtered to include only ascending pass (covering 

Alabama) images with VH polarization and a resolution of 10 meters. Shamshiri et al. (2018) 

analyzed the use of VH channel in Sentinel-1 data, highlighting its role in improving spatial density 

(Shamshiri et al., 2018). The images are then clipped to the study area and median composites are 

created for the before and after periods. These composites are processed through the Refined Lee 

filter, and the resulting images are converted back to dB units. Refined Lee filter is known for its 

effectiveness in reducing noise while preserving image detail. Sun and Li (2020) improved 

Figure 4 Concept diagram. 
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denoising methods for Sentinel-1 data, addressing both additive and multiplicative noise, 

emphasizing the need for advanced filtering techniques like the Refined Lee filter for high-quality 

SAR image analysis (Sun & Li, 2021). This filter uses a combination of 3x3 and 7x7 kernels to 

compute local statistics and gradients, ultimately refining the image quality.  

The high-resolution multispectral imagery provided by the Sentinel-2 mission was used to 

support the analysis of terrestrial phenomena such as vegetation dynamics, soil and water cover, 

and the assessment of inland and coastal waters. This dataset encompasses 13 spectral bands in 

UINT16 format, capturing top-of-atmosphere (TOA) reflectance values. These TOA values are 

scaled by a factor of 10,000 following procedure outlined in the Sentinel-2 User Handbook 

(Google Developers, 2022).  Furthermore, the Sentinel-2 dataset includes three quality assurance 

(QA) bands that are crucial for ensuring the accuracy and usability of the imagery. Among these, 

the QA60 band is particularly significant as it functions as a bitmask for cloud detection. This 

capability is essential for delineating pixels covered by clouds from those that are not, ensuring 

that analyses such as vegetation health assessments and soil moisture calculations are based on 

clear and accurate observations (ESA, 2022). 

Finally, the JRC Global Surface Water Mapping Layers available in GEE were used for 

identifying permanent water bodies. This dataset includes maps of surface water locations and 

their temporal distribution from 1984 to 2021, along with statistical analyses of water surface 

extents and their changes over time. Researchers derived this compilation from 4,716,475 scenes 

from Landsat 5, 7, and 8, captured between March 16, 1984, and December 31, 2021. An expert 

system classified each pixel in these scenes as water or non-water, leading to a comprehensive 

monthly historical record (Pekel et al., 2016). This record enables change detection analysis for 

two periods: 1984-1999 and 2000-2021 (Pekel et al., 2016). The Advanced Land Observing 

Satellite (ALOS) World 3D - 30m (AW3D30) provided elevation data for the original data set 

derivation. AW3D30dataset offers a horizontal resolution of approximately 30 meters (1 arcsec 

mesh), based on the 5-meter mesh version of the World 3D Topographic Data (Tadono et al., 2014; 

Takaku et al., 2014). Table 5 shows the details of the four data sources. 
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Table 5 Details of data sources, sensor, spatial, spectral and temporal resolution 

Data Source Sensor 
Spatial 

Resolution 

Spectral 

Resolution 
Temporal Resolution 

Sentinel-1 SAR C-band SAR 
10, 25, 40 

meters 

Dual-polarization 

(VV, HH, VV+VH, 

HH+HV) 

6 days 

Sentinel-2 
Multispectral 

Imager 

10, 20, 60 

meters 
13 spectral bands 

5 days at equator, and 

2-3 days at mid-

latitudes 

JRC Global 

Surface Water 

Mapping 

Landsat 5, 7, 8 30 meters 

N/A (monthly 

surface water extent 

from 0-12 where 0 

means there is no 

water over the years 

and 12 means water 

stays there for 12 

months in a year.) 

Monthly historical 

record from 1984 to 

2021 

ALOS World 

3D - 30m 

(AW3D30) 

Digital Surface 

Model (DSM) 

Approx. 30 

meters 
N/A (elevation data) 

N/A (based on 

acquisition period) 
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3.2.3 Study area 

Mobile and Baldwin Counties in Alabama have been selected as the study area due to their 

highest average precipitation over the past 30 years, along with a noticeable rate of private well 

use. According to the Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

Climate Group data, Baldwin County has the highest average precipitation in Alabama from 1991 

to 2020, followed by Mobile County with the second highest (Figure 5a). Recently published block 

group level private well data from the EPA reveals that around 70% of households on average use 

private wells in Baldwin County, along with 57% of households in Mobile County. Figure 5b 

shows the geographic map of Mobile and Baldwin Counties along with the private well use rate. 

The development of the flood model requires satellite imagery from a flooded time period 

and a non-flooded time period to compare data from wet vs. dry conditions. Although Sentinel-1 

is capable of cloud penetration, Sentinel-2 operates as a conventional multispectral band satellite. 

To secure Sentinel-2 imagery with minimal cloud cover, the study was conducted during a period 

Figure 5 Study area map. (a) Average 30 years precipitation of Alabama where Mobile and 

Baldwin has the highest precipitation; (b) Block group level private well use rate in households 

of Mobile and Baldwin categorize with standard deviation. 
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of low flooding in the region of interest. The selected study period encompasses November and 

December 2019, coinciding with an unexpected flash flood event that stretched from Alabama to 

Tennessee, as reported by FloodList (2019). Record-breaking rainfall hit parts of Tennessee and 

Alabama starting on December 29, leading to severe flash floods that resulted in the deaths of two 

individuals (FloodList, 2019). In Tennessee, floodwaters prompted the closure of multiple roads 

within Williamson County, where the local Emergency Management Agency conducted two water 

rescues. Similar conditions in Alabama claimed a life when a vehicle was overtaken by the 

floodwaters in the city of Anderson, situated in Lauderdale County, AL, on December 29.  

 

3.2.4 Threshold-based flood mapping 

Pre-flooding and post-flooding imagery along with basic flood identification factors like 

permanent water bodies and a DEM has been used in the threshold-based model to delineate areas 

inundated by flood waters. The pre-flooding imagery was obtained from the median imagery of 

the whole month of November 2019. This imagery is considered as normal “blue sky” conditions 

for the area. The post-flooding imagery was sourced from median imagery of the whole month of 

December 2019.  The application of averaging median filters in remote sensing has been shown to 

preserve fine details while attenuating impulse noise, indicating the utility of median-based 

approaches in maintaining the integrity of spatial information (Vassiliou et al., 1988). At its core, 

the threshold approach assesses the differences in SAR backscatter values between the pre- and 

post-flood imagery. SAR that interacts with water scatters the wavelengths differently than SAR 

interacting with non-water surfaces. Therefore, by comparing these two values one can identify 

locations where the SAR backscatter values have changed. The threshold value is used to select 

when that change is large enough to suggest that a previously dry location is now wet, indicating 

a flood. To assess that change a threshold value that indicates the difference between pre-flooding 

and post-flooding imagery (eq .8) has been specified while masking out high elevation areas and 

permanent water bodies (Table 5). Equation 8 shows the flood extraction calculation with a specific 

threshold (θ).  

Flooded Area = (
After Image

Before Image
> θ) ∩ (PermanentWater < 5) ∩ (Slope < σ) 

 

(8) 
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In the equation for extracting flooded areas, a comparison of satellite images before and 

after a flooding event is used to identify where the changes in SAR backscatter occurred between 

the two time periods. For this analysis, a backscatter ratio value (after image / before image) greater 

than 1.25 (𝜃) would suggest the presence of water in the after-event image at those pixel locations, 

thus signaling potential flooding. This threshold value is chosen because water reflects radar 

signals more than dry land, leading to a significant difference in the backscatter values. It is 

important to mention that the threshold value can vary over space and land cover. Liang and Liu 

(2020) proposed a local thresholding approach to delineate water extent using Sentinel-1 SAR 

imagery which highlights  the importance of adjusting thresholds based on local conditions (Liang 

& Liu, 2020). Manjusree et al. (2012) undertook a study to optimize threshold ranges for 

classifying flood water in SAR images across different polarizations. The study provides detailed 

insights into how different threshold values, including 1.5, 1.6, and 2.5 ratio, can be used for 

effective flood detection (Manjusree et al., 2012). To determine the most effective threshold value 

for identifying changes in overland water presence, soil moisture images were compared before 

and after the flood event while changing the threshold value. The goal was to balance regional 

generalizability with sensitivity to changes in water levels. A threshold value of 1.25 was selected 

as the optimal point. This high threshold ensures that the areas identified reflect the highest 

increase in soil moisture, effectively pinpointing the regions most likely to have experienced 

flooding. This approach, while primarily used for training purposes, allows for a focused 

identification of areas with significant changes in soil moisture, suggesting a strong potential for 

actual flooding. 

To ensure that permanent water bodies are not mistakenly classified as flooding the 

equation also excludes areas or permanent or semi-permanent water indicated by a seasonality 

score of 5 or more from the Global Surface Water dataset (Table 5). It also incorporates slope 

measurement to exclude areas with steep slopes. Specifically, pixels with a slope greater than 5 

percent are excluded. In the regions of Mobile and Baldwin, the average elevation is approximately 

39 meters. 5 percent of this elevation amounts to around 2 meters, equivalent to more than 6 feet. 

Steeper slopes are less likely to retain floodwaters, so only regions with a slope less than 5 percent 

(𝜎) are considered. This method isolates flood-affected regions by leveraging the unique properties 

of radar satellite imagery to detect surface water changes, even under challenging conditions like 

cloud cover. Figure 6 depicts the results of threshold-based flood mapping in Mobile and Baldwin 
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County in December 2019 along with soil moisture scenario from Sentinel-1. The soil moisture 

scenario is a false color composite where the VV polarization which reflects wetlands has been 

run though the red channel while VH polarization has been run through blue and green channel. 

Typically, the VV polarization is sensitive to surface roughness and moisture, while VH 

polarization, due to its sensitivity to the structure and orientation of objects on the ground 

(Balenzano et al., 2011; Joseph et al., 2008). As a result, soil with higher moisture content will 

appear redder in the image.  

Although the threshold-based model can isolate flooded pixels by comparing pre-flood and 

post-flood images, its accuracy faces certain limitations. As previously mentioned, selecting a 

specific threshold value—for SAR images, permanent water, and slope—requires careful 

consideration of the geography of the study area. A threshold that works in one region may not be 

suitable for another. For example, figure 6a demonstrates the flooded areas extracted using the 

threshold value of 1.25. While the model performed reasonably well for southern Mobile, it only 

identified a few flooded areas in Baldwin, which does not reflect the actual situation, as the pre-

flood and post-flood imagery show significant changes in the soil moisture content after the 

flooding event. A comparison of pre-flood and post-flood images in southern Baldwin (Figures 4e 

and 4f, respectively) highlights flooded pixels in red that the threshold-based model failed to 

extract. 

Moreover, the simplicity of the threshold-based model, which relies on relatively simple 

calculations between pixels from two images, often fails to capture the full extent of flooded areas 

due to variations in pixel reflectance. This issue is evident in Figure 6d, where the model identified 

some flooded areas, but the reddish pixels, indicating high soil moisture, cover a much larger area 

in the post-flood image (Figure 6f) than the model extracted. While it cannot be said for certain 

whether these are flooded areas, it is confirmed that the soil moisture content is especially high 

compared to the surrounding area which may indicate a higher affinity for flooding that was not 

captured by using the threshold approach for this period. This limitation suggests the need for 

adopting a prediction-based model capable of accurately determining flooded areas. 
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(a

(b (c) 

(d

(e) (f) 

Figure 6 Threshold-based modeling result of Mobile and Baldwin to extract flood pixels; (a) Extracted 

flooded area over the whole study region; (b) pre-flood soil moisture scenario of a specific area in southern 

Baldwin where red indicates high soil moisture; (c) post-flood soil moisture scenario of the same area in 

Baldwin where flood pixels can be seen in red; (d) extracted flooded area of a specific region in Mobile; (e) 

pre-flood soil moisture scenario of Figure 6(d); (f) post-flood soil moisture scenario of Figure 6(d). Black 

boxes in (b) and (c) is to help identify flooding in micro scale. 

 



51 

 

3.2.5 Random Forest classification and regression 

To predict flooded areas, a random forest ML procedure was used. The RF classification 

and regression uses data of known values to generate a training dataset. Relationships between 

explanatory variables of interest and a target value are generated and used to predict target values 

at unknown locations. The specific version of the tool implemented here creates models and 

generates predictions using an adaptation of the random forest algorithm, which is a supervised 

ML method developed by Breiman et al. ( 2001b; 2017). During the modeling process, the tool 

creates many decision trees, called an ensemble or a forest. Each tree generates its own prediction 

and is used as part of a voting scheme to make final predictions. The final predictions are not based 

on any single tree but rather on the entire forest. The use of the entire forest rather than an 

individual tree helps avoid overfitting the model to the training dataset, as does the use of both a 

random subset of the training data and a random subset of explanatory variables in each tree that 

constitutes the forest. In the context of flooding, RF model has been used to predict the areas of 

flooding that the threshold-based model fails to identify in both Mobile and Baldwin County. The 

model is trained using points from flooded areas (i.e., those pixels where the threshold model did 

a good job of delineating flooded pixels) collected manually. A suite of derived remote sensing 

indices associated with flood potential are used as the explanatory variables. 

3.2.6 Training and testing the model 

RF model associated with the Forest-based Classification and Regression tool from ArcGIS 

Pro has been utilized for this study. The outputs from the threshold-based model (detailed 

previously) along with pre- and post-flooding soil moisture scenario are used to identify known 

locations of flooding (target variable) in Mobile. It has been assumed that flooded pixels classified 

as flooded from the threshold model and areas of high soil moisture were most probably flooded 

during the study period. In the post-flood images, areas that have flooded show higher moisture 

reflectance than in pre-flood images, as observed in Figures 4b, 4c, 4e, and 4f. The RF model also 

requires data on the location of non-flooded regions which necessarily include permanent water 

bodies, high elevated lands, and wetland areas. 1329 training points have been collected, of which 

465 points were from areas assumed to have flooded, and 864 points indicate non-flooded regions.  
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 Predicting regional-level flooding from local training points is one of the objectives of this 

study. In this case, a local threshold-based model has been developed in the southwestern part of 

Mobile, assuming that this area is the closest to the coast with low elevation. However, the local 

model can be based on any other location within the predicted extent. The flooded training points 

are not only based on the threshold-based model but also on self-observation. The threshold-based 

Figure 7 Training points over Mobile and Baldwin Counties, AL. Red points are the flooded 

training points and blue points are the non-flooded training points. 
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model only supports the process of identifying potential areas where floods have occurred and is 

merely an initial indicator of flood prone regions. 

30% of the training data has been reserved, which is approximately 399 points from the 

total of 1329 training points, for validating the Random Forest model. It is a form of Out-of-Bag 

error (OOB) validation (Bylander, 2002; Cho et al., 2019). OOB errors serve as indicators of the 

model’s accuracy. They are derived from the model’s capability to predict the target variable 

accurately using the observations in the training dataset. The OOB error, which includes metrics 

such as the mean squared error (MSE) and the percentage of variation explained, is determined by 

the predictive performance of the model for the portion of the training data not used by certain 

trees within the forest. This method provides an internal validation mechanism, allowing for an 

assessment of the model’s prediction accuracy using the training data itself, without the need for a 

separate validation set. 

Figure 7displays the training points, with blue point representing the non-flooded training 

points and red point representing the flooded training points. Due to the strong performance of the 

threshold-based model in Mobile County (i.e., more flooded areas were easier to identify following 

the flood event), there were more training points collected from Mobile than Baldwin. The 

rationale behind this selection approach is twofold: First, it allows for the application of learned 

patterns from Mobile County to identify similar flood characteristics in Baldwin County, where 

direct observations or historical flood data is sparse or non-existent. Second, it aims to create a 

robust flood prediction tool that can be applied across different regions, enhancing our capacity to 

manage and respond to flood events more effectively. 

3.2.7 Explanatory variables 

Choosing the right explanatory variables is critical for the success of ML models in 

predicting floods. The variables directly influence the model's ability to learn from the data, 

recognize patterns, and make accurate predictions. Selecting relevant variables ensures that the 

model considers all significant factors that contribute to flooding, such as topography, land cover, 

soil moisture, and water bodies' presence (Mosavi et al., 2018). In addition, multiple derived 

variables were also included as explanatory variables.  
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The Normalized Difference Flood Index (NDFI), derived from Sentinel-1 SAR data, uses 

the difference and sum of vertical-vertical (VV) and vertical-horizontal (VH) polarization to 

identify water-covered surfaces, particularly useful in flood detection and monitoring. This index 

effectively distinguishes floodwaters from other land covers by exploiting the differential 

scattering properties of water surfaces under various polarizations, making it a vital variable for 

accurate flood mapping (Xue et al., 2022).  

Similarly, the Normalized Difference Water Index (NDWI) from Sentinel-2, which 

calculates the contrast between the green and near-infrared (NIR) bands, and the Modified 

Normalized Difference Water Index (MNDWI), which substitutes the green for a short-wave 

infrared (SWIR) band, are instrumental in identifying and delineating water bodies. These indices 

exploit the spectral reflectance properties of water versus vegetation and built-up areas, enhancing 

the capability to monitor surface water extent and changes over time. Again, this index is crucial 

for flood risk assessment and management (Kashyap et al., 2022; Solovey, 2020). The Normalized 

Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) provide insights 

into vegetation health and biomass, which can be affected by flooding. Specifically, following a 

flood both the NDVI and EVI may decrease and serve as an additional proxy for where flooding 

has occurred. These indices are calculated from the red and NIR bands, reflecting the 

photosynthetic capacity and biomass of vegetation. Healthy vegetation reflects more NIR and less 

visible light, whereas flooded or stressed vegetation shows the opposite pattern. Understanding 

vegetation health and changes can help in assessing flood impacts on ecosystems and agricultural 

lands (Goffi et al., 2020). 

The Normalized Difference Turbidity Index (NDTI) uses the SWIR bands to measure water 

turbidity, a parameter that often increases in water bodies during flood events due to the suspension 

of sediments. Monitoring turbidity is essential for assessing the quality of water during and after 

floods, impacting water treatment and public health (Solovey, 2020). The Soil Adjusted Vegetation 

Index (SAVI) modifies NDVI to minimize soil brightness effects, providing a more accurate 

representation of vegetation in areas with mixed land cover. This index is particularly relevant in 

flood-prone regions where vegetation cover is sparse or irregular, offering insights into how land 

cover affects flood dynamics (Goffi et al., 2020). Further, the Water Ratio Index (WRI), the Green 

Chlorophyll Index (GCI), and the Built-up Area Index (BAI) utilize various band combinations to 
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differentiate between water, vegetation, and urban areas. These indices contribute to a 

comprehensive understanding of land cover and land use, key factors in flood vulnerability and 

risk mapping (Andreo et al., 2019; Goffi et al., 2020).  

Finally, the Soil Moisture Index (SMI), leveraging the contrast between NIR and SWIR 

bands, is indicative of soil moisture levels, a critical parameter in predicting flood potential and 

understanding the hydrological conditions leading up to flood events (Wanders et al., 2014). Land 

cover classification data, such as that from the National Land Cover Database (NLCD), and DEM, 

like NASA's Shuttle Radar Topography Mission (SRTM), provide essential contextual information 

on the natural and built environment. These data sources offer critical insights into terrain, 

elevation, slope, and land use patterns, all of which influence flood behavior, susceptibility, and 

impact (Sankaranarayanan et al., 2020). 

The RF model incorporates the above 13 explanatory variables (Table 6). The majority of 

these variables are derived from different band combinations associated with Sentinel-1 and 

Sentinel-2 imagery. All the indices derived from Sentinel are generated at a 10-meter resolution, 

while land use and DEM data are provided at a 30-meter resolution. Table 5 presents a list of all 

explanatory variables, along with their equations, sources, and references. 
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Table 6 Explanatory variables, source, equations, and references. 

Variable Source Equation Reference 

Normalized 

Difference Flood 

Index 

Sentinel-1 

SAR 

𝑉𝑉 − 𝑉𝐻

𝑉𝑉 + 𝑉𝐻
 (Xue et al., 2022) 

Normalized 

Difference Water 

Index (NDWI) 

Sentinel-2 

𝐵3 − 𝐵8

𝐵3 + 𝐵8
 (Kashyap et al., 2022) 

Modified 

Normalized 

Difference Water 

Index (MNDWI) 

𝐵3 − 𝐵11

𝐵3 + 𝐵11
 (Solovey, 2020) 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 (Goffi et al., 2020) 

Normalized 

Difference 

Turbidity Index 

(NDTI) 

𝐵11 − 𝐵12

𝐵11 + 𝐵12
 (Solovey, 2020) 

Soil Adjusted 

Vegetation Index 

(SAVI) 

(
𝐵8 − 𝐵4

𝐵8 + 𝐵4 + 0.5
) × 1.5 (Goffi et al., 2020) 

Enhanced 

Vegetation Index 

(EVI) 

2.5 ×
𝐵8 − 𝐵4

𝐵8 + 6 × 𝐵4 − 7.5 × 𝐵2 + 1
 (Goffi et al., 2020) 

Water Ratio Index 

(WRI) 

𝐵3 + 𝐵4

𝐵8 + 𝐵11
 (Goffi et al., 2020) 

Green Chlorophyll 

Index (GCI) 

𝐵8

𝐵3
− 1 (Andreo et al., 2019) 
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Built-up Area Index 

(BAI) 

1

(0.1 − 𝐵4)2 + (0.06 − 𝐵8)2
 (Goffi et al., 2020) 

Soil Moisture Index 

(SMI) 

𝐵11 − 𝐵8

𝐵11 + 𝐵8
 (Wanders et al., 2014) 

Land cover 

classification 

NLCD 

2019 
 

(Sankaranarayanan et 

al., 2020) 

DEM 
NASA 

SRTM 
 

(Sankaranarayanan et 

al., 2020) 

B2, B3, B4, B8, B11, and B12 are Sentinel-2 bands corresponding to Blue, Green, Red, Near 

Infrared (NIR), and two Short Wave Infrared (SWIR) wavelengths, respectively. 

VV and VH are Sentinel-1 bands representing vertical-vertical and vertical-horizontal polarization, 

respectively. 

 

3.2.8 Correlation and Local Moran’s I 

To understand the extent of the predicted flooded area affecting private well users, Pearson 

correlation and Local Moran’s I analysis have been conducted. Local Moran's I is a statistical 

measure used to identify local clusters or spatial autocorrelation within a given dataset. It helps in 

detecting local patterns by breaking down the global Moran's I into individual contributions from 

each location, thereby highlighting areas of significant spatial clustering or dispersion. Block 

group-level well use rates and total flooded areas per block group have been analyzed to identify 

local clusters of these two variables separately, which include five clusters: high-high (HH), high-

low (HL), low-high (LH), low-low (LL), and not significant. Finally, a confusion matrix shows 

how many HH, LL, and not significant block groups are common for both variables in the study 

area. 
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3.3. Results 

3.3.1 Predicted flooded areas 

 

(g) 

(a) 

(b) (c) 

(d) 

(e) 

(f) 
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Figure 8 displays the outcomes of the RF model, highlighting the predicted flooded areas. 

A comparison between Figure 8a and Figure 6a demonstrates that the RF model has indeed 

predicted that flooding is likely to occur in Baldwin County, a result that was clearly not captured 

by the threshold-based model. A closer examination of the southern region in Mobile, as shown in 

Figure 8e, reveals that the RF model identified additional flooded regions not detected by the 

threshold-based model. A detailed observation of the smaller boxes provides a clearer view of the 

changes in soil moisture before and after the flood. Despite observing an increase in soil moisture 

in the pre-flood scenario (Figure 8b), the threshold-model failed to identify any flooded areas in 

Baldwin County (Figure 8c). In contrast, the RF model predicted many flooded areas in this region, 

as evident in Figure 8d. 

Tables 7, 8, and 9 assess the performance of the RF model, offering evidence of the 

importance of explanatory variables. Utilizing 100 trees and employing 30% of the training points 

for validation, the model's OOB errors indicate a relatively low MSE, which shows a decrease 

compared to the model with 50 trees. This trend is consistent for both non-flooded and flooded 

regions, with the latter showing a particularly low MSE. The decrease in MSE when the number 

of trees in the RF model is increased from 50 to 100 is generally a positive indicator of model 

performance (Breiman, 2001a; Probst & Boulesteix, 2018). Lower MSE values suggest that the 

model's predictions are closer to the actual values, indicating improved accuracy. This indicates 

that the model becomes more adept at identifying flooded areas correctly as the complexity of the 

forest increases, which is crucial for applications in flood prediction and assessment. 

 

 

Figure 8 Predicted flooding from RF model; (a) predicted flooded area over the whole study area; 

(b) pre-flood soil moisture scenario in a specific region of Baldwin; (c) post-flood soil moisture 

along with threshold-based model flooded area in the same region in Baldwin; (d) RF model 

predicted flooded area in the same region in Baldwin; (e) RF model predicted flooded area in the 

same region in Mobile; (f) pre-flood soil moisture scenario in a specific region of Mobile; (g) post-

flood soil moisture scenario along with threshold-based model flooded area in the same region in 

Mobile;. 
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Table 7 Model out of bag errors 

Number of Trees MSE Non-flooded Flooded 

50 0.663 0.935 0.157 

100 0.52 0.757 0.08 

 

Table 8 ranks each explanatory variable's importance for predicting flood vs non-flood 

areas.  The values in the Importance column represent the cumulative Gini coefficients for each 

variable, aggregated from all the trees in the model. The percentages indicate the proportion of the 

overall Gini coefficient sum contributed by each variable. The Gini coefficient measures the 

importance of each variable in making accurate predictions. It is derived from decision trees within 

the random forest algorithm. For each variable, the Gini coefficient represents the sum of its 

contributions to splitting nodes across all trees in the model. A higher Gini coefficient indicates 

that the variable is more influential in improving the model's predictive accuracy. The percentage 

values reflect the proportion of the total Gini coefficients accounted for by each variable, 

highlighting their relative importance. For this case, GCI, NLCD, and SMI, each with a 9% 

contribution, are among the most significant predictors in the model.  

Table 8 Variable importance (Gini coefficients) and percentages related to the proportion of the 

Gini Coefficient sum accounted for by each explanatory variable. Variable acronyms are defined 

in Table 6.  

Variable Importance % 

GCI 0.3 9 

NLCD 0.3 9 

SMI 0.3 9 

SAVI 0.3 9 

NDVI 0.29 9 

WRI 0.29 8 

NDTI 0.28 8 

Elevation 0.28 8 

NDWI 0.27 8 

BAI 0.26 8 
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NDFI 0.21 6 

EVI 0.17 5 

MNDWI 0.14 4 

 

Table 9 presents classification diagnostics for a flood prediction model, evaluated 

separately on training and validation datasets. The metrics reported are F1-Score, Matthews 

Correlation Coefficient (MCC), Sensitivity, and Accuracy, for both the non-flooded and flooded 

categories. The F1-Score is the harmonic mean of precision and recall. It is particularly useful 

when dealing with imbalanced datasets, where one class is significantly underrepresented. The F1-

Score reaches its best value at 1 (perfect precision and recall) and worst at 0 (Takahashi et al., 

2022). MCC is a correlation coefficient between the observed and predicted binary classifications. 

It returns a value between -1 and +1 where +1 indicates a perfect prediction, 0 no better than 

random prediction, and -1 indicates total disagreement between prediction and observation. MCC 

is considered a balanced measure which can be used even if the classes are of very different sizes 

(Chicco, Warrens, et al., 2021). Sensitivity, also known as the true positive rate or recall, measures 

the proportion of actual positives that are correctly identified as such (Chicco, Starovoitov, et al., 

2021). Accuracy measures the proportion of true results (both true positives and true negatives) 

among the total number of cases examined (Zhu, 2020). 

Table 9 Model diagnostics 

Category F1-Score MCC Sensitivity Accuracy 

Training data 

Non-flooded 1 0.99 0.99 0.99 

Flooded 0.99 0.99 1 0.99 

Validation data 

Non-flooded 0.97 0.92 0.97 0.96 

Flooded 0.95 0.92 0.96 0.96 

 

For the training data, the model demonstrates near-perfect performance across all metrics 

for both categories. Specifically, the non-flooded category achieves a perfect F1-Score of 1 and 

very high scores in MCC (0.99), Sensitivity (0.99), and Accuracy (0.99). The flooded category 
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also shows high performance with an F1-Score of 0.99, indicating a balanced precision and recall, 

and identical scores for MCC, Sensitivity, and Accuracy as the non-flooded category, highlighting 

the model's strong ability to correctly identify both categories during training. Even though the 

scores seem unusually high, this is expected since this validation is based on training points that 

are already known by the forest (ESRI, 2022). 

On the validation data, the model exhibits slightly lower, yet strong, performance metrics, 

which suggests good generalization to unseen data. The non-flooded category scores are slightly 

reduced to 0.97 for both F1-Score and Sensitivity, and 0.92 for MCC, with accuracy slightly 

dropping to 0.96. The flooded category shows a similar trend with a reduced F1-Score of 0.95 and 

identical MCC and Sensitivity scores as the non-flooded category, with the same Accuracy. These 

results indicate the model's robustness and its effectiveness in predicting flood events, with a high 

level of reliability and consistency between training and validation, ensuring its utility in practical 

flood forecasting applications. 

3.3.2 Flooded area and private well use rate 

 The correlation between block group-level total flooded area and well use rate was found 

to be approximately 0.587, indicating a moderate positive relationship. Figure 9 shows the 

confusion matrix of local Moran's I cluster type between total flooded area and household-level 

well use rate. The confusion matrix was applied to assess the change in geographic patterns 

between clusters of high and low well use and flooding risk identified by the model. Entries on 

only the diagonal in a confusion matrix indicate that cluster membership HH or LL resulting from 

well use and flood risk align in geographic space. Off-diagonal entries indicate the degree the well 

use and flood risk result in a different geographic configuration of clusters across the study area. 

Numerical values within the confusion matrix correspond to the total number of block groups that 

correspond to the pairwise cluster group.  Thirty-two block groups out of 450 have HH clusters 

for both variables, while 236 block groups have LL clusters for both. Other cluster includes 8 HL 

cluster for flooded area and 30 HL cluster for well use.  Figure 10 illustrates the map of the cluster 

results, revealing that the southeastern rural areas have the highest well use rates along with the 

largest flooded areas, whereas the city areas of Mobile have the lowest private well use rates along 

with the smallest flooded areas. 
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Figure 9 Confusion matrix between private well use cluster and flooded area cluster. 
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3.4 Discussion  

Flood monitoring has attracted considerable interest, especially with advances in remote 

sensing and ML approaches. The availability of high-resolution data has significantly enhanced 

flood monitoring and accuracy assessment (Jenifer & Natarajan, 2022). Despite the clear 

methodological advancements in flood monitoring, major concerns arise regarding the collection 

Figure 10 Cluster map. HH & HH is the block groups that have both flooded area and well use 

rate HH. LL & LL is the block groups that have both variables LL. 
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of in-situ data and the funding required for high-resolution imagery. Although conventional open-

source satellite imagery cannot compare with drone and high-resolution satellite imagery, Sentinel 

and Landsat remain the only viable options for monitoring floods on a large scale with minimal 

funding, which is crucial for developing countries. However, both have their limitations. For 

example, one of the primary challenges with Sentinel-1 is its reliance on SAR data, which, while 

advantageous for cloud-penetrating capabilities, results in a lower spatial resolution compared to 

high-resolution optical sensors. This characteristic can limit the detail and accuracy of flood extent 

mapping, especially in complex urban or vegetated terrains where fine-scale distinctions are 

crucial. Furthermore, the processing of SAR data requires specialized algorithms to accurately 

interpret water extents, which can be a barrier for rapid and automated flood monitoring 

applications (DeVries et al., 2020b). Landsat imagery, while offering a longer historical record 

useful for change detection and trend analysis, suffers from a relatively lower temporal resolution 

and is susceptible to cloud cover, limiting its utility for timely flood event monitoring (Twele et 

al., 2016). The optical nature of Landsat data means that flood events under cloudy conditions or 

during nighttime cannot be effectively captured, posing significant challenges for real-time or 

near-real-time flood monitoring efforts (Ogilvie et al., 2018). This study adopts a method mindful 

of these concerns and shows potential for future improvements. 

This study contributes to various aspects of flood monitoring using open-source satellite 

imagery. For instance, it goes beyond relying solely on Sentinel-1 SAR imagery, the most common 

open-source dataset for flood monitoring, by incorporating SAR imagery to identify training points 

through a threshold-based model and employing ML models to extract flooding information. 

Moreover, the predictive capability of this study also identifies important explanatory variables, 

offering a foundation for future improvements in model accuracy. Interestingly, all variables 

chosen for this study play a closely significant role with the importance percentage ranging from 

4% to 9%.  GCI, NLCD, SMI, and SAVI are considered the most important followed by NDVI, 

WRI, NDTI, Elevation, NDWI, BAI, and NDFI. EVI and MNDWI are the least important. These 

findings align with other research on the application of ML in flood prediction (Farhadi & 

Najafzadeh, 2021; Khosravi et al., 2018; McGrath & Gohl, 2022). The emphasis on variables such 

as GCI, NLCD, and SMI among the top-ranked variables reflects their direct or indirect influence 

on flood dynamics. For example, McGrath and Gohl (2022) highlighted the importance of 

integrating meteorological datasets with hydro-geomorphological variables to improve flood 
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prediction accuracy using ML models. Their results suggested that variables reflecting land cover, 

soil moisture, and vegetation health are important predictors of floods which confirms some of the 

results of RF model (McGrath & Gohl, 2022). The study by Farhadi and Najafzadeh (2021) utilized 

indices like Elevation, NDVI, and NDWI among others to map flood risk in the Galikesh River 

basin, demonstrating the indices' substantial contribution to understanding flood dynamics 

(Farhadi & Najafzadeh, 2021). Similarly, Singh et al. (2015) evaluated NDWI and MNDWI for 

assessing waterlogging, a key aspect of flood events, underscoring the effectiveness of these 

indices in delineating water features mixed with vegetation (Singh et al., 2015). 

The important findings of this study highlight specific block groups with both high well 

use rates and extensive flooding. Although only 32 block groups have high well use rates along 

with extensive flooding and there are significantly more block groups (236) with low well use rates 

and low flooding, however, it is important to note that these 32 block groups cover a larger total 

area than the 236 block groups. The high well use and high flood block groups are primarily located 

in rural settings, accounting for 25% of the total study area, whereas the low flood and low well 

use block groups cover only 8% of the total study area and are mainly situated in urban settings. 

Although flood water may dissipate relatively quickly following a heavy precipitation event, it is 

important to know where the flood water accumulated. In the case of private well water, users may 

become victims of unexpected drinking water contamination following a flooding event. This can 

be caused by a number of reasons. For example, a study assessing the risk of drinking well 

contamination following the 2013 Calgary flood found that environmental factors, rather than the 

degree of submergence, played a crucial role in well water contamination, underscoring the 

complexity of predicting and managing flood-induced water quality issues (Eccles et al., 2017). 

Pre-flood vs post flood comparisons revealed that this contamination occurred after the flood 

which highlights the importance of knowing where and to what extent areas become inundated. 

The study by Masciopinto et al. (2019) found that severe flooding can lead to significant 

microbiological contamination of drinking water sources from wells. The research utilized a 

mathematical model to predict the fate and transport of viruses in groundwater, demonstrating that 

floodwaters can carry viruses several kilometers from their point of origin. The study underscores 

the importance of implementing additional water disinfection measures and regular monitoring of 

enteric viruses to ensure the safety of well water in flood-prone areas (Masciopinto et al., 2019). 

These studies collectively illustrate the critical need for targeted education and infrastructure 
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improvements to enhance resilience against flood-induced well water contamination which is 

possibly a major implementation of the predictive model proposed in this study. 

3.5 Conclusion 

Despite several advantages of the techniques used in this study, the model faces limitations 

due to its methodology and data quality. Primarily, it suits only minimal flooding scenarios, as it 

still relies on conventional multispectral imagery from Sentinel-2 for explanatory variables. 

Obtaining a post-flood image with acceptable cloud coverage, often unavailable during large-scale 

flooding, remains a challenge. Additionally, the training data for this model comes from a 

threshold-based model and compares pre-flood and post-flood imagery at 10-meter resolution, 

which identifies the most probable rather than certain flooded areas. Increased soil moisture does 

not always indicate flooding, but given the timing of the post-flood imagery, it most likely results 

from flooding.  

One of the major challenges of this study is considering the protected wetland areas of the 

Mobile delta. Even though the model includes exploratory variables like GCI that can consider 

wetlands when predicting flood (Andreo et al., 2019), the temporal and spatial variability of these 

landscapes makes reliable data collection and model training difficult. The inherent variability in 

wetland hydrology, influenced by factors such as precipitation, evaporation, soil saturation, and 

plant uptake, complicates the development of consistent and reliable prediction models which is 

evident by several other similar studies (Herath et al., 2023; Jayathilake et al., 2023).  

Future opportunities exist to address some limitations. For example, this study employs 

only one ML method, which could expand by incorporating other methods like Gradient Boosting, 

Naïve Bayes, and Support Vector Machine (SVM). Employing multiple methods could provide 

insights through a comparative analysis of each model to determine the most effective combination 

with the threshold-based training model. 

This model excels by relying solely on open-source data and eliminating the need for 

additional field visits. It can serve as an initial step to identify potential flooding zones and act as 

a trail for investigating other important flooding-related factors, such as groundwater 

contamination. Future research could correlate flooding with contamination by collecting in-situ 

groundwater data before and after flood events. Additionally, applying this model to assess land-
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use-specific flood risks and predict flooded areas from one region to another offers promising 

directions. For instance, this study predicted flooding in Baldwin County based on data from 

Mobile County flooding. 
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Chapter 4 

4.1 Key findings 

 The first objective of this study has successfully utilized a geospatial approach to generate 

a comprehensive risk landscape, or "risk-scape," associated with private well use across Alabama, 

focusing on socio-economic vulnerability, flood potential, and anthropogenic risks. The innovative 

cluster-based methodology enables a nuanced understanding of the interplay between various risk 

factors and demographics, identifying areas where socio-economically disadvantaged well users 

are co-located with high flood risk and proximity to toxic release facilities. By not presuming the 

magnitude of risk posed by any single indicator, this approach offers a holistic mechanism to 

categorize well user communities based on similar risk profiles, thereby highlighting the most 

probable sources of contamination. The dual nature of the framework, incorporating both 

exploratory cluster analysis and explanatory regression, ensures a robust assessment of risk, 

demonstrating that private well users in specific clusters are particularly susceptible to flood-

related contamination. This methodology serves as a potent decision support tool, aiding in the 

strategic deployment of groundwater contamination mitigation resources tailored to the needs of 

different well user communities. 

 The second objective of this study demonstrates significant advancements in flood 

monitoring by integrating remote sensing and ML techniques. By incorporating high-resolution 

data and drone imagery, the study enhances the accuracy of flood detection and assessment, despite 

the traditional reliance on open-source datasets like Sentinel-1 and Landsat. The research reveals 

that variables such as the GCI, NLCD, SMI, and SAVI are crucial for accurate flood prediction. 

The methodology employed not only utilizes Sentinel-1 SAR imagery for threshold-based model 

training but also integrates ML models to extract detailed flooding information, demonstrating a 

robust approach to identifying flood-prone areas. The results highlight specific block groups with 

high well use rates and significant flooding, predominantly located in rural areas. This geographic 

clustering underscores the potential vulnerability of these communities to flood-induced water 

contamination, necessitating targeted mitigation strategies. 
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4.2 Limitations 

 For the first objective, despite the nature of this study, several limitations warrant 

consideration. A significant challenge lies in the reliance on existing datasets, which may not 

accurately capture the current state of well water usage and contamination risks. Historical data 

might not reflect recent demographic shifts or land use changes, potentially skewing the risk 

assessments. The study's geographical focus on Alabama means that specific findings may not be 

directly applicable to other regions with different socio-economic and environmental contexts, 

though the methodology itself is adaptable. Additionally, the study does not encompass all possible 

contamination factors, such as emerging contaminants like pharmaceuticals and personal care 

products, or geogenic risks like arsenic and uranium. The impact of climate change, which could 

alter precipitation patterns and exacerbate flooding risks, is another critical factor not fully 

addressed. Furthermore, there are technical constraints related to aligning datasets of varying 

spatial resolutions, which could affect the precision of the risk assessments, particularly in smaller 

CBGs. 

 The second objective faces several limitations primarily related to data quality and 

methodological constraints. The reliance on conventional multispectral imagery from Sentinel-2 

poses challenges, particularly in obtaining cloud-free post-flood images during large-scale 

flooding events. The model's training data, derived from a threshold-based approach, identifies 

likely rather than definite flooded areas, which may lead to inaccuracies in flood extent mapping. 

Additionally, increased soil moisture does not always equate to flooding, complicating the 

interpretation of post-flood imagery. The study's applicability is somewhat constrained to minimal 

flooding scenarios, and the use of only one ML method limits the exploration of potentially more 

effective techniques. The findings, while significant, may not fully capture the complexity of flood 

dynamics and their impacts on groundwater contamination, highlighting the need for more 

comprehensive approaches. 
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4.3 Future opportunities 

Looking ahead, there are several promising avenues for advancing this research. Enhancing 

data collection methods to provide more dynamic and real-time monitoring of well water use and 

contamination levels is crucial. Advances in remote sensing technologies could offer more precise 

and current information on flood risks, thereby improving risk assessments, which has been further 

discussed in the second objective. Broadening the scope of the study to include a wider range of 

contaminants, particularly in the context of climate change, would yield a more comprehensive 

understanding of well water contamination risks. Incorporating participatory research approaches 

that engage local communities in the monitoring and management of their well water resources 

could lead to more sustainable and effective solutions. By involving well users in data collection, 

risk assessment, and decision-making processes, the study could foster community-centric 

strategies that ensure the long-term sustainability and safety of private well water supplies. Such 

approaches not only enhance the accuracy of risk assessments but also empower communities to 

take proactive steps in safeguarding their water resources. 

For the second objective, expanding the range of ML methods, such as incorporating 

Gradient Boosting, Naïve Bayes, and SVM, could enhance model performance through 

comparative analysis. This multi-method approach would provide deeper insights into the most 

effective combinations for flood prediction. The study's reliance on open-source data and 

elimination of field visits make it a valuable initial tool for identifying potential flooding zones. 

Future research could build on this by correlating flooding events with groundwater contamination 

through the collection of in-situ data before and after floods. Additionally, applying this model to 

various land-use scenarios and different geographic regions could refine its predictive capabilities. 

For example, assessing flood risks in Baldwin County using data from Mobile County 

demonstrates the model's potential for broader application, paving the way for more 

comprehensive flood risk assessments and mitigation strategies. 
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Appendix I 

ANOVA and MANOVA result 

Analysis of variance (ANOVA) was conducted to evaluate the differences among clusters 

for each of the studied variables (Table 5). The ANOVA results revealed significant differences 

among the clusters for all variables (all p-values < 0.05), indicating that the cluster means varied 

more than could be expected by chance. Multivariate analysis of variance (MANOVA) was also 

employed to assess the multidimensional means of the clusters. The combined variables exhibited 

a significant Wilks' Lambda indicating that the clusters have distinct multivariate means. 

ANOVA and MANOVA result 

Test Variable F-Statistic P-Value 

ANOVA 
 

WellUse 676.98 <0.01 

Poverty 229.52 <0.01 

Education 136.48 <0.01 

Minority 310.18 <0.01 

ChildPop 61.99 <0.01 

TRI 340.08 <0.01 

AgriArea 59.80 <0.01 

FloodRisk 283.38 <0.01 

MANOVA Combined All 82.1898 <0.01 

 

Tukey’s HSD Result 

The multivariate analysis through Tukey's HSD test (Table 6) shows the pairwise patterns 

of difference among the clusters with respect to several key variables.  For TRI, several 

comparisons show significant positive or negative differences. For instance, the comparison 

between clusters 3 and 1 shows a significant positive difference of 0.2639, while clusters 4 and 1 

also show a significant positive difference of 0.0525. These differences suggest that the clusters 

differ considerably in terms of toxic release levels, with some clusters having higher or lower 

levels of toxicity than others. Regarding AgriArea, most comparisons show significant differences, 

both positive and negative. For example, the comparison between clusters 2 and 1 shows a positive 
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difference of 0.0885, while the difference between clusters 3 and 1 is 0.0580. These differences 

indicate variations in agricultural area coverage among the clusters, highlighting that some areas 

have more agricultural land than others. 

The FloodRisk variable also shows significant differences across clusters. The comparison 

between clusters 2 and 1 shows a significant negative difference of -0.2391, indicating that cluster 

2 has a significantly lower flood risk compared to cluster 1. Similarly, the comparison between 

clusters 3 and 1 shows a negative difference of -0.1991, pointing to variations in flood risk levels 

across different clusters. For Minority, all comparisons exhibit significant differences, suggesting 

that the proportion of minority populations varies considerably among the clusters. For example, 

the difference between clusters 2 and 1 is -0.2418, while the difference between clusters 4 and 1 is 

-0.3640. These results indicate that some clusters have higher concentrations of minority 

populations compared to others. 

Education levels also show significant differences, with several comparisons indicating 

variations in educational attainment across clusters. The comparison between clusters 3 and 1 

shows a significant negative difference of -0.1840, while clusters 4 and 1 show a difference of -

0.1053. These differences suggest disparities in education levels among the clusters, with some 

clusters having higher or lower educational attainment. ChildPop, or the population of children, 

exhibits significant differences in several cluster comparisons. For instance, the comparison 

between clusters 2 and 1 shows a significant negative difference of -0.0630, indicating that cluster 

2 has a lower population of children compared to cluster 1. Other comparisons, such as clusters 3 

and 1, show a significant positive difference, highlighting the variations in child populations across 

clusters. 

Poverty levels also vary significantly across clusters. The comparison between clusters 2 

and 1 shows a significant negative difference of -0.0682, while the difference between clusters 3 

and 1 is -0.2043. These differences indicate that poverty levels differ among the clusters, with 

some clusters experiencing higher or lower poverty rates. Finally, WellUse, representing well water 

use, shows significant differences in several comparisons. The comparison between clusters 3 and 

1 shows a significant negative difference of -0.1746, indicating lower well use in cluster 3 

compared to cluster 1. Other comparisons, such as clusters 5 and 1, show similar trends, suggesting 

variations in well water use across different clusters. 
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Variable wise Tukey’s HSD test result for each cluster pair 

Cluster 

Pair TRI 

AgriAre

a 

FloodR

isk 

Minori

ty 

Educati

on 

Child

Pop Poverty WellUse 

2-1 

-

0.0199- 

0.0885*

** 

-

0.2391*

** 

-

0.2418

*** 

-0.0057- -

0.0630

*** 

-

0.0682*

** 

-0.0045- 

3-1 

0.2639*

** 

0.0580*

** 

-

0.1991*

** 

-

0.1786

*** 

-

0.1840*

** 

0.0577

*** 

-

0.2043*

** 

-

0.1746*

** 

4-1 

0.0525*

** 

0.1696*

** 

-

0.1325*

** 

-

0.3640

*** 

-

0.1053*

** 

0.0510

*** 

-

0.1621*

** 

-0.0003- 

5-1 

0.1832*

** 

0.0700*

** 

-

0.1600*

** 

0.1014

*** 

-0.0144- 0.0159

- 

0.1068*

** 

-

0.1773*

** 

3-2 

0.2837*

** 

-

0.0306* 

0.0400*

** 

0.0632

*** 

-

0.1783*

** 

0.1206

*** 

-

0.1361*

** 

-

0.1701*

** 

4-2 

0.0723*

** 

0.0810*

** 

0.1066*

** 

-

0.1222

*** 

-

0.0995*

** 

0.1140

*** 

-

0.0939*

** 

0.0042- 

5-2 

0.2031*

** 

-

0.0186- 

0.0791*

** 

0.3432

*** 

-0.0086- 0.0789

*** 

0.1750*

** 

-

0.1728*

** 

4-3 

-

0.2114*

** 

0.1116*

** 

0.0666*

** 

-

0.1854

*** 

0.0788*

** 

-

0.0067

- 

0.0422*

** 

0.1743*

** 
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5-3 

-

0.0806*

** 

0.0120- 0.0391*

** 

0.2800

*** 

0.1697*

** 

-

0.0417

* 

0.3111*

** 

-0.0027- 

5-4 

0.1308*

** 

-

0.0996*

** 

-

0.0275* 

0.4653

*** 

0.0909*

** 

-

0.0351

* 

0.2689*

** 

-

0.1770*

** 

Significance levels are indicated as: *<.05, **<.01, ***<.001. "-" indicates a non-significant 

result. 

 

Distribution of well use rate in the cluster 

The cluster-wise distribution of well use rate suggests that Clusters 1, 2, and 4 have 

captured the highest count of block groups with a high well use rate. These clusters have more 

than 70 block groups with a well use rate close to 1. Clusters 3 and 5 have a high frequency of 

block groups with a well use rate ranging from 0.7 to 0.8; however, the count is less than 50 block 

groups for Cluster 3 and around 14 block groups for Cluster 5. 
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Multicollinearity test result 

Table 7 presents the Variance Inflation Factor (VIF) for each independent variable. A VIF 

value greater than 10 indicates significant multicollinearity. In this case, all variables have VIF 

values well below 10, suggesting no significant multicollinearity issues among the variables. 

Multicollinearity test result using VIF 

Variable VIF 

Minority 1.198648 

Education 1.232746 

ChildPop 1.068141 

Poverty 1.25715 

TRI 1.0876 

AgriArea 1.02944 

FloodRisk 1.087167 

 

 

 


