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Abstract

This thesis contributes to the development of numerical methods for the reduced fracture

models of flow and transport problems in porous media containing fractures. In particular, our

goal is to construct numerical algorithms that enable different time steps on the fracture and

on the surrounding area by utilizing global-in-time domain decomposition (DD) methods. In

this work, we focus on two types of methods: the first one is based on time-dependent Steklov-

Poincaré operator, while the second one employs the optimized Schwarz waveform relaxation

(OSWR) approach with Ventcel-Robin transmission conditions. Each method is formulated in

a mixed formulation which is suitable for handling problems arising in the modeling of flow

and transport in porous media.

We first consider the compressible fluid flow in a fractured porous medium in which the

fracture represents a fast pathway (i.e., with high permeability) and is modeled as a hyper-

surface embedded in the porous medium. Three different global-in-time DD methods are de-

rived using the pressure continuity equation and the tangential PDEs in the fracture-interface as

transmission conditions. Each method leads to a space-time interface problem which is solved

iteratively and globally in time. Efficient preconditioners are designed to accelerate the con-

vergence of the iterative methods while preserving the accuracy in time with nonconforming

grids. Numerical results for two-dimensional problems with different types of fractures and

with different number of subdomains are presented to show the improved performance of the

proposed methods.

We then focus on constructing efficient numerical methods for the reduced fracture model

of the advection diffusion equation. We develop three global-in-time DD methods coupled with

operator splitting to treat the advection and the diffusion with different numerical schemes and

with different time steps. For each method, separate transmission conditions are formulated

for the advection and the diffusion and are combined together to write the discrete space-time

interface system. Numerical results for two-dimensional problems with various Péclet numbers

and different types of fracture are presented to illustrate and compare the convergence and

accuracy in time of the proposed methods with local time-stepping.
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We finally reconsider the reduced fracture model of the advection-diffusion equation and

aim to tackle the case when the advection is strongly dominated. Three upwind methods are

constructed in the content of mixed hybrid finite elements. The first method is a monolithic

scheme obtained by fully discretizing the reduced model directly. To incorporate local time-

stepping technique, two global-in-time DD methods are derived by decoupling the monolithic

solver and imposing appropriate transmission conditions. Several numerical results in two

dimensions are presented to verify the optimal order of convergence of the monolithic solver

and to illustrate the performance of the two decoupled schemes with local time-stepping on

problems of high Péclet numbers.
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Chapter 1

Introduction

Motivation

Fluid flow and transport problems in porous media are very interesting subjects and have many

application in various fields such as subsurface hydrology, geophysics, and reservoir geome-

chanics. Therefore, it is important to have fast and accurate numerical simulations for such

problems. However, such tasks are often challenging due to the domain of calculation being

a combination of many sub-regions with different processes, which leads to the presence of

multiple spatial and temporal scales and drastically different physical properties. In particular,

this is the case for a domain where there exist fractures and faults. A fracture can represent

either a fast pathway or a geological barrier, depending on whether its permeability is much

higher or much lower than the surrounding rock matrix. Thus, the time scales in the fractures

and in the rock matrix may vary significantly. Additionally, the width of the fractures is much

smaller than the size of the domain of calculation and any reasonable parameter of spatial dis-

cretization. To accurately represent the fractures, one must refine the grids locally around the

fractures, which is known to be computationally costly. One effective way to deal with this

situation is to transform the original problem into a new one, namely reduced fracture model

or mixed-dimensional model, in which the fractures are treated as lower dimensional interfaces

embedded in the rock matrix. The new model then consists of d� dimensional problems in the

subdomains coupled with (d� 1)-dimensional problems on the fractures, where the interaction

between the fractures and the surrounding rock matrix is taken into account. To deal with the

involvement of different time scales in the numerical simulation, we employ global-in-time DD

methods for the reduced fracture model in which different time scales can be imposed in the

fracture and in the subdomains.

In this work, we mainly focus on the numerical solutions for the reduced fracture models of

the diffusion equation and the linear advection-diffusion equation. The fracture is also assumed

to have larger permeability than the surrounding porous media, which results in faster physical
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processes in the fracture compared to those in the surrounding rock matrix. Therefore, it is

more efficient to have smaller time step sizes in the fracture and larger ones in the subdomains.

The aim of this thesis is to derive and analyze global-in-time DD methods for these two types

of models before moving on to more complicated problems.

Main objective of the thesis: Global-in-time DD methods

for reduced fracture models

Reduced fracture model was first introduce in [4, 5] to treat a single-phase Darcy’s law equation

in fractured porous media in which the fractures are assumed to have much higher permeabil-

ity compared to that of surrounding medium so that the fractures act as hydraulic conductors,

providing easy pathways for fluid flow. In this case, the pressure was assumed to be continuous

across the fractures. However the flux was not supposed to be continuous as the fluid could

flow into and out of as well as along the fractures. Later on in [88], the authors generalized

the earlier model so that it can handle both large and small permeability in the fracture. For

this model it is no longer assumed that the pressure is continuous across the fracture. Exis-

tence, uniqueness, and error estimates of the proposed model were also derived. In [9], these

reduced fracture models were extended to the case when the fractures are fully immersed inside

the domain of calculation. Rigorous analysis of the extended model was also establish in the

framework of discrete dual finite volume. In [19, 8, 15, 107, 13], the reduced fracture mod-

els were further generalized to treat the case with intersecting fractures in which extra steps

were needed to deal with the intersections between fractures. A posteriori error estimates for

these models were studied in [92, 60]. When the flow in the fracture has sufficiently high

flow rate, models that assumed Darcy’s law in the fracture do not give correct experimental

results anymore [40, 39]. To handle the case with significantly rapid flow in the fracture, new

models were introduced in which nonlinear law is assumed to govern the fracture flow, such

as Forchheimer [40, 39, 3], Brinkman [79], and Reynolds lubrication equations [51, 50, 53].

In additional to the work mentioned above, there are other approaches to derive the reduced
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fracture models, which can be found in, for example, [45, 93, 83]. The setting of reduced frac-

ture models leads naturally to domain decomposition methods as the fractures decompose the

domain into non-overlapping subregions, and the PDEs that govern the flow in the fractures

directly serve or can be manipulated to give transmission conditions for the DD methods. DD

method was first introduced to formulate the reduced model in [4] and have been widely used

in later work [88, 3, 19, 2, 38, 67, 39].

Global-in-time DD methods [68, 66, 67, 65, 64, 70, 72, 71, 59, 56] provide a powerful

tool to perform parallel simulations of time-dependent physical phenomena with different time

steps across the domain. Unlike classical DD approach [101, 99] where the model problem is

first discretized in time by an implicit scheme, then at each time step the iteration is performed

and involves the solution of stationary problems in the subdomains. As a consequence, a sin-

gle time step is required for the classical approach, while for global-in-time DD, local time

discretizations can be enforced in different regions of the domain.

There are basically two types of global-in-time DD methods:

1) The first class of methods is called Schur-type method, which is a global-in-time sub-

structuring method and uses a Steklov-Poincaré type operator. Steklov-Poincaré oper-

ators are interface operators that enforce physical transmission conditions on the inter-

faces between subdomains. They were introduced for stationary problems [1, 101, 112,

16] to analyze domain decomposition algorithms for both homogeneous and heteroge-

neous problems, and were later improved by the uses of Neumann-Neumann precondi-

tioner [20, 106, 98], which is a local preconditioner defined by solving Neumann bound-

ary problems in the subdomains. Steklov-Poincaré operators were extended to parabolic

problems in [35, 52] in which the authors imposed uniform time steps and performed the

iterations at each time step. Later on, time-dependent extensions of these operators were

derived and analyzed for parabolic problems in [78, 84, 48, 47].

2) The second type of methods is named Schwarz-type methods, which is based on the

Optimized Schwarz Waveform Relaxation (OSWR) approach. The OSWR algorithm is

an iterative method that employs more general transmission operators, such as Robin or

3



Ventcel, to exchange space-time boundary data across the interface between the subdo-

mains. These operators contain some free parameters which play the role of precondi-

tioners and can be optimized to improve the methods’ convergence rates. Regarding sta-

tionary problems, Robin and Ventcel transmission conditions for the alternating Schwarz

method were proposed in [95] and the optimized conditions were introduced [73, 74].

The OSWR method was introduced for parabolic and hyperbolic problems in [43] and

was extended to advection-reaction-diffusion problems with constant coefficients in [87].

Later on, several work was devoted to deriving the optimized Robin or Ventcel parame-

ters in different cases [14, 17, 18, 57, 44, 42, 56, 58].

Both classes of global-in-time DD methods were developed and analyzed for the diffusion

equation [68] and the linear advection-diffusion equation [66, 64] for the case without frac-

tures in which an artificial interface and additional equations on that interface are introduced to

write the transmission conditions. In particular, the global-in-time primal Schur (GTP-Schur)

method with its preconditioners and the global-in-time optimized Schwarz (GTO-Schwarz)

method were proposed in [68, 66, 64]. For each method, an interface problem on the space-

time interfaces between subdomains is derived and is solved iteratively over the whole time

interval.

For both methods, mixed methods such as mixed finite elements and mixed hybrid finite

elements were used to discretized the problems in space. The interest of mixed methods lies

in the fact that they are locally mass conservative and simultaneously provide accurate approx-

imations of a scalar and a flux unknown. Moreover, the flux approximations are continuous

across inter-element boundaries. Mixed finite element methods are numerical methods first in-

troduced by engineers in the mid 1960’s for problems in solid mechanics [109, 62, 63]. Their

mathematical analysis and convergence properties were provided by F. Brezzi [21], T. Oden

and N. Reddy [97, 104], G. Ciarlet and A. Raviart [29], and C. Johnson [77]. Examples of suc-

cessful approximation spaces associated with the methods are Raviart–Thomas elements [103]

or Brezzi–Douglas–Marini elements [22] on 2D triangular and quadrilateral mesh and those of

Nédélec [96], and Brezzi–Douglas-Duran–Fortin elements [25] on 3D tetrahedral or hexahe-

dral grids. The linear system obtained from the mixed finite element methods often indefinite,
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thus iterative solvers with standard preconditioners cannot be applied. One way to overcome

this difficulty is to hybridize the system by introducing another variable representing the traces

of the pressure at the element edges [23] to obtain a symmetric, positive definite system. This

approach is named mixed hybrid finite elements. For a development from a mathematical point

of view for both methods, see [23, 105]. The mixed formulation which incorporates two types

of variables is highly compatible with the application of domain decomposition [54, 89], espe-

cially since one has available both Dirichlet and Neumann data on the boundary.

Regarding the linear advection-diffusion equations, global-in-time DD methods were cou-

pled with operator splitting [10, 69, 90, 91, 108, 111] to derive local time stepping for such

equations, with the aim of using different space-time discretizations for the advection and the

diffusion. It has been shown that treating the advection explicitly can significantly reduce the

numerical diffusion [28]. However, it was observed numerically in [66] that GTP-Schur did

not perform well when advection was dominant; particularly, the convergence speed of GTP-

Schur with the (generalized) Neumann-Neumann preconditioner could be even slower than

using no preconditioner. Therefore, in [64], the authors coupled global-in-time DD methods

with upwind-mixed hybrid finite elements [102, 26] to derive fully implicit local time stepping

methods to tackle the case when the advection is strongly dominant. The upwind-mixed hy-

brid finite element scheme for the transport problem (with no fractures) was first introduced

in [102] and analyzed in [26]. Unlike the standard upwind-mixed schemes [33, 34] where the

flux variable only represents the diffusive flux, the upwind-mixed hybrid scheme employs a

mixed hybrid finite element method for spatial discretization in which the flux variable ap-

proximates the total flux consisting of both advective and diffusive fluxes. To define the up-

wind weights for the scheme, the Lagrange multipliers arising in the hybrid formulation are

utilized to give an approximation for the advective flux. A similar idea was also employed

in [110] for the discretization with Raviart–Thomas elements of lowest order and in [27] with

Brezzi–Douglas–Marini elements of lowest order. Optimal first-order convergence in both spa-

tial and temporal errors for the upwind-mixed scheme was proved in [26]. It was shown in [102,
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26] that the upwind-mixed hybrid scheme is fully mass conservative and provides the same ac-

curacy as the upwind-mixed method [33], while being more robust and less costly for problems

with high Péclet numbers.

The main objective of this thesis is to study global-in-time DD methods for flow and trans-

port problems in porous media containing a fracture. A reduced fracture model is formulated

for each problem where the fracture serves as a physical interface which decomposes the rock

matrix into non-overlapping subdomains. In this thesis, we focus on two types of equations:

diffusion equation and advection-diffusion equation.

1) Regarding the reduced fracture model of the diffusion equation, GTP-Schur and GTO-

Schwarz were introduced for such model in [67] which based on the physical transmis-

sion conditions consist of the pressure continuity equation and the tangential PDEs in the

fracture. The space-time interface problem for GTP-Schur is formulated directly from

the physical transmission conditions using the time-dependent Dirichlet-to-Neumann op-

erator. Two preconditioners were considered in [67]: the local preconditioner and the

time-dependent Neumann-Neumann preconditioner. The former is adapted from [7] (for

second-order elliptic PDEs) and the latter is an extension of the balancing domain de-

composition (BDD) preconditioner [30, 85, 86] to time-dependent problems. The GTO-

Schwarz method uses the so-called Ventcel-to-Robin transmission conditions which are

obtained by taking the linear combinations of the pressure continuity equation and the

PDEs in the fracture. In the context of reduced fracture models, these methods have

two drawbacks. Firstly, the preconditioners for GTP-Schur are not effective: numerical

results in [67] show that the convergence of GTP-Schur with either local or Neumann-

Neumann preconditioner is much slower than that of GTO-Schwarz. Secondly, while

GTO-Schwarz converges remarkably fast, it does not preserve the accuracy in time in the

fracture with nonconforming time grids. In particular, using a smaller time step in the

fracture than in the surrounding rock matrix does not improve the errors in the fracture,

compared to using the same time step in the whole domain. This is also the case for GTP-

Schur with the Neumann-Neumann preconditioner. Therefore, in this thesis, we aim to

construct a new method that can overcome these difficulties. In particular, our goal is to
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derive an algorithm that converges as fast as GTO-Schwarz without the need of precon-

ditioners while still preserves the accuracy in time on the fracture when nonconforming

time grids are imposed on the fracture and on the subdomains. We also aim to formulate

a new preconditioner for GTP-Schur which can achieve better performance compared to

the existing preconditioners.

2) We then consider the reduced fracture model of the linear advection-diffusion equation

and aim to construct local time stepping method for such problem using global-in-time

DD methods. In this thesis, we propose and study two approaches. In the first approach,

global-in-time DD methods are coupled with operator splitting to derive numerical meth-

ods that allow nonconforming time grids for the advection and for the diffusion as well

as on the fracture and on the subdomains. For the second approach, numerical algorithms

are developed by combining global-in-time DD methods with upwind-mixed hybrid fi-

nite elements to treat the case where the advection is strongly dominated. Moreover,

as there is a rich literature on the numerical methods for the reduced fracture model of

the flow problems and their convergence analysis with or without providing the order

of convergence [3, 8, 9, 19, 32, 41, 45, 88, 83, 94, 93], there has been little work that

explores these aspects for the transport problems [6, 55]. Therefore, we also aim to per-

form rigorous analysis for the proposed methods in the context of mixed hybrid finite

elements.

For each proposed method, the reduced fracture model is transformed into an interface

problem on the space-time interface between subdomains. In such problem, different time dis-

cretizations can be imposed on the fracture and on the rock matrix via the use of an L
2�projection

in time developed in [49, 46] to exchange information on the space-time interfaces. The dis-

crete counterpart of the interface problem is then solved numerically using iterative methods

such as GMRES or Jacobi iteration. Numerical experiments are carried out for different test

cases with different types of fracture as well as different number of subdomains to investigate

and compare the performance of the proposed methods and to analyze the accuracy in time

obtained from each method with the nonconforming time grids.
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Contents of the thesis

This thesis consists of three main parts:

1. Regarding the reduced fracture model of the diffusion equation, we have developed two

new global-in-time DD methods, namely global-in-time dual Schur (GTD-Schur) and

global-in-time fracture-based Schur (GTF-Schur), which resolve the drawbacks of the

existing global-in-time DD methods. The first method is a dual version of GTP Schur,

while the second one is formulated by combining the best features of GTP-Schur and

GTD-Schur. The corresponding semi-discrete in time interface problem with noncon-

forming grids is presented for each method. We also construct a new preconditioner,

namely Ventcel-Ventcel (V-V) preconditioner, for the GTP-Schur method which further

accelerates its performance and makes it comparable to the GTO-Schwarz method. Nu-

merical experiments in 2D for both non-immersed and partially immersed fractures with

two or more subdomains are presented to verify and compare the performance of the

proposed methods with different time steps in the fracture and in the rock matrix.

The work is this section is the main object of the publication [70].

2. For the local time-stepping methods with operator splitting, we have extended the best

methods developed for the diffusion problem, that is, GTF-Schur and GTO-Schwarz, for

the reduced fracture model of the transport problems. The new algorithms are formulated

by combining the transmission conditions considered for the diffusion part with newly

constructed transmission conditions for the advection part. This approach results in a

fully discrete interface system for each method which consists of one equation for the

advection and one equation for the diffusion. We study the performance of each method

by carrying out numerical experiments with various Péclet numbers and different types

of fracture to verify and compare the performance of the proposed methods with noncon-

forming time grids in the fracture and in the rock matrix.

The main contents of this section have also been published in the paper [72].
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3. For the global-in-time DD methods constructed based on the mixed hybrid finite ele-

ment approach, we have developed three fully implicit methods for the reduced fracture

model of the advection-diffusion equation which can handle well the case of advection

dominated. The first method is a monolithic upwind-mixed hybrid finite element method

which is derived by discretizing the reduced fracture model directly and utilizing the La-

grange multipliers arising from the hybridization process. To enable nonconforming time

grids on the fracture and on the subdomains, two decoupled global-in-time DD meth-

ods, namely GTP-Schur and GTO-Schwarz, are formulated from the monolithic scheme,

which do not require separated treatment for the advection and the diffusion equations.

Rigorous convergence analyses also presented for the monolithic scheme as well as for

GTO-Schwarz. We present numerical experiments to confirm the theoretical result for

the monolithic method and show numerical results in 2D with various Péclet numbers to

verify and compare the performance of the two proposed DD methods, especially when

the value of the Péclet number is high.

The content of the work presented in this section can also be found in the publication [71].

The rest of the thesis is organized as follows: we present in Chapter 2 the two new global-

in-time DD methods as well as the new preconditioner for GTP-Schur for the reduced fracture

model of diffusion problems. Numerical results are also shown to compare the performance

of the proposed methods with GTP-Schur and GTO-Schwarz. The subject of Chapter 3 is to

constructed local time stepping methods for the reduced fractured model of linear transport

problems in the context of operator splitting. We derive in Chapter 4 new global-in-time DD

algorithms for reduced fracture model of advection-diffusion equations by incorporating mixed

hybrid finite element methods. The proposed methods in this chapter are analyzed theoretically

and numerically.

Major contribution of the thesis

The main contributions of this thesis include three aspects. Firstly, we construct a noble global-

in-time DD method that resolve the remaining drawbacks of the existing global-in-time DD
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methods. The main difficulty lied in the reformulation of the transmission conditions so that

the obtained iterative algorithm converges fast without any preconditioner as well as can reserve

the accuracy in time with nonconforming time grids. Secondly, we propose local time stepping

methods for the reduced fracture model of linear transport problem by coupling global-in-time

DD methods with operator splitting and mixed hybrid finite elements. The main difficulty was

to formulate appropriate transmission conditions so that we still obtain the fast convergence and

accuracy-preserving properties as in the case without the advection. Lastly, we establish opti-

mal order convergence for the monolithic solver as well as the convergence of GTO-Schwarz

for the reduced fracture model of linear transport problems in the context of mixed hybrid

finite elements. The main difficulty of proving the optimal error estimate lied in the terms rep-

resenting the traces on the fracture of the normal fluxes from the subdomains which will cause

sub-optimal order convergence in space if they are not handled appropriately.
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Chapter 2

Global-in-time DD methods for the reduced fracture model of

diffusion equation

Contents

2.1 A reduced fracture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Global-in-time primal Schur (GTP-Schur) method . . . . . . . . . . . . . . . . 15

2.3 Global-in-time dual Schur (GTD-Schur) method . . . . . . . . . . . . . . . . . 19

2.4 Global-in-time fracture-based Schur (GTF-Schur) method . . . . . . . . . . . . 21

2.5 Nonconforming discretization in time . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 GTP-Schur method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 GTD-Schur method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.3 GTF-Schur method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Test case 1.1: non-immersed fracture with two subdomains . . . . . . . . . . 28

2.6.2 Test case 1.2: non-immersed fracture with four subdomains and variable per-

meability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.3 Test case 3: partially immersed fracture . . . . . . . . . . . . . . . . . . . 34

This chapter consists of three main parts. In the first part, we present the time-dependent

diffusion problem written in mixed formulation and introduce its reduced fracture model. The

well-posedness result for the reduced problem as well as the transmission conditions for the

global-in-time DD methods are also stated. In the second part, we recall the formulation of the

nonoverlapping global-in-time primal Schur (GTP-Schur) method and develop a new precon-

ditioner, namely Ventcel-Ventcel preconditioner, for the method. Two new global-in-time DD
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methods are also derived; the first method is the dual version of GTP-Schur, namely global-

in-time dual (GTD-Schur), while the second one is constructed by combining the ideas of

GTP-Schur and GTD-Schur, which is called global-in-time fracture-based Schur (GTF-Schur).

The semi-discrete problems for all proposed methods in time using different time grids in the

subdomains are also formulated. In the third part, numerical results with different types of

fracture and with different numbers of subdomains are presented to illustrate and compare the

performance of the proposed methods with GTO-Schwarz.

2.1. A reduced fracture model

Figure 2.1: The domain ⌦ with the fracture ⌦f (left) and the fracture-interface � (right).
Let ⌦ be a bounded domain in Rd (d = 2, 3) with Lipschitz boundary @⌦, and T > 0 be

some fixed time. Consider the flow problem of a single phase, compressible fluid written in

mixed form as follows:

�@tp+ div uuu = q in ⌦⇥ (0, T ),

uuu = �KKKrp in ⌦⇥ (0, T ),

p = 0 on @⌦⇥ (0, T ),

p(·, 0) = p0 in ⌦,

(2.1)

where p is the pressure, uuu the velocity, q the source term, � the storage coefficient, and KKK

a symmetric, time-independent, hydraulic, conductivity tensor. Suppose that the fracture ⌦f

is a subdomain of ⌦, whose thickness is �, that separates ⌦ into two connected subdomains:

⌦\⌦f = ⌦1[⌦2, and ⌦1\⌦2 = ; as depicted in Figure 2.1. For simplicity, we assume further

that ⌦f can be expressed as

⌦f =

⇢
x 2 ⌦ : x = x� + snnn where x� 2 � and s 2

✓
��
2
,
�

2

◆�
,
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where � is the intersection between a line (d = 2) or a plane (d = 3) with ⌦.

We denote by �i the part of the boundary of ⌦i shared with the boundary of the fracture

⌦f : �i = (@⌦i \ @⌦f ) \ ⌦, for i = 1, 2. Let nnni be the unit, outward pointing, normal vector

field on @⌦i, where nnn = nnn1 = �nnn2. For i = 1, 2, f , and for any scalar, vector, or tensor

valued function g defined on ⌦, we denote by gi the restriction of g to ⌦i. The original problem

(2.1) can be rewritten as the following transmission problem:

�i@tpi + div uuui = qi in ⌦i ⇥ (0, T ), i = 1, 2, f,

uuui = �KKKirpi in ⌦i ⇥ (0, T ), i = 1, 2, f,

pi = 0 on (@⌦i \ @⌦)⇥ (0, T ), i = 1, 2, f,

pi = pf on �i ⇥ (0, T ), i = 1, 2,

uuui · nnni = uuuf · nnni on �i ⇥ (0, T ), i = 1, 2,

pi(·, 0) = p0,i in ⌦i, i = 1, 2, f.

(2.2)

The reduced fracture model that we consider in this paper was first proposed in [4, 5] under the

assumption that the fracture has larger permeability than that in the rock matrix. The model

is obtained by averaging across the transversal cross sections of the d-dimensional fracture

⌦f . We use the notation r⌧ and div⌧ for the tangential gradient and tangential divergence,

respectively. We write �� and KKK� for ��f and KKKf,⌧ , respectively, where KKKf,⌧ is the tangential

component of KKKf . The reduced model consists of equations in the subdomains,

�i@tpi + div uuui = qi in ⌦i ⇥ (0, T ),

uuui = �KKKirpi in ⌦i ⇥ (0, T ),

pi = 0 on (@⌦i \ @⌦)⇥ (0, T ),

pi = p� on � ⇥ (0, T ),

pi(·, 0) = p0,i in ⌦i,

(2.3)

for i = 1, 2, and equations in the fracture,

��@tp� + div⌧uuu� = q� +
2P

i=1
(uuui · nnni)|� in � ⇥ (0, T ),

uuu� = �KKK��r⌧p� in � ⇥ (0, T ),

p� = 0 on @� ⇥ (0, T ),

p�(·, 0) = p0,� in �.

(2.4)

To write the weak formulation of (2.3)-(2.4), we use the convention that if V is a space of

functions, then VVV is a space of vector functions having each component in V . For arbitrary
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domain O, we denote by (·, ·)O the inner product in L
2 (O) or L2 (O). We next define the

following Hilbert spaces:

M =
�
v = (v1, v2, v�) 2 L

2 (⌦1)⇥ L
2 (⌦2)⇥ L

2 (�)
 
,

⌃ =
�
vvv = (vvv1, vvv2, vvv�) 2 L2 (⌦1)⇥ L2 (⌦2)⇥ L2 (�) : div vvvi 2 L

2 (⌦i) , i = 1, 2,

and div⌧ vvv� �
2P

i=1
vvvi ·nnni|� 2 L

2(�)

�
.

(2.5)

We define the bilinear forms a(·, ·), b(·, ·) and c(·, ·) on ⌃⇥⌃, ⌃⇥M , and M⇥M , respectively,

and the linear form Lq on M by

a (uuu,vvv) =
2P

i=1

�
KKK

�1
i uuui, vvvi

�
⌦i

+
⇣
(KKK��)

�1
uuu� , vvv�

⌘

�
, b (uuu, µ) =

2P
i=1

(div uuui, µi)⌦i
+

✓
div⌧ uuu� �

2P
i=1

uuui ·nnni|� , µ�

◆

�

,

c�(⌘, µ) =
2P

i=1
(�i⌘i, µi)⌦i

+ (��⌘� , µ�)� , Lq(µ) =
2P

i=1
(qi, µi)⌦i + (q� , µ�)� .

The weak form of (2.3)-(2.4) can be written as follows:

Find p 2 H
1(0, T ;M) and uuu 2 L

2(0, T ;⌃) such that

a (uuu,vvv)� b (vvv, p) = 0 8vvv 2 ⌃,

c� (@tp, µ) + b (uuu, µ) = Lq(µ) 8µ 2 M,

(2.6)

together with the initial conditions:

pi(·, 0) = p0,i, in ⌦i, i = 1, 2, and p�(·, 0) = p0,�, in �. (2.7)

The well-posedness of problem (2.6)-(2.7) is given by the following theorem. The reader is

referred to [67, Theorem 2.1] for the details of the proof.

Theorem 2.1. [67] Assume that the storage coefficient �i, i = 1, 2, � is bounded above and

below by positive constants, and that there exist positive constants KKK� and KKK+ such that

(i) ⇣TKKK�1
i
(x)⇣ �KKK�|⇣|2, and |KKKi(x)⇣| KKK+|⇣|, for a.e. x 2 ⌦i and 8⇣ 2 Rd

, i = 1, 2,

(ii) ⌘T (KKK�(s)�)
�1
⌘ �KKK�|⌘|2 and | (KKK�(s)�)

�1
⌘| KKK+|⌘|, for a.e. s 2 � and 8⌘ 2 Rd�1.

Given q in L
2(0, T ;M) and p0 = (p0,1, p0,2, p0,�) in H

1
⇤ , where

H
1
⇤ :=

�
µ = (µ1, µ2, µ�) 2 H

1 (⌦1)⇥H
1 (⌦2)⇥H

1
0 (�) : µi = 0 on @⌦i \ @⌦,

and µi � µ� = 0 on �, i = 1, 2} .
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Then problem (2.6)-(2.7) has a unique solution (p,uuu) 2 H
1(0, T ;M)⇥ L

2 (0, T ;⌃) .

We shall use global-in-time DD to find a numerical solution of problem (2.6)-(2.7) with

different time steps in the fracture and the surrounding medium. The DD formulation can

be obtained by treating the fracture as an (physical) interface between subdomains with the

following transmission conditions:

pi = p�, on � ⇥ (0, T ), (2.8)

��@tp� + div⌧uuu� = q� +
2P

i=1
(uuui · nnni)|� in � ⇥ (0, T ),

uuu� = �KKK��r⌧p� in � ⇥ (0, T ),

p� = 0 on @� ⇥ (0, T ),

p�(·, 0) = p0,� in �.

(2.9)

In the next sections, three global-in-time DD methods are derived based on these physical

transmission conditions. For each method, a space-time interface problem is formulated and

solved iteratively.

2.2. Global-in-time primal Schur (GTP-Schur) method

The idea of GTP-Schur is to impose (2.8) as Dirichlet boundary conditions for the subdomain

problems:
pi = �, on � ⇥ (0, T ), i = 1, 2, (2.10)

where � represents the fracture pressure p� . Then a space-time interface problem is formed by

enforcing the remaining transmission condition (2.9). To derive the formulation of GTP-Schur,

we define the Dirichlet-to-Neumann operators SDtN
i

, i = 1, 2:

SDtN
i

: H1(0, T ;H
1
2
00(�))⇥ L

2(0, T ;L2 (⌦i))⇥H
1
⇤,� (⌦i) �! L

2

✓
0, T ; (H

1
2
00(�))

0
◆
,

(�, qi, p0,i) 7�! uuui ·nnni|� ,

where H
1
⇤,� (⌦i) := {µ 2 H

1 (⌦i) : µ = 0 on (@⌦i \ @⌦)} and (pi,uuui) is the solution of the

problem
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�i@tpi + div uuui = qi in ⌦i ⇥ (0, T ),

uuui = �KKKirpi in ⌦i ⇥ (0, T ),

pi = 0 on (@⌦i \ @⌦)⇥ (0, T ),

pi = � on � ⇥ (0, T ),

pi(·, 0) = p0,i in ⌦i.

(2.11)

The space-time interface problem with unknown � reads as:

��@t�+ div⌧uuu� = q� +
2P

i=1
SDtN
i

(�, qi, p0,i) in � ⇥ (0, T ),

uuu� = �KKK��r⌧� in � ⇥ (0, T ),

� = 0 on @� ⇥ (0, T ),

�(·, 0) = p0,� in �,

(2.12)

or equivalently,

��@t�+ div⌧uuu� �
2P

i=1
SDtN
i

(�, 0, 0) = q� +
2P

i=1
SDtN
i

(0, qi, p0,i), in � ⇥ (0, T ),

uuu� = �KKK��r⌧� in � ⇥ (0, T ),

� = 0 on @� ⇥ (0, T ),

�(·, 0) = p0,� in �,

(2.13)

or in compact form (space-time),
SP(�) = �P . (2.14)

Note that from the second equation of (2.13), uuu� is a function in �, hence, the right-hand side

operator of (2.14) is actually an operator in only one variable �.

The space-time problem (2.14) is solved iteratively using, e.g., GMRES. The resulting

algorithm is matrix-free as the discrete counterpart of SP is not computed explicitly. At each

GMRES iteration, SP(�) is obtained by first solving the subdomain problems (2.11) over the

whole time interval, then using the tangential PDEs (2.13) in the fracture-interface. The con-

vergence of the iterative algorithm is known to be significantly slow, thus finding a suitable

preconditioner is necessary to accelerate the iteration. Two preconditioners were introduced

in [67]. The local preconditioner, PPP�1
loc , is computed by finding the discrete counterpart of the

operator (div⌧ (KKK��r⌧ ))
�1. This preconditioner was proposed first in [7] for stationary prob-

lems using the fact that the second order operator (div⌧ (KKK��r⌧ )) is the dominant term in the
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interface problem. The second preconditioner is the (time-dependent) Neumann-Neumann pre-

conditioner,PPP�1
NN, obtained by computing the (pseudo-)inverse of the Dirichlet-to-Neumann op-

erators. Such a preconditioner involves the solution of the subdomain problems with Neumann

boundary conditions on the fracture-interface. For the case with no fracture, the Neumann-

Neumann preconditioner has been shown to be effective [68]. However, for the considered

reduced fracture model, it has been shown numerically in [67] that the convergence speed of

the iterative algorithm combined with these preconditioners is still slow and not efficient, es-

pecially the local preconditioner. From the derivation of these preconditioners, it can be seen

that they do not provide good approximations of the inverse of the space-time operator on

the left-hand side of the first equation in (2.13). Based on this observation, we derive a new

preconditioner, namely the Ventcel-Ventcel preconditioner, in the following.

Ventcel-Ventcel preconditioner

As � represents the fracture pressure p� and by the definition of SDtN
i

, the left-hand side of the

first equation in (2.13) can be rewritten as

��@t�+ div⌧ uuu� �
2X

i=1

SDtN
i

(p�, 0, 0) = ��@tp� + div⌧ uuu� �
2X

i=1

uuui · nnni|�. (2.15)

The right-hand side of this equation resembles Ventcel boundary conditions [67]. Thus, the

preconditioned system for (2.13) should be computed by solving the subdomain problems with

such Ventcel boundary conditions (2.15) (instead of with Neumann conditions as used for the

Neumann-Neumann preconditioner). To formulate local problems with Ventcel conditions,

we introduce the Lagrange multipliers pi,� , i = 1, 2, with pi,� representing the trace on the

interface � of the pressure pi in the subdomain ⌦i. It follows from the continuity of the pressure

across the interface that
p1,� = p2,� = p�, in � ⇥ (0, T ). (2.16)

We write the Darcy equation associated with each pi,� in the fracture as

uuu�,i := �KKK��r⌧pi,� , in � ⇥ (0, T ), i = 1, 2. (2.17)
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Note that uuu�,i, i = 1, 2 represents the tangential velocity in the fracture associated with the

pressure pi,� , and uuu�,1 = uuu�,2 = uuu�, in � ⇥ (0, T ) according to (2.16) and (2.17). With such

notation, the subdomain problem with Ventcel boundary condition reads as:

�i@tpi + div uuui = 0 in ⌦i ⇥ (0, T ),

uuui = �KKKirpi in ⌦i ⇥ (0, T ),

pi = 0 on (@⌦i \ @⌦)⇥ (0, T ),

��@tpi,� + div⌧uuu�,i � uuui · nnni|� = ✓ on � ⇥ (0, T ),

uuu�,i = �KKKi�r⌧pi,� on � ⇥ (0, T ),

pi,� = 0 on @� ⇥ (0, T ),

pi(·, 0) = 0 in ⌦i,

(2.18)

for i = 1, 2, where ✓ is the given Ventcel data. It can be shown that problem (2.18) has a

unique weak solution; interested readers are referred to [67, Theorem 4.1] for more details of

the proof. Next, we define the following Ventcel-to-Dirichlet operator SVtD
i

, i = 1, 2:

SVtD
i

: L2 (0, T ;L2 (�)) �! H
1 (0, T ;L2 (�)) ,

✓ �! pi,� ,

where (pi, uuui, pi,� , uuu�,i), i = 1, 2, is the solution of the subdomain problem (2.18). Then the

Ventcel-Ventcel preconditioner P�1
VV for problem (2.14) is given by

PPP
�1
VV := �1SVtD

1 + �2SVtD
2 ,

where �i : � ⇥ (0, T ) ! [0, 1] is such that �1 + �2 = 1. The preconditioned system for (2.14)

with the Ventcel-Ventcel preconditioner is defined as:

PPP
�1
VV (SP(�)) = P

�1
VV (�P), in � ⇥ (0, T ). (2.19)

We summarize the GTP-Schur method with the Ventcel-Ventcel preconditioner in Algo-

rithm 1. Note that the operator PPP�1
VV can be replaced by PPP

�1
NN (i.e., the Neumann-Neumann pre-

conditioner) or by the identity operator (i.e., no preconditioner). We will compare numerical

performance of these algorithms and verify the improvement by the Ventcel-Ventcel precondi-

tioner in Section 2.6.
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Algorithm 1 GTP-Schur method with Ventcel-Ventcel preconditioner
Input: initial guess �(0), stopping tolerance 0 < ✏⌧ 1, maximum number of iterations Nmax.
Output: space-time fracture pressure �.

1: Compute �P = q� +
2P

i=1
SDtN
i

(0, qi, p0,i).

2: Evaluate SP(�(0)) = ��@t�
(0) � div⌧KKK��r⌧�

(0) �
2P

i=1
SDtN
i

(�(0), 0, 0).

3: Set r0 := �P � SP(�(0)).
4: Calculate PPP�1

VV(r0) = �1SVtD
1 (r0) + �2SVtD

2 (r0).
5: Set r̃0 := PPP

�1
VV(r0) and q0 := r̃0.

6: for k = 1, ·, Nmax do: . Start GMRES iterations.
7: Generate �(k) as the solution to the least square problem:

min
µ2Rk

kPPP�1
VV(�P � SP(µ))kL2 ,

where Rk := �
(0) + span(q0, q1, · · · , qk�1).

8: Set r̃k := PPP
�1
VV

�
�P � SP(�(k))

�
.

9: if kr̃kk/kr̃0k  ✏ then

10: stop the iteration, return � = �
(k).

11: end if

12: Compute qk := PPP
�1
VV(SP(qk�1)) as in Steps 2 and 4.

13: end for

Remark 2.2. By definition, q0 = r̃0, and for k = 1, . . . , Nmax,

qk = PPP
�1
VVSP(qk�1) = PPP

�1
VVSP

�
(PPP�1

VVSP)
k�1(q0)

�
= (PPP�1

VVSP)
k(q0).

Thus, the space Rk in Step 8 is the Krylov subspace corresponding to PPP
�1
VVSP:

Rk = �
(0) + span

�
r̃0, (PPP

�1
VVSP)(r̃0), · · · , (PPP�1

VVSP)
k�1(r̃0)

�
.

2.3. Global-in-time dual Schur (GTD-Schur) method

The dual Schur method is obtained by imposing Neumann boundary conditions for the sub-

domain problems, instead of Dirichlet conditions as in the primal Schur approach. Due to the

presence of a high permeability fracture in the medium, the normal flux may not be continuous

across the fracture-interface. Thus, we introduce two variables

'i := uuui · nnni|�, i = 1, 2,
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representing the normal flux from each subdomain along the fracture. To formulate the interface

problem for GTD-Schur with two unknowns '1 and '2, we define the Neumann-to-Dirichlet

operator:

SNtD
i

: L2 (0, T ;L2(�))⇥ L
2 (0, T ;L2(⌦i))⇥H

1
⇤,�(⌦i) �! H

1 (0, T ;L2(�)) ,

('i, qi, p0,i) 7�! (pi)|�,

where (pi,uuui) , i = 1, 2 is the solution to the subdomain problem with Neumann conditions:

�i@tpi + div uuui = qi in ⌦i ⇥ (0, T ),

uuui = �KKKirpi in ⌦i ⇥ (0, T ),

pi = 0 on (@⌦i \ @⌦)⇥ (0, T ),

uuui · nnni = 'i on � ⇥ (0, T ),

pi(·, 0) = p0,i in ⌦i.

(2.20)

Next we denote by S� the local operator on the fracture:

S� : (L2 (0, T ;L2(�)))2 ⇥ L
2 (0, T ;L2(�))⇥H

1
0 (�) �! H

1 (0, T ;L2(�)) ,

('1,'2, q�, p0,�) 7�! p�,

where (p�,uuu�) is the solution to the (d� 1)-dimensional fracture problem:

��@tp� + div⌧uuu� = q� +
2P

i=1
'i in � ⇥ (0, T ),

uuu� = �KKK��r⌧p� in � ⇥ (0, T ),

p� = 0 on @� ⇥ (0, T ),

p�(·, 0) = p0,� in �.

(2.21)

The space-time interface problem is obtained by enforcing the continuity of the pressure across

the fracture and is given by

S�('1,'2, q�, p0,�) = SNtD
1 ('1, q1, p0,1), in � ⇥ (0, T ),

S�('1,'2, q�, p0,�) = SNtD
2 ('2, q2, p0,2), in � ⇥ (0, T ),

(2.22)

or in compact form,

SD

 
'1

'2

!
= �D, in � ⇥ (0, T ), (2.23)

where
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SD

 
'1

'2

!
=

0

@ S�('1,'2, 0, 0)� SNtD
1 ('1, 0, 0)

S�('1,'2, 0, 0)� SNtD
2 ('2, 0, 0)

1

A , (2.24)

and

�D =

0

@ SNtD
1 (0, q1, p0,1)� S�(0, 0, q�, p0,�)

SNtD
2 (0, q2, p0,2)� S�(0, 0, q�, p0,�)

1

A . (2.25)

The interface problem (2.23) is solved iteratively, and we propose the following Dirichlet-

Dirichlet preconditioner, PPP�1
DD, to enhance its convergence (cf. Section 2.6):

PPP
�1
DD

 
SD

 
'1

'2

!!
= PPP

�1
DD (�D) , in � ⇥ (0, T ), (2.26)

where

PPP
�1
DD

 
�1

�2

!
=

0

@
eSDtN
1 (�1)

eSDtN
2 (�2)

1

A , (2.27)

and eSDtN
i

, i = 1, 2 is a Dirichlet-to-Neumann operator defined as

eSDtN
i

(�i) := SDtN
i

(�i, 0, 0) = uuui · nnni|�. (2.28)

The GTD-Schur method with the Dirichlet-Dirichlet preconditioner is outlined in Algorithm 2.

The case without preconditioner follows the same steps withPPP�1
DD being replaced by the identity

operator.

2.4. Global-in-time fracture-based Schur (GTF-Schur) method

The primal and dual Schur methods generally require suitable preconditioners to achieve satis-

factory convergence speed. Though the number of iterations is reduced with preconditioning,

additional subdomain problems need to be solved. It would be desirable to develop a DD

method that converges fast without any preconditioners. By combining the ideas of GTP-Schur

and GTD-Schur, we derive the GTF-Schur method whose space-time interface operator is close

to the identity operator, thus, making the new interface problem better-conditioned. Instead of

having two interface unknowns as in the GTD- Schur method, only one term ' :=
2P

i=1
uuui · nnni|�

representing the jump of the normal flux across the fracture will be introduced. The fracture

pressure p� is then recovered by solving the fracture problem (2.13) provided the new unknown.
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Algorithm 2 GTD-Schur method with Dirichlet-Dirichlet preconditioner

Input: initial guess ('(0)
1 ,'

(0)
2 ), stopping tolerance 0 < ✏⌧ 1, maximum number of iterations

Nmax.
Output: pair of space-time fracture normal fluxes ('1,'2).

1: Compute �D =

✓
SNtD
1 (0, q1, p0,1)� S�(0, 0, q�, p0,�)

SNtD
2 (0, q2, p0,2)� S�(0, 0, q�, p0,�)

◆
.

2: Evaluate SD('
(0)
1 ,'

(0)
2 ) =

 
S�('(0)

1 ,'
(0)
2 , 0, 0)� SNtD

1 ('(0)
1 , 0, 0)

S�('(0)
1 ,'

(0)
2 , 0, 0)� SNtD

2 ('(0)
2 , 0, 0)

!
.

3: Set r0 = (r0,1, r0,2) := �D � SD('
(0)
1 ,'

(0)
2 ).

4: Compute PPP�1
DD(r0) =

 
eSDtN
1 (r0,1)
eSDtN
2 (r0,2)

!
.

5: Set r̃0 = PPP
�1
DD(r0) and q0 = r̃0.

6: for k = 1, · · · , Nmax do: . Start GMRES iterations.
7: Generate ('(k)

1 ,'
(k)
2 ) as the solution to the least square problem:

min
( 1, 2)2Rk

kPPP�1
DD(�D � SD( 1, 2))kL2 ,

where Rk := ('(0)
1 ,'

(0)
2 ) + span(q0, q1, · · · , qk�1).

8: Set r̃k = PPP
�1
DD

⇣
�D � SD('

(k)
1 ,'

(k)
2 )
⌘

.

9: if kr̃kk/kr̃0k  ✏ then

10: stop the iteration, return ('1,'2) = ('(k)
1 ,'

(k)
2 ).

11: end if

12: Compute qk = PPP
�1
DD (SD(qk�1)) as in Steps 2 and 4.

13: end for

Toward this end, we define the solution operator

bS� : L2 (0, T ;L2(�))⇥ L
2 (0, T ;L2(�))⇥H

1
0 (�) �! H

1 (0, T ;L2(�)) ,

(', q�, p0,�) 7�! p�,

where (p�,uuu�) is the solution to the flow problem on the fracture:

��@tp� + div⌧uuu� = q� + ' in � ⇥ (0, T ),

uuu� = �KKK��r⌧p� in � ⇥ (0, T ),

p� = 0 on @� ⇥ (0, T ),

p�(·, 0) = p0,� in �.

(2.29)

Using p� = bS�(', q�, p0,�) as Dirichlet boundary data on the fracture-interface,

pi = p�, on � ⇥ (0, T ),
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we solve the subdomain problem (2.11) to obtain (pi,uuui), from which the normal flux is com-

puted:

SDtN
i

( bS�(', q�, p0,�), qi, p0,i) = uuui · nnni|�, i = 1, 2,

where SDtN
i

is the same Dirichlet-to-Neumann operator as in GTP-Schur. Finally, the interface

problem for GTF-Schur is obtained by matching ' with the total normal fluxes:

' =
2P

i=1
SDtN
i

( bS�(', q�, p0,�), qi, p0,i), in � ⇥ (0, T ), (2.30)

or in compact form,
SF (') = �F , in � ⇥ (0, T ), (2.31)

where

SF (') =
2X

i=1

SDtN
i

( bS�(', 0, 0), 0, 0), �F =
2X

i=1

SDtN
i

( bS�(0, q�, p0,�), qi, p0,i).

Again, we solve the interface problem (2.31) iteratively using GMRES (without any precondi-

tioner) as summarized in Algorithm 3. Numerical performance of GTF-Schur will be discussed

and compared with GTP-Schur and GTD-Schur in Section 2.6.

Remark 2.3. One can straightforwardly extend all Schur-type methods and GTO-Schwarz

method to the three-dimensional case where the rock matrix is decomposed into strips (each

strip being a subdomain) by non-intersecting fractures. Regarding the case of intersecting

fractures, one needs to pay attention to the intersection lines and points between fractures. In

particular, the Schur-type methods can be generalized by following the technique developed in

[7, 8] for the Steklov–Poincaré method applying to stationary problems. For the GTO-Schwarz

method, the situation is more complicated as the local Ventcel problems are less obviously

solvable due to the presence of corners at the intersection of two or more fractures. Special

techniques such as the interface cement equilibrated mortar method (NICEM) method intro-

duced in [76, 75] could be used for handling such a case.
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Algorithm 3 GTF-Schur method
Input: initial guess '(0), stopping tolerance 0 < ✏⌧ 1, maximum number of iterations Nmax.
Output: space-time total normal flux '.

1: Compute �F =
2P

i=1
SDtN
i

( bS�(0, q�, p0,�), qi, p0,i).

2: Evaluate SF('(0)) =
2P

i=1
SDtN
i

( bS�('(0)
, 0, 0), 0, 0).

3: Set r0 = �F � SF('(0)).
4: for k = 1, · · · , Nmax do: . Start GMRES iterations.
5: Generate '(k) as a solution to the least square problem:

min
 2Rk

k�F � SF( )kL2 ,

where Rk := '
(0) + span(r0,SF(r0), · · · ,Sk�1

F (r0)).

6: Set rk = �F � SF('(k)).
7: if krkk/kr0k  ✏ then

8: stop the iteration, return ' = '
(k).

9: end if

10: Compute Sk

F(r0) = SF
�
Sk�1
F (r0)

�
as in Step 2.

11: end for

2.5. Nonconforming discretization in time

All three DD methods presented in previous sections are globally in time, i.e., the subdomain

problems are solved over the whole time interval at each iteration and space-time information

is exchanged on the fracture-interface. Thus, it is possible to use different time steps in the

fracture and in the rock matrix. In this section, we derive the semi-discrete interface problem

for the proposed DD methods with nonconforming time grids.

Let T1, T2, and T� be three different partitions of the time interval (0, T ] into subintervals

J
i

m
=
�
t
i

m�1, t
i

m

⇤
for m = 1, · · · ,Mi, and i = 1, 2, � (see Figure 2.2). For simplicity, we

consider uniform partitions and denote by �ti, i = 1, 2, �, the corresponding time steps such

that �t� ⌧ �ti, i = 1, 2 (note that the fracture is assumed to have much larger permeability

than the surrounding domain). We use the backward Euler method to discretize the problem in

time. The same idea can be generalized to higher order methods [58].

We denote by P0 (Ti, L
2(�)) the space of functions which are piecewise constant in time

on grid Ti with values in L
2(�):
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Figure 2.2: Nonconforming time grids in the rock matrix and in the fracture.

P0
�
Ti, L2(�)

�
=
�
 : (0, T ) ! L

2(�), is constant on J, 8J 2 Ti
 
.

In order to exchange data on the space-time interface between different time grids Ti and Tj

(for i, j in {1, 2, �}), we use the L
2 projection ⇧ji from P0 (Ti, L

2(�)) to P0 (Tj, L
2(�)): for

 2 P0 (Ti, L
2(�)) , ⇧ji |Jj

m
is the average value of  on J

j

m
, for m = 1, · · · ,Mj .

2.5.1. GTP-Schur method

The unknown � in (2.12) is piecewise constant in time on grid T� as it represents the pressure

on the fracture. In order to obtain Dirichlet boundary data for the subdomain problem (2.11),

we project � into P0 (Ti, L
2(�)): pi = ⇧i� (�) on, i = 1, 2. The semidiscrete counterpart

of the interface problem (2.12) is obtained by weakly enforcing the fracture problem over each

time subinterval of T� as follows:

�� (�m+1 � �
m) +

R
t
m+1
�

tm�
div⌧ uuum+1

�
=
R

t
m+1
�

tm�

✓
2P

i=1
⇧�i

�
SDtN
i

(⇧i�(�), qi, p0,i)
�◆

,

uuu
m+1
�

= �KKK��r⌧�
m+1

,

(2.32)

in �, for m = 0, · · · ,M� � 1. Problem (2.32) is completed with the initial and boundary

conditions: �0 = p0,�, in � and �m+1 = 0, on @�, for m = 0, · · · ,M� � 1.

To compute the semi-discrete Ventcel-Ventcel preconditioner, which is still denoted by

P
�1
VV , we first project the data ✓ 2 P0 (T�, L2 (�)) onto the subdomain grid Ti, i = 1, 2 to solve

the subdomain problem with Ventcel conditions (2.18). Then P
�1
VV is obtained by projecting the

trace of the subdomain pressure on the fracture-interface from Ti onto T�:
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P
�1
VV (✓) :=

2X

i=1

�i⇧�i
�
SVtD
i (⇧i�(✓))

�
. (2.33)

2.5.2. GTD-Schur method

The two interface unknowns '1 and '2 are piecewise constant in time on the fine grid T�:

'i 2 P0 (T�, L2 (�)) for i = 1, 2. In order to obtain Neumann boundary data for the subdomain

problem (2.20), we project 'i into P0 (Ti, L
2(�)): uuui · nnni = ⇧i� ('i) on, i = 1, 2. The

semidiscrete counterpart of the interface problem (2.22) is defined on T� as follows:

R
t
m+1
�

tm�
S� ('1,'2, q�, p0,�) =

R
t
m+1
�

tm�
⇧�1

�
SNtD
1 (⇧1�('1), q1, p0,1)

�
,

R
t
m+1
�

tm�
S� ('1,'2, q�, p0,�) =

R
t
m+1
�

tm�
⇧�2

�
SNtD
2 (⇧2�('2), q2, p0,2)

�
,

(2.34)

in �, for m = 0, · · · ,M� � 1.

The semidiscrete Dirichlet-Dirichlet preconditioner PPP�1
DD

is computed by

PPP
�1
DD

 
�1

�2

!
=

0

@
⇧�1

⇣
eSDtN
1 (⇧1�(�1))

⌘

⇧�2

⇣
eSDtN
2 (⇧2�(�2))

⌘

1

A , (2.35)

in which we first solve the subdomain problems with Dirichlet data projected from the T� onto

Ti, i = 1, 2, then extract the normal flux along the fracture and project backward from Ti onto

T� .

2.5.3. GTF-Schur method

The interface unknown ' in this case represents the total normal flux, and again, it is piecewise

constant in time on T�: ' 2 P0 (T�, L2 (�)). Solving the fracture problem (2.29) with ', we

obtain p� = bS� (', q�, p0,�) 2 P0 (T�, L2 (�)). As for GTP-Schur, the fracture pressure p� is

projected to Ti, for i = 1, 2, to give Dirichlet data for solving the subdomain problems. The

semidiscrete counterpart of (2.30) is then defined on T� as follows:

'
m �

2P
i=1

⇧�i
⇣
SDtN
i

⇣
⇧i�

⇣
bS�(', 0, 0)

⌘
, 0, 0

⌘⌘

|J�
m

=
2P

i=1
⇧�i

�
SDtN
i

(0, q� , p0,� , qi, p0,i)
�
|J�

m

, (2.36)

on �, for m = 0, · · · ,M� � 1.
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2.6. Numerical results

We study and compare the convergence and accuracy in time of four global-in-time DD meth-

ods: GTP-Schur with Neumann-Neumann (N-N) or Ventcel-Ventcel (V-V) preconditioner,

GTD-Schur with Dirichlet-Dirichlet (D-D) preconditioner, GTF-Schur, and GTO-Schwarz.

We refer to [67] for the detailed derivation and formulation of the GTO-Schwarz method

and optimized parameters. Briefly, the analysis is performed on a two half-space decompo-

sition ⌦1 = R� ⇥ R,⌦2 = R+ ⇥ R. The primal formulation of the two-subdomain problem

with Ventcel-Robin transmission conditions is first recast into an ordinary differential equation

(ODE) using a Fourier transform in time and in the y direction. The ODE is then solved to

compute the convergence factor of the iterative algorithm. Finally, the optimized parameters

are obtained by minimizing the convergence factor over low and high frequencies, which leads

us to solving a min-max problem.

Three test cases are considered: Test case 1.1 and Test case 1.2 with a non-immersed frac-

ture (i.e., the fracture cuts through the rock matrix), and Test case 1.3 with a partially immersed

fracture. For Test case 1.1 and Test case 1.3, we assume that the two subdomains have the

same permeability KKKi = kiI, for i = 1, 2, f, where k1 = k2 = 1 and kf = 103. For Test case

1.2, the original two subdomains are further divided into smaller strips with differerent perme-

ability, more details will be given in Subsection 2.5.2. For spatial discretization, we consider

mixed finite elements with the lowest order Raviart–Thomas space on a uniform, conforming

triangular mesh of size h. We remark that the focus of this work is local time stepping; non-

conforming spatial meshes will be the topic of our future work. The interface problem for each

method is solved iteratively using GMRES with a random initial guess; the iteration is stopped

when the residual error is less than 10�6 (Test case 1.1) or 10�8 (Test cases 1.2 and 1.3). All

computed errors are relative space-time errors in the space L
2(0, T ;L2(O))-norm, where O is

either ⌦1, ⌦2, or �. To compare the convergence of the corresponding iterative algorithms (with

or without preconditioners), we count the number of subdomain solves instead of the number

of iterations. Note that one iteration of GTP-Schur or GTD-Schur with a preconditioner costs
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twice as much as one iteration of the respective method with no preconditioner (in terms of the

number of subdomain solves).

2.6.1. Test case 1.1: non-immersed fracture with two subdomains

The domain of calculation ⌦ = (0, 2)⇥(0, 1) is divided into two equally sized subdomains by a

fracture of width � = 0.001 parallel to the y-axis (see Figure 2.3). For the boundary conditions,

we impose p = 1 at the bottom and p = 0 at the top of the fracture. On the external boundaries

of the subdomains, a no-flow boundary condition is imposed except on the lower fifth (length

0.2) of both lateral sides where a Dirichlet condition is imposed: p = 1 on the right and p = 0

on the left. We show in Figure 2.4 the snapshot of the reference solution at T = 0.5.

Figure 2.3: [Test case 1.1] (Left) Geometry and boundary conditions of the test case. (Right)
Example of an uniform triangular mesh for spatial discretization.
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Figure 2.4: [Test case 1.1] Pressure field (left) and velocity field (right) at the final time T = 0.5.

We first consider the conforming time step case to verify the errors and compare the con-

vergence of the four global-in-time DD algorithms. We fix the final time T = 0.5, the spatial

mesh h = 1/50, and vary the time step sizes �ti = �t for i = 1, 2, �. The errors are computed
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using a reference solution on a fine time step �tref = T/2000. Table 2.1 shows the L
2 errors

for the pressure and velocity computed once GMRES converges. Note that all methods pro-

duce nearly the same approximate solutions since the same time step is imposed in the fracture

and in the subdomains. From this table, first order convergence in time is observed for both

pressure and velocity.

Errors for pressure Errors for velocity
�t ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 6.76e-02 6.82e-02 3.29e-02 4.96e-02 9.24e-02 5.47e-02

T/8 3.55e-02 3.57e-02 1.59e-02 2.56e-02 4.87e-02 2.64e-02
[0.92] [0.93] [1.05] [0.95] [0.92] [1.05]

T/16 1.81e-02 1.81e-02 7.73e-03 1.30e-02 2.49e-02 1.28e-02
[0.97] [0.98] [1.04] [0.97] [0.96] [1.04]

T/32 9.06e-03 9.07e-03 3.76e-03 6.52e-03 1.24e-02 6.24e-03
[0.99] [0.99] [1.03] [0.99] [1.00] [1.03]

Table 2.1: [Test case 1.1] Relative L
2-errors of the pressure and velocity with conforming time

steps. The corresponding convergence rates are shown in square brackets.

In Table 2.2, we report the number of subdomain solves needed to obtain such errors. In

particular, we stop GMRES when the relative residual is smaller than 10�6. For GTP-Schur,

we see that without preconditioner, the convergence is extremely slow and deteriorates as the

time step decreases. With V-V preconditioner, the number of iterations is significantly reduced

and independent of the time step size. For GTD-Schur, even without a preconditioner, the per-

formance is much better than that of GTP-Schur, and applying D-D preconditioner results in

a comparable result as GTP-Schur with V-V preconditioner. Importantly, GTF-Schur works

remarkably well with no preconditioner needed, and in terms of computational cost (or subdo-

main solves), it is the only Schur type method that can compete with GTO-Schwarz.

Next we investigate the case with nonconforming time grids. We only consider GTP-

Schur with V-V preconditioner, GTD-Schur with D-D preconditioner, GTF-Schur and GTO-

Schwarz since they give fastest convergence. The diffusion coefficients in the subdomains are

the same and smaller than that in the fracture, thus we impose the same large time step in the

subdomains and a smaller one in the fracture: �t1 = �t2 = 4�t� . We show the relative errors

of the pressure and velocity in Table 2.3 and 2.4, respectively. We see that these methods still
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�t T/4 T/8 T/16 T/32

GTP-Schur
with no precond. 191 282 331 407

with N-N precond. 78 92 102 140

with V-V precond. 10 12 12 12

GTD-Schur with no precond. 33 34 33 33

with D-D precond. 16 16 16 16

GTF-Schur 8 8 8 8

GTO-Schwarz 6 6 6 6
Table 2.2: [Test case 1.1] Numbers of subdomain solves when conforming time steps are used;
the tolerance for GMRES is set to be 10�6.

preserve the first order of convergence in time when we have nonconforming discretization in

time. However, due to the nonconforming time projections, the errors are different between the

following two groups:

• Group 1: GTP-Schur with V-V preconditioner, and GTO-Schwarz,

• Group 2: GTD-Schur with D-D preconditioner, and GTF-Schur.

GTP-Schur with V-V precond. GTD-Schur with D-D precond.
GTO-Schwarz GTF-Schur

�ti �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/16 6.76e-02 6.82e-02 3.29e-02 6.34e-02 6.62e-02 1.29e-02

T/8 T/32 3.55e-02 3.57e-02 1.59e-02 3.27e-02 3.43e-02 6.25e-03
[0.92] [0.93] [1.05] [0.95] [0.95] [1.04]

T/16 T/64 1.81e-02 1.81e-02 7.73e-03 1.65e-02 1.73e-02 3.01e-03
[0.97] [0.98] [1.04] [0.98] [0.99] [1.05]

T/32 T/128 9.06e-03 9.07e-03 3.76e-03 8.22e-03 8.64e-03 1.42e-03
[0.99] [0.99] [1.03] [1.00] [1.00] [1.08]

Table 2.3: [Test case 1.1] Relative L
2-errors of the pressure with nonconforming time grids.

The corresponding convergence rates are shown in square brackets.

It can be observed by comparing with Table 2.1 that the errors in the fracture for both pressure

and velocity obtained from Group 1 follow the coarse time grid in the subdomains. This be-

havior was observed numerically in [67] for the GTO-Schwarz method. It is due to the fact that

for GTO-Schwarz and GTP-Schur with V-V preconditioner, the fracture problem is treated as

the Ventcel boundary condition for the subdomain problems. Consequently, the approximate

fracture pressure follows the coarse time grid in the subdomains. However, for the methods in

Group 2, it can be seen that the errors in the fracture are smaller and are closer to that of the
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GT-Schur with V-V precond. GTD-Schur with D-D precond.
GTO-Schwarz GTF-Schur

�ti �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/16 4.96e-02 9.24e-02 5.47e-02 4.73e-02 9.38e-02 2.21e-02

T/8 T/32 2.56e-02 4.87e-02 2.64e-02 2.41e-02 4.87e-02 1.06e-02
[0.95] [0.92] [1.05] [0.97] [0.95] [1.06]

T/16 T/64 1.30e-02 2.49e-02 1.28e-02 1.21e-02 2.47e-02 5.09e-03
[0.97] [0.96] [1.04] [0.99] [0.98] [1.05]

T/32 T/128 6.52e-03 1.24e-02 6.24e-03 6.05e-03 1.23e-02 2.41e-03
[0.99] [1.00] [1.03] [1.00] [1.00] [1.08]

Table 2.4: [Test case 1.1] Relative L
2-errors of the velocity with nonconforming time grids.

The corresponding convergence rates are shown in square brackets.

�t1 = �t2 T/4 T/8 T/16 T/32
�t� T/16 T/32 T/64 T/128

GTP-Schur with V-V precond. 12 12 12 14

GTD-Schur with D-D precond. 16 16 16 16

GTF-Schur 8 8 8 8

GTO-Schwarz 6 6 6 6

Table 2.5: [Test case 1.1] Numbers of subdomain solves when nonconforming time steps are
used; the tolerance for GMRES is set to be 10�6.

fine time grid. This is because we separate the fracture problem and the subdomain problems,

and the fracture problem is actually solved on the fine time grid.

We now analyze the convergence of the four algorithms. Table 2.5 shows the number of

subdomain solves for each method to reach the relative residual smaller than 10�6. We can see

that the obtained numbers are almost the same as those in Table 2.2 and are not affected by the

small time steps in the fracture. Hence, these methods are suitable for using nonconforming

discretization in time. From the accuracy and convergence of the four methods in this test case,

it appears that GTF-Schur is the most effective method which converges fast and preserves the

accuracy in time in the fracture with smaller time steps.

2.6.2. Test case 1.2: non-immersed fracture with four subdomains

and variable permeability

We consider in this subsection the case with multiple strip subdomains and variable perme-

ability. In particular, four subdomains are formed by introducing two artificial interfaces �a,1
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and �a,2 besides the fracture-interface as depicted in Figure 2.5. Each subdomain has a specific

value of permeability. We assume that KKKi = kiI, i = 1, 2, 3, 4 where k1 = k4 = 1e � 01

and k2 = k3 = 1. The time step size on each new subdomain is denoted by �ti, i = 1, 2, 3, 4,

respectively. We fix the mesh size h = 1/80 and the final time T = 1. The boundary conditions

and the permeability of the fracture are assumed to be the same as in Test case 1.1.

a, 1 a, 2

Figure 2.5: [Test case 1.2] Geometry and boundary conditions. The blue vertical lines are the
artificial interfaces.

To apply global-in-time DD methods for this test case, additional transmission conditions,

representing the continuity of the pressure and normal flux, are imposed on each artificial in-

terface �a,i, i = 1, 2:

pi,1 = pi,2,

ui,1 · ni,1 + ui,2 · ni,2 = 0,
on �a,i ⇥ (0, T ), i = 1, 2. (2.37)

Global-in-time DD methods for parabolic equations in a domain without fractures have been

well studied in [68], and thus details of their formulations are not presented here. For the

fracture-interface �, we reuse the transmission conditions associated with the reduced frac-

ture model (cf. Equations (2.8)-(2.9)). The interface problem for each global-in-time DD

method then consists of the equations on the interface-fracture (as derived in the previous sec-

tions for the non-immersed fracture case) and the ones on the artificial interfaces as studied

in [68]. For the latter, we will also use preconditioners to enhance the convergence of the

iterative algorithms. In particular, for GTP-Schur and GTF-Schur, a time-dependent Neumann-

Neumann preconditioner [68] is applied on each artificial interface, while for GTD-Schur, a

time-dependent Dirichlet-Dirichlet preconditioner is performed. By combining all the pre-

conditioners on the fracture-interface and on all artificial interfaces, we obtain the following
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methods: preconditioned GTP-Schur, preconditioned GTD-Schur, and preconditioned GTF-

Schur method. For GTO-Schwarz, the equations on the artificial interfaces represent the Robin

transmission conditions with optimized parameters; more details can be found in [68].
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Figure 2.6: [Test case 1.2] Pressure field (left) and velocity field (right) at the final time T = 1.

�t1 = �t4 T/2 T/4 T/8 T/16
�t2 = �t3 T/4 T/8 T/16 T/32

�t� T/8 T/16 T/32 T/64

Precond. GTP-Schur 42 50 58 64

Precond. GTD-Schur 52 72 80 90

Precond. GTF-Schur 22 22 22 22

GTO-Schwarz 25 26 26 28

Table 2.6: [Test case 1.2] Numbers of subdomain solves when nonconforming time steps are
used; the tolerance for GMRES is set to be 10�8.

We first show in Figure 2.6 the snapshots of the pressure field and velocity field at the final

time T = 1. As the regions near the lateral boundaries have smaller permeability compared

to the ones near the fracture, the magnitude of the corresponding vector field is smaller there

than near the fracture. We report next in Table 2.6 the number of subdomain solves obtained

from each method. Preconditioned GTD-Schur is the slowest method among the three Schur-

type methods, while preconditioned GTF-Schur is the fastest. Preconditioned GTF-Schur is

also the only Schur-type method that is comparable to GTO-Schwarz in terms of convergence

speed. Moreover, preconditioned GTF-Schur as well as GTO-Schwarz are the only methods

that are mostly independent of the size of the time grid. From Tables 2.5 and 2.6, we deduce

that preconditioned GTF-Schur is the most efficient Schur-type method for the case of strong

heterogeneity as it still preserves its fast convergence while for the other two methods, the
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increasing in the number of subdomain solves is significant. We remark that our main focus

for this test case is the convergence speed of the proposed methods when multiple subdomains

with variable permeability are used. Results regarding the accuracy in time are similar to what

we observe in Test case 1.1 (as well as in the next test case), thus are omitted here.

2.6.3. Test case 3: partially immersed fracture

We consider a test case adapted from [9] where only one tip of the fracture is attached to

the external boundary, while the other tip is submerged inside the rock matrix as depicted in

Figure 2.7 (left). A no-flow boundary condition is considered at the tip which is immersed

inside the domain, while p = 1 is imposed at the other tip. Analysis of the steady-state flow

problem with an immersed fracture can be found in [9] and the references therein. For the

external boundary, the pressure is prescribed on the upper fifth (length 0.2) of both lateral

sides, p = 1 on the right and p = 0 on the left, and a no-flow condition is imposed on the rest

of the boundary. Note that we use the same physical parameters as in Test case 1.1.

Figure 2.7: [Test case 1.3] (Left) Geometry and boundary conditions with immersed fracture
�. (Right) An artificial interface �a is introduced to decompose the domain into two disjoint
subdomains.

To apply global-in-time DD methods for this test case, we first introduce an artificial

interface �a so that, together with the partially immersed fracture �, they form a single fracture

� separating the original domain into two disjoint subdomains (cf. Figure 2.7 (right)). Next,

suitable transmission conditions will be imposed on this new interface �. On the fracture-

interface �, we make use of the Equations (2.8)-(2.9)) representing the transmission conditions

for the reduced fracture model. Note that due to the presence of the immersed tip, we use

a no-flow boundary condition at that tip, instead of a Dirichlet condition as in Test case 1.1.
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On the artificial interface �a, we impose the same standard DD transmission conditions (cf.

Equations (2.37)) as in Test case 1.2. The interface system on � ⇥ (0, T ) for each method

is then a combination of the equations on both � ⇥ (0, T ) and �a ⇥ (0, T ). Similar to Test

case 1.2, preconditioning is needed for the interface problem on �a ⇥ (0, T ) to improve the

convergence speed of all Schur-type methods. In particular, we reuse the Neumann-Neumann

preconditioner for GTP-Schur and GTF-Schur, and apply the Dirichlet-Dirichlet preconditioner

for GTD-Schur as what has been done in Test case 1.2. As a result, we obtain the following

methods: preconditioned GTP-Schur , preconditioned GTD-Schur and preconditioned GTF-

Schur. These methods will be tested and compared with the performance of GTO-Schwarz.

Note that the transmission conditions for GTO-Schwarz on the artificial interface �a ⇥ (0, T )

are still Robin conditions with optimized parameters as in Test case 1.2.

We first show the snapshots of pressure and velocity fields at the final time T = 1 in

Figure 2.8. The length of each arrow is proportional to the magnitude of the velocity and the

red arrows represent the flow in the fracture. The length of the red arrows decreases as the

flow travels toward the immersed tip since a no-flow boundary condition is imposed there. As

kf � ki, i = 1, 2, the velocity in the fracture has larger magnitude than the one in the rock

matrix.
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Figure 2.8: [Test case 1.3] Pressure field (left) and velocity field (right) at the final time T = 1.

Next, we present the numerical results for these methods when conforming time grids

are used. We fix the spatial mesh h = 1/100 and vary the time step sizes �ti = �t for

i = 1, 2, �. The reference solution used in computing the errors are found on a fine time grid

�tref = T/2000 where T = 1. Table 2.7 shows the relative L
2-errors computed from all
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methods for pressure and velocity. Similar to the non-immersed fracture case, we only have

one table showing the errors for each term since the approximate solutions obtained from all

method are nearly the same. It can be observed that we still have first-order convergence in time

for both pressure and velocity, even in the immersed fracture case which is more complicated.

We report in Table 2.8 the number of subdomain solves needed to reach the errors obtained

in Table 2.7. It can be seen that among the proposed methods, the preconditioned GTD-Schur

has the slowest convergence speed. Unlike Test case 1.1, the preconditioner GTP-Schur is the

fastest method compared to the other Schur-type methods, even faster than GTO-Schwarz. The

convergence speed of preconditioned GTF-Schur is acceptable and is comparable to that of

GTO-Schwarz.

Errors for pressure Errors for velocity
�t ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 7.85e-02 6.67e-02 2.55e-02 8.52e-02 2.88e-01 1.97e-01

T/8 4.15e-02 3.43e-02 1.27e-02 4.54e-02 1.49e-01 9.83e-02
[0.92] [0.96] [1.00] [0.91] [0.95] [1.00]

T/16 2.12e-02 1.73e-02 6.36e-03 2.34e-02 7.55e-02 4.93e-02
[0.97] [0.99] [0.99] [0.96] [0.98] [0.99]

T/32 1.07e-02 8.65e-03 3.17e-03 1.18e-02 3.77e-02 2.46e-02
[0.99] [1.00] [1.00] [0.99] [1.00] [1.00]

Table 2.7: [Test case 1.3] Relative L
2-errors of the pressure and velocity with conforming time

steps. The corresponding convergence rates are shown in square brackets.

�t T/4 T/8 T/16 T/32
Methods
Preconditioned GTP-Schur 16 16 16 18
Preconditioned GTD-Schur 42 50 62 66
Preconditioned GTF-Schur 18 20 22 24
GTO-Schwarz 23 23 24 24

Table 2.8: [Test case 1.3] Numbers of subdomain solves when conforming time steps are used;
the tolerance for GMRES is set to be 10�8.

We next investigate the numerical performance of these methods with nonconforming time

grids. For the preconditioned GTP-Schur and preconditioned GTD-Schur methods, numerical

results suggest that the initial guess for GMRES needs to be rescaled to obtain accurate nu-

merical solutions. Such a rescaling is done in our numerical experiments by using the Hegedüs

formula (cf. [82, Chapter 5, Subsection 5.8.3]). The relative errors for pressure and velocity
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Preconditioned GTP-Schur Preconditioned GTD-Schur
GTO-Schwarz Preconditioned GTF-Schur

�t �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/16 7.85e-02 6.67e-02 2.55e-02 7.61e-02 6.51e-02 1.50e-02

T/8 T/32 4.15e-02 3.43e-02 1.27e-02 3.98e-02 3.33e-02 7.32e-03
[0.92] [0.96] [1.00] [0.93] [0.97] [1.03]

T/16 T/64 2.12e-02 1.73e-02 6.36e-03 2.04e-02 1.67e-02 3.58e-03
[0.97] [0.99] [0.99] [0.96] [0.99] [1.03]

T/32 T/128 1.07e-02 8.65e-03 3.17e-03 1.02e-02 8.33e-03 1.75e-03
[0.99] [1.00] [1.00] [1.00] [1.00] [1.03]

Table 2.9: [Test case 1.3] Relative L
2-errors of the pressure with nonconforming time grids.

The corresponding convergence rates are shown in square brackets.

Preconditioned GTP-Schur Preconditioned GTD-Schur
GTO-Schwarz Preconditioned GTF-Schur

�t �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/16 8.51e-02 2.88e-01 1.97e-01 8.38e-02 2.86e-01 1.18e-01

T/8 T/32 4.54e-02 1.49e-01 9.83e-02 4.41e-02 1.47e-01 5.73e-02
[0.91] [0.95] [1.00] [0.93] [0.96] [1.04]

T/16 T/64 2.34e-02 7.55e-02 4.93e-02 2.26e-02 7.36e-02 2.80e-02
[0.96] [0.98] [0.99] [0.96] [0.99] [1.03]

T/32 T/128 1.18e-02 3.77e-02 2.46-02 1.13e-02 3.66e-02 1.37e-02
[0.99] [1.00] [1.00] [1.00] [1.01] [1.03]

Table 2.10: [Test case 1.3] Relative L
2-errors of the velocity with nonconforming time grids.

The corresponding convergence rates are shown in square brackets.

�t1 = �t2 T/4 T/8 T/16 T/32
�t� T/16 T/32 T/64 T/128

Preconditioned GTP-Schur 16 14 14 14

Preconditioned GTD-Schur 42 50 60 66

Preconditioned GTF-Schur 18 20 22 24

GTO-Schwarz 23 24 24 24

Table 2.11: [Test case 1.3] Numbers of subdomain solves when nonconforming time steps are
used; the tolerance for GMRES is set to be 10�8.

are presented in Table 2.9 and Table 2.10. Similar to Test case 1.1, we impose the same large

time step in the subdomains and a smaller one in the fracture: �t1 = �t2 = �t = 4�t� . We

consider the same groups of errors as in Test case 1.1. By comparing with Table 2.7, we can

see that the fine time grids in the fracture do not affect the errors in the fracture for both pres-

sure and velocity observed from Group 1, that is, we still obtain the same errors as when we

37



only have coarse time grids in the subdomains and in the fracture. On the contrary, such errors

provided by Group 2 are smaller, and closer to the ones obtained when we apply the same fine

time grids in the subdomains and the fracture. These behaviors are as expected as explained in

Test case 1.1.

Finally, we present the number of subdomain solves for each method to reach the relative

residual smaller than 10�8 to analyze their convergent behaviors. These numbers are shown in

Table 2.11. It can be seen that we obtain nearly the same numbers as those in Table 2.8. Hence,

as in Test case 1.1, these methods are applicable under nonconforming time discretizations.

From what we have observed so far, similar to Test case 1.2, Test case 1.3 is more challenging

than Test case 1.1, which can be seen in the increasing of the subdomain solves. However, the

preconditioned GTF-Schur still shows its efficiency as it has relatively fast convergence speed

and preserves the accuracy in time when we have different time steps in the fracture and in the

subdomains.

Conclusion

In this chapter, three global-in-time DD methods, namely GTP-Schur, GTD-Schur, and GTF-

Schur, have been developed for a reduced fracture model of compressible flow problems, in

which different time steps can be used in the fracture and in the matrix. Efficient precondi-

tioners have been derived for GTP-Schur and GTD-Schur to enhance the convergence of the

iterative algorithms. This new preconditioner of GTP-Schur significantly improve the perfor-

mance of the method compared to the existing preconditioners. Importantly, a new method,

GTF-Schur, is proposed; this method is typical of the reduced fracture model and requires no

preconditioner. Numerical experiments for 2D problems with different types of fractures and

with two or more subdomains have been carried out to investigate and compare the perfor-

mance of the proposed methods with GTO-Schwarz on conforming and nonconforming time

grids. We discretize the models in space by using mixed finite elements with the lowest or-

der Raviart-Thomas spaces on triangles and in time by applying first-order backward Euler

method. The obtained results suggest that among the global-in-time DD methods presented in
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this chapter, GTF-Schur is the most efficient method as it converges fast without the need of a

preconditioner while still preserves the accuracy in time in the fracture when smaller time steps

are used in the fracture and larger ones in the rock matrix. In the next chapters, we consider the

reduced fracture model of the advection-diffusion problem and aim to derive local time step-

ping solvers for this model by coupling the above global-in-time DD methods with operator

splitting.
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Chapter 3

Local time-stepping methods for the reduced fracture model

of transport problems with operator splitting
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In this chapter, we construct three global-in-time DD methods, namely GTP-Schur, GTF-

Schur, and GTO-Schwarz, in the context of operator splitting to solve numerically the reduced

fracture model of the transport problems. The use of operator splitting allows separate treat-

ment for the advection equation and the diffusion equation: the former is approximated with

the explicit Euler method in time and with an upwind, cell-centered finite volume method in

40



space, while the latter is discretized with the implicit Euler method in time and with a mixed

finite element method in space. This chapter consists of three main parts. In the first part, we

introduce the reduced fracture model of the linear advection-diffusion equation and its fully

discrete formulation using operator splitting. For the second part, we derive GTP-Schur, GTF-

Schur, and GTO-Schwarz from the mono-domain solver by constructing appropriate transmis-

sion conditions for the advection part and combining them with those for the diffusion part. We

also describe how to formulate these interface equations when nonconforming time grids are

used via L
2-projection operators introduced in Chapter 2. In the last part, we present numeri-

cal results with different Péclet numbers and with different types of fracture to investigate and

compare the performance of the proposed methods.

3.1. Operator splitting and discretization of reduced frac-

ture models

3.1.1. Reduced fracture model of linear transport problems

Figure 3.1: The domain ⌦ with the fracture-interface �.

In this chapter, ⌦ is a bounded domain in Rd (d = 2, 3) having Lipschitz boundary @⌦

which is divided into two disjoint subdomains ⌦i, i = 1, 2, by a fracture �, which is a surface

of dimension (d� 1) as depicted in Figure 3.1. The fracture is supposed to be a subdomain of

⌦ with higher permeability compared to that in the subdomains. Its thickness � is supposed to

be small compared to the size of the domain ⌦, so it is considered to be an interface between

the subdomains. We denote by nnni the unit outside normal to @⌦i \ @⌦, and by nnn� that to @�.
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We consider the following linear advection-diffusion equations written in mixed formulation

�@tc+ div (uuuc+ rrr) = q in ⌦⇥ (0, T ),

rrr = �KKKrc in ⌦⇥ (0, T ),

c = 0 on @⌦⇥ (0, T ),

c(·, 0) = c0 in ⌦,

(3.1)

where c is the concentration of a contaminant dissolved in a fluid, q is the source term, � is

the porosity, u is the Darcy velocity (assume to be given and time-independent), and D is a

symmetric time-independent diffusion tensor.

For each i = 1, 2, �, we denote by ci the concentration of a contaminant dissolved in

a fluid, ririri the transport velocity, ii the porosity, qi the source term, uuui the Darcy velocity, and

DDDi the symmetric time-independent diffusion tensor, in each subdomain and in the fracture,

respectively. With such notation, by following the same steps introduced in Section 2.1, we

obtain the reduced fracture model of (3.1) which consists of the following equations in the

subdomains

�i@tci + div (uici + ri) = qi in ⌦i ⇥ (0, T ),

ri = �Dirci in ⌦i ⇥ (0, T ),

ci = 0 on (@⌦i \ @⌦)⇥ (0, T ),

ci = c� on � ⇥ (0, T ),

ci(·, 0) = c0,i in ⌦i,

(3.2)

for i = 1, 2, and in the fracture

��@tc� + div⌧ (u�c� + r�) = q� +
2P

i=1
(ri · ni + (uuui · nnni)ci)|� in � ⇥ (0, T ),

r� = �D��r⌧c� in � ⇥ (0, T ),

c� = 0 on @� ⇥ (0, T ),

c�(·, 0) = c0,� in �.

(3.3)

In the next subsection, we use operator splitting to discretize the advection and the diffusion to

obtain the fully discrete formulation for (3.2)-(3.3).

3.1.2. Operator splitting for the monolithic problem

We consider a first-order time splitting method to separate the advection and the diffusion

in (3.2)-(3.3) and treat them with different spatial and temporal discretization. In time, the
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advection is approximated by the forward Euler method and the diffusion by the backward

Euler method. In space, we consider two locally mass-conserving approximation schemes:

an upwind, cell-centered finite volume method for the advection equation, and a mixed finite

element method for the diffusion equation. In the following, we present the fully discrete

problem associated with these techniques. Note that operator splitting can be derived without

considering the spatial discretization for the advection and diffusion problems.

For the discretization in time, we consider a uniform partition of (0, T ) into N sub-

intervals (tn, t
n+1) of length �t = t

n+1� t
n, for n = 0, . . . , N�1. This partition will be used

for the diffusion step. For the advection step, we further divide each interval (tn, t
n+1) (for

n = 0, . . . , N �1) into L sub-intervals {(tn,l, tn,l+1)}l=0,...,L�1 of length �ta = �t/L, L � 1

with t
n,0 = t

n, t
n,L = t

n+1 and t
n,l = t

n + l�ta for l = 1, . . . , L � 1. This second partition

allows our explicit scheme used on the advection equations to satisfy the CFL condition without

imposing that condition on the diffusion equations.

For the discretization in space, we let Kh,i be a finite element partition of ⌦i (i = 1, 2)

into d-simplicial elements (i.e. triangles for d = 2 and tetrahedra for d = 3) such that the two

partitions match up at the interface �. For simplicity, we only consider d = 2. We denote by Eh,i

the set of all edges of elements of Kh,i, and Gh,i the set of those lying on the interface �. Since

K1 and K2 coincide on �, the spaces Gh,1 and Gh,2 are identical, thus we set Gh := Gh,1 = Gh,2.

For an element Ki of Kh,i (respectively an edge Ei of Ki), denote bynnnKi (respectivelynnnE,i) the

unit, outward normal vector on @Ki (respectively @Ei). For i = 1, 2, we consider the lowest

order Raviart-Thomas mixed finite element spaces Mh,i ⇥ ⌃h,i ⇢ L
2(⌦i)⇥H(div,⌦i):

Mh,i =
�
µ 2 L

2(⌦i) : µ|Ki = const, 8Ki 2 Kh,i

 
,

⌃h,i =
�
vvv 2 H(div,⌦i) : vvv|Ki = (bK,i + aK,ix, cK,i + aK,iy), (aK,i, bK,i, cK,i) 2 R3

, 8Ki 2 Kh,i

 
.

Similarly for the fracture, let ⇤h ⇥ ⌃h,� ⇢ L
2(�) ⇥ H(div⌧ , �) be the lowest order Raviart-

Thomas spaces in one dimension:

⇤h =
�
� 2 L

2(�) : �|E = const, 8E 2 Gh

 
,

⌃h,� =
�
www 2 H(div⌧ , �) : www|E = az + b, (a, b) 2 R2

, 8E 2 Gh

 
.
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As the advection equations are solved using an upwind scheme, we let

G in
h,i

=
�
E 2 Gh :

R
E
uuui · nnnKi < 0

 
, Gout

h,i
=
�
E 2 Gh :

R
E
uuui · nnnKi > 0

 
,

G in
h,i

=
�
E 2 Gh :

R
E
uuui · nnnKi < 0

 
, Gout

h,i
=
�
E 2 Gh :

R
E
uuui · nnnKi > 0

 
,

The sets G in
h,i

and Gout
h,i
, i = 1, 2 represent the inflow and outflow boundary edges on the inter-

face for each subdomain. We remark that because of the presence of the fracture with strong

heterogeneity property, the normal component of the Darcy velocity may not be continuous

across the fracture-interface; therefore, G in
h,i

and Gout
h,j

for i = 1, 2, j = (3� i) are not the

same. This is different from the case with artificial interfaces (resulted from nonoverlapping

domain decomposition) where the flux is continuous across the interfaces (see, e.g., [66]). Next,

we define the upwind values ĉn,l
h,i

, for n = 0, . . . , N � 1, l = 0, . . . , L� 1, on each edge of the

subdomain mesh, which depend on the normal component of the Darcy velocity uuui, i = 1, 2.

For E 2 Eh,i and E 6⇢ @⌦, let uKi,E :=
1

|E|
R
E
uuui · nnnKi , where Ki 2 Kh,i such that E ⇢ @Ki.

If E 2 Eh,i lying on the boundary @⌦, let u⌦i,E :=
1

|E|
R
E
uuui · nnni. The upwind values for the

two-dimensional advection problems in the subdomains are defined using the upwind operators

Uh,i, i = 1, 2:
Uh,i : Mh,i ⇥ ⇤i �! Nh,i⇣

c
n,l

h,i
, c

n,l

h,�

⌘
7! ĉ

n,l

h,i
,

(3.4)

where

⇣
ĉ
n,l

h,i

⌘

|E
=

8
>>>>>><

>>>>>>:

0, if E ⇢ @⌦i \ ⌦ and u⌦i,E < 0,⇣
c
n,l

h,i

⌘

|K
, if E ⇢ ⌦i and K is an element in Kh,i,

having E as an edge and uKi,E � 0,⇣
c
n,l

h,�

⌘

|E
, if E ⇢ G in

h,i
.

(3.5)

Similarly for the one-dimensional advection equation in the fracture, the upwind values
⇣
ĉ
n,l

h,�

⌘
n=0,...,N�1
l=0,...,L�1

are defined at each endpoint P of the edge E in Gh and are given by ĉ
n,l

h,�
:= Uh,�

⇣
c
n,l

h,�

⌘
:

⇣
ĉ
n,l

h,�

⌘

|P
=

8
<

:

0 if P 2 @� and uP,E  0,
⇣
c
n,l

h,�

⌘

|E
if uP,E > 0,

(3.6)

where uP,E = (uuu� ·nnnE)|P . Finally, let c0
h,i

be the L
2�projection of c0,i onto Mh,i for i = 1, 2:

c
0
h,i|Ki

:=
1

|Ki|

Z

Ki

c0,i, 8Ki 2 Kh,i, (3.7)
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and c
0
h,�

be the L
2�projection of c0,� onto ⇤h:

c
0
h,�|E :=

1

|E|

Z

E

c0,� , 8E 2 Gh. (3.8)

With the above notation, the fully discrete problem for (3.2)-(3.3) is defined as follows:

for n = 0, . . . , N � 1,

1. set cn,0
h,i

= c
n

h,i
, i = 1, 2, and c

n,0
h,�

= c
n

h,�
where c

0
h,i
, c

0
h,�

are given by (3.7) and (3.8),

respectively;

2. for l = 0, . . . , L� 1,

(a) set ĉn,l
h,i

(i = 1, 2) and ĉ
n,l

h,�
as in (3.5) and (3.6),

(b) solve the advection equations in ⌦i (i = 1, 2) and on �:

Z

Ki

�i

c
n,l+1
h,i

� c
n,l

h,i

�ta
+

P
E2@Ki

⇣
ĉ
n,l

h,i

⌘

|E
|E|uKi,E = 0, 8Ki 2 Kh,i, (3.9)

Z

E

��

c
n,l+1
h,�

� c
n,l

h,�

�ta
+
P

P2@E

⇣
ĉ
n,l

h,�

⌘

|P
uP,E =

Z

E

2P
i=1

ĉ
n,l

h,i
(ui · ni|�), 8E 2 Gh,

(3.10)

with c
n,l

h,i
and c

n,l

h,�
known to obtain c

n,l+1
h,i

and c
n,l+1
h,�

;

3. solve the coupled diffusion problem in ⌦i (i = 1, 2) and on � with the initial conditions

c
n,L

h,i
and c

n,L

h,�
:

Z

Ki

�i

c
n+1
h,i

� c
n,L

h,i

�t
+

Z

Ki

div rn+1
h,i

=

Z

Ki

qi(tn+1), 8Ki 2 Kh,i,

Z

⌦
DDD

�1
i

rn+1
h,i

· vh,i �
Z

⌦
c
n+1
h,i

div vh,i = �
Z

�

c
n+1
h,�

�
vh,i · ni|�

�
, 8vh,i 2 ⌃h,i,

(3.11)

Z

E

��

c
n+1
h,�

� c
n,L

h,�

�t
+

Z

E

div⌧ rn+1
h,�

=

Z

E

✓
q�(tn+1) +

2P
i=1

rn+1
h,i

· ni|�

◆
, 8E 2 Gh,

Z

�

(D��)
�1 rn+1

h,�
· vh,� �

Z

�

c
n+1
h,�

div⌧vh,� = 0, 8vh,� 2 ⌃h,� ,

(3.12)

to obtain c
n+1
h,i

, rn+1
h,i

, cn+1
h,�

, and rn+1
h,�

.
The fully discrete system (3.9)-(3.12) can be solved directly to obtain the approximate

solution of the original problem (3.2)-(3.3). Alternatively, it can be reformulated as a global-

in-time DD algorithm. We begin with decoupling (3.9)-(3.12) into the following local problems

on each ⌦i, i = 1, 2: for n = 0, . . . , N � 1,
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1. set cn,0
h,i

= c
n

h,i
, i = 1, 2, where c

0
h,i
, are given by (3.7);

2. for l = 0, . . . , L� 1,

(a) set ĉn,l
h,i

= Uh,i

⇣
c
n,l

h,i
, (cn,l

h,i
)|�
⌘

(i = 1, 2),

(b) solve the advection equation:

Z

Ki

�i

c
n,l+1
h,i

� c
n,l

h,i

�ta
+

P
E2@Ki

⇣
ĉ
n,l

h,i

⌘

|E
|E|uKi,E = 0, 8Ki 2 Kh,i, (3.13)

with c
n,l

h,i
known to obtain c

n,l+1
h,i

, i = 1, 2, ;

3. solve the diffusion problem with the initial condition c
n,L

h,i
:

Z

Ki

�i

c
n+1
h,i

� c
n,L

h,i

�t
+

Z

Ki

div rn+1
h,i

=

Z

Ki

qi(tn+1), 8Ki 2 Kh,i,

Z

⌦
DDD

�1
i

rn+1
h,i

· vh,i �
Z

⌦
c
n+1
h,i

div vh,i = �
Z

�

⇣
c
n+1
h,i

⌘

|�

�
vh,i · ni|�

�
, 8vh,i 2 ⌃h,i,

(3.14)

to obtain c
n+1
h,i

, rn+1
h,i

, i = 1, 2.

To recover the same solution as the monolithic system (3.9)-(3.12), the solution of the subdo-

main problems (3.13)-(3.14) is required to satisfy the following transmission conditions across

� ⇥ (0, T ):

• for n = 0, . . . , N � 1, l = 0, . . . , L� 1,

Z

E

c
n,l

h,i
=

Z

E

c
n,l

h,�
, 8E 2 Gh, i = 1, 2, (3.15)

Z

E

��

c
n,l+1
h,�

� c
n,l

h,�

�ta
+
X

P2@E

⇣
ĉ
n,l

h,�

⌘

|P
uP,E =

Z

E

2X

i=1

ĉ
n,l

h,i
(ui · ni|�), 8E 2 Gh, (3.16)

• for n = 0, . . . , N � 1,

Z

E

c
n+1
h,i

=

Z

E

c
n+1
h,�

, 8E 2 Gh, i = 1, 2, (3.17)

Z

E

��

c
n+1
h,�

� c
n,L

h,�

�t
+

Z

E

div⌧ rn+1
h,�

=

Z

E

✓
q� (tn+1) +

2P
i=1

rn+1
h,i

· ni|�

◆
, 8E 2 Gh,

Z

�

(D��)
�1 rn+1

h,�
· vh,� �

Z

�

c
n+1
h,�

div⌧vh,� = 0, 8vh,� 2 ⌃h,�.

(3.18)
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Due to operator splitting, we have separate transmission conditions for advection and diffu-

sion. The transmission conditions (3.15) and (3.17) are the discrete counterparts of the pres-

sure continuity across � ⇥ (0, T ) (the third equation of (3.2)), while the conditions (3.16) and

(3.18) are the discretized versions of the tangential PDEs (3.3). Using these transmission con-

ditions, we present in the next section three global-in-time DD methods: GTP-Schur, GTF-

Schur, and GTO-Schwarz. Each method is formulated as a space-time interface problem on

the fracture-interface, which is solved iteratively and globally in time. For the diffusion part,

we use (3.17)-(3.18) and apply directly the formulations developed in Chapter 2 (for GTP-

Schur and GTF-Schur) and [67] (for GTO-Schwarz) to write the respective interface equations.

For the advection, the associated interface problem is derived using the transmission condi-

tions (3.15)-(3.16).

3.2. Global-in-time DD methods with operator splitting

3.2.1. Global-in-time primal Schur (GTP-Schur) method

To derive the interface equation for the advection part, we introduce the advection concentration

�h,a =
⇣
�
n,l

h,a

⌘
n=0,...,N�1
l=0,...,L�1

2 (⇤h)
N⇥L in the fracture and enforce (3.16) across the space-time

fracture � ⇥ (0, T ). For the diffusion part, as in Section 2.2, we introduce the diffusion con-

centration �h =
�
�
n

h,�

�
n=1,...,N

2 (⇤h)
N in the fracture and use the tangential PDEs (3.18)

as the interface equations. The two variables �h,a and �h are the interface unknowns for the

GTP-Schur method. Denote by

H
1
⇤ (⌦i) :=

�
v 2 H

1(⌦i), v = 0 over @⌦i \ @⌦
 
, i = 1, 2.

Next, we define the solution operators Di, i = 1, 2, for the advection step,

Di : (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ L
2(0, T ;L2(⌦i))⇥H

1
⇤ (⌦i)⇥H

1
0 (�) �! (⇤h)

N⇥L

(�h,a, �h, qi, c0,i, c0,�) 7!
⇣
ĉ
�t,�ta

h,i

⌘

|E
, 8E 2 Gh,

(3.19)
and the Dirichlet-to-Neumann operators SDtN

i
, i = 1, 2, for the diffusion step,
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SDtN
i

: (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ L
2(0, T ;L2(⌦i))⇥H

1
⇤ (⌦i)⇥H

1
0 (�) �! (⇤h)

N

(�h,a, �h, qi, c0,i, c0,�) 7!
⇣

r�t

h,i
·nnni

⌘

|E
, 8E 2 Gh,

(3.20)

where, for i = 1, 2,

ĉ
�t,�ta

h,i
=
⇣
ĉ
n,l

h,i

⌘

n=0,...,N�1, l=0,...,L�1
, and

�
c
�t

h,i
, r�t

h,i

�
=
�
c
n

h,i
, rn

h,i

�
n=1,...,N

, (3.21)

are the solutions of the local problems (3.13)-(3.14) on each subdomain with Dirichlet boundary

conditions on � ⇥ (0, T ): for i = 1, 2,

⇣
c
n,l

h,i

⌘

|�
= �

n,l

h,a
, n = 0, 1, . . . , N � 1, l = 0, . . . , L� 1,

�
c
n+1
h,i

�
|� = �

n+1
h,�

, n = 0, 1, . . . , N � 1.

We note that the transmission conditions (3.15) and (3.17) are satisfied. By enforcing the

remaining transmission conditions, i.e. (3.16) and (3.18), we obtain the interface problem for

GTP-Schur, which consists of solving, for n = 0, . . . , N � 1,

• the advection equation: for l = 0, . . . , L� 1,

Z

E

��

�
n,l+1
h,a

� �
n,l

h,a

�ta
+
P

P2@E

⇣
�̂
n,l

h,a

⌘

|P
uP,E =

1

�ta

Z
t
n,l+1

t
n,l

Z

E

2P
i=1

�
ui · ni|�

�
Di(�h,a,�h, qi, c0,i, c0,�),

8E 2 Gh,

(3.22)

• then the diffusion equation:
Z

E

��

�
n+1
h,�

� �
n,L

h,a

�t
+

Z

E

div⌧ rn+1
h,�

=

Z

E

q�(tn+1) +
1

�t

Z
t
n+1

t
n

Z

E

2P
i=1

SDtN
i

(�h,a,�h, qi, c0,i, c0,�) , 8E 2 Gh,

(3.23)

where r
n+1
h,�

is computed by
Z

�

(D��)
�1 rn+1

h,�
· vh,� �

Z

�

�
n+1
h,�

div⌧vh,� = 0, 8vh,� 2 ⌃h,� . (3.24)

As the equations are linear, we rewrite (3.22)-(3.23) equivalently as follows:

Find (�h,a, �h) 2 (⇤h)
N⇥L ⇥ (⇤h)

N such that

SP

0

@�h,a

�h

1

A = �P, (3.25)
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where

SP

 
�h,a

�h

!
=

0

BB@

Z

E
��

�n,l+1
h,a � �n,lh,a

�ta
+

P
P2@E

⇣
�̂n,lh,a

⌘

|P
uP,E � 1

�ta

Z tn,l+1

tn,l

Z

E

2P
i=1

�
ui · ni|�

�
Di(�h,a,�h, 0, 0, 0)

Z

E
��

�n+1
h,� � �n,Lh,a

�t
+

Z

E
div⌧ rn+1

h,� � 1
�t

Z tn+1

tn

Z

E

2P
i=1

SDtN
i

�
�h,a, �h, 0, 0, 0

�

1

CCA
E2Gh

n=0,...,N�1
l=0,...,L�1

,

and

�P =

0

BBB@

1

�ta

Z
t
n,l+1

t
n,l

Z

E

2P
i=1

�
ui · ni|�

�
Di(0, 0, qi, c0,i, c0,�)

Z

E

q�(tn+1) +
1

�t

Z
t
n+1

t
n

Z

E

2P
i=1

SDtN
i

(0, 0, qi, c0,i, c0,�)

1

CCCA
E2Gh

n=0,...,N�1
l=0,...,L�1

.

The interface problem (3.25) can be solved iteratively using a Krylov subspace method,

e.g., GMRES. At each GMRES iteration, instead of computing explicitly the operator SP, only

the matrix-vector product SP(�h,a,�h) is needed. Hence, our proposed method is matrix-free.

However, it has been shown numerically for the pure diffusion problem that the convergence of

the GTP-Schur method is significantly slow [67, 70], and preconditioning is needed to enhance

the speed of convergence. Obviously, using a preconditioner could increase the computational

time as additional local problems need to be solved to construct the preconditioner. In the

next section, we formulate the discrete space-time interface system for the GTF-Schur method,

which does not require any preconditioners for fast convergence.

3.2.2. Global-in-time fracture-based Schur (GTF-Schur) method

Unlike GTP-Schur, here the interface variable for the advection represents the total normal

advective flux and is denoted by  h =
⇣
 

n,l

h

⌘
n=0,...,N�1
l=0,...,L�1

2 (⇤h)
N⇥L

, where

Z

E

 
n,l

h
:=

Z

E

2X

i=1

�
uuui · nnni|�

�
ĉ
n,l

h,i
, 8n = 0, . . . , N � 1, 8l = 0, . . . , L� 1, 8E 2 Gh. (3.26)

Equations (3.26) are also used to write the discrete space-time interface equations for the advec-

tion. This way, we obtain for the advection an interface operator which is close to the identity

operator, thus, making the interface equations a well-conditioned system.

For the diffusion part, the interface equations will be the discrete counterpart of the ones

derived in Section 2.4. One main advantage of this approach is that the interface operator for
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the diffusion is also closed to the identity, hence, it does not need any preconditioners. We

introduce the interface variable 'h = ('n

h
)
n=1,...,N 2 (⇤h)

N representing the discrete total

normal flux across � ⇥ (0, T ):

Z

E

'
n

h
:=

Z

E

2X

i=1

rrr
n

h,i
· nnni|�, for n = 1, . . . N, E 2 Gh. (3.27)

Next, we define the solution operators H�,a and H� as follows:

H�,a : (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ L
2(0, T ;L2(�))⇥H

1
0 (�) �! (⇤h)

N⇥L

( h, 'h, q�, c0,�) 7! c
�t,�ta
h,�

,

H� : (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ L
2(0, T ;L2(�))⇥H

1
0 (�) �! (⇤h)

N

( h, 'h, q�, c0,�) 7! c
�t

h,�
,

where

c
�t,�ta

h,�
=
⇣
c
n,l

h,�

⌘

n=0,...,N�1, l=0,...,L�1
, and

�
c
�t

h,�
, r�t

h,�

�
=
�
c
n

h,�
, rn

h,�

�
n=1,...,N

, (3.28)

are the solutions of the following problem in the fracture: for n = 0, . . . , N � 1,

1. set cn,0
h,�

= c
n

h,�
, where c

0
h,�

is given as in (3.8);

2. for l = 0, . . . , L� 1,

(a) compute the upwind value ĉ
n,l

h,�
= Uh,�

⇣
c
n,l

h,�

⌘
as in (3.6),

(b) solve the advection problem in the fracture:

Z

E

��

c
n,l+1
h,�

� c
n,l

h,�

�ta
+
X

P2@E

⇣
ĉ
n,l

h,�

⌘

|P
uP,E =

Z

E

 
n,l

h
, 8E 2 Gh, (3.29)

with c
n,l

h,�
known to obtain c

n,l+1
h,�

;

3. solve the diffusion equation on fracture with initial value c
n,L

h,�
:

Z

E

��

c
n+1
h,�

� c
n,L

h,�

�t
+

Z

E

div rn+1
h,�

=

Z

E

'
n+1
h

, 8E 2 Gh,

Z

�

(D��)
�1 rn+1

h,�
· vh,� �

Z

�

c
n+1
h,�

div⌧vh,� = 0, 8vh,� 2 ⌃h,�,

(3.30)
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to obtain c
n+1
h,�

and rn+1
h,�

.

For the subdomain problems, we reuse the operators Di and SDtN
i

, i = 1, 2 as defined for the

previous method (cf. (3.19) and (3.20)). The interface problem for GTF-Schur is obtained by

enforcing (3.26) and (3.27):

Z
t
n,l+1

t
n,l

Z

E

 h =

Z
t
n,l+1

t
n,l

Z

E

2P
i=1

(uuui · nnni|�)Wi( h, 'h, qi, c0,i, q�, c0,�),

Z
t
n+1

t
n

Z

E

'h =

Z
t
n+1

t
n

Z

E

2P
i=1

Vi( h, 'h, qi, c0,i, q�, c0,�),

8n = 0, . . . , N � 1, 8l = 0, . . . , L� 1, 8E 2 Gh,

(3.31)

where, for i = 1, 2,

Wi( h, 'h, qi, c0,i, q�, c0,�) := Di (H�,a( h,'h, q�, c0,�),H�( h,'h, q�, c0,�), qi, c0,i, c0,�) ,

Vi( h, 'h, qi, c0,i, q�, c0,�) := SDtN
i

(H�,a( h,'h, q�, c0,�),H�( h,'h, q�, c0,�), qi, c0,i, c0,�) .

Problem (3.31) can be rewritten equivalently as follows:

Find ( h, 'h) 2 (⇤h)
N⇥L ⇥ (⇤h)

N such that

SF

0

B@
 h

'h

1

CA = �F, (3.32)

where

SF

0

@ h

'h

1

A =

0

BBB@

Z
t
n,l+1

t
n,l

Z

E

 h �
Z

t
n,l+1

t
n,l

Z

E

2P
i=1

(uuui · nnni|�)Wi( h, 'h, 0, 0, 0, 0)

Z
t
n+1

t
n

Z

E

'h �
Z

t
n+1

t
n

Z

E

2P
i=1

Vi( h, 'h, 0, 0, 0, 0)

1

CCCA
n=0,...,N�1
l=0,...,L�1

E2Gh

,

and

�F =

0

BB@

Z
t
n,l+1

t
n,l

Z

E

2P
i=1

(uuui ·nnni|�)Wi(0, 0, qi, c0,i, q� , c0,�)

Z
t
n+1

t
n

Z

E

2P
i=1

Vi(0, 0, qi, c0,i, q� , c0,�)

1

CCA
n=0,...,N�1
l=0,...,L�1

E2Gh

.
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3.2.3. Global-in-time optimized Schwarz (GTO-Schwarz) method

The interface equations for the diffusion part of the GTO-Schwarz method are based on the

Ventcel-to-Robin transmission conditions as proposed in [67]. These generalized transmission

conditions are derived by introducing
�
c
n

i,�

�
n=1,...,N

, i = 1, 2, with c
n

i,�
representing the trace

of cn
h,i

on �⇥ (0, T ). For each c
n

i,�
, we denote by rrrn

�,i
the discrete tangential velocity associated

with c
n

i,�
through the second equation of (3.18):

Z

�

(D��)
�1 rn

�,i
· vh,� �

Z

�

c
n

i,�
div⌧vh,� = 0, 8vh,� 2 ⌃h,�, 8n = 1, . . . , N. (3.33)

Due to the continuity of the concentration across the discrete counterpart of � ⇥ (0, T ), we

have, for n = 1, . . . , N,

rrr
n

�,1 = rrr
n

�,2 = rrr
n

h,�
.

Under sufficient regularity, the transmission conditions (3.17)-(3.18) can be replaced by the

following Ventcel-to-Robin transmission conditions: for n = 0, . . . , N � 1

�
Z

E

rrr
n+1
h,1 ·nnn1|� + ↵

Z

E

c
n+1
1,� +

Z

E

��

c
n+1
1,� � c

n,L
1,�

�t
+
Z

E

div⌧ rn+1
�,1

=
Z

E

q� (tn+1) +
Z

E

rn+1
h,2 · n2|� + ↵

Z

E

c
n+1
2,� , 8E 2 Gh,

Z

�

(D��)
�1 rn+1

�,1 · vh,� �
Z

�

c
n+1
1,� div⌧vh,� = 0, 8vh,� 2 ⌃h,� ,

(3.34)

�
Z

E

rrr
n+1
h,2 ·nnn2|� + ↵

Z

E

c
n+1
2,� +

Z

E

��

c
n+1
2,� � c

n,L

2,�

�t
+

Z

E

div⌧ rn+1
�,2

=

Z

E

q�

�
t
n+1
�
+

Z

E

rn+1
h,1 · n1|� + ↵

Z

E

c
n+1
1,� , 8E 2 Gh,

Z

�

(D��)
�1 rn+1

�,2 · vh,� �
Z

�

c
n+1
2,� div⌧vh,� = 0, 8vh,� 2 ⌃h,� ,

(3.35)

for some parameter ↵ > 0.

For the advection, we also introduce
⇣
c
n,l

i,�

⌘
n=0,...,N�1
l=0,...,L

, i = 1, 2, which are the traces of

the advection concentration on �⇥ (0, T ). The interface equation associated with the advection

is treated in the same way as for GTF-Schur. In particular, the interface unknown for the

advection part is  h =
⇣
 

n,l

h

⌘
n=0,...,N�1
l=0,...,L�1

2 (⇤h)
N⇥L satistying equation (3.26).
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The discrete space-time interface problem for the GTO-Schwarz method is then derived

using the transmission conditions (3.26) and (3.34)-(3.35). To this end, we denote by ✓h,i =
�
✓
n

h,i

�
n=1,...,N

in (⇤h)
N
, i = 1, 2, the space�time discrete Robin data transmitted from one

sub-domain to the neighboring sub-domain at each diffusion time step:

Z

E

✓
n

h,i
=

Z

E

�
rrr
n

h,i
· nnni|� + ↵c

n

i,�

�
, 8n = 1, . . . , N.

We next define the solution operators Ri and the Ventcel-to-Robin operators SVtR
i

, (i = 1, 2):

Ri : (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ L
2(0, T ;L2(⌦i))⇥H

1
⇤ (⌦i)⇥ L

2(0, T ;L2(�))⇥H
1
0 (�) �! (⇤h)

N⇥L

( h, ✓h,i, qi, c0,i, q�, c0,�) 7!
⇣
ĉ
�t,�ta
h,i

⌘

|E
, 8E 2 Gh,

SVtR
i

: (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ L
2(0, T ;L2(⌦i))⇥H

1
⇤ (⌦i)⇥ L

2(0, T ;L2(�))⇥H
1
0 (�) �! (⇤h)

N

( h, ✓h,i, qi, c0,i, q�, c0,�) 7!
�
r�t

h,i
· ni + ↵c

�t

i,�

�
|E , 8E 2 Gh,

where
⇣
ĉ
�t, �ta

h,i
, c

�t

h,i
, rrr

�t

h,i

⌘
and

�
c
�t

i,�
, rrr

�t

�,i

�
are given as in (3.21) and (3.28), respectively,

and are computed by solving the following subdomain problem defined on ⌦i, i = 1, 2: for

n = 0, . . . , N � 1,

1. set cn,0
h,i

= c
n

h,i
, c

n,0
i,�

= c
n

i,�
, where c

0
h,i
, c

0
i,�

are given by (3.7) and (3.8), respectively;

2. for l = 0, . . . , L� 1,

(a) calculate the upwind values ĉn,l
h,i

= Uh,i

⇣
c
n,l

h,i
, c

n,l

i,�

⌘
and ĉ

n,l

h,�
= Uh,�(c

n,l

i,�
),

(b) solve the advection equations in the subdomain and in the fracture:

Z

Ki

�i

c
n,l+1
h,i

� c
n,l

h,i

�ta
+

P
E2@Ki

⇣
ĉ
n,l

h,i

⌘

|E
|E|uKi,E = 0, 8Ki 2 Kh,i,

Z

E

��

c
n,l+1
i,�

� c
n,l

i,�

�ta
+
P

P2@E

⇣
ĉ
n,l

i,�

⌘

|P
uP,E =

Z

E

 
n,l

h
, 8E 2 Gh,

(3.36)

with c
n,l

h,i
, c

n,l

i,�
known to obtain c

n,l+1
h,i

and c
n,l+1
i,�

;

3. solve the coupled diffusion equation in the subdomain with initial conditions (cn,L
h,i

, c
n,L

i,�
):
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Z

Ki

�i

c
n+1
h,i

� c
n,L

h,i

�t
+

Z

Ki

div rn+1
h,i

=

Z

Ki

qi(tn+1), 8Ki 2 Kh,i,

Z

⌦
DDD

�1
i

rn+1
h,i

· vi �
Z

⌦
c
n+1
h,i

div vh,i +
Z

�

c
n+1
i,�

�
vh,i · ni|�

�
= 0, 8vh,i 2 ⌃h,i,

�
Z

E

rn+1
h,i

· ni + ↵

Z

E

c
n+1
i,�

+

Z

E

��

c
n+1
i,�

� c
n,L

i,�

�t
+

Z

E

div rn+1
�,i

=

Z

E

⇣
✓
n+1
h,i

+ q�

�
t
n+1
�⌘

,

8E 2 Gh,

Z

�

(D��)
�1 rn+1

�,i
· vh,� �

Z

�

c
n+1
i,�

div vh,� = 0, 8vh,� 2 ⌃h,� ,

(3.37)

to obtain c
n+1
h,i

, rn+1
h,i

, cn+1
i,�

, and rn+1
�,i

.

With these operators, the interface problem for the GTO-Schwarz method can be formulated as

follows: find ( h, ✓h,1, ✓h,2) 2 (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ (⇤h)
N such that

Z
t
n,l+1

t
n,l

Z

E

 h =

Z
t
n,l+1

t
n,l

Z

E

2X

i=1

(ui · ni|�)Ri( h, ✓h,i, qi, c0,i, q�, c0,�),

Z
t
n+1

t
n

Z

E

✓h,1 =

Z

E

q� (tn+1) +

Z
t
n+1

t
n

SVtR
2 ( h, ✓h,2, q2, c0,2, q�, c0,�),

Z
t
n+1

t
n

Z

E

✓h,2 =

Z

E

q� (tn+1) +

Z
t
n+1

t
n

SVtR
1 ( h, ✓h,1, q1, c0,1, q�, c0,�),

8n = 0, . . . , N � 1, 8l = 0, . . . , L� 1, 8E 2 Gh.

(3.38)

Equivalently, (3.38) can be formulated in a more compact form:

find ( h, ✓h,1, ✓h,2) 2 (⇤h)
N⇥L ⇥ (⇤h)

N ⇥ (⇤h)
N such that

SO

0

BBBBB@

 h

✓h,1

✓h,2

1

CCCCCA
= �O, (3.39)

where

SO

0

BBBB@

 h

✓h,1

✓h,2

1

CCCCA
=

0

BBBBBBB@

Z
t
n,l+1

t
n,l

Z

E

 h �
Z

t
n,l+1

t
n,l

Z

E

2P
i=1

(ui · ni|�)Ri( h, ✓h,i, 0, 0, 0, 0)

Z
t
n+1

t
n

Z

E

✓h,1 �
Z

t
n+1

t
n

SVtR
2 ( h, ✓h,2, 0, 0, 0, 0)

Z
t
n+1

t
n

Z

E

✓h,2 �
Z

t
n+1

t
n

SVtR
1 ( h, ✓h,1, 0, 0, 0, 0)

1

CCCCCCCA
n=0,...,N�1
l=0,...,L�1

E2Gh

,
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and

�O =

0

BBBBBBBB@

Z
t
n,l+1

t
n,l

Z

E

2X

i=1

(ui · ni|�)Ri(0, 0, qi, c0,i, q�, c0,�)

Z

E

q� (tn+1) +

Z
t
n+1

t
n

SVtR
2 (0, 0, q2, c0,2, q�, c0,�)

Z

E

q� (tn+1) +

Z
t
n+1

t
n

SVtR
1 (0, 0, q1, c0,1, q�, c0,�)

1

CCCCCCCCA
n=0,...,N�1
l=0,...,L�1

E2Gh

.

Remark 3.1. With operator splitting, we have formulated the interface equations for the GTO-

Schwartz where the Ventcel-Robin parameter ↵ only appears in the diffusion equations. There-

fore, the optimized parameter can be calculated in the same way as in the pure diffusion prob-

lems (see [67]).

The space-time interface system derived for each method is global-in-time, thus, one can im-

pose different time steps in the fracture and in the subdomains. In the next section, we show

how to formulate the interface problem for each method when nonconforming time grids are

used.

3.3. Nonconforming discretization in time

In this section, we derive the discrete interface problems for the GTP-Schur, the GTF-Schur

and the GTO-Schwarz methods with nonconforming time grids.

Let T1, T2, and T� be three different uniform partitions of the time interval (0, T ] into

N1, N2 and N� sub-intervals J
n

i
= (tn�1

i
, t

n

i
], n = 1, . . . , Ni, with length �ti, for i =

1, 2, �, respectively (see Figure 3.2). As the fracture is assumed to have much larger perme-

ability than the surrounding domain, we choose �t� such that �t� ⌧ �ti, i = 1, 2. The

sub-time step for the advection in each subdomain is defined by �ti = Li�ti,a, i = 1, 2, �,

and we denote by T a

i
, i = 1, , 2, �, the corresponding partition of (0, T ] into NiLi sub-

intervals for the advection. For n = 1, . . . , Ni, we let Jn,l

i
= (tn�1,l�1

i
, t

n�1,l
i

], l = 1, . . . , Li,

be the sub-intervals of Jn

i
resulted from the partition T a

i
, i = 1, 2, �.

For i = 1, 2, �, we denote by P0 (Ti, L
2(�)) the space of functions which are piecewise

constant in time on grid Ti with values in L
2(�):
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P0

�
Ti, L

2(�)
�
=
�
 : (0, T ) ! L

2(�),  is constant on J, 8J 2 Ti

 
.

In order to exchange data on the space-time interface between different time grids, we define,

for i, j = {1, 2, �}, the projection ⇧ji from P0 (Ti, L
2(�)) to P0 (Tj, L

2(�)) as follows: for

 2 P0 (Ti, L
2(�)), ⇧ji |Jn

j
is the average value of  on J

n

j
, for n = 1, . . . , Nj:

⇧ji |Jn
j
=

1

|Jn

j
|

NiX

l=1

Z

J
n
j \J l

i

 . (3.40)

Similarly, we define the average-value projection ⇧a

ji
from P0 (T a

i
, L

2(�)) to P0

�
T a

j
, L

2(�)
�
,

for i, j in {1, 2, �}.

Figure 3.2: Nonconforming advection and diffusion time grids in the rock matrix and fracture.

To write the interface equations for the diffusion and the advection, we enforce the trans-

mission conditions weakly over the nonconforming time grids. It can be done similarly as in

the pure diffusion case which has been presented in Section 2.5 of Chapter 2.

3.3.1. GTP-Schur method

We choose �h,a and �h to be piecewise constant in time on the advection and diffusion time

grids imposed in the fracture, respectively. The interface system (3.22)-(3.23) is rewritten as:
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n,l+1
h,a

� �
n,l

h,a

�t�,a
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⇣
�̂
n,l

h,a

⌘
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�h,a,⇧i��h, qi, c0,i),

Z

E

��

�
n+1
h,�

� �
n,L

h,a

�t�
+

Z

E

div⌧ rn+1
h,�

=

Z

E

q�(tn+1
� ) +

1

�t�

Z
t
n+1
�

t
n
�

Z

E

2P
i=1

⇧�iSDtN
i

⇣
⇧a

i�
�h,a,⇧i��h, qi, c0,i

⌘
,

(3.41)

where r
n+1
h,�

is computed as:
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Z

�

(D��)
�1 rn+1

h,�
· vh,� �

Z

�

�
n+1
h,�

div⌧vh,� = 0, 8vh,� 2 ⌃h,�,

8n = 0, . . . , N� � 1, 8l = 0, . . . , L� � 1, 8E 2 Gh.

(3.42)

3.3.2. GTF-Schur method

We choose 'h,  h to be piecewise constant in time on the advection and diffusion time grids

imposed in the fracture, respectively. The interface system (3.31) is then rewritten as:

Z
t
n,l+1
�

t
n,l
�

Z

E

 h =

Z
t
n,l+1
�

t
n,l
�

Z

E

2P
i=1

(uuui · nnni|�)⇧a

�i
Wi(⇧a

i�
 h,⇧i�'h, qi, c0,i, q�, c0,�),

Z
t
n+1
�

t
n
�

Z

E

'h =

Z
t
n+1
�

t
n
�

Z

E

2P
i=1

⇧�iVi(⇧a

i�
 h,⇧i�'h, qi, c0,i, q�, c0,�),

8n = 0, . . . , N� � 1, 8l = 0, . . . , L� � 1, 8E 2 Gh.

(3.43)

3.3.3. GTO-Schwar method

We choose 'h to be piecewise constant in time on the advection time grid imposed in the

fracture. For the Ventcel term ✓h,i, i = 1, 2, we employ the same technique as in [67]. The

interface system (3.38) is rewritten as:

Z
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n,l+1
�

t
n,l
�

Z

E

 h =

Z
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n,l+1
�

t
n,l
�

Z

E

2X
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E
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E
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3.4. Numerical results

Numerical results are presented in this section to illustrate and compare the convergence be-

havior and the errors in time of the three methods proposed in the previous sections: GTP-

Schur, GTF-Schur, and GTO-Schwarz. Two test cases are considered: Test case 2.1 with

non-immersed fracture and Test case 2.2 with partially immersed fracture where the diffusion
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DDDi = diI is isotropic and constant in each subdomain and on the fracture, in which I is the 2D

identity matrix. The velocity uuu = (uuu1,uuu2,uuu�) presented in (3.2)-(3.3) is obtained by solving

the steady-state flow problem on the subdomains

div uuui = 0 in ⌦i ⇥ (0, T ),

uuui = �kirpi in ⌦i ⇥ (0, T ),

pi = gi on (@⌦i \ @⌦)⇥ (0, T ),

pi = p� on � ⇥ (0, T ),

pi(·, 0) = p0,i in ⌦i,

i = 1, 2, (3.45)

and in the fracture,
div⌧uuu� =

2P
i=1

uuui · nnni|� in � ⇥ (0, T ),

uuu� = �k��r⌧p� in � ⇥ (0, T ),

p� = g� on @� ⇥ (0, T ),

p�(·, 0) = p0,� in �,

(3.46)

where, for i = 1, 2, �, qi is the source term, pi the pressure, uuui the Darcy velocity, and ki the

time-independent hydraulic conductivity in the subdomains and in the fracture, respectively.

The global Péclect (Pe) numbers on each subdomain and on the fracture are defined as

Pei = max
K2Kh,i

Hi max
(x,y)2K

|uuui,K(x, y)|

di
, i = 1, 2, Pe� = max

E2E�
h

H� max
y2E

|uuu�,E(y)|

d�
, (3.47)

where Hi, i = 1, 2, � are the size of the subdomains ⌦i, respectively and uuui,K , i = 1, 2 and

uuu�,E are the restrictions of uuui and uuu� on the element K and the edge E, respectively. We also

include in Table 3.1 the values of the Péclet numbers corresponding to the given parameters.

The discrete interface problem for each method is solved iteratively using GMRES with a

random initial guess. The iterations are stopped when the relative residual error is less than 10�6

(Test case 2.1) or 10�8 (Test case 2.2). All computed errors are relative space-time errors in the

space L2(0, T ; L
2(O))-norm, where O is either ⌦1, ⌦2, or �. For both test cases, the errors are

computed using a reference solution on a fine time step �tref = T/512 with T = 2. To compare

the convergence speed of different iterative algorithms, we report the number of subdomain

solves for each method to reach the same GMRES relative residual. Without preconditioning,

the number of subdomain solves is the same as the number of GMRES iterations; however,
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when a preconditioner is used (cf. Test case 2.2), one iteration of the preconditioned GTF-

Schur method costs twice as much as one iteration of GTF-Schur with no preconditioner (in

terms of number of subdomain solves). We fix the spatial mesh size h = 1/50 for Test case 2.1

and h = /80 for Test case 2.2, while varying the time step size to verify the accuracy in time.

3.4.1. Test case 2.1: non-immersed fracture

Figure 3.3: A contaminant storage crossed by a fracture.

We consider an adapted version of the test case used in [5]. A contaminant repository,

located in a rock with low permeability, is leaking (Figure 3.3). The repository is crossed by a

fracture and transported mostly upward. The rock is covered by an aquifer and the contaminant

is assumed to be moved away instantly at the top boundary of the domain calculation so the

boundary condition there is a vanishing concentration. The actual physical parameters are given

in Table 3.1.

Parameters Subdomains Fracture
Hydraulic conductivity ki 3.15⇥10�8 10�7

Molecular diffusion di 10�5 3.15⇥ 10�4

Porosity �i 0.05 0.1
Subdomains dimensions 10⇥ 10 -
Fracture width - 1
Péclet number Pei 6.77e-02 3.00e-04

Table 3.1: Physical parameters for the experiment shown in Figure 3.3.

Boundary conditions are as follows. For the velocity, we assume that there is no horizontal

flow on the lateral sides of the domain while a pressure drop constant in time is given between

the top and bottom boundaries. At the top, the pressure is constant in space while at the bottom

it is increasing slightly from the fracture toward the lateral sides. For the concentration, it is

given, constant, at the top and bottom boundaries, vanishing at the top. On the lateral sides, we

assume that there is no exchange with the outside.
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Figure 3.4: [Test case 2.1] Concentration field (left) and velocity field (right).

We show in Figure 3.4 the snapshots of the concentration and the velocity fields at the

final time T = 4. The blue and red arrows represent the flows in the subdomains and in the

fracture, respectively. Their lengths are proportional to the magnitude of the velocities. The

concentration is moved upward by the velocity and the one near the fracture is quickly trans-

ported. There is an interaction between the velocity field in the fracture and in the subdomains

as some of them flow out of the fracture and some flow into it (near the top of the fracture).

Since kf � ki, i = 1, 2, the velocity is much larger in the fracture than in the surrounding

porous media.

We first consider the case with conforming temporal discretization and illustrate the per-

formance of the following methods: GTP-Schur, GTF-Schur, and GTO-Schwarz. We vary the

time step sizes �ti = �t for i = 1, 2, �. We begin with verifying the errors in time of these

methods.

The sub-time step L is fixed and is equal to 2. Table 3.2 shows the L
2-errors for the

pressure and velocity computed once GMRES converges. As all methods produce nearly the

same approximate solutions, only one table is presented. Moreover, the numbers shown in the

square brackets confirm the first-order convergence in time for both concentration and velocity.

We next investigate the convergence speed of these methods when different Péclet num-

bers are used via the relative residuals versus the number of subdomain solves shown in Fig-

ure 3.5. Since the GTP-Schur method converges very slowly, we only show the curves after 50

iterations for figure purpose. Three sets of Péclet (Pe) numbers are chosen based on the values
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of the hydraulic conductivity. The final time T is set to be T = 0.05. We impose the same

time step �t = T/N in the fracture and in the subdomains where N = 16. To satisfy the CFL

condition for the upwind scheme used to solve the advection equation, a sub-time step L will

be chosen corresponding to each value of the Pe number. The parameters for these three cases

are shown in Table 3.3.

Errors for concentration Errors for velocity
�t ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 4.87e-02 4.87e-02 3.86e-02 8.79e-02 8.79e-02 6.13e-02

T/8 2.48e-02 2.48e-02 1.93e-02 4.36e-02 4.36e-02 2.96e-02
[0.97] [0.97] [1.00] [1.01] [1.01] [1.05]

T/16 1.23e-02 1.23e-02 9.52e-03 2.15e-02 2.15e-02 1.44e-02
[1.01] [1.01] [1.02] [1.02] [1.02] [1.04]

T/32 6.00e-03 6.00e-03 4.61e-03 1.04e-02 1.04e-02 6.91e-03
[1.04] [1.04] [1.05] [1.05] [1.05] [1.06]

Table 3.2: [Test case 2.1] Relative L
2-errors of the concentration and velocity with conforming time

grid. The corresponding convergence rates are shown in square brackets.

Parameters

ki

⌦1 1e-06 1e-05 2.3e-05
⌦2 1e-06 1e-05 2.3e-05
⌦f 7e-03 7e-02 1.4e-01

Pei
⌦1 ⇡ 0.37 ⇡ 3.8 ⇡ 8.4

⌦2 ⇡ 0.37 ⇡ 3.8 ⇡ 8.4

⌦f ⇡ 4.4 ⇡ 44 ⇡ 89

Final time T 0.05 0.05 0.05

Number of time steps N
Nonconforming

⌦1 8 8 8

⌦2 8 8 8

⌦f 16 16 16

Conforming 16 16 16

Number of sub-time step L 4 8 16

Table 3.3: [Test case 2.1] Parameters for different cases.

From Figure 3.5, we see that, for all cases, the GTP-Schur method has the slowest con-

vergence speed compared to the other methods. Only the GTF-Schur method has nearly the

same convergence rate as the GTO-Schwarz method. This shows the efficiency of this method

as it does not need any preconditioners to achieve such fast convergence. Finally, GTF-Schur
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Figure 3.5: [Test case 2.1] Relative residual versus number of subdomain solves obtained from each
method with different Péclet numbers with conforming time grid.

and GTO-Schwarz are insensitive to the effect of the advection, as their curves do not change

shapes when we increase the Péclet numbers.

Next, we examine the above three methods in the case of nonconforming time grids. Sim-

ilar to the conforming case, we first analyze the errors in time obtained from these methods

when the stopping criteria of GMRES are reached. Since we have the same diffusion coeffi-

cients in the subdomains which are smaller than that in the fracture, we impose the same large

time step in the subdomains and a smaller one in the fracture: �t1 = �t2 = 2�t� . The relative

errors of the concentration and velocity are shown in Table 3.4 and 3.5, respectively. From

the numbers in the square brackets, we see that these methods still preserved the first-order

convergence in time. However, due to the nonconforming time projections, the errors obtained

from these methods are different. By comparing with Table 3.2, the errors in the fracture by
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GTP-Schur and GTF-Schur are close to those with fine time steps imposed on the whole do-

main, while for GTO-Schwarz, these errors are close to the ones with uniform coarse time

steps instead. We have these error differences because, for GTF-Schur and GTP-Schur, the

local problems in the fracture are solved independently of those on the subdomains, while for

the GTO-Schwarz, these problems are coupled through the Ventcel boundary condition. Such

behavior is expected and has been observed in the pure diffusion case as what has been shown

in the previous chapter, which highlights one of the main benefits of GTF-Schur.

GTO-Schwarz GTF-Schur
GTP-Schur

�ti �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/8 4.87e-02 4.87e-02 3.84e-02 4.87e-02 4.87e-02 1.74e-02

T/8 T/16 2.47e-02 2.47e-02 1.92e-02 2.47e-02 2.47e-02 8.59e-03
[0.97] [0.97] [0.99] [0.97] [0.97] [1.00]

T/16 T/32 1.23e-02 1.23e-02 9.46e-03 1.23e-02 1.23-02 4.16e-03
[1.01] [1.01] [1.02] [1.01] [1.01] [1.02]

T/32 T/64 5.99e-03 5.99e-03 4.58e-03 5.96e-03 5.96e-03 1.93e-03
[1.04] [1.04] [1.05] [1.04] [1.04] [1.05]

Table 3.4: [Test case 2.1] Relative L
2-errors of the concentration with nonconforming time grid. The

corresponding convergence rates are shown in square brackets.

GTO-Schwarz GTF-Schur
GTP-Schur

�ti �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/8 8.79e-02 8.79e-02 6.11e-02 8.79e-02 8.79e-02 2.99e-02

T/8 T/16 4.36e-02 4.36e-02 2.96e-02 4.35e-02 4.35e-02 1.45e-02
[1.01] [1.01] [1.05] [1.01] [1.01] [1.05]

T/16 T/32 2.15e-02 2.15e-02 1.44e-02 2.13e-02 2.13-02 6.93e-03
[1.02] [1.02] [1.04] [1.02] [1.02] [1.04]

T/32 T/64 1.04e-02 1.04e-02 6.90e-03 1.03e-02 1.03e-02 3.22e-03
[1.05] [1.05] [1.06] [1.03] [1.03] [1.06]

Table 3.5: [Test case 2.1] Relative L
2-errors of the velocity with nonconforming time grid. The corre-

sponding convergence rates are shown in square brackets.

We conclude this subsection by showing in Figure 3.6 the residual curves versus the num-

ber of subdomain solves. For the nonconforming case, we use a large time step in the sub-

domains and a smaller one in the fracture: �t1 = �t2 = �t = T/N , �tf = T/Nf where

N = 8 and Nf = 16 (see Table 3.3). The sub-time step L for each value of the Péclet number is
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chosen to be the same as in the conforming case. The GTF-Schur and the GTO-Schwarz meth-

ods still have nearly the same fast convergence, while the GTP-Schur method has the slowest

convergence speed. Moreover, like the conforming case, these methods are not affected by

the advection as they maintain their convergence rate regardless of the values of the Péclect

numbers. In summary, for Test case 2.1, we see that GTF-Schur is the most effective method

since it achieves a remarkably fast convergence without the need of a preconditioner as well as

preserves the accuracy in time when nonconforming time grids are used.
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Figure 3.6: [Test case 2.1] Relative residual versus number of subdomain solves obtained from each
method with different Péclet numbers with nonconforming time grid.

3.4.2. Test case 2.2: immersed fracture

In this section, we aim to study numerically the performance of the GTF-Schur and the GTO-

Schwarz methods using Test case 2.2, which is the case where the porous media contains a

partially immersed fracture. In this case, we consider the same geometry, boundary conditions,

and parameters as in Test case 2.1, except now only one tip of the fracture is attached to the
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external boundary, while the other tip is submerged inside the rock matrix. Consequently, a

no-flow boundary condition is considered at the immersed tip.

Figure 3.7: [Test case 2.2] (Left) Geometry of the rock matrix with immersed fracture �. (Right) An
artificial interface �a is introduced to decompose the domain into two disjoint subdomains.

To solve Test case 2.2 using global-in-time DD methods, we first introduce an additional

interface �a so that, together with the partially immersed fracture �, they form a single fracture

� separating the original domain into two disjoint subdomains (as depicted in Figure 3.7).

Due to operator splitting, each interface system on � ⇥ (0, T ) consists of equations imposing

the transmission conditions across � and �a for both diffusion and advection. Similar to the

non-immersed case, the interface equations for the diffusion on � ⇥ (0, T ) and �a ⇥ (0, T )

are derived using the techniques developed in Chapter 2. For the advection part, the interface

equations on � ⇥ (0, T ) will be the same as derived for the non-immersed fracture case (the

first equations of (3.31) for GTF-Schur and of (3.38) for GTO-Schwarz). For the space-time

artificial interface �a ⇥ (0, T ), we employ the technique developed in [66] for the case with

a normal fracture. Since we need to precondition the interface system for the diffusion of

the GTF-Schur method as in Chapter 2, we call this method preconditioner GTF-Schur. We

shall carry out in this section several numerical experiments to demonstrate and compare the

performance of preconditioner GTF-Schur with GTO-Schwarz.

We first show in Figure 3.8 the snapshots of the concentration and the velocity fields at

the final time T = 4. As the boundary conditions on the external boundary edges of the rock

matrix are the same as in Test case 2.1, similar behaviors for the concentration and the velocity

fields are observed. However, the length of the red arrows representing the magnitude of the

fracture velocity decreases as the flow travels toward the immersed tip since a no-flow boundary
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Figure 3.8: [Test case 2.2] Concentration field (left) and velocity field (right).

condition is imposed there. Moreover, at the immersed tip, the subdomain velocities tend to

flow into the subdomains instead of converging at the endpoint of the fracture.

We next present the numerical results obtained from these methods when conforming time

grids are imposed. We show in Table 3.6 the relative L
2-errors computed from all methods

for concentration and velocity. Like Test case 2.1, only one table is needed to be shown as

both methods return nearly the same approximate solutions. Moreover, first-order convergence

in time is still observed for both concentration and velocity. Next, we report in Table 3.7

the number of subdomain solves needed to achieve the required tolerance. Unlike Test case

2.1, GTF-Schur converges more slowly than GTO-Schwarz, but its convergence speed is still

relatively fast. This behavior has been observed for the pure diffusion problems in the previous

chapter due to the complexity of the problem which requires us to apply a preconditioner to

enhance the performance of GTF-Schur.

Errors for concentration Errors for velocity
�t ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 4.69e-02 4.69e-02 4.28e-02 8.60e-02 8.60e-02 6.55e-02

T/8 2.38e-02 2.38e-02 2.19e-02 4.27e-02 4.27e-02 3.25-02
[0.98] [0.98] [0.97] [1.01] [1.01] [1.01]

T/16 1.18e-02 1.18e-02 1.11e-02 2.12e-02 2.12e-02 1.62e-02
[1.01] [1.01] [0.98] [1.01] [1.01] [1.00]

T/32 5.64e-03 5.64e-03 5.49e-03 1.08e-02 1.08e-02 8.00e-03
[1.07] [1.07] [1.02] [0.97] [0.97] [1.02]

Table 3.6: [Test case 2.2] Relative L
2-errors of the concentration and velocity with conforming time

grid. The corresponding convergence rates are shown in square brackets.
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�t T/4 T/8 T/16 T/32
Methods
Preconditioned GTF-Schur 16 16 18 18
GTO-Schwarz 13 13 13 13
Table 3.7: [Test case 2.2] Numbers of subdomain solves when conforming time grid is used; the toler-
ance for GMRES is set to be 10�8.

GTO-Schwarz Preconditioned GTF-Schur
�t �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/8 4.69e-02 4.69e-02 4.29e-02 4.72-02 4.72e-02 1.79e-02

T/8 T/16 2.38e-02 2.38e-02 2.20e-02 2.38e-02 2.38e-02 9.14e-03
[0.98] [0.98] [0.96] [0.99] [0.99] [0.97]

T/16 T/32 1.18e-02 1.18e-02 1.11e-02 1.18e-02 1.18e-02 4.57e-03
[1.01] [1.01] [0.99] [1.01] [1.01] [1.00]

T/32 T/64 5.64e-03 5.64e-03 5.50-03 5.63e-03 5.63e-03 2.23e-03
[1.07] [1.07] [1.01] [1.07] [1.07] [1.04]

Table 3.8: [Test case 2.2] Relative L
2-errors of the concentration with nonconforming time grid. The

corresponding convergence rates are shown in square brackets.

GTO-Schwarz Preconditioned GTF-Schur
�t �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/8 8.61e-02 8.61e-02 6.56e-02 8.57e-02 8.57e-02 2.97e-02

T/8 T/16 4.28e-02 4.28e-02 3.25e-02 4.24e-02 4.24e-02 1.46e-02
[1.01] [1.01] [1.01] [1.02] [1.02] [1.02]

T/16 T/32 2.12e-02 2.12e-02 1.62e-02 2.09e-02 2.09e-02 7.15e-03
[1.01] [1.01] [1.00] [1.02] [1.02] [1.03]

T/32 T/64 1.08e-02 1.08e-02 8.01e-03 1.07e-02 1.07e-02 3.46e-03
[0.97] [0.97] [1.02] [0.97] [0.97] [1.05]

Table 3.9: [Test case 2.2] Relative L
2-errors of the velocity with nonconforming time grid. The corre-

sponding convergence rates are shown in square brackets.

�t1 = �t2 T/4 T/8 T/16 T/32
�t� T/8 T/16 T/32 T/64

Preconditioned GTF-Schur 16 16 18 18

GTO-Schwarz 13 13 13 14
Table 3.10: [Test case 2.2] Numbers of subdomain solves when nonconforming time grid is used; the
tolerance for GMRES is set to be 10�8.

Finally, we consider the case with nonconforming time grids and investigate the numerical

performance of these methods. We impose the same large time step in the subdomains and a

67



smaller one in the fracture as in Test case 2.1: �t1 = �t2 = �t = 2�t� . We begin with

presenting the relative errors in time for concentration and velocity in Table 3.8 and Table 3.9.

Like Test case 2.1, the GTF-Schur method gives better accuracy in the fracture than the GTO-

Schwarz method as the errors in the fracture obtained from GTF-Schur are close to the values

we receive when we impose the same fine time grid in the subdomains and in the fracture.

We conclude this subsection by showing in Table 3.10 the number of subdomain solves for

each method obtained when we reach the stopping criterion of GMRES. We can see that these

numbers are nearly the same as those shown in Table 3.7, which implies these methods are still

applicable when nonconforming time grids are imposed. From what we have observed so far,

Test case 2.2 is more challenging than Test case 2.1, which can be seen from the increasing of

number of subdomain solves of both methods. However, GTF-Schur still shows its efficiency

as this method has a relatively fast convergence speed without requiring any precondition as

well as preserves the accuracy in time when different time steps are used in the subdomains

and in the fracture.

Conclusion

In this chapter, three global-in-time DD methods, namely GTP-Schur, GTF-Schur, and GTO-

Schwarz, have been studied for the linear transport equation in a fractured porous medium.

These methods are coupled with operator splitting so that not only local time stepping can be

used in the fracture and in the matrix, but also different time steps can be imposed for the advec-

tion and the diffusion. Numerical experiments with different Péclet numbers and different types

of fracture have been carried out to demonstrate the performance of the proposed methods with

conforming and nonconforming time grids. Our results show that the GTF-Schur and GTO-

Schwarz methods outperform the GTP-Schur method in terms of subdomain solves needed to

reach the same stopping criterion (by a factor of more than 5 in our test cases). Moreover, GTF-

Schur and GTO-Schwarz can handle mildly advection-dominant problems very well; they con-

verge fast without requiring any preconditioners for such problems. Among these two methods,

only GTF-Schur preserves the accuracy in time when fine time steps are used in the fracture

and coarse ones in the rock matrix. More precisely, the errors in the fracture of GTF-Schur in
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such a situation are close to the errors obtained from the case when a conforming fine time step

is imposed on the whole domain. From the above observations, we conclude that GTF-Schur is

the most efficient method. In the next chapter, we aim to tackle the case when the advection is

strongly dominated. For this purpose, we construct a more efficient upwind local time stepping

methods by utilizing the idea of mixed hybrid finite element methods. Rigorous error estimates

for the proposed methods will also be presented.
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Chapter 4

Monolithic and local time-stepping decoupled algorithms for

transport problems in fractured porous media
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In the previous chapter, we have derived local time-stepping methods for the reduced frac-

ture model of the linear advection-diffusion equations by coupling global-in-time DD meth-

ods with operator splitting. In this chapter, we employ mixed hybrid finite elements to derive

global-in-time DD methods to tackle the same problems with the aim of handling the case when

the advection is strongly dominated. This chapter consists of three main parts. In the first part,

a fully discrete formulation of the reduced fracture model is derived by using the hybridiza-

tion process of the mixed hybrid finite elements which leads to a monolithic upwind algorithm.
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Well-posedness as well as error estimates for the scheme are also proved. In the second part,

we construct from the monolithic scheme two upwind local time stepping methods, namely

GTF-Schur and GTO-Schwarz, by coupling global-in-time DD with mixed hybrid finite ele-

ments. A space-time interface system is formulated for each method and is solved iteratively.

The convergence analysis for GTO-Schwarz with conforming time steps on the fracture and on

the subdomains will be presented. Finally, in the last part, we carry out numerical experiments

to verify numerically our theoretical parts and to investigate and compare the performance of

our proposed methods.

4.1. Upwind-mixed hybrid finite element method for the

reduced fracture model

4.1.1. Reduced fracture model of the linear transport problem

Let T > 0 be some fixed time. We consider ⌦ to have the same setting as in Chapter 2, that

is, ⌦ is a bounded domain in R2 with Lipschitz boundary @⌦ which is separated into two non-

overlapping subdomains ⌦i, i = 1, 2, by a fracture ⌦f of thickness � as depicted in Figure 2.1.

For simplicity, we assume further that ⌦f can be expressed as

⌦f =

⇢
x 2 ⌦ : x = x� + snnn, where x� 2 � and s 2

✓
��
2
,
�

2

◆�
,

where � is the intersection between a line and ⌦ and that ⌦f has higher permeability than that

of ⌦i.

We consider the linear advection-diffusion problem written in mixed formulation as fol-

lows:
�@tc+ div ''' = q in ⌦⇥ (0, T ),

''' = uc� Drc in ⌦⇥ (0, T ),

c = 0 on @⌦⇥ (0, T ),

c(·, 0) = c0 in ⌦,

(4.1)

where c is the concentration of a contaminant dissolved in a fluid, q is the source term, � is

the porosity, u is the Darcy velocity (assume to be given and time-independent), and D is a

symmetric time-independent diffusion tensor.
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Denote by nnni, r⌧ and div⌧ the unit, outward-pointing, normal vector field on @⌦i, tan-

gential gradient and tangential divergence, respectively, and let �� := ��f and DDD� := �DDDf,⌧ ,

where DDDf,⌧ is the tangential component of DDDf . Note that we have nnn = nnn1 = �nnn2. By follow

a similar approach described in Chapter 2, we obtained the following reduced model for (4.1)

which consists of equations in the subdomains,

�i@tci + div '''i = qi in ⌦i ⇥ (0, T ),

'''i = uici � Dirci in ⌦i ⇥ (0, T ),

ci = 0 on (@⌦i \ @⌦)⇥ (0, T ),

ci = c� on � ⇥ (0, T ),

ci(·, 0) = c0,i in ⌦i,

(4.2)

for i = 1, 2, coupled with the following equation in the one-dimensional fracture,

��@tc� + div⌧'''� = q� +
2P

i=1
'''i · nnni|� in � ⇥ (0, T ),

'''� = uuu�c� � D�r⌧c� in � ⇥ (0, T ),

c� = 0 on @� ⇥ (0, T ),

c�(·, 0) = c0,� in �.

(4.3)

Throughout this chapter, we assume that:

(A1) The coefficient matrices DDD
�1
i
, i = 1, 2 and DDD

�1
�

are symmetric and uniformly posi-

tive definite. Furthermore, there exists two pairs of positive numbers (D�
, D

+) and
�
D

�
�
, D

+
�

�
such that

D
�|⌘|2  ⌘

T
DDD

�1
i

(x) ⌘  D
+|⌘|2, for a.e. x 2 ⌦i, 8⌘ 2 R

2
, i = 1, 2,

D
�
�
|&|2  &

T
DDD

�1
�

(s) &  D
+
�
|&|2, for a.e. s 2 �, 8& 2 R.

(A2) There exists two positive numbers �� and �+ such that

�
�  �i (x)  �

+
, for a.e. x 2 ⌦i, i = 1, 2, and �

�  ��(s)  �
+
, for a.e. s 2 �.

(A3) Let J = (0, T ) and H
1
⇤ (⌦i) = {g 2 H

1(⌦i) : g = 0 on @⌦i \ @⌦}, the following regu-

larity conditions hold: uuui 2 C

⇣
J̄ ; (W 1,1 (⌦i))

2
⌘

, qi 2 C (J, L2(⌦i)) and c0,i 2 H
1
⇤ (⌦i),

for i = 1, 2, and uuu� 2 C

⇣
J̄ ; (W 1,1 (�))2

⌘
, q� 2 C (J, L2(�)) and c0,� 2 H

1
0 (�).
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We utilize the following notation to derive the weak formulations of (4.2)-(4.3). For any

measurable subset O of R2, let (·, ·)O and k·k0,O denote the inner product and norm on L
2 (O)

or (L2 (O))2, respectively, and let k·k
k,O stand for the norm on H

k (O) := W
k,2 (O) (Hk(O)

concides with L
2(O) when k = 0). Let H(div,O) denote the space of functions in (L2 (O))2

having the divergence in L
2 (O). We next define the following Hilbert spaces:

M = {µ = (µ1, µ2, µ�) 2 L
2 (⌦1)⇥ L

2 (⌦2)⇥ L
2(�)},

⌃⌃⌃ = {vvv = (vvv1, vvv2, vvv�) 2 (L2 (⌦1))2 ⇥ (L2 (⌦2))2 ⇥ L
2(�) : div vvvi 2 L

2(⌦i), i = 1, 2,

and div⌧vvv� �
2P

n=1
(vvvi · nnni)|� 2 L

2(�)

�
.

Finally, we introduce the following bilinear forms a(·, ·), b(·, ·) , r�(·, ·), duuu(·, ·) and e(·, ·) on

⌃⌃⌃⇥⌃⌃⌃, ⌃⌃⌃⇥M , M ⇥M , M ⇥⌃⌃⌃ and M ⇥⌃⌃⌃, respectively,

a (www,vvv) =
2P

i=1

�
DDD

�1
i
wwwi, vvvi

�
⌦i

+
�
DDD

�1
�
www�, vvv�

�
�
, b (www, µ) =

2P
i=1

(div wwwi, µi)⌦i
+ (div⌧ www�, µ�)� ,

r�(⌘, µ) =
2P

i=1
(�i⌘i, µi)⌦i

+ (��⌘�, µ�)�, duuu(µ,www) =
2P

i=1

�
DDD

�1
i
uuuiµi,wwwi

�
⌦i

+
�
DDD

�1
�
uuu�µ�,www�

�
�
,

e(www, µ) =
2P

i=1

⌦
wwwi · nnni|�, µ�

↵
�
,

(4.4)

and the linear form Lq on M : Lq(µ) =
2P

i=1
(qi, µi)⌦i + (q�, µ�)�. With these spaces and forms,

the weak form of (4.2)-(4.3) can be written as follows:

Find c = (c1, c2, c�) 2 H
1(0, T ;M) and ''' = ('''1,'''2,'''�) 2 L

2(0, T ;⌃⌃⌃) such that

a (''', vvv)� b (vvv, c) + e(vvv, c)� duuu(c, vvv) = 0 8vvv 2 ⌃⌃⌃,

r� (@tc, µ) + b (''', µ)� e(''', µ) = Lq(µ) 8µ 2 M,

(4.5)

together with the initial conditions:

ci(·, 0) = c0,i, in ⌦i, i = 1, 2, and c�(·, 0) = c0,�, in �. (4.6)

For error analysis purpose, we shall assume that the solution (''', c) of (4.5)-(4.6) satisfies

the following regularity condition:

(A4) (''', c) 2 C
�
J̄ ,HHH1

�
⇥ (H1 (J ;H1) \H

2 (J ;M) \ C (J,H1)), where Hk := H
k(⌦1) ⇥

H
k(⌦2)⇥H

k(�) and HHHk := (Hk(⌦1))2 ⇥ (Hk(⌦2))2 ⇥H
k(�), k = 0, 1.
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4.1.2. Upwind-mixed hybrid finite element method for the mono-

lithic problem

We now derive the fully discrete upwind-mixed hybrid finite element algorithm to find a nu-

merical solution to (4.5)-(4.6). We begin with discretizing the equations in (4.5) in space based

on the lowest-order Raviart-Thomas mixed finite element method. For simplicity, assume ⌦ is

a rectangular domain. Let Kh,i, i = 1, 2 be a finite element partition of each ⌦i into rectangles

such that they match on � and their union Kh = [2
i=1Kh,i forms a finite element partition of ⌦.

Note that the analysis presented below also holds for triangular meshes that satisfy assumptions

(M1) - (M6) in [26] and match on the interface.

For i = 1, 2, let EI

h,i
be the set of all interior edges and ED

h,i
be the set of edges of the

external boundary @⌦i \ @⌦. Moreover, we denote by E�
h

the set of edges of elements in Kh,1

or Kh,2 that lie on �. We then denote by Eh,i the set of all edges of elements in Kh,i:

Eh,i = EI

h,i
[ ED

h,i
[ E�

h
, i = 1, 2.

We also denote by P�

h
the set of endpoints P of all interface edges E 2 E�

h
. For any K 2

Kh,i, i = 1, 2, let nnnK denote the unit, normal, outward-pointing vector field on the boundary

@K; for each edge E on @K, let nnnE denote the unit normal vector of E, outward to K and

let nnn@E be the unit tangential vector field of E at the two endpoints of E, outward to E. Let

hK = diam(K), hE = |E|, hi = max
K2Kh,i

hK , i = 1, 2, h� = max
E2E�

h

hE , and h = max{h1, h2, h�}.

With the given notation, the lowest-order Raviart-Thomas mixed finite element spaces on ⌦i

are defined as follows:

Mh,i :=
�
µi 2 L

2(⌦i) : µi|K = constant, 8K 2 Kh,i

 
,

⌃⌃⌃h,i :=
�
vvvh,i 2 H(div, ⌦i) : vvvh,i|K 2 ⌃⌃⌃K , 8K 2 Kh,i

 
, i = 1, 2,

where ⌃⌃⌃K :=
�
www : K ! R2

, www(x, y) = (aK + bKx, a
0
K
+ b

0
K
y), (aK , bK , a

0
K
, b

0
K
) 2 R4

 
is

the local Raviart –Thomas space of lowest order on K 2 Kh,i. Similarly, for the discretization

on �, we have the following mixed finite element spaces:

Mh,� :=
�
µ� 2 L

2(�) : µ�|E = constant on E, 8E 2 E�
h

 
,

⌃⌃⌃h,� :=
�
vvv� 2 H(div⌧ , �) : vvv�|E 2 ⌃⌃⌃�,E, 8E 2 E�

h

 
,
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where ⌃⌃⌃�,E := {vvv� : E ! R, vvv�(s) = aE + bEs, (aE, bE) 2 R2} , for E 2 E�
h

.

Instead of using these classical mixed finite element spaces, in this work we apply a hy-

bridization technique to obtain an equivalent hybrid formulation, namely the mixed hybrid fi-

nite element method [105, 23]. For this approach, the continuity constraint of the normal fluxes

across inter-element boundaries is relaxed and is imposed by virtue of an additional equation

involving Lagrange multipliers. The finite element spaces related to the mixed hybrid finite

element scheme are defined as

e⌃⌃⌃h,i :=
�
vvvi 2 (L2(⌦i))2 : vvvi|K 2 ⌃⌃⌃K , 8K 2 Kh,i

 
, i = 1, 2,

e⌃⌃⌃h,� :=
�
vvv� 2 L

2(�) : vvv�|E 2 ⌃⌃⌃�,E, 8E 2 E�
h

 
,

⇥h,i :=
�
⌘ 2 L

2(Eh,i) : ⌘|E = constant on E, 8E 2 EI

h,i
[ E�

h
and ⌘|E = 0, 8E 2 ED

h,i

 
, i = 1, 2,

⇥h,� := {& : P�

h
! R, &(P ) = 0 if P 2 @�} ,

where the last two spaces are for the Lagrange multipliers of the two-dimensional problems

on the subdomains and the one-dimensional equations on the fracture, respectively. Next, we

introduce several products of these finite element spaces:

Mh = Mh,1 ⇥Mh,2 ⇥Mh,� , ⌃⌃⌃h = ⌃⌃⌃h,1 ⇥⌃⌃⌃h,2 ⇥⌃⌃⌃h,� ,

e⌃⌃⌃h = e⌃⌃⌃h,1 ⇥ e⌃⌃⌃h,2 ⇥ e⌃⌃⌃h,� , ⇥h = ⇥h,1 ⇥⇥h,2 ⇥⇥h,� .

(4.7)

For i = 1, 2, and any ch,i(t) 2 Mh,i, we have the unique representation:

ch,i(t, x, y) =
X

K2Kh,i

ci,K(t)�K(x, y),

where �K is the characteristic function of element K 2 Kh,i and ci,K represents the average

of ch,i on K. Similarly, for the Lagrange multipliers ✓h,i 2 ⇥h,i of ch,i, it can be represented

uniquely as
✓h,i(t, x, y) =

X

E2Eh,i

✓i,E(t)�E(x, y),

where �E is the characteristic function of edge E 2 Eh,i and ✓i,E is the average value of ✓h,i on

E. The velocity '''h,i(t) 2 e⌃⌃⌃h,i is defined locally as

'''h,i(t, x, y)|K =
X

E⇢@K

'i,KE(t)wwwi,KE(x, y), 8K 2 Kh,i,

where 'i,KE is the normal flux leaving K 2 Kh,i through the edge E and {wwwi,KE}E⇢@K are the

basis functions of the local Raviart-Thomas space ⌃⌃⌃K satisfying
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Z

E0
wwwi,KE · nnnK = �E,E0 , 8E 0 ⇢ @K.

Similarly, for any ch,�(t) 2 Mh,� and'''h,�(t) 2 e⌃⌃⌃h,� , we have the following unique expressions

ch,�(t, y) =
X

E2E�
h

c�,E(t)�E(y), and '''h,�(t, y)|E =
X

P2@E

'�,EP (t)www�,EP (y), 8E 2 E�
h
,

where {www�,EP}P2@E are the local basis functions of⌃⌃⌃�,E . We also denote byuuuh = (uuuh,1,uuuh,2,uuuh,�)

the projections of uuu = (uuu1,uuu2,uuu�) on ⌃⌃⌃h,1 ⇥⌃⌃⌃h,2 ⇥⌃⌃⌃h,�:

uuuh,i(x, y) :=
X

K2Kh,i

X

E⇢@K

ui,KEwwwi,KE(x, y), uuuh,�(y) :=
X

E2E�
h

X

P2@E

u�,EPwww�,EP (y), (4.8)

where ui,KE = 1
|E|
R
E
uuui · nnnK and u�,EP = (uuu� · nnn@E)|P .

The classical mixed finite element scheme for the problem (4.5)-(4.6) is given by:

Find (ch(t),'''h(t)) 2 Mh ⇥⌃⌃⌃h for a.e. t 2 (0, T ) such that

a ('''h, vvvh)� b (vvvh, ch) + e(vvvh, ch)� duuuh
(ch, vvvh) = 0 8vvvh 2 ⌃⌃⌃h,

r� (@tch, µh) + b ('''h, µh)� e('''h, µh) = Lq(µh) 8µh 2 Mh,

(4.9)

with the initial condition

(ch(0), µh) = (c0, µh), 8µh 2 Mh, (4.10)

where ch = (ch,1, ch,2, ch,�), c0 = (c0,1, c0,2, c0,�) and '''h = ('''h,1,'''h,2,'''h,�).

It is well-known that if we employ the basis functions of Mh and⌃⌃⌃h in the system (4.9), the

resulting linear algebra system is in general indefinite [102, 26, 110]. Moreover, it is not guar-

anteed that the scheme works for strongly advection-dominated problems [102]. To overcome

these difficulties, we apply a hybridization process to replace ⌃⌃⌃h by e⌃⌃⌃h, thus, the continuity

conditions of the normal components of the flux variables across element interfaces are no

longer required. These conditions are later imposed by introducing the Lagrange multipliers

from the space ⇥h to ensure the equivalence of both algorithms. Towards this end, we define,

in addition to the forms in (4.4), the following mapping on ⇥h ⇥ e⌃⌃⌃h:

l(⌘h, vvvh) =
2P

i=1

P
K2Kh,i

P
E⇢@K

E2Eh,i\E�
h

h⌘h,i, vvvh,i · nnnKiE +
P

E2E�
h

h⌘h,�, vvvh,� · nnn@Ei@E , (4.11)
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where ⌘h = (⌘h,1, ⌘h,2, ⌘h,�) 2 ⇥h and vvvh = (vvvh,1, vvvh,2, vvvh,�) 2 e⌃⌃⌃h. To take into account the

interface as part of the subdomain boundary, we define the space

⇥0
h,i

:=
�
⌘ 2 ⇥h,i : ⌘|E = 0, 8E 2 E�

h

 
, i = 1, 2,

and denote by ⇥0
h

the product space ⇥0
h,1 ⇥ ⇥0

h,2 ⇥ ⇥h,� . Altogether, the semi-discrete mixed

hybrid formulation associated with (4.9) is written as follows:

Find (ch(t),'''h(t), ✓h(t)) 2 Mh ⇥ e⌃⌃⌃h ⇥⇥h for a.e. t 2 (0, T ) such that

a('''h, vvvh)� b(vvvh, ch) + e(vvvh, ch)� duuuh(ch, vvvh) + l(✓h, vvvh) = 0,

r�(@tch, µh) + b('''h, µh)� e('''h, µh) = L (q, µh) ,

l(⌘h,'''h) = 0,

8(µh, vvvh, ⌘h) 2 Mh ⇥ e⌃⌃⌃h ⇥⇥0
h
,

(4.12)

with the initial conditions (4.10), where ✓h = (✓h,1, ✓h,2, ✓h,�).

For advection-diffusion equations, the Lagrange multipliers can also be used to discretize

the advective terms via upwind operators, which leads to an upwind-mixed hybrid scheme [102,

26] that can handle strongly advection-dominated problems. Specifically, we define an ap-

proximation of the advective flux duuuh
(·, ·) as follows: for µh = (µh,1, µh,2, µh,�) 2 Mh,

⌘h = (⌘h,1, ⌘h,2, ⌘h,�) 2 ⇥h and vvvh = (vvvh,1, vvvh,2, vvvh,�) 2 e⌃⌃⌃h,

eduuuh((µh, ⌘h), vvvh) =
2P

i=1

P
K2Kh,i

 
P

E⇢@K
E2Eh,i\E�

h

ui,KEUi,KE(µi,K , ⌘i,E)(DDD
�1
i
wwwi,KE , vvvh,i)K

+
P

E⇢@K
E2E�

h

ui,KEU�i,KE
(µi,K , µ�,E)(DDD

�1
i
wwwi,KE , vvvh,i)K

!

+
P

E2E�
h

P
P2@E

u�,EPU�,EP (µ�,E , ⌘�,P )(DDD�1
� www�,EP , vvvh,�)� ,

(4.13)

where, for any K 2 Kh,i and E ⇢ @K:

i) if E 2 Eh,i\E�h , the upwind value Ui,KE is computed by

Ui,KE(µi,K , ⌘i,E) =

8
>>><

>>>:

µi,K , if ui,KE � 0,

2⌘i,E � µi,K , if E 2 EI

h,i
and ui,KE < 0,

0, if E 2 ED

h,i
and ui,KE < 0,

i = 1, 2, (4.14)

ii) if E 2 E�
h

, the upwind value U�

i,KE
is computed by
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U�
i,KE

(µi,K , µ�,E) =

8
<

:
µi,K , if ui,KE � 0,

µ�,E , if ui,KE < 0,
i = 1, 2, (4.15)

while for any E 2 E�
h

and P 2 @E, the upwind value U�,EP is given by

U�,EP (µ�,E , ⌘�,P ) =

8
>>><

>>>:

µ�,E , if u�,EP � 0,

2⌘�,P � µ�,E , if P /2 @� and u�,EP < 0,

0, if P 2 @� and u�,EP < 0.

(4.16)

By replacing duuuh
(·, ·) in (4.12) with the new operator defined by (4.13), we obtain the following

semi-discrete upwind-mixed hybrid scheme:

Find (ch(t),'''h(t), ✓h(t)) 2 Mh ⇥ e⌃⌃⌃h ⇥⇥h for a.e. t 2 (0, T ) such that

a('''h, vvvh)� b(vvvh, ch) + e(vvvh, ch)� eduuuh((ch, ✓h), vvvh) + l(✓h, vvvh) = 0,

r�(@tch, µh) + b('''h, µh)� e('''h, µh) = Lq (µh) ,

l(⌘h,'''h) = 0,

8(µh, vvvh, ⌘h) 2 Mh⇥e⌃⌃⌃h⇥⇥0
h
.

(4.17)

Finally, we discretize (4.17) in time by the backward Euler scheme and obtain the fully

discrete upwind-mixed hybrid finite element method. We define the time step size �t = T/N

and the discrete times tn = n�t, n = 1, . . . , N, where N is a positive integer. The time

derivatives are approximated by the backward difference quotient

@̄c
n =

c
n � c

n�1

�t
, n = 1, . . . , N,

where the superscript n indicates the evaluation of a function at the discrete time t = t
n. The

fully-discrete version of (4.17) reads as follows:

For n = 1, . . . , N, find (cn
h
,'''

n

h
, ✓

n

h
) 2 Mh ⇥ e⌃⌃⌃h ⇥⇥h satisfying

a('''n

h
, vvvh)� b(vvvh, cnh) + e(vvvh, cnh)� eduuuh((c

n

h
, ✓

n

h
), vvvh) + l(✓n

h
, vvvh) = 0,

r�(@̄cnh, µh) + b('''n

h
, µh)� e('''n

h
, µh) = Lqn (µh) ,

l(⌘h,'''n

h
) = 0,

8(µh, vvvh, ⌘h) 2 Mh⇥e⌃⌃⌃h⇥⇥0
h
,

(4.18)

where the initial conditions (c0
h,1, c

0
h,2, c

0
h,�

) are given by

c
0
h,i|Ki

:=
1

|Ki|

Z

Ki

c0,i, 8Ki 2 Kh,i, i = 1, 2, and c
0
h,�|E :=

1

|E|

Z

E

c0,� , 8E 2 Gh. (4.19)
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That means c0
h,i

is the L2�projection of c0,i onto Mh,i, for i = 1, 2, and c
0
h,�

is the L2�projection

of c0,� onto Mh,� .

In the next section, we establish the existence, uniqueness and derive a priori error esti-

mates for the solution of the upwind-mixed hybrid scheme (4.18).

4.2. Analysis of the upwind-mixed hybrid finite element

method

For analysis purpose, we make use of the Raviart-Thomas projection operators ⇧h,i ⇥ Ph,i :

(H1(⌦i))2⇥L
2(⌦i) ! ⌃⌃⌃h,i⇥Mh,i, i = 1, 2, and ⇧h,�⇥Ph,� : H1(�)⇥L

2(�) ! ⌃⌃⌃h,�⇥Mh,� .

The following properties hold for these operators [41, 103]:

(P1) Ph,1, Ph,2 and Ph,� are the L
2-orthogonal projections onto Mh,1, Mh,2 and Mh,� , respec-

tively.

(P2) For any (vvv1, vvv2, vvv�) 2 (H1(⌦1))2 ⇥ (H1(⌦2))2 ⇥ H
1(�) and (µ1, µ2, µ�) 2 L

2(⌦1) ⇥

L
2(⌦2)⇥ L

2(�),

(div(vvvi �⇧h,ivvvi), wh,i)⌦i
= 0, 8 wh,i 2 Mh,i, (div⌧ (vvv� �⇧h,�vvv�), wh,�)� = 0, 8 wh,� 2 Mh,� ,

(div vvvh,i, Ph,iµi � µi)⌦i
= 0, 8 vvvh,i 2 ⌃⌃⌃h,i, (div⌧vvvh,� , Ph,�µ� � µ�)� = 0, 8 vvvh,� 2 ⌃⌃⌃h,� .

(4.20)

(P3) The following approximation properties hold:

kvvvi �⇧h,ivvvik0,⌦i
 Ch kvvvik1,⌦i

, 8vvvi 2 (H1(⌦i))2, kvvv� �⇧h,�vvv�k0,�  Ch kvvv�k1,� , 8vvvi 2 H
1(�),

kµi � Ph,iµik0,⌦i
 Ch kµik1,⌦i

, 8µi 2 L
2(⌦i), kµ� � Ph,�µ�k0,�  Ch kµ�k1,� , 8µ� 2 L

2(�).
(4.21)

(P4) For sufficiently smooth vvvi 2 (H1(⌦i))2, we also have [41]

k(vvvi �⇧h,ivvvi) ·nnnik0,�  Ch kvvvi ·nnnik1,� , i = 1, 2. (4.22)

Finally, we define the following norms for any function g in Hk or HHHk: kgk2
k
:= kg1k2k,⌦1

+

kg2k2k,⌦2
+ kg�k2k,� , k = 0, 1.

4.2.1. Well-posedness analysis

Theorem 4.1. For every n 2 {1, . . . , N} and sufficiently small �t and h, problem (4.18) has

a unique solution.
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Proof. Since problem (4.18) is linear, it suffices to show its uniqueness. For this purpose, we

consider the corresponding homogeneous system:

a('''n

h
, vvvh)� b(vvvh, cnh)� eduuuh((c

n

h
, ✓

n

h
), vvvh)+e(vvvh, cnh) + l(✓n

h
, vvvh) = 0

r�(@̄cnh, µh) + b('''n

h
, µh)� e('''n

h
, µh) = 0,

l(⌘h,'''n

h
) = 0,

(µh, vvvh, ⌘h) 2 Mh ⇥ e⌃⌃⌃h ⇥⇥0
h
,

(4.23)

for n = 1, 2, . . . , N , given that the initial condition
�
c
n�1
h

,'''
n�1
h

, ✓
n�1
h

�
is zero. We show that the

only solution (cn
h
, '''

n

h
, ✓

n

h
) to (4.23) is zero. Let µh = c

n

h
, vvvh = �t'''

n

h
and ⌘h = (⌘h,1, ⌘h,2, ⌘h,�)

in (4.23) where, for i = 1, 2,

(⌘h,i)|E =

8
<

:
��t✓

n

i,E
, on E 2 EI

h,i

0, otherwise,
, (⌘h,�)|P =

8
<

:
��t✓

n

�,P
, at interior point P,

0, otherwise ,

and adding the resulting equations, we obtain

r�(cnh, c
n

h
) +�ta('''n

h
,'''

n

h
) = �teduuuh((c

n

h
, ✓

n

h
),'''n

h
). (4.24)

We next provide an estimate for the error k✓n
h
k0,E on each edge E 2 Eh,i, i = 1, 2 by utilizing

the technique in [12]. Fix i 2 {1, 2}, for K 2 Kh,i, E ⇢ @K, let ⌧E denote the unique element

of e⌃⌃⌃h,i with supp(⌧E) ✓ K and

⌧E · nnnE0 =

8
<

:
✓
n

i,E
, on E = E

0
,

0, otherwise.

Then, it follows from a scaling argument [12] that

hK k⌧Ek1,K + k⌧Ek0,K  Ch
1/2
K

��✓n
h,i

��
0,E

. (4.25)

By using vvvh = (vh,1, vh,2, 0) where vh,i = ⌧E , vh,j = 0, j = 3� i as a test function in the first

equation of (4.23), utilizing (4.25) and the weighted Cauchy-Schwarz inequality, we obtain

k✓h,ik0,E  C

 
h
1/2
K

��'''n

h,i

��
0,K

+ h
�1/2
K

��cn
h,i

��
0,K

+ hK

P
E02E(K)

k✓h,ik0,E0

!
. (4.26)

Summing this estimate over all edges of K and pushing back the last term for h sufficiently
small yields
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k✓h,ik0,E  C

⇣
h
1/2
K

��'''n

h,i

��
0,K

+ h
�1/2
K

��cn
h,i

��
0,K

⌘
. (4.27)

Similarly, for the Lagrange multipliers on the fracture, we have

���(✓h,�)|P
���  C

⇣
h
1/2
E

��'''n

h,�

��
0,E

+ h
�1/2
E

��cn
h,�

��
0,E

⌘
.

(4.28)

By using (4.27) and Young’s inequality, we have, for i = 1, 2,

�t
P

K2Kh,i

0

B@
P

E⇢@K
E2Eh,i\E�

h

ui,KEUi,KE(cni,K , ✓
n
i,K)(DDD�1

i wwwi,KE ,'''
n
h,i)K +

P
E⇢@K
E2E�

h

ui,KEU�
i,KE(c

n
i,K , c

n
�,E)(DDD

�1
i wwwi,KE ,'''

n
h,i)K

1

CA

 Ci�t
P

K2Kh,i

���cnh,i
���
0,K

���'''n
h,i

���
0,K

+ Ci�t
P

K2Kh,i

P
E⇢@K
E2E�

h

���cnh,�
���
0,E

���'''n
h,i

���
0,K

+Ci�t
P

K2Kh,i

hK

���'''n
h,i

���
2

0,K

 Ci✏

���cnh,i
���
2

0,⌦i

+ Ci✏

���cnh,�
���
2

0,�
+ Ci

�t
2

4✏

���'''n
h,i

���
2

0,⌦i

+ Ci�thi

���'''n
h,i

���
2

0,⌦i

.

(4.29)

Similarly, from (4.28) and Young’s inequality, we have

�t
P

E2E�
h

P
P2@E

u�,EPU�,EP (cn�,E , ✓
n

�,P
)(DDD�1

� www�,EP ,'''
n

h,�
)�

 C�✏

���cn
h,�

���
2

0,�
+ C�

�t
2

4✏

���'''n

h,�

���
2

0,�
+ C��th�

���'''n

h,�

���
2

0,�
.

(4.30)

Altogether, we combine (4.24), (4.29), and (4.30) to find

r�(cnh, c
n

h
) +�ta('''n

h
,'''

n

h
) C✏ kcn

h
k20 +

 
C (�t)2

4✏
+ C�th

!
k'''n

h
k20 , (4.31)

where C = max{C1, C2, C�}. To give a lower bound for the left-hand side of (4.31), we use

the assumptions (A1) - (A2) to find

r�(cnh, c
n

h
) � �

� kcn
h
k20 , a('''n

h
,'''

n

h
) � D

�
min k'''n

h
k20 ,

(4.32)

where D
�
min = min{D�

, D
�
�
}. By substituting (4.32) into (4.31),we have

�
� kcn

h
k20 +D

�
min�t k'''n

h
k20  C✏ kcn

h
k20 +

 
C (�t)2

4✏
+ C�th

!
k'''n

h
k20 . (4.33)

By taking �t, h and ✏ in (4.33) sufficiently small such that �� � C✏ > 0, D
�
min � Ch� C

�t

4✏
> 0,

we have c
n

h
, '''

n

h
vanish. Then ✓n

h
vanishes according to (4.27)-(4.28).
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4.2.2. A priori error estimates

We first state some preliminary lemmas: Lemma 4.1 is a direct consequence of the Bochner’s

inequality [37, Theorem 8, Appendix E.5], Lemma 4.2 is a discrete version of integration

by parts, Lemma 4.3 demonstrates the discrete Gronwall’s inequality, and Lemma 4.4 is a

generalization of [26, Lemma 4.2] to the reduced fracture model of transport problems. We

remark that the key result needed for our proof of error estimates is Lemma 4.4 which is used

to control the advective terms. The proof of Lemma 4.4 relies on [12, Lemma 2.1] and can be

found in Appendix A.

Lemma 4.1. Let X be any Banach space with norm k·k
X

and let f : [0, T ] ! X be a measur-

able mapping such that the mapping t 7! kf(t)k
X

is also measurable. Then, we have

����
Z

T

0

f(s)ds

����
X


Z

T

0

kf(s)k
X
ds. (4.34)

Lemma 4.2. [26, Lemma 4.3] Let (an)n2N0
and (bn)n2N0

be real sequences. Then, for any

m 2 N0,
mX

n=1

(an � an�1)bn = ambm � a0b0 �
mX

n=1

an�1(bn � bn�1).

Lemma 4.3. [100] Let ⌧ > 0, B � 0, and let am, bm, cm, dm,m � 0, be non-negative se-

quences such that a0  B and

am + ⌧

mX

l=1

bl  ⌧

m�1X

l=1

dlal + ⌧

mX

l=1

cl +B, m � 1.

Then

am + ⌧

mX

l=1

bl  exp

 
⌧

m�1X

l=1

dl

! 
⌧

mX

l=1

cl +B

!
, m � 1.

Lemma 4.4. Assume that the solution (c,''') of (4.5)-(4.6) satisfies (A4). Let (cn
h
,'''

n

h
, ✓

n

h
) 2

Mh ⇥ e⌃⌃⌃h ⇥ ⇥h be the solution of (4.18). Then, for h sufficiently small, there exists a constant

C > 0, independent of n and h, such that
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2P
i=1

P
K2Kh,i

0

B@
P

E⇢@K
E2Eh,i\E�

h

|E|2(✓n
i,E

� c
n

i,K
)2 +

P
E⇢@K
E2E�

h

|E|2(cn
�,E

� c
n

i,K
)2

1

CA+
P

E2E�
h

P
P2@E

(✓n
�,P

� c
n

�,E
)2

 C

⇣
kcn � c

n

h
k20 + k'''n �'''

n

h
k20 + h

2 kuuucn � uuuhc
n

h
k20 + h

2 kcnk21
⌘
.

(4.35)

We now state the first-order convergence in both space and time of the upwind-mixed

hybrid algorithm (4.18). Unlike [26], here the reduced fracture model consists of an extra

term representing the total normal flux across the fracture which may cause the loss in spatial

accuracy if it is not treated carefully. In the following analysis, we eliminate that total normal

flux term in the formulation by employing the orthogonality property of the L
2-projection Ph,�

since with conforming spatial discretization, the traces on the fracture of the discrete normal

fluxes belong to Mh,� , the same space as the scalar variable in the fracture.

Theorem 4.2. Assume that �t and h are sufficiently small and the solution of problem (4.5)-

(4.6) satisfies (A4). Let (cn
h
,'''

n

h
, ✓

n

h
) be the solution of problem (4.18), then there exists a con-

stant C > 0 independent of �t and h, such that

max
n=1,...,N

kc(tn)� c
n

h
k20 +�t

NP
n=1

k'''(tn)�'''
n

h
k20

 C

⇣
k@ttck2L2(0,T ;H0)�t

2 + kck2
L1(0,T ;H0) h

2 + kck2
L1(0,T ;H1) h

2 + k@tck2L2(0,T ;H1) h
2

+ k'''k2
L1(0,T ;HHH1) h

2 +
2P

i=1
k'''i ·nnnik2L1(0,T ;H1(�)) h

2

◆
.

(4.36)

Proof. We first take vh 2 ⌃⌃⌃h in (4.18) and use the continuity of concentration across the

interface to obtain

a('''n

h
, vvvh)� b(vvvh, cnh) + e(vvvh, cnh)� eduuuh((c

n

h
, ✓

n

h
), vvvh) = 0,

r�(@̄cnh, µh) + b('''n

h
, µh)� e('''n

h
, µh) = Lqn (µh) ,

8(µh, vvvh) 2 Mh ⇥⌃⌃⌃h. (4.37)

In (4.5), we take t = t
n and vvv = vvvh 2 ⌃⌃⌃h and substract (4.37) from the resulting equations to

have the following error equations

a('''n �'''
n

h
, vvvh)� b(vvvh, cn � c

n

h
) + e(vvvh, cn � c

n

h
)� duuu(cn, vvvh) + eduuuh((c

n

h
, ✓

n

h
), vvvh) = 0,

r�(@tcn � @̄c
n

h
, µh) + b('''n �'''

n

h
, µh)� e('''n �'''

n

h
, µh) = 0,

8(µh, vvvh) 2 Mh⇥⌃⌃⌃h.

(4.38)

Let vvvh = ⇧h'''
n � '''

n

h
, µh = Phc

n � c
n

h
in (4.38), where ⇧h''''''''' = (⇧h,1'''1,⇧h,2'''2,⇧h,�'''�) and

Phc = (Ph,1c1, Ph,2c2, Ph,�c�), we have
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a('''n �'''
n

h
,⇧h'''

n �'''
n

h
)� b(⇧h'''

n �'''
n

h
, c

n � c
n

h
) + e(⇧h'''

n �'''
n

h
, c

n � c
n

h
)

�duuu(cn,⇧h'''
n �'''

n

h
) + eduuuh((c

n

h
, ✓

n

h
),⇧h'''

n �'''
n

h
) = 0,

r�(@tcn � @̄c
n

h
, Phc

n � c
n

h
) + b('''n �'''

n

h
, Phc

n � c
n

h
)� e('''n �'''

n

h
, Phc

n � c
n

h
) = 0.

(4.39)

By adding both equations in (4.39) and using property (4.20) of the Raviart-Thomas projection

operators, we find that

a('''n �'''
n

h
,⇧h'''

n �'''
n

h
) + r�(@tcn � @̄c

n

h
, Phc

n � c
n

h
)

= duuu(cn,⇧h'''
n �'''

n

h
)� eduuuh((c

n

h
, ✓

n

h
),⇧h'''

n �'''
n

h
)� e(⇧h'''

n �'''
n

h
, Phc

n � c
n)

+e('''n �⇧h'''
n
, Phc

n � c
n

h
).

(4.40)

Equivalently, (4.40) can be rewritten as

a('''n �'''
n

h
,'''

n �'''
n

h
) + r�(@̄(cn � c

n

h
), cn � c

n

h
)

= �a('''n �'''
n

h
,⇧h'''

n �'''
n)� r�(@tcn � @̄c

n
, Phc

n � c
n)� r�(@tcn � @̄c

n
, c

n � c
n

h
)

�r�(@̄(cn � c
n

h
), Phc

n � c
n) + duuu(cn,⇧h'''

n �'''
n

h
)� duuuh(c

n

h
,⇧h'''

n �'''
n

h
) + duuuh(c

n

h
,⇧h'''

n �'''
n

h
)

�eduuuh((c
n

h
, ✓

n

h
),⇧h'''

n �'''
n

h
) + e(⇧h'''

n �'''
n

h
, Phc

n � c
n) + e('''n �⇧h'''

n
, Phc

n � c
n

h
).

(4.41)

Fix any 1  m  N , by summing both sides of (4.41) from n = 1, . . . ,m, and multiplying by

2�t, we have

2�t

mP
n=1

a('''n �'''
n

h
,'''

n �'''
n

h
) + 2�t

mP
n=1

c�(@̄(cn � c
n

h
), cn � c

n

h
) = T1 + T2 + ...T7,

(4.42)

where

T1 = �2�t

mP
n=1

a('''n �'''
n

h
,⇧h'''

n �'''
n), T2 = �2�t

mP
n=1

r�(@tcn � @̄c
n
, Phc

n � c
n),

T3 = �2�t

mP
n=1

r�(@tcn � @̄c
n
, c

n � c
n

h
), T4 = �2�t

mP
n=1

r�(@̄(cn � c
n

h
), Phc

n � c
n),

T5 = 2�t

mP
n=1

duuu(cn,⇧h'''
n �'''

n

h
)� 2�t

mP
n=1

duuuh
(cn

h
,⇧h'''

n �'''
n

h
),

T6 = 2�t

mP
n=1

duuuh
(cn

h
,⇧h'''

n �'''
n

h
)� 2�t

mP
n=1

eduuuh
((cn

h
, ✓

n

h
),⇧h'''

n �'''
n

h
),

T7 = 2�t

mP
n=1

e(⇧h'''
n �'''

n

h
, Phc

n � c
n) + 2�t

mP
n=1

e('''n � ⇧h'''
n
, Phc

n � c
n

h
).

Our next step is to give an upper bound for each term Ti, 1  i  7. By using the

Cauchy-Schwarz inequality and Young’s inequality, we first obtain
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where C1 = max{D+
, D

+
�
}. It follows from the Cauchy-Schwarz inequality, Bochner’s in-

equality (4.34) and the regularity of c that
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Similarly, we obtain the following upper bound for T3:
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To obtain an upper bound for the term T4, we first use Lemma 4.3 and get
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We then apply the Cauchy-Schwarz inequality, Bochner’s inequality (4.34) and the regularity

of c on the right-hand side of (4.46):
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For T5, we decompose it into three subterms T5,1, T5,2 and T5,� , where
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By using the Cauchy-Schwarz inequality, Young’s inequality and the L1�approximation prop-

erties of ⇧h,i, i = 1, 2 [36], we have
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Similarly,
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By repeating the steps in (4.48) and (4.49) for the second terms of T5,i, i = 1, 2, �, we obtain

the following upper bound for the term T5:
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To handle T6, we first perform the decomposition T6 = T6,1 + T6,2 + T6,� , where
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Applying the Cauchy-Schwarz inequality, Young’s inequality, and Lemma 4.4 yields
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By collecting the estimates (4.43)-(4.51) and plugging them in the right-hand side of (4.42),

then using the L
2-approximation properties (4.21), we deduce that
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For the left-hand side of (4.52), by using assumptions (A1)� (A2) and Lemma 4.2, we have
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From (4.52)-(4.53) and (4.21), it is implied that
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For the last term T7, we recall that
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It follows from [23, Proposition 3.2] that for any local lowest-order Raviart-Thomas mixed

finite element space ⌃⌃⌃K in which K is a triangle, the traces on @K of the normal component

of any function in ⌃⌃⌃K are constant. This result also holds true when K is a rectangle [23].

Therefore, for any K 2 Kh,i, i = 1, 2, we have '''n
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It follows from (4.54) and (4.56) that
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In (4.57), we fix " small enough such that �� � " > 0, 2� (C1 +C5 +C6)" > 0, then choose

�t and h sufficiently small to find
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Let B be the term in the bracket in the last inequality of (4.58). By applying Lemma 4.3 in

(4.58) with am = kcm � c
m

h
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k20, cm = 0, dm = 1, we obtain
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Since (4.59) holds for any 1  m  N , we obtain (4.36).

Remark 4.3. The proof of Theorem 4.2 relies on Lemma 4.4 to bound the advection terms

T6,i, i = 1, 2, �, which involve the upwind operators and Lagrange multipliers arising from the

hybridization. For simplicity of presentation, we have considered only the lowest order Raviart-

Thomas RT0 space on rectangular grids. The results are also valid for any two-dimensional

RTk spaces of arbitrary order k by invoking [12, Lemma 2.1] if k is even (cf. (A.4)- (A.7) in Ap-

pendix A) or using the arguments (3.25) � (3.32) in [23, pp. 189-190] if k is odd. Extension

to other mixed finite element spaces such as BDMk and BDFMk [23] can be obtained by using

the results in [22, 24, 25] which are analogous to [12, Lemma 2.1] and valid for both two- and

three-dimensional cases.

The upwind-mixed scheme (4.18) can be solved directly to find an approximate solution

to (4.5)-(4.6). However, asDDDf �DDDi, i = 1, 2, it would be more efficient to have a smaller time

step on the fracture than on the subdomains. In the next section, we use global-in-time non-

overlapping DD [68, 68, 67, 66, 65, 70, 72] to decouple (4.18) and enforce local time-stepping.

4.3. Fully-discrete, global-in-time nonoverlapping domain

decomposition methods

We first decompose (4.18) into local problems on the subdomains:

89



For i = 1, 2, and for n = 1, . . . , N, find (cn
h,i
,'''

n

h,i
, ✓

n

h,i
) 2 Mh,i ⇥ e⌃⌃⌃h,i ⇥⇥h,i such that

⇣
DDD

�1
i
'''
n

h,i
, vvvh,i

⌘

⌦i

�
⇣

div vvvh,i, c
n

h,i

⌘

⌦i

�
P

K2Kh,i

 
P

E⇢@K
E2Eh,i\E�

h

ui,KEUi,KE(cni,K , ✓
n

i,E
)(DDD�1

i
wwwi,KE , vvvh,i)K

+
P

E⇢@K
E2E�

h

ui,KEU�i,KE
(cn

i,K
, (cn

h,i
)|E)(DDD

�1
i
wwwi,KE , vvvh,i)K

!
+
D
vvvh,i ·nnni|� , (c

n

h,i
)|�
E

�

+
P

K2Kh,i

P
E⇢@K

E2Eh,i\E�
h

D
✓
n

h,i
, vvvh,i ·nnnK

E

E

= 0, 8vvvh,i 2 e⌃⌃⌃h,i,

⇣
�i@̄c

n

h,i
, µh,i

⌘

⌦i

+
⇣

div '''n

h,i
, µh,i

⌘

⌦i

= (qn
i
, µh,i)⌦i

, 8µh,i 2 Mh,i,

P
K2Kh,i

P
E⇢@K

E2Eh,i\E�
h

D
⌘h,i,'''

n

h,i
·nnnK

E

E

= 0, 8⌘h,i 2 ⇥0
h,i
,

(4.60)

where the initial data c0
h,i

is given by (4.19). Moreover, to recover the solution of (4.18), the so-

lutions of (4.60) are required to satisfy the following transmission conditions across the space-

time interface � ⇥ (0, T ): for n = 1, . . . , N,
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(4.62)

Based on these transmission conditions, we develop two global-in-time DD methods:

GTF-Schur and GTO-Schwarz. The former is derived using directly the equations (4.61)-

(4.62), while the latter is constructed based on more general transmission conditions, namely

Ventcel-to-Robin transmission conditions which will be derived in Subsection 4.3.2. For each

method, a fully discrete interface system is formulated on the space-time fracture � ⇥ (0, T )

and is solved iteratively. Throughout this section for any mixed finite element space Oh defined

in the previous section, we write &h := (&n
h
)N
n=1 2 (Oh)

N .
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4.3.1. Global-in-time fracture-based Schur method

The idea of GTF-Schur is to construct an interface operator which is close to the identity opera-

tor by making use of the presence of the fracture. In particular, the contribution of the traces on

� of the discrete normal fluxes from both subdomains is considered as the interface unknown,

and is denoted by  h,� =
�
 

n
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·nnni|� , for n = 1, . . . N, E 2 E� . (4.63)

We also use (4.63) to write the discrete space-time interface system for GTF-Schur. For the

pure diffusion problems, this approach has been shown to work effectively without the need

of any preconditioner [70, 72]. To formulate the interface problem for GTF-Schur, we first

introduce the solution operator R�:
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(4.64)

where the initial data c
0
h,�

is given by (4.19). To compute the right-hand side of (4.63), we

define the space-time Dirichlet-to-Neumann operators SDtN
i

, i = 1, 2:

SDtN
i

: (Mh,�)
N ⇥ L

2(0, T ;L2(⌦i))⇥H
1
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(4.65)
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where (ch,i,'''h,i, ✓h,i) 2 (Mh,i)
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(4.60) with Dirichlet boundary conditions
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Altogether, the fully-discrete interface problem for GTF-Schur is obtained by enforcing (4.63):

Find  h,� 2 (Mh,�)
N such that
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or, equivalently, find  h,� 2 (Mh,�)
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SF h,� = �F, (4.67)
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.

The interface problem (4.67) is then solved iteratively by using GMRES without applying any

preconditioner.

4.3.2. Global-in-time Optimized Schwarz method

To derive the interface problem for GTO-Schwarz, we first transform the transmission con-

ditions (4.61)-(4.62) into more general ones, namely Ventcel-to-Robin transmission condi-

tions. For each i = 1, 2, let ci,� = (ci,�,E)E2E�
h

2 Mh,� be the trace of ch,i on � and

✓i,� = (✓i,�,P )P2P�
h

2 ⇥h,� the Lagrange multipliers of ci,� at the endpoints of each edge

E 2 E�
h

. We denote by '''�,i the tangential velocity associated with ci,� through the second

equation of (4.18). Due to the continuity of the concentration across the discrete counterpart of

� ⇥ (0, T ), we have:
'''

n

�,1 = '''
n

�,2 = '''
n

h,�
, for n = 1, . . . , N.

92



Under sufficient regularity, the transmission conditions (4.61)-(4.62) can be replaced by

the following Ventcel-to-Robin transmission conditions: for i = 1, 2, j = 3 � i, and for

n = 1, . . . , N,
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where ↵ > 0. We denote by ⇣h,i =
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⇣
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, i = 1, 2, the space-time discrete
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We then define the Ventcel-Robin operators SVtR
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, for i = 1, 2:
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where the initial data c
0
h,i

and c
0
i,�

are given by (4.19). The fully-discrete interface problem for

the GTO-Schwarz method may be written as:
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The interface problem (4.71) can be solved iteratively using either Jacobi iterations or

GMRES. Performing Jacobi iterations leads to the following Optimized Schwarz waveform re-

laxation (OSWR) algorithm: at the kth iteration, solve in parallel the following time-dependent

subdomain problems on ⌦i ⇥ (0, T ), i = 1, 2: for n = 1, . . . , N,
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with given initial guesses gi,j(t) := '''
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2 Mh,� , for i = 1, 2, j = (3� i), to start

the first iterate. We next show that for the OSWR iterative algorithm (4.72) converges. The

following lemma is needed in our proof.
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Proof. As the equations are linear, we take qi = 0, q� = 0 and c0,i = 0, c0,� = 0, and

prove the sequence of iterates converges to zero. Fix i, for any n = 1, . . . , N, let (⌘h,i, ⌘h,�) in
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by (4.74) into the first two equations of (4.72) and add the resulting equations to obtain
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By summing (4.75) from n = 1, . . . , N and then multiplying both sides of the resulting equa-

tion by 2�t, we have
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By proceeding in the same manner as in (4.29), (4.30) and (4.32), we obtain from (4.76) that

�
�
���ck,Nh,i

���
2

0,⌦i

+ 2�tD
�
min

NP
n=1

���'''k,n
h,i

���
2

0,⌦i

+ �
�
���ck,Ni,�

���
2

0,�
+ 2�tD

�
min

NP
n=1

���'''k,n
�,i

���
2

0,�
+ 2↵�t

NP
n=1

���ck,ni,�

���
2

0,�

 C�t

"

NP
n=1

���ck,nh,i

���
2

0,⌦i

+
C�t"

4

NP
n=1

���'''k,n
h,i

���
2

0,⌦i

+ C�th

NP
n=1

���'''k,n
h,i

���
2

0,⌦i

+
C�t

"

NP
n=1

���ck,ni,�

���
2

0,�

+
C�t"

4

NP
n=1

���'''k,n
�,i

���
2

0,�
+ C�th

NP
n=1

���'''k,n
�,i

���
2

0,�
+ 2�t

NP
n=1

⇣
'''
k�1,n
h,j ·nnnj|� + ↵c

k�1,n
j,� , c

k,n
i,�

⌘

�
.

(4.77)
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From (4.77) and (4.78), we find
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By summing over the iterates k from 1 to K in (4.79), we obtain,
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By applying the weighted Cauchy-Schwarz inequality and Lemma 4.5, we obtain, for i = 1, 2,

j = 3� i:
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Using this and the weighted Cauchy-Schwarz inequality on the last two terms on the right-hand

side of (4.80) yields
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(4.81)

By summing over the index i for i from 1 to 2, we obtain from (4.81),
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Consequently, we have
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(4.82)
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We obtain from (4.82) the following inequality
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By using Lemma 4.3 in (4.83) with ⌧ = �t, B = 0, and dl = Lh, we obtain, (using n�t 
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From (4.84), we deduce that aN and bn are bounded since the right-hand side of (4.84) does not

depend on k. Hence,
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To show the well-posedness of (4.72) for i = 1, 2, it suffices to show uniqueness which

can be obtained by repeating similar steps as above.

Remark 4.5. In our convergence analysis, we assumed some relation between �t and h to

handle the traces on the fracture of the normal fluxes'''n

h,i
·nnni|�, i = 1, 2 from both subdomains.

However, such an assumption is not needed when one has Robin-Robin or Ventcel-Ventcel

transmission conditions since for these cases, the boundary terms from both sides of the fracture

can be manipulated in such a way that they cancel each other (e.g., [64, 58]). Thus, it is possible

to show the convergence of the OSWR algorithm with nonconforming temporal discretization

in the absence of the fracture. For the reduced fracture model, this remains an open question.

The space-time interface system derived for each method is global-in-time, thus one can

impose different time steps on the fracture and on the subdomains. In the next section, we show

how to formulate the interface problem for each method with nonconforming discretization in

time.

4.4. Nonconforming discretization in time

Let T1, T2, and T� be different partitions of the time interval (0, T ] into subintervals J
i

m
=

�
t
i

m�1, t
i

m

⇤
for m = 1, . . . , Ni, and i = 1, 2, �, respectively (see Figure 4.1). For simplicity, we

consider uniform partitions and denote by �ti, i = 1, 2, �, the corresponding time steps such

that �t� ⌧ �ti, i = 1, 2 (note that the fracture is assumed to have much larger permeability

than the surrounding rock matrix).

Figure 4.1: Nonconforming time grids in the rock matrix and in the fracture.

We denote by P0 (Ti, W) the space of functions which are piecewise constant in time

on grid Ti with values in W: P0 (Ti, W) = { : (0, T ) ! W , is constant on J, 8J 2 Ti}.
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In order to exchange data on the space-time interface between different time grids Ti and Tj

(for i, j in {1, 2, �}), we use the L
2 projection ⇧ji from P0 (Ti, W) to P0 (Tj, W): for  2

P0 (Ti, W) , ⇧ji |Jj
m

is the average value of  on J
j

m
, for m = 1, . . . , Nj .

To write the interface equations for GTF-Schur and GTO-Schwarz with nonconconform-

ing time grids, we enforce the transmission conditions weakly over the fracture time subinter-

vals, which has been done in Section 2.5 and Section 3.3.

4.4.1. GTF-Schur method

We choose  h,� =
�
 

n

h,�

�N�

n=1
2 P0(T�,Mh,�) to be piecewise constant in time on the time grid

imposed on the fracture. The interface system (4.67) is then rewritten as:
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(4.85)

4.4.2. GTO-Schwarz method

The two interface unknowns represent the Ventcel term on each subdomain, thus, we let ⇣h,i =
�
⇣
n

h,i

�N�

n=1
2 P0 (T�,Mh,�) , i = 1, 2. The interface problem (4.71) of GTO-Schwarz is rewritten

as:
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4.5. Numerical results

We reconsinder Test case 2.1 presented in Section 3.4, and aim to demonstrate the performance

of the DD methods in this chapter when the advection is dominated. Recall that the diffusion

DDDi = diI is isotropic and constant in each subdomain and on the fracture, where I is the 2D

identity matrix and the velocity uuu = (uuu1,uuu2,uuu�) presented in (4.2)-(4.3) is obtained by solving

the steady-state flow problem on the subdomains
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div uuui = 0 in ⌦i ⇥ (0, T ),

uuui = �kirpi in ⌦i ⇥ (0, T ),

pi = gi on (@⌦i \ @⌦)⇥ (0, T ),

pi = p� on � ⇥ (0, T ),

pi(·, 0) = p0,i in ⌦i,

i = 1, 2, (4.87)

and in the fracture,
div⌧uuu� =

2P
i=1

uuui ·nnni|� in � ⇥ (0, T ),

uuu� = �k��r⌧p� in � ⇥ (0, T ),

p� = g� on @� ⇥ (0, T ),

p�(·, 0) = p0,� in �,

(4.88)

where, for i = 1, 2, �, qi is the source term, pi the pressure, uuui the Darcy velocity, and ki the

time-independent hydraulic conductivity in the subdomains and in the fracture, respectively.

All parameters are the same as in Table 3.1.
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Figure 4.2: Snapshots of the concentration c (left) and the flux field ''' (right) at T = 4.

Errors for concentration Errors for velocity
h �t ⌦1 ⌦2 � ⌦1 ⌦2 �

1/8 T/4 8.15e-01 8.15e-01 4.74e-01 2.39e-01 2.39e-01 1.59e-03

1/16 T/8 4.07e-01 4.07e-01 2.38e-01 1.12e-01 1.12e-01 7.90e-04
[1.00] [1.00] [0.99] [1.09] [1.09] [1.01]

1/32 T/16 2.04e-01 2.04e-01 1.18e-01 5.16e-02 5.16e-02 3.90e-04
[0.99] [0.99] [1.01] [1.12] [1.12] [1.02]

1/64 T/32 1.01e-01 1.01e-01 5.72e-02 2.20e-02 2.20e-02 1.91e-04
[1.01] [1.01] [1.04] [1.23] [1.23] [1.03]

Table 4.1: Converge in both space and time for the monolithic upwind-mixed hybrid scheme
with conforming time steps. The corresponding convergence rates are shown in square brackets.
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We first show in Figure 4.2 the snapshots of the concentration c and the flux field ''' at

the final time T = 4. We see that we obtain similar figures as in Figure 3.4 for the case

with operator splitting. We fix T = 1 and verify numerically the optimal first-order error

estimates (cf. Theorem 4.2) of the monolithic scheme (4.18). Table 4.1 reports the errors in

the L
2(0, T ;O)-norm (where O is either ⌦1,⌦2, or �) of the concentration and velocity with

decreasing uniform spatial and time step sizes. These errors are computed by comparing with

a reference solution on a fine mesh href = 1/256 and fine time step �tref = T/512. First-order

convergence is observed in the subdomains as well as on the fracture for both the concentration

and velocity.

Next we consider global-in-time DD methods to enforce nonconforming temporal dis-

cretizations. We examine the accuracy in time of both GTF-Schur and GTO-Schwarz where

smaller time step sizes are used on the fracture and larger ones in the subdomains. The space-

time L
2 errors of the concentration and velocity are computed using the reference solution

obtained from (4.18) on a fine time grid dtref = T/512 with T = 1. We report the errors

for both methods in Tables 4.2 and 4.3; the corresponding convergence rates are shown in the

square brackets. We first notice that the two DD methods preserve the first-order convergence

in time in nonconforming time grids. By checking the columns corresponding to � in Tables 4.2

and 4.3, we find that the errors on the fracture by GTF-Schur are approximately half the values

of those by GTO-Schwarz (note that �tf = �ti/2). This behavior has also been observed in

previous chapters, only GTF-Schur preserves the accuracy in time with nonconforming tempo-

ral discretization.

GTO-Schwarz GTF-Schur
�ti �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/8 1.14e-01 1.14e-01 1.47e-01 1.14e-01 1.14e-01 6.42e-02

T/8 T/16 5.80e-02 5.80e-02 7.31e-02 5.78e-02 5.78e-02 3.16e-02
[0.97] [0.97] [1.01] [0.98] [0.98] [1.02]

T/16 T/32 2.90e-02 2.90e-02 3.60e-02 2.88e-02 2.88e-02 1.52e-02
[1.00] [1.00] [1.02] [1.01] [1.01] [1.06]

T/32 T/64 1.41e-02 1.41e-02 1.74e-02 1.40e-02 1.40e-02 7.02e-03
[1.04] [1.04] [1.05] [1.04] [1.04] [1.11]

Table 4.2: Converge in time of the concentration with nonconforming time grids. The corre-
sponding convergence rates are shown in square brackets.
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GTO-Schwarz GTF-Schur
�ti �t� ⌦1 ⌦2 � ⌦1 ⌦2 �

T/4 T/8 6.14e-04 6.14e-04 7.27e-04 6.14e-04 6.14e-04 3.58e-04

T/8 T/16 3.06e-04 3.06e-04 3.49e-04 3.04e-04 3.04e-04 1.71e-04
[1.00] [1.00] [1.06] [1.01] [1.01] [1.07]

T/16 T/32 1.51e-04 1.51e-04 1.69e-04 1.50e-04 1.50e-04 8.15e-05
[1.02] [1.02] [1.05] [1.02] [1.02] [1.07]

T/32 T/64 7.29e-05 7.29e-05 8.08e-05 7.24e-05 7.24e-05 3.77e-05
[1.05] [1.05] [1.06] [1.05] [1.05] [1.11]

Table 4.3: Convergence in time of the velocity with nonconforming time grids. The corre-
sponding convergence rates are shown in square brackets.

Parameters

ki

⌦1 6.5e� 06 6.5e� 05 1.4e� 04 2.4e� 03
⌦2 6.5e� 06 6.5e� 05 1.4e� 04 2.4e� 03
⌦f 4.4e� 02 4.4e� 01 9e� 01 9e� 00

Pei
⌦1 ⇡ 0.45 ⇡ 4.45 ⇡ 9.6 ⇡ 165
⌦2 ⇡ 0.45 ⇡ 4.45 ⇡ 9.6 ⇡ 165
⌦f ⇡ 4.4 ⇡ 44 ⇡ 91 ⇡ 907

Table 4.4: Parameters for different cases.

We now increase Péclet numbers and investigate the convergence of both DD methods

with either conforming or nonconforming time grids. We vary the values of the hydraulic

conductivity ki, i = 1, 2, �, while keeping other physical parameters as in Table 3.1. Four sets

of Péclet numbers corresponding to different choices of ki are shown in Table 4.4. Again, the

final time is T = 1. We first consider the uniform time step �t = T/N in the fracture and

in the subdomains, where N = 32. The convergence speed of GTF-Schur and GTO-Schwarz

are illustrated via the relative residuals versus the number of subdomain solves as shown in

Figure 4.3. We observe that both GTF-Schur and GTO-Schwarz exhibit nearly the same fast

convergence speed. In addition, similarly to the results shown in Section 2.6 and Section 3.4,

they converge quickly without the need for preconditioners, which highlights the efficiency

of both methods. Moreover, GTF-Schur and GTO-Schwarz are insensitive to the effect of

the advection, which can be observed from the consistency of their convergence curves as the

Péclet number increases. Such robustness with respect to the Péclet number is obtained due

to the construction of the interface problem for GTF-Schur and the optimized parameters for

GTO-Schwarz; the use of upwind operators does not affect this behavior of the proposed DD
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Figure 4.3: Relative residuals of GTF-Schur and GTO-Schwarz with different Peclét numbers
and conforming time grid.

methods. We remark that in Chapter 3 when operator splitting is used, the convergence of

GTF-Schur and GTO-Schwarz is also independent of the Péclet number. However, unlike the

methods presented in Chapter 3, here no CFL conditions are imposed on the time step size.

Finally we consider nonconforming time grids on the subdomains and on the fracture.

Since we have the same diffusion coefficients in the subdomains, which are smaller than that

in the fracture, we impose the same large time step in the subdomains and a smaller one in

the fracture: �t1 = �t2 = 2�t� . For this experiment, we fix �t1 = �t2 = �t = T/N ,

�tf = T/Nf where N = 32 and Nf = 64 (see Table 4.4). Figure 4.4 shows the residual curves

versus the number of subdomain solves with increasing Peclét numbers. From these curves,

we deduce that the GTF-Schur and the GTO-Schwarz methods preserve their fast convergence

speed and remain unaffected by the magnitudes of the advection when nonconforming temporal

discretization is employed.
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Figure 4.4: Relative residuals of GTF-Schur and GTO-Schwarz with different Peclét numbers
and nonconforming time grid.

Conclusion

In this chapter, we have investigated new monolithic and decoupled numerical methods for the

reduced fracture model of the linear advection-diffusion equation in a fractured porous medium.

The Euler-implicit upwind-mixed hybrid finite element algorithm was first introduced to dis-

cretize the coupled system in space and time, in which a mixed finite element method with a

hybridization technique is considered and Lagrange multipliers are used for the discretization

of the advection terms. We proved the existence and uniqueness of the discrete solution, as well

as optimal first-order convergence in both temporal and spatial errors of the monolithic solver.

To accommodate different time steps on the fracture and on the subdomains, we then proposed

two non-overlapping global-in-time DD methods, namely GTF-Schur and GTO-Schwarz in the

context of mixed hybrid finite elements. The convergence of GTO-Schwarz with conforming
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temporal discretization was also proved. Several numerical experiments were conducted to

verify the accuracy of the monolithic solver and to compare the performance of the two DD

methods with different Péclet numbers and with both conforming and nonconforming temporal

discretizations. The results demonstrate that both GTF-Schur and GTO-Schwarz are capable of

handling strongly advection-dominated problems as they maintain the same fast convergence

speed regardless of the values of the Péclet numbers. Importantly, they achieved such fast

convergence without applying any preconditioners. Moreover, the methods are fully implicit

and have no CFL constraints on the time step size. Finally, GTF-Schur provided better accu-

racy in time on the fracture than GTO-Schwarz with nonconforming temporal discretization as

the errors on the fracture obtained from GTF-Schur in such case were smaller than those of

GTO-Schwarz. Thus, we conclude that among the two DD methods, GTF-Schur is the most

efficient method in terms of accuracy and convergence speed. Future work includes extending

the error estimates (4.36) to the case with both nonconforming temporal and spatial discretiza-

tions, proving the convergence of GTO-Schwarz with nonconforming discretization in time,

and developing local time-stepping algorithms for multiphysics problems in fractured porous

media.

Appendix A. Proof of Lemma 4.4

We now present the proof of Lemma 4.4. The proof follows a similar idea as in [26, Lemma

4.2]. Fori = 1, 2, let vvvh = (vvvh,1, vvvh,2, 0) 2 e⌃⌃⌃h be such that vvvh,j = 0 if j 6= i. By taking vvvh as a

test function in the first equation of (4.18), we obtain
⇣
DDD

�1
i '''

n
h,i, vvvh,i

⌘

⌦i

�
⇣

div vvvh,i, c
n
h,i

⌘

⌦i

+
D
vvvh,i ·nnni|� , c

n
h,�

E

�
+

P
K2Kh,i

P
E⇢@K

E2Eh,i\E�
h

D
✓
n
h,i, vvvh,i ·nnnK

E

E

�
P

K2Kh,i

0

B@
P

E⇢@K
E2Eh,i\E�

h

ui,KEUi,KE(cni,K , ✓
n
i,E)(DDD

�1
i wwwi,KE , vvvh,i)K �

P
E⇢@K
E2E�

h

ui,KEU�
i,KE(c

n
i,K , c

n
�,E)(DDD

�1
i wwwi,KE , vvvh,i)K

1

CA

= 0, 8vvvh,i 2 e⌃⌃⌃h,i.

(A.1)

For any K 2 Kh,i, we divide K into two triangles TK

1 and T
K

2 by drawing a diagonal EK :
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We begin with providing the following estimate:
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By [12, Lemma 2.1], there exists unique elements c̃
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Then, by standard arguments, it follows that

��ĉn
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(A.6)

By combining (A.5)- (A.6) with the triangle inequality and Cauchy-Schwarz inequality, we find
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We now use that for any piecewise linear polynomial ph 2 P1(Th,i), the following estimate

holds [23, p. 112]:
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It follows from (A.7) and (A.9) that
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Finally, we show that
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By using vvvh,i = ⌧⌧⌧ i,E in the first equation of (A.1), we obtain
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By subtracting (A.13) from (A.14) and using the definition of Q0
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By applying the Cauchy-Schwarz inequality, we obtain from (A.15) that
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We then obtain (A.11) by combining (A.16) with (A.12) and applying the Cauchy-Schwarz

inequality. By combining (A.10) with (A.11), we obtain
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(A.17)

By choosing h small enough and pushing back the second term on the right-hand side of (A.17),

we obtain (A.3).
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For the advection term on the fracture, since we can derive analogous result to Lemma 4.2

for the 1-dimensional case, we can follow the steps in [26] and arrive at
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(A.18)

(4.35) then follows from the combination of (A.3) and (A.18).
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Chapter 5

Conclusion and Future Work

In this thesis, we have developed two types of global-in-time DD methods for the reduced

fracture models of flow and transport problems written in mixed formulations in porous media

containing a fracture. The first type is called a Schur-type method, which is based on the

Steklov-Poincaré operator, and the second type belongs to the class of the OSWR method with

Ventcel-Robin transmission conditions. For all problems considered, each method is derived

by formulating a space-time system on the fracture-interface between the subdomains, and is

solved iteratively by utilizing matrix-free method, such as GMRES iteration. Since we are

concerned with the use of different time steps on the fracture and on the subdomains, we have

formulated the interface problem with nonconforming time grids in which the transmission

conditions are enforced by using L
2-projections in time. Numerical results also show that

all methods are applicable when different time steps are imposed on the fracture and on the

subdomains as they preserve their behaviors and efficiency in such situation.

All methods are studied numerically and are compared to each other to illustrate their

performance in different cases. Regarding the pure diffusion equation, the new preconditioner

of GTP-Schur significantly improves the convergence of the method but does not give better

accuracy in time on the fracture with nonconforming time grids. In most cases, we observe

that GTF-Schur is the most efficient method as it converges as fast as GTO-Schwarz without

applying any preconditioner as well as preserves the accuracy in time on the fracture when

nonconforming time grids are imposed.

When coupling with operator splitting to treat the advection-diffusion equation, both GTF-

Schur and GTO-Schwarz can handling efficiently the cases when the advection is mildly dom-

inated as they are insensitive to the values of Péclet numbers and give similar fast convergence

as in the case with only diffusion term. In terms of accuracy in time, similar to the pure diffu-

sion case, GTF-Schur is the only method that gives the expected errors in time on the fracture

when smaller time steps are imposed there and larger ones on the subdomains. However, when
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the advection is strongly dominated, smaller time steps are needed to imposed for the advection

step, which increases the computation time for both methods.

To deal with the case when the advection is strongly dominated, we derive both methods

in the context of mixed hybrid finite elements, in which the hybridization process is utilized

to constructed efficient upwind operator. Numerical results show that with this approach, both

methods can treat the case when the Péclet is high very well. This approach also allows us to

derive rigorous error analysis to gain better understanding of the performance of the proposed

methods.

Regarding our future work, we aim to derive the error estimates (4.36) for the monolithic

upwind-mixed scheme as well as the convergence of the GTO-Schwarz method when coupling

with mixed hybrid finite elements in a more general setting as our current proofs still require the

conforming assumption on both temporal and spatial discretization. We also aim to construct

fast, efficient and accurate global-in-time DD methods for more complicated problems, such

as multiphysics model where the physical processes in the fracture and in the subdomains are

different. Moreover, there has been an increasing attempt of combining machine learning (ML)

with domain decomposition methods (DDMs) for the solution of partial differential equations.

Despite lacking of theoretical frameworks for explaining the effectiveness of multi-layer neural

networks, its success in practices keeps attracting a great deal of interest. There are two possible

directions in which we can utilize the advancement of machine learning to improve my global-

in-time DD solvers. First of all, one can use ML techniques within the DDMs in order to

improve the convergence properties or the computational efficiency [61]. Secondly, deep neural

networks (DNNs) can be used to derive a mesh-free subdomain solvers which does not require

any spatial discretization [80, 81]. We aim to combine ML with global-in-time DD to enhance

the performance of the existing methods and reduce their computational costs for the case when

the geometry of the domain is very complex. One more interesting direction is to perform more

numerical simulation in 3D problems for modeling more realistic environmental phenomena.
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[1] V. I. Agoshkov. “Poincaré-Steklov’s operators and domain decomposition methods in

finite-dimensional spaces”. In: First International Symposium on Domain Decomposi-

tion Methods for Partial Differential Equations. Philadelphia, PA: SIAM, 1988, pp. 73–

112.
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[88] V. Martin, J. Jaffré, and J. E. Roberts. “Modeling fractures and barriers as interfaces for

flow in porous media”. In: SIAM J. Sci. Comput. 26 (2005), pp. 1667–1691.

[89] T. P. Mathew. “Domain decomposition and iterative refinement methods for mixed fi-

nite element discretizations of elliptic problems”. PhD Thesis. New York University,

1989.

[90] A. Mazzia, L. Bergamaschi, and M. Putti. “A Time-splitting technique for the advection-

dispersion equation in groundwater”. In: J. Comput. Phys. 157 (2000), pp. 181–198.

[91] A. Mazzia, L. Bergamaschi, C.N. Dawson, and M. Putti. “Godunov mixed methods

on triangular grids for advection–dispersion equations”. In: Comput. Geosci. 6 (2002),

pp. 123–139.

[92] Z. Mghazli and I. Naji. “Guaranteed a posteriori error estimates for a fractured porous

medium”. In: Math. Comput. Simulation 164 (2019), pp. 163–179.

[93] F. A. Morales and R. E. Showalter. “Interface approximation of Darcy flow in a narrow

channel”. In: Math. Methods Appl. Sci. 35 (2012), pp. 182–195.

[94] F. A. Morales and R. E. Showalter. “The narrow fracture approximation by channeled

flow”. In: J. Math. Anal. Appl. 365 (1) (2010), pp. 320–331.

[95] F. Nataf and F. Rogier. “Factorization of the convection-diffusion operator and the

Schwarz algorithm”. In: Math. Models Methods Appl. Sci. 5 (1995), pp. 67–93.
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