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Abstract

Transformer-based models, such as BERT [29], have revolutionized natural language process-

ing (NLP) by setting new standards for accuracy and capability. BERT has achieved state-of-the-art

(SOTA) results on many NLP tasks and benchmarks, such as GLUE [155], even surpassing human

performance. Despite these successes, there remain questions about whether these models truly

understand natural languages like humans do.

Our findings reveal that BERT-based classifiers often disregard the sequential order of words

when evaluated on GLUE [115]. Using LIME [134], an attribution method to visualize how much

a token contributes towards models’ prediction, we find that instead of understanding sentence

meaning, these models rely on superficial cues. Additionally, incorporating BERT into attribution

methods to yield more plausible counterfactuals when interpreting text classifiers has proven

problematic. Our research shows that BERT is not particularly useful in this context unless the

attribution method, such as LIME, produces out-of-distribution samples [116]. The limitations of

current NLP benchmarks like GLUE are evident as they do not require models to understand the

surrounding context before making predictions. To address this, we introduce the Phrase-in-Context

(PiC) benchmark [117]. PiC forces models to comprehend the context first before interpreting the

meaning of a phrase, as the meaning is context-dependent. This benchmark poses a significant

challenge to models, with even GPT-4 (as of March 2023) only achieving a 64–75% accuracy.

Moreover, recognizing the value of text-based explanations, we propose using part-based

object descriptors generated by GPT-4 [107] to explain image classification systems. By grounding

these texts into specific regions of an object image, we aim to enhance both interpretability and

performance. This approach is exemplified by PEEB [118], a part-based image classifier also based

on transformer. PEEB translates class names into descriptive texts, matching visual parts to these

descriptions for improved classification. It significantly outperforms existing explainable models,
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particularly in zero-shot settings, and allows for classifier customization without retraining, thereby

advancing both interpretability and accuracy in fine-grained image classification.
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Chapter 1

Introduction

In the era of machine learning (ML) and artificial intelligence (AI), improving interpretability

and performance is essential for building trustworthy and efficient AI systems. Enhanced inter-

pretability allows for better understanding and trust in model decisions, while improved performance

ensures their effectiveness in real-world applications. Recent advancements in machine learning

(ML) have led to significant improvements in natural language understanding (NLU) and image

classification. However, several fundamental issues remain unresolved in advancing artificial general

intelligence (AGI), particularly regarding the internal workings of models and more challenging

evaluation benchmarks.

1.1 Motivations

First, while transformer-based models like BERT [30] and RoBERTa [93] have achieved

superhuman performance on NLU benchmarks such as GLUE [155], it is unknown whether these

models actually utilize word order information when performing NLU tasks. Previous studies have

shown that BERT captures word-order information in the first three layers [90], but the practical

implications of this for NLU tasks are not well understood. This motivates a deeper investigation

into the role of word order in model performance.

Second, explaining model decisions through feature attribution remains a challenge, as many

Leave-One-Out (LOO) methods often create out-of-distribution inputs that lead to erroneous

attribution maps (AMs) [78, 56] or AMs inconsistent with human’s perception of causality [57].

Although Input Marginalization (IM) [78] method aims to generate more realistic counterfactuals

by incorporating BERT, their effectiveness has only been tested on limited datasets and metrics.
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This calls for a comprehensive evaluation of IM across diverse datasets and metrics to determine its

impact on attribution accuracy.

Third, existing NLU benchmarks such as GLUE do not force models to adequately capture

the context-dependent meanings of words or phrases, limiting the thorough evaluation of models

as they often learn shortcuts to make predictions. Many phrase-similarity benchmarks [112, 150,

6, 180, 173] either lack human verification [157, 175] or contain a high percentage of phrase pairs

with lexical overlap [112, 180], reducing their effectiveness in evaluating contextualized phrase

embeddings [175]. There is a need for a benchmark that rigorously evaluates phrases in context.

Lastly, natural-language concepts as explanations are often incorporated to many image

classifiers to make predictions and improve model interpretability [172, 108, 106, 176]. However,

such textual concepts are often compared against entire image for classification and it is unknown

what image details match a given descriptor [95, 172]. Moreover, current vision-language models

[54, 124, 95] require prompts to have a known {class name} (like a special code instead of an

expressive, natural description) that matches the input image [136], making the textual explanations

redundant and unreliable. Therefore, a new approach is needed to classify images using part-based

textual descriptions grounded to specific image regions to enhance model interpretability and

potentially improve accuracy.

1.2 Contributions

In our investigation of word order sensitivity in NLU models [115], we find that 65% of the

groundtruth labels of five out of seven GLUE tasks tested can be predicted even when the words

in one sentence of each example are shuffled. Despite BERT embeddings being contextual, the

contribution of an individual word to classification remains almost unchanged in some GLUE tasks,

even after shuffling surrounding words. For instance, in sentiment analysis (SST-2), the polarity of

a single salient word is approximately 60% predictive of the entire sentence’s label. Furthermore,

BERT-based models trained on sequence-pair GLUE tasks utilize self-attention heads to find similar
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tokens shared between the two inputs. Encouraging RoBERTa-based models to be more sensitive to

word order improves performance on SQuAD 2.0 and most GLUE tasks tested, except for SST-2.

Our comprehensive evaluation of Input Marginalization (IM) in feature attribution [116] reveals

that the DeletionBERT metric is biased towards IM because both use BERT to replace words, whereas

the vanilla Deletion metric favors the LOOempty baseline. We find no evidence that IM outperforms

a simple LOOempty on four state-of-the-art AM evaluation metrics, excluding biased metrics like

Deletion and DeletionBERT. We argue that IM is not effective in practice because deleting a

single word from an input has only a marginal effect on classification accuracy. Moreover, highly

predictable words according to a perfect masked language model are always assigned near-zero

attribution in IM, regardless of their importance to the classifier. To further test IM, we integrate

BERT into LIME to replace multiple words in an input sequence, making LIME counterfactuals

more realistic. This technique consistently improved LIME under multiple ROAR-based metrics

but not under human annotation comparisons.

To address the limitations of existing benchmarks in contextualized phrase understanding,

we create the Phrase-in-Context (PiC) dataset [117], the first human-annotated benchmark for

evaluating and training contextualized phrase embeddings. PiC is composed of three tasks: (1)

Phrase Similarity (PS), i.e. compare the semantic similarity of two phrases in the same context

sentence; (2) Phrase Retrieval (PR), which is divided into PR-pass and PR-page, i.e. from a passage

or a Wikipedia page, retrieve a phrase semantically-similar to a given query phrase; and (3) Phrase-

Sense Disambiguation (PSD), i.e. find the target phrase p semantically similar to the query phrase

from a 2-paragraph document where p appears twice, each time in a different context paragraph

that provides a unique meaning to p. Unlike existing phrase similarity datasets, PiC requires

models to rely on context. State-of-the-art models trained on PR-pass achieve near-human accuracy

92–94% vs. 95% Exact Match (EM) and high scores (84–89% EM) on PR-page, indicating the

effectiveness of our training set and learned embeddings for real-world semantic search. However,

on PR-pass, using phrase embeddings in a ranking approach yields poor accuracy (∼59% EM),
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presenting a challenge for future research into learning contextualized phrase embeddings. State-of-

the-art models perform relatively well on PR-pass and PR-page but poorly on PSD, and below 70%

accuracy on PS for binary classification of phrase similarity given a context sentence.

In the domain of image classification, we develop PEEB [118], a Part-based image classifier

that is Explainable and Editable via a natural-language Bottleneck. PEEB classifies images by

grounding the textual descriptor of object parts provided by humans or GPT-4 (no images needed)

to detected parts in the image. We find that CLIP-based classifiers rely heavily on class names in

prompts, with accuracy dropping drastically from 53.78% to 5.89% and 5.95% when class names

are removed or replaced by scientific names. Our pre-trained PEEB outperforms CLIP-based

classifiers by +8 to +29 percentage points in bird classification across CUB-200, NABirds-555, and

iNaturalist-1486. PEEB allows for defining new classes in text at test time without further training,

offering superior explainability and editability, and outperforms text concept-based methods in both

generalized zero-shot and zero-shot settings. Compared with other explainable CUB classifiers,

PEEB achieves 88.80% top-1 accuracy, on par with the best CUB-200 classifiers (81–87% accuracy)

trained via supervised learning. Additionally, PEEB is applicable to multiple domains, achieving

92.20% accuracy on Stanford Dogs-120, outperforming other explainable models and matching

state-of-the-art black-box models.

These contributions collectively advance our understanding of ML model behavior, from

natural language processing to image classification, by addressing key limitations and proposing

novel evaluation frameworks and methodologies.

1.3 Organization

This dissertation is structured as follows: Chapter 1 introduces the core challenges, motivations

and contributions. Chapter 2 investigates the sensitivity of transformer-based models like BERT

and RoBERTa to word order information. It details our experiments on GLUE tasks and discusses

the implications of word order for natural language understanding. Chapter 3 comprehensively
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evaluates feature attribution methods, specifically focusing on Input Marginalization (IM) and Leave-

One-Out (LOO) techniques. This chapter presents our findings on the effectiveness of IM across

diverse datasets and metrics, highlighting its impact on attribution accuracy. Chapter 4 addresses

the limitations of current benchmarks in contextualized phrase understanding. We introduce the

Phrase-in-Context (PiC) dataset, a human-annotated benchmark designed to rigorously evaluate the

context-dependent meanings of phrases. This chapter explains the dataset’s construction, validation,

and application. Chapter 5 presents PEEB, a part-based image classifier that uses natural-language

descriptions for classification. It discusses the development of PEEB, its performance compared to

existing models, and its applicability to multiple domains, including novel species classification.
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Chapter 2

Out of Order: How Important is the Sequential Order of Words in a Sentence in Natural Language

Understanding Tasks?

2.1 Overview

Q1 Does marijuana cause cancer?

Q2 How can smoking marijuana give you lung cancer?

(a) Prediction: duplicate 0.96

Q1 Does marijuana cause cancer?

Q2′ you smoking cancer How marijuana lung can give?

(b) Prediction: duplicate 0.98
Q1 Does marijuana cause cancer?

Q2′′ lung can give marijuana smoking How you cancer?

(c) Prediction: duplicate 0.99

Q1 Does marijuana cause cancer?

Q1′ Does cancer cause marijuana?

(d) Prediction: duplicate 0.77

Figure 2.1: A RoBERTa-based model achieving a 91.12% accuracy on QQP, here, correctly labeled
a pair of Quora questions duplicate (a). Interestingly, the predictions remain unchanged when all
words in question Q2 is randomly shuffled (b–c). QQP models also often incorrectly label a real
sentence and its shuffled version to be duplicate (d). We found evidence that GLUE models rely
heavily on words to make decisions e.g. here, “marijuana” and “cancer” (more important words
are highlighted by LIME). Also, there exist self-attention matrices tasked explicitly with extracting
word-correspondence between two input sentences regardless of the position of those words. Here,
the top-3 pairs of words assigned the highest self-attention weights at (layer 0, head 7) are inside
red, green, and blue rectangles, respectively.

Machine learning (ML) models recently achieved excellent performance on state-of-the-art

benchmarks for evaluating natural language understanding (NLU). In July 2019, RoBERTa [93]

was the first to surpass a human baseline on GLUE [155]. Since then, 13 more methods have also

outperformed humans on the GLUE leaderboard [49]. Notably, at least 8 out of the 14 solutions
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are based on BERT [29]—a transformer architecture that learns representations via a bidirectional

encoder. Given their superhuman GLUE-scores, how do BERT-based models solve NLU tasks?

How do their NLU capability differs from that of humans?

We shed light into these important questions by examining model sensitivity to the order of

words. Word order is one of the key characteristics of a sequence and is tightly constrained by

many linguistic factors including syntactic structures, subcategorization, and discourse [36]. Thus,

arranging a set of words in a correct order is considered a key problem in language modeling [58,

181].

Therefore, a natural question is: Do BERT-based models trained on GLUE care about the

order of words in a sentence? [90] found that pretrained BERT captures word-order information

in the first three layers. However, it is unknown whether BERT-based classifiers actually use

word order information when performing NLU tasks. Recently, [158] showed that incorporating

additional word-ordering and sentence-ordering objectives into BERT pretraining could lead to text

representations (StructBERT) that enabled improved GLUE scores. However, StructBERT findings

are inconclusive across different GLUE tasks and models. For example, in textual entailment [155,

RTE], StructBERT improved the performance for BERTlarge but hurt the performance for RoBERTa

(Table 2.2d).

[158] motivated interesting questions: Are state-of-the-art BERT-based models using word

order information when solving NLU tasks? If not, what cues do they rely on? To the best of

our knowledge, our work is the first to study the above questions for an NLU benchmark (GLUE).

We tested BERT-, RoBERTa-, and ALBERT-based [84] models on 7 GLUE tasks where the words

of only one select sentence in the input text are shuffled at varying degrees. An ideal agent that

truly understands language is expected to choose a reject option when asked to classify a sentence

whose words are randomly shuffled. Alternatively, given shuffled input words, true NLU agents

are expected to perform at random chance in multi-way classification that has no reject options

(Fig. 2.1b). Our findings include:

7



1. 65% of the groundtruth labels of 5 GLUE tasks can be predicted when the words in one

sentence in each example are shuffled (Sec. 2.4.1).

2. Although pretrained BERT embeddings are known to be contextual, in some GLUE tasks,

the contribution of an individual word to classification is almost unchanged even after its

surrounding words are shuffled (Sec. 2.4.3).

3. In sentiment analysis (SST-2), the polarity of a single salient word is ≥ 60% predictive of an

entire sentence’s label (Sec. 2.4.4).

4. BERT-based models trained on sequence-pair GLUE tasks used a set of self-attention heads

for finding similar tokens shared between the two inputs (Sec. 2.4.4).

5. Encouraging RoBERTa-based models to be more sensitive to word order improves the

performance on SQuAD 2.0 and most GLUE tasks tested (i.e. except for SST-2) (Sec. 2.4.5).

Despite their superhuman scores, most GLUE-trained models behave similarly to Bag-of-

Words (BOW) models, which are prone to naive mistakes (Fig. 2.1b–d). Our results also suggest

that GLUE does not necessarily require syntactic information or complex reasoning.

2.2 Related Work

Pretrained BERT [90] found that positional information is encoded in the first there layers of

BERTbase and fades out starting layer 4. [39] found that BERT heavily relies on word order when

predicting missing words in masked sentences from the CPRAG-102 dataset. That is, shuffling

words in the context sentence caused the word-prediction accuracy to drop by ∼1.3 to 2×. While

all above work studied the pretrained BERT, we instead study BERT-based models finetuned on

downstream tasks.

Word-ordering as an objective In text generation, [36] found that recurrent neural networks

were sensitive to regularities in word order in simple sentences. Language models [96] with long
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short-term memory (LSTM) units [63] were able to recover the original word order of a sentence

from randomly-shuffled words even without any explicit syntactic information [140]. [158] also

observed an increase in GLUE performance after pretraining BERT with two additional objectives of

word-ordering and sentence-ordering. Their work differs from ours in three points: (1) they did not

study the importance of word order alone; (2) StructBERT improvements were inconsistent across

tasks and models (Table 2.2d) and motivated us to compare the word-order importance between

GLUE tasks; and (3) we proposed to improve model performance by finetuning not pretraining.

Word-order insensitivity in other NLP tasks ML models have been shown to be insensitive

to word order in several NLP tasks such as reading comprehension [141, 145], dialog [139],

natural language inference [110, 142], and essay scoring [109]. [177] found that for several text

classification tasks, syntactic information was not always required. In word prediction, LSTMs and

pre-trained BERT were found to exhibit a certain degree of insensitivity when the context words are

randomly shuffled [73, 98, 39]. Compared to the prior work, we are the first to perform a word-order

analysis on a NLU benchmark and to contrast this sensitivity across the tasks.

Humans can also be word-order invariant A recent human study interestingly showed that

sentences with scrambled word orders elicit a response as high as that elicited by original sentences

as long as the local mutual information among words is high enough [99]. [48] found that humans

can also exhibit word-order-invariance effects, especially when one interpretation is much more

semantically plausible. Our work therefore documents an important similarity between humans and

advanced NLU models.

Invariance to patch-order in computer vision In computer vision, the accuracy of state-of-

the-art image classifiers was found to only drop marginally when the patches in an image were

randomly shuffled [24, 179].
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2.3 Methods

2.3.1 Datasets

We chose GLUE because of three reasons: (1) GLUE is a common benchmark for NLU

evaluation [155]; (2) there exist NLU models (e.g. RoBERTa) that outperform humans on GLUE,

making an important case for studying their behaviors; (3) it is unknown how sensitive GLUE-

trained models are to word order and whether GLUE requires them to be sensitive [158].

Tasks Out of 9 GLUE tasks, we chose all 6 binary-classification tasks because they share the same

random baseline of 50% accuracy and enable us to compare models’ word-order sensitivity across

tasks. Six tasks vary from acceptability (CoLA [159]), to natural language inference (QNLI [128]),

RTE [155], paraphrase (MRPC [32], QQP [125]), and sentiment analysis (SST-2 [144]).

We also performed our tests on STS-B [20]—a regression task of predicting the semantic

similarity of two sentences.1 While CoLA and SST-2 require single-sentence inputs, all other tasks

require sequence-pair inputs.

Reject options For all binary-classification tasks (except SST-2), the negative label is considered

the reject option (e.g. QQP models can choose not duplicate in Fig. 2.1b to reject shuffled

inputs).

Metrics We use accuracy scores to evaluate the binary classifiers (for ease of interpretation) and

Spearman correlation to evaluate STS-B regressors, following [155].

2.3.2 Classifiers

We tested BERT-based models because (1) they outperformed humans on the [49]; and (2) the

pretrained BERT was shown to capture word positional information [90].

Pretrained BERT encoders We tested three sets of classifiers finetuned from three different,

pretrained BERT variants: BERT, RoBERTa, and ALBERT, downloaded from [67]. The pretrained

models are the “base” versions i.e. bidirectional transformers with 12 layers and 12 self-attention

1We did not choose WNLI [88] as model performance is not substantially above random baseline.
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heads. The pretraining corpus varies from uncased (BERT, ALBERT) to case-sensitive English

(RoBERTa).

Classifiers For each of the seven GLUE tasks, we added one classification layer on top of each of

the three pretrained BERT encoders and finetuned the entire model. Unless otherwise noted, the

mean performance per GLUE task was averaged over three classifiers. Each model’s performance

matches either those reported on [67] or the original papers (Table 6.6).

Hyperparameters Following [29], we finetuned classifiers for 3 epochs using Adam [79] with a

learning rate of 0.00002, β1 = 0.9, β2 = 0.999, ϵ = 10−8. We used a batch size of 32, a max sequence

length of 128, and dropout on all layers with a probability of 0.1.

2.3.3 Constructing sets of real and shuffled examples for experiments

Modifying one sentence As GLUE tasks vary in the number of inputs (one or two input sequences)

and the sequence type per input (a sentence or a paragraph), we only re-ordered the words in one

sentence from only one input while keeping the rest of the inputs unchanged. Constraining the

modifications to a single sentence enables us to measure (1) the importance of word order in a single

sentence; and (2) the interaction between the shuffled words and the unchanged, real context.

Random shuffling methods To understand model behaviors across varying degrees of word-order

distortions, we experimented with three tests: randomly shuffling n-grams where n = {1,2,3}.

Shuffling 1-grams is a common technique for analyzing word-order sensitivity [139, 177]. We

split a given sentence by whitespace into a list of n-grams, and re-combined them, in a random

order, back into a “shuffled” sentence (see Table 2.1 for examples). The ending punctuation was

kept intact. We re-sampled a new random permutation until the shuffled sentence was different from

the original sentence.

As the label distributions, dev-set sizes, and the performance of models vary across GLUE

tasks, to compare word-order sensitivity across tasks, we tested each model on two sets: (1) dev-r

i.e. a subset of the original dev-set (Sec. 2.3.3); and (2) dev-s i.e. a clone of version of dev-r but

that each example has one sentence with re-ordered words (Sec. 2.3.3).
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How can smoking marijuana give you lung cancer?

Q3 lung cancer marijuana give you How can smoking?

Q2 smoking marijuana lung cancer give you How can?

Q1 marijuana can cancer How you smoking give lung?

Qs How can smoking cancer give you lung marijuana?

Table 2.1: A real question on Quora (QQP dataset) and its three modified versions (Q3 to Q1) created
by randomly shuffling 3-grams, 2-grams, and 1-grams, respectively. Qs was created by swapping
two random nouns.

Selecting real examples

For each pair of (task, classifier), we selected a subset of dev-set examples via the following

steps:

1. For tasks with either a single-sequence or a sequence-pair input, we used examples where

the input sequence to be modified has only one sentence2 that has more than 3 tokens (for

shuffling 3-grams to produce a sentence different from the original sentence).

2. We only selected the examples that were correctly classified by the classifier (to study what

features were important for high accuracy).

3. We balanced the numbers of positive and negative examples by removing random examples

from the larger-sized class.

That is, on average, we filtered out ∼34% of the original data. See Table 6.4 for the total

number of examples remaining after each filtering step above.

Creating shuffled sets

For each task, we cloned the dev-r sets above and modified each example to create a “shuffled”

set (a.k.a. dev-s) per shuffling method.

Specifically, a CoLA and SST-2 example contains only a single sentence and we modified

that sentence. Each QQP, MRPC and STS-B example has two sentences and we modified the first

2We used NLTK sentence splitter [12] to detect text that has more than one sentence.
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sentence. An RTE example has a pair of (premise, hypothesis), and we modified the hypothesis

since it is a single sentence while premises are paragraphs. Each QNLI example contains a pair of

(question, answer) and we modified the question, which is a sentence, while an answer is often a

paragraph.

2.4 Experiments and Results

2.4.1 How much is word order information required for solving GLUE tasks?

GLUE has been a common benchmark for evaluating NLU progress. But, do GLUE tasks

require models to use word order and syntactic information? We shed light into this question by

testing model performance when word order is increasingly randomized.

If a task strictly requires words to form a semantically meaningful sentence, then randomly

re-positioning words in correctly-classified sentences will cause model accuracy to drop from 100%

to 50% (i.e. the random baseline b for binary-classification tasks with two balanced classes). Thus,

to compare model-sensitivity across tasks, we use a Word-Order Sensitivity score (WOS):

s = (100 − p)/(100 − b) (2.1)

where p ∈ [50,100] is the accuracy of a GLUE-trained model evaluated on a dev-s set

(described in Sec. 2.3.3) and s ∈ [0,1]. Here, b = 50.

Experiments For each GLUE task, we computed the mean accuracy and confidence score over

three classifiers (BERT, RoBERTa, and ALBERT-based) on dev-s sets created by shuffling 1-grams,

2-grams, and 3-grams. The results reported in Table 2.2 were averaged over 10 random shuffling

runs (i.e. 10 random seeds) per n-gram type, and then averaged over 3 models per task.

Results We found that for CoLA, i.e. detecting grammatically incorrect sentences, the model

accuracy, on average, drops to near random chance i.e. between 50.69% and 56.36% (Table 2.2b)
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when n-grams are shuffled. That is, most of examples were classified into unacceptable after

n-gram shuffling, yielding ∼50% accuracy (see Fig. 6.2 for qualitative examples).

Surprisingly, for the rest of the 5 out of 6 binary-classification tasks (i.e. except CoLA), between

75% and 90% of the originally correct predictions remain constant after 1-grams are randomly

re-ordered (Table 2.2b; 1-gram). These numbers increase as the shuffled n-grams are longer (i.e. as

n increases from 1→3), up to 95.32% (Table 2.2b; QNLI). Importantly, given an average dev-set

accuracy of 86.35% for these 5 tasks, at least 86.35% × 75% ≈ 65% of the groundtruth labels

of these 5 GLUE tasks can be predicted when all input words in one sentence are randomly

shuffled.

Additionally, on average over three n-gram types, models trained on these five GLUE tasks are

from 2 to 10 times more insensitive to word-order randomization than CoLA models (Table 2.2c).

That is, if not explicitly tasked with checking for grammatical errors, GLUE models mostly will

not care about the order of words in a sentence (see qualitative examples in Figs. 2.1, 6.2–6.4).

Consistently, the confidence scores of BERT-based models for five non-CoLA tasks only dropped

∼2% when 1-grams are shuffled (Table 2.2).

Consistently across three different BERT “base" variants and a RoBERTa “large" model (Table

6.5), our results suggest that word order and syntax, in general, are not necessarily required to solve

GLUE.

2-noun swaps Besides shuffled n-grams, we also repeated all experiments with more syntactically-

correct modified inputs where only two random nouns in a sentence were swapped (Table 2.1; Qs).

This is a harder test for NLU models since the meaning of a sentence with two nouns swapped often

changes while its syntax remains correct. We found the conclusions to generalize to this setting.

That is, the models hardly changed predictions although the meanings of the original sentence and

its swapped version are different (Table 2.2b; 2-noun swap vs. 1-gram).
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2.4.2 How sensitive are models trained to predict the similarity of two sentences?

An interesting hypothesis is that models trained explicitly to evaluate the semantic similarity

of two sentences should be able to tell apart real from shuffled examples. Intuitively, word

order information is essential for understanding what an entire sentence means and, therefore,

for predicting whether two sentences convey the same meaning.

We tested this hypothesis by analyzing the sensitivity of models trained on QQP and STS-B—

two prominent GLUE tasks for predicting semantic similarity of a sentence pair. While QQP is a

binary classification task, STS-B is a regression task where a pair of two sentences is given a score

∈ [0,5] denoting their semantic similarity.

Experiments We tested the models on dev-r and dev-s sets (see Sec. 2.3.3) where in each pair,

the word order of the first sentence was randomized while the second sentence was kept intact.

QQP results Above 83% of QQP models’ correct predictions on real pairs remained unchanged

after word-order randomization (see Figs. 2.1a–c for examples).

STS-B results Similarly, STS-B model performance only drops marginally, i.e. less than 2 points

from 89.67 to 87.80 in Spearman correlation (Table 2.2; STS-B). Since a STS-B model outputs

a score ∈ [0,5], we binned the scores into 6 ranges. One might expect STS-B models to assign

near-zero similarity scores to most modified pairs. However, the distributions of similarity scores

for the modified and real pairs still closely match up (Fig. 2.2). In sum, despite being trained

explicitly on predicting semantic similarity of sentence pairs, QQP and STS-B are surprisingly

insensitive to n-gram shuffling, exhibiting naive understanding of sentence meanings.

2.4.3 How important are words to classification after their context is shuffled?

BERT representations for tokens are known to be highly contextual [38]. However, after

finetuning on GLUE, would the importance of a word to classification drop after its context is

shuffled?

15



[0, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, 5.1]
Similarity score range

0

50

100

150

200

250

300

350

400

450

N
um

be
r o

f p
ai

rs
Original
Unigram

Figure 2.2: The distribution of similarity scores over 6 ranges for the (real, shuffled) pairs in dev-s
(green) is highly similar to that for (real, real) STS-B pairs in dev-r (red). The statistics in each
range were computed over 3 models (BERT, RoBERTa, and ALBERT).

To answer the above question, we used LIME [134] to compute word importance. LIME com-

putes a score ∈ [−1,1] for each token in the input denoting how much its presence contributes for

or against the network’s predicted label (Fig. 2.1; highlights). The importance score per word w

is intuitively the mean confidence-score drop over a set of randomly-masked versions of the input

when w is masked out.

Experiments We chose to study RoBERTa-based classifiers here because they have the highest

GLUE scores among the three BERT variants considered. We observed that 62.5% (RTE) to 79.6%

(QNLI) of the dev-r examples were consistently, correctly classified into the same labels in

all 5 different random shuffles (i.e. 5 different random seeds). We randomly sampled 100 such

examples per binary-classification task and computed their LIME attribution maps to compare the

similarity between the LIME heatmaps before and after unigrams are randomly misplaced.
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Task (a) Perf. on dev-r (b) Performance on dev-s (c) Word-Order Sensitivity (d) StructBERT improvements

Models Baseline 2-noun swap 1-gram 2-gram 3-gram 1-gram 2-gram 3-gram BERTbase BERTlarge RoBERTa

CoLA 100 50 71.75 50.69 53.98 56.36 0.99 0.92 0.87 +4.9 +4.8 +1.4
(0.93) (0.91) (0.95) (0.94) (0.92)

RTE 100 50 85.86 75.69 81.89 85.18 0.49 0.36 0.30 N/A +13.0 –0.9
(0.81) (0.81) (0.80) (0.80) (0.79)

QQP 100 50 86.90 83.19 88.02 89.04 0.34 0.24 0.22 +0.7 +1.2 +0.5
(0.98) (0.96) (0.96) (0.96) (0.96)

MRPC 100 50 96.51 83.89 87.1 89.38 0.32 0.26 0.21 N/A +3.9 +1.7
(0.91) (0.91) (0.89) (0.90) (0.90)

SST-2 100 50 97.78 84.04 88.35 90.56 0.32 0.23 0.19 +0.2 +0.3 +0.4
(0.99) (0.98) (0.96) (0.97) (0.97)

QNLI 100 50 94.31 89.42 93.85 95.32 0.21 0.12 0.09 N/A +3.0 +0.3
(0.98) (0.97) (0.96) (0.97) (0.98)

STS-B 89.67 N/A 88.93 87.80 88.66 88.95 N/A N/A N/A N/A N/A N/A

Table 2.2: All results (a–c) are reported on the GLUE dev-r sets i.e. 100% accuracy (a). Shuffling
n-grams caused the accuracy to drop (b) the largest for CoLA and the least for QNLI. Each row is
computed by averaging the results of 3 BERT-based models and 10 random shuffles. From top to
bottom, the Word-Order Sensitivity (WOS) is sorted descendingly (c) and is consistent across three
types of n-grams i.e. WOS scores decrease from top down and from left to right. In contrast, the
StructBERT results (d), taken from Table 1 and 4 in [158], showed inconsistent improvements across
different tasks. STS-B results are in scaled Spearman correlation. In addition to small accuracy
drops, the mean confidence scores of all classifiers—reported in parentheses e.g. “(0.93)”—also
changed marginally after words are shuffled (a vs. b).

Results On CoLA and RTE, the importance of words (i.e. mean absolute value of LIME-attribution

per word), decreased substantially by 0.036 and 0.019, respectively. That is, the individual words

become less important after their context is distorted—a behavior expected when CoLA and RTE

have the highest WOS scores (Table 2.2). In contrast, for the other 4 tasks, word importance only

changed marginally (by 0.008, i.e. 4.5× smaller than the 0.036 change in CoLA). That is, except

for CoLA and RTE models, the contribution of a word to classification is almost unchanged

even after the context of each word is randomly shuffled (Fig. 2.1a–c). This result suggests that

the word embeddings after finetuning on GLUE became much less contextual than the pretrained

BERT embeddings [38].
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2.4.4 If not word order, then what do classifiers rely on to make correct predictions?

Given that all non-CoLA models are highly insensitive to word-order randomization, how did

they arrive at correct decisions when words are shuffled?

We chose to answer this question for SST-2 and QNLI because they have the lowest WOS

scores across all 6 GLUE tasks tested (Table 2.2) and they are representative of single-sentence and

sequence-pair tasks, respectively.

SST-2: Salient words are highly predictive of sentence labels

As 84.04% of the SST-2 correct predictions did not change after word-shuffling (Table 2.2b), a

common hypothesis is that the models might rely heavily on a few key words to classify an entire

sentence.

S the film ’s performances are thrilling . 1.00

S1 the film thrilling performances are ’s . 1.00
S2 ’s thrilling film are performances the . 1.00
S3 ’s thrilling are the performances film . 1.00

Figure 2.3: An original SST-2 dev-set example (S) and its three shuffled versions (S1 to S3) were
all correctly labeled positive by a RoBERTa-based classifier with high confidence scores (right
column).

Experiments To test this hypothesis, we took all SST-2 dev-r examples whose all 5 randomly

shuffled versions were all correctly labeled by a RoBERTa-based classifier (i.e. this “5/5” subset is

∼65% of the dev-set). We used LIME to produce a heatmap of the importance of words in each

example.

We identified the polarity of each top-1 most important word (i.e. the highest LIME-attribution

score) per example by looking it up in the Opinion Lexicon [66] of 2,006 positive and 4,783 negative

words. ∼57% of these top-1 words were found in the dictionary and labeled either positive or

negative (see Table 6.3).
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QNLI sentence-pair inputs and their LIME attributions (negative -1, neutral 0, positive +1)
Confidence

score
Q How long did Phillips manage the Apollo missions?

1.00
A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first

manned landing in July 1969, after which he returned to Air Force duty.

Q1 Apollo the Phillips How missions long did manage?
0.96

A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first
manned landing in July 1969, after which he returned to Air Force duty.

Q2 Phillips long manage How missions the Apollo did?
0.97

A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first
manned landing in July 1969, after which he returned to Air Force duty.

Qs How long did Apollo manage the Phillips missions?
0.99

A Mueller agreed, and Phillips managed Apollo from January 1964, until it achieved the first
manned landing in July 1969, after which he returned to Air Force duty.

Figure 2.4: A RoBERTa-based model’s correct prediction of entailment on the original input
pair (Q, A) remains unchanged when the question is randomly shuffled (Q1 & Q2) or when two
random nouns in the question are swapped (Qs). The salient words in the questions e.g. manage
and missions remain similarly important after their context has been shuffled. Also, the classifier
harnessed self-attention to detect the correspondence between similar words that appear in both the
question and the answer e.g. manage (Q) and managed (A). That is, the top-3 pairs of words that
were assigned the largest question-to-answer weights in a self-attention matrix (layer 0, head 7) are
inside in the red, green, and blue rectangles.

Results We found that if the top-1 word has a positive meaning, then there is a 100% probability

that the sentence’s label is positive. For example, the word “thrilling” in a movie review indicates a

positive sentence (see Fig. 2.3). Similarly, the conditional probability of a sentence being labeled

negative given a negative top-1 word is 94.4%. That is, given this statistics, the SST-2 label

distribution and model accuracy, at least 60% of the SST-2 dev-set examples can be correctly

predicted from only a single top-1 salient word.

We also reached similar conclusions when experimenting with ALBERT classifiers and the

SentiWords dictionary [46] (see Table 6.3).

Self-attention layers matching similar words in both the question and the answer

For sequence-pair tasks, e.g. QNLI, how can models correctly predict entailment when the

question words are randomly shuffled (Fig. 2.4; Q1) or when the question syntax is correct but its
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meaning changes entirely (Fig. 2.4; Qs). We hypothesize that inside the model, there might be a

self-attention (SA) layer that extracts pairs of similar words that appear in both the question and the

answer (e.g. “manage” vs. “managed” in Fig. 2.4).

Experiments To test this hypothesis, we analyzed the 5,000 QNLI dev-r examples (Table 6.4)

of RoBERTa-based classifiers trained on QNLI. For each example, we identified one SA matrix

(among all 144 as the base model has 12 layers & 12 heads per layer) that assigns the highest

weights to pairs of similar words between the question and the answer, i.e. excluding intra-question

and intra-answer attention weights (see the procedure in Sec. 6.1.1).

Results First, in ∼58% of the examples, we found at least three pairs of words that match (i.e. the

sum Levenshtein character-level edit-distance for all 3 pairs is ≤ 4). Second, we found, in total, 15

SA heads (out of the 144) which are explicitly tasked with capturing such question-to-answer word

correspondence, regardless of word order (see Fig. 2.4).

Remarkably, 87% of the work of matching similar words that appear in both the QNLI

question and the answer was handled by only 3 self-attention heads at (layer, head) of (0,7),

(1,9), and (2,6).

We found consistent results when repeating the same analysis for other three sequence-pair

tasks. That is, interestingly, the three SA heads at exactly the same location of (0, 7), (1, 9),

and (2, 6) account for 76%, 89%, and 83% of the “word-matching” task on QQP, RTE, and

MRPC, respectively. This coincidence is likely due to the fact that these classifiers were finetuned

for different downstream tasks starting from the same pretrained RoBERTa encoder. See Figs. 2.1,

2.4, 6.3–6.4 for qualitative examples of these three tasks.

How important are the 15 word-matching attention heads to QNLI model performance? We

found that zero-ing out 15 random heads had almost no effect to correctly-classified predictions–

i.e. accuracy dropped marginally (−1% to −3%, Table 2.3) across different groups of examples.

However, ablating the 15 word-matching heads caused the performance to drop substantially i.e. (a)

by 9.6% on the 1,453 positive examples identified in Sec. 6.1.1; (b) by 22.1% on a set of 2,906
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QNLI dev-r examples Full
network

Zero-out 15
attention matrices

Random Ours

a. 1,453 selected 0/5 (+) examples 100 99.31 90.43

b. 1,453 random 0/5 (+) examples 100 99.24 91.05

c. 1,453 random 0/5 (+) examples
& 1,453 random 0/5 (-) examples

100 98.18 77.91

d. (+/-) All 5,000 examples 100 96.96 75.54

Table 2.3: Zero-ing out a set of 15 “word-matching” self-attention matrices (identified via the
procedure in Sec. 2.4.4) caused a substantial drop of ∼25% in accuracy (d) while the random
baseline is 50%. These 15 matrices played an important role in QNLI because ablating 15 random
matrices only caused a ∼1-3% drop in accuracy.

random, examples including both positive and negative examples (at 50/50 ratio); and (c) by

24.5% on the entire QNLI 5,000-example dev-r set. That is, the 15 SA heads that learned to

detect similar words played an important role in solving QNLI, i.e. enabling at least ∼50% of

the correct predictions (Table 2.3d; accuracy dropped from 100% to 75.54% when the random

chance is 50%). In sum, we found overlap between words in the question and answer of QNLI

examples and strong evidence that QNLI models harnessed self-attention to exploit such overlap to

make correct decisions in spite of a random word-order.

2.4.5 Does increasing word-order sensitivity lead to higher model performance?

Here, we test whether encouraging BERT representations to be more sensitive to word order

(i.e. more syntax-aware) would improve model performance on GLUE & SQuAD 2.0 [127]. We

performed this test on the five GLUE binary-classification tasks (i.e. excluding CoLA because its

WOS score is already at 0.99; Table 2.2).

Experiments Inspired by the fact that CoLA models are highly sensitive to word order, we

finetuned the pretrained RoBERTa on a synthetic, CoLA-like task first, before finetuning the model

on downstream tasks.

21



The synthetic task is to classify a single sentence into real vs. fake where the latter is formed

by taking each real sentence and swapping two random words in it. For every downstream task (e.g.

SST-2), we directly used its original training and dev sets to construct a balanced, 2-class, synthetic

dataset. After finetuning the pretrained RoBERTa on this synthetic binary classification task, we

re-initialized the classification layer (keeping the rest unchanged) and continued finetuning it on a

downstream task.

For both finetuning steps, we trained 5 models per task and followed the standard BERT

finetuning procedure (described in Sec. 2.3.2).

Results After the first finetuning on synthetic tasks, all models obtained a ∼99% training-set

accuracy and a ∼95% dev-set accuracy. After the second finetuning on downstream tasks, we

observed that all models were substantially more sensitive to word order, compared to the

baseline models (which were only finetuned on the downstream tasks). That is, we repeated the

1-gram shuffling test (Sec. 2.4.1) and found a ∼1.5 to 2× increase in the WOS scores of all models

(see Table 2.4a vs. b).

GLUE dev-s (a) RoBERTa (b) Ours

Accuracy WOS Accuracy WOS

RTE 80.76 0.38 64.01 0.72 (+189%)

MRPC 83.86 0.32 72.88 0.54 (+169%)

SST-2 84.26 0.31 76.97 0.46 (+148%)

QQP 87.66 0.25 77.11 0.46 (+184%)

QNLI 91.09 0.18 82.44 0.35 (+194%)

Table 2.4: With finetuning on synthetic tasks, all of our models (b) have a larger drop in accuracy
on shuffled dev-s examples, compared to the standard RoBERTa-based classifiers (a). That is, our
models are substantially more sensitive to word-order randomization (i.e. +148% to +194% in WOS
scores).

GLUE On GLUE dev sets, on average over 5 runs, our models outperformed the RoBERTa

baseline on all tasks except for SST-2 (Table 2.5). The highest improvement is in RTE (from 72.2%
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to 73.21% on average, and to 74.73% for the best single model), which is consistent with the fact

that RTE has the highest WOS score among non-CoLA tasks (Sec. 2.4.1).

SQuAD 2.0 Our models also outperformed the RoBERTa baseline on the SQuAD 2.0 dev set,

with the highest F1 gain from 80.62% to 81.08% (Table 2.5).

In sum, leveraging the insights that the original BERT-based models are largely word-order

invariant, we showed that increasing model sensitivity via a simple extra finetuning step directly

improves GLUE and SQuAD 2.0 performance.

RTE QQP MRPC SST-2 QNLI SQuAD

(Acc) (Acc) (Acc) (Acc) (Acc) (F1)

RoBERTa 72.20 91.12 87.25 94.50 92.57 80.62

Our best 74.73 91.31 88.73 94.50 93.08 81.08
model +2.53 +0.19 +1.48 +0 +0.51 +0.46

Average 73.21 91.19 87.31 94.22 92.71 80.75
(5 runs) +1.01 +0.07 +0.06 -0.28 +0.14 +0.13

Table 2.5: Finetuning the pretrained RoBERTa on synthetic tasks (before finetuning on the down-
stream tasks) improved model dev-set performance on SQuAD 2.0 (b) and all the tested tasks in
GLUE (a), except SST-2.

2.5 Discussion and Conclusion

Consistently across three BERT variants and two model sizes, we found that GLUE-trained

BERT-based models are often word-order invariant unless explicitly asked for (e.g. in CoLA).

We present a reflection on the progress of NLU by studying GLUE—a benchmark where

humans have been surpassed by many models in the past 18 months. As suggested by our work,

these models; however, may neither use syntactic information nor complex reasoning. We revealed

how self-attention, a key building block in modern NLP, is being used to extract superficial cues to

solve sequence-pair GLUE tasks even when words are out of order.
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Adversarial NLI We also replicated our shuffling experiments on ANLI [104], a task considered

challenging to existing models, and where RoBERTa-based models only obtained a 56% accuracy.

We found RoBERTa-based models to remain not always sensitive to word-order randomization on

ANLI (Table 6.2; WOS of 0.63), suggesting a common issue in existing benchmarks.
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Chapter 3

Double Trouble: How to not Explain a Text Classifier’s Decisions using Counterfactuals

Synthesized by Masked Language Models?

3.1 Overview

Feature attribution maps (AMs), i.e. highlights indicating the importance of each input token

w.r.t. a classifier’s decision, can help improve human accuracy on downstream tasks including

detecting fake movie reviews [83] or identifying biases in text classifiers [91].

Many Leave-One-Out (LOO) methods compute the attribution of an input token by measuring

the prediction changes after substituting that token’s embedding with zeros [89, 71] or [UNK] [78].

That is, deleting or replacing features is the underlying principle of at least 25 attribution methods

[26].

Based on the evidence in computer vision [7, 182], prior works in NLP hypothesized that

removing a word from an input text forms out-of-distribution (OOD) inputs that yield erroneous

AMs [78, 56] or AMs inconsistent with human’s perception of causality [57]. To generate plausible

counterfactuals, two teams of researchers [78, 56] proposed Input Marginalization (IM), i.e. replace

a word using BERTbase [29] and compute an average prediction difference by marginalizing over all

predicted words. [78] claimed that IM yields more accurate AMs than the baselines that replace

words by [UNK] or zeros but their quantitative results were reported for only one1 dataset and one

evaluation metric.

In this paper, we re-assess their claim by, first, reproducing their IM results2, and then rigorously

evaluate whether improving the realism of counterfactuals improves two attribution methods (LOO

and LIME). On a diverse set of three datasets and six metrics, we find that:
1No quantitative results on SNLI, only SST-2.
2Code and pre-trained models are available at https://github.com/anguyen8/im.
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(a) SST – Groundtruth & target class: positive

S
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .
0.9793 stepping 0.9760 stone 0.8712 for
0.0050 rolling 0.0048 stones 0.0860 to
0.0021 casting 0.0043 point 0.0059 ,

IM0
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

IM1
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

IM2
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

IM3
The very definition of the ‘ small ’ movie , but
it is a good stepping stone for director Sprecher .

(b) e-SNLI – Groundtruth & target class: contradiction
P A group of people prepare hot air balloons for takeoff .

0.9997 hot 0.9877 air 0.9628 balloons
0.0001 compressed 0.0102 water 0.0282 balloon
0.0000 open 0.0008 helium 0.0019 engines

H A group of people prepare cars for racing .

IM0 A group of people prepare hot air balloons for takeoff .

A group of people prepare cars for racing .

IM1 A group of people prepare hot air balloons for takeoff .

A group of people prepare cars for racing .

IM2 A group of people prepare hot air balloons for takeoff .

A group of people prepare cars for racing .

IM3 A group of people prepare hot air balloons for takeoff .

A group of people prepare cars for racing .

Figure 3.1: By design, IM erroneously assigns near-zero attribution to highly-predictable
words. Color map: negative -1, neutral 0, positive +1. Many words labeled important by humans
such as “stepping”, “stone” (a) or “hot”, “air” (b) are always given near-zero attribution by IM
(because they are highly predictable by BERT, e.g. 0.9793 for stepping) regardless of the classifier.
Even when randomizing the classifier’s weights three times, the IM attribution of these words
remains unchanged at near zero (IM1 to IM3). Therefore, when marginalizing over the top-k BERT
candidates (e.g., “stepping”, “rolling”, “casting”), the IM attribution for low-entropy words tends to
zero, leading to heatmaps that are biased, less accurate, and less plausible than LOOempty.

1. The DeletionBERT metric in [78] is biased towards IM as both use BERT to replace words

(Sec. 3.4). In contrast, the vanilla Deletion metric [5] favors the LOOempty baseline as both

delete words. This bias causes a false conclusion that IM is better than LOO baselines
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in [78] and also exists in other Deletion variants, e.g., Insertion [5], Sufficiency, and

Comprehensiveness [31].

2. We find no evidence that IM is better than a simple LOOempty on any of the following four

state-of-the-art AM evaluation metrics (which exclude the biased Deletion & DeletionBERT):

ROAR, ROARBERT [65] (Sec. 3.5.1), comparison against human annotations (Sec. 3.5.2), and

sanity check [1] (Sec. 3.5.3).

3. We argue that IM is not effective in practice because: (1) deleting a single word from an input

has only a marginal effect on classification accuracy (Sec. 3.5.4); and (2) given a perfect,

masked language model G, IM would still be unfaithful because highly predictable words

according to G, e.g. “hot”, “air” in Fig.3.1, are always assigned near-zero attribution in IM

regardless of how important they are to the classifier (Sec. 6.2.2).

4. To further test the main idea of IM, we integrate BERT into LIME [134] to replace multiple

words (instead of deleting) in an input sequence, making LIME counterfactuals more realistic.

We find this technique to improve LIME consistently under multiple ROAR-based metrics,

but not under comparison against human annotations (Sec. 3.6).

To our knowledge, our work is the first to thoroughly study the effectiveness of IM in NLP in

both settings of replacing a single word (LOO) and multiple words (LIME). Importantly, we find

improvement in the latter but not the former setting.

3.2 Methods and Related Work

Let f ∶ Rn×d → [0,1] be a text classifier that maps a sequence x of n token embeddings, each

of size d, onto a confidence score of an output label. An attribution function A takes three inputs—a

sequence x, the model f , and a set of hyperparameters H—and outputs a vector a = A(f,x,H) ∈

[−1,1]n. Here, the explanation a associates each input token xi to a scalar ai ∈ [−1,1], indicating

how much xi contributes for or against the target label.
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Leave-One-Out (LOO) is a well-known method [89, 135, 71] for estimating the attribution ai

by computing the prediction-difference after a token xi is left out of the input x, creating a shorter

sequence x−i:

ai = f(x) − f(x−i) (3.1)

Under [114] causal framework, the attribution ai in Eq. 3.1 relies on a single, unrealistic

counterfactual x−i and thus is a biased estimate of the individual treatment effect (ITE):

ITE = f(x) −E[f(x) ∣ do(T = 0)] (3.2)

where the binary treatment T , here, is to keep or “realistically remove” the token xi (i.e. T = 1 or 0)

in the input x, prior to the computation of f(x).

Perturbation techniques In computer vision (CV), earlier attribution methods erase a feature

by replacing it with (a) zeros [178, 134]; (b) random noise [27, 94]; or (c) blurred versions of the

original content [42]. Yet, these perturbation methods produce unrealistic counterfactuals that make

AMs more unstable and less accurate [7].

Recent works proposed to simulate the do(T = 0) operator using an image inpainter. However,

they either generated unnatural counterfactuals [22, 50] or only a single, plausible counterfactual

per example [2].

Input marginalization (IM) In NLP, IM offers the closest estimate of the ITE. IM computes the

E[.] term in Eq. 3.2 by marginalizing over many plausible counterfactuals generated by BERTbase:
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E[f(x) ∣ do(T = 0)]

= ∑
x̃i∈V

p(x̃i∣x−i) ⋅ f(x−i, x̃i) (3.3)

where x̃i is a token suggested by BERTbase (e.g., “hot”, “compressed”, or “open” in Fig. 3.1) with

a likelihood of p(x̃i∣x−i) to replace the masked token xi. V is the BERTbase vocabulary of 30,522

tokens. f(x−i, x̃i) is the classification probability when token xi in the original input is replaced

with x̃i.

IM attribution is in the log space:

aIM = log-odds(f(x))

− log-odds(E[f(x) ∣ do(T = 0)]) (3.4)

where log-odds(p) = log2(p/(1 − p)).

As computing the expectation in Eq. 3.3 over BERT’s ∼30K-word vocabulary is prohibitively

slow, IM authors only marginalized over the words that have a likelihood ≥ 10−5. We are able

to reproduce the IM results of [78] by taking only the top-10 words. That is, using the top-10

words or all words of likelihood ≥ 10−5 yields slightly different numbers but the same conclusions

(Sec. 6.2.4). Thus, we marginalize over the top-10 for all experiments. Note that under BERT, the

top-10 tokens, on average, already account for 81%, 90%, and 92% of the probability mass for

SST-2, e-SNLI, & MultiRC, respectively.

BERT Like [78], we use a pre-trained BERTbase “base”, uncased model [29], from [67], to fill in

a [MASK] token to generate counterfactuals in IM.
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LIME Based on the idea of IM, we also integrate BERTbase into LIME, which originally masks out

multiple tokens at once to compute attribution. LIME generates a set of randomly masked versions

of the input, and the attribution of a token xi, is effectively the mean classification probability over

all the masked inputs when xi is not masked out. On average, each vanilla LIME counterfactual has

50% of tokens taken out, yielding text often with large syntactic and grammatical errors.

LIMEBERT We use BERT to replace multiple masked tokens3 in each masked sentence generated

by LIME to construct more plausible counterfactuals. However, for each word, we only use the top-1

highest-likelihood token given by BERT instead of marginalizing over multiple tokens because (1)

the full marginalization is prohibitively slow; and (2) the top-1 token already carries most of the

weight (p ≥ 0.81; see Table 6.9).

3.3 Experiment framework

3.3.1 Three datasets

We select a diverse set of three classification datasets that enable us to (1) compare with the

results reported by [78]; and (2) assess AMs on six evaluation metrics (described in Sec. 3.3.3).

These three tasks span from sentiment analysis (SST-2), natural language inference (e-SNLI) to

question answering (MultiRC), covering a wide range of sequence length (∼20, 24, and 299 tokens

per example, respectively). SST-2 and e-SNLI were the two datasets where [78] found IM to be

superior to LOO baselines.

SST Stanford Sentiment Treebank [144] is a dataset of ∼12K RottenTomato movie-review sen-

tences, which contain human-annotated sentiment annotations for phrases. Each phrase and sentence

in SST is assigned a sentiment score ∈ [0,1] (0 = negative, 0.5 = neutral, 1 = positive).

SST-2 has ∼70K SST examples (including both phrases and sentences) where the regression

scores per example were binarized to form a binary classification task [144].
3We find replacing all tokens at once or one at a time to produce similar LIMEBERT results.
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e-SNLI A 3-way classification task of detecting whether the relation between a premise and a

hypothesis is entailment, neutral or contradiction [14]. e-SNLI has 569K instances of (input, label,

explanation) where the explanations are crowd-sourced [16].

MultiRC Multi-sentence Reading Comprehension [74] is a multiple-choice question-answering

task that provides multiple input sentences as well as a question and asks the model to select one or

multiple correct answer sentences. MultiRC has ∼6K examples with human-annotated highlights at

the sentence level.

3.3.2 Classifiers

Following [78, 56, 57], we test IM and LOO baselines in explaining BERT-based classifiers.

For each task, we train a classifier by fine-tuning the entire model, which consists of a

classification layer on top of the pre-trained BERT (described in Sec. 3.2). The dev-set top-1

accuracy scores of our SST-2, e-SNLI, & MultiRC classifiers are 92.66%, 90.92%, and 69.10%,

respectively. On the SST binarized dev-set, which contains only sentences, the SST-2-trained

classifier’s accuracy is 87.83%.

Hyperparameters Following the training scheme of HuggingFace, we fine-tune all classifiers for

3 epochs using Adam optimizer [79] with a learning rate of 0.00002, β1 = 0.9, β2 = 0.999, ϵ = 10−8.

A batch size of 32 and a max sequence length of 128 are used for SST-2 and e-SNLI while these

hyperparameters for MultiRC are 8 and 512, respectively. Dropout with a probability of 0.1 is

applied to all layers. Each model was trained on an NVIDIA 1080Ti GPU.

3.3.3 Six evaluation metrics

As there are no groundtruth explanations in XAI, we use six common metrics to rigorously

assess IM’s effectiveness. For each classifier, we evaluate the AMs generated for all dev-set

examples.

31



Deletion is similar to “Comprehensiveness” [31] and is based on the idea that deleting a token of

higher importance from the input should cause a larger drop in the output confidence score. We

take the original input and delete one token at a time until 20% of the tokens in the input is deleted.

A more accurate explanation is expected to have a lower Area Under the output-probability Curve

(AUC) [5].

DeletionBERT a.k.a. AUCrep in [78], is a Deletion variant where a given token is replaced by a

BERT top-1 suggestion instead of an empty string. DeletionBERT was proposed to minimize the

OOD-ness of samples (introduced by deleting words in the vanilla Deletion metric), i.e. akin to

integrating BERT into LOO to create IM.

RemOve And Retrain (ROAR) To avoid a potential OOD generalization issue caused by the

Deletion metric, a common alternative is to retrain the classifier on these modified inputs (where

N% of the highest-attribution words are deleted) and measure its accuracy drop [65]. A more

faithful attribution method is supposed to lead to a re-trained classifier of lower accuracy as the more

important words have been deleted from training examples. For completeness, we also implement

ROARBERT, which uses BERT to replace the highest-attribution tokens4 instead of deleting them

without replacement in ROAR.

Agreement with human-annotated highlights In both CV and NLP, a common AM evaluation

metric is to assess the agreement between AMs and human annotations [160]. The idea is that as

text classifiers well predict the human labels of an input text, their explanations, i.e. AMs, should

also highlight the tokens that humans deem indicative of the groundtruth label.

Because human annotators only label the tokens supportive of a label (e.g. Fig. 3.2), when

comparing AMs with human annotations, we zero out the negative values in AMs. Following [184],

we binarize a resulting AM at an optimal threshold τ in order to compare it with human-annotated

highlights under Precision@1.

Sanity check [1] is a well-known metric for testing insensitivity (i.e. bias) of attribution methods

w.r.t. model parameters. For ease of interpretation, we compute the % change of per-word attribution

4The chance that a sentence remains unchanged after BERT replacement is low, ≤ 1%.
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values in sign and magnitude as we randomize the classification layer’s weights. A better attribution

method is expected to be more sensitive to the classifier’s weight randomization.

3.4 Bias of Deletion metric and its variants

In explaining SST-2 classifiers, we successfully reproduce the AUCrep results reported in [78],

i.e. IM outperformed LOOzero and LOOunk, which were implemented by replacing a word with

the [PAD] and [UNK] token of BERT, respectively (Table 3.1). However, we hypothesize that

DeletionBERT is biased towards IM as both use BERT to replace words, yielding a false sense of IM

effectiveness reported in [78].

To test this hypothesis, we add another baseline of LOOempty, which was not included in [78],

i.e. erasing a token from the input without replacement (Eq. 3.1), mirroring the original Deletion

metric. To compare with IM, all LOO methods in this paper are also in the log-odds space.

Results Interestingly, we find that, under Deletion, on both SST-2 and e-SNLI, IM underperformed

all three LOO baselines and that LOOempty is the highest-performing method (Table 3.1a). In

contrast, IM is the best method under DeletionBERT.

Re-running the same experiment but sampling replacement words from RoBERTa (instead

of BERT), we find the same finding that LOOempty is the best under Deletion while IM is the best

under DeletionBERT (Table 3.1b).

To our knowledge, our work is the first to document this bias of the Deletion metric widely

used in the literature [57, 160, 5]. This bias, in principle, also exists in other Deletion variants

including Insertion [5], Sufficiency, and Comprehensiveness [31].

3.5 No evidence that IM is better than LOO

To avoid the critical bias of Deletion and DeletionBERT, we further compare IM and LOO on

four common metrics that are not Deletion-based.
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Task Metrics ↓ IM LOOzero LOOunk LOOempty

(a) BERTbase

SST-2
Deletion 0.4732 0.4374 0.4464 0.4241

DeletionBERT 0.4922 0.4970 0.5047 0.5065

e-SNLI
Deletion 0.3912 0.2798 0.3742 0.2506

DeletionBERT 0.2816 0.3240 0.3636 0.3328

(b) RoBERTabase

SST-2
Deletion 0.4981 0.4524 0.4595 0.4416

DeletionBERT 0.4798 0.5037 0.5087 0.4998

Table 3.1: IM is the best method under DeletionBERT, as reported in [78], but the worst under
Deletion. Both metrics measure AUC (lower is better).

3.5.1 Under ROAR and ROARBERT, IM is on-par with or worse than LOOempty

A lower AUC under Deletion may be the artifact of the classifier misbehaving under the

distribution shift when one or multiple input words are deleted. ROAR [65] was designed to

ameliorate this issue by re-training the classifier on a modified training-set (where the top N%

highest-attribution tokens in each example are deleted) before evaluating their accuracy.

To more objectively assess IM, we use ROAR and ROARBERT metrics to compare IM vs.

LOOempty (i.e. the best LOO variant in Table 3.1).

Experiment For both IM and LOOempty, we generate AMs for every example in the SST-2 train

and dev sets, and remove N% highest-attribution tokens per example to create new train and dev

sets. We train 5 models on the new training set and evaluate them on the new dev set. We repeat

ROAR and ROARBERT with N ∈ {10,20,30}.5

Results As more tokens are removed (i.e. N increases), the mean accuracy of 5 models gradually

decreases (Table 3.2; from 92.66% to ∼67%). Under both ROAR and ROARBERT, the models

trained on the new training set derived from LOOempty AMs often obtain lower (i.e. better) mean

accuracy than those of IM (Table 3.2a vs. b). At N = 10% under ROAR, LOOempty outperforms
5We do not use N ≥ 40 because: (1) according to SST human annotations, only 37% of the tokens per example are

labeled important (Table 6.8c); and (2) SST-2 examples are short and may contain as few as 4 tokens per example.
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IM (Table 3.2; 74.59 vs. 76.22), which is statistically significant (2-sample t-test, p = 0.037). In all

other cases, the difference between IM vs. LOOempty is not statistically significant.

In sum, under both ROAR and ROARBERT, IM is not more faithful than LOOempty.

Accuracy in % (lower is better) ROAR ROARBERT

Method N = 0% 10% 20% 30% 10% 20% 30%

(a) LOOempty 92.62 ± 0.30 74.59 ± 0.78 68.94 ± 1.46 67.89 ± 0.79 76.79 ± 0.56 71.95 ± 0.75 67.62 ± 1.16

(b) IM 92.62 ± 0.30 76.22 ± 1.18 70.07 ± 0.69 66.54 ± 1.89 77.36 ± 0.90 71.56 ± 1.55 67.68 ± 0.96

(c) Random 92.62 ± 0.30 89.22 ± 0.53 87.75 ± 0.19 85.62 ± 0.53 89.38 ± 0.47 88.23 ± 0.31 85.21 ± 0.47

(d) t-test p-value N/A 0.0370 0.1740 0.1974 0.2672 0.6312 0.9245

Table 3.2: Dev-set mean accuracy (%) of 5 models trained on the new SST-2 examples where
N% of highest-attribution words per example are removed (i.e. ROAR) or replaced via BERT
(i.e. ROARBERT). On average, under both metrics, LOOempty (a) is slightly better, i.e. lower mean
accuracy, than IM (b). Notably, LOOempty statistically significantly outperforms IM under ROAR
at N = 10% (2-sample t-test; p = 0.037) (d). Both LOOempty and IM substantially outperform a
random baseline (c) that considers N% random tokens important.

Metric ↑ (a) SST (b) e-SNLI L2 (c) e-SNLI L3 (d) MultiRC

Higher is better IM LOOempty LIME LIMEBERT LIMEBERT_SST2 IM LOOempty IM LOOempty IM LOOempty

IoU 0.2377 0.2756 0.3193 0.3170 0.3127 0.3316 0.3415 0.2811 0.3411 0.0437 0.0887

precision 0.5129 0.4760 0.4831 0.4629 0.4671 0.4599 0.4867 0.3814 0.4687 0.1784 0.1940

recall 0.5245 0.6077 0.6882 0.7000 0.6886 0.6085 0.6158 0.5699 0.5875 0.0630 0.2876

F1 0.5186 0.5338 0.5677 0.5573 0.5566 0.5239 0.5437 0.4570 0.5214 0.0931 0.2317

Table 3.3: Compared to IM, LOOempty is substantially more consistent with human annotations over
all three datasets. Note that the gap between LOOempty and IM is ∼3× wider when comparing AMs
with the e-SNLI tokens that at least three annotators label important (i.e. L3), compared to L2
(higher is better). LIMEBERT explanations are slightly less consistent with human highlights than
those of LIME (a) despite their counterfactuals are more realistic.

3.5.2 LOOempty aligns significantly better with human annotations than IM

Following [160], to increase our understanding of the differences between LOOempty and

IM, we compare the two methods against the human-annotated highlights for SST, e-SNLI, and

MultiRC.
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Annotation preprocessing To control for quality, we preprocess the human annotations in each

dataset as the following. In SST, where each sentence has multiple phrases labeled with a sentiment

score ∈ [0,1] (0.5 being the neutral midpoint), we only use the phrases that have high-confidence

sentiment scores, i.e. ≤ 0.3 (for negative) or ≥ 0.7 (for positive). Also, we do not use the

annotated phrases that are too long, i.e., longer than 50% of the sentence length.

Each token in an e-SNLI example are labeled important by between 0–3 annotators. To filter

out noise, we only use the tokens that are highlighted by at least two or three annotators (hereafter

“L2” and “L3” subsets, respectively).

A MultiRC example contains a question and a paragraph where each sentence is labeled

important or unimportant to the groundtruth answer (Fig. 6.14). We convert these sentence-level

highlights into token-level highlights to compare them with the binarized AMs of IM and LOOempty.

Experiment We run IM and LOOempty on the BERT-based classifiers on the dev set of SST, e-SNLI,

and MultiRC. All AMs generated are binarized using a threshold τ ∈ {0.05x ∣ 0 < x < 20 and x ∈ N}.

We compute the average IoU, precision, recall, and F1 over pairs of (human binary map, binarized

AM) and report the results at the optimal τ of each explanation method. For both LOOempty and

IM, τ = 0.1 on SNLI-L2 and 0.05 on both SST-2 and MultiRC. On SNLI-L3, τ is 0.40 and 0.45 for

LOOempty and IM, respectively.

SST results We found that LOOempty aligns better with human highlights than IM (Figs. 3.2

& 6.16). LOOempty outperforms IM in both F1 and IoU scores (Table 3.3a; 0.2756 vs 0.2377) with

a notably large recall gap (0.6077 vs. 0.5245).

SST Groundtruth & Prediction: positive movie review

Input
Mr. Tsai is a very original artist in his medium ,
and What Time Is It There ?

IM
Mr. Tsai is a very original artist in his medium ,
and What Time Is It There ?
IoU: 0.17, precision: 0.33, recall: 0.25

LOO
Mr. Tsai is a very original artist in his medium ,
and What Time Is It There ?
IoU: 0.80, precision: 0.80, recall: 1.00

Figure 3.2: LOOempty binarized attribution maps align better with human highlights than IM maps.
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e-SNLI and MultiRC results Similarly, in both tasks, LOOempty explanations are more consistent

with human highlights than IM explanations under all four metrics (see Table 3.3b–d and qualitative

examples in Figs. 3.3 & 6.17–6.20).

Remarkably, in MultiRC where each example is substantially longer (∼299 tokens per example)

than those in the other tasks, the recall and F1 scores of LOOempty is, respectively, 2× and 4× higher

than those of IM (see Table 3.3).

e-SNLI example. Groundtruth & Prediction: entailment

P
Two men dressed in black practicing martial arts
on a gym floor .

H Two men are doing martial arts .

IM
Two men dressed in black practicing martial arts
on a gym floor .
Two men are doing martial arts .

IoU: 0.09, precision: 0.17, recall: 0.16

LOO
Two men dressed in black practicing martial arts
on a gym floor .
Two men are doing martial arts .

IoU: 0.50, precision: 0.56, recall: 0.83

Figure 3.3: LOOempty important words are in a stronger agreement with human highlights than
IM important words. Each e-SNLI example contains a pair of premise (P) and hypothesis (H).

3.5.3 IM is insensitive to model randomization

[1] found that many attribution methods can be surprisingly biased, i.e. insensitive to even

randomization of the classifier’s parameters. Here, we test the degree of insensitivity of IM when

the last classification layer of BERT-based classifiers is randomly re-initialized. We use three SST-2

classifiers and three e-SNLI classifiers.

Surprisingly, IM is consistently worse than LOOempty, i.e. more insensitive to classifier

randomization. That is, on average, the IM attribution of a word changes signs (from positive to

negative or vice versa) less frequently, e.g. 62.27% of the time, compared to 71.41% for LOOempty

on SST-2 (Table 6.11a). The average change in attribution magnitude of IM is also ∼1.5× smaller

than that of LOOempty (Table 6.11b).
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For example, the IM attribution scores of hot, air or balloons in Fig. 3.1 remain consistently

unchanged near-zero even when the classifier is randomized three times. That is, each of these

three words is ∼100% predictable by BERT given the other two words (Fig. 3.1b; IM1 to IM3) and,

hence, will be assigned a near-zero attribute by IM (by construction, via Eqn. 3.3 & 3.4) regardless

of how important these words actually are to the classifier. Statistically, this is a major issue because

across SST, e-SNLI, and MultiRC, we find BERT to correctly predict the missing word ∼49, 60, 65%

of the time, respectively (Sec. 6.2.1). And that the average likelihood score of a top-1 exact-match

token is high, ∼0.81–0.86 (Sec. 6.2.2), causing the highly predicted words (e.g., hot) to always be

assigned low attribution regardless of their true importance to the classifier.

We find this insensitivity to be a major, theoretical flaw of IM in explaining a classifier’s

decision at the word level. By analyzing the overlap between IM explanations and human highlights

(generated in experiments in Sec. 3.5.2), we find consistent results that IM explanations have

significantly smaller attribution magnitude per token (Sec. 6.2.1) and substantially lower recall

than LOO (Sec. 6.2.2).

3.5.4 Classification accuracy only drops marginally when one token is deleted

Our previous results show that replacing a single word by BERT (instead of deleting) in IM

creates more realistic inputs but actually hurts the AM quality w.r.t. LOO. This result interestingly

contradicts the prior conclusions [78, 56] and assumptions [57] of the superiority of IM over LOO.

To understand why using more plausible counterfactuals did not improve AM explainability,

we assess the ∆ drop in classification accuracy when a word is deleted (i.e., LOOempty samples;

Fig. 6.21) and the ∆ when a word is replaced via BERT (i.e. IM samples).

Results Across SST, e-SNLI, and MultiRC, the accuracy scores of classifiers only drop marginally

∼1–4 points (Table 3.4) when a single token is deleted. See Figs. 6.21 & 6.22 for qualitative

examples showing that deleting a single token hardly changes the predicted label. Whether a word is

removed or replaced by BERT is almost unimportant in tasks with long examples such as MultiRC
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(Table 3.4; 1.10 and 0.24). In sum, we do not find the unnaturalness of LOO samples to substantially

hurt model performance, questioning the need raised in [57, 56, 78] for realistic counterfactuals.

∆ drop in accuracy (%) SST e-SNLI MultiRC

(a) LOO (1-token deleted) 3.52 4.92 1.10

(b) IM (1-token replaced) 2.20 4.86 0.24

(c) LIME (many tokens deleted) 16.38 25.74 17.85

Table 3.4: The dev-set accuracies on SST, e-SNLI and MultiRC (87.83%, 90.92%, and 69.10%,
respectively) only drop marginally when a single token is deleted (a) or replaced using BERT (b).
In contrast, LIME samples cause the classification accuracy to drop substantially (e.g. 16.38 points
on SST).

3.6 Replacing (instead of deleting) multiple words can improve explanations

We find that deleting a single word only marginally affects classification accuracy. Yet, deleting

∼50% of words, i.e. following LIME’s counterfactual sampling scheme, actually substantially

reduces classification accuracy, e.g. −16.38 point on SST and −25.74 point on e-SNLI (Table 3.4c).

Therefore, it is interesting to test whether the core idea of harnessing BERT to replace words has

merits in improving LIME whose counterfactuals are extremely OOD due to many missing words.

3.6.1 LIMEBERT attribution maps are not more aligned with human annotations

Similar to Sec. 3.5.2, here, we compare LIME and LIMEBERT AMs with human SST annota-

tions (avoiding the Deletion-derived metrics due to their bias described in Sec. 3.4).

Experiment We use the default hyperparameters of the original LIME [133] for both LIME and

LIMEBERT. The number of counterfactual samples was 1,000 per example.

Results Although LIMEBERT counterfactuals are more natural, the derived AMs are surprisingly

less plausible to human than those generated by the original LIME. That is, compared to human

annotations in SST, LIMEBERT’s IoU, precision and F1 scores are all slightly worse than those of

LIME (Table 3.3a). Consistent with the IM vs. LOOempty comparison in Sec. 3.5.2, replacing one
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or more words (instead of deleting them) using BERT in LIME generates AMs that are similarly or

less aligned with humans.

To minimize the possibility that the pre-trained BERT is suboptimal in predicting missing

words on SST-2, we also finetune BERT using the mask-language modeling objective on SST-2

(see details in Sec. 6.2.3) and repeat the experiment in this section. Yet, interestingly, we find the

above conclusion to not change (Table 3.3a; LIMEBERT_SST2 is worse than LIME). In sum, for both

LOO and LIME, we find no evidence that using realistic counterfactuals from BERT causes

AMs to be more consistent with words that are labeled important by humans.

3.6.2 LIMEBERT consistently outperforms LIME under three ROAR metrics

To thoroughly test the idea of using BERT-based counterfactuals in improving LIME expla-

nations, we follow Sec. 3.5.1 and compare LIMEBERT and LIME under three ROAR metrics: (1)

ROAR; (2) ROARBERT; and (3) ROARBERT_SST2, i.e. which uses the BERT finetuned on SST-2 to

generate training data.

Experiment Similar to the previous section, we take the dev set of SST-2 and generate a LIME

AM and a LIME-BERT AM for each SST-2 example. For ROARBERT_SST2, we re-use the BERT

finetuned on SST-2 described in Sec. 3.6.1.

Results Interestingly, we find that LIMEBERT slightly, but consistently outperforms LIME via all

three ROAR metrics tested (Fig. 3.4; dotted lines are above solid lines). That is, LIMEBERT tends to

highlight more discriminative tokens in the text than LIME, yielding a better ROAR performance

(i.e. lower accuracy in Table 6.12). This result is consistent across all three settings of removing

10%, 20%, and 30% most important words, and when using either pre-trained BERT or BERT

finetuned on SST-2.

3.7 Discussion and Conclusion

We find in Sec. 3.5.3 that IM is highly insensitive to classifier’s changes because, by design,

it always assigns near-zero attribution to highly-predictable words xi regardless of their true
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Figure 3.4: LIMEBERT slightly, but consistently outperforms LIME when evaluated under either
ROAR or ROARBERT. The each point in the y-axis shows the mean accuracy of five different
classifiers. See more results supporting the same conclusion in Table 6.12.

importance to a target classifier. A solution may be to leave such xi token out of the marginalization

(Eq. 3.3), i.e. only marginalizing over the other tokens suggested by BERT. However, these other

replacement tokens altogether have a sum likelihood of 0. That is, replacing token xi by zero-

probability tokens (i.e. truly implausible) would effectively generate OOD text, which, in turn is

not desired [57].

Our results in Sec. 3.6.2 suggests that IM might be more useful at the phrase level [71] instead

of word level as deleting a set of contiguous words has a larger effect to the classifier predictions.

In sum, for the first time, we find that the popular idea of harnessing BERT to generate

realistic counterfactuals [57, 56, 78] does not actually improve upon a simple LOOempty in practice

as an LOOempty counterfactual only has a single word deleted. In contrast, we observe more

expected benefits of this technique in improving methods like LIME that has counterfactuals that

are extremely syntactically erroneous when multiple words are often deleted.
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Chapter 4

PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search

4.1 Overview

Understanding phrases in context is a key to learning new vocabularies [100, 41], disambigua-

tion [122], and many downstream tasks, including semantic search [40]. Yet, the contextualized

phrase embeddings [175] in existing systems mostly capture the common meaning of a phrase,

i.e. without strong dependence on its context [175]. While there are word-sense disambiguation

datasets [34, 122], no such benchmarks exist for phrases. Existing phrase-similarity benchmarks

[112, 150, 6, 180, 173] compare phrases alone (without context) and some of them [112, 180] con-

tain a large, undesired amount (∼15% to 99%) of phrase pairs that have lexical overlap (Table 4.1).

Others generated the context for a phrase by querying GPT-2 [157] or by retrieving from

Wikipedia [175]. Yet, there was no human verification of the realism of generated text [157] and no

human annotation of how a phrase’s meaning changes w.r.t. the context [175]. All above drawbacks

are limiting the evaluation of phrase understanding.

To advance the development of contextualized phrase embeddings, we propose Phrase-in-

Context (PiC), a suite of three tasks: (1) Phrase Similarity (PS), i.e. compare the semantic similarity

of two phrases in the same context sentence (fig. 4.1b); (2) Phrase Retrieval (PR), which is divided

into PR-pass and PR-page (fig. 4.1c–d), i.e. from a passage or a Wikipedia page, retrieve a phrase

semantically-similar to a given query phrase; and (3) Phrase-Sense Disambiguation (PSD), i.e. find

the target phrase p semantically similar to the query phrase from a 2-paragraph document where

p appears twice, each time in a different context paragraph that provides a unique meaning to

p (fig. 4.1e). Our ∼28K-example dataset is rigorously (a) annotated and verified by two groups

of annotators: linguistics experts on Upwork.com and non-experts on Amazon Mechanical Turk

(MTurk); and then (b) tested by models, linguists, and graduate students. Our contributions are:
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1. We build PiC1, the first, human-annotated benchmark for evaluating and training contextual-

ized phrase embeddings (section 4.4). Compared to existing phrase similarity datasets, PS is

the first to require models to rely on context.

2. After training on PR-pass, i.e. finding a phrase from a passage, SS models perform at a near-

human accuracy (92–94% vs. 95% EM). They also score high (84–89% EM) on PR-page,

i.e. semantic phrase search in a Wikipedia page (Sec. 4.5.4), suggesting our training set and

learned embeddings are useful for real-world semantic search.

3. Interestingly, on PR-pass, harnessing these SS models’ phrase embeddings in a ranking

approach (i.e. comparing the similarity between the query and all candidate phrases) yields

poor accuracy of ≤ 59% EM (Sec. 6.3.8), setting a challenge for future research into learning

contextualized phrase embeddings.

4. After training on PR-pass, state-of-the-art (SotA) models perform relatively well on PR-

pass and even PR-page but not on PSD (Sec. 4.5.5). On PS, SotA models perform poorly

(below 70% accuracy) in binary classification of phrase similarity given a context sentence

(section 4.5.1).

4.2 Related Work

Each of our tasks (PS—phrase similarity; PR—phrase retrieval; and PSD—disambiguation) is

related to a separate research area discussed below.

Phrase similarity First, most existing phrase similarity datasets—e.g. PPDB-annotated [161],

PPDB-filtered [157], BiRD [6], and PAWS-short [157, 180]—contain a large percent of instances

with lexical overlap between two paired phrases while our PS contains the least percent (5.34%;

table 4.1). Second, PS compares each pair of phrases in a context sentence while existing datasets

only compare phrases alone (no context). Third, the phrases in PS are, on average, 2-token long,

1Dataset, code, and demos are available on https://phrase-in-context.github.io.
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…………………………….….…………………………………………….
. …………………………….….………………………………………….. 
Samson is the emblem of Lungau, Salzburg 
and parades in his honor are held annually 
in ten villages of the Lungau and two 
villages in the north-west Styria (Austria). 
During the parade, a young bachelor from 
the community carries a massive figure
made of wood or aluminum said to 
represent Samson. The tradition, which was 
first documented in 1635, was entered into 
the UNESCO list of Intangible Cultural 
Heritage in Austria in 2010…………………………
…………………………………………………………………..............

…………………………….….…………………………………………..
…………………………….….………………………………………….. 
In November 2018, HMSI crossed the 2.5 
crore sales mark in the scooter segment. It 
has become the first company to reach 
this milestone and the biggest contributor 
to this massive figure is the Honda 
Activa. It took Honda 13 years to achieve 
the one crore sales figure, but it managed 
to add another crore in the span of just 
three years. It then went on to achieve the 
next 50 lakh in just one year ……………………
……………………….………………………………………..

massive figure

page 1

huge model giant numberparaphrase 1 paraphrase 2

Q2

Q3: Does massive figure in page 1 has the same meaning as massive figure in page 2?   Yes No

page 2

Q1

rephrase

(a) Q1 & Q2 ask annotators to rephrase “massive figure” in page 1 and
page 2. Q3 asks whether this phrase’s meaning is the same in both pages.

During the parade, a young bachelor from the 
community carries a massive figure made of wood or 
aluminum said to represent Samson. 

Positive example (same meaning)

S1

During the parade, a young bachelor from the 
community carries a  huge model made of wood 
or aluminum said to represent Samson. 

During the parade, a young bachelor from the 
community carries a massive figure made of wood or 
aluminum said to represent Samson. 

Negative example (different meanings)

During the parade, a young bachelor from the 
community carries a   giant number made of wood 
or aluminum said to represent Samson. 

S2

S1

S2

huge model

giant number

(b) PS positive & negative exam-
ples constructed using page 1 con-
text
(similarly, we repeat for page 2).

~11-sentence passage in page 1pass 1: 
………………………………………………………………………. center of the great
cascade of the fountain at Peterhof Palace in Saint Petersburg.
Samson is the emblem of Lungau, Salzburg and parades in his
honor are held annually in ten villages of the Lungau and two
villages in the north-west Styria (Austria). During the parade, a
young bachelor from the community carries a massive figure
made of wood or aluminum said to represent Samson. The
tradition, which was first documented in 1635, was entered into
the UNESCO list of Intangible Cultural Heritage in Austria in 2010.
Samson is one of the giant figures at the "Ducasse" festivities,
which take place at Ath, Belgium ………………………………………

pass 1

Query:  Answerhuge model

massive figure

(c) A PR-pass example.

Query:  huge model

…………………………….….…………………………………………….
. …………………………….….………………………………………….. 
Samson is the emblem of Lungau, Salzburg 
and parades in his honor are held annually 
in ten villages of the Lungau and two 
villages in the north-west Styria (Austria). 
During the parade, a young bachelor from 
the community carries a massive figure
made of wood or aluminum said to 
represent Samson. The tradition, which was 
first documented in 1635, was entered into 
the UNESCO list of Intangible Cultural 
Heritage in Austria in 2010…………………………
…………………………………………………………………..

page 1

massive figure

Answer

(d) A PR-page example.

~22 sentences ( pass 1 + pass 2 )
Samson is the emblem of Lungau, Salzburg and parades in his honor are held
annually in ten villages of the Lungau and two villages in the north-west
Styria (Austria). During the parade, a young bachelor from the community
carries a massive figure made of wood or aluminum said to represent
Samson. The tradition, which was first documented in 1635, was entered
into the UNESCO list of Intangible Cultural Heritage in Austria in 2010.

In November 2018, HMSI crossed the 2.5 crore sales mark in the scooter
segment. It has become the first company to reach this milestone and the
biggest contributor to this massive figure is the Honda Activa. It took
Honda 13 years to achieve the one crore sales figure, but it managed to add
another crore in the span of just three years.

pass 1

Query:  Answer:  massive figurehuge model

pass 2

massive figure

(e) A PSD example.

Figure 4.1: Given a phrase, two associated Wikipedia pages, and expert annotations, i.e. answers to
Q1, Q2, and Q3 (a), we are able to construct two pairs of positive and negative examples for PS (b),
a PR-pass example (c), a PR-page example (d), and a PSD example only if the answer to Q3 is No
(e).

comparable to that of other datasets (table 4.1). Fourth, unlike other datasets, PS contains exclusively

noun-phrases, the most common phrase type according to Yahoo’s search-query statistics [168]

(79.54%; section 6.3.4) and Adobe (internal Acrobat Pro data not shown).

Question answering (QA) Our phrase-retrieval tasks—PR and PSD—follow the format of QA

datasets except that our queries are phrases instead of questions and hence shorter (table 4.2). Like

SQuAD 1.1 [129] and HotpotQA [174], our documents and queries are extracted from Wikipedia

articles. While our PR dataset is ∼3.5× smaller than those two datasets, the paragraph document

length in PR-pass and PSD is ∼2× longer than those of SQuAD 1.1 and HotpotQA (table 4.2).
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Table 4.1: Our Phrase Similarity (PS) dataset has a lower percent of lexical-overlap instances and is
the only human-annotated dataset that provides phrases, each in a context sentence.

PS WiC PPDB- PPDB- BiRD Turney PAWS-
(ours) annotated filtered short

# of All instances 10,004 7,466 3,000 15,532 3,345 2,180 1,214
# of Unique phrases 7,488 2,345 6,000 12,023 2,840 9,776 1,214
Lexical overlap (%) 5.34 100 70.10 97.93 14.98 0 99.42

Mean length (in tokens)
● phrase1 2.06 1 3.67 2 2 2 9.52
● phrase2 2.46 1 3.73 2 1.49 1 9.42
● context sentence 22.53 8.40 0 0 0 0 0

For our task, intuitively, the longer the document, the harder the task since there would be more

candidates a model must compare with the query.

Table 4.2: Our PR-pass, PR-page and PSD datasets are smaller in size compared to common QA
datasets and contain shorter queries that are noun phrases instead of questions. However, our tasks
require searching in much longer documents.

PR-pass PR-page PSD SQuAD 1.1 HotpotQA

All instances 28,147 28,098 4,858 98,169 105,257
Unique queries/questions 27,055 27,016 4,812 97,888 105,249
Unique answers 13,458 13,423 2,314 72,469 57,259

Mean length of
query (tokens) 2.42 2.42 2.45 11.42 20.03
answer (tokens) 2.17 2.17 2.07 3.46 2.35
sentence (tokens) 23.22 24.08 23.00 27.62 26.77
document (sentences) 10.26 119.32 20.37 5.10 4.14
document (tokens) 238.34 2,872.73 468.48 140.92 110.72

Sense disambiguation While word-sense disambiguation (WSD) is a long-standing problem in

NLP, recently, SotA models have reached super-human accuracy (80% F1) on the common English

WSD [11]. Interestingly, these high-scoring models still struggle with rare senses that may be

outside of the predefined sense inventories or have few training examples [13]. Without the need for

predefined senses, WiC [122] poses disambiguation as a binary classification task where the goal
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is to predict whether the same target word in two different sentences carries the same or different

meanings.

Compared to WiC PS is also a binary classification task, but with two major differences: (1) in

WiC, the same target word appears in two different sentences while in PS, two different phrases

appear in the same context sentence; (2) PS compares phrases composed of ≥ 2 words instead

of a single word as in WiC and WSD. While word senses are defined in WordNet and BabelNet

dictionaries [11], there are no English dictionaries of senses for multi-word noun phrases (mNPs).

Thus, it is more challenging to acquire and learn the senses of mNPs, hence the importance of our

PiC dataset. Like WiC, PSD tests disambiguating the meanings of the same n-gram in two different

contexts. Yet, PSD is a phrase search task, which involves many more phrase comparisons per

example than PS or WiC.

Before the deep learning era, phrase-sense disambiguation was already proposed [18, 19] but

only as an auxiliary task for training machine-translation models. And their phrase senses were not

annotated by humans but inferred by performing word-alignment on a bilingual corpus. Here, our

PSD is the first phrase-sense disambiguation task annotated by experts and requires understanding

of phrase-senses in a passage.

4.3 PiC Dataset Construction

We first collect a set of phrases with context and human annotations. Then, we derive the

examples and labels for three main tasks: PS, PR, and PSD (Fig. 4.1). Our idea is to mine a set of

triplets (p, page1, page2) from Wikipedia where the phrase p is a polysemous mNP that carries two

different senses in two Wikipedia pages (e.g., “massive figure” means a large number in page1 but

a huge physical shape in page2; fig. 4.1a). Then, we ask experts to rephrase p into two paraphrases

q1 and q2, maintaining the two original senses of p in page1 and page2, respectively. The resultant

set of 5-tuples (p, q1, q2, page1, page2) enables the tests for (1) comparing the semantic similarity

of two phrases given the same context sentence (PS; fig. 4.1b); (2) finding a semantically similar
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phrase in a document (PR-pass & PR-page; fig. 4.1c); (3) disambiguating the senses of the same

target mNP given two context paragraphs (PSD; fig. 4.1e).

4.3.1 Data Collection

As there are no English dictionaries that contain sense inventories for mNPs, the key challenge

to our data collection is to mine mNPs that have (1) multiple senses; and (2) a Wikipedia context

page for each sense. To do that, we take a Wikipedia dump and perform a 6-step procedure that

essentially extracts all the mNPs that occur in more than one Wikipedia page and that contain

at least one polysemous word defined in the WiC dataset. From the triplets of (p, page1, page2),

we programmatically narrow down to ∼600K triplets where the context sentence of the mNP in

page1 is the most semantically dissimilar to the context sentence in page2 (according to SimCSE

[45]). We continue filtering down to the top 19,500 triplets where page1 and page2 have the most

semantically dissimilar lists of Wikipedia categories. That is, 19,500 triplets are estimated to yield

∼15K annotated triplets (the target size based on our budget) after the human annotation process

where annotators are allowed to skip the cases they are not confident labeling. See section 6.3.3 for

a detailed description of the data collection and dataset biases.

4.3.2 Data Annotation

Via Upwork, we hire 13 linguistics experts who are native English speakers at a rate of $30/hour

to annotate 15,021 out of 19,500 examples. For each phrase, we provide Upworkers with a triplet (p,

passage1, passage2) where each passagei consists of 5 sentences centered at the phrase-containing

sentence in the corresponding pagei. We ask them to answer the three below questions (fig. 4.1a):

Q1 Rephrase the target phrase p to a paraphrase q1 such that its meaning is constant in passage1.

Q2 Similarly, rephrase p w.r.t. passage2 to obtain a paraphrase q2.

Q3 Answer Y/N if p has the same meaning in both contextual passage1 and passage2.

47



Upworkers are asked to provide paraphrases that (1) have at least two words and (2) minimize

lexical overlap with each other and the target p. See the annotation guidelines [119] and a sample

annotation assignment [120] given to Upworkers. After receiving annotations, we use [85] to

automatically find syntactical errors when the paraphrases are replaced by the original target phrase

in the original passage and ask Upworkers to fix them. We also have annotators fix the remaining

errors that we find via manual inspection.

4.3.3 Annotation Verification

To verify the annotations obtained in section 4.3.2 (i.e. 2 × 15,021 = 30,042 paraphrases; and

15,021 Y/N labels), first, we present the same Q1, Q2, and Q3 questions to 1,000 qualified MTurkers

and ask whether they agree with the answers by expert annotators in section 4.3.2. And then, for

the cases that the MTurkers disagree with, we seek second opinions from 5 Upwork experts. After

these two verification rounds, we discard all the examples where Upwork verifiers reject and arrive

at the final 28,325 paraphrases and 13,413 Y/N labels (i.e. those annotations that either an MTurk

or Upwork verifier endorses). See more details in section 6.3.10.

The total fee for both MTurk and Upwork combined is around USD 30,000.

4.4 Three Phrase Understanding Tasks

Using the human-annotated data, we construct three tasks of PS, PR, and PSD (as summarized

in fig. 4.1) for evaluating contextualized phrase-embeddings and semantic-search models.

4.4.1 Phrase Similarity (PS)

PS is a binary classification task that asks whether two mNPs are semantically similar or not

given the same context sentence. The unique challenge of PS is that, without context, the two given

phrases can be easily interpreted as synonymous. Yet, in our PS context sentence, the two phrases

may or may not carry distinct meanings (fig. 4.1b).
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Construction From the annotated data, a positive example is a triplet of (an original phrase p, a

paraphrase q1, an original page1’s sentence that contains p). To create a negative example, from the

same triplets, we select only those where the paraphrase q2 holds a different meaning than q1 given

the page1 context of q1 (i.e., when the answer to Q3 is No; see fig. 4.1b). For quality assurance, we

also hire three extra Upwork experts to double-check PS annotations (see section 6.3.5), keeping

only examples that at least 2 out of 3 experts endorse. In total, we obtain 5,002 negative examples.

Then, we randomly select 5,002 positive examples to form a class-balanced PS dataset.

4.4.2 Phrase Retrieval (PR)

PR is a task of finding in a given document d a phrase p that is semantically similar to

the given query phrase, which is the paraphrase q1 (the answer by annotators to Q1) or q2 (the

answer to Q2). We release two versions of PR: PR-pass and PR-page, i.e. datasets of triplets

(query q1, target phrase p, document d) where d is a random 11-sentence passage that contains

p (fig. 4.1c) or an entire Wikipedia page (fig. 4.1d). While PR-pass contains 28,147 examples,

PR-page contains slightly fewer examples (28,098) as we remove those examples whose Wikipedia

pages coincidentally also contain exactly the query phrase (in addition to the target phrase). Both

datasets are split into ∼20K/3K/5K for train/dev/test, respectively.

4.4.3 Phrase Sense Disambiguation (PSD)

The task is to find the location of the target phrase p where it has a similar meaning to that of

the given query q in a 2-paragraph document where, by construction, p appears exactly twice but

only one location is the correct answer (fig. 4.1e).

Construction From the verified annotations in section 4.3.3, there are in total 4,938 phrases that

both annotators and verifiers agree to hold different meanings across the two context Wikipedia

pages (i.e., “No” answer to Q3 in fig. 4.1a). To create a PSD example, given a phrase p from the

above 4,938, we extract two corresponding ∼11-sentence paragraphs (from its associated page1 and

page2 as in PR-pass) and concatenate them (separated by an empty line) into a single document
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(fig. 4.1e). Since a PSD example shares a pair of phrases (query and answer) with one PS positive

example (phrase1 and phrase2), we filter out that PSD example if the corresponding PS example

is removed from the additional verification round (section 6.3.5). As the result, we exclude 80

examples and obtain 4,858 examples in total for PSD.

4.5 Experiments and Results

We test SotA models on PS, PR-pass, PR-page, and PSD to (1) assess how the models are able

to leverage context to improve accuracy; and (2) quantify the headroom for future research.

Phrase embeddings Besides training and testing SotA BERT-based classifiers, we also test a

ranking approach that involves computing the cosine similarity between the query’s and each

candidate’s embedding. To compute a contextualized phrase embedding, following [175], we feed

the entire phrase-containing sentence (e.g. S1 in fig. 4.1b) into a model, e.g. BERT, and then

take the mean pooling of the last-layer embeddings over the words of the given phrase only. For

non-contextualized phrase embeddings, we repeat the same process but input to the model only the

phrase (instead of the entire sentence).

Models We choose SotA models in (a) phrase similarity: PhraseBERT [157]; (b) sentence similar-

ity: USE-v5 [21], SentenceBERT [131], and SimCSE [45]); (c) question-answering: Longformer

[8], DensePhrase [86]; and (d) contextualized embeddings: SpanBERT [72] and BERT [30].

For DensePhrase, we use their Phrase-Encoder (as opposed to the Query-Encoder) to compute

phrase embeddings. USE-v5 is only available via public APIs [148] that do not support extraction

of contextualized phrase embeddings.

4.5.1 Phrase Similarity: Contextualized phrase embeddings improve accuracy

Q: Does incorporating context improve the phrase-similarity accuracy on PS?

Experiment We split the PS dataset 70/10/20 for train/dev/test and test two approaches: (1) using

the cosine similarity score between two pre-trained phrase-embeddings (with and without context)
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to predict phrase similarity; (2) training BERT-based binary classifiers directly using PS training set.

We use 6 backbone BERT models that are all “base” versions unless specified otherwise (table 4.3).

Approach 1: Cosine similarity First, we test how pre-trained phrase embeddings alone

(without finetuning or extra weights) can be leveraged to solve PS. For each PS example of

two phrases, we compute their non-contextualized phrase embeddings and compute their cosine

similarity score. To evaluate the pre-trained embeddings on PS, we follow [171] and tune the

binary-classification threshold T to maximize the training-set accuracy, and then use the same

optimal T to report the test-set accuracy. We repeat the experiment for contextualized phrase

embeddings.

Approach 2: BERT-based classifiers To complement Approach 1, we test Approach 2, i.e.

building a binary classifier by adding two extra MLP layers on top of the pre-trained embeddings

used in Approach 1. For a phrase pair, we concatenate the two 768-D phrase embeddings from

BERTbase into a 1,536-D vector, and then place one ReLU layer (256 units) and a 1-output linear

classification layer with sigmoid on top. Following [157], we finetune these models for a maximum

of 100 epochs (with early stopping and patience of 10 epochs) on the train set. See section 6.3.1 for

more training details.

Results Without context, all models perform at ≤ 50% accuracy (i.e. the random chance; table 4.3a

& c). Interestingly, incorporating context information into phrase embeddings substantially improves

mean model-accuracy on PS for both Approach 1 (from 50.83% to 63.43%; table 4.3b vs. a) and

Approach 2 (from 35.40% to 66.71%; table 4.3d vs. c), showing evidence that PS requires models

to rely on context. While starting from the same backbone models, Approach 2 yields higher mean

accuracy than Approach 1 (table 4.3; 66.71 vs. 63.43), which is expected as Approach 2 models

have more capacity and the backbones are allowed to be finetuned on PS. See Figs. 6.25–6.28 for

qualitative PS predictions from a PhraseBERT-based classifier.
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Table 4.3: Accuracy (%) of state-of-the-art BERT-based models on the PS test set. Contextualized
phrase embeddings (“Phrase + Ctx”) yield substantially higher performance on PS than non-
contextualized embeddings (“Phrase”). The random baseline is 50%.

Model
Approach 1: Approach 2:

Cosine similarity BERT-based classifiers

(a) Phrase (b) Phrase + Ctx (c) Phrase (d) Phrase + Ctx

PhraseBERT 51.75 63.40 (+11.65) 33.60 66.10 (+32.50)

BERT 51.05 64.10 (+13.05) 37.00 68.85 (+31.85)

SpanBERT 49.30 64.00 (+14.70) 40.15 66.85 (+26.70)

SpanBERTLarge 50.40 66.30 (+15.90) 35.95 69.25 (+33.30)

SentenceBERT 50.35 60.30 (+9.95) 31.50 62.55 (+31.05)

SimCSE 52.15 62.50 (+10.35) 34.20 66.65 (+32.45)

mean ± std 50.83 ± 1.04 63.43 ± 1.98 35.40 ± 3.01 66.71 ± 2.40

4.5.2 Human Baselines and Upperbound (95% Exact Match) on Phrase Retrieval

To interpret the progress of machine phrase-understanding on PR, here, we establish multiple

human baselines for both non-experts and linguistics experts (with and without training them).

Experiment We recruit participants and have them perform one or two tests per person. A test

consists of 20 PR-pass examples. That is, PR-pass documents are 11-sentence long and are feasible

for a person to read in minutes (compared to reading an entire Wikipedia page). We test three

groups: (1) 21 graduate students at our institution (1 test per person); (2) five Upwork experts (1

test per person); and (3) another five Upwork experts (2 tests per person, i.e., for a total of 2 × 5 =

10 tests). The students in Group 1 volunteer to help our study unpaid while the Upworkers (Group 2

and 3) are hired using the same procedure as in section 4.3.2.

Results First, we find an unsurprising, large gap between non-experts and experts (table 4.4;

73.60% vs. 82.00%). Second, we train experts in Group 3 by having each do a preliminary test and

giving them feedback before the real test. We find the training to substantially boost expert accuracy

further (from 82.00% to 90.50%). Importantly, we find the Human Exact Match (EM) Upperbound

to be 95%, i.e. the highest scores that 4 people (among all groups) make. Upon manual inspection
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Table 4.4: Best SS models reach near the Upperbound (95%) on PR-pass. Yet, ranking models
based on phrase embeddings significantly underperform SS models.

Accuracy of human groups and models EM (%)

Group 1: 20 Non-experts (w/o training) 73.60 ± 7.90
Group 2: 05 Experts (w/o training) 82.00 ± 12.00
Group 3: 05 Experts (w/ training) 90.50 ± 3.70
Best human accuracy (4 people)—Upperbound 95.00 ± 0.00

Best untrained, ranking model (BERT) 47.44
Best PR-trained, ranking model (PhraseBERT) 59.02
Best PR-trained, SS model (LongformerLarge) 94.28

of the submissions of these best performers, we find their incorrect answers sometimes partially

overlap with the groundtruth or are sometimes reasonable. In other cases, the best performers find

acceptable answers but that do not overlap at all with the groundtruth labels in PR. That is, we

estimate a 5% of noise in the annotations of PR.

4.5.3 Phrase Retrieval: In ranking, context only helps BERT embeddings but not others

One way to evaluate the quality of SotA phrase embeddings is by testing:

Q: How well do phrase embeddings perform in the ranking approach on PR?

Ranking is a challenging and meaningful phrase-embedding test because the embedding of

the query is compared against that of all phrase candidates (extracted by tokenizing the document),

which can include syntactically-incorrect phrases, meaningless phrases or rare phrases. Such

out-of-distribution challenge appears less often in PS or WiC, i.e. a binary classification setting.

Experiment As described in section 4.4.2, the PR train/dev/test splits are 20,147/3K/5K examples

and we only use the 5K-example test set to test the models in this ranking experiment (no training).

We follow [87] for span enumeration to construct a list of candidate phrases, we split each PR

document into multiple sentences (using NLTK sentence splitter) and tokenize each sentence into

tokens (using NLTK tokenizer) and build an exhaustive list of n-grams (here, n ∈ {2,3} only for

computational tractability). For every example, we add the groundtruth phrase (which can be longer
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Table 4.5: Ranking accuracy (%) on PR-pass using the state-of-the-art pretrained phrase embed-
dings. See section 6.3.6 for the results on PR-page. ∆ (e.g. -3.62) denotes the differences between
the Top-1 accuracy in the contextualized (“Phrase + Context”) vs. the non-contextualized (“Phrase”)
setting.

Model
Phrase Phrase + Context

Top-1 Top-3 Top-5 MRR@5 Top-1 (∆) Top-3 Top-5 MRR@5

PhraseBERT [157] 36.62 66.96 75.90 52.20 33.00 (-3.62) 49.60 56.70 41.90

BERT [30] 29.80 47.90 55.40 39.50 47.44 (+17.64) 65.78 73.30 57.30

BERTLarge [30] 23.76 38.52 45.40 31.70 42.80 (+19.04) 58.90 64.90 51.30

SpanBERT [72] 20.88 31.04 35.20 26.40 14.40 (-6.48) 30.46 39.80 23.40

SentenceBERT [131] 22.30 50.64 60.60 36.80 25.14 (+2.84) 39.52 46.20 32.90

SimCSE [45] 28.10 53.70 64.60 41.60 32.40 (+4.30) 53.44 62.80 43.70

USE-v5 [21] 43.36 70.12 78.90 57.30 n/a n/a n/a n/a

DensePhrase [86] 32.24 51.30 60.50 42.60 31.50 (-0.74) 46.30 53.80 39.70

than 3 words) to the list of candidates (since we are only interested in testing phrase embeddings,

not the phrase extractor).

Results We report top-k accuracy (for k = 1, 3, 5) and top-5 Mean Reciprocal Rank (MRR@5) on

the PR-pass test set in table 4.5a. First, for most SotA embeddings, incorporating context sentence

hurts the accuracy (except for BERT embeddings). That is, interestingly, for all BERT embeddings

(base and large), the accuracy increases substantially (+17.64 and +19.04; table 4.5) when the

one-sentence context is the input. In contrast, most models that started from BERT but were later

finetuned lost the capability to leverage the context information (e.g., PhraseBERT, DensePhrase,

and SpanBERT in table 4.5).

Second, the best top-1 accuracy scores on PR-pass for non-contextualized (USE-v5; 43.36%)

and contextualized (BERT; 47.44%) embeddings are substantially lower than the non-expert base-

lines (73.60%; table 4.4) and Human Upperbound (95%). Future work is required to learn more

robust, phrase embeddings for ranking. See Figs. 6.32–6.33 for qualitative examples.
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4.5.4 Phrase Retrieval: Span-selection models reach near-human accuracy

Consistent with [175], our ranking results in section 4.5.3 reveal that there exists a large

headroom for improving both non-contextualized and contextualized phrase embeddings. Yet,

because ranking is a naive approach and SS models [69, 30] are the SotA approach on many QA

tasks [129], here we train SS models on the train set of PR-pass and PR-page in order to test:

Q: How well do SotA semantic-search models perform on PR-pass and PR-page?

Experiment We take the SotA embeddings tested in section 4.5.3 and add a linear classification

layer on top and finetune each entire classifier on the train set of PR-pass or PR-page for 2 epochs

using the default HuggingFace hyperparameters (see section 6.3.2 for finetuning details). Following

the standard setup of BERT architectures for QA tasks [30], each SS model predicts the start and end

index of the target phrase. Additionally, since PR-page documents are much longer than a typical

QA paragraph (table 4.2), we also test training Longformer [8], which has a max sequence-length

of 4,096, sufficient for an entire Wikipedia page. We take the models of the smallest dev loss and

report their test-set performance in table 4.6.

Results On PR-pass, in contrast to the poor performance of ranking models (section 4.5.3),

our PR-pass-trained SS models perform impressively at a near-upperbound level (∼93–94% EM;

table 4.6a) surpassing the accuracy of trained experts (90.50% EM). Surprisingly, on PR-page

where the documents are substantially longer (around 12×) than the documents of PR-pass, SS

models’ accuracy only drops slightly (from ∼94% to ∼85–89% EM; table 4.6b). Note that in a

full Wikipedia page of PR-page, there might be phrases that can be considered correct but are not

labeled groundtruth according to our annotations. This remarkable result suggests that training on

PR-pass can enable high-performing models on real-world semantic search.

4.5.5 Phrase Sense Disambiguation: Best models also perform poorly

We find that SotA PR-pass-trained SS models reach superhuman accuracy on PR-pass, i.e.

finding a phrase of the same meaning (section 4.5.4). Yet, PR-pass only tests models’ understanding

of a single sense of the target phrase at a time. It is interesting to study:
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Table 4.6: Test-set performance (%) of SS models on PR-pass (a), PR-page (b), and PSD (c).
When trained on PR-pass (a) and PR-page (b), SotA SS models perform well. However, testing the
PR-pass-trained models on PSD shows a significant drop in accuracy (c). That is, SotA SS models
tend to understand a single sense of a phrase in context well (high PR-pass, PR-page, and PSD EM
scores). Yet, they are not able to differentiate two senses of the same phrase (e.g., here, PhraseBERT
accuracy drops -41.27 points between EM+loc vs. EM scores on PSD).

Model
(a) PR-pass (b) PR-page (c) PSD

EM F1 EM F1 EM F1 EM+loc F1+loc

PhraseBERT [157] 93.42 94.97 85.24 87.19 92.98 94.08 51.67 (-41.31) 51.83

BERT [30] 93.26 94.65 85.64 87.77 93.50 94.57 54.84 (-38.66) 55.07

BERTLarge [30] 93.64 95.16 87.36 89.52 94.67 95.57 55.43 (-39.24) 55.61

SpanBERT [72] 93.50 95.02 87.28 87.66 92.26 93.30 52.20 (-40.06) 52.34

SentenceBERT [131] 93.24 94.54 84.66 86.89 93.21 94.15 52.74 (-40.47) 52.85

SimCSE [45] 92.90 94.51 85.68 87.66 92.96 94.05 53.83 (-39.13) 53.94

Longformer [8] 94.26 95.58 89.54 91.15 96.17 96.88 62.72 (-33.45) 62.83

LongformerLarge [8] 94.28 95.53 87.58 89.32 96.32 96.91 59.72 (-36.60) 59.82

mean 93.56 95.00 86.92 88.85 94.01 94.94 55.39 (-38.62) 55.54
± std 0.49 0.42 1.93 1.73 1.54 1.36 3.90 3.88

Q: Do PR-pass-trained SS models understand contextualized phrases sufficiently to separate two

different senses of the same target phrase?

Experiment To do that, here we test the best PR-pass-trained SS models on PSD. Note that, PSD

has the same task format as PR-pass (see fig. 4.1c–e) except that the document is twice as long and

contains two occurrences of the same target phrase. We do not test the ranking models as they

perform much worse than the SS models in section 4.5.3.

Results Although the PR-pass-trained SS models are never trained on PSD, they interestingly

frequently find one occurrence of the target phrase (mean of 94.01% EM; table 4.6c). However,

they mostly locate the target phrase in the wrong context passage with high confidence scores.

That is, if we consider also the correctness of the location of the predicted phrase, their EM+loc2

2For a PSD example, if the predicted span does not intersect at all with the groundtruth span, the EM+loc and
F1+loc scores would be 0. If they intersect, the two scores would be equal to EM and F1, respectively.
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accuracy drops significantly to an average of 55.39%. Also, finetuning on a 2K-example train set of

PSD only slightly improves the EM+loc to an average of 64.24% on a 3K-example PSD test set

(section 6.3.7). Note that we estimate the Human Upperbound on PSD to be 95%, i.e. the same as

that of PR-pass. See qualitative examples and predictions of Longformer (i.e. the best model tested)

in Figs. 6.29–6.31.

In sum, there is a large headroom for future research on PSD. SS models are not yet capable of

leveraging surrounding words to differentiate between two senses of the same phrase. Interestingly,

after training on PR-pass, their contextualized phrase embeddings perform much worse in the

ranking experiments on PR-pass (section 6.3.8).

4.6 Discussion and Conclusion

While WiC and English WSD rely exclusively on dictionaries [122] to obtain word senses

and example sentences, our data collection depends on Wikipedia, WiC, & NLP models and our

annotation depends on experts. In sum, we present PiC, the first 3-task suite for evaluating phrases

in context. SS models can obtain high accuracy on semantic search after training on our PR-pass

and PR-page datasets. Yet, their capability is limited to finding a semantically-similar phrase given

a single context that contains the target phrase (in PR-pass). The results on PS and PSD show that

SotA phrase embeddings are still limited in encoding contextualized phrases. It is interesting future

work to improve these models for disambiguating the senses of a phrase in context (PS and PSD).

4.7 Limitations

Our dataset is currently limited to multi-word, English noun-phrases. Furthermore, it is

expected to contain around a 5% error on PR-pass (i.e. the best human performance is 95% EM).

On PR-page, there may be more than one correct target phrase; however, we only label one phrase

as the correct answer per document. We use only phrases that contain at least one WiC word.
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Chapter 5

PEEB: Part-based Image Classifiers with an Explainable and Editable Language Bottleneck

5.1 Overview

Fine-grained classification [154, 152] is a long-standing computer-vision challenge. Further-

more, it is also important to explain how SOTA classifiers make a decision, e.g., which bird traits

make a model think a given bird is Painted Bunting? (fig. 5.1)

First, many bird classifiers claim to be explainable [23, 33] by comparing the input image

with a set of learned, part prototypes (Figure 5.1b) or natural-language concepts (Figure 5.1a).

Yet, such prototypes are feature vectors and therefore not editable by users. Textual concepts

are often compared against entire image for classification and it is unknown what image details

match a given descriptor [95, 172]. Third, most vision-language classifiers need the prompt to

have a known {class name} (like a special code instead of an expressive, natural description)

that matches the input image [136]. Fourth, most classifiers require either training-set images

in a supervised-learning setting or demonstration images in a zero-shot setting [163, 185]. This

requirement is impractical when building a classifier for a novel species whose photos do not yet

exist in the database.

To address the above four problems, we propose PEEB, a Part-based image classifier that is

Explainable and Editable via a natural-language Bottleneck. PEEB classifies images by grounding

the textual descriptor of object parts provided by humans or GPT-4 (no images needed) to detected

parts in the image (fig. 5.1c). While PEEB leverages CLIP’s encoders [126], it uses no class

names (e.g., Indigo Bunting) in the prompt. In contrast, CLIP-based models [126, 124, 95] rely

so heavily on the known class names that their accuracy drops significantly when the names are

removed or replaced by less-common ones (Section 5.5.1).
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   back: vibrant green coloring
   beak: conical, silver-gray
   belly: rich red hue
   ...
   throat: bright red plumage

(a) textual concept explanations
operate at the image level

(c) PEEB explanations pair up each detected object part with a textual descriptor

Input image
   
   green back
   long, pointed beak
   yellow or red belly
    ...
   vibrant red throat

Text descriptors

(b) part-based prototypes represent
image patches and not editable by humans

Part prototypesInput image

Painted bunting
0.72

Figure 5.1: Existing explanations are either (a) textual but at the image level; or (b) part-level but
not textual. Combining the best of both worlds, PEEB (c) first matches each detected object part to
a text descriptor, then uses the part-level matching scores to classify the image.

For birds , we first define the parts of interest for identifying a bird. We take the 15 parts

defined in CUB [154] and reduce them to 12 by merging similar parts, e.g. left wing and right wing

are merged into wings. Using GPT-4 [107], we construct a textual descriptor to describe each bird

part of every species (see Section 6.4.3). Next, PEEB localizes the 12 bird parts in the image and

computes their matching scores with corresponding text descriptors (fig. 5.2). The sum of the 12

dot products between the paired visual and textual part embeddings would be the unnormalized

distance (logits) between the input image and every class for classification (fig. 5.3). For dogs ,

we use a similar procedure.

To our knowledge, all existing public bird-image datasets (listed in table 6.23) are limited

in size (less than 100K images per dataset) and in diversity (less than 1,500 species per dataset),

impeding large-scale, vision-language, contrastive learning. Therefore, for our pre-training, we

construct Bird-11K, an exceptionally large dataset of bird images, comprising ∼290,000 images
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spanning across ∼11,000 species—essentially, all known bird species on Earth (section 5.3). Bird-

11K is constructed from seven existing bird datasets and ∼55,000 new images that we collect from

the Macaulay Library. Similarly, we build Dog-140, a large-scale dataset of 206K dog images. Our

main findings are:1

1. CLIP-based classifiers rely mostly on class names in the prompt: The CUB accuracy of M&V

model [95] drops drastically from 53.78% to 5.89% and 5.95% after class names are removed

or replaced by scientific names (section 5.5.1).

2. Our pre-trained PEEB outperforms CLIP-based classifiers by +8 to +29 percentage points (pp)

in bird classification across CUB-200, NABirds-555, and iNaturalist-1486 (section 5.5.2).

3. PEEB allows defining new classes in text at test time (fig. 5.2) without any further training.

Besides explainability and editability, PEEB outperforms text concept-based methods in both

the generalized zero-shot (section 5.5.3) and zero-shot setting (section 5.5.4).

4. Compared with explainable CUB classifiers, PEEB scores an 88.80% top-1 accuracy, on par

with the best CUB-200 classifiers (81–87% accuracy) that are trained via supervised learning

and often not editable (section 5.5.5).

5. PEEB is applicable to multiple domains. On Stanford Dogs-120, PEEB scores 92.20%,

substantially outperforming explainable models and on-par with SOTA black-box models

(section 5.5.6).

5.2 Related Work

Ante- vs. post-hoc explanations It is common to build fine-grained classifiers based on CNNs

[61] or ViTs [59]. Although high-performing, these models do not admit an ante-hoc explanation

interface [52] and therefore rely on post-hoc interpretability methods, which tend to offer inaccurate

1Code & data: https://github.com/anguyen8/peeb
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crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: distinct black patch
0.30

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with small white square
0.57

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: rusty
0.43

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with black tips
0.74

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

(a) Input image (b) Indigo Bunting 0.0331 (c) Eastern Bluebird 0.0445 (d) Example 
Indigo Bunting

PEEB

Explainable
Editable 
Bottleneck

Figure 5.2: Given an input image (a) from an unseen class of Eastern Bluebird, PEEB misclassi-
fies it into Indigo Bunting (b), a visually similar blue bird in CUB-200 (d). To add a new class
for Eastern Bluebird to the 200-class list that PEEB considers when classifying, we clone the
12 textual descriptors of Indigo Bunting (b) and edit (- -▸) the descriptor of thorat and wings (c)
to reflect their identification features described on AllAboutBirds.org (“Male Eastern Bluebirds
are vivid, deep blue above and rusty or brick-red on the throat and breast”). After the edit, PEEB
correctly predicts the input image into Eastern Bluebird (softmax: 0.0445) out of 201 classes (c).
That is, the dot product between the wings text descriptor and the same orange region increases
from 0.57 to 0.74.

and unstable, after-the-fact explanations [137, 7]. PEEB’s textual part-descriptors form an ante-hoc,

natural-language explanation bottleneck that enables users to observe and edit the object attributes

that contribute to each final prediction. By editing text descriptors, users can re-program the model

without any further re-training (fig. 5.2).

Prototypical Part Networks Like the explainable classifiers that learn part prototypes [102, 33,

101, 23], PEEB also operates at the object-part level. However, there are two major differences.

First, the textual part descriptors in PEEB are human-understandable and editable. In contrast, a

part prototype [23] is not directly editable or interpretable to users, and often interpreted by showing

the nearest training-set image patches. Second, PEEB predicts a contextualized embedding for each

object part and its spatial information can be viewed by inputting to the Box MLP (see fig. 5.3) for

bounding-box visualization.

Text-based Concept Bottlenecks Like PEEB, [25, 185, 130, 113] also match visual part embed-

dings to text embeddings. Yet, they (1) do not use CLIP and instead rely on TF-IDF text features;
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(2) require a trained bird-part detector to detect 7 bird parts. In contrast, PEEB relies on CLIP,

which admits easy text editability, and OWL-ViT, which serves as an open-vocabulary object-part

detector that generalizes to many domains.

Recent vision-language models (VLMs) claim to be interpretable as they use textual concepts

in the prompt. Yet, some works that rely on class-wise differential captions [37] or learned concept

weights [172, 108, 106, 176] do not generalize to unseen classes. The most recent, similar work to

PEEB might be LaBo [172], which; however, operates at the image level instead of patch level, and

does not generalize to unseen classes.

Many CLIP-based classifiers [54, 124, 95] rely heavily on having seen class names in the

prompt and thus are neither explainable nor editable to users. Unlike CLIP-based models, PEEB

reveals what image details are being used for classification by matching descriptors to corresponding

visual object parts (e.g. a bird’s beak in fig. 5.3).

Attribute-based Classifiers Attribute-Label Embedding (ALE) approaches [3, 176] employ a fixed

set of attributes and train an attribute-to-label weight matrix for zero-shot classification. Several

studies [138, 166, 55] highlight its effectiveness on datasets like CUB, SUN [165], and AWA [164].

Yet, in practice, ALE requires tabular data annotations for every new class in the dataset (e.g., 312

attributes per CUB species), editing the weight matrix, and model re-training. In contrast, to add an

unseen class to PEEB, users would only need to describe its 12 bird parts in natural language.

5.3 Datasets

5.3.1 Test classification benchmarks

We test PEEB on three bird classification datasets: CUB-200 [154], NABirds-v1 of 555

classes [152], and iNaturalist [153] which has 1,486 bird classes. For dog images, we test PEEB

on Stanford Dogs-120 [75].
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5.3.2 Bird-11K dataset construction

We combine labeled images from 7 distinct datasets and an extra ∼55K images (10,534 classes)

from Cornell’s Macaulay Library, to form a unified Bird-11K dataset2 (Section 6.4.4) for large-scale

pre-training. To the best of our knowledge, Bird-11K, comprising 440,934 images spanning 11,183

classes, is the first bird dataset to encompass almost all species on Earth. Since PEEB learns to

match visual parts with textual descriptors, it requires that bird images be distinctly visible and

sufficiently large for accurate part localization and matching (see Section 6.4.5 for ablation studies).

However, small and “hard-to-see” bird images in Bird-11K make the dataset noisy and the training

complex. Thus, we harness OWL-ViTLarge [97] to detect a bird in all images using the prompt

“bird” and filter out images where the detected bird’s bounding box is smaller than 100 × 100 pixels.

We find OWL-ViT’s bird detections to be fairly accurate—its mean Intersection over Union (IoU)

between the predicted bird boxes and ground-truth boxes on CUB dataset is 0.91.

As class labels from different sources are either general (e.g. Cardinal) or fine-grained

(e.g. Yellow vs. Northern Cardinal), we retain only the fine-grained species for more diverse

training and exclude all general classes to avoid label ambiguity. Following these filtering steps, the

refined Bird-11K dataset retains 294,528 images across 10,811 classes (table 6.23).

For each species in Bird-11K, we generate a set of part-based descriptors using GPT-4 (Sec-

tion 6.4.3). These generated descriptors (see fig. 5.4) may not be 100% accurate but discriminative

enough to help GPT-4V reach 69.40% accuracy on the CUB-200 test set (Table 5.3). That is, in the

same prompt, we feed each test image x along with the 200 CUB classes’ part-based descriptors

and ask GPT-4V to select a matching class label for x (details in Section 6.4.6).

5.3.3 Dataset splits for contrastive pre-training

There are two common settings in the zero-shot learning literature—standard zero-shot (ZSL)

and generalized zero-shot (GZSL).

2We do not redistribute the published datasets but release a script for reconstructing Bird-11K on Github.
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Figure 5.3: During inference, 12 visual part embeddings with the highest cosine similarity with
encoded part names are selected (a). These visual part embeddings are then mapped (Ð→) to
bounding boxes via Box MLP. Simultaneously, the same embeddings are forwarded to the Part MLP
and its outputs are then matched (b) with textual part descriptors to make classification predictions
(Ð→). fig. 6.35 shows a more detailed view of the same process.

ZSL is a stricter setup where a model is only tested on the classes unseen during any prior

training. We ensure test-set classes from datasets (e.g., CUB-200 or NABirds-555) are not seen

during pre-training. For example, to test on CUB under ZSL, we exclude all 200 CUB classes and

their images from our pre-training on Bird-11K.

Following the ZSL literature, we use the CUB split proposed by [3] and two harder splits:

Super-Category-Shared/Exclusive (SCS/SCE) by [35]. For example, in ZSL on CUB, we exclude

all CUB classes in Bird-11K for pre-training and finetune only on the corresponding training set

given by a ZSL split.

GZSL is closer to the real-world setup where models are tested on both seen & unseen classes.

CLIP’s “zero-shot” tests technically fall under GZSL as its Internet-scale training set might actually

have images from the test classes. To test PEEB under GZSL, we exclude the test sets of CUB,

NABirds, and iNaturalist, and directly evaluate the Bird-11K-pretrained models without further

finetuning.
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5.4 Method

5.4.1 Backbone: OWL-ViT object-part detector

OWL-ViT is an open-vocabulary detector that detects objects and parts in an image given a text

prompt, even if the model is not explicitly finetuned to detect those concepts. OWL-ViT consists of

four networks (fig. 5.3): (1) a ViT-based image encoder, (2) an architecturally identical text encoder,

(3) a bounding-box regression head called Box MLP, and (4) and a Linear Projection. Box MLP is

a three-layer Multilayer Perceptron (MLP) with GELU activations [62] after each of the first two

layers. Linear Projection maps the visual and text embeddings to the same space (see Fig. 1 in [97]).

5.4.2 PEEB classifier

Architecture PEEB (fig. 5.3) has five networks: an image encoder, a text encoder, a Linear

Projection, a Part MLP, and a Box MLP.

We introduce Part MLP to map the visual and textual part embeddings to the same space for

computing dot products (logits) for classification (Ð→ in Figure 5.3). This design allows PEEB to

easily extend the number of classes without any re-training. Except for Part MLP, all components

are adopted from the OWL-ViT framework. Details of all components are in Section 6.4.1.

Inference Given an input image, we first use the 12 generic part names to select the visual

part embeddings based on cosine similarity. These selected visual part embeddings are then

simultaneously fed into both Part MLP and Box MLP.

Box MLP predicts the bounding box from each part embedding. We compute a dot product

to measure the similarity between each embedding output from Part MLP and a corresponding

part-descriptor embedding. For classification, a class logit is the sum of the 12 dot products, which

essentially computes the similarity between the 12 parts in the image and the 12 text descriptors of

each class.
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5.4.3 Training strategy

Trainable networks In preliminary experiments, we find training only Part MLP (while keeping

all other networks frozen) to result in poor accuracy. Therefore, we train Part MLP from scratch

and also finetune the image encoder, Linear Projection, and Box MLP. We finetune all OWL-ViT

components from their original weights. In contrast, our proposed Part MLP starts from random

weights. Our training has two phases: (a) 2-stage pre-training on the large-scale Bird-11K dataset

and (b) finetuning on downstream tasks. More hyperparameter details are in Section 6.4.1.

Objectives We aim to train PEEB to classify images well while maintaining the ability to detect

object parts. This translates into three training objectives: (1) Train the Part MLP contrastively

using a symmetric cross-entropy (SCE) loss [126] to maximize the similarity between region-text

pairs while minimizing the similarity for negative pairs; (2) Train the Linear Projection using a

SCE loss to mimic OWL-ViT’s behaviors (i.e. the similarity matrix) for part selection; and (3)

Train Box MLP to predict bounding boxes with DETR losses [183] i.e. a linear combination of ℓ1

corner-to-corner distance loss and GIoU loss [132].

All three losses are described in Section 6.4.1.

A challenge when jointly minimizing all three losses above is that PEEB’s validation loss improves

significantly slowly perhaps because of some tension between the two SCE losses and the DETR

detection loss. To overcome this challenge, we split the pre-training phase into two stages: (1)

first, train the image encoder and Part MLP for classification using the SCE loss; then (2) train

the Linear Projection and Box MLP using the 2nd and 3rd loss so they can adapt their weights to

the updated image encoder. We always keep the text encoder frozen since we want to preserve its

generalizability to the descriptors of unseen objects.

2-stage pre-training on Bird-11K

Stage 1: Contrastive learning The image encoder and Part MLP are jointly trained using a SCE

loss, which allows PEEB to learn to map the visual parts to corresponding text descriptors. In

this stage, we use a pre-trained OWL-ViTLarge to select 12 part embeddings per input image (i.e.,
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teacher forcing) to ensure the selection of part embeddings is meaningful and consistent while the

embeddings themselves are updating (see fig. 6.36).

Stage 2: Learning to detect from a teacher After the image encoder is modified in Stage 1, we

then train the Linear Projection and Box MLP jointly. We use the OWL-ViTLarge as the teacher

to train both components. Using SCE loss, we train the Linear Projection such that the similarity

matrix between the part-names and visual parts matches those of the teacher (fig. 6.37, 1a–c, 2a–c).

Given the absence of human-annotated boxes for object parts, we train Box MLP to predict the

same boxes as the predictions by OWL-ViTLarge using DETR losses (fig. 6.37, 2d). In this Stage 2,

the image encoder is frozen while Part MLP is not involved. After 2-stage training, PEEB can

perform zero-shot classification and generate explanations.

Finetuning on classification tasks

We finetune the pre-trained PEEB on downstream tasks (CUB, NABirds and iNaturalist for

birds and Dogs-120 for dogs) to further improve its accuracy. In this phase, to adapt to a downstream

task, all components except the text encoder are trained jointly and the loss for Part MLP is changed

from SCE (contrastive) to CE (classification) while the other two losses (DETR) are kept intact.

5.5 Experiments & Results

We conduct extensive experiments to evaluate PEEB on multiple bird datasets (CUB,

NABirds, iNaturalist) and on GZSL (sections 5.5.1 and 5.5.3), ZSL (section 5.5.4) and also

supervised learning settings. We also find PEEB to perform well on dog image classification on

Dogs-120 (section 5.5.6).

5.5.1 CLIP-based classifiers rely mostly on {class names} (not descriptors)

M&V show that inserting extra GPT-3-generated descriptors into CLIP’s prompts increases its

accuracy on many tasks [95]. Yet, it is unknown how important these expressive descriptors are
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blue wings and tail with black banding and white
tips
large, black beak.
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bird species
also known as Oriental turtle dove or Rufous
turtle dove
medium-sized dove
predominantly grey or brown body
black and white striped patch on the neck
dark, slender bill
long, rounded tail with a white border
black eyes surrounded by a pale eye-ring
pinkish or reddish legs and feet

Blue Jay 0.6899 (c) Least Tern 0.0611 (d)
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0.871
0.871
0.809
0.876
0.869
0.842
0.828
0.854
0.828
0.857
0.869
0.868

crown: bold blue crest
forehead: vibrant blue hues
nape: transitional blue and white feathers
eyes: curious black orbs
beak: sturdy black bill
throat: white/gray frontal feathering
breast: blended blue and white plumage
belly: white/gray underbelly
back: striking blue feathers
wings: brilliant blue with black bands
legs: strong gray limbs
tail: long, blue, fan-like appendage

0.639
0.502
0.531
0.497
0.721
0.434
0.492
0.423
0.738
0.783
0.441
0.128

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

Figure 5.4: With original descriptors, M&V [95] correctly classifies the input image into Blue Jay
(a). Yet, interestingly, when randomly swapping the descriptors of this class with those of other
classes (b), M&V’s top-1 prediction remains unchanged, suggesting that the class names in the
prompt (e.g., “A photo of {class name}”) have the most influence over the prediction (not the
expressive descriptors). In contrast, PEEB changes its top-1 prediction from Blue Jay (c) to Least
Tern (d) when the descriptors are randomized.

compared to the class names. To answer this question, we conduct two experiments on all three

models: CLIP, M&V, and our PEEB.

Experiment 1 We evaluate the role of expressive descriptors to CLIP-based models and to PEEB

by measuring the drop in CUB-200 accuracy of each model when the descriptors are randomized.

For M&V and PEEB, we randomize the descriptors by swapping each descriptor with another

from an arbitrary class (examples in fig. 5.4).

Experiment 2 We test the dependence of models on class names by measuring the accuracy drop

when they are replaced by scientific names (e.g., Painted Bunting→ Passerina ciris) on CUB,

NABirds, and iNaturalist.

Results When random descriptors are used, M&V accuracy drops marginally by -0.9 pp (table 5.1;

53.70% → 52.88%), showing that descriptors actually play a minimal role in model predictions.

Instead, CLIP and M&V mostly rely on class names (e.g., 53.78% → 7.66%; table 5.2)—their
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accuracy drops drastically when class names are replaced by scientific names, which are less

common.

In contrast, the expressive part descriptors play a major role in PEEB whose accuracy decreases

significantly to near random-chance (64.33% → 0.88%; table 5.1) when the descriptors are random-

ized. Indeed, in PEEB, the textual descriptors serve as editable and interpretable model parameters

that can be refined and extended by humans to account for new classes (fig. 5.2).

Table 5.1: Top-1 test accuracy (%) on CUB-200 when using original, correct (a) vs. randomized,
wrong descriptors (b). See fig. 5.4 for an example of the descriptors.

CLIP [126] M&V [95] PEEB

With class names ✓ ✓ ✗ ✗

(a) Original descriptors 52.02 53.78 5.89 64.33

(b) Randomized descriptors n/a 52.88 0.59 0.88

Table 5.2: In the GZSL setting, PEEB outperforms CLIP and M&V by a large margin, from +8 to
+29 pp in top-1 accuracy (see section 5.5.3). PEEB is also ∼10× better than the other two models
when class names are replaced by scientific names. As PEEB does not use class names, its accuracy
remains unchanged when class names are changed into the scientific ones.

Acc (%) CUB-200 NABirds-555 iNaturalist-1486

CLIP [126] 52.02 (5.95) 39.35 (4.73) 16.36 (2.03)

M&V [95] 53.78 (7.66) 41.01 (6.27) 17.57 (2.87)

PEEB (ours) 64.33 (64.33) 69.03 (69.03) 25.74 (25.74)

5.5.2 Pre-trained PEEB outperforms CLIP-based classifiers in GZSL

The dependence on class names (section 5.5.1) suggests that CLIP was exposed to these names

during training. Thus, for a fair comparison, we compare PEEB with CLIP-based classifiers in the

GZSL setting.

Experiment We train PEEB on Bird-11K using the two-stage pre-training (described in sec-

tion 5.4.3), and then test it on CUB, NABirds, and iNaturalist without any finetuning. That is,
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PEEB’s contrastive pre-training is at the part level and therefore the model has not seen the species

labels of images.

Results PEEB outperforms both CLIP and M&V on all three datasets by huge margins of around

+10, +28, and +8 pp on CUB-200, NABirds-555 and iNaturalist-1486, respectively (see table 5.2).

5.5.3 PEEB is superior to text descriptor-based classifiers in GZSL on CUB-200

The advent of CLIP [126] by OpenAI enabled a class of image classifiers that match the input

image with pre-defined textual prompts that may include class names or descriptors of the classes.

Yet, in contrast to PEEB, these descriptors often describe the entire image and are also matched (via

dot product) with the entire image instead of image regions. Here, we compare PEEB with these

methods in the GZSL setting on CUB-200.

Experiment We repeat the same experiments in section 5.5.2. As these bird classifiers (listed in

table 5.3) were reported on CUB only (not NABirds or iNaturalist), our comparison is on CUB.

Results PEEB exhibits superior GZSL performance, outperforming recent text concept-based

approaches by +3 to +10 pp (table 5.3b). Compared to prior methods, PEEB is the only one to detect

visual object parts and match them with text descriptors. Furthermore, attribute-based classifiers,

e.g., [176] require re-training to adapt to new classes or datasets (e.g., NABirds or iNaturalist) in

the same domain. In contrast, to apply PEEB to NABirds or a new class, no training is required—it

is necessary to only edit its text descriptors (see fig. 5.2). Interestingly, PEEB is 2nd-best model,

only after GPT-4V (64.33% vs. 69.40%), which is given the same textual part descriptors as PEEB

for all 200 CUB classes and asked to select a matching class for each image.

5.5.4 PEEB generalizes to traditional ZSL

Since PEEB outperforms modern vision-language models in GZSL (section 5.5.3), we are

motivated to further compare PEEB with SOTA approaches in the traditional ZSL setting (where

the test classes are excluded from all prior training).
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Table 5.3: PEEB achieves SOTA CUB-200 accuracy among the text descriptor-based classifiers in
GZSL.
* 1-shot learning. † k-means with k = 32.

Method Acc (%) {c} Textual descriptors

(a) Vision-language models with class names {c} in the prompt
CLIP [126] 52.02 ✓ Image-level
M&V [95] 53.78 ✓ Image-level
FuDD [37] 54.30 ✓ Image-level
Han et al. [54] 56.13 ✓ Image-level

(b) Vision-language models with text bottlenecks and no class names {c}
LaBo [172] 54.19† ✗ Image-level
[170] 60.27* ✗ Image-level, attribute-based
PEEB (ours) 64.33 ✗ Part-level

GPT-4V [107] 69.40 ✓ Part-level

(c) Concept-Bottleneck Models with attribute-based, non-textual bottlenecks
CBM [80] 62.90 ✗ Attribute-based, tabular data
PCBM [176] 61.00 ✗ Attribute-based, tabular data

Experiment We evaluate PEEB on two common ZSL splits: (a) the CUB split [3]; and (b) the

Super-Category-Similar/Exclusive (SCS/SCE) splits [35] on CUB and NABirds. The SCS (Easy)

and SCE (Hard) splits are designed to test two generalization levels (generalizing to close vs. distant

unseen species).

Aligned with ZSL conventions, we exclude all species that exist in CUB or NABirds from

the pre-training and then finetune PEEB using the train/test splits by [3] and [35]. We randomly

take ∼10% of the training set as the validation set and choose the checkpoints based on the lowest

validation loss.

Results By a large margin, PEEB outperforms CLORECLIP , a SOTA CUB method in the [3] split,

on both seen and unseen classes (table 5.4a). On the [35] splits, PEEB is the SOTA in the Hard set

on both CUB and NABirds datasets (table 5.4b). That is, PEEB is better in generalizing to distant,

unseen classes. This may be because PEEB decomposes both the image and the text descriptors

into part-level features, which can re-combine to match an arbitrary unseen class (as illustrated in

fig. 5.2).
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Table 5.4: PEEB consistently outperforms other vision-language methods under Harmonic mean
and especially in the hard split (SCE) by (+5 to +15) points, highlighting its generalization capability
on ZSL.

Methods CUB NABirds
Seen Unseen Mean Seen Unseen Mean

(a) Data split by [3]

CLORECLIP [53] 65.80 39.10 49.05
n/a

PEEB (ours) 80.78 41.74 55.04

(b) SCS/SCE splits by [35]

SCS SCE Mean SCS SCE Mean
(Easy) (Hard) (Easy) (Hard)

S2GA-DET [70] 42.90 10.90 17.38 39.40 9.70 15.56
GRZSL [185] 44.08 14.46 21.77 36.36 9.04 14.48
ZEST [113] 48.57 15.26 23.22 38.51 10.23 16.17
CANZSL [25] 45.80 14.30 21.12 38.10 8.90 14.43
DGRZSL [81] 45.48 14.29 21.75 37.62 8.91 14.41
DPZSL [130] 45.40 15.50 23.11 40.80 8.20 13.66
PEEB (ours) 44.66 20.31 27.92 28.26 24.34 26.15

Interestingly, on both CUB and NABirds, PEEB is competitive but not SOTA on the Easy

sets (table 5.4b; Easy)—those classes that are close to the training-set classes and thus considered

easier to identify. Overall, considering the harmonic mean over both Easy and Hard accuracy scores,

PEEB is the SOTA on both CUB and NABirds.

5.5.5 Finetuning the pre-trained PEEB on CUB-200 yields a competitive explainable classifier

in supervised learning

After finding that PEEB performs well in both GZSL (section 5.5.3) and ZSL settings (sec-

tion 5.5.4), here we test finetuning the pre-trained PEEB on CUB-200. That is, we compare PEEB

against SOTA explainable classifiers in the supervised learning setting to gain insights into our

method’s adaptability to downstream tasks.

Experiment To understand the impact of pre-training and image resolution, we test finetuning

three different PEEB variants: (1) PEEB initialized from OWL-ViTB/32 without pre-training on

Bird-11K; (2) PEEB initialized from OWL-ViTB/32 with pre-training (described in section 5.5.2);
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and (3) PEEB initialized from OWL-ViTB/16 with pre-training. We take each PEEB model and

finetune all components on CUB-200, for 30 epochs with a batch size of 30, a learning rate of

2 × 10−5. Detailed hyperparameters are in table 6.21.

Results Without pre-training, PEEB reaches 77.80% top-1 accuracy on CUB-200. Yet, first

pre-training on Bird-11K and then finetuning on CUB yields 86.73%, the best among all explainable

classifiers (table 5.5b–c). Besides, pre-training PEEB from the higher-resolution OWL-ViTB/16

results in a further gain of +2.07 (86.73% → 88.80%), which is intuitive since fine-grained classifi-

cation is known to benefit from higher resolutions.

For a complete assessment, we compare and find PEEB to underperform SOTA standard,

black-box classifiers by a few points (table 5.5a).

Table 5.5: PEEB is a state-of-the-art, explainable CUB-200 classifiers in the supervised learning.

Methods Model size Backbone Acc (%)

(a) SOTA black-box classifiers
Base (ViT) [149] 22M DeiT-S [149] 84.28
ViT-Net [76] 26M DeiT-S 90.10

(b) Concept-bottleneck classifiers
CBM [80] 11M ResNet-18 80.10
CPM [108] 155M ViT-B/16 72.00
CDM [106] 155M ViT-B/16 74.31
LaBo [172] 427M ViT-L/14 81.90

(c) Part-based, explainable classifiers
ProtoPNet [23] 22M DeiT-S 84.04
ProtoTree [102] 92M ResNet-50 82.20
TesNet [156] 79M DenseNet-121 84.80
Deformable ProtoPNet [33] 23M ResNet-50 86.40
ProtoPFormer [167] 22M DeiT-S 84.85
PEEB (ours) 155M

pre-training + finetuning only 155M OWL-ViTB/32 77.80
pre-training + finetuning 155M OWL-ViTB/32 86.73
pre-training + finetuning 155M OWL-ViTB/16 88.80
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head:  round and well-proportioned with a slightly domed skull

ears:  long, silky, and set low, framing the face with a feathered appearance

muzzle:  square, proportionate to the head with a black or brown nose

body:  compact and well-proportioned, slightly longer than it is tall

legs:  moderate length with richly feathered fur, providing a sense of
elegance

tail:  docked in some regions, but naturally it's long, carried happily
but never much above the level of the back, with abundant feathering

Our prediction: Alaskan Malamute  0.199
because of the following...

0.305

0.000

0.421

0.000

0.107

0.365

head: round with a slightly domed skull and a distinct stop

ears: set high on the head, long and feathered, hanging down close to
the cheeks

muzzle: square and proportionate to the head with a black nose

body: compact and balanced, with a deep chest and well sprung ribs

legs: straight and well-boned with moderate feathering, ending in small,
compact, cat-like feet

tail: docked to two-thirds of its original length, carried level with
the back, and adorned with moderate feathering

Top-2 prediction: Cairn Terrier  0.016
but we rejected it because...

Figure 5.5: PEEB classifies this Dogs-120 image into Alaskan Malamute (softmax: 0.199) due to
the matching between the image regions and associated textual part descriptors. In contrast, the
explanation shows that the input image is not classified into Cairn Terrier mostly because its
ears and body regions do not match the text descriptors, i.e., dot products are 0.000 and 0.000,
respectively. See Section 6.4.7 for more qualitative examples.

5.5.6 Applying PEEB to dog identification

We have found that our pre-training dataset construction and PEEB performs well for bird

identification. By design, our method is not specific to birds but is instead applicable to any fine-

grained classification domains assuming that the object is decomposable into parts. Here, we show

that our method performs well on dog image classification as well.

Pre-training dataset construction First, we define a set of six dog parts that humans use to

identify dog species. We use all 4 dog parts defined by PartImageNet [60]—head, body, legs, and

tail—and two more parts—muzzle and ears—based on our manual image examination.

We combine ImageNet-21K and Stanford Dogs-120 into Dog-140, our large-scale pre-training

dataset spanning 140 dog species (details in section 6.4.4). For each class, we prompt GPT-4 to

get the descriptors for 6 parts. For each image in Dog-140, we run OWL-ViTLarge to detect the

corresponding boxes for 6 pre-defined parts.

Experiment Following the supervised learning experiment in section 5.5.5, we first we pre-train

PEEB (initialized from OWL-ViTB/32) on Dog-140 and then further finetune it on Dogs-120.

Results Finetuning PEEB on Dogs-120 from OWL-ViTB/32 without pre-training on Dog-140

results in a 74.17% top-1 accuracy on Dogs-120 (table 5.6b). In contrast, pre-training on Dog-140

only without finetuning results in much better Dogs-120 accuracy of 87.38%. That is, our contrastive
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pre-training helps model generalize (in a GZSL setting) while directly finetuning on Dogs-120

perhaps yields an overfitting model. Yet, pre-training and then finetuning reaches the best supervised

learning accuracy of 92.20%, which is SOTA among all explainable models reported on Dogs-120.

Besides, PEEB offers novel, editable image-text grounding explanations (see fig. 5.5).

Table 5.6: In the supervised learning setting, PEEB is the state-of-the-art explainable, Stanford
Dogs-120 classifiers and competitive w.r.t. SOTA black-box models.

Methods Model size Backbone Acc (%)

(a) SOTA black-box classifiers
TransFG [59] 86M ViT-B/16 92.30
ViT-Net [77] 86M DeiT-B 93.60
SR-GNN [9] 32M Xception 97.00

(b) Explainable methods
FCAN [92] 50M ResNet-50 84.20
RA-CNN [43] 144M VGG-19 87.30
ProtoPNet [23] 22M DeiT-S 77.30
Deformable ProtoPNet [33] 23M ResNet-50 86.50
PEEB (ours) 155M

pre-training + finetuning only 155M OWL-ViTB/32 74.17
pre-training + finetuning 155M OWL-ViTB/32 87.37
pre-training + finetuning 155M OWL-ViTB/16 92.20

5.6 Discussion and Conclusion

We introduce PEEB, a unique, novel explainable classifier due to its editability (fig. 5.2) and

operation at the part level on both image and text sides. The part-level operation makes PEEB

applicable to fine-grained classification. Yet, it is also interesting to extend PEEB into an object-level

model for multi-domain tasks like ImageNet or VQA.

Besides enabling users to edit PEEB’s text descriptors to re-program PEEB, it might also be

promising to let users edit the bounding boxes while working with PEEB to improve the human-AI

team accuracy [103]. On object detection, PEEB’s Box MLP performs on-par with OWL-ViTB/32

based on quantitative (Section 6.4.5) and qualitative results (Section 6.4.7).

75



Finally, we contribute to the broader research community by curating the Bird-11K and

Dog-140 datasets and showing that it is possible to leverage them for large-scale training.

5.7 Limitations

Text encoder may not fully comprehend the bird descriptors Our CLIP text encoder, pre-

trained on an Internet-scale image-text dataset [126], may not fully capture the intricate details

specific to birds. Furthermore, the CLIP text encoder is known to suffer from the binding problem

and do not understand some logical operators such as “and”, “or”, or negation. PEEB accuracy

depends heavily on the quality of the text encoder.

Assumption that object parts mostly visible PEEB operates based on the assumption that most

if not all of the object parts are visible in the image. In cases where a part is missing or occluded,

the model may still assign a non-zero similarity score (i.e. a non-zero dot product between the

image-part embedding and its associated text descriptor), which makes it harder to separate classes.

It might be beneficial to incorporate extra training samples and specifically encourages PEEB to

assign zero image-text similarity score to the missing or occluded parts.

Hallucinations in GPT-4 descriptors The accuracy of PEEB is directly governed by the accuracy

of descriptors, which are currently generated by GPT-4. Yet, our manual assessment over 20 bird

classes reveals that, on average, 45% of these descriptors do not accurately reflect the birds’ features

(Section 6.4.6). Also, we observe that revising certain descriptors in the CUB dataset led to a

significant improvement of +10 points in classification accuracy for those classes (Section 6.4.6).

This primitive observation suggests that PEEB can be further improved if trained with more accurate,

human-labeled descriptors.
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Chapter 6

Appendix

6.1 Supplementary Materials for Out of Order (Chapter 2)

6.1.1 Self-attention layers that match question-words to similar words in the answer

QNLI models being so insensitive to word shuffling (i.e. 89.4% of the correct predictions

remain correct) suggests that inside the finetuned BERT, there might be a self-attention (SA) layer

that extract pairs of similar words that appear in both the question and answer.

We started by analyzing all 2,500 positive dev-r examples (Table 6.4) of RoBERTa-based

classifiers trained on QNLI because there were fewer and more consistent ways for labeling a

sentence positive than for the negative (shown in Sec. 2.4.3).

Experiment There were 1,776 (out of 2,500) examples whose predictions did not change in 5

random shufflings (a.k.a 5/5 subset). For each such example, we followed the following 4 steps to

identify one SA matrix (among all 144 as the base model has 12 layers & 12 heads per layer) that

captures the strongest attention connecting the question and answer words.

1. Per example x, we created its shuffled version x̂ by randomly shuffling words in the question

and fed x̂ into the classifier.

2. For each SA matrix obtained, we identified the top-3 highest-attention weights that connect

the shuffled question tokens and the real answer tokens (i.e. excluding attention weights

between question tokens or answer tokens only).

3. For each shuffled example x̂, we identified one matrix M whose the top-3 word pairs are

the nearest in Levenshtein character-level edit-distance [105]. For instance, the distance is 1

between manage and managed (Fig. 2.4).
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(a) Histogram of self-attention matrices

(Layer, Head) # Examples %

(0, 3), (0, 4), (0, 7) 798 54.9%

(1, 8), (1, 9) 265 18.2%

(2, 2), (2, 4), (2, 6), (2, 10) 267 18.4%

(3, 4) 45 3.1%

(4, 6), (4, 9) 35 2.4%

(5, 6), (5, 9) 21 1.5%

(6, 2) 22 1.5%

Total 1,453 100%

(b) Layer-wise comparison

Figure 6.1: Among 144 self-attention matrices in the RoBERTa-based classifier finetuned for QNLI,
there are 15 “word-matching” matrices (a) that explicitly attend to pairs of similar words that appear
in both questions and answers regardless of the order of words in the question (see example pairs
in Fig. 2.4). For each QNLI example, we identified one such matrix that exhibits the matching
behavior the strongest (a). 92% of the task of attending to duplicate words is mostly handled in the
first three layers (b).

4. For each matrix M identified for x̂, we fed the corresponding real example x through the

network and re-computed the edit-distance for each of the top-3 word pairs.

Results At step 3, there were 1,590 SA matrices (out of 1,776) whose the top-3 SA weights

connected three pairs of matching words (i.e. the total edit-distance for 3 pairs together is ≤ 4)1 that

appear in both the shuffled question and original answer (see example top-3 pairs in Fig. 2.4). At

step 4, this number only dropped slightly to 1,453 matrices when replacing the shuffled question by

the original one (see Table 6.1 for detailed statistics).

However, there are only 15 unique, RoBERTa self-attention matrices in these 1,453 examples

(see Fig. 6.1). Also at step 4, 83% of the same word pairs remained within the top-3 of the same

SA matrices, after question replacement, i.e. 17% of attention changed to different pairs e.g. from

(“managed”, “manage”) to (“it”, “it”).

First, our results showed that there is a set of 15 self-attention heads explicitly tasked with

capturing question-to-answer word correspondence regardless of word order. Second, for ∼58%
14 is a tight budget to account for minor typos or punctuation differences e.g. “Amazon” vs. “Amazon’s”.
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Sum
distance

(a) dev-s alone (b) dev-s & dev-r

# examples % # examples %

≤ 0 749 42.17 392 24.65

≤ 1 1,253 70.55 1,071 67.36

≤ 2 1,440 81.08 1,283 80.69

≤ 3 1,543 86.88 1,391 87.48

≤ 4 1,590 89.53 1,453 91.38

≤ 15 1,776 100.00 1,574 98.99

Total 1,776 100.00 1,590 100.00

Table 6.1: The number of QNLI examples where we found ≥ one self-attention matrix that the most
strongly attends to three pairs of matching words when given the dev-s examples i.e. (modified
question, real answer) (a) or when given both the shuffled and real examples (b). In other words,
the numbers in (b) denote the number of examples where (1) there exist ≥ 3 words, regardless
of its word order, in the question that can be found in the accompanying real answer; and (2)
these correspondences are captured by at least one self-attention matrix. The sum edit-distance
for all 3 pairs of words are less than N where N = {0,1,2,3,4,15} (left column).

(i.e. 1,453 / 2,500) of QNLI positive examples: (1) there exist ≥ 3 words in the question that

can be found in the accompanying answer; and (2) these correspondences are captured by at

least one of the 15 SA matrices. We also found similar results for 2,500 negative dev-r examples

(data not shown).
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Model Task (a) Perf. on dev-r (b) Perf. on dev-s (c) Word-Order Sensitivity

Models Baseline 2-noun swap 1-gram 2-gram 3-gram 2-noun swap 1-gram 2-gram 3-gram

RoBERTabase ANLI 100 33.33 74.26 57.74 66.63 69.04 0.39 0.63 0.50 0.46

A1 100 33.33 81.46 63.31 71.52 75.37 0.28 0.55 0.43 0.37

A2 100 33.33 70.83 54.61 64.73 67.02 0.44 0.68 0.53 0.49

A3 100 33.33 70.50 55.29 63.63 64.73 0.55 0.67 0.55 0.53

RoBERTalarge ANLI 100 33.33 70.41 54.87 64.11 68.76 0.44 0.68 0.54 0.47

A1 100 33.33 78.06 60.31 70.57 75.86 0.33 0.6 0.44 0.36

A2 100 33.33 67.88 51.44 60.64 66.31 0.48 0.73 0.59 0.51

A3 100 33.33 65.30 52.85 61.11 64.10 0.52 0.71 0.58 0.54

Table 6.2: All results (a–c) of RoBERTabase and RoBERTalarge models finetuned on the combination
of NLI datasets (SNLI, MNLI, FEVER and ANLI) are reported on the ANLI dev-r sets (i.e. 100%
accuracy) which includes A1, A2 and A3 (a). The accuracies for RoBERTabase and RoBERTalarge
on ANLI are 51.19% and 56.98%, respectively. Each row is computed by averaging the results of
10 random shuffles. Word-Order Sensitivity (WOS) of ANLI and its subsets (c). Since ANLI is
3-way classification task, the baseline is 33.33% (as described in Sec 4.3).

Dictionary Opinion Lexicon [66] SentiWords [46]

(a) RoBERTa (b) ALBERT (c) RoBERTa (d) ALBERT

Total examples in subset 5/5 523 506 523 506
(positive / negative) (278 / 245) (228 / 278) (278 / 245) (228 / 278)

Not found in dictionary
223 / 523
(42.64%)

217 / 506
(42.89%)

110 / 523
(21.03%)

104 / 506
(20.55%)

Found in dictionary
300 / 523
(57.36%)

289 / 506
(57.11%)

413 / 523
(78.97%)

402 / 506
(79.45%)

P ( positive sentence ∣ positive top-1 word )
174 / 174
(100.00%)

143 / 144
(99.31%)

222 / 258
(86.05%)

186 / 215
(86.51%)

P ( negative sentence ∣ negative top-1 word )
119 / 126
(94.44%)

136 / 145
(93.79%)

145 / 155
(93.55%)

177 / 187
(94.65%)

Table 6.3: If the top-1 most important word in an SST-2 5/5 example has a positive meaning,
then there is a 100% chance that the sentence is labeled positive in SST-2. Similarly, the
conditional probability of a sentence being labeled negative given a negative most important word
(by LIME [134]) is 94.44%.
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LIME attributions (negative -1, neutral 0, positive +1)

CoLA example. Groundtruth: acceptable
S Medea denied poisoning the phoenix. acceptable 0.99

S1 poisoning the phoenix denied Medea. acceptable 0.53
S2 phoenix Medea denied the poisoning. acceptable 0.99
S3 Medea the poisoning phoenix denied. unacceptable 0.95
S4 phoenix Medea denied the poisoning. unacceptable 0.99
S5 Medea phoenix poisoning the denied. unacceptable 0.96

Figure 6.2: Each CoLA example contains a single sentence. Here, we shuffled the words in the
original sentence (S) five times to create five new sentences (S1 to S5) and fed them to a RoBERTa-
based classifier for predictions. Words that are important for or against the prediction (by LIME
[134]) are in orange and blue, respectively. Most of the shuffled examples were classified into
unacceptable label (i.e. grammatically incorrect) with even higher confidence score than the
original ones.

MRPC example. Groundtruth: equivalent
A My decision today is not based on any one event . "

equivalent 0.99
B Governor Rowland said his decision was " not based on any one event . "

A1 event any is one decision based on My today not . "
equivalent 0.98

B Governor Rowland said his decision was " not based on any one event . "

A2 one based today not any My on event is decision . "
equivalent 0.98

B Governor Rowland said his decision was " not based on any one event . "

Figure 6.3: Each MRPC example contains a pair of sentences i.e. (A, B). Here, we shuffled the
words in the original sentence (A) to create modified sentences (A1 & A2) and fed them together
with the original second sentence (B) to a RoBERTa-based classifier for predictions. Also, the
classifier harnessed self-attention to detect the correspondence between similar words that appear
in both sentences. That is, the top-3 pairs of words that were assigned the largest cross-sentence
weights in a self-attention matrix (layer 0, head 7) are inside in the red, green, and blue rectangles.

81



RTE example. Groundtruth: entailment
P About 33.5 million people live in this massive conurbation. I would guess that 95% of

the 5,000 officially foreign-capital firms in Japan are based in Tokyo.
entailment 0.90

H About 33.5 miilion people live in Tokyo.

P About 33.5 million people live in this massive conurbation. I would guess that 95% of
the 5,000 officially foreign-capital firms in Japan are based in Tokyo.

entailment 0.79

H1 people in miilion 33.5 live Tokyo About.

P About 33.5 million people live in this massive conurbation. I would guess that 95% of
the 5,000 officially foreign-capital firms in Japan are based in Tokyo.

entailment 0.80

H2 33.5 in people About live Tokyo miilion.

Figure 6.4: Each RTE example contains a pair of premises and hypotheses i.e. (P, H). We shuffled
the words in the original hypothesis H to create modified hypotheses (H1 & H2) and fed them
together with the original premise (P) to a RoBERTa-based classifier for predictions. Also, the
classifier harnessed self-attention to detect the correspondence between similar words that appear in
both the premise and hypothesis. That is, the top-3 pairs of words that were assigned the largest
premise-to-hypothesis weights in a self-attention matrix (layer 0, head 7) are inside in the red, green,
and blue rectangles.
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Task Name Task Type Label GLUE dev-set processing dev-r

(a) dev set (b) step 1 (c) step 2 (d) step 3 Total

CoLA Acceptability
unacceptable 322 287 154 154 308
acceptable 721 675 638 154

RTE NLI
not entailment 131 131 72 72 144
entailment 146 145 127 72

QQP Paraphrase
not duplicate 25,545 22,907 20,943 12,683 25,366
duplicate 14,885 14,000 12,683 12,683

MRPC Paraphrase
not equivalent 129 129 101 101 202
equivalent 279 279 255 101

SST-2 Sentiment
negative 428 427 402 402 804
positive 444 443 420 402

QNLI NLI
not entailment 2,761 2,741 2,500 2,500 5,000
entailment 2,702 2,690 2,527 2,500

STS-B Similarity N/A 1,500 1,498 N/A N/A 1,498

Table 6.4: The number of examples per class before (a) and after each of the three filtering steps
to produce dev-r sets (described in Sec. 2.3.3) for RoBERTa-based classifiers. For each task, we
repeated the same procedure for three sets of classifiers, for BERT-, RoBERTa-, ALBERT-based
classifiers, respectively.
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Model Task dev-r dev-s dev-s performance Word-Order Sensitivity

performance baseline 2-noun swap 1-gram 2-gram 3-gram 2-noun swap 1-gram 2-gram 3-gram

RoBERTalarge CoLA 100 50 70.80 51.40 55.62 57.98 0.58 0.97 0.89 0.84
RTE 100 50 82.29 73.85 80.42 83.75 0.35 0.52 0.39 0.33
SST-2 100 50 98.24 83.71 88.16 90.43 0.04 0.33 0.24 0.19
MRPC 100 50 98.54 85.53 88.64 90.49 0.03 0.29 0.23 0.19
QQP 100 50 87.13 86.84 90.65 92.60 0.26 0.26 0.19 0.15
QNLI 100 50 95.26 91.12 95.20 96.46 0.09 0.18 0.10 0.07
STS-B 90.43 N/A 88.95 85.47 87.20 87.98 N/A N/A N/A N/A

Table 6.5: Accuracy of all models on dev-s examples (created by shuffling n-grams and swapping
2 nouns) and their Word-Order Sensitivity scores (∈ [0,1]) across seven GLUE tasks. STS-B is a
regression task and thus not comparable in word-order sensitivity with the other tasks, which are
binary classification.

GLUE dev set

Task CoLA RTE QQP MRPC SST-2 QNLI STS-B
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Spearman Corr)

RoBERTabase 82.56 72.20 91.12 87.25 94.50 92.57 90.17

ALBERTbase 81.21 72.20 90.25 87.99 91.40 91.78 90.82

BERTbase 81.89 64.25 90.81 85.54 92.09 91.38 88.49

RoBERTalarge 65.30 80.87 91.62 88.48 96.44 94.45 90.44

Average 82.78 72.38 90.95 87.32 93.61 92.55 89.98

Table 6.6: The dev-set performance of models finetuned from three different BERT “base” variants
(12 self-attention layers and 12 heads) and one RoBERTa “large” model (24 self-attention layers
and 16 heads) on seven GLUE tasks. These results match either those reported by original papers,
[67] or GLUE leaderboard.
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6.2 Supplementary Materials for Double Trouble (Chapter 3)

6.2.1 IM explanations have smaller attribution magnitude per token and lower word cover-

age

To further understand the impact of the fact that BERT tends to not change a to-remove

token (Sec. 6.2.2), here, we quantify the magnitude of attribution given by IM and its coverage of

important words in an example.

Smaller attribution magnitude Across three datasets, the average absolute values of attribution

scores (which are ∈ [−1,1]) of IM are not higher than that of LOOempty (Table 6.7). Especially in

MultiRC, IM average attribution magnitude is 4.5× lower than that of LOOempty (0.02 vs 0.09).

Method SST e-SNLI MultiRC

LOOempty 0.22 ± 0.27 0.15 ± 0.24 0.09 ± 0.09

IM 0.17 ± 0.27 0.15 ± 0.27 0.02 ± 0.09

Table 6.7: The average absolute value of attribution scores per token of LOOempty is consistently
higher than that of IM.

Lower word coverage We define coverage as the average number of highlighted tokens per

example (e.g. Fig. 3.1) after binarizing a heatmap at the method’s optimal threshold.

The coverage of LOOempty is much higher than that of IM on SST (40% vs 30%) and MultiRC

examples (27% vs 6%), which is consistent with the higher recall of LOOempty (Table 6.8; a vs.

b). For e-SNLI, although IM has higher coverage than LOOempty (14% vs. 10%), the coverage of

LOOempty is closer to the human coverage (9%). That is, IM assigns high attribution incorrectly to

many words, resulting in a substantially lower precision than LOOempty, according to e-SNLI L3

annotations (Table 3.3b; 0.3814 vs. 0.4687).

In sum, chaining our results together, we found BERT to often replace a token xi by an exact-

match with a high likelihood (Sec. 6.2.2), which sets a low empirical upper-bound on attribution
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Explanations SST e-SNLI MultiRC

generated by L2 L3

(a) LOOempty 40% 19% 10% 27%

(b) IM 30% 21% 14% 6%

(c) Human 37% 18% 9% 16%

# tokens per example 20 24 299

Table 6.8: Compared to IM, the coverage of LOOempty is closer to the coverage of human explana-
tions.

values of IM, causing IM explanations to have smaller attribution magnitude. As the result, after

binarization, fewer tokens remain highlighted in IM binary maps (e.g. Fig. 3.3).

6.2.2 By design, IM always assigns near-zero attribution to high-likelihood words regardless

of classifiers

We observe that IM scores a substantially lower recall compared to LOOempty (e.g. 0.0630 vs.

0.2876; Table 3.3d). That is, IM tends to incorrectly assign too small of attribution to important

tokens. Here, we test whether this low-recall issue is because BERT is highly accurate at predicting

a single missing word from the remaining text and therefore assigns a high likelihood to such words

in Eq. 3.3, causing low IM attribution in Eq. 3.2.

Experiment For each example in all three datasets, we replaced a single word by BERT’s top-1

highest-likelihood token and measured its likelihood and whether the replacement is the same as the

original word.

Results Across SST, e-SNLI, and MultiRC, the top-1 BERT token matches exactly the original

word ∼49, 60, 65% of the time, respectively (Table 6.9a). This increasing trend of exact-match

frequency (from SST, e-SNLI → MultiRC) is consistent with the example length in these three

datasets, which is understandable as a word tends to be more predictable given a longer context.

Among the tokens that human annotators label important, this exact-match frequency is similarly
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high (Table 6.9b). Importantly, the average likelihood score of a top-1 exact-match token is high,

∼0.81–0.86 (Table 6.9c). See Fig. 3.1 & Figs. 6.10–6.15 for qualitative examples.

% exact-match (uncased) SST e-SNLI MultiRC

(a) over all tokens 48.94 59.43 64.78

(b) over human highlights 41.25 42.74 68.55

(c) Top-1 word’s likelihood 0.8229 0.8146 0.8556

Table 6.9: Top-1 likelihood scores (c) are the mean likelihood given by BERT for the top-1 predicted
words that exactly match the original words (a).

Our findings are aligned with IM’s low recall. That is, if BERT fills in an exact-match x̃i for an

original word xi, the prediction difference for this replacement x̃i will be 0 in Eq. 3.4. Furthermore,

a high likelihood of ∼0.81 for x̃i sets an empirical upper-bound of 0.19 for the attribution of the

word xi, which explains the insensitivity of IM to classifier randomization (Fig. 3.1; IM1 to IM3).

The analysis here is also consistent with our additional findings that IM attribution tends to

be smaller than that of LOOempty and therefore leads to heatmaps of lower coverage of the words

labeled important by humans (see Sec. 6.2.1).

6.2.3 Train BERT as masked language model on SST-2 to help filling in missing words

Integrating pre-trained BERT into LIME helps improve LIME explanations under two ROAR

metrics (Sec. 3.6). However, the pre-trained BERT might be suboptimal for the cloze task on

SST-2 sentences as it was pre-trained on Wikipedia and BookCorpus. Therefore, here, we take

the pre-trained BERT, and finetune it on SST-2 training set using the masked language modeling

objective. That is, we aim to test whether having a more specialized BERT would improve LIME

results even further.

Training details We follow the hyperparameters by [67] and use Adam optimizer [79] with a

learning rate of 0.00005, β1 = 0.9, β2 = 0.999, ϵ = 10−8, a batch size of 8, max sequence length of
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512 and the ratio of tokens to mask of 0.15. We finetune the pre-trained BERT on SST-2 [143] train

set and select the best model using the dev set.

Results On the SST-2 test set of 1,821 examples that contain 35,025 tokens in total, the cross-

entropy loss of pre-trained BERT and BERT-SST2 are 3.50 ± 4.58 and 3.29 ± 4.40, respectively.

That is, our BERT finetuned on SST-2 is better than pre-trained BERT at predicting missing words

in SST-2 sentences.

6.2.4 Comparison between original and modified version of Input Marginalization

We follow [78] to reproduce results of the original Input Marginalization (IM) (Table 6.10a–b).

To reduce the time complexity of Input Marginalization, we propose a modified version (IM-top10)

by only marginalizing over the top-10 tokens sampled from BERT rather than using all tokens of

likelihood ≥ a threshold σ = 10−5. We find that IM-top10 has comparable performance to that of the

original IM (0.4732 vs. 0.4783; Table 6.10c). Our IM-top10 quantitative results are also close to the

original numbers reported in [78] (0.4922 vs. 0.4972; Table 6.10).

Metrics ↓ a. IM (reported in b. IM c. IM-top10
[78]) (Our reproduction)

Deletion n/a 0.4783 0.4732

DeletionBERT 0.4972 0.4824 0.4922

Table 6.10: The approximation in of IM-top10 compared to the original IM under two metrics on
SST-2 task. Both metrics measure AUC (lower is better).

We also find high qualitative similarity between heatmaps produced by two versions: IM vs.

IM-top10 (Figs. 6.5–5). The average Pearson correlation score across the SST-2 8720-example test

set is fairly high (ρ = 0.7224). Thus, we use IM-top10 for all experiments in this paper.

6.2.5 Sanity check result
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SST-2 example. Groundtruth: positive & Prediction: positive (Confidence: 0.9996)

IM
among the year ’s most intriguing explorations of alientation .

1.815 0.0118 0.54158 0.22394 1.03458 5.03105 1.94109 1.53783 -0.31367 -0.0026

IM
modified

among the year ’s most intriguing explorations of alientation .

2.64685 0.03574 0.34608 0.51827 1.61421 5.74711 4.16886 2.30276 -0.35139 0.01431

Figure 6.5: Color map: negative -1, neutral 0, positive +1. Attribution maps derived from both
versions of IM have a high Pearson correlation ρ = 0.988.

SST-2 example. Groundtruth: positive & Prediction: positive (Confidence: 0.9994)

IM
a solid examination of the male midlife crisis .

1.07654 6.16288 2.91817 -0.01502 0.14328 -0.40143 0.1654 1.29851 1.2264

IM
modified

a solid examination of the male midlife crisis .

1.83532 5.85144 2.89864 0.00083 0.02024 -0.11491 0.06725 1.11138 0.05947

Figure 6.6: Color map: negative -1, neutral 0, positive +1. Attribution maps derived from both
versions of IM have a high Pearson correlation ρ = 0.917.

SST-2 example. Groundtruth: negative & Prediction: positive (Confidence: 0.9868)

IM
rarely has leukemia looked so shimmering and benign .

6.62645 0.98643 -2.15698 -0.16744 0.59491 8.38053 3.50372 0.15773 0.05112

IM
modified

rarely has leukemia looked so shimmering and benign .

3.11005 0.58616 -3.29759 -0.20848 0.3003 8.72728 3.81542 0.26226 0.04914

Figure 6.7: Color map: negative -1, neutral 0, positive +1. Attribution maps derived from both
versions of IM have a high Pearson correlation ρ = 0.983.

SST-2 example. Groundtruth: negative & Prediction: negative (Confidence: 0.9950)

IM
unfortunately , it ’s not silly fun unless you enjoy really bad movies .

0.97455 -0.00063 -0.00634 -0.15033 0.81403 -1.31111 0.76075 -0.03599 -0.00042 -0.22804 0.27508 1.36045 0.58812 -0.00371

IM
modified

unfortunately , it ’s not silly fun unless you enjoy really bad movies .

1.6679 -0.00071 -0.00764 -0.35265 0.35085 -1.66804 -0.0029 0.37561 0.00036 -0.46997 0.35344 2.41716 0.78194 -0.00525

Figure 6.8: Color map: negative -1, neutral 0, positive +1. Attribution maps derived from both
versions of IM have a high Pearson correlation ρ = 0.802.

SST-2 example. Groundtruth: positive & Prediction: negative (Confidence: 0.7999)

IM
intriguing documentary which is emotionally diluted by focusing on the story ’s least interesting subject .

-7.28604 -2.3813 -4.68492 -0.11221 0.40301 8.17448 1.71521 0.06288 0.00117 0.06125 -0.64145 1.74269 9.00071 1.50607 -0.22335 -0.15134

IM
modified

intriguing documentary which is emotionally diluted by focusing on the story ’s least interesting subject .

-3.96954 -1.1229 -2.38742 0.27984 4.07982 11.69405 0.68146 0.88004 -0.00308 0.04509 -0.43266 2.63444 9.97514 2.32102 -0.43297 0.03175

Figure 6.9: Color map: negative -1, neutral 0, positive +1. Attribution maps derived from both
versions of IM have a high Pearson correlation ρ = 0.950.
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Criteria Method SST-2 e-SNLI

(a) % tokens
changing sign

LOOempty 71.41 ± 17.12 56.07 ± 21.82

IM 62.27 ± 17.75 49.57 ± 20.35

(b) Average
absolute of
differences

LOOempty 0.46 ± 0.18 0.26 ± 0.14

IM 0.31 ± 0.12 0.16 ± 0.12

Table 6.11: The percentage (%) of token (a) whose attribution scores change signs and (b) the
average of absolute differences in attribution magnitude after classifier randomization (higher is
better). IM is consistently more insensitive than LOOempty in both SST-2 and e-SNLI.

Accuracy ↓ ROAR ROARBERT ROARBERT_SST2

Method 10% 20% 30% 10% 20% 30% 10% 20% 30%

(a) LIME 75.51 ± 0.55 75.30 ± 0.80 77.45 ± 0.70 78.14 ± 0.54 73.44 ± 0.65 70.57 ± 0.56 78.83 ± 1.28 74.47 ± 0.67 72.18 ± 1.02

(b) LIMEBERT 73.99 ± 0.74 72.22 ± 0.73 70.82 ± 0.86 74.13 ± 0.72 70.44 ± 0.86 70.48 ± 0.63 75.78 ± 0.22 71.33 ± 1.04 68.76 ± 0.79

(c) LIMEBERT_SST2 74.15 ± 1.26 70.85 ± 0.89 70.48 ± 0.98 76.19 ± 0.91 69.77 ± 0.46 67.61 ± 0.53 76.08 ± 0.46 70.92 ± 0.64 71.08 ± 0.34

Table 6.12: Dev-set mean accuracy (%) of 5 models trained on the new SST-2 examples where
N% of highest-attribution words per example are removed (i.e. ROAR), replaced via BERT (i.e.
ROARBERT) or BERT finetuned on SST-2 to fill in a [MASK] token (i.e. ROARBERT_SST2). The
original accuracy when no tokens are removed (i.e. N = 0%) is 92.62 ± 0.30. On average, under
three metrics, LIMEBERT (b) and LIMEBERT_SST2 (c) are better, i.e. lower mean accuracy, than
LIME (a).

SST example. Groundtruth: positive
S may not have generated many sparks , but with his affection for Astoria and its people he has given his tale a warm glow .

S1 may not have generated many sparks , but with his affection for Astoria and its people he has given his tale a warm glow .

0.9494 he 0.9105 given 0.9632 a
0.0103 it 0.0285 lent 0.0270 its
0.0066 , 0.0143 gave 0.0033 another

Figure 6.10: BERTbase often correctly predicts the masked tokens (denoted in red, green, blue
rectangles) and assigns a high likelihood to the tokens that are labeled important by humans in the
SST positive example. In each panel, we show the top-3 tokens suggested by BERT and their
associated likelihoods.
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SST example. Groundtruth: negative
S Villeneuve spends too much time wallowing in Bibi ’s generic angst ( there are a lot of shots of her gazing out windows ) .

S1 Villeneuve spends too much time wallowing in Bibi ’s generic angst ( there are a lot of shots of her gazing out windows ) .

0.9987 much 0.9976 time 0.9675 in
0.0011 little 0.0005 money 0.0066 with
0.0001 some 0.0003 space 0.0062 on

Figure 6.11: BERTbase often correctly predicts the masked tokens (denoted in red, green, blue
rectangles) and assigns a high likelihood to the tokens that are labeled important by humans in the
SST negative example. In each panel, we show the top-3 tokens suggested by BERT and their
associated likelihoods.

e-SNLI example. Groundtruth: entailment
P The two farmers are working on a piece of John Deere equipment .

H John Deere equipment is being worked on by two farmers

P1 The two farmers are working on a piece of John Deere equipment

H1 John Deere equipment is being worked on by two farmers

0.9995 john 0.9877 equipment 0.9711 john
0.0000 johnny 0.0057 machinery 0.0243 the
0.0000 henry 0.0024 hardware 0.0005 a

Figure 6.12: BERTbase often correctly predicts the masked tokens (denoted in red, green, blue
rectangles) and assigns a high likelihood to the tokens that are labeled important by humans in the
e-SNLI entailment example which contains a pair of premise (P) and hypothesis (H). In each
panel, we show the top-3 tokens suggested by BERT and their associated likelihoods.

e-SNLI example. Groundtruth: neutral
P A man uses a projector to give a presentation .

H A man is giving a presentation in front of a large crowd .

P1 A man uses a projector to give a presentation .

H1 A man is giving a presentation in front of a large crowd .

1.0000 front 0.9999 of 0.9993 a
0.0000 view 0.0000 to 0.0005 the
0.0000 presence 0.0000 with 0.0001 another

Figure 6.13: BERTbase often correctly predicts the masked tokens (denoted in red, green, blue
rectangles) and assigns a high likelihood to the tokens that are labeled important by humans in the
e-SNLI neutral example which contains a pair of premise (P) and hypothesis (H). In each panel,
we show the top-3 tokens suggested by BERT and their associated likelihoods.
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MultiRC example. Groundtruth & Prediction: True (confidence: 0.98)
P What causes a change in motion ? The application of a force . Any time an object changes

motion , a force has been applied . In what ways can this happen ? Force can cause
an object at rest to start moving . Forces can cause objects to speed up or slow down .
Forces can cause a moving object to stop . Forces can also cause a change in direction .
In short , forces cause changes in motion . The moving object may change its speed , its direction , or both .
We know that changes in motion require a force . We know that the size of the force determines the change in
motion . How much an objects motion changes when a force is applied depends on two things . It depends
on the strength of the force . It also depends on the objects mass . Think about some simple tasks you may
regularly do . You may pick up a baseball . This requires only a very small force .

Q What factors cause changes in motion of a moving object ?

A The object ’s speed , direction , or both speed and direction

P1 What causes a change in motion ? The application of a force . Any time an object changes motion , a force
has been applied . In what ways can this happen ? Force can cause an object at rest to start moving . Forces
can cause objects to speed up or slow down . Forces can cause a moving object to stop . Forces can also cause
a change in direction . In short , forces cause changes in motion . The moving object may change its speed ,
its direction , or both . We know that changes in motion require a force . We know that the size of the force
determines the change in motion . How much an objects motion changes when a force is applied depends on
two things . It depends on the strength of the force . It also depends on the objects mass . Think about some
simple tasks you may regularly do . You may pick up a baseball . This requires only a very small force .

0.9927 moving 0.9891 change 0.9995 or
0.0023 moved 0.0033 alter 0.0004 and
0.0016 stationary 0.0018 affect 0.0000 etc

Q1 John Deere equipment is being worked on by two farmers

A1 The object ’s speed , direction , or both speed and direction

Figure 6.14: BERTbase often correctly predicts the masked tokens (denoted in red, green, blue
rectangles) and assigns a high likelihood to the tokens that are labeled important by humans in the
MultiRC True example which contains a triplet of paragraph (P), question (Q) and answer (A). In
each panel, we show the top-3 tokens suggested by BERT and their associated likelihoods.
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MultiRC example. Groundtruth & Prediction: False (confidence: 0.74)
P There have been many organisms that have lived in Earths past . Only a tiny number of them became

fossils . Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth .
Fossils provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils
in younger rocks look like animals and plants that are living today . Fossils in older rocks are less like
living organisms . Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can
even tell us if the water was shallow or deep . Fossils can even provide clues to ancient climates .

Q What are three things scientists learn from fossils ?

A Who lived in prehistoric times

P1 There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils .
Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils
provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in
younger rocks look like animals and plants that are living today . Fossils in older rocks are less like living
organisms . Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell
us if the water was shallow or deep . Fossils can even provide clues to ancient climates .

0.9984 life 0.9982 earth 0.9980 time
0.0004 living 0.0007 mars 0.0007 millennia
0.0002 things 0.0002 land 0.0003 history

Q1 What are three things scientists learn from fossils ?

A1 Who lived in prehistoric times

Figure 6.15: BERTbase often correctly predicts the masked tokens (denoted in red, green, blue
rectangles) and assigns a high likelihood to the tokens that are labeled important by humans in the
MultiRC False example which contains a triplet of paragraph (P), question (Q) and answer (A). In
each panel, we show the top-3 tokens suggested by BERT and their associated likelihoods.

SST example. Groundtruth & Prediction: negative (confidence: 1.00)
S For starters , the story is just too slim .

SIM For starters , the story is just too slim .

IoU: 0.33, precision: 0.50, recall: 0.50
SLOO For starters , the story is just too slim .

IoU: 0.75, precision: 1.00, recall: 0.75

Figure 6.16: The set of explanatory words given by LOOempty covers 75% of human high-
lights with higher precision and IoU in the SST negative example while there are a half of
tokens highlighted by IM are in correlation with human explanations.
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e-SNLI example. Groundtruth & Prediction: contradiction (confidence: 1.00)
P Two men are cooking food together on the corner of the street .

H The two men are running in a race .

PIM Two men are cooking food together on the corner of the street .

HIM The two men are running in a race .

IoU: 0.25, precision: 0.33, recall: 0.50

PLOO Two men are cooking food together on the corner of the street .

HLOO The two men are running in a race .

IoU: 0.50, precision: 0.50, recall: 1.00

Figure 6.17: The set of explanatory words given by LOOempty covers all highlights (higher precision
and IoU) that are important to human in the e-SNLI contradiction example which contains a
pair of premise (P) and hypothesis (H) while there are a half of tokens highlighted by IM are in
correlation with human explanations.

e-SNLI example. Groundtruth & Prediction: neutral (confidence: 1.00)
P Woman in a dress standing in front of a line of a clothing line , with clothes hanging on the line .

H Her dress is dark blue .

PIM Woman in a dress standing in front of a line of a clothing line , with clothes hanging on the line .

HIM Her dress is dark blue .

IoU: 0.00, precision: 0.00, recall: 0.00

PLOO Woman in a dress standing in front of a line of a clothing line , with clothes hanging on the line .

HLOO Her dress is dark blue .

IoU: 0.33, precision: 0.33, recall: 1.00

Figure 6.18: The set of explanatory words given by LOOempty covers all highlights (higher precision
and IoU) that are important to human in the e-SNLI neutral example which contains a pair of
premise (P) and hypothesis (H) while there are none tokens highlighted by IM are in correlation
with human explanations.
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MultiRC example. Groundtruth & Prediction: True (confidence: 0.90)
P There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils

. Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils
provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger
rocks look like animals and plants that are living today . Fossils in older rocks are less like living organisms .
Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water
was shallow or deep . Fossils can even provide clues to ancient climates .

Q What happened to some organisms that lived in Earth ’s past ?

A They became fossils . Others did not become fossils

PIM There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils .
Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils
provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger
rocks look like animals and plants that are living today . Fossils in older rocks are less like living organisms .
Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water
was shallow or deep . Fossils can even provide clues to ancient climates .

QIM What happened to some organisms that lived in Earth ’s past ?

AIM They became fossils . Others did not become fossils

IoU: 0.16, precision: 0.50, recall: 0.19

PLOO There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils
. Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils
provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger
rocks look like animals and plants that are living today . Fossils in older rocks are less like living organisms .
Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell us if the water
was shallow or deep . Fossils can even provide clues to ancient climates .

QLOO What happened to some organisms that lived in Earth ’s past ?

ALOO They became fossils . Others did not become fossils

IoU: 0.56, precision: 0.57, recall: 0.95

Figure 6.19: The set of explanatory words given by LOOempty covers 95% of human highlights
with higher precision and IoU in the MultiRC True example which contains a triplet of paragraph
(P), question (Q) and answer (A) while there are only few tokens given by IM are in correlation
with human explanations.
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MultiRC example. Groundtruth & Prediction: False (confidence: 0.99)
P There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils .

Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils
provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in
younger rocks look like animals and plants that are living today . Fossils in older rocks are less like living
organisms . Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell
us if the water was shallow or deep . Fossils can even provide clues to ancient climates .

Q What is a major difference between younger fossils and older fossils ?

A Older rocks are rougher and thicker than younger fossils

PIM There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils .
Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils
provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in younger
rocks look like animals and plants that are living today . Fossils in older rocks are less like living organisms
. Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even tell us if the
water was shallow or deep . Fossils can even provide clues to ancient climates .

QIM What is a major difference between younger fossils and older fossils ?

AIM Older rocks are rougher and thicker than younger fossils

IoU: 0.06, precision: 0.18, recall: 0.08

PLOO There have been many organisms that have lived in Earths past . Only a tiny number of them became fossils .
Still , scientists learn a lot from fossils . Fossils are our best clues about the history of life on Earth . Fossils
provide evidence about life on Earth . They tell us that life on Earth has changed over time . Fossils in
younger rocks look like animals and plants that are living today . Fossils in older rocks are less like living
organisms . Fossils can tell us about where the organism lived . Was it land or marine ? Fossils can even
tell us if the water was shallow or deep . Fossils can even provide clues to ancient climates .

QLOO What is a major difference between younger fossils and older fossils ?

ALOO Older rocks are rougher and thicker than younger fossils

IoU: 0.22, precision: 0.25, recall: 0.67

Figure 6.20: The set of explanatory words given by LOOempty covers two thirds of human highlights
with higher precision and IoU in the MultiRC False example which contains a triplet of paragraph
(P), question (Q) and answer (A) while there are two tokens given by IM are in correlation with
human explanations.

SST example. Groundtruth & Prediction: positive
S Enormously entertaining for moviegoers of any age .

S1 Enormously entertaining for moviegoers of any age .

S2 Enormously entertaining for moviegoers of any age .

S3 Enormously entertaining for moviegoers of any age .

S4 Enormously entertaining for moviegoers of any age .

S5 Enormously entertaining for moviegoers of any age .

S6 Enormously entertaining for moviegoers of any age .

S7 Enormously entertaining for moviegoers of any age .

Figure 6.21: When a word is removed, the predicted labels of all resulting sentences (S1 to S7) are
still positive with a confidence score of 1.0.
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e-SNLI example. Groundtruth: entailment Prediction
P Two women having drinks and smoking cigarettes at the bar . entailment

(0.99)H Two women are at a bar .

P1 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H1 Two women are at a bar .

P2 Two women having drinks and smoking cigarettes at the bar . neutral
(0.93)H2 Two women are at a bar .

P3 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H3 Two women are at a bar .

P4 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H5 Two women are at a bar .

P5 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H5 Two women are at a bar .

P6 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H6 Two women are at a bar .

P7 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H7 Two women are at a bar .

P8 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H8 Two women are at a bar .

P9 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H9 Two women are at a bar .

P10 Two women having drinks and smoking cigarettes at the bar . entailment
(0.97)H10 Two women are at a bar .

P11 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H11 Two women are at a bar .

P12 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H12 Two women are at a bar .

P13 Two women having drinks and smoking cigarettes at the bar . entailment
(0.98)H13 Two women are at a bar .

P14 Two women having drinks and smoking cigarettes at the bar . entailment
(0.99)H14 Two women are at a bar .

P15 Two women having drinks and smoking cigarettes at the bar . entailment
(0.84)H15 Two women are at a bar .

P16 Two women having drinks and smoking cigarettes at the bar . entailment
(0.97)H16 Two women are at a bar .

P17 Two women having drinks and smoking cigarettes at the bar . entailment
(0.54)H17 Two women are at a bar .

P18 Two women having drinks and smoking cigarettes at the bar . entailment
(0.95)H18 Two women are at a bar .

Figure 6.22: The removal of each token in both premise and hypothesis in e-SNLI example which
contains a pair of premise (P) and hypothesis (H) infrequently change the prediction. Specifically,
only the example of (P2, H2) shifted its prediction to neutral while the remaining partially-removed
examples do not change their original prediction with high confidence score in parentheses.
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6.3 Supplementary Materials for Phrase in Context (Chapter 4)

6.3.1 Training models on Phrase Similarity

Hyperparameters We train each BERT-based classifier for a maximum of 100 epochs with early

stopping monitored on validation accuracy (patience of 10 epochs). We use a batch size of 200 and

Adam optimizer with learning rate α = 0.0001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

Training time On average, with early stopping, training a single model using one V100 GPU

takes ∼5 and ∼8 mins for non-context and context settings, respectively.

6.3.2 Training SS models on Phrase Retrieval

We finetune each SS model that consists of a linear layer on top of a pretrained model selected

in Sec. 4.5 to predict the start and end indices of answers (as the common setup in BERT SS models

[30, 4]). The format of a tokenized input is “[CLS] query [SEP] document [SEP]” with maximum

sequence length of 4,096 for LongformerBase and LongformerLarge and 512 for the remaining models.

If the document exceeds the maximum sequence length, it is split into smaller features for prediction

and thus start and end indices with the highest confidence scores are selected.

Hyperparameters We follow HuggingFace scheme to finetune the SS models for 2 epochs using

Adam optimizer with learning rate α = 0.00003, β1 = 0.9, β2 = 0.999, ϵ = 10−8. The batch size varies

from 1 to 8 for each model: On one V100 GPU, the “base” models can handle 8 examples while the

“large” BERT models can only fit 2–4 examples into 16GB of memory. For LongformerLarge, we use

an A100 GPU to feed one PR-page example into the model. We take the smallest dev-loss models

from the training and report their test-set results.

Training time On average, training a single SS model for 2 epochs using one A100 GPU takes

∼20 mins for base models and ∼9.5 hours for LongformerLarge.
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6.3.3 Data collection

From a Wikipedia dump, we perform a 6-step procedure (summarized in Table 6.13) for mining

a list of mNPs sorted descendingly by their likelihood of containing multiple senses. The most

polysemous 19,500 mNPs are then passed to experts for annotation (Section 4.3.2) and others for

verification (Section 4.3.3).

Step 1: Download Wiki articles We download a Wikipedia dump file [147] that contains

∼15.78M Wikipedia articles and filter out all empty pages to arrive at ∼6.27M non-empty articles.

Step 2: Extract phrases We use NLTK sentence splitter [12] to split each Wikipedia article into

multiple sentences. And then we use SpaCy [64] to extract noun phrases and proper nouns as we do

not collect syntactically strict phrases. For each phrase, we remove all preceding and succeeding

stopwords (those among the 179 stopwords in NLTK v3.6.5) and non-alphanumeric characters. We

remove stopwords because they tend to create more pairs of phrases with lexical overlap, rendering

the phrase similarity task easier. We then remove unigram phrases to arrive at ∼286.78M mNPs. For

example, from “a massive figure”, we changed to “massive figure”, which would be our final phrase

after this step. For each mNP, we construct a 3-tuple (phrase, sentence, metadata), i.e. the phrase,

its container sentence, and metadata for identifying the Wikipedia webpage (hereafter, page).

Step 3: Remove phrases of a single context We further remove all phrases that (1) contain

non-ASCII characters (e.g. “phaenná nâsos”, which are non-English); and (2) appear only once, i.e.

keeping those that occur in multiple sentences since we look for polysemous mNPs, which have

multiple senses and contexts. After this step, ∼17.96M phrases remain.

While some phrases with non-ASCII characters are also commonly used in English (e.g., “déjà

vu”), we find only 2.48% of phrases at this stage contain non-ASCII characters, and 29% of them

are common in English. In short, we are removing only 0.72% of the English phrases that contain

non-ASCII characters in Step 3.
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Step 4: Find phrases of polysemous words To increase the chance of collecting polysemous

mNPs, we only keep mNPs that have at least one word in the list of 2,345 unique multiple-sense

words of WiC [68], arriving at ∼6.5M mNPs, each appearing in ≥ 2 sentences and in ≥ 1 Wikipedia

pages. We empirically find that Step 4 is important and substantially increases our chance of finding

polysemous mNPs (compared to skipping Step 4).

Step 5: Find phrases in distinct contexts We observe that a mNP is likely to be polysemous

when (a) its context sentences are semantically different; and (b) its context Wikipedia pages are of

dissimilar categories (e.g. “massive figure” in finance vs. history; Figure 6.30).

To implement this filter, we form all possible triplets (phrase, sentence1, sentence2) from the

list of context sentences of each mNP2. We compute the cosine similarity of two sentences at the

CLS embedding space of a SimCSE [45] provided on HuggingFace [51]. To find triplets where the

two sentences are semantically dissimilar, we keep only the triplets where (sentence1, sentence2) has

a low cosine similarity, i.e. ∈ [−0.3,0.2] and the length difference of the two sentences is < 4 words

(as two sentences of substantially different lengths often have a low cosine similarity regardless of

their semantic differences). As the result, there are ∼600K triplets remaining after this step.

We further re-rank these ∼600K descendingly by the dissimilarity of the lists of Wikipedia

categories3 of the context pages that contain sentence1 and sentence2. That is, we treat each

Wikipedia page’s comma-separated list of categories as an input text to SimCSE and sort the ∼600K

descendingly by the cosine similarity of the resultant embeddings.

Step 6: Select data for annotation Before asking annotators to label our sorted phrases we

perform final filtering by removing proper nouns and phrases whose Wikipedia documents contain

missing words.

2For computational tractability, we only keep at most 32 context sentences per mNP where each sentence’s length
in words is ∈ [5,25].

3We use the provided Wikipedia API [146] to obtain the categories for each article as the dump file has no
category-related information.
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We perform final filtering to ensure the data given to annotators is in a proper format. That

is, from ∼600K phrases, we filter down to ∼475K phrases by applying two filters: (1) Remove all

phrases that are proper nouns (i.e. POS tagging returns PROPN) since proper nouns often refer to a

single identity and thus unambiguous; (2) Remove all phrases that have a newline character and all

phrases whose context Wikipedia page contains missing words (i.e. errors in the Wikipedia dump).

As the result, we obtain a list of ∼475K phrases sorted by their estimate chance of carrying

two different senses. After manual inspection, we take the top 19,500 triplets of the format (phrase,

page1, page2)—i.e. a phrase p and its two context Wikipedia pages where p is the most likely to

have two different senses (e.g., see “massive figure” in Figure 4.1a)—and hire linguistic experts to

annotate them.

Our manual inspection involves taking 1,000 random triplets and manually reading them.

We find that at least ∼30% of the 1,000-triplet subset contain a polysemous target phrase p and two

Wikipedia pages that give p two unique meanings. We perform this manual inspection repeatedly

throughout the process of inventing and refining the data collection process in order to arrive at the

final list of steps as presented in this paper.

Biases in the data collection

While there are many filtering steps in our data collection above, most of them are data cleaning

filters that are typically needed in a regular NLP dataset construction.

We recognize that there are three key filters in our system that impose strong biases:

1. In Step 4, we use only phrases that contain one word in the WiC. That is, we find Step 4 to

substantially increase our chance of finding triplets with a polysemous target phrase. We have

added this note in the Data Collection description. It is possible to remove Step 4, but that

would require a larger human annotation effort to reach the same 15K labeled triplets.

2. In Step 5, we rely on SimCSE to find target phrases that are placed in two sentences of

dissimilar meanings.
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3. In Step 5, we rely on SimCSE to find target phrases that are placed in two Wikipedia pages of

distinct topics.

6.3.4 Statistics for search queries in Yahoo Search Query dataset

We analyze 4,496 user queries released in the Yahoo Search Query Log To Entities dataset

[169] and use SpaCy tokenizer [64] to classify them into 4 main categories: Noun phrases, verb

phrases, URLs and others. As a result, noun phrases are the most common query type from users

with 3,576 queries (∼79.54%) followed by URLs with 675 queries (∼15.01%) while verb phrases

and other types are less preferred by users. Moreover, the average length of the real user queries is

∼1.60 which is quite close to our PS task with ∼2.27.

Table 6.14: Statistics of Yahoo queries across different query types.

Query type # queries Percentage (%)

Noun phrases 3,576 79.54

Verb phrases 148 3.29

URLs 675 15.01

Others 97 2.16

Total 4,496 100.00

6.3.5 Verification of Phrase Similarity

To enhance the quality of the proposed PiC benchmark, we hire three additional Upwork experts

to verify the correctness of PS examples where two phrases are supposed to be non-equivalent for

negative examples (e.g. massive figure and giant number in Figure 4.1b) or equivalent for positive

examples (e.g. massive figure and huge model in Figure 4.1b), and keep an example if it is endorsed

by at least two experts (the rest is discarded from PS).

102



Two Upwork verifiers A1 and A2 start checking 5,104 negative examples and the third verifier

A3 is responsible for breaking the ties if A1 and A2 disagree with each other (see Figure 6.23). Both

A1 and A2 are asked to provide corrections when they do not agree with the labels. As a result,

4,935 out of 5,104 examples are accepted by pairs of (A1, A2), (A1, A3) or (A2, A3), 68 examples

incorrect at first but are modified by either A1 or A2 and endorsed by A3. In total, we reject 101

negative examples because there are not at least two experts agreeing with the annotations.

We repeat the same procedure to verify 5,104 positive examples. In sum, we retain 5,002

examples including 4,904 examples accepted by pairs of two verifiers and 98 examples incorrect

at first but are modified by either A1 or A2 and endorsed by A3. There are 102 positive examples

rejected because there are not at least two experts agreeing with the annotations (Figure 6.24).

After this verification round, we collect 5,003 negative examples and 5,002 positive examples.

and randomly exclude 1 negative example to make the dataset balance which results in 10,004

examples in total for PS.

Do both A1 & A2 
accept?

Are they confident?

4,211 examples are 
accepted

Does A3 accept?

96 examples are accepted

1 example is 
rejected

Do both A1 and A2 
reject?

Does A3 accept?

Does A3 accept?

82 examples are 
rejected

628 examples are accepted

22 examples are accepted

0 example is 
rejected

46 examples are accepted

18 example are 
rejected

Yes
(4,308)

No
(796)

Yes
(4,211)

No
(97)

Yes
(104)

No
(692)

Yes
(82)

No
(22)

Yes
(628)

No
(64)

Yes
(96)

No
(1)

Yes
(22)

No
(0)

Yes
(46)

No
(18)

Does A3 accept A1 or 
A2’s corrected 
annotations?

Does A3 accept A1 or 
A2’s corrected 
annotations?

Figure 6.23: A decision tree describing our verification process for PS that involves three experts.
Red, green and blue cells represent Reject, Accept decision and Questions. The numbers of
examples for each branch are shown in parentheses.
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Do both A1 & A2 
accept?

Are they confident?

3,985 examples are 
accepted

Does A3 accept?

422 examples are accepted

5 example is 
rejected

Do both A1 and A2 
reject?

Does A3 accept?

Does A3 accept?

78 examples are 
rejected

497 examples are accepted

8 examples are accepted

8 example is 
rejected

90 examples are accepted

11 example are 
rejected

Yes
(4,412)

No
(692)

Yes
(3,985)

No
(427)

Yes
(94)

No
(598)

Yes
(78)

No
(16)

Yes
(497)

No
(101)

Yes
(422)

No
(5)

Yes
(8)

No
(8)

Yes
(90)

No
(11)

Does A3 accept A1 or 
A2’s corrected 
annotations?

Does A3 accept A1 or 
A2’s corrected 
annotations?

Figure 6.24: A decision tree describing our verification process for PS that involves three experts.
Red, green and blue cells represent Reject, Accept decision and Questions. The numbers of
examples for each branch are shown in parentheses.
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Table 6.13: Summary of our 3-stage data construction. p, s, m d, q, l denote target phrase, sentence,
metadata, document, query, and label, respectively.

Remaining # Data type Description

Section 4.3.1 Data Collection
Step 1: Download Wiki articles ∼6.27M articles Remove ∼9.51M empty arti-

cles.

Step 2: Extract phrases ∼286.78M (p, s, m) Extract noun phrases and
proper nouns along with
their context sentences from
Wikipedia articles.

Step 3: Remove phrases of a single context ∼17.96M (p, [s1, ..., sn], m) For each phrase, gather all sen-
tences where that phrase is
used.

Step 4: Find phrases of polysemous words ∼6.5M (p, [s1, ..., sn], m) Filter those phrases that do not
contain WiC words.

Step 5: Find phrases in distinct contexts Sort by Xi and apply filters to
find pairs of sentences where
their phrase potentially has
different meanings.

- Sort and filter by semantic dissimilarity ∼600K (p, s1, s2, m) X1 ∶ cosine similarity scores
of sentences embeddings.

- Sort by domain dissimilarity ∼600K (p, s1, s2, m) X2 ∶ cosine similarity scores
of domain embeddings i.e.,
use categories of each article
to get embeddings.

Step 6: Select data for expert annotation 19,500 (p, d1, d2) Remove proper nouns and
phrases with missing informa-
tion and select top 19,500 ex-
amples for annotation.

Section 4.3.2 Data Annotations 30,042 (p, d, q) Create a query i.e., paraphrase
from the given phrase in each
context document.

15,021 (p, d1, d2, l) Create a Yes/No label for each
pair of documents.

Section 4.3.3 Verifying Annotations
Round 1: MTurk verifier 22,496 (p, d, q) Verify queries and Yes/No la-

bel by MTurkers.
10,043 (p, d1, d2, l)

Round 2: Upwork verifiers 28,325 (p, d, q) Verify instances rejected in
Round 1.

13,413 (p, d1, d2, l)
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6.3.6 Quantitative results on PR-page

Table 6.15: Ranking accuracy (%) on PR-page using the state-of-the-art pretrained phrase embed-
dings (a) and those finetuned on PR-pass via SS-style training (b).

Model
Phrase Phrase + Context

Top-1 Top-3 Top-5 MRR@5 Top-1 Top-3 Top-5 MRR@5

(a) Pre-trained embeddings

BERT [30] 20.70 34.30 41.00 28.20 35.40 (+14.70) 52.10 59.10 44.50

USE-v5 [21] 32.20 52.70 60.80 43.20 n/a n/a n/a n/a

(b) PR-pass-trained SS models’ phrase embeddings

PhraseBERT [157] 49.40 69.40 76.70 60.10 14.70 21.60 26.10 18.70

SimCSE [45] 44.20 66.60 73.50 55.70 24.60 37.80 43.20 31.70

6.3.7 Finetuning on PSD does not substantially improve accuracy

As PSD has only 4,858 examples, we use all examples for testing in Section 4.5.5 and find the

best PR-trained SS models to perform poorly. To further understand the challenge of PSD, here, we

ask:

Q: How much does training on PR-pass and finetuning on PSD improve accuracy on PSD?

Experiment We take the PR-pass-trained SS models and further finetune them on a subset of PSD

to measure how training directly on PSD improves SS models. We split PSD into 1,438/500/3,000

examples for train/dev/test sets, respectively, and finetune the PR-pass-trained SS models on

this PSD train set. For comparison with the results in Section 4.5.4, we use the same set of

hyperparameters as when finetuning on PR-pass in Section 4.5.4. Below, we report the test-set

results of the lowest dev-loss models.

Results On the PSD-3K test set, all models perform poorly at a mean EM score of 55.14%

(Table 6.16a; mean). Interestingly, finetuning the original models using the 1,938 examples

(hereafter, PSD-2K) instead of PR-pass decreases accuracy, on average by -6.51 points. An

explanation is that 1,438 PSD training examples are too few for the finetuning to be effective.
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Indeed, finetuning the PR-pass-trained SS models further on PSD-2K increases the scores for all

models by +9.10 on average (Table 6.16c; mean). The best model is LongformerBase [8] (Table 6.16;

71.10 EM), which is still substantially lower than the human upperbound of 95%.

Table 6.16: Performance of SS models on 3,000 PSD test examples. (a) and (b) models are
finetuned only on PR-pass and 1,938 PSD examples (PSD-2K), respectively. (c) models are
finetuned on PR-pass first and then finetuned on PSD-2K. All models are “base” unless otherwise
specified. The definitions of EM+loc and F1+loc are in Table 4.6’s caption.

Models finetuned on (a) PR-pass (b) PSD-2K (c) PR-pass + PSD-2K

EM+loc F1+loc EM+loc F1+loc EM+loc F1+loc

PhraseBERT [157] 51.00 51.15 35.43 (-15.57) 36.02 56.53 (+5.53) 56.81

BERT [30] 54.53 54.75 44.33 (-10.20) 45.28 63.83 (+9.30) 64.14

BERTLarge [30] 54.77 54.99 54.07 (-0.70) 54.82 67.13 (+12.36) 67.36

SpanBERT [72] 52.27 52.37 44.67 (-7.60) 45.35 69.93 (+17.66) 70.14

SentenceBERT [131] 52.27 52.41 38.63 (-13.64) 39.31 58.93 (+6.66) 59.21

SimCSE [45] 53.47 53.59 43.67 (-9.80) 44.38 60.60 (+7.13) 60.80

Longformer [8] 62.47 62.58 61.97 (-0.50) 62.69 71.10 (+8.63) 71.30

LongformerLarge [8] 60.33 60.42 66.27 (+5.94) 67.10 65.87 (+5.54) 66.10

mean 55.14 55.28 48.63 (-6.51) 49.37 64.24 (+9.10) 64.48
± std 4.10 4.08 11.03 11.08 5.23 4.13
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6.3.8 SS-style training improves non-contextualized but not contextualized phrase embed-

dings

As the SS models trained on PR-pass and PR-page perform impressively (Section 4.5.4),

almost 1.5× better than the ranking models that are based on pre-trained embeddings, an interesting

question is:

Q: Does SS training also improve contextualized phrase embeddings?

This is important to understand because the impressive SS-models’ performance gain may

come from the extra linear-classification layer (not necessarily from the finetuned embeddings).

Experiment We extract the phrase embeddings (both non-contextualized and contextualized)

from the PR-pass-trained SS models from Section 4.5.4 (i.e. discarding the classification layer) and

test them in the PR-pass ranking experiments (as in Section 4.5.3).

Results After finetuning on PR-pass, the non-contextualized phrase embeddings improve sub-

stantially for most models at an average gain of +16.61 in top-1 accuracy (e.g., PhraseBERT top-1

accuracy increases from 36.62% to 59.02%; Table 6.17b). This result shows that training on

PR-pass improves non-contextualized phrase embeddings. In stark contrast, the ranking scores

of contextualized phrase embeddings drop significantly, -11.95 points on average (Table 6.17c),

compared to before finetuning on PR-pass.

In sum, we are observing a consistent trend that the contextualized phrase embeddings of the

original pre-trained BERT (both “base” and “large”) are remarkably beneficial for retrieval (i.e.

PR). However, after finetuning, e.g. on PR-pass or using other techniques (e.g. in PhraseBERT or

SentenceBERT), such benefits of leveraging context disappear. Aligned with [175], we find that

incorporating context effectively into phrase embeddings is an open research challenge.
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Table 6.17: Ranking accuracy (%) on PR-pass using the state-of-the-art pretrained phrase em-
beddings (a) and those finetuned on PR-pass via SS-style training (b). See Section 6.3.6 for the
results on PR-page. ∆ (e.g. -3.62) denotes the differences between the Top-1 accuracy in the
contextualized (“Phrase + Context”) vs. the non-contextualized (“Phrase”) setting.

Model
Phrase Phrase + Context

Top-1 Top-3 Top-5 MRR@5 Top-1 (∆) Top-3 Top-5 MRR@5

(a) Pre-trained embeddings

PhraseBERT [157] 36.62 66.96 75.90 52.20 33.00 (-3.62) 49.60 56.70 41.90

BERT [30] 29.80 47.90 55.40 39.50 47.44 (+17.64) 65.78 73.30 57.30

BERTLarge [30] 23.76 38.52 45.40 31.70 42.80 (+19.04) 58.90 64.90 51.30

SpanBERT [72] 20.88 31.04 35.20 26.40 14.40 (-6.48) 30.46 39.80 23.40

SentenceBERT [131] 22.30 50.64 60.60 36.80 25.14 (+2.84) 39.52 46.20 32.90

SimCSE [45] 28.10 53.70 64.60 41.60 32.40 (+4.30) 53.44 62.80 43.70

USE-v5 [21] 43.36 70.12 78.90 57.30 n/a n/a n/a n/a

DensePhrase [86] 32.24 51.30 60.50 42.60 31.50 (-0.74) 46.30 53.80 39.70

(b) PR-pass-trained SS models’ phrase embeddings

PhraseBERT [157] 59.02 81.58 87.90 70.60 24.98 (-34.04) 37.78 43.90 32.00

BERT [30] 50.10 66.16 71.40 58.60 20.34 (-29.76) 31.40 37.10 26.50

BERTLarge [30] 32.70 42.40 45.90 37.80 11.40 (-21.30) 17.00 20.50 14.60

SpanBERT [72] 15.22 22.88 26.60 19.40 8.92 (-6.30) 13.56 16.60 11.60

SentenceBERT [131] 53.14 74.86 80.70 64.20 20.12 (-33.02) 30.04 34.90 25.60

SimCSE [45] 50.96 76.70 83.40 64.00 37.70 (-13.26) 52.38 58.90 45.60

(c) Differences between after vs. before finetuning, i.e. the 6 models in (b) vs. those in (a)

mean differences +16.61 -11.95
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6.3.9 Qualitative examples for PS, PR-pass, PR-page and PSD

PS example. Groundtruth: positive
P1 moderate speed

P2 steady pace

S1 Deforestation due to logging and land conversion has likely caused the population to decline at a moderate speed.

S2 Deforestation due to logging and land conversion has likely caused the population to decline at a steady pace.

Figure 6.25: PhraseBERT-based classifier correctly predicts positive given two phrases P1 and
P2 with and without the presence of context S1 and S2. Here, to humans, the phrases are non-
polysemous and have the same meaning.

PS example. Groundtruth: negative
P1 greatest emphasis

P2 highest stress

S1 However, the rock art had the greatest emphasis on domesticated cattle.

S2 However, the rock art had the highest stress on domesticated cattle.

Figure 6.26: PhraseBERT-based classifier correctly predicts negative given two phrases P1 and
P2 with and without the presence of context S1 and S2. Here, to humans, the two phrases are
non-ambiguously carrying different meanings.

PS example. Groundtruth: positive
P1 unique image

P2 uncommon style

S1 Bayliss has been praised for her unique image and tendency to change up songs.

S2 Bayliss has been praised for her uncommon style and tendency to change up songs.

Figure 6.27: PS case that requires context to determine similarity. Without context, a PhraseBERT-
based classifier incorrectly thinks P1 and P2 are different. Yet, it changes the prediction to positive,
i.e. thinking two phrases have the same meaning, when the context is taken into account.
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PS example. Groundtruth: negative

P1 permanent post

P2 stable location

S1 His assistant, John Carver took over as caretaker manager, managing one win, but was not considered for the

permanent post, and left in September 2004.

S2 His assistant, John Carver took over as caretaker manager, managing one win, but was not considered for the

stable location, and left in September 2004.

Figure 6.28: PS case that requires context to determine similarity. Without context, PhraseBERT-
based classifier incorrectly thinks P1 and P2 carry the same meaning. Yet, it correctly changes the
prediction to negative when the context is taken into account.
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PSD example.
d Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small

magnetized areas, known as "bubbles" or "domains", each storing one bit of data. The material is arranged to form a
series of parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles
are read by moving them to the edge of the material where they can be read by a conventional magnetic pickup, and
then rewritten on the far edge to keep the memory cycling through the material. In operation, bubble memories
are similar to delay line memory systems. Bubble memory started out as a promising technology in the 1970s,
offering memory density of an order similar to hard drives but performance more comparable to core memory while
lacking any moving parts. This led many to consider it a contender for a "universal memory" that could be used for
all storage needs. The introduction of dramatically faster semiconductor memory chips pushed bubble into the
slow end of the scale, and equally dramatic improvements in hard drive capacity made it uncompetitive in price
terms. Bubble memory was used for some time in the 1970s and 80s where its non-moving nature was desirable for
maintenance or shock-proofing reasons. The introduction of Flash RAM and similar technologies rendered even this
niche uncompetitive, and bubble disappeared entirely by the late 1980s. History. Precursors.

The Inkerman stone, of which the building is made, was mined near Sevastopol and transported by barges. No
convenient mooring facilities existed at that time, so the barges had to anchor in the harbor and the load was
moved to the shore by boats and then transported to the construction site across the steppe. During the first year of
construction, the builders concentrated on the basic structure at the expense of various facilities and decorations.
At the end of 1816, the lighthouse looked like a conic 36-metre-high stone tower with a wooden 3.3-metre-high
decagonal lantern. The lighthouse became operational in 1817 after its lighting system had been repaired. Three
houses were built next to the tower to accommodate the lighthouse personnel and for storage needs. However, cold
and humid winters of the Tarkhanut Peninsula, however, made these houses nearly unsuitable for living. In 1862,
the lighting system was upgraded, and the spread of light reached 12.4 miles. In 1873, the construction resumed
along with cleaning efforts of the surrounding areas. The building was finished and painted white. In 1876, an
additional telegraph spot was built near the tower.

q1 storehouse purposes Groundtruth: storage needs & Prediction: storage needs (confidence: 0.99)

q2 data caching Groundtruth: storage needs & Prediction: storage needs (confidence: 0.99)

Figure 6.29: Given document d, our LongformerLarge SS model trained on PR-pass correctly
retrieves storage needs in the second paragraph for the query q1 “storehouse purposes” but fails
to retrieve the answer when the query q2 is “data caching”. The predicted answer for q2 should
be storage needs (i.e. in the first passage) since this phrase relates to caching data digitally in
computers while storage needs refers to physically storing objects.
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PSD example.
d In the libretto, Delilah is portrayed as a seductive "femme fatale", but the music played during her parts invokes

sympathy for her. The 1949 biblical drama "Samson and Delilah", directed by Cecil B. DeMille and starring
Victor Mature and Hedy Lamarr in the titular roles, was widely praised by critics for its cinematography, lead
performances, costumes, sets, and innovative special effects. It became the highest-grossing film of 1950, and
was nominated for five Academy Awards, winning two. According to "Variety", the film portrays Samson as a
stereotypical "handsome but dumb hulk of muscle". Samson has been especially honored in Russian artwork
because the Russians defeated the Swedes in the Battle of Poltava on the feast day of St. Sampson, whose name is
homophonous with Samson’s. The lion slain by Samson was interpreted to represent Sweden, as a result of the
lion’s placement on the Swedish coat of arms. In 1735, C. B. Rastrelli’s bronze statue of Samson slaying the lion
was placed in the center of the great cascade of the fountain at Peterhof Palace in Saint Petersburg. Samson is the
emblem of Lungau, Salzburg and parades in his honor are held annually in ten villages of the Lungau and two
villages in the north-west Styria (Austria). During the parade, a young bachelor from the community carries a
massive figure made of wood or aluminum said to represent Samson. The tradition, which was first documented in
1635, was entered into the UNESCO list of Intangible Cultural Heritage in Austria in 2010. Samson is one of the
giant figures at the "Ducasse" festivities, which take place at Ath, Belgium.

On September 22, 2015, Honda announced that they had sold over 1 million Activas in five months in
the Indian market, from April to August. Honda launched their 5th generation of Honda Activa in 2018, and the
sixth-generation Honda Activa 6G have been launched in India with prices starting at 63,912 (ex-showroom, Delhi).
Milestones. In April, 2014, "The Economic Times" reported the Honda Activa to be the best selling two wheeler in
India, outselling the Hero Splendor. During the month of September 2013, 141,996 Honda Activa scooters were
sold, nearly equal to Honda’s entire annual sales in North America. The 110cc Activa is the company’s biggest
seller, by far. It is responsible for over 2,00,000 sales units each month. In November 2018, HMSI crossed the 2.5
crore sales mark in the scooter segment. It has become the first company to reach this milestone and the biggest
contributor to this massive figure is the Honda Activa. It took Honda 13 years to achieve the one crore sales figure,
but it managed to add another crore in the span of just three years. It then went on to achieve the next 50 lakh in just
one year.

q1 huge model Groundtruth: massive figure & Prediction: massive figure (confidence: 0.99)

q2 giant number Groundtruth: massive figure & Prediction: massive figure (confidence: 0.99)

Figure 6.30: Given document d, LongformerLarge model trained with SS approach on PR-pass
correctly retrieves massive figure in the second paragraph for the query q2 “giant number” but fails
to retrieve the answer when the query q1 is “huge model”. The predicted answer for q1 should be
massive figure in the first passage since this phrase relates to a physical shape instead of a number.
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PSD example.
d Eva held ambitions to replace Hortensio Quijano for the 1951 election, although her poor health kept her from this.

Nonetheless many were concerned that her agenda would be pushed through. In march of 1951 the government
arrested several retired army officers due to their dissent and disapproval of Perón’s administration. This raised
tensions among the rest of the army, although action did not occur. By September tensions had risen among the
military due to the unrivalled power of the Peronist regime. On September 28, 1951, during the election, Menéndez
led the military uprising in an attempt to overthrow the government. He led a core of officers, commanding a
division, and left Campo de Mayo bound for the Casa Rosada. Resolve for the uprising, especially among the
non-commissioned officers and enlisted men, was not strong enough. They were not prepared to fight their own
countrymen. The uprising was over as soon as opposition was encountered, almost completely bloodless. Perón
admired the loyalty of the troops and pardoned all those involved.

The design uses a similar standard to the JVX in terms of distortion reduction with crossbraces and 27
cells but that’s where the similarity ends. Petra was built from the ground up with entirely new panel shaping and
trim. Petra has a highly elliptical planform and very high sweep. NZ Aerosports say she has a high roll rate, a long
recovery arc and high maximal glide ratio. She is said to deliver unrivalled power in the turn, plane out and flare.
Petra has a long list of World Records, National and International titles to back that up. She had an impressive debut
at the PD Big Boy Pants event in July 2011, with Nick Batsch setting a new distance world record of 222.45m
(729ft). One month later Nick took out the Pink Open in Klatovy and the FAI World Cup also; first in distance,
speed and overall. He also won the 2011 US CP nationals on Petra. Patrick Boulongne came 2nd in the European
Championships and 6th overall at the World Cup with Petra in his first competition with her. He went on to win the
2011 French Canopy Piloting Nationals.

q1 incomparable energy Groundtruth: unrivalled power & Prediction: unrivalled power (confidence: 0.99)

q2 indomitable strength Groundtruth: unrivalled power & Prediction: unrivalled power (confidence: 0.99)

Figure 6.31: Given document d, LongformerLarge model trained via the SS approach on PR-pass
correctly retrieves unrivalled power in the first paragraph for the query q2 “indomitable strength” but
fails to retrieve the answer when the query q1 is “incomparable energy”. The predicted answer for
q1 should be unrivalled power in the second passage since the second passage changes “unrivalled
power” meaning to a competition strength instead of military power.
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PR-pass example. Groundtruth: common thought
d As the medical corps grew in size there was also specialization evolving. Physicians surfaced that specialized

in disease, surgery, wound dressing and even veterinary medicine. Veterinary physicians were there to tend to
livestock for agricultural purposes as well as combat purposes. The Cavalry was known for their use of horses in
combat and scouting purposes. Because of the type of injuries that would have been commonly seen, surgery was a
somewhat common occurrence. Tools such as scissors, knives and arrow extractors have been found in remains. In
fact, Roman surgery was quite intuitive, in contrast to common thought of ancient surgery. The Roman military
surgeons used a cocktail of plants, which created a sedative similar to modern anesthesia. Written documentation
also showed surgeons would use oxidation from a metal such as copper and scrape it into wounds, which provided
an antibacterial effect; however, this method was most likely more toxic than providing an actual benefit. Doctors
had the knowledge to clean their surgical instruments with hot water after each use. Wounds were dressed, and dead
tissue was removed when bandages were changed.

q prevalent theory

R 0.882 common thought
0.855 common thought of
0.702 fact
0.698 to common thought
0.675 common occurrence

Figure 6.32: A ranking model based on the phrase embeddings of the PR-pass-trained PhraseBERT
SS model correctly ranks and retrieves the most semantically relevant answer “common thought” as
the top-1 prediction in the retrieval list R for the query “prevalent theory” in a PR-pass example
(which contains a document d and a query q).

115



PR-page example. Groundtruth: continued risk
d ... Following a United Nations agreement between Indonesia and Portugal, a UN-supervised referendum held

on 30 August 1999 offered a choice between autonomy within Indonesia and full independence. The people of
East Timor voted overwhelmingly for independence. An Australian-led and Indonesian-sanctioned peacekeeping
force, INTERFET, was sent into the territory to restore order following a violent ’scorched-earth’ policy carried
out by pro-integration militia and supported by elements of the Indonesian military. In response to Australia’s
involvement, Indonesia abrogated the 1995 security pact, asserting that Australia’s actions in East Timor were
inconsistent with ’both the letter and spirit of the agreement’. Official meetings were cancelled or delayed, including
the Indonesia-Australia Ministerial Dialogue, which would not reconvene until March 2003. INTERFET was
later replaced by a UN force of international police, UNTAET, which formed a detachment to investigate alleged
atrocities. "Tampa" affair and the War on Terror. The relationship came under strain in August 2001 during the
"Tampa" affair, when Australia refused permission for the Norwegian freighter ship MV "Tampa" to enter Australian
waters while carrying Afghan asylum seekers that it had rescued from a distressed fishing vessel in international
waters. The Indonesian Search and Rescue Agency did not immediately respond to requests from Australia to receive
the vessel. When the ship entered Australian territorial waters after being refused permission, Australia attempted
without success to persuade Indonesia to accept the asylum seekers. Norway also refused to accept the asylum
seekers and reported Australia to international maritime authorities. The incident prompted closer coordination
between Indonesian and Australian authorities, including regional conferences on people smuggling, trafficking
in persons and other transnational crime. In 2002, a terrorist attack in Kuta, Bali killed 202 people, including 88
Australians, and injured a further 240. Jemaah Islamiyah, a violent Islamist group, claimed responsibility for the
attack, allegedly in retaliation for Australia’s support for East Timorese independence and the War on Terror. A
subsequent attack in 2005 resulted in the deaths of a further 20 people, including 15 Indonesians and 4 Australians.
The 2003 Marriott Hotel bombing was also perceived as targeted at Western interests in Indonesia; Al Qaeda claimed
the attack was carried out by a Jemaah Islamiyah suicide bomber in response to actions of the United States and
its allies, including Australia. A 2004 attack on the Australian embassy in Jakarta by Jemaah Islamiyah resulted
in the deaths of nine Indonesians. The following year, Indonesian diplomatic and consular premises in Australia
received a number of hoax and threat messages. Since then, both the United States and Australian governments have
issued warnings against travel to Indonesia, advising their citizens of a continued risk of attacks. These incidents
prompted greater cooperation between law enforcement agencies in the two countries, building on a 1999 agreement
on drug trafficking and money laundering. The Australian Federal Police’s Jakarta Regional Cooperation Team
provided assistance to the Indonesian National Police, and has contributed to the Jakarta Centre for Law Enforcement
Cooperation. This relationship has attracted criticism, particularly following the arrest and sentencing of the Bali
Nine, a group of nine Australians arrested in Denpasar while attempting to smuggle heroin from Indonesia to
Australia. The 2005 conviction of Schapelle Corby for attempting to smuggle drugs to Bali also attracted significant
attention in the Australian media. The 2004 Indian Ocean earthquake prompted a significant humanitarian response
from Australia, including a $1 billion aid package from the federal government, a further $17.45 million contribution
from state and territory governments, and the commitment of 900 Australian Defence Force personnel to relief
efforts in northern Sumatra and Aceh. A telethon broadcast on Australia’s three major commercial television
networks called "" generated pledges of more than $10 million, contributing to total private aid of $140 million. The
Eighth "Australia-Indonesia Ministerial Forum" (AIMF) was held in Bali on 29 June 2006 and was attended by five
Australian and eleven Indonesian ministers. A key outcome was support for the conclusion of a security agreement,
later realised as the Lombok Agreement, providing a framework for the development of the security relationship by
the end of 2006 on defence, law enforcement, counter-terrorism, intelligence, maritime security, aviation safety,
WMD non-proliferation, and bilateral nuclear cooperation for peaceful purposes. Australia-Indonesia-East Timor
Trilateral Ministerial Meetings occurred three times to September 2006. Recent relations. 2010 President Susilo
Bambang Yudhoyono visited Australia in April 2010, and became the second Indonesian leader to address federal
parliament: Finally, I look forward to a day in the near future. The day when policy makers, academicians, journalists
and other opinion leaders all over the world take a good look at the things we are doing so well together. And they
will say: these two used to be worlds apart. But they now have a fair dinkum of a partnership. ...

q sustained threat

R 0.830 threat .
0.802 potential threat
0.800 threat reached
0.787 threat as
0.787 threat to

Figure 6.33: A ranking model based on the non-contextualized embeddings of USE-v5 fails to
retrieve the correct answer “continued risk” for the query “sustained threat” in the PR-page example
(which contains a document d and a query q). The top-5 phrases retrieved (R) contains the word
“threat” but have no identifier conveying the “continued” or ‘sustained” sense. Here, the Wikipedia
page is truncated to fit into a single manuscript page.
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6.3.10 Verifying annotations

There are two common methods for evaluation of dataset quality: (1) Verify only a small,

random subset [122] to estimate the quality of the full dataset or (2) verifying the entire dataset

with multiple annotators and use the inter-annotator agreement (IAA) to control quality [15, 82].

The first approach for approximation is budget-friendly but it remains unknown whether the rest of

examples are at high quality, while IAA is more desired but annotating thousands of instances can

be prohibitively slow and costly.

We propose a hybrid approach to evaluate (leveraging both linguistic experts and non-experts)

and ensure high quality for 30,042 queries and 15,021 Yes/No answers at lower cost compared to

IAA via two rounds:

1. First, we ask around 1,000 highly qualified freelancers on Amazon Mechanical Turk (MTurk

verifiers) to verify whether the query annotated by our Upwork annotators is interchangeable

i.e. has the same meaning with the given phrase in paragraph. To verify Yes/No answers,

MTurk verifiers need to read two short paragraphs containing the same phrase like Upwork

annotators to make decisions. We do not show answers to the MTurk verifiers to avoid biases.

2. Second, we continue hiring 5 Upwork verifiers who are writing experts to double-check those

instances rejected by MTurk verifiers from the previous round and only discard an example if

the Upwork verifiers agree with MTurk verifiers.

Round 1: Verification by MTurk non-experts

We use AMT platform to recruit more than 1,000 MTurk verifiers. Also, we use Gorrila

(gorilla.sc) to develop user interface to collect answers from participants because (1) Gorilla

provides easy-to-use tools to build graphical interface, (2) it is straightforward to monitor and

discard results from unqualified participants and (3) we can easily share the experiment with MTurk

verifiers via a link. Per 30 verified answers in around ∼20 minutes, the verification process costs us

$5.6 (AMT fees included) and 1 token to Gorilla to a single MTurk verifier.
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Participants are given detailed instructions along with 5 practice samples to get familiar with

the task (Fig. 6.34). They need to pass an evaluation checkpoint including 6 questions randomly

sampled from our verified question bank in order to start working with sets of 30 questions. With

this approach, all examples in the dataset are verified once and as a result, 22,496/30,042 queries

(∼74.88%) and 10,043/15,021 Yes/No answers (∼66.86%) accepted by MTurkers are considered

high quality since they are annotated by a writing expert and confirmed by a qualified English native

speaker. The remaining 7,546 queries and 4,978 Yes/No answers rejected that are passed to another

group of 5 writing experts for confirmation.

Round 2: Verification by Upwork experts

We hired another set of 5 writing experts from Upwork (Upwork verifiers) with an hourly rate

of $25-40/hour to verify 12,524 examples rejected by MTurk verifiers, i.e., at an average cost of

approximately $0.26 per example. See a sample assignment given to an Upwork expert in [121].

We rely on IAA to decide whether to accept or reject an example. Specifically, we use the

same question types as shown to MTurk verifiers in the previous step and see whether these Upwork

verifiers agree with the Upwork annotators to keep this example or with MTurk verifiers to reject it.

We find that the agreement between the first- and third-round annotators are 5,829 (out of 7,546)

paraphrases and 3,370 (out of 4,978) Yes/No answers in total and thus the total high-quality queries

and Yes/No answers we achieve are 28,325 and 13,413, respectively.
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(a) Detailed instructions given to MTurkers

(b) Upon completion of training stage, MTurkers need
to correctly answer the first 5 out of 6 questions to be
invited to verify annotations from Upwork experts.

(c) Verification of paraphrases via type-1 question. (d) Verification of Yes/No labels via type-2 question.

(e) Feedback is given when MTurkers give a wrong
answer. (f) or even a right answer.

Figure 6.34: Gorilla layouts shown to MTurkers to verify annotations in the first round.
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6.3.11 Data Sheet

We follow the documentation template provided by Gebru et al. 2021 [47].

Motivation

For what purpose was the dataset created? Understanding phrases in context plays a vital

role in solving many Natural Language Understanding (NLU) tasks such as question answering or

reading comprehension. While there are word-sense disambiguation datasets like WiC, no such

benchmarks exist for phrases. Existing phrase benchmarks compare only phrases without context

and some of them contain numerous phrase pairs that have lexical overlap. The major drawback

is no human annotation of how a phrase’s meaning changes w.r.t the context. This motivates us

to construct a Phrase-in-Context benchmark to drive the development of contextualized phrase

embeddings in NLU.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,

company, institution, organization)? Auburn University and Adobe Research.

Composition/collection process/preprocessing/cleaning/labeling and uses

We describe the data construction process, annotation and verification methods in our paper

(See Sec. 2.3.3 and Sec. 4.4).

Distribution

Will the dataset be distributed to third parties outside the entity (e.g., company, institution,

organization) on behalf of which the dataset was created? We release three datasets PS, PR

(including PR-pass and PR-page) and PSD to the public.
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How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The datasets are

released and can be viewed and downloaded on HuggingFace https://huggingface.co/PiC or

on our website https://phrase-in-context.github.io.

When will the dataset be distributed? It has been released in July 2022.

What is the dataset format and how it can be read? We use JSON - a widely used data format

for PiC dataset and follow a scheme of HuggingFace datasets to host it. Three datasets PS, PR and

PSD in the PiC dataset are loaded as folows:

from d a t a s e t s import l o a d _ d a t a s e t

ps = l o a d _ d a t a s e t ( " PiC / p h r a s e _ s i m i l a r i t y " )

p r _ p a s s = l o a d _ d a t a s e t ( " PiC / p h r a s e _ r e t r i e v a l " , "PR− p a s s " )

p r_page = l o a d _ d a t a s e t ( " PiC / p h r a s e _ r e t r i e v a l " , "PR−page " )

psd = l o a d _ d a t a s e t ( " PiC / p h r a s e _ s e n s e _ d i s a m b i g u a t i o n " )

Will the dataset be distributed under a copyright or other intellectual property (IP) license,

and/or under applicable terms of use (ToU)? Our dataset is distributed under the CC-BY-NC

4.0 license.

Maintenance

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Thang

Pham (thangpham@auburn.edu) and Anh Nguyen (anh.ng8@gmail.com) will be responsible for

maintenance.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-

stances)? Yes. If we include more tasks or find any errors, we will correct the dataset. It will be

updated on our website and also HuggingFace.
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If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for

them to do so? They can contact us via email for the contribution.

6.3.12 Evaluation with ChatGPT-4

ChatGPT is an artificial intelligence (AI) chatbot developed by OpenAI and released in

November 2022. It is built on top of OpenAI’s Gennerative Pre-trained Transformer 4 (i.e. GPT-4),

a member of GPT family in large language models (LLMs). Since GPT-4 achieves impressive

results and on many real-world tasks, we benchmark this model to see how it performs on our

proposed tasks.

Phrase Similarity (PS)

Since PS is the binary classification task, we prompt ChatGPT-4 in different ways to get Yes/No

answer as its prediction. Prompts and their accuracy are reported in Table 6.18.

Phrase Sense Disambiguation (PSD)

For PSD, since it is hard to prompt ChatGPT-4 for the span and its location, we turn the task

to be binary classification for the first prompt (Table 6.19) and ask the model to output both span

prediction and the passage number (i.e. 1 or 2) to measure the metrics EM, EM+loc, F1 and F1+loc.

Answers from ChatGPT-4

Question

Sentence 1: Portugal has a stable wolf population of 200–300, which is afforded full protection.

Sentence 2: Portugal has a stable wolf population of 200–300, which is afforded complete defense.

Is "full protection" in Sentence 1 semantically equivalent to "complete defense" in Sentence 2?

Answer: This is answer
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GPT-4 Response

Yes, "full protection" and "complete defense" are semantically equivalent in this context. Both

phrases indicate that the wolf population is given the highest level of protection or defense from

threats, such as hunting or habitat destruction.
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Table 6.18: Zeroshot accuracy (%) on PS using the state-of-the-art multimodal large language
model ChatGPT-4. ∆ (e.g. -24.80) denotes the differences between the Top-1 accuracy in the
contextualized (“Phrase + Context”) vs. the non-contextualized (“Phrase only”) setting.

Prompt Accuracy

(a) With context sentences (Phrase + Context)

Given two context sentences "<sentence1>" and "<sentence2>" containing two phrases 66.40
"<phrase1>" and "<phrase2>", respectively. Are the phrases semantically equivalent?
Please answer Yes or No along with an explanation.

Sentence 1: <sentence1> 74.70
Sentence 2: <sentence2>

Does "<phrase1>" in Sentence 1 have the same meaning as "<phrase2>" in Sentence 2?
Please answer Yes or No along with an explanation.

Sentence 1: <sentence1> 71.05
Sentence 2: <sentence2>

Does "<phrase1>" in Sentence 1 have a similar meaning as "<phrase2>" in Sentence 2?
Please answer Yes or No along with an explanation.

Sentence 1: <sentence1> 75.00
Sentence 2: <sentence2>

Is "<phrase1>" in Sentence 1 semantically equivalent to "<phrase2>" in Sentence 2?
Please answer Yes or No along with an explanation.

(b) Without context sentences (Phrase only)

Is "<phrase1>" in Sentence 1 semantically equivalent to "<phrase2>" in Sentence 2?
50.20

(-24.80)
Please answer Yes or No along with an explanation.
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Table 6.19: Zeroshot accuracy (%) on PSD using the state-of-the-art multimodal large language
model ChatGPT-4. ∆ (e.g. -24.80) denotes the differences between the Top-1 accuracy in the
contextualized (“Phrase + Context”) vs. the non-contextualized (“Phrase only”) setting.

Prompt
Passage 1: <passage1>
Passage 2: <passage2>

Question: Does "<query phrase>" have a similar meaning to "<target phrase>" in Passage 1
or Passage 2? Please answer 1 or 2 and then explain.

Accuracy: 70.68
Passage 1: <passage1>
Passage 2: <passage2>

Question: Output a phrase that has a similar meaning to "<query phrase>" along with 1
if that phrase is in Passage 1 or 2 if that phrase is in Passage 2 using the format
<phrase>:<number> and then explain.

EM: 64.97 F1: 82.54 EM+loc: 43.64 F1+loc: 56.70
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6.4 Supplementary Materials for PEEB (Chapter 5)

6.4.1 Architecture details

Image encoder and text encoder

We employ the image encoder and text encoder from OWL-ViT. In order to maintain a general

understanding of natural languages and avoid overfitting our training samples, we keep the text

encoder frozen for all training and experiments. This setup allows our design to be flexible about

the choice of text encoder, e.g., one can easily replace the text encoder without changing other

architecture.

Linear projection (for part embedding selection)

The image embedding will be forwarded to a Linear Projection layer (see detail implementa-

tion here), which is composed of a learnable logit scale, a learnable logit shift, and an Exponential

Linear Unit (ELU) activation function. These processed image embeddings then have the same

dimension as the text embeddings. For OWL-ViTB/32, the image embeddings are projected from

768 to 512. We select a single image embedding for each text query. In this context, the text queries

correspond to the component names of the target object, which includes twelve distinct parts. This

selection is based on the cosine similarity between the projected image embeddings and the text

embeddings. Finally, the chosen images embeddings (before projection) will be sent to the Part

MLP for classification and Box MLP for box prediction (Figure 6.35, Step 1).

Part MLP

We introduce Part MLP to enable part-based classification (see implementation detail here).

It comprises a three-layer MLP with GELU activations [62] . Part MLP takes in the selected part

embeddings (i.e. output of step 1 in Figure 6.35) and outputs a vector of size Rd for each part, where

d is the dimension of descriptor embeddings (for OWL-ViTB/32, the input dimension is 768, and
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d = 512). Part MLP is trained to map the selected part embeddings to the same dimensional space

with descriptor embeddings to compute final logits for classification.

Box MLP

The Box MLP retained from OWL-ViT consists of a three-layer MLP (see here for im-

plementation detail). It takes the visual embedding as input and generates a four-element vector

corresponding to the center coordinates and size of a bounding box (e.g., [x, y, width, height]).

It is important to note that the image embedding inputs of Box MLP and Part MLP layers are the

same, as shown in Figure 6.35, Step 2.

Visual part embedding selection

As shown in Figure 6.35 step 1, 1c, the image embeddings are first projected by a Linear

Projection layer and compute the dot product with the encoded part names. The image embeddings

(before Linear Projection) are chosen as visual part embeddings by selecting the embedding that

has the highest similarity scores with the corresponding part after the Linear Projection.
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Figure 6.35: During the test time using PEEB, we perform 2 steps.
Step 1: (a) Encode an input image and texts (i.e. 12 part names) by the image and text encoder to
get patch embeddings pi and text embeddings t′i. (b) Feed pi to Linear Projection to get p′i in the
same dimensional space with t′i and compute dot product between {p′i} and {t′i}. (c) argmax over
m embeddings to select 12 part embeddings.
Step 2: (a) Encode input texts (i.e. N sets of 12-part descriptors) with the same text encoder to get
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feed the selected part embeddings to Part MLP to get si in the same dimensional space with ti (d)
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logits to get predicted label ŷ.
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Descriptor embedding matching

To enhance the model’s flexibility, we do not use a linear layer for classification. Instead,

we adopt a strategy similar to CLIP: we compute the similarity matrix of the projected visual

embeddings (image embeddings after processing by the Part MLP) and the text embeddings. Then,

we sum the corresponding similarities of each part in the class; the class with the highest score is

considered the predicted class as shown in Figure 6.35, step 2, 2d. This design enables our proposed

method to perform arbitrary ways of classification.

Implementation details

Our experiments are conducted under PyTorch [111]. We employ HuggingFace’s [162]

implementation of OWL-ViT and use their pre-trained models. The DETR losses implementation

[17] is employed directly from their official implementation.

Training hyperparameters

We provide the hyperparameters of all models trained in this work. Table 6.20 shows the details

of the pre-training models. Table 6.21 presents the details of the finetuned models. All trainings

utilize optimizer AdamW with Plateau Scheduler.

Computational budget and infrastructures

We use 8 Nvidia RTX A100 GPUs for our experiments. The pertaining approximate takes ∼24

hours on Bird-11K. The finetuning takes 2 to 4 hours with one single GPU.

Pre-training and Finetuning objectives

As discussed in Section 5.4.3, we have three objectives during the Pre-training phase:
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1. Pre-training Stage 1: (Figure 6.36) During the pre-training stage one, we contrastively

pre-train the model to maximize the similarity between related part-descriptor pairs while

minimizing the unrelated pairs using symmetric cross-entropy (SCE) loss [126].

2. Pre-training Stage 2: (Figure 6.37) We try to remove the dependence on the OWL-ViTLarge

teacher model by training PEEB to mimic OWL-ViTLarge’s box predictions using the SCE

loss.

3. Pre-training Stage 2: (Figure 6.37) We simultaneously train PEEB to improve box prediction

with DERT losses [183].

During the Finetuning phase where we finetune on a downstream task (e.g. Dogs-120 or

CUB-200), we also employ the same three losses. However, we change the first loss from SCE into

CE since on the downstream classification task, the classifier is tasked with selecting one class that

matches the single input image from a set of classes.

Pre-training stage one: Symmetric cross-entropy loss for contrastive pre-training

We first define the embeddings derived from the image and text encoders:

I ′f = image_encoder(I) (6.1)

where I is the input image, and I ′f ∈ Rn×di is output image embeddings. Here, di is the feature

dimension of the image encoder. The text embedding Tf is given by

Tf = text_encoder(T ) (6.2)

where T represents the tesxt input, and Tf ∈ Rm×dt . In this case, dt is the feature dimension of the

text encoder. The image embedding I ′f is then transformed by Part MLP layer (Figure 6.35, 1b) to
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align its dimensions with the text embedding. This transformation is denoted as

If = Part MLP(I ′f) (6.3)

where If ∈ Rn×dt . The similarity matrix S between the image and text embeddings is computed as

the dot product of If and the transpose of Tf , expressed as

S = If ⋅ T ⊺f (6.4)

where S ∈ Rn×m. The image logits (Si) and text logits (St) are then defined as

Si = softmax(S, axis=0) (6.5)

and

St = softmax(S, axis=1) (6.6)

Next, we define the symmetric cross-entropy loss for the multi-modal embeddings.

Lsce = −
(∑i y

i
i log(Si

i) +∑m yti log(St
m)

2
(6.7)

where yi ∈ Rn is the label for image and yt ∈ Rm is the label for text.

Pre-training stage 2: Symmetric cross-entropy loss to mimic the teacher OWL-ViTLarge

detector

To mimic the object detection capability of the OWL-ViTLarge teacher, we train PEEB to mimic

the image-text similarity prediction between image embedding and textual part-name embeddings

(as shown in Figure 6.35, 1c). We first binary the teacher logits and consider it as the ground truth

label. Then, apply the same symmetric cross-entropy loss as described in Equation (6.7) with two
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minor differences: (1) The text input is part names rather than descriptions. (2) The Part MLP is

replaced by Linear Projection (Figure 6.35, 2c).

Pre-training stage 2: DETR losses to mimic the teacher OWL-ViTLarge detector

DETR losses are designed to optimize the box detection performance. We employ partial

losses in our training for box predictions. Specifically, we employ ℓ1 corner-to-corner distance loss

and GIoU loss. For the selected embeddings, we predict the boxes with Box MLP (Figure 6.35, 2b)

B = Box MLP(I ′f) (6.8)

where I ′f is the image selected image embeddings from Equation (6.1), B ∈ Rn×4 is the predicted

bounding boxes. Let Y GT ∈ Rn×4 be the ground truth boxes. The ℓ1 corner-to-corner distance loss

is defined as

Lℓ1 =∑
i

∥Y GT
i −Bi∥ (6.9)

The GIoU loss LGIoU is defined in Section 6.4.1, and the total box loss is defined as

LBox =
Lℓ1 +LGIoU

2
(6.10)

Algorithm 1 Generalized Intersection over Union
Require: Two arbitrary convex shapes: A,B ⊆ S ∈ Rn

Ensure: GIoU
1: For A and B, find the smallest enclosing convex object C, where C ⊆ S ∈ Rn

2: IoU = ∣A∩B∣∣A∪B∣

3: GIoU = IoU − ∣C/(A∪B)∣∣C∣
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Figure 6.36: In pre-training stage 1, the objective is to let the Image Encoder learn the general
representation of different parts of the birds. Therefore, in pre-training stage 1, we train the Image
Encoder and Part MLP contrastively. During the training, the Step 1 utilizes a teacher model
(OWL-ViTB/32) to help PEEB select 12 part embeddings. In Step 2, we update the model with
symmetric Cross-Entropy loss. Here’s the flow of Step 1: (1a) We utilize the teacher model to
encode 12 part names and the image to derive the text embedding t′i, and the patch embedding
pi. (1b) Then the patch embeddings p is forwarded to Linear Projection to obtain p′, matching
the dimension of t′. (1c) We compute the dot product between p and t′ and apply argmax over p
to derive 12 indices. In Step 2: (2a), We first encode the descriptors and the image with the Text
Encoder and Image Encoder to obtain descriptor embeddings t and patch embeddings q. (2b), Then
we select the 12 patch embeddings based on the 12 indices from (1c). (2c), The 12 patch embeddings
then forwarded to Part MLP to derive s, which has the same dimension as t. Then, we compute
the similarity matrix for the patch embedding and the descriptor embedding by computing the dot
product between s and t. (2d), we construct a one-hot encoded matrix based on the descriptors
as the ground truth label and minimize the Symmetric Cross-Entropy loss between the similarity
matrix in (2c) and the ground truth label.
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Figure 6.37: In pre-training stage 2, the goal is to eliminate the teacher model to obtain a standalone
classifier. Therefore, the targeted components are Linear Projection and Box MLP. Since these
two components are taking care of different functionalities for patch embedding selection and
box prediction, respectively, stage 2 training is a multi-objective training. We employ Symmetric
Cross-Entropy loss to learn the patch embedding selection and DETR losses to refine the box
predictions. In Step 1: (1a), We first encode the 12 part names and the image with Text Encoder
and Image Encoder to obtain the text embedding t′i and patch embedding pi. (1b) Then the patch
embeddings p is projected by Linear Projection to obtain p′. (1c) We then compute dot product
between p′ and t′ and one-hot encode the matrix via the dimension of p′ to obtain the “teacher
logits”. In Step 2: (2a), We encoder the image with Image Encoder to obtain patch embedding qi.
(2b) The patch embeddings are then being projected by Linear Projection to derive q′. (2c), We
compute the dot product between projected patch embeddings q′ and part name embeddings t′ to
obtain the similarity matrix. Then, we employ Symmetric Cross-Entropy loss between the similarity
matrix and the “teacher logits” derived in (1c). (2d), Meanwhile, we select the 12 part embeddings
by taking argmax over q′. Then, the selected part embeddings are forwarded to Box MLP to predict
the coordinates of each part. We compute the DETR losses for the predicted coordinates and update
the model.
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Table 6.20: Pre-training details of our pre-trained models.

Model Epoch Batch size LR Weight decay # in-batch classes Early stop Training set

Train Val Train Val

Pre-training stage 1

PEEB[−test] 32 32 50 2e−4 0.01 48 50 5 Bird-11K[−test]

PEEB[−CUB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−CUB]

PEEB[−NAB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−NAB]

Pre-training stage 2

PEEB[−test] 32 32 50 2e−5 0.01 48 50 5 Bird-11K[−test]

PEEB[−CUB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−CUB]

PEEB[−NAB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−NAB]

Table 6.21: Details of our finetuned models.

Model Fine-tune from Epoch Batch size LR Weight decay Early stop Training set

PEEBCUB
[−test] PEEB[−test] 30 32 2e−5 0.001 5 CUB

PEEBAkata
[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB ZSL [3]

PEEBSCS
[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCS

PEEBSCE
[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCE

PEEBSCS
[−nab] PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCS

PEEBSCE
[−nab] PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCE
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6.4.2 Model and dataset notations

Dataset notations

Following the conventional setup of ZSL, we execute certain exclusions to make sure none

of the test classes or descriptors are exposed during pre-training. That is, Bird-11K[−CUB] and

Bird-11K[−NAB] exclude all CUB and NABirds classes, respectively. For GZSL, we exclude all test

sets in CUB, NABirds, and iNaturalist, denoted as Bird-11K[−test]. We provide detailed statistics for

the three pre-training sets in Table 6.22.

Table 6.22: Three pre-training splits for PEEB.

Training set Number of images Number of classes

Train Val Train Val

Bird-11K[−test] 234,693 29,234 10,740 9,746

Bird-11K[−CUB] 244,182 28,824 10,602 9,608

Bird-11K[−NAB] 216,588 27,996 10,326 9,332

Model notations

We adopt a strategy based on the datasets excluded during training to simplify our model

naming convention. Specifically:

• PEEB[−test] is pre-trained model using Bird-11K[−test] datset.

• PEEB[−CUB] is pre-trained model using the Bird-11K[−CUB] dataset.

• PEEB[−NAB] is pre-trained model using the Bird-11K[−NAB] dataset.

We named finetuned models after the pre-trained model and the finetuned training set. For example,

PEEBCUB
[−test] is finetuned from PEEB[−test], on CUB training set.

6.4.3 Generating part-based descriptors

CUB annotations initially comprise 15 bird parts. However, distinctions between the left and

right part are not essential to our method, we merge them into a single part (i.e., “left-wing” and

136



“right-wing” are merged into “wings”) Hence, we distilled the original setup into 12 definitive parts:

back, beak, belly, breast, crown, forehead, eyes, legs, wings, nape, tail, throat. To compile visual

part-based descriptors for all bird species within Bird-11K, we prompted GPT-4 [107] with the

following input template:

A bird has 12 parts: back, beak, belly, breast, crown, forehead, eyes, legs, wings,

nape, tail and throat. Visually describe all parts of {class name} bird in a short

phrase in bullet points using the format ‘part: short phrase’

Where {class name} is substituted for a given bird name (e.g., Painted Bunting).

The output is a set of twelve descriptors corresponding to twelve parts of the query species.

e.g. The response for Cardinal is:

Cardinal: {

back: vibrant red feathers ,

beak: stout , conical , and orange ,

belly: light red to grayish -white ,

breast: bright red plumage ,

crown: distinctive red crest ,

forehead: vibrant red feathers ,

eyes: small , black , and alert ,

legs: slender , grayish -brown ,

wings: red with black and white accents ,

nape: red feather transition to grayish -white ,

tail: long , red , and wedge -shaped ,

throat: bright red with sharp delineation from white belly

}
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6.4.4 Datasets

Bird-11K

We provide a brief statistic of Bird-11K in Table 6.23. Bird-11K is a diverse and long-tailed

bird-image dataset. The descriptors generated by GPT-4 are in English and only describe the visual

features of the corresponding class. We propose Bird-11K for academic research only.

Table 6.23: Number of images and species of different bird datasets. Our proposed dataset Bird-11K
includes almost all avians on Earth.

Dataset # of Images # of Species

CUB-200-2011 [154] 12,000 200
Indian Birds [151] 37,000 25
NABirds v1 [152] 48,000 400
Birdsnap v7 [10] 49,829 500
iNaturalist 2021-birds [153] 74,300 1,320
ImageNet-birds [28] 76,700 59
BIRDS 525 [123] 89,885 525
Macaulay Library at the Cornell Lab of Ornithology 55,283 10,534

Bird-11K (Raw Data) 440,934 11,097
Bird-11K (pre-training set) 294,528 10,811

Data splits We provide data splits and metadata, e.g., file names, image size, and bounding boxes,

along with the instruction of Bird-11K construction in our repository. Note that the Bird-11K dataset

is for pre-training purposes; it is important to execute exclusion based on the test set.

License and terms

• CUB [154]: The dataset can be freely used for academic and research purposes; commercial

use is restricted.

• Indian Birds [151]: CC0: Public Domain.
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• NABirds-v1 [152]: For non-commercial research purposes, other use is restricted 4 here for

detail: .

• Birdsnap-v7 [10]: The dataset creator provides no specific license or terms of use. We only

use this dataset for academic research until more specific details can be obtained.

• iNaturalist 2021-birds [153]: CC0: Public Domain. We use the train_mini subset on Github,

which has 1,486 classes. After filtering out images (as described in Section 5.3.2), we end up

with 1,320 classes and 74,300 images for including in Bird-11K.

• ImageNet-birds [28]: BSD-3-Clause license.

• BIRDS 525 [123]: CC0: Public Domain

• Cornell eBird: We used the following 55,384 recordings from the Macaulay Library at the

Cornell Lab of Ornithology. The data is for academic and research purposes only, not publicly

accessible unless requested. (Please refer to our Supplementary Material for the full list):
ML187387391, ML187387411, ML187387421, ML187387431, ML262407521, ML262407481, ML262407531, ML262407491, ML262407511, ML257194111 ML257194071,

ML257194081, ML257194061, ML495670791, ML495670781, ML495670801, ML495670771, ML183436431, ML183436451, ML183436441 ML183436411, ML183436421,

ML256545901, ML256545891, ML256545841, ML256545851, ML256545831, ML169637941, ML238083081, ML169637881 ML169637911, ML238083111, ML238083051,

ML169637971, ML299670841, ML64989231, ML299670831, ML64989241, ML299670791, ML64989251 ML246866001, ML246865941, ML246866011, ML246865961, ML246865971,

ML333411961, ML240835531, ML240835541, ML240835701, ML240835591 ML245260391, ML245260341, ML245260371, ML245260411, ML245260421, ML245260431,

ML245260441, ML240866351, ML240866331, ML240866321 ML240866341, ML240866371, ML248318661, ML248318571, ML248318591, ML248318581, ML248318631,

ML245204281, ML245204311, ML245204371 ML245204381, ML245204291, ML245603571, ML245603521, ML245603511, ML245603491, ML245603501, ML245603601,

ML245257771, ML245257651 ML245257631, ML245257661, ML245257761, ML247221051, ML247221061, ML247221071, ML247221081, ML240365811, ML240365751,

ML240365781 ML240365761, ML300579541, ML247298551, ML247298541, ML247298561, ML247298611, ML247298571, ML247298591, ML247298601, ML247298631...

Dog-140

To pre-train PEEB on dogs, we construct Dog-140 by combining dog images from ImageNet-

21K and Stanford Dogs-120. Specifically, we selected 189 dog classes from ImageNet-21K, and

based on Fédération Cynologique Internationale (FCI) [44], we merged them with 120 classes from

Stanford Dogs, ending up with 140 classes. After merging, Dog-140 has 206,076 images in total.

We provide a class distribution analysis in Figure 6.38, where we can find that Dog-140 is roughly

class-balanced.
4See Terms of Use
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Figure 6.38: The class distribution of Dog-140 dataset. The histogram indicates that most classes in
Dog-140 have around 1,000 to 2,000 images.

Data splits Similar to Bird-11K, we provide data splits and metadata, e.g., file names, image size,

and bounding boxes, along with the instruction of Dog-140 construction in our repository.

License and terms

• Stanford Dogs [75]: The dataset was constructed using images and annotations from ImageNet.

Therefore, all the images (including those presented in the paper) follow the ImageNet license.

• ImageNet-21K [28]: BSD-3-Clause license, non-commercial.

6.4.5 Additional results

PEEB outperforms M&V in CUB and NABirds in ZSL setting

To rigorously evaluate the ZSL capabilities of our pre-trained models, we introduce a stress

test on the CUB and NABirds datasets. The crux of this test involves excluding all classes from
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the target dataset (CUB or NABirds) during the pre-training. The exclusion ensures that the model

has no prior exposure to these classes. Subsequently, we measure the classification accuracy on the

target dataset, comparing our results against benchmarks set by CLIP and M&V in the scientific

name test. In this experiment, we consider the scientific name test a ZSL test for CLIP and use them

as the baseline because the frequencies of scientific names are much lower than common ones.

Experiment To conduct this test, we pre-train our model on Bird-11K[−CUB] and Bird-11K[−NAB],

which deliberately exclude images bearing the same class label as the target dataset. Specifically, we

test on our pre-train model PEEB[−CUB] and PEEB[−NAB] (see Table 6.20 for details), respectively.

Results The primary objective is to ascertain the superiority of our pre-trained model, PEEB,

against benchmarks like CLIP and M&V. For CUB, our method reported a classification accuracy

of 17.9%, contrasting the 5.95% and 7.66% achieved by CLIP and M&V, respectively, as shown

in Table 6.24. The PEEB score, which is substantially higher (+10) than M&V, highlights the

advantages of our part-based classification. On NABirds, our method surpasses CLIP and M&V by

+1 point. The performance disparity between CUB and NABirds can be attributed to two factors: The

elevated complexity of the task (555-way classification for NABirds versus 200-way for CUB) and

the marked reduction in training data. An auxiliary observation, detailed in Section 6.4.5, indicates

that our pre-trained model necessitates at least 250k images to achieve admirable classification

accuracy on CUB, but we only have 210k images training images in Bird-11K[−NAB] (the variants

of Bird-11K with classes excluded for ZSL testing are described in Table 6.22).

Table 6.24: Stress test results on CUB and NABirds datasets. Despite the ZSL challenge, our
method consistently surpasses CLIP and M&V. This underscores the robust generalization of our
approach, which leverages descriptors for classification.

Method CLIP M&V PEEB (ours)

CUB 5.95 7.66 17.90

NABirds 4.73 6.27 7.47
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Performance measurement on different noisy levels

In our evaluations, as indicated in Table 5.2, we discerned a marked performance disparity

between the iNaturalist dataset and others. Probing this further, we identified image noise as a

principal contributor to these discrepancies.

Experiment A qualitative assessment of the iNaturalist test images revealed a significantly higher

noise level than CUB or NABirds. To systematically study this, we utilize the object detector

OWL-ViTLarge to measure the size of the bird within the images. We formulated two filtered test

sets based on the detector’s output, categorizing them by the bird’s size, specifically, the detected

bounding box. Images were filtered out if the bird’s size did not exceed predetermined thresholds

(areas of 1002 or 2002 pixels). Larger birds naturally reduced other content by occupying more

image space, thus serving as a proxy for reduced noise. All three test sets, including the original,

were evaluated using our pre-trained model PEEB[−test].

Results The results presented in Table 6.25 reveal a clear trend: as the image noise level decreases,

the classification accuracy consistently improves, with gains ranging from (+6 to +17) points across

the various methods. Notably, cleaner images consistently yield better results. At each noise level,

our method outperforms the alternatives. While our method exhibits an impressive (+17 points)

accuracy boost on the cleanest test set, this substantial gain also indicates that our model is sensitive

to image noise.

Table 6.25: The table showcases the classification accuracies on iNaturalist as we vary the noise
levels. The data underscores that the performance disparity on iNaturalist is predominantly due
to image noise. While all methods improve with cleaner images, our model exhibits the most
substantial gains, particularly in the least noisy sets.

Splits CLIP M&V PEEB (ours)

Original 16.36 17.57 25.74

> 1002 pixels 20.18 21.66 35.32

> 2002 pixels 22.88 24.90 42.55
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Number of training images is the most critical factor towards classification accuracy

Bird-11K, as shown in Figure 6.39a, is a highly imbalanced dataset characterized by a large

amount of long-tailed classes. We conduct a comprehensive study to discern how variations in

the number of classes and images affect the classification accuracy of our pre-trained models.

Predictably, the volume of training images occurred as the most influential factor. However, a

noteworthy observation was that the abundance of long-tailed data enhanced the model’s accuracy

by approximately +1.5 points.

Experiment We curated eight training sets based on varying class counts: 200, 500, 1,000, 2,000,

4,000, 6,000, 8,000, and 10,740. For each set, we maximized the number of training images. It is

important to note that a set with a lesser class count is inherently a subset of one with a higher count.

For instance, the 500-class set is a subset of the 2,000-class set. For each split, we apply the same

training strategy as in Section 5.4.3, and choose the checkpoint with the best validation accuracy.

We consider the CUB test set as a generic testing benchmark for all variants.

Results As illustrated in Figure Figure 6.39b, there is a pronounced correlation between the

increase in the number of images and the corresponding surge in accuracy. For instance, an

increment from 106K to 164K images led to a rise in classification accuracy from 30.05% to

43.11%. The accuracy appears to stabilize around 60% when the image count approaches 250K.

This trend strongly suggests that the volume of training images is the most critical factor for the

pre-trained model. We believe that the accuracy of the pre-trained model could be further enhanced

if enough data is provided. Interestingly, a substantial amount of long-tailed data bolsters the

model’s performance, evident from +1.5 points accuracy improvement when comparing models

trained on 2,000 classes to those on 10,740 classes. Note that the additional classes in the latter set

averaged merely 2.2 images per class.
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(a) The Cumulative Distribution Function (CDF) plot for the Bird-11K
dataset.
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Figure 6.39: The CDF plot (a), underscores significant imbalance of the Bird-11K dataset. While the
dataset has abundant long-tailed classes, e.g., a striking 80% of the classes contribute to only 13.46%
of the entire image count. The plot (b) showcases the correlation between the number of training
figures/peeb/classes and the resulting classification accuracy. As the image count grows, there is a
noticeable surge in accuracy, which nearly stabilizes upon surpassing 250K images. Additionally, a
significant amount of long-tailed data contributes to a +1.5 points boost in accuracy.

Ablation study on the influence of parts utilized

In this ablation study, we aimed to measure the impact of varying the number of distinct “parts”

(back, beak, belly, breast, crown, forehead, eyes, legs, wings, nape, tail, and throat) used in our
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model. We experiment with a range from a single part to all 12 identifiable parts. Interestingly, even

with a solitary part, the model could make correct predictions, though there was an evident decline

in performance, approximately -20 points.

Experiment Our testing ground is the pre-trained model PEEB[−test], evaluated against the CUB

test set. We assessed the model’s prowess utilizing various subsets of parts: 1, 3, 5, 8, and all 12.

These subsets were derived based on the frequency of visibility of the parts within the CUB dataset,

enabling us to compare the model’s performance when relying on the most frequently visible parts

versus the least. For comparison, we also conduct a similar experiment on M&V, where we only

use 1, 3, 5, 8, and 12 descriptors (if possible).

Results Relying solely on the most frequent part led to a decline in classification accuracy by

around -20 points, registering at 45.44% (Table 6.26). In contrast, utilizing the least frequent part

resulted in a sharper drop of around -27, with an accuracy of 37.02%. As the model was furnished

with increasing parts, its accuracy improved incrementally. The data underscores that optimal

performance, an accuracy of 64.33%, is attained when all 12 parts are included. For M&V, the

accuracy keeps increasing homogeneously from 5 to 12 descriptors, hinting that accuracy may

increase further by increasing the number of descriptors.

Table 6.26: Classification accuracy on the CUB test set that uses a different number of parts.
Performance dips significantly with just one part, especially for the least visible ones. Maximum
accuracy is reached with all 12 parts. The last row of the table also shows the accuracy of [95]
method which employs a different number of parts. It is evident that their method is insensitive to
the number of parts used, which may not reflect a realistic scenario.

Number of Parts (descriptors) 1 3 5 8 12

Accuracy (most frequent parts) 45.44 56.48 59.89 61.32 64.33

Accuracy (least frequent parts) 37.02 55.51 60.04 61.13 64.33

Accuracy of [95] 51.93 52.87 52.83 53.33 53.92
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Training is essential for PEEB’s classification efficacy

In this ablation study, we highlight the pivotal role of training in the performance of PEEB on

bird classification tasks. We demonstrate that without adequate tuning, the results are indistinguish-

able from random chance.

Experiment We conduct the experiment based on OWL-ViTB/32. We retain all components as

illustrated in Figure 6.35, with one exception: we substitute the Part MLP with the MLP layer

present in the box prediction head of OWL-ViT because the proposed layers require training. The

MLP layers in the box prediction head project the part embeddings to match the dimensionality of

the text embeddings. Our focus is on assessing the classification accuracy of the untuned PEEB on

two datasets: CUB and NABirds.

Results Table 6.27 reveals the outcomes of our experiment. Without training, PEEB yields

classification accuracies of 0.55% for CUB and 0.31% for NABirds, both of which are proximate

to random chance (0.5% for CUB and 0.1% for NABirds). However, with training, the model’s

performance dramatically transforms: 64.33% for CUB (an increase of +63.78 points) and 69.03%

for NABirds (a leap of +68.72 points) for PEEB[−test]. These pronounced disparities underscore the

vital role of training in PEEB.

Table 6.27: Impact of Training on Classification Accuracies: Untuned PEEB yields 0.55% on CUB
and 0.31% on NABirds, almost mirroring random chance. With training (PEEB[−test]), accuracy
surges by +63.78 points on CUB and +68.72 points on NABirds.

CUB NABirds

PEEB (no training) 0.55 0.31

PEEB[−test] pre-trained 64.33 69.03

PEEBCUB
[−test] finetuned 86.73 -
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Failure analysis

Since PEEB has two branches, box detection, and descriptor matching, we would like to find

out, in the failure case, what is the main cause. i.e., is it because of the mismatch in the descriptor

to the part embeddings? Or is it because the box detection is wrong? From our ablation study, it

turns out that most errors come from the descriptor-part matching.

Experiment We conduct the experiment with PEEB[−test] on CUB test set. Specifically, we

measure the box detection accuracy based on the key point annotation in CUB dataset, i.e., We

consider the box prediction as correct if the prediction includes the human-annotated key point. We

report the box prediction error rate (in %) based on parts.

Results As shown in Table 6.28, the average error rate difference between success and failure cases

is merely 0.38. That is, in terms of box prediction, the accuracy is almost the same, disregarding the

correctness of bird identification. It indicates that the prediction error is predominantly due to the

mismatch between descriptors and part embeddings. We also noted that some parts, like Nape and

Throat, have a very high average error rate, which may greatly increase the matching difficulties

between descriptors and part embeddings.

Table 6.28: Error rate of Box Prediction in Failure and Success Cases. We report the box prediction
error rate, depending on whether the prediction box includes ground truth key points. No major
difference is found between them, which means the failure is largely due to the part-descriptor
mismatch.

Body Part Average Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat

Failure Cases 16.52 23.38 3.28 8.06 15.96 7.41 24.72 7.29 5.63 3.36 64.79 7.25 27.07
Success Cases 16.14 23.03 2.96 7.44 18.64 7.13 21.53 3.93 6.85 2.68 68.66 6.40 24.38
Difference 0.38 0.35 0.33 0.62 -2.68 0.28 3.19 3.36 -1.22 0.68 -3.87 0.85 2.68

Evaluation of predicted boxes from PEEB

Our proposed method primarily aims to facilitate part-based classification. While the core

objective is not object detection, retaining the box prediction component is paramount for ensuring
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model explainability. This section delves into an evaluation of the box prediction performance of

our method against the OWL-ViTB/32 model.

Experiment Given our focus on part-based classification, we aimed to ascertain the quality of our

model’s box predictions. To this end, we employed two metrics: mean Intersection over Union (IoU)

and precision based on key points. We opted for mean IoU over the conventional mAP because: (1)

Ground-truth boxes for bird parts are absent, and (2) our model is constrained to predict a single

box per part, ensuring a recall of one. Thus, we treat OWL-ViTLarge’s boxes as the ground truth

and evaluate the box overlap through mean IoU. Furthermore, leveraging human-annotated key

points for bird parts, we measure the precision of predicted boxes by determining if they contain the

corresponding key points. We evaluate our finetuned models on their corresponding test sets. For

instance, PEEBAkata
[−cub], finetuned based on the CUB split [3], is evaluated on the CUB test set.

Results Our evaluation, as presented in Table 6.29, shows that PEEB’s box predictions do not

match those of OWL-ViTB/32. Specifically, on average, there is a -5 to -10 points reduction in mean

IoU for CUB and NABirds datasets, respectively. The disparity is less distinct when examining

precision based on human-annotated key points; our method records about -0.14 points lower

precision for CUB and -3.17 points for NABirds compared to those for OWL-ViTB/32. These

observations reinforce that while PEEB’s box predictions might not rival these dedicated object

detection models, they consistently highlight the same parts identified by such models as shown

in Figure 6.40. It is important to note that our approach utilized the same visual embeddings for

both classification and box prediction tasks. This alignment emphasizes the part-based nature of our

model’s predictions.
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Table 6.29: Model evaluation on CUB and NABirds test sets. We evaluate the predicted boxes on
two ground-truth sets; (1) predicted boxes from OWL-ViTLarge as ground-truths, and (2) OWL-
ViTLarge’s boxes that include the human-annotated key points. Our method has slightly lower
performance in terms of mean IoU but comparable precision.

Models
Mean IoU

(1) All (2) w/ Keypoints Precision

CUB OWL-ViTLarge 100.00 100.00 83.83
OWL-ViTB/32 44.41 49.65 83.53
PEEB (Average) 35.98 40.14 83.39

PEEBCUB
[−test] 37.45 41.79 81.55

PEEBAkata
[−cub] 35.11 39.14 82.72

PEEBSCS
[−cub] 35.77 39.96 84.89

PEEBSCE
[−cub] 35.58 39.67 84.38

NABirds OWL-ViTLarge 100.00 100.00 85.01
OWL-ViTB/32 40.14 47.63 83.89
PEEB (Average) 36.47 42.01 80.72

PEEBSCS
[−nab] 36.45 42.03 80.09

PEEBSCE
[−nab] 36.49 41.99 81.34
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6.4.6 Study on GPT-4 generated descriptors

Assessment of the generated part-based descriptors

We test GPT-4V on the CUB test set using the generated descriptors of 200 classes to assess

their usability. Specifically, we feed GPT-4V with each test image encoded in the payload and 200

sets of part-based descriptors through a carefully designed prompt (Table 6.30). GPT-4V is asked to

output one of 200 provided class names to compute the classification accuracy. As a result, GPT-4V

achieves 69.4% accuracy which is slightly higher than PEEB’s generalized zero-shot accuracy

(64.33%) and significantly lower than PEEB results after finetuning (86-88%).

Table 6.30: Prompt for GPT-4V evaluation on CUB where {list_of_200_classes} is the placeholder
for the actual 200 CUB classes while {descriptors} (see an example in Section 6.4.3) is the
placeholder for the actual descriptors associated with a given bird image from the CUB test set.

You are an image classifier which can tell what type of a bird is from the given image and its associated
part descriptors describing 12 parts of the bird. Your answer should be strictly formatted as {"prediction":
"bird_class"}.

where "bird_class" is one of the following 200 bird classes: {list_of_200_classes}

Given the bird image and the following descriptors: {descriptors}

What kind of bird is this? Let’s think step by step.

Noise measurement in GPT-4 generated descriptors

In this section, we conduct an empirical analysis to quantify the noise in descriptors generated

by GPT-4 for 20 different classes within the CUB dataset. To achieve this, we manually inspect each

descriptor and tally the instances where at least one factual error is present. Our findings reveal that

every one of the 20 classes contains descriptors with errors, and on average, 45% of the descriptors

necessitate corrections. This substantial noise level underscores the need for further refinement in

our work, particularly in text descriptors.
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We observe a notably high error rate in descriptors on the back and wings, with approximately

60% of these containing inaccurate information (refer to Table 6.31). This could be attributed to the

challenges in distinguishing between the back and wings, given that the back is typically positioned

behind the wings, yet exhibits considerable variability in size and shape. Addressing all descriptor

issues by revising all 11,000 fine-grained descriptors would demand a significant investment of time

and resources, which is beyond the scope of the current work. As such, we identify this as an area

for future research and development, aiming to enhance the quality of the Bird-11K dataset.

Table 6.31: Summary of manual inspection results for 20 classes, highlighting the need for revision
in GPT-4 generated descriptors. An average error rate of 45% indicates substantial room for
improvement.

Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat Average

Error Rate 60 30 50 40 50 55 50 20 60 50 35 40 45

Revising descriptors improves classification accuracy

As mentioned in the limitation section, the descriptors are generated from GPT-4 and therefore

noisy and incorrect. Given that PEEB accepts open vocabulary inputs for classification, a natural

way to improve classification accuracy is to improve the correctness of the descriptors.

Experiment We first collect descriptors of 183 CUB classes from AllAboutBirds. We then

prompt GPT-4 to revise our original descriptors by providing the collected descriptor. We revise the

descriptors with the following prompt:

Given the following descriptors of {class name}: {AllAboutBirds descriptors}. Can

you revise the incorrect items below (if any) of this bird, return them as a Python

dictionary, and use the key as the part name for each item? If a partś descriptor

is not specifically described or cannot be inferred from the definition, use your

own knowledge. Otherwise, leave as is. Note: please use a double quotation mark for

each item such that it works with JSON format.

{Original descriptors}
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Where {class name} the placeholder for the class name, {AllAboutBirds descriptors} is the de-

scription collected from AllAboutBirds, {Original descriptors} is the descriptors we used for

training.

Due to the errors in the descriptors we used to train PEEB, simply replacing the descriptors

with their revised version does not lead to better performance. Because the incorrect descriptors in

training change the meaning of some of the phrases. For example, the belly of Blue bunting is

pure blue, but the descriptors from GPT-4 is soft, creamy white. In addition, the GPT-4 uses the

exact same descriptor in the belly for other classes, e.g., Blue breasted quail, which should be

cinnamon. Blue Fronted Flycatcher, which should be yellow. Training the same descriptors

with different colors confuses the model, and the model will convey the phrase “creamy white”

with a different meaning to humans. Therefore, simply changing the descriptors to their’ revised

version will not work. We empirically inspect the descriptors that PEEB can correctly respond to

and replace the class descriptors with the revised version. Specifically, we replace the descriptors of

17 classes in CUB and test the classification accuracy on PEEB[−test].

Results As shown in Table 6.32, the overall accuracy increases by +0.8 points.

The average improvement of the revised class is around +10.8, hitting that if we have correct

descriptors of all classes, we may significantly improve the classification accuracy of the pre-trained

model. However, correcting all 11k class descriptors is too expensive and out of the scope of this

work. We leave it as a further direction of improving the part-based bird classification.

Table 6.32: The revised descriptors result in +0.8 for PEEB[−test] in CUB. In particular, the average
improvement among the 17 revised classes is +10.8, hinting at the large potential of our proposed
model.

Descriptors Original Partially Revised Avg. Improvement

PEEB[−test] 64.33 65.14 10.80
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6.4.7 Qualitative Inspections

Visual comparison of predicted boxes

We provide a visual comparison of the box prediction from OWL-ViTLarge, OWL-ViTB/32, and

PEEB in Figure 6.40. We find that despite the fact that our predicted boxes have lower mean IoU

compared to OWL-ViTLarge, they are visually similar to the boxes as OWL-ViTB/32.

Qualitative examples of using randomized descriptors

We visually compare M&V and PEEB based on their utilization of descriptors. (Figures 6.41

and 6.42). Specifically, we randomly swap the descriptors of the classes and then use these

randomized descriptors as textual inputs to the tested models to see how they perform. We observe

that the scores from M&V tend to cluster closely together. Surprisingly, M&V’s prediction remains

unchanged despite the inaccurate descriptors. In contrast, PEEB, when presented with randomized

descriptors, attempts to identify the best match grounded on the given descriptors.

Examples of PEEB explanations for birds

Figures 6.43 to 6.45 are examples of how PEEB makes classification based on the descriptors

and how it can reject the predictions made by M&V. Since we aggregate all descriptors for the final

decision, even if some of them are similar in two classes, our method can still differentiate them

from other descriptors. For instance, in Figure 6.43, while other descriptors are similar, PEEB can

still reject chesnut-sided warbler thanks to the distinct features of forehead, throat and belly.

Examples of PEEB explanations for dogs

Figures 6.46 to 6.48 are examples of how PEEB makes classification based on the descriptors

in Stanford Dogs dataset. We demonstrate that our model works well on dogs, which indicates that

our proposed method is transferable to other domains while maintaining high-quality explainability

as in birds.
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Original PEEB OWL-ViTB/32 OWL-ViTLarge

Figure 6.40: Our predicted boxes (second column) often align closely with those of OWL-ViTB/32
(third column). However, slight shifts can lead to significant IoU discrepancies. For instance, in the
first row, both PEEB and OWL-ViTB/32 accurately identify the tail. Yet, variations in focus yield a
stark IoU contrast of 0.45 versus 0.81.
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Original Descriptor Random nonsense Descriptor

M
&

V
PE

E
B

cerulean warbler
0.344

0.350

0.346

0.350

0.344

0.351

0.347

Small bird

Distinctive blue color on the upper parts and white
underneath

Thin, pointed beak

Black streaks on the back and flank

Black line through the eyes

Males are brighter blue than females

Often found in trees or shrubs

cerulean warbler | 0.006

0.347

0.347

0.343

0.347

0.351

0.351

long, curved beak

brownish-tan feathers

relatively large size for a shorebird

long legs

a small head in relation to its body

typically found in open grasslands or wetlands.

cerulean warbler | 0.006

 
0.875
0.864
0.865
0.874
0.876
0.843
0.849
0.872
0.838
0.853
0.875
0.866

crown: bright cerulean blue
forehead: blue and unmarked
nape: blue, similar to the crown
eyes: black, round and tiny
beak: small, pointed, and black
throat: clean white contrasting with blue upperparts
breast: blue-gray with dark streaks
belly: white and unmarked
back: deep blue with streaks of black
wings: cerulean blue with black edging
legs: dark gray and slender
tail: blue-black with white edges

cerulean warbler | 0.688
0.310
0.252
0.529
0.810
0.657
0.486
0.557
0.339
0.368
0.665
0.561
0.452

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

least tern | 0.041

Figure 6.41: Qualitative example of original descriptors vs. randomized descriptors. Upon swapping
descriptors randomly, the prediction outcomes from M&V exhibit minimal variations.

Original descriptor Random nonsense descriptor

M
&

V
PE

E
B

indigo bunting
0.374

0.372

0.373

0.366

0.371

0.354

Bright blue plumage (in males)

Small, finch-like body

Short, conical beak

Brownish wings and tail (in females and juveniles)

A habitat setting such as open areas with shrubs or trees,
or forest edges

Often seen near bird feeders.

indigo bunting | 0.006
0.378

0.374

0.374

0.368

0.370

0.366

0.376

0.378

medium-sized wading bird

slate-blue plumage

long, slender neck

long, dark legs

sharp, pointed beak

white morph with completely white plumage
often found near bodies of water, such as wetlands or
marshes
may be seen standing or walking slowly while hunting for
prey

indigo bunting | 0.006

 
0.357
0.753
0.748
0.452
0.813
0.676
0.612
0.530
0.568
0.684
0.375
0.492

crown: bold, indigo-blue crest
forehead: deep indigo-blue hue
nape: rich indigo-blue
eyes: small, dark, and alert
beak: short, conical, and silver-gray
throat: vivid indigo-blue with lighter shades
breast: bright indigo-blue plumage
belly: lighter indigo blue shading to white
back: vibrant indigo-blue feathers
wings: striking indigo-blue with black edges
legs: slender grayish-blue
tail: tapered, black with blue edges

indigo bunting | 0.154
0.437
0.387
0.624
0.448
0.663
0.482
0.534
0.370
0.457
0.314
0.753
0.420

crown: deep blue with smooth contour
forehead: bright blue and flat
nape: rich blue and rounded
eyes: black, small and circular
beak: silver-colored, conical shape
throat: bright blue and smooth
breast: vibrant blue feathers
belly: lighter blue plumage
back: deep blue feathers
wings: blue and black striped pattern
legs: dark grey, sturdy
tail: long, dark blue feathers

tennessee warbler | 0.072

Figure 6.42: Qualitative example of original descriptors vs. randomized descriptors. Since PEEB’s
decision is made by the descriptors, the model will try to find the descriptors that best match the
image. e.g., in the random descriptors, most parts are blue.
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0.637
0.374
0.613
0.430
0.527
0.552
0.596
0.261
0.665
0.618
0.608
0.327

crown: olive-green with faint black crown stripe
forehead: yellowish-green
nape: olive-green
eyes: dark with thin white eye-ring
beak: short, thin, and pointed
throat: yellow-orange
breast: bright yellow-orange with black streaks
belly: creamy white with subtle yellow wash
back: olive-green with black streaks
wings: blue-gray with white wing bars
legs: pale pinkish-gray
tail: blue-gray with white outer tail feathers

Our prediction: bay breasted warbler  0.431
because of the following...

0.433
0.097
0.613
0.480
0.488
0.268
0.339
0.085
0.630
0.585
0.585
0.367

crown: yellow with black stripe
forehead: bright yellow
nape: olive-green
eyes: black with white eye-ring
beak: thin, pointy, and black
throat: bright white
breast: white with distinct chestnut streaks
belly: white and unmarked
back: olive-green with streaks
wings: grayish-blue with two white wing-bars
legs: pale pinkish-brown
tail: grayish-blue, white-edged feathers

M&V's prediction: chestnut sided warbler  0.125
but we rejected it because...

Figure 6.43: An example of PEEB explanation. We can see that the descriptors of these two classes
are largely similar, but PEEB makes the correct prediction based on the distinctive feature of the
forehead in the two classes.

0.652
0.709
0.578
0.432
0.377
0.568
0.491
0.679
0.545
0.536
0.622
0.514

crown: smooth white with light gray area
forehead: white feathers
nape: white turning to pale gray
eyes: dark and round, surrounded by white
feathers
beak: dark red to orange, sturdy and sharp
throat: white feathers
breast: white feathers with gray shading
belly: white feathers
back: pale gray feathers
wings: pale gray with black tips and a white
trailing edge
legs: pinkish-red and medium-length
tail: white with black terminal band

Our prediction: heermann gull  0.786
because of the following...

0.149
0.676
0.224
0.000
0.000
0.403
0.000
0.180
0.433
0.167
0.112
0.000

crown: grey, subtly streaked
forehead: flat, extended white feathers
nape: white, short plumage
eyes: dark, intelligent gaze
beak: sharp, yellow-tipped hook
throat: white, soft feathering
breast: white, well-rounded
belly: smooth, white plumage
back: sleek, white-grey feathered
wings: long, black-tipped with white-grey
feathers
legs: vibrant red, slender
tail: white, fan-shaped feathers

M&V's prediction: red legged kittiwake  0.006
but we rejected it because...

Figure 6.44: An example of PEEB explanation. M&V incorrectly classifies it as red-legged
kittiwake where the heermann gull does not have red legs but a red beak. This example shows
that CLIP is strongly biased towards some particular descriptors.

0.696
0.688
0.722
0.483
0.475
0.672
0.614
0.624
0.688
0.575
0.645
0.699

crown: orange-yellow with pale edges
forehead: yellowish with faint markings
nape: olive-brown, blending into the back
eyes: small and dark, framed by eye-ring
beak: short and sharp, black-colored
throat: bright yellow, blending into the breast
breast: bright yellow with dark streaks
belly: creamy white with faint streaks
back: olive-brown back with streaks
wings: olive-brown with white-edged feathers
legs: long and skinny, with blackish coloring
tail: short and dark, with white outer feathers

Our prediction: palm warbler  0.819
because of the following...

0.000
0.309
0.000
0.212
0.149
0.173
0.551
0.306
0.100
0.220
0.000
0.142

crown: yellowish-green
forehead: yellow with black markings
nape: greenish-yellow
eyes: dark with thin white eye-ring
beak: small and pointed
throat: bright yellow
breast: bright yellow with faint streaks
belly: yellowish with light brown streaks
back: olive-green with faint streaks
wings: dark grayish-brown with white streaks
legs: pinkish-brown
tail: dark grayish-brown with white edges

M&V's prediction: prairie warbler  0.002
but we rejected it because...

Figure 6.45: An example of PEEB explanation. We can see that when the descriptor does not match
the image, the matching score tends to be zero, e.g., crown: yellowish-green. The clear differences
in scores provide us transparency of the model’s decision.
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0.673

0.514

0.437

0.756

0.626

0.631

head:  round with a distinct "dome" shape, often covered in long,
silky fur that can vary in color from black, brown, or white

ears:  long, floppy, and heavily feathered, usually in deep chestnut
brown or black, often hang down past the jawline

muzzle:  short and tapered, usually the same color as the body fur,
with a black or brown nose at the end

body:  compact and well-balanced, covered in silky fur that can
be a blend of white, black, and brown

legs:  short and straight, often covered in feathered fur that matches
the body color, paws are small and compact

tail:  medium-length, often covered in feathered fur, usually carried
aloft but not above the level of the back

Our prediction: Papillon (Continental Toy Spaniel)  0.190
because of the following...

0.589

0.096

0.084

0.061

0.219

0.363

head: round with a distinct dome shape, often a mix of white
and brown or black fur

ears: long, droopy and feathered, usually colored in rich brown
or black, framing each side of the face

muzzle: short and slightly tapered, covered in short brown,
black, or white fur, with a black nose at the end

body: compact and muscular, covered in a silky, wavy coat that
can be a mix of white, brown, black and tan

legs: short to medium length and straight, with feathered fur
that matches the color of the body

tail: medium length, often docked, covered in feathered fur,
carried happily but never much above the level of the back

Top-2 prediction: Beagle  0.021
but we rejected it because...

Figure 6.46: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the
predefined parts and then matches them to the descriptions.

0.671

0.497

0.428

0.200

0.637

0.641

head:  round with a distinct dome shape, often a mix of white
and brown or black fur

ears:  long, droopy and feathered, usually colored in rich brown
or black, framing each side of the face

muzzle:  short and slightly tapered, covered in short brown,
black, or white fur, with a black nose at the end

body:  compact and muscular, covered in a silky, wavy coat that
can be a mix of white, brown, black and tan

legs:  short to medium length and straight, with feathered fur
that matches the color of the body

tail:  medium length, often docked, covered in feathered fur,
carried happily but never much above the level of the back

Our prediction: Beagle  0.126
because of the following...

0.474

0.000

0.014

0.207

0.290

0.425

head: round with a distinct "dome" shape, often covered in long,
silky fur that can vary in color from black, brown, or white

ears: long, floppy, and heavily feathered, usually in deep chestnut
brown or black, often hang down past the jawline

muzzle: short and tapered, usually the same color as the body fur,
with a black or brown nose at the end

body: compact and well-balanced, covered in silky fur that can
be a blend of white, black, and brown

legs: short and straight, often covered in feathered fur that matches
the body color, paws are small and compact

tail: medium-length, often covered in feathered fur, usually carried
aloft but not above the level of the back

Top-2 prediction: Papillon (Continental Toy Spaniel)  0.023
but we rejected it because...

Figure 6.47: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the
predefined parts and then matches them to the descriptions.

0.662

0.452

0.394

0.748

0.636

0.587

head:  rounded skull with a slight stop, often covered in silky, wavy chestnut
on white fur

ears:  long, set high, droopy and well-feathered with chestnut-colored fur, framing
the face

muzzle:  moderately short and rounded, usually white with patches of chestnut

body:  compact but well-proportioned with a level topline, covered in wavy, silky
fur that's usually white with chestnut patches

legs:  medium length, often covered in white fur that may have chestnut patches,
and adorned with feathering on the back of the thighs

tail:  moderate length, carried happily but never much above the level of the
back, often covered in white fur with chestnut patches, feathering present

Our prediction: Redbone Coonhound  0.253
because of the following...

0.417

0.000

0.000

0.729

0.000

0.595

head: compact with a slightly rounded skull and a
well-defined stop

ears: long, feathered, and set low, hanging close
to the cheeks

muzzle: short, square and well proportioned with a
black or brown nose at the end

body: compact and well-balanced with a level topline

legs: muscular and straight with feathered fur, ending
in compact, cushioned feet

tail: medium length, carried happily but never much
above the level of the back, with feathered fur

Top-2 prediction: Australian Kelpie  0.032
but we rejected it because...

Figure 6.48: An example of PEEB explanation for dogs. Like birds, PEEB first identifies the
predefined parts and then matches them to the descriptions.
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