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Abstract 

 

Headwater slope wetlands are a ubiquitous forested wetland type located at the 

headwaters of coastal streams in the southeastern U.S. Coastal Plain. There is concern that past 

and current coastal land use / land cover (LULC) change may reduce the capacity for these 

wetlands to provide important functions (e.g., habitat, water quality improvement, and flood 

attenuation). To investigate this, 74 headwater wetlands in coastal Alabama (i.e., Mobile and 

Baldwin County) were assessed for important functional attributes (forest structure, soils, and 

hydrology) represented by various ecological measures. These data were compared to LULC 

data (i.e., % forest, urban and agriculture) from each wetland’s catchment over a range of 

surrounding landscapes typical of the Alabama coast. Wetland attributes were measured using a 

regionally specific rapid assessment model, the Hydrogeomorphic Approach (HGM) for the 

functional assessment of headwater slope wetlands in the coastal plain region of Mississippi and 

Alabama. Significant relationships between wetland shrub cover and agricultural and urban land 

use suggests LULC change may increase midstories densities. Urban land use was additionally 

related to increased herbaceous understory coverage and soil dewatering, as well as reductions in 

soil organic matter content. Despite some significant relationships and notable trends, urban and 

agriculture were not highly correlated with several other field measurements, suggesting other 

landscape factors are important for determining the functional capacity of these wetlands. 

Headwater wetlands can be difficult to map because of their tendency to transition 

gradually into uplands on the landscape. For the second part of this study, we evaluated the 

Wetland Intrinsic Potential (WIP) tool and its use of multi-scale topographic indices, hydrologic 

proxies, and random forest procedures that contribute to ‘cryptic’ wetland detection in the Bushy 
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Creek – Dyas Creek watershed, near Bay Minette, Alabama. An initial model was trained and 

validated on a spatial subset of the watershed to predict headwater wetland presence, absence, 

and extent. The model was then applied to the remaining spatial extent of the watershed. Overall 

accuracy for the secondary validation dataset was 92.3%, with wetland omission and commission 

errors of 14.0% and 4.5%, respectively. Our statistical analyses indicated WIP reliably discerned 

wetlands from uplands. These findings can be used to infer the applicability and limitations of 

this method for wetland mapping along the northern Gulf of Mexico and support future models 

which explore land use/cover and hydrogeomorphic relationships with wetlands. Ultimately, 

information gained from this thesis study will assist in wetland monitoring efforts to better assess 

the environmental services provided by coastal drainages along the Gulf coast. 
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Chapter I. HEADWATER WETLANDS OF THE EASTERN GULF COASTAL PLAIN: 

FUNCTIONAL ROLES AND MAPPING CHALLENGES 

 

1. Headwater Wetlands: Functions and Relevance 

Although headwaters and their wetlands significantly influence downstream ecosystems, 

water quantity, and water quality, they remain largely understudied despite being widespread and 

influential components of the landscape. This need for research is underlined by an uncertainty 

of federal protections surrounding streams and wetlands that cannot be easily defined as Waters 

of the United States, particularly those which are ephemeral, intermittent, or non-alluvial (Singh 

2015; Sackett v. EPA 2023). Headwater wetlands throughout the coastal plain region are noted 

for seasonal inundation during the growing season, and varying degrees of baseflow provisions 

in the nongrowing season (Brinson et al. 2006; Tufford 2011; Rheinhardt et al. 2013). Following 

the Rapanos v US supreme court decision, wetlands which were not considered ‘Waters of the 

United States’ were still subject to federal protections on a case-by-case basis. The grounds for 

affording these protections were based on the presence of a ‘significant nexus’ between wetlands 

and navigable Waters of the United States if one could be identified and aptly justified by 

regulators (Rapanos v. US 2006). This allowed for site-level interpretations of hydrologic 

connectivity between wetlands and streams. In 2023, ‘significant nexus’ was defined more 

concretely and summarized by Justice Samuel Alito who stated after the ruling of Sacket vs. 

EPA, “the CWA extends to only those ‘wetlands with a continuous surface connection to bodies 

that are “Waters of the United States” in their own right,’ so that they are ‘indistinguishable’ from 

those waters” (Sackett v. EPA 2023). 
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This definition largely ignores hydrologic principles that connect wetlands with each 

other and streams through various pathways. This is especially true for headwater slope wetlands 

which serve to mediate processes between uplands and perennial streams. In the northeastern 

U.S., Alexander et al. (2007) found that 65% of nitrogen fluxes in second order streams, and 

40% of those in fourth order and above were sourced from first order streams, which typically 

lack continuous surface water flows. This is the result of short-lived surface water runoff events 

and more continuous groundwater fluxes that sustain ephemeral streams. The benefits of 

groundwater connections with navigable waters are immensely important, as a significant 

amount of denitrification occurs in these areas compared with hyporheic zones in open channels 

(Ranalli and Macalady 2010). Headwater wetlands of the coastal plain region are well connected 

with streams through shallow subsurface hydrology, and the presence or absence of such 

wetlands have various effects on downstream waters. In-stream conditions of mainstem streams 

that include waters of the United States are considerably affected by the conditions of their 

tributaries, as water quality and quantity are first controlled by erosion and drainage processes in 

headwater catchments that determine oxygen, nutrient, and food resource availability for 

downstream communities (Gomi et al. 2002). 

Headwater streams and wetlands often have specific hydrologic conditions relating to 

their connections to surrounding uplands. Where reference hydrology in headwaters is altered 

and rates of surface and groundwater discharge are accelerated, surface runoff responses to 

storms become more rapid, and baseflows less constant (Gomi et al. 2002; Groffman et al. 2003; 

Meyer et al. 2005). Retention and biogeochemical cycling of particulate matter and nutrients are 

further reduced with increased drainage, thereby contributing to excess nutrient fluxes and 

sedimentation in mainstem streams and rivers (Groffman et al. 2002, 2003). The impact of 
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headwater stream and wetland degradation on mainstem streams is well documented, yet 

considerations of these important landscape connections are not well represented in the wetland 

mitigation processes (BenDor and Brozović 2007; Hoeltje and Cole 2007). Where reference 

vegetative structure and function are present, headwater slope wetlands perform a variety of 

ecosystem services due to their unique geomorphic positions, hydrologic regimes, and soil 

characteristics. Alterations to reference hydrology and structural components represent potential 

losses to headwater wetland function and area that may impact ecosystem services at multiple 

scales. 

The southeastern region of the U.S. is abundant with forested wetlands. Cubbage and 

Flather (1993) estimated this region to contain over 65% of all forested wetlands located on 

nonfederal lands throughout the U.S. High densities of headwater networks occur throughout the 

coastal plain region of the southeast and commonly contain forested slope wetlands, hereafter 

referred to as headwater slope wetlands (Noble et al. 2007, 2011). While headwater slope 

wetlands are well documented across the entirety of the coastal plain region, the following 

section focuses on those within the eastern gulf coastal plain. These are common palustrine 

wetlands located at the toe slopes of flatwood pine forests which normally exhibit a transitional 

drainage pattern between unconcentrated flows from uplands to concentrated flows in streams 

(Noble et al. 2007; Tufford 2011). Such areas represent important hydrogeochemical and 

physical buffers between uplands and streams that ensure stable baseflows, sediment and nutrient 

retention, and flow dispersion via low sloping and hummocky microtopography (Jones et al. 

1996; Jones et al. 2006; Noble et al. 2007, 2011; Tufford 2011; Rezaeianzadeh 2015). 

Although underlying soils are predominantly sand/sandy loams without restrictive layers 

above depths of 2 m (Noble et al. 2007), the combined effects of geomorphic position, soil 
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texture, slope, and hydraulic gradient between uplands and wetlands induce shallow water tables 

near the soil surface (Winter 1988). Water tables are exceptionally stable in headwater slope 

wetlands compared to those in riverine wetlands throughout the U.S. and lower coastal plain 

region (Monk 1968; Winter 1988; Cole et al. 2002). These low flow and gradual-sloped wetlands 

also produce stabilized rates of discharge throughout the year, often sustaining flows year-round 

and even in drought years (Tufford 2011; Rezaeianzadeh 2015). 

These are also critical zones for nutrient cycling and water quality regulation, due to their 

gradual slope and flow environments that facilitate the retention of particulate and soluble 

materials (Noble et al. 2007; Ramesh et al. 2020). Here, carbon storage is promoted by a 

hummocky microtopography, where detritus accumulates to produce duff and humus layers. 

Nutrient retention and cycling are facilitated by consistently high-water tables during wet periods 

and by organic matter accumulation that retains moisture and reduces soil evaporation during dry 

periods. Biologically mediated carbon storage is furthered by fine root mass associations with 

hummock mounds and slow rates of root decay (Fritz et al. 2006; Li et al. 2020).  

During high flow periods, materials are flushed from headwater wetlands to streams. This 

seasonal control ensures the movement of materials at times and concentrations in which 

downstream communities can adequately respond to them, which thus constitute limiting factors 

to population growth. The environmental parameters in which benthic and lotic populations 

operate within, in turn determine predator-prey interactions throughout the food web, affecting 

both ecologically imperiled and commercially important riverine, estuarine, and oceanic species 

(Colvin et al. 2019). Fritz and Feminella (2011) found that colonization of buried substrates in 

coastal Alabama headwater wetlands was controlled by hydroperiod, where terrestrial 

invertebrate occupancy rose in dry periods and aquatic invertebrate colonization in wet periods. 
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While this phenomenon is well known in the latitudinal plain of perennial streams (Adis and 

Junk 2002), coastal headwater wetlands additionally sustain ecological flows in the longitudinal 

plain between communities of intermittent and perennial streams (Fritz and Feminella 2011). 

Headwater wetlands additionally provide critical habitats for amphibian populations that 

rely on small, fragmented aquatic environments during reproductive periods, such as ephemeral 

pools (Gibbs 1993; Alix et al. 2014). Shallow water tables contribute to breeding habitats during 

wet periods, and the persistence of small pools in micro-depressions during dry periods provide 

continued spawning habitats. During these drying periods, a lack of surface water connection 

with perennial streams provides a refuge from predatory fish, along with the persistence of 

terrestrial invertebrate food sources, which both contribute to recruitment success (Gibbs 1993; 

Noble et al. 2007). While forested wetlands are highly selected habitats by many avian and 

mammalian species, insufficient research has been conducted in headwater wetlands of this 

region to determine trends in occupancy and selection. As these are infrequently flooded 

freshwater wetlands with forested canopies, wading birds and raptors are not associated with 

these habitats. Landscape permeability is often limited in these areas by shrub/sapling strata, 

which are not generally considered to be well suited for large mammal movement. While beavers 

are known to utilize small streams during breeding seasons, these habitats are not well 

documented for use by semi-aquatic mammals either. Headwater wetlands are expected to 

support breeding bird populations which utilize their associated forest structure and 

compositions, though more research is needed to determine species-specific relationships. 

Ecosystem services provided by headwater wetlands are closely tied to their groundwater 

hydrology, and include the regulation of nutrient cycling pathways, as well as the provision of 

base flows, specialized forest communities, and wildlife habitats (Noble et al. 2007). 
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Degradation of wetland functions occur where land use and land cover (LULC) changes alter 

wetland hydrology, such as flow concentration and impoundment structures that accelerate or 

impound drainage to wetlands (Zedler 2003; Zedler and Kercher 2005; Noble et al. 2007; Meyer 

et al. 2005). Impervious surfaces associated with LULC change are also conducive to overland 

flows that reduce soil infiltration, groundwater recharge, and water table depths in wetlands and 

throughout watersheds (Hardison et al. 2009; Meyer et al. 2005; Caldwell et al. 2012). 

These hydrologic effects, in turn, limit important wetland biogeochemical pathways 

including soil denitrification and carbon storage, as anoxic and bioactive portions of the soil 

stratum are minimized via soil dewatering and organic matter exportation (Groffman et al. 2002; 

Barksdale et al. 2014). Forested buffers between uplands and wetlands are also reduced as LULC 

changes occur, as are the benefits of forest structure and soils that moderate surface water 

accumulation from contributing areas to wetlands (Neary et al. 2009). These losses additionally 

translate to increased loads of solute pollutants to wetlands and streams, and reduced storage of 

pollutants in wetlands for biochemical cycling. As nitrogen loads from a given watershed 

increase along with excess overland flows and reduced time periods to reach peak flows, direct 

nitrate flushing into streams becomes more frequent (Zedler et al. 2003). Instream and wetland 

denitrification has also been shown to be far less effective as nitrate loads increase (Phipps and 

Crumpton 1994; Ranalli and Macalady 2010), and so the need for highly functioning wetlands 

with forested buffers becomes more evident given the response of inundated soils to produce 

runoff. 

The loss of forested buffers surrounding headwater wetlands also present ecological 

disturbances associated with altered hydrology and dispersion pathways for exotic species. 

Exotic shrub abundance in headwater wetlands is positively correlated with LULC changes in 
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coastal Alabama (Barksdale and Anderson 2014). Evidence of inhibited canopy tree recruitment 

and L. sinense colonization have also been observed in this region in response to LULC change 

(Alix et al. 2014; Barksdale et al. 2014; Barksdale and Anderson 2014), forming dense thickets. 

L. sinense is also associated with accelerated decomposition, denitrification, and reductions of 

organic matter in forested wetland soils of the coastal plain region by way of altered litter quality 

and senescence periods (Mitchell et al. 2011). As hydrologic regimes shift due to surrounding 

LULC, vegetational shifts in headwater wetland forest composition are likely results. N. biflora 

is a common canopy tree species associated with prolonged hydroperiods throughout the gulf 

coastal plain and is additionally an indicator species of headwater wetland status (Noble et al. 

2007; Rheinhardt et al. 2013). Headwater wetlands throughout the region are typically co-

dominated by M. virginiana and N. biflora, though flow obstructions could result in zonation or 

greater dominance of N. biflora over M. virginiana as standing water remains for larger portions 

of the year. Conversely, enhanced drainage typically results in compositional shifts that more 

closely resemble southern mixed hardwood forests (Monk 1968). 

Altered hydrology, vegetative structure, and vegetative composition in turn affect the 

availability and quality of wildlife habitats. Houlahan and Findlay (2003) found positive 

relationships between forest cover and amphibian species richness, and between amphibian 

species richness and proportions of adjacent wetlands. Generalist species are typically less 

impacted by LULC changes and may benefit where competition from specialists is reduced 

(Nordberg et al. 2019). Lower detection rates of headwater wetland specialists in agricultural vs 

forested catchments, and positive relationships between generalist species and LULC change 

provide evidence that habitat degradation may be occurring in coastal Alabama headwaters that 

impacts local population dynamics (Alix et al. 2014). The tendency for landscapes to become 
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increasingly homogenized as LULC changes occur (King et al. 2005) presents additional 

challenges to species movement and population growth, especially for those with greater 

limitations on dispersal (Gibbs 1993). As water tables recede due to drainage, fewer ephemeral 

pools are available for spawning and soil moisture becomes less ideal for amphibian occupancy 

(Gibbs 1993; Alix et al. 2014). Conversely, impoundments create large open water habitats that 

may benefit generalists over specialists in headwater wetlands (Nordberg et al. 2019). Sustaining 

the important ecosystem services and ecological functions associated with headwater wetlands 

will benefit from continued research that determines important LULC thresholds related to these 

wetlands.       

 

2. Headwater Wetland Mapping 

A well-founded method for guidance on wetland policy making and management, is the 

use of monitoring and assessment frameworks. This method typically utilizes wetland 

inventories, where wetland resources are mapped and quantified in terms of area and changes in 

area over some interval of time (U.S. EPA 2006). Wetland inventories can be used to identify 

wetland trends, and support or advocate against policies or management practices that are 

associated with those trends. Wetland mapping begins with wetland determination, which is 

sometimes difficult, especially where wetland boundaries and/or core areas represent gradational 

zones between wet and dry areas. As wetland mapping techniques, aerial photograph and satellite 

image interpretation have improved with advancements in spatial, spectral, and temporal 

resolutions of imagery datasets. These methods are still limited for accurate detections of 

indiscrete wetlands that lack clearly visibly boundaries made evident by image color, hue, 
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texture, etc. Furthermore, such methods lack automation that would contribute to wetland 

mapping efficiency, reproducibility, and economic viability.  

The ability to produce accurate wetland inventories has been a challenge for regions that 

contain an abundance of ‘cryptic’ wetlands. Such wetlands may blend into the larger landscape, 

as ‘wet’ uplands (i.e., wet forest slopes, etc.), while some uplands may even blend into nearby 

wetlands. The need to distinguish between wetland and upland land classes serves to better 

represent natural resources across the landscape as a whole. Furthermore, accurate wetland 

detection aids in the identification of wetland gains, losses, and trends represented through 

wetland inventories, which guide and determine the success of wetland policies (U.S. EPA 2006). 

Though historically subject to detection limitations with remote sensing methods 

(Christensen et al. 2023), recent advancements in the quality and accessibility of high-resolution 

imagery and elevation datasets have spurred interests in cryptic wetland mapping applications. 

The integration of these datasets with predictive models and machine learning techniques has 

considerably improved accurate wetland detection rates where metrics used were representative 

of wetland status. These applications may effectively represent small, forested wetlands that are 

not easily distinguished from nearby uplands through the use of imagery interpretation, such as 

headwaters in the coastal plain region of the southeastern U.S. The need for testing such 

applications in the southeast and coastal plain region in particular, is underlined by a multitude of 

features associated with wetlands throughout the region.  

Two techniques that commonly utilize remotely sensed data and machine learning are 

automated pixel and object-based classifiers. Satellite and/or aerial imagery are typically used in 

these processes, but other datasets like digital terrain models (DTM) can be incorporated as well 

(Halabisky et al. 2011). Training data consist of pixel locations within specified classes, where 



10 
 

band values at the locations of each class contribute to machine learning classifications. While 

pixel-based classifiers consider pixel band values, object-based classifiers groups pixels into 

objects where similar band values are closely arranged with each other.  

The use of imagery to identify wetlands in automated classifier models is dependent on 

the wetlands size, homogeneity of cover types, presence of visible standing water, and gradient 

of data values between uplands and wetlands (Halabisky et al. 2011). The use of imagery with 

moderate spatial resolutions alongside automated pixel-based classifiers is best suited for larger 

wetlands with homogenous cover types that contrast from those in surrounding uplands. For 

example, mapping open water wetlands that contrast an array of vegetated uplands, or emergent 

wetlands that contrast scrub/shrub uplands could be appropriate applications (Halabisky et al. 

2011). Spectral data are central to pixel-based classifiers, though multispectral imagery often 

lack the necessary spatial resolutions to detect small and/or patchy wetlands (Tiner 1990; Jones 

et al. 2019). Conversely, where high spatial and adequate spectral resolutions are present in 

imagery, pixel-based classifiers are less successful at classifying large homogonous wetlands, as 

significant spectral variation is introduced across large areas (Oruc et al. 2004).   

When the detection of wetlands with various spatial configurations and heterogenous 

cover types is a primary objective, pixel-based classifiers are not a preferred method. Automated 

object-based classifiers excel where spatial relationships are highly correlated with wetlands of 

various sizes and cover types. For instance, high spatial resolutions in imagery better 

characterize wetlands of heterogenous cover types where spatial patterns are persistent, such as 

beaver pond complexes that contain multiple features in predictable compositions (Fairfax et al. 

2023). This method is also useful for methods that use high spatial resolution images where 
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homogenous cover types represent wetlands, such as reservoirs and geographically isolated 

wetlands (Halabisky et al. 2011; Jones et al. 2019). 

The use of imagery for forested wetland classification is still limited in many 

applications, as open water may be indetectable through canopies or present throughout the year. 

Additionally, open water in rarely flooded wetlands may go undetected, dependent on the 

frequency of image acquisitions (Christensen et al. 2022). Leaf off imagery can provide useful 

information on forest composition where canopies are easily classified as deciduous, evergreen, 

or mixed. A primarily deciduous canopy surrounding a large river may suggest the presence of a 

floodplain forest, as these wetlands are associated with mature hardwoods. Headwater wetlands, 

however, often lack uniform canopies with strong visual identifiers. Additionally, headwater 

wetland canopies share visual and spectral characteristics with those in surrounding uplands, as 

environmental gradients are gradual along with changes in vegetational composition (Lang et al. 

2013). Facultative species commonly occur in each, which are closely associated with headwater 

wetlands and low-lying upland areas (Noble et al. 2007; Rheinhardt et al. 2013). Additionally, 

many canopy and midstory species in the region show varying degrees of semi-evergreen (M. 

virginiana), semi-deciduous (N. bifolia), deciduous persistent, and deciduous characteristics. 

While leaf-off imagery can work well in many cases to identify wetlands, these may be 

misleading for headwater wetland identification to both aerial imagery interpreters and object-

based classifiers (Lang et al. 2013; Huang et al. 2014).  

Landforms made evident through DTMs are consistent landscape features without limited 

uses in forested areas. Geomorphic positions exert strong influences on slope wetland hydrology 

(Brinson 1993), which can be made evident through topographic indices. These are geospatial 

datasets that describe topographic traits and are typically DTM derivatives. These include 
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variables like planform and profile curvature, which describe slope convergence and shape. 

These and other indices, such as gradient and topographic position index (TPI), have been 

implemented into wetland prediction models where landforms are adequate predictors of wetland 

hydrology (Miller 2003). The use of DTM derivatives to map landforms and wetland features 

have shown substantial improvements in recent years (Huang et al. 2014), and the combination 

of DTM derivatives with other meaningful datasets and deep learning frameworks have 

demonstrated increasing potential to improve wetland prediction accuracy (O’Neill et al. 2020; 

Christensen et al. 2022). 

 

3. Study Objectives 

  The proposed combination of spatial and functional data represents a holistic assessment 

of headwater wetlands in coastal Alabama. Where relationships between mappable landscape 

features and headwater wetland extent are evident, further potential exists for modeling and 

mapping wetland functions across various land use scenarios. The identification of these controls 

through remote sensing methods provides the opportunity for landscape modeling of wetland 

functions across a gradient of land uses and topographic features. Such models may eventually 

support regional efforts to identify critical areas for maintaining or improving coastal water 

quality and implementing broader watershed planning efforts. Our methods-based research 

objectives outlined in this thesis explore the use of wetland functional assessment and mapping 

tools to further these goals.   

My first research chapter (Chapter 2) addresses land use impacts on headwater wetland 

functions throughout coastal Alabama. Metrics of headwater wetland function were related to 
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forested, agricultural, and urban land uses present in headwater catchments. Metrics representing 

the conditions of wetland hydrology, soils, and vegetation were collected using the 

Hydrogeomorphic (HGM) Approach to assess the functions of headwater slope wetlands on the 

Mississippi and Alabama Coastal Plains (Noble et al. 2007). These data were analyzed for 

relationships with LULC gradients present in across Mobile and Baldwin County (the two 

coastal counties of Alabama) and are intended to support future applications that model potential 

impacts to wetland function across various LULC scenarios. 

  My second research chapter (Chapter 3) explored the use of the Wetland Intrinsic 

Potential (WIP) tool to improve headwater wetland detection in coastal Alabama. Using this 

approach, we modeled wetland presence, absence, and extent for a select watershed in coastal 

Alabama through remotely sensed environmental variables and random forest procedures. Our 

predictive model is exploratory in nature and seeks to provide guidance on the potential use of 

such tools and methods for wetland mapping in the eastern gulf coastal plain. Our research is 

intended to support future models by exploring methods and variables that accurately predict 

wetlands in our study area and may be applied throughout the coastal plain region. By exploring 

functional and spatial modeling tools for headwater wetlands, our work addresses the changing 

landscape in coastal Alabama while providing potential tools for improved wetland monitoring 

efforts. Our research may be further expanded to provide insights on the synthesis of functional 

and spatial methods for modeling wetland gains, losses, and trends. 
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Chapter II. LAND USE EFFECTS ON HEADWATER WETLAND FUNCTIONS IN 

COASTAL ALABAMA 

 

Abstract 

Headwater slope wetlands are forested wetlands located at the headwaters of coastal 

rivers and streams. They are a ubiquitous wetland type in the southeastern U.S. Coastal Plain and 

a critical element to the Gulf coast landscape because they occupy the interface of uplands and 

drainages, and therefore provide important functions related to water storage, water quality 

improvement, and wildlife habitats. There are concerns that past and current coastal land use / 

land cover (LULC) changes may severely reduce the capacity for these wetlands to provide these 

functions. To investigate this, 42 headwater wetlands in coastal Alabama (i.e., Mobile and 

Baldwin County) were assessed for important functional attributes (wetland forest structure, 

soils, and hydrology) represented by various ecological measures over a range of surrounding 

watershed LULC in 2022-23. Wetland attributes were measured using the Hydrogeomorphic 

Method (HGM) approach for the functional assessment of headwater wetlands in the coastal 

plain region of Mississippi and Alabama. These data were added to past HGM assessments 

(n=32) for a total of 74 wetlands evaluated. Wetland data were collected throughout Baldwin and 

Mobile County, AL, to determine potential declines in function and condition in response to 

percent cover of urban and agricultural land use in the watershed. Land class data represented by 

the National Land Class Dataset were transformed via principal component analysis into LULC 

gradients, depicted by principal components (Comps.) 1 (agricultural to forested) and 2 (urban to 

rural) for use in linear regression. Comps. 1 and 2 held significant relationships with shrub cover 

that suggest agricultural and urban LULC may yield higher midstories densities in headwater 
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wetlands. Urban LULC was additionally related to increased herbaceous understory coverage 

and soil dewatering, as well as reductions in soil organic matter content. Neither principal 

component was highly correlated with any field measurements, though multiple wedge shaped 

distributions (increasing variability across the land gradient) in our data suggest that ecological 

functional limits may be present in response variables that limit their use as effective response 

variables. Our findings also emphasize the need to account for variation introduced by flow 

concentration and obstruction structures and spatial complexities present in LULC composition. 

We discuss the implications of continued LULC change along the coast and potential measures 

to sustain headwater wetland functions under increasingly urban conditions. Ultimately, the 

information gained from this study will assist watershed managers interested in wetland 

monitoring efforts that sustain environmental services provided by coastal drainages along the 

Gulf coast.  

Keywords: Land use land cover, headwater slope wetland, forested wetlands, wetland functional 

assessments, hydrogeomorphic approach, forest structure, coastal Alabama. 

 

1. Introduction 

In many parts of the world, watershed headwaters are dominated by wetlands.  

Headwater wetlands (those wetlands associated with zero- and first-order streams) are critical 

areas for both water resource quality and quantity due to high levels of connectivity with their 

surrounding drainage areas. Further, headwaters have a disproportionate impact on downstream 

waterways and ecosystems due to the significant amount of terrestrial land-water interface from 

which nutrients and other matter are sequestered and hydrologic baseflows are sustained (Gomi 
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et al. 2002; Armstrong et al. 2012; Colvin et al. 2019). Headwater wetlands are hotspots for 

additional ecosystem services that include flood attenuation, biodiversity, wildlife habitat, and 

carbon storage. Wetland ecosystem services are typically foregone where lands are converted for 

agricultural production or human settlement. These land uses have historically resulted in the 

loss of over half of wetlands worldwide (Foley et al. 2005; Zedler and Kercher 2005).  

In the United States (U.S.), measures have been taken to minimize impacts to water 

resources since the passing of the 1972 Clean Water Act and related amendments (Mitsch and 

Gosselink 2015). Over time, the Clean Water Act included provisions to Section 404, which 

requires dredge and filling of certain wetlands to undergo a costly and time-consuming 

mitigation process. Where wetland loss does not occur, many wetlands remain intact but still 

experience degradation from the indirect effects of land practices which can alter drainage 

patterns (Groffman et al. 2003; Zedler & Kercher 2005). Sustaining wetland functions has 

become an increasingly relevant topic surrounding wetland mitigation, as focal objectives for 

science-driven policies and public perceptions of wetlands have shifted to the protection of 

ecosystem services and ecological integrity. In unaltered forested (reference) catchments of the 

southeastern U.S., drainage in response to storm events is tempered by forest vegetation and soils 

which contribute to shallow subsurface flows (Barnes et al. 1997; Neary et al. 2009). Reductions 

in wetland functions may occur where watershed drainage properties are altered beyond those 

observed in these reference conditions for a given wetland community. The loss of canopy and 

midstory trees in upland forests can translate to reductions in rainfall interception, effective 

infiltration, and evapotranspiration. Organic rich duff layers in the upland forest soils are also 

diminished by accelerated decomposition and soil erosion rates when canopies are reduced, 
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which further the tendency of uplands to produce more surface runoff (Barnes et al. 1997; Mitsch 

and Gosselink 2015; Neary et al. 2009).  

In addition to the loss of forest cover, agricultural and urban LULC are often paired with 

drainage structures such as stormwater drains and agricultural ditches. These features commonly 

drain stormwater rapidly and directly into wetlands and streams, thereby accelerating surface 

discharge and altering wetland hydroperiod (Zedler 2003). As land surfaces become increasingly 

impervious due to agricultural and (especially) urban LULC, designed stormwater overland 

flows are promoted that reduce groundwater recharge and water table depth in riparian wetlands 

(Walsh et al. 2005; Schiff and Benoit 2007; Hardison et al. 2009). Increased agricultural and 

urban land use in the watershed and the resulting hydrologic alterations that promote surface 

flows can adversely affect wetland hydrologic regimes, particularly in headwaters that are 

characterized by hillslope seepage, such as headwater slope wetlands of the eastern Gulf Coastal 

Plain (Noble et al. 2007, 2011). Because wetlands conditions (i.e., species composition, forest 

structure, soil conditions, ecosystem productivity) are closely tied to its hydrologic regime, 

LULC changes in drainage patterns may represent an important stressor to headwater wetlands 

and the functions dependent of wetland conditions. Such effects are potentially detectable 

through measurable ecological indicators. For example, soil Munsell chroma >2 indicate non-

wetland soils (Soil Science Division Staff 2017) and may indicate the loss of anoxic conditions 

for soils within wetlands. Similarly, soil Munsell value depicts organic content in mineral soils, 

with lower values in this range indicating greater proportions of organic matter. Headwater Slope 

wetlands, which are characterized by highly organic soils, are best depicted by a soil Munsell 

value ≤2.5 (Noble et al. 2007). For wetlands that exceed these conditions, such deviations may 

indicate degradation by surrounding LULC change, such as increased surface flows and altered 
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hydrologic regimes that accelerate decomposition and result in functional losses to carbon 

storage. 

Vegetative and hydrologic indicators are also commonly used to evaluate wetland 

conditions and determine potential losses to wetland functions such as groundwater storage and 

wildlife habitat value (Rheinhardt et al. 1999). Noble et al. (2007) characterizes highly 

functioning forest structures in headwater slope wetlands as having mean canopy tree diameters 

and densities of respectively, ≥30 cm and between 250-425 stems/ha. Highly dense, small-

diameter canopy trees indicate forests with considerable disturbances that may promote shrub 

and ground vegetation coverage. As reference headwater slope wetlands are characterized as 

climax communities, considerably altered forest structures may indicate wetland degradation by 

drainage alterations (Monk 1968). Such disturbances additionally mediate invasive species 

colonization in wetlands where surrounding LULC lacks adequate forested cover (Zedler and 

Kercher 2005).     

 Headwater wetlands throughout the Coastal Plain physiographic region are ubiquitous 

features on the landscape and have varied topographic and hydrologic conditions. Along the 

northern Gulf of Mexico coast, these wetlands act as transitional drainage zones between 

unconcentrated and concentrated flows in uplands and streams. Headwater slope wetlands also 

represents a biogeochemical and physical transition between uplands and streams and are key 

areas for carbon and sediment storage as retention is elevated due to low slopes and a lack of 

flooding (Noble et al. 2007; Barksdale et al. 2014; Ramesh et al. 2020). Coastal Alabama 

represents a vastly changing landscape due to increasing population growth over the span of 

several decades. Baldwin County, Alabama has experienced some of the most pronounced 

growth trends in the southeastern U.S. over the last decade, with a 30.7% population increase 
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between 2010 and 2021 (U.S. Census Bureau 2020, 2021). Approximately 13.7% of the county 

experienced land use changes between 2011-2019. Of the affected areas, urban LULC rose by 

45.2% and forested LULC decreased by 28.3% from their initial extents (Dewitz and U.S. 

Geological Survey 2021). Land uses changes are expected to follow this trajectory as populations 

continue to increase. There is ongoing concern among land planners and resource managers that 

the continued land use change in Baldwin County and many coastal areas along the Gulf of 

Mexico will result in severe loss of headwater wetland function and ultimately poorer conditions 

in downstream water bodies. 

Due to the rapidly changing landscape, our research was designed to evaluate the use of 

readily accessible workflows, datasets, and tools for use in wetland functional impact analyses 

and modeling. To achieve this goal, we investigated the use of publicly available LULC datasets 

as predictor variables in linear regression. We aimed to identify predictive relationships with 

wetland functional measurements that could be extrapolated to new areas under alternative 

LULC scenarios. This workflow serves to model possible impacts on wetland resources before 

LULC changes occur to potentially justify management actions. To assess headwater wetland 

conditions relative to surrounding LULC, we used a rapid assessment tool for the determination 

of important ecological measurements that are related to wetland functional capacities in 

headwater slope wetlands of coastal Alabama and Mississippi. Based on the Hydrogeomorphic 

(HGM) approach (Noble et al. 2007) wetland hydrologic, soil, and vegetative mensuration was 

established to characterize conditions and used in conjunction with headwater catchment LULC 

to determine its potential effect on headwater wetlands. Based on previous studies, we expected 

alterations in wetland conditions (relative to reference condition) across a land use gradient from 
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forested to agricultural LULC, from forested to urban LULC, and from agricultural to urban 

LULC.  

 

2. Methods 

2.1. Description of Study Area  

Within the East Gulf Coastal Plain physiographic region, our study area is defined as the 

extent of Mobile and Baldwin County, Alabama, USA (Fig. 2.1). The region is characterized by 

mild winters, hot summers and year-round rain. Mean annual temperatures range between 15 and 

21 ºC with rainfall amounts of 168 cm/year (Noble et al. 2007). The region is characterized by 

relatively flat topography with some areas of steeper relief. Representative slopes vary from near 

zero in the coastal lowlands to upwards of 20% in alluvial valleys, with mean slope value of 

3.27% (Ebersole et al. 2019; Soil Survey Staff 2022). Upland soils are characterized as well-

drained, udic and perudic, fine sandy loams with average slopes of 5.7% (Soil Survey Staff 

2022). Although this region contains a diverse array of wetland types and communities, our 

sampling efforts were confined to headwater slope wetlands, consistent with biophysical 

descriptions given by Noble et al. (2007). 

While headwater catchments are relatively small watersheds, those in the coastal plain 

region have large contributing areas proportional to watershed gradient, so that substantial 

drainage areas are required for stream initiation (Avcioglu et al. 2017). We expected watershed 

morphology to vary by sub-physiographic unit, so that larger contributing areas and low 

gradients would occur more frequently in the coastal lowland region, and smaller contributing 

areas with steeper topography in the alluvial plain region (Avcioglu et al. 2017; Ebersole et al. 
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2019). Barksdale & Anderson (2014) characterized headwater catchments in southern Baldwin 

County, Alabama as having a mean watershed area of 77.9 ha, with 6.1% of that area consisting 

of headwater wetlands. 

 

Figure 2.1. Distribution of wetland sites for all datasets. Sites in the 2003-04 dataset spanned areas of Mobile and 
Baldwin Counties, AL while sites from the 2010 dataset were constrained to southern Baldwin County, AL. Newly 
surveyed sites sought to represent previously unrepresented areas of Mobile and Baldwin County, AL. 
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Watershed morphology at the headwaters of this region contributes to the predominance 

of shallow subsurface drainage, in which hillslope and geomorphic position are indicative of 

wetland type and community composition (Brinson et al. 1993; Gomi et al. 2002). From summit 

to foot slope, upland communities generally transition from xeric/mesic pine and mixed forests 

to mesic/hydric mixed forests. At toe-slopes, communities further transition to seepage-

dominated bay-tupelo forests in association with headwater slope wetlands and intermittent 

streams before converging with adjacent drainages to form headwater floodplain wetlands 

(Monk 1968; Noble et al. 2007; Reinhardt et al. 2013). As tributaries converge further 

downstream, headwater streams and wetlands give way to mainstem streams and floodplain 

forests before transitioning into estuarine waterways and wetlands (Reinhardt et al. 2013).  

 

2.2. Spatial Data Sources  

 Raster and vector datasets encompassing our study area were acquired for various 

objectives related to image interpretation, watershed/wetland delineations, and LULC 

information. In the following section, data acquired for different years were used to reflect 

wetland conditions at the times of wetland surveys and resulting field measurements that were 

collected. These multi-year datasets apply to dynamic features such as watershed LULC 

composition and the presence/absence of flow obstruction and/or flow concentration structures 

that were not present/absent in all years. Wetland boundary features were obtained through The 

National Wetland Inventory (NWI) (U.S. Fish and Wildlife Service 2022), and streamlines were 

extracted from the high resolution national release of the National Hydrography Dataset 

(NHDPlusHR) (U.S. Geological Survey 2022a). One-meter digital terrain model (DTM) tiles 

which encompassed the study area and corresponded to 2012 acquisition years were accessed 
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through the National Map database (U.S. Geological Survey 2023). Tiles were mosaicked into a 

single DTM and subsequently resampled with bilinear interpolation to 5-meter grid size. 

Additionally, 1-meter hillshade rasters were obtained through the geospatial data gateway 

(NGCE 2022). Historical topographic maps at scales of 1:24,000 map units were obtained 

through USGS’s topoView data download webpage (U.S. Geological Survey 2022b).  

Aerial imagery orthophoto mosaics were acquired through NRCS/USDA contained 

within the extent of all counties present in the study area and select sites in Mississippi years for 

the years 2006, 2011, and 2021 (NGCE 2023) to account for the different field data sets used. 

These were National Agricultural Imagery Program (NAIP) three-band natural color orthophotos 

for Baldwin County, AL (2006, 2011, 2021); Mobile County, AL (2006, 2021), Harrison 

County, MS (2006, 2021), and Jackson County, MS (2006, 2021). Spatial resolutions for 2006 

and 2011 Datasets within Alabama were 3-meter and 2-meter for 2006 datasets within 

Mississippi. All 2021 datasets had spatial resolutions of 0.3-meter. Imagery datasets were used 

exclusively for visual interpretation. Soil map units and associated runoff curve number ratings 

were downloaded from the Web Soil Survey (WSS) (Soil Survey Staff 2022), and LULC rasters 

at spatial resolutions of 30-meter were acquired from the National Land Class Dataset (NLCD) 

for the years 2004, 2011, and 2019 (Dewitz & U.S. Geological Survey 2021). Each NLCD 

dataset corresponded to the closest year in which wetland surveys were conducted (2003, 2004, 

2010, 2022, 2023).  
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2.3. Wetland Site Selection Criteria 

A total of 74 headwater wetland sites (Fig. 2.1) were included in our analysis, 32 of 

which were from prior studies that were within or near our study area (Noble et al. 2007; 

Barksdale and Anderson 2014) and 42 newly surveyed sites. Data collection for all studies was 

guided by the HGM approach for the determination of wetland functional capacities in 

headwater slope wetlands of coastal Alabama and Mississippi (Noble et al. 2007). The HGM 

approach was utilized for newly surveyed wetland sites, in accordance with how those data were 

collected and reported in prior studies. 

Selected sites from Noble et al. (2007) were surveyed between the fall of 2003 and spring 

of 2004 and are hereon referred to as the 2003-04 dataset (n = 10). Seven sites from the 2003-04 

dataset are located within our study area, with three occurring throughout Jackson and Harrison 

Counties, Mississippi. Selected sites from Barksdale and Anderson (2014) were surveyed during 

the summer of 2010, and are hereon referred to as the 2010 dataset (n = 22). All sites within the 

2010 dataset occur within our study area and are largely concentrated in southern Baldwin 

County, Alabama. Field sampling efforts as part of this study occurred between the summer of 

2022 and spring of 2023, and are heron referred to as the 2022-23 dataset. Wetland sites in the 

2022-23 dataset were first targeted based on land uses in headwater catchments that were 

underrepresented in prior studies. Our second criterion was to better represent under-surveyed 

geographical regions within the study area, such as those in northern portions of Mobile County, 

Alabama.  

Land use effects on headwater wetlands were considered using watershed delineations of 

contributing catchments. For an initial consideration and assessment of the landscape, 

individually delineating each headwater wetland watershed was impractical at the scale of the 
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study area. Rather, visual interpretation of NHDplusHR, NWI, DEMs, and aerial imagery 

datasets was the primary method to establish generalized watershed and wetland boundaries. 

Target wetland sites were expected to occur in headwater catchments where hillslopes drained to 

steadily low sloping chutes, occurring above and/or with first order streams, and having a 

predominance of deciduous forest or mixed forest canopy cover, characteristic of these wetlands. 

Land use classes in this preliminary assessment were interpreted broadly as agricultural, forested, 

or urban, based on 2019 NLCD data. The characterization of LULC in the watersheds of prior 

wetland surveys were assessed similarly with NLCD (2004, 2011) data to guide sampling efforts 

that would result in a relatively equal distribution of LULC classes across the total dataset. 

Where spatial datasets collectively indicated headwater slope wetlands and target 

watershed LULC, sites were inventoried, validated, and surveyed. The distribution of 2022-23 

sites reflects land access permissions and public land availability throughout the study area (Fig. 

2.1). Sites that lacked sufficient evidence of wetland hydrology, vegetation, and soils consistent 

with the biophysical descriptions of headwater slope wetlands per Noble et al. (2007) were not 

assumed to have formerly fit those descriptions at one time based solely on geomorphic position 

and were not surveyed. These sites include gullies, wet upland slopes, harvested timberlands, and 

agricultural fields that appeared in geomorphic positions consistent with headwater slope 

wetlands. Thus, without a way to readily verify historical occurrence of these non-wetland but 

geomorphically consistent sites, our analysis represents a conservative approach to site selection 

with a focus on existing wetlands, rather than including those which may have been degraded to 

the point of wetland loss.  
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2.4. Wetland Field Surveys  

2.4.1. Site & Plot Establishment 

For this study, selected wetland sites were regarded as the extent of the wetland area 

above the confluence of intermittent first order streams with any other stream. The issue of 

unmapped intermittent headwater streams in NHD was addressed through imagery interpretation 

of NAIP, NWI, NHD, USGS topographic maps (1:24,000 map units), and DTM hill shade 

rasters. Where significant evidence suggested the presence of an unmapped headwater stream, 

our wetland sites were adjusted to account for true wetland boundaries and watershed outlet 

points. A minimum of three investigators were present for wetland field surveys. Per HGM 

protocol, each wetland site was to have a minimum surveyed area of 0.04 ha (400 m2), 

achievable by various plot number and size configurations as specified by Noble et al. (2007).  

As these wetlands are typically narrow and linear, the most common technique used was 

a four-plot configuration, spaced in relatively equal distances along the longitudinal length of the 

wetland, from crown to outlet (Fig. 2.2). Plots were established where slope wetland features 

were most representative, so that ditches, channels, and hillsides were avoided. Where such 

features were unavoidable, the longitudinal position of the plot within the wetland was either 

adjusted or the direction of the plot was pivoted. For each plot, an initial corner was established 

by an investigator from where another investigator extended a field tape 10 m to the next corner. 

The process was repeated with each corner measured 90º from the last, until a 0.01 ha (100 m2) 

square plot was established near the latitudinal center of the wetland. A third investigator walked 

the plot boundaries as they were established to ensure that errors were minimized, and the 

process was repeated at each target plot location. 
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Figure 2.2. A) Plot configurations described by Noble et al. (2007). I and III were used seldomly, as II was the most 
appropriate in terms of logistics. B) Four 100 m2 plots were spaced in relatively equal distances across the length of 
each wetland. C) Plots corners were measured at 90º angles from each previous corner until a 100 m2 square plot 
was established. 

 

2.4.2. Vegetative Measurements 

At each plot, vegetation data were collected relative to forest stratum, so that canopy tree, 

shrub/sapling, and herbaceous vegetation strata were measured independently. The canopy tree 
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stratum was defined as all trees having a diameter at breast height (DBH; measured at 1.37 m 

above the base of the tree with diameter tape) ≥10 cm, having a portion of crown coverage that 

was not entirely overtopped. The shrub/sapling stratum was defined as all woody vegetation with 

a DBH <10 cm, and greater than 1 m in height. The ground vegetation stratum was defined as all 

nonwoody and herbaceous vegetation, but also included woody vegetation < 1 m in height. 

Vegetative cover was determined by visually estimating canopy cover for each stratum 

individually, as a percentage of the total plot area. Cover estimates included those of canopies 

and the portions of canopies which were contained within plot boundaries stemming from 

vegetation that were rooted within the plot. Only the uppermost canopy of each stratum was used 

in this estimation, so that overtopped canopy cover was not included in the total estimate, and 

total estimates per strata were limited to values up to 100%. This overtopping rule did not apply 

between strata, so that the uppermost canopy of each stratum was measured independently of 

others, as a percentage of the total plot area.  

Canopy tree diameters were measured for all trees that fit our criteria of the canopy tree 

stratum. Each stem was measured to the nearest tenth of an inch, using a diameter tape at DBH. 

Diameters were later converted to cm and averaged across all plots to determine mean canopy 

tree diameter per wetland site. Canopy tree stems for all plots were counted, summed, and 

recorded as stems per total surveyed area (0.04 ha, 400 m2). This value was later transformed to 

stems/ha and reported as the representative stem density measurement for each wetland site. 
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2.4.3. Hydrologic and Soil Measurements   

Per HGM protocol, drainage structures which altered reference hydrology were identified 

in wetlands wherever present. Wetland sites were considered hydrologically altered where flow 

obstruction (dams, berms, etc.) or concentration (ditches, culverts, etc.) structures were present 

within wetlands. Where present, the height of the structure was measured from the lowest point 

of the soil or channel surface to the highest point of the structure in cm. If evidence of additional 

water level depth was present, such as water marks on the bases of trees, the height of the 

watermarks extending above the uppermost height of the structure was added to the total 

measurement. Where structures were detectable with remote sensing methods (combination of 

NAIP imagery and DTM hillshades) but physically inaccessible, these sites were noted as 

hydrologically altered, but not estimated for height/water depth through remote sensing methods 

for consistency in measurements. 

Detritus cover was used as a hydrologic proxy to indicate the prevalence of surface flows 

at a given site. Where detritus cover was low, surface flows were assumed to be more 

represented in wetland water budgets, and where detritus cover was high, groundwater was 

assumed to be more represented in wetland water budgets (Noble et al. 2007). Detritus was 

defined as leaf litter and other partially decayed or decaying plant materials which could be 

transported in the presence of surface flows. This was a somewhat subjective process as surface 

flows vary naturally between streams and wetlands. Recorded estimates for each plot were an 

average of all investigator’s estimates (n=3). Detritus cover was measured similarly to vegetative 

cover, as a visually estimated percentage of the plot area. Detritus was estimated up to a 

maximum of 100% cover, based on the total areas of which it could potentially occupy (i.e., the 

areas occupied by tree bases, downed logs, etc., were not subtracted from this total cover value). 
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The areas of pools, channels, and ditches were considered in this estimate, as these areas would 

typically be occupied by detritus if surface flows were not present. Estimates were averaged for 

all plots to determine mean detritus cover per wetland site. 

Munsell soil color charts were used for characterizing wetland soils through the 

interpretation of hue, value, and chroma that most closely resembles the color of a soil sample. 

Soil color which is low (<3) on the value scale (0-8) indicates high levels of soil organic matter 

content, while soil color which is low (<2) on the chroma scale (0-8) indicates the dissolution of 

Fe and Mn oxides due to anaerobic conditions (Mitsch and Gosselink 2015; Soil Science 

Division Staff 2017). To assess headwater wetland soils, each plot was further subdivided into 

four 25 m2 sections from which one soil core was collected from the center of each subplot. 

Samples were cored to depths of 15.25 cm below the soil surface, where soil conditions were 

expected to indicate hydric soil status via shallow water tables (Noble et al. 2007). Two 

investigators rated each soil core for Munsell chroma and value. Ratings which could not be 

agreed upon were averaged between each investigator’s estimate.  Recorded estimates were 

averaged for all cores to determine mean Munsell soil chroma (n = 16) and value (n = 16) ratings 

per wetland site. 

 

2.5. Watershed Delineations & LULC classification  

2.5.1. Watershed Delineation 

ArcSWAT is an ESRI extension for use in ArcGIS programs and is commonly used for 

watershed modeling of various scopes, and additionally contains a simplistic watershed 

delineator interface (Aloui et al. 2023). DTMs with spatial resolutions of 5m were used in 
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conjunction with the ArcGIS extension, ArcSWAT (version 2012.10_5.24) for ArcGIS Desktop 

version 10.5.1 to delineate headwater catchments. NHD streamlines were additionally brought 

into the ArcSWAT interface as user-specified stream networks from which to build flow 

direction and accumulation models. NHD streamlines were used in most cases where streams 

were mapped and accurate. In cases of unmapped streams and inaccurate stream locations, hand-

digitized streamlines were used, based on image interpretation of NWI, topographic maps, aerial 

imagery, and DTM hill shade rasters. Resulting flow direction and accumulation models were 

used to model stream networks, stream outlets, and catchment boundaries. The outlets of 

headwater catchments were identified as the confluence of the headwater wetland’s flow path or 

stream with any other stream. Outlet selection was guided by agreement with NHD streams in 

most cases, and image interpretation for unmapped streams and flow paths where NHD was not 

in agreeance with aerial imagery. Watersheds were exported as rasters and converted to polygon 

features in ArcGIS Pro for use in further analyses and data transformations.   

Methods described for delineating boundaries thus far represent existing drainage 

conditions. Per HGM protocol, an additional step was made to assess whether landscape 

modifications such as berms, roads, dams, and ditches had altered watershed area. Historic 

watershed boundaries were delineated where evidence of landscape modifications was present in 

aerial imagery, DTM hillshade rasters, historical topographic maps, and NHDplusHR datasets. 

Where present, similar steps to those used for existing watershed delineations were used with 

modified NHDplusHR streamlines that reflected unmodified flow paths. Differences in 

watershed area between historic and modified watersheds were reported as percent change in 

drainage area. Historic watersheds are standalone products, specific to the HGM approach. Only 
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existing watershed boundaries were used to determine wetland boundaries, mean watershed area 

and slope, LULC cover, and subsequent PCA analysis methods used in the following sections. 

 

2.5.2. Wetland and Initial Contributing Area Delineation 

NWI wetland boundaries within ArcSWAT delineated watersheds were used as wetland 

boundaries in most cases. In cases of wetlands that were not mapped by NWI, wetland 

boundaries were hand-digitized based on image interpretation of aerial imagery, DTM hillshade 

rasters, topographic maps, and NHD datasets. The upland areas which drain to wetland 

boundaries (initial contributing area, ICA) were designated as the difference between watershed 

and wetland boundaries (Fig. 2.3). This consideration was made to better relate LULC 

composition in upland areas to environmental measures within wetlands. 

 

2.5.3. Watershed Area, Slope, and LULC Classification  

Fifteen LULC classes were present throughout the study area and in selected Mississippi 

sites for all NLCD datasets. For the purposes of this study, all NLCD classes were reclassified to 

our four class schemata: open water, urban, forest, and agriculture. Five NLCD classes 

(Deciduous Forest, Evergreen Forest, Mixed Forest, Shrub/Scrub, Woody Wetlands) 

representing woody vegetation were combined into a single forest class. Four NLCD classes 

(Developed: Open Space, Low Intensity, Medium Intensity, High Intensity) representing 

developed areas were combined into a single urban class, and two NLCD classes (Pasture/Hay, 

Cultivated Crops) were indicative of agricultural uses and were combined into a single 

agriculture class. The NLCD classes, emergent wetlands and open water were combined into a 
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single open water class, as emergent wetlands were most associated with open water conditions 

in agricultural and stormwater ponds for all watersheds. Barren land was considered most similar 

to agriculture in terms of surface runoff response, while true grasslands were uncommon in all 

watersheds and usually the result of misclassified pasturelands by NLCD. Barren land and 

grasslands were thus reclassified as agriculture. 

Mean slope and area metrics were derived from ArcSWAT delineated watersheds in 

ArcGIS and were additionally calculated for ICAs and wetlands. Percent cover of each LULC 

class was first determined on a watershed basis in ArcGIS to characterize LULC ratios alongside 

headwater wetland coverage (Fig. 2.3). LULC ratios within ICAs were then determined, 

representing the sum of LULC cover in the watershed area without wetland coverage. These 

proportions were used to generate principal components (Comps.) for use in linear regression as 

predictor variables (see below), though open water was a negligible proportion in all watersheds 

and was omitted from the analytical process (Fig. 2.3).  
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Figure 2.3. Mean, minimum, maximum, and standard errors for LULC cover per total watersheds and initial 
contributing areas for all wetland sites. LULC per initial contributing areas were used in principal component 
analysis to build components that represent land use gradients. Comp. 1 represents an agricultural to forested 
gradient within rural settings, comp. 2 represents a rural to urban gradient, and comp. 3 represents a mixed land 
use scenario. Comp. 3 explained an exceptionally small amount of variance present in LULC composition for all sites 
and was omitted from statistical analysis. 
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2.6. HGM Functional Assessments  

While actual data from wetland measurements were used to statistically relate to 

watershed LULC, these data were also used to calculate variable index and functional capacity 

scores per the HGM approach (Noble et al. 2007). Consistent with HGM protocols, additional 

landscape/watershed metrics were generated in this process with ArcSWAT delineated 

watersheds, soil series map units, and NLCD datasets in ArcGIS Pro. Variable index scores 

which were calculated from additional metrics (n = 3) include change in catchment size, upland 

land use, and habitat connections. Changes in catchment size were calculated as the percent 

increase/decrease from historic to present watershed area. Upland land use was determined by 

calculating a weighted average of all runoff curve number values in each wetlands ICA using 

combined NLCD and WSS hydrologic group map units. Habitat connections were calculated as 

the percentage of each wetlands perimeter that was connected to suitable habitat, represented by 

NLCD data. Variable index scores which were calculated from field measurements (i.e., average 

canopy tree diameter, canopy tree density, ground vegetation cover, sapling/shrub cover, 

vegetation composition and diversity, soil detritus cover, surface soil organic matter content, and 

hydrologic alterations). 

Per HGM protocol, values for all variable measurements were designated an index score 

(0–1) using HGM reference data tables that can be used to calculate functional capacity index 

scores. The compatibility of variable index scores reported in 2003-04 and 2010 datasets were 

questionable at times, occasionally differing from respective scores of associated measurements. 

Furthermore, some scores were reported with no measurement, which prevented clear 

interpretations for variables that could equate to scores < 1 in multiple directions (i.e., canopy 

tree density > 425 or < 250 stems/ha). Due to these concerns about the application of HGM and 
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calculations used between the datasets (2003-04, 2010, and 2022-23), we did not use variable 

and functional capacity index scores to statistically relate to watershed LULC and instead opted 

to use the field measurements from each period. However, for informational purposes, the results 

of HGM variable index scores for the 2022-23 dataset are provided in Appendix 1.  

 

2.7. Statistical Analysis 

2.7.1. Principal Component Analysis 

 To account for inherent collinearity associated with ratios of LULC cover as predictor 

variables in linear regression (King et al. 2005), we created independent variables using LULC 

composition for all watersheds through principal component analysis (PCA). Principal 

components that explained the maximum amount of variance between all classes were generated 

with the princomp function in R statistical software (version 2023.09.01). Three principal 

components were identified from LULC cover in all ICAs, with the first explaining 59.63% of 

variance in LULC ratios, 40.35% by the second, and 0.02% by the third (Fig. 2.3). 

PCA loadings characterize LULC classes as coefficients, relative to the linear 

combination of all data which created the component. The absence of a loading for a particular 

class indicates that it did not contribute to the variance explained by the component, while 

positive loadings indicate class presence as having contributed to the component, and negative 

loadings indicate class absence as having contributed to the component. The relative magnitude 

of each loading is thus how much class presence or absence contributed to the component. 

Loadings for PCA Comp. 1 were: urban = NA, forest = 0.70, agriculture = - 0.71. The combined 

weights and directions of Comp. 1 loadings characterize it as a forest-agriculture gradient in rural 
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settings. PCA Comp. 2 is characterized as an urban-rural gradient, with loadings: urban = 0.82, 

forest = - .04, agriculture = - 0.40. Comp. 3 represents a mixed land use scenario with loadings: 

urban = 0.57, forest = 0.58, agriculture = 0.58. Comp. 3 did not explain a considerable amount of 

variation in LULC cover, nor did it accurately represent LULC composition in any watersheds. 

Additionally, it could not be used as an interpretable land use gradient from which to attribute 

the effects of any LULC class on wetland conditions and was omitted from our results.  

Loading scores were then generated for each wetland’s ICA, representing how closely 

LULC composition in a given ICA resembled either Comp. 1 or Comp. 2. Loading score 

interpretations are similar to PCA loadings, whereby positive values indicate similarity to the 

component, negative values indicate dissimilarity with the component, and the degree of 

magnitude indicates the level of similarity or dissimilarity. While PCA loadings are constrained 

to values between -1 and 1, loading scores are relative to the range of a given component which 

were 130.3 for Comp. 1 and 121.4 for Comp. 2. Each ICA’s loading score for a given component 

was thus independent of the other, so that two datasets of loading scores (Comp. 1, Comp. 2) 

were created for independent testing in linear regression.  

 

2.7.2. Linear Regression Models 

 To assess the relationship between LULC cover in headwater catchments and 

environmental measures in headwater wetlands, simple linear regression models were 

constructed in R statistical software, using the lm function. Field measurements included in 

separate linear regression models as dependent variables were 1) average canopy tree diameter, 

2) canopy tree density, 3) canopy tree cover, 4) shrub/sapling cover, 5) ground vegetation cover, 
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6) detritus cover, 7) soil Munsell chroma, and 8) soil Munsell value. Field measurements were 

modeled as a function of ICA loading scores for both Comp. 1 and Comp. 2, resulting in two 

models for each response variable and a total of 16 linear regression models. Due to 

inconsistencies in data collection methods between studies, sample sizes for canopy tree cover (n 

= 44), shrub/sapling cover (n = 61), herbaceous/ground vegetation cover (n = 55), and soil 

chroma (n = 63) differed from those in all other models (n=74). To further elucidate LULC 

patterns on the distribution of wetland conditions, scatterplots with significant linear regression 

(p < 0.05) were indicated and each plot in the scatterplot was identified by relative watershed 

forest cover patterns based on three groups: ≥85% forest cover, 16-84% forest cover, or ≤15% 

forest cover.  

 

3. Results 

3.1. Physical Characteristics of Watersheds and Wetlands  

Where landscape modifications such as berms, dams, roads, and drainage ditches 

occurred near watershed boundaries, watershed area was noticeably affected. Two sites in the 

2003-04 dataset were indicated as modified from historic watershed areas but were not noted for 

direction of change. These are noted towards total watersheds that were modified from their 

historical extents (n = 28) but are omitted from subsequent statistical summaries. Of the 72 

watersheds in the remaining dataset, 13 experienced reductions and 13 experienced expansions 

in area from their historic extents. Mean percent change from historic watershed area was an 

increased 7.5 ± 4.5%.  
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The maximum watershed area (1566.5 ha) was observed in a headwater catchment with 

extensive drainage from adjacent catchments through agricultural ditches, representing a 31.8% 

increase in watershed area from its historic watershed area. The minimum watershed area 

observed (1.2 ha) occurred in an especially low lying area, where a road may have disconnected 

it from former contributing areas, though percent change in watershed area could not be 

effectively determined. Mean watershed area was 161.3 ± 23.9 ha and ICAs represented 93.0 ± 

0.1% of this area (Table 2.1), thus having a mean area of 152.9 ± 23.4 ha. Mean slope values for 

both watersheds and ICAs were 4.6 ± 0.3 %, while mean slope values in wetlands were 5.5 ± 

0.4%. On average, wetlands represented the remaining 7.0 ± 0.1% of headwater catchment area, 

with a mean area of 8.4 ± 1 ha (Table 2.1).  

 

Table 2.1. Slope and Area metrics for total watersheds, initial contributing areas, and wetlands. Ranges between wetland and 
watershed areas were considerably high, and often the result of hydrologic alterations that modified drainage area. 

 

  

Percent cover of each land class was first determined on a watershed basis to characterize 

proportions of LULC alongside headwater wetland coverage within a typical headwater 

catchment. Open water, urban, forested, agricultural, and headwater wetland classes had mean 

cover values of respectively, 0.6 ± 0.1%, 21.8 ± 2.7%, 42.3 ± 3.2%, 28.3 ± 3.2%, and 7 ± 1%. 

When only accounting for LULC cover in ICAs, these were 0.06 ± 0.1%, 23.5 ± 3%, 45.5 ± 

3.4%, 30.4 ± 3.4% for open water, urban, forested, and agricultural classes, respectively (Fig. 

Mean Min Max SE Mean Min Max SE
Watershed 161.3 1.2 1566.5 23.9 4.6 1.5 9.6 0.3

Initial Contibuting Area 152.9 1.0 1539.5 23.4 4.6 1.4 10.0 0.3
Headwater Wetland 8.4 0.2 53.3 1.0 5.5 1.3 19.0 0.4

Area (ha) Slope (%)



47 
 

2.3). Based on these data, 16.2% of sites had watershed forest cover >85%, 70.3% of sites had 

forest cover of 15-84%, and 13.5% had forest cover <15%.   

 

3.2. Wetland Hydrology and Soils 

 Structures which altered reference wetland hydrology were identified across a variety of 

LULC compositions in headwater catchments. Common flow obstruction structures encountered 

were forest roads, small culverts, and low head dams. Recent and past beaver activity was noted 

in several wetland sites, though intact dams were never observed. Surface water accumulation 

was noted upslope of flow obstruction structures in nearly all cases. Flow concentration and/or 

channelization was often observed on the downflow side of these structures where culverts were 

present. Hydrologically altered wetlands via flow concentration structures were the result of 

agricultural or stormwater ditches in all cases. Characterizing hydrologic alterations across all 

sites presented a challenge, as these measurements in 2003-04 and 2010 data repositories were 

inconsistently reported and occasionally unreliable. Measurements were inconsistent in our own 

field surveys, as many maximum depths were rarely recorded over 60 cm, and some hydrologic 

alterations were identified through aerial imagery and DTMs. Thus, our results are limited to the 

2022-23 dataset as total sites which were hydrologically altered. These were 23 of the 42 

surveyed sites, with nine attributed to flow obstruction structures and 14 to flow concentration 

structures.  

Across all sites, detritus cover ranged from 0-100%, with a mean coverage of 68.3 ± 

2.9% (Table 2.2) and lacked significant relationships with either component (Figs. 2.4 and 2.5). 

Mean detritus cover in sites with ≤15% forest cover was 68.3%, and 78.6% in sites with ≥ 85% 
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forest cover. Soil chroma and value had significant and positive relationships with Comp. 2, with 

respective mean values of 2.1 ± 0.1 (p = 0.012) and 3.2 ± 0.1 (p = 0.11) (Fig. 2.5). While 

statistically significant, these relationships were weakly correlated, with an r2 of 0.098 and 0.11 

for soil chroma and value, respectively. These trends indicate dewatering and reduced organic 

matter content in wetland soils as LULC gradients shift from forested to agricultural, and from 

rural to urban land uses. However, weak correlations coefficients suggest that a considerable 

amount of variance in soil measurements are not well explained by LULC alone, and that 

unaccounted variables may influence this relationship. In headwater catchments with ≥ 85% 

forest cover, mean wetland soil value and chroma were respectively 3.04 and 1.29, and 3.14 and 

1.95 for headwater catchments with ≤15% forest cover (Table 2.3). Mean wetland soil chroma in 

both groups reflect hydric soils (<2) (Soil Science Division Staff 2017), while mean wetland soil 

values also reflect highly functioning soils (<3.5) in terms of organic content that equate to 

variable index scores of 0.8 (Noble et al. 2007).   
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Table 2.2. Summary statistics for field measurements and linear relationships with principal components.  
 

 
 
 
 
 
 
 
Table 2.3 Summary statistics for field measurements in total wetland sites, as well as those with less than 15% 
forest cover and greater than 85% forest cover. Mean values between high and low forest cover subsets were 
generally similar, though maximum values were most noticeably dissimilar for shrub/sapling and ground 
vegetation cover, consistent with regression results. 
 

 

 

P R2 P R2

Canopy Tree Diameter (cm) 15.49 99.06 43.88 2.33 0.20 0.023 0.96 < 0.01
Canopy Tree Density (stems/ha) 200.00 1750.00 774.66 41.32 0.30 0.015 0.86 < 0.01
Canopy Tree Cover (%) 25.00 88.75 59.34 2.34 0.11 0.059 0.53 < 0.01
Shrub/Sapling Cover (%) 2.50 78.75 34.81 2.46 < 0.01 0.14 0.068 0.055
Ground Vegetation Cover (%) 0.75 81.25 27.77 3.07 0.18 0.033 0.040 0.077
Detritus Cover (%) 0.00 100.00 68.26 2.92 0.11 0.035 0.77 < 0.01
Munsell Soil Value (0-8) 2.00 5.33 3.23 0.09 0.45 < 0.01 < 0.01 0.11
Munsell Soil Chroma (0-8) 1.00 4.31 2.08 0.10 0.26 0.021 0.012 < 0.01

Comp. 2
Field Measurement Min Max Mean SE

Comp. 1

Field Measurement Min Max Mean Min Max Mean Min Max Mean
Canopy Tree Diameter (cm) 15.49 99.06 43.88 26.62 62.48 41.72 19.84 99.06 52.27
Canopy Tree Density (stems/ha) 200.00 1750.00 774.66 500.00 1250.00 830.00 250.00 975.00 545.83
Canopy Tree Cover (%) 25.00 88.75 59.34 46.25 51.25 47.97 54.00 59.50 57.17
Shrub/Sapling Cover (%) 2.50 78.75 34.81 28.75 78.75 46.41 2.50 48.50 15.59
Ground Vegetation Cover (%) 0.75 81.25 27.77 11.88 73.75 36.67 4.00 27.50 15.08
Detritus Cover (%) 0.00 100.00 68.26 34.25 100.00 68.30 0.00 100.00 78.56
Munsell Soil Value (0-8) 2.00 5.33 3.23 2.20 4.25 3.14 2.00 4.25 3.04
Munsell Soil Chroma (0-8) 1.00 4.31 2.08 1.00 3.25 1.95 1.00 1.69 1.29

All Sites (n = 74) < 15% Forest Cover (n = 10) > 85% Forest Cover (n = 12)
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Figure 2.4. Linear relationships between comp. 1 and field measurements were statistically insignificant in most 
case, other than shrub/sapling cover. Potential wedge distributions are noted, with increased range and variability 
as loading scores decrease. Data subsets further depict limited ranges in highly forested watersheds with increasing 
range and variability in mixed used and agricultural watersheds for canopy tree cover, shrub/sapling cover, ground 
vegetation cover, and soil Munsell chroma. The opposite is noted for canopy tree diameter, while detritus cover and 
Munsell soil value show relatively equal distributions across a land use gradient.   
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Figure 2.5. All canopy tree measurements as well as detritus cover lacked significant relationships with Comp. 2. 
Relationships with all other variables showed varying degrees of statistical significance, though were weakly 
correlated in all cases. Potential wedge effects are less pronounced than those in comp. 1 regression plots, though 
variability appears to generally increase in rural watersheds.  
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3.3. Wetland Forest Structure 

A range of forest structure compositions were observed throughout headwater wetland 

sites (Table 2.2). Canopy tree strata were largely characterized by sweet bay (M. virginiana) 

dominance, or M. virginiana codominance with swamp tupelo (N. biflora). Rarely dominant but 

commonly encountered species included slash pine (E. elliottii), tulip poplar (L. tulipifera), and 

water oak (Q. nigra). Chinese tallow (T. sebifera) occurred seldomly, but occasionally in high 

densities. Shrub/sapling strata were most often represented by M. Virginia and N. bifolia 

regeneration, though were far less dominant in this stratum than in forest canopies. Other 

commonly occurring species were L. tulipifera, T. sebifera, red maple (A. rubrum), southern 

bayberry (M. cerifera), yaupon (I. vomitoria), red bay (P. borbonia), and Chinese privet (L. 

sinense). L. sinense occurred in variable densities, and sometimes as dense thickets. Although 

camphor tree (C. officinarum) was repeatedly encountered, it was most often a subcanopy tree 

and thus largely unrepresented in field data. Ground vegetation species varied considerably 

between sites but were mostly characterized by the presence of switch cane (A. tecta), cinnamon 

fern (O. cinnamomea), netted chain fern (W. areolate), and various sedges, grasses, and rushes. 

Japanese stilt grass (M. vimineum) and oriental ladies’ thumb (P. longiseta) were notable 

invasive exotic species that occasionally dominated small wetland areas.  

Mean canopy tree cover, shrub/sapling cover, and ground vegetation cover were 

respectively 59.3 ± 2.3%, 34.8 ± 2.5%, and 27.8 ± 3.1% (Table 2.2). Shrub/sapling vegetative 

cover had a significant and negative relationship with Comp. 1 (p = 0.0029), which suggests that 

shrub/sapling cover in headwater wetlands of rural watersheds are less dense where forests are 

most representative of surrounding LULC and increase with greater proportions of surrounding 

agriculture (Fig. 2.4). Shrub/sapling cover had a non-significant but positive relationship with 
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Comp. 2 (p = 0.068), which could suggest an increased abundance of shrub/sapling coverage in 

headwater wetlands of urbanized watersheds. A significant and positive relationship was also 

found between ground vegetation cover and Comp. 2 (p = 0.04) that suggests increased coverage 

in headwater wetlands of urban watersheds relative to rural ones (Fig. 2.5). These findings also 

reflect trends observed between Comp. 1 and soil measurements, where weak correlation 

coefficients between Comp. 1 and shrub/sapling cover (r2 = 0.14), and between Comp. 2 and 

shrub/sapling cover (r2 = 0.055) / ground vegetation cover (r2 = 0.077) show a considerable 

amount of unexplained variance by LULC alone. These findings further suggest that additional 

variables may need to be considered for our purposes.  

In highly forested catchments (≥85%), mean canopy tree cover, shrub/sapling cover, and 

ground vegetation cover were respectively 57.2%, 15.6%, and 15.1% (Table 2.3). These differed 

from those in catchments containing ≤ 15% forest cover, with respective mean values of canopy 

tree, shrub/sapling, and ground vegetation cover of 48.0%, 46.4%, and 36.7% (Table 2.3). These 

findings collectively indicate that surrounding urban and agricultural LULC are associated with 

denser shrub/sapling and ground vegetation layers in headwater wetlands. Mean canopy tree 

cover may have had an insufficient sample size (n = 44) and did not exhibit significant 

relationships with any components. Mean canopy tree diameters were 43.9 ± 2.3 cm, and mean 

canopy tree densities were 774.7 ± 41.3 stems/ha (Table 2.2). Considerable ranges were 

observed for canopy tree diameter (16 – 99 cm) and density (200 – 1750 stems/ha) and may have 

reflected various stages of succession and disturbance. No significant relationships were 

observed for either metric with any principal components. Field observations suggest that 

disturbances, such as hydrologic alterations and forest management practices, could have 

impacted this relationship.  
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4. Discussion 

Our analyses showed that while there were some wetland conditions that were related to 

LULC gradients established in our study, most significant relationships contained substantial 

variability (i.e., low r2 values). While Comp. 1 (forest – agriculture gradient) held few 

statistically significant relationships with field measurements, a ‘wedge-shaped’ distribution of 

the data was evident in numerous scatter plots. These distributions may represent potential 

ecological limits, whereby measurements in highly forested watersheds (i.e., >85% forest cover) 

occur in limited, predictable ranges, while measurements in non-forested watersheds vary 

significantly outside of this range. See Knight et al. (2014) for an example of wedge-shaped 

distributions of fish species richness in urban streams. Forested wetlands provide an example of 

this phenomenon through functional responses of forest structure to disturbance. Where 

reductions in canopy tree cover result in greater photosynthetic opportunities for midstory 

species, such disturbances result in increased shrub and sapling coverage. Though canopy gaps 

bolster light availability in understories, ground vegetation expansion is limited by canopies in 

both over- and midstories. Ground vegetation cover thus exists within a limited range in forested 

settings and may be additionally limited in such cases as a response variable to LULC changes. 

Wedge shaped distributions may also provide insights on ecological responses in non-

reference conditions through distributions of ecological indicator values, as expanded ranges 

could potentially indicate new ecological limits under such conditions. In relation to Comp. 1, 

field measurements observed in wetland sites of highly forested catchments were generally 

clustered in relatively small ranges, while the range in sites with less forested cover were 

typically larger and more variable. Shrub and sapling coverage was clustered between 0 – 25% in 

highly forested catchments (≥85%) and 25 – 50% in highly non-forested catchments (≤15%). 
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Canopy tree coverage in highly forested and non-forested wetlands were closely aligned in 

range. However, sites between 16-84% forest cover that were aligned more closely to agriculture 

on the Comp. 1 spectrum, showed a much wider spread than those aligned to forested LULC 

(Fig. 2.4). Maximum values generally increased with decreasing Comp. 1 loading scores and 

may emphasize an increased threshold for shrub coverage along a forested-agricultural gradient. 

Canopy tree diameters in highly forested sites were especially variable, with a range of 

70.2 cm compared to 35.9 cm for those in highly non-forested catchments. These data suggest 

that there are other factors which influence canopy tree sizes in forested settings, such as altered 

hydrology. Stunted tree growth may be a result of long-term surface water retention in forested 

catchments with altered hydrology (Halabisky et al. 2023), while reference hydrology in 

unmodified landscapes support large-diameter trees in mature forests. Some sites may be densely 

populated with small to medium sized canopy trees following disturbance, regardless of LULC 

composition. Disturbances in highly forested watersheds may be more frequent than we 

assumed, possibly through daylighting of wetland forests by adjacent roads and harvests. 

Forestry-related best management practices in Alabama do not require extended buffers around 

ephemeral streams for timber harvest, and many sites in forested watersheds were noted for 

young stands which surrounded them. 

Anecdotal evidence may additionally support this possibility, as field observations in 

wetlands of highly forested catchments suggest that long term ponding from flow obstructions 

may act as a significant disturbance on community structure and composition. Noticeable shifts 

in community composition and tree density often occurred along a downflow gradient, as 

ponding depths increased near wetland outlets which were obstructed by dams or roads (Fig. 

2.7). N. biflora was noticeably more representative of forest canopies in these areas, though it is 
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less indicative of headwater wetlands of the Eastern Gulf coastal plain than M. virginiana 

(Rheinhardt et al. 2013). N. biflora performs well in periodically and continuously ponded 

conditions, whereas M. virginiana is more often a dominant canopy species, and preferential to 

infrequent ponding or flooding. Characteristic species of associated with reference hydrology, 

such as M. virginiana and P. borbonia, were often observed in greater abundance upslope of 

these affected areas.  

 
Figure 2.6. Shifts in community composition and structure were observed anecdotally, between areas which 
exhibited reference hydrologic conditions and areas which were hydrologically altered. Shrub/sapling strata were 
noticeably diminished where longstanding water was present, as were species which are most associated with 
infrequent flooding. 
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The lack of predictive relationships between canopy strata and LULC may be partially 

explained by the length of time in which LULC have been representative of the observed 

catchments, the degree or presence of hydrologic alterations present, and land use legacies. 

Wetland degradation may have occurred in currently forested watersheds that were in 

agricultural production until recently. Our use of LULC at a static point in time is thus limited to 

the perspective at that time. Furthermore, canopy tree strata are expected to respond slowly to 

LULC change if advanced regeneration is adequate prior to LULC changes. Shrub/sapling and 

ground vegetation cover are likely better indicators of recent forest structure responses to LULC 

changes, which were both significantly related to Comp. 1. Barksdale and Anderson (2014) 

found that exotic shrub cover was significantly related to agricultural LULC, which represents 

the 2010 dataset. Exotic grasses and shrubs were observed in high densities of highly agricultural 

watersheds in the 2022-23 dataset, though this is anecdotal evidence as measurements were not 

taken to identify the coverage of native vs exotic plants. Field observations along with findings 

from this previous study suggest that additional research is needed to clarify possible links 

between invasive species, altered forest structures, and LULC change. 

Although soil Munsell color metrics showed statistically significant relationships with 

Comp. 2, correlation coefficients were nominal for both variables. This may have been the result 

of various drainage and ponding scenarios in headwater wetlands across all LULC compositions. 

Within wetlands, various flow patterns were observed between areas of reference wetland 

hydrology and areas which were noticeably affected by hydrologic alterations, such as ponding 

above flow obstruction structures and channelized flows below the path of culverts. Wetland 

soils in watersheds of predominantly agricultural and urban LULC may have experienced greater 

rates of gleization than expected due to representation of ponded areas above flow obstructions 
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in our sampling approach. These areas often presented sampling challenges, especially in the 

case of dams, where open water was present for the remainder of the downflow length of the 

wetland above the watershed outlet. Thus, Munsell chroma ratings may have represented 

headwater slope wetlands in the uppermost portions of surveyed areas, while lower portions 

more closely represented depressional wetlands. 

Soil dewatering was expected in wetlands containing ditches and highly incised stream 

channels, as these features are associated with water table reductions in riparian areas and are 

good indicators of ‘riparian hydrologic drought’ in the coastal plain region (Hardison et al. 

2009). While urban and agricultural LULC are associated with soil dewatering, accelerated 

decomposition rates, and elevated transport of organic and mineral substrate through headwater 

wetlands (Wardrop and Brooks 1998; Walsh et al. 2005), LULC was not attributed to a 

significant amount of explained variance in soil and hydrology related measurements. Although 

wetland soils are characterized by Munsell chroma < 2, roughly half of all sites were above this 

value and were neither highly forested nor highly non-forested. Variation that could not be well 

explained by principal components in both soil and detritus metrics were likely a result of 

hydrologic alterations present throughout all represented LULC compositions.  

Factors that may have further contributed to unexplained variance include length of time 

in which LULC have been present on the landscape, ecological disturbances, physiographic 

variation, and land use legacy effects. While the effects of urban LULC on runoff rates, water 

table depths, and groundwater storage capacities are well documented (Groffman et al. 2002; 

Hardison et al. 2009), our approach utilized NLCD as an initial and simplistic predictor. NLCD 

is potentially too coarse (30-m) to accurately depict these effects at the headwater scale, and our 

simplified reclassification scheme potentially overrepresented discreet urban features on the 
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landscape, with varying degrees of imperviousness. A wider gradient of LULC classes is likely 

needed to demonstrate these effects, such as the full range of NLCD urban classes (open space, 

low/medium/high intensity) or total impervious area (TIA).  

Additionally, the spatial configurations of LULC and flow control structures within 

watersheds are important determinants of hydroperiod, sedimentation, and material transport that 

determine functional traits within headwater wetlands (Rheinhardt et al. 1999; King et al. 2005; 

Schiff and Benoit 2007). Our efforts to characterize LULC impacts on wetland conditions were 

largely based on the assumption that each class would demonstrate a clear relationship with 

surface runoff responses. These responses can be complex within watersheds, as wetlands 

receive variable amounts of drainage contributions from each sub-catchment, with each differing 

in LULC composition, slope, flow accumulation, and flow concentration. While surveys aimed 

to represent wetlands in equal distances relative to their lengths, the effects of individual sub-

catchments may present themselves in different areas throughout the wetland. For instance, if an 

individual sub-catchment contains the majority of agricultural or urban land uses in a watershed, 

it’s plausible that all other sub-catchments provide adequate groundwater seepage to maintain 

highly functioning hydrology.  

 

5. Conclusion 

 The impact of any LULC class on wetland resources may not be equally detectable across 

areas with variable timespans in which those classes have been present. A lack of significant 

correlation between LULC and all field measurements may be attributable to this unaccounted 

variable, as agricultural LULC has been present throughout the region historically and urban 

LULC are largely new features on the landscape. Land use legacies may additionally contribute 
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to mixed results where forested and urban areas occupy former agricultural lands and vice versa. 

Furthermore, spatial configurations of LULC are complex and may not be best represented by 

NLCD alone. Landscape metrics could better explain high vs low impact areas where distances 

to wetlands and forested buffers are considered. Additionally, recent advancements in LULC 

datasets include spatial resolutions that may better represent minimum mapping units of 

headwater wetlands, such as 10 m products of the Coastal Change Analysis Program (CCAP). 

Upon exploring the use of NLCD as a simplistic predictor of headwater wetland conditions, we 

conclude that a considerable amount of variation is left unexplained. The addition of metrics that 

would better characterize hydrologic alterations present in headwater catchments, documentation 

of recent land use practices, and coupled hydrologic models that indicate drainage patterns 

independent of LULC would be highly valuable in future models. Strengths present in our model 

are demonstrated by ease of use, efficiency, and reproducibility in data collection efforts. 

Limitations of these rapid assessment methods may be bridged where additional data can support 

them.  
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Chapter III. Modeling Wetland Presence, Absence, and Extent in Coastal Alabama with 

Wetland Intrinsic Potential. 

 

Abstract 

Headwater wetlands along the northern Gulf of Mexico coast are a ubiquitous landscape 

feature but are difficult to map because of their transitional nature. Upwelling of groundwater 

through hillslope drainage exerts a strong control on slope wetland hydrology, where soils can 

remain saturated continuously via shallow water tables. These are important elements for 

regional drainage and there is a need for local and regional managers to better document their 

occurrence on the landscape. Due to various limitations on headwater wetland detection, we 

utilized the Wetland Intrinsic Potential (WIP) tool for its use of multi-scale topographic indices, 

hydrologic proxies, and random forest procedures that contribute to ‘cryptic’ wetland detection. 

Our resulting WIP model identified metrics which most accurately depicted the wetland-upland 

matrix within the Bushy Creek – Dyas Creek watershed, located near Bay Minette, Alabama. An 

initial model was trained and validated with an out of bag (OOB) accuracy assessment on a 

spatial subset of the watershed to predict wetland presence, absence, and extent. Our model 

resulted in an OOB accuracy rate of 96.0%, with wetland omission and commission errors of 

7.0% and 2.5%, respectively. The model was then applied to the remaining spatial extent of the 

watershed for a secondary validation assessment. Overall accuracy for the secondary validation 

dataset was 92.3%, with wetland omission and commission errors of 14.0% and 4.5%, 

respectively. Early indications suggest the WIP tool reliably discerned wetlands from uplands, 

with an AUC of 0.98 and kappa coefficient of 0.83. Further analyses resulted in considerations 

for practitioners to address in model building, such as thresholds below 0.5 to better detect slope 
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wetlands. Wetland presence, absence, and extent maps shared 89.1% of agreement with National 

Wetland Inventory (NWI) classifications, and increased wetland area by as much as 8.7%. Our 

findings can be used to infer the applicability and limitations of this method for wetland mapping 

along the northern Gulf of Mexico and support future models which explore land use/cover and 

hydrogeomorphic relationships with wetlands. 

 

1. Introduction 

1.1. Wetland Mapping: Definitions and Conventional Techniques 

Wetlands are critical components of the landscape because of the ecosystem services they 

provide, including water quality, flood attenuation and important habitats (MEAB 2005). 

Although many of these ecosystem services are well known, the extent to which they exist on the 

landscape is not always clear. Where disjunct landforms, geology, and areas of flow 

concentration result in distinct ecologic and hydrologic zones, delineating wetland boundaries 

can be fairly straightforward. This is not always the case though, as environmental gradients can 

be spatially variable. Gradual changes between uplands and wetlands can result in extended 

environmental gradients, so that some areas may fit the status of a wetland despite lacking strong 

contrasts with the surrounding upland (Stewart et al. 2024). These ‘cryptic wetlands’ can be 

difficult to map in order to support wetland inventories and to guide policies, such as the ‘No Net 

Loss’ executive order (U.S. EPA 2006). While these wetlands can still be delineated accurately 

through field reconnaissance, they present a challenge for remote wetland mapping. 

In the United States, the National Wetland Inventory (NWI) is currently the most 

comprehensive inventory of mapped wetland extent, which among several objectives, serves as a 
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long term wetland monitoring program. Wetlands are not field delineated, but have been 

historically mapped using image interpretation methods with aerial imagery, soil surveys, 

topographic maps, etc. (FGDC 2009). NWI maps are largely snapshots of the imagery 

acquisition date used for photo interpretation, and mapped wetlands may not be reflected in the 

present day. Ideally, maps would be periodically updated to identify gains, losses, and trends in 

wetland areal coverage, but a lack of funds and manpower within the program have led to 

shortcomings for this purpose (U.S. EPA 2006). Thus, the NWI is generally a patchwork of 

mapping efforts over a 42-year time span, with many regions still reflecting wetland boundaries 

determined in the 1970s and 1980s. Additionally, the sole method of image interpretation for 

wetland mapping is subject to human error and underestimates discreet, ‘cryptic’ wetlands, that 

are difficult to detect (Tiner 1990).  

 

1.2. Wetland Mapping: Remote Sensing & Machine Learning 

A significant drawback of image interpretation as a sole method for wetland mapping is 

its lack of automation. The combination of deep learning methods and remotely sensed datasets 

provide an automated alternative that can greatly improve LULC classification and wetland 

detection, in terms of efficiency and accuracy (Felton et al. 2019). Imagery products are 

conventional variables used in such models, though digital terrain models (DTM) and DTM 

derivatives offer alternative and supplementary information. While imagery products reflect 

spectral information captured by remote sensing platforms, DTMs reflect elevation. Recent 

advancements in light detection and ranging (LiDAR) sensors have resulted in high-resolution 

elevation products in recent years, from which DTMs are produced. The availability of these 

products in the U.S. has also grown through initiatives like the National Digital Elevation 
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Program (NDEP) as publicly available datasets. The use of DTM derivatives to map wetlands 

have shown substantial improvements in recent years (Huang et al. 2014; Lang et al. 2013), and 

the combination of these products with machine learning frameworks have demonstrated 

increased potential to improve wetland prediction accuracy (O’Neill et al. 2020; Christensen et 

al. 2022). 

Of the many machine learning frameworks, random forest is one that builds an ensemble 

model with multiple decision trees to generate class-based predictions (Breiman 2001). Wetland 

mapping with random forest procedures has grown in popularity for its computational efficiency, 

predictive accuracy, and use of bootstrapping techniques that are especially useful when training 

data are limited (Felton et al. 2019). Predictor variables are user specified, but generally 

represent those which collectively indicate wetland hydrology, hydrophytic vegetation, hydric 

soils, and associated topography. The random forest algorithm creates decision trees with 

randomly selected subsets of both training data and predictor variables, so that each tree 

represents a potentially unique classification scheme. To prevent model overfitting, a subset of 

all trees is randomly selected, from which a majority voting rule determines the final 

classification scheme based on out of bag (OOB) accuracy (Breiman 2001). 

OOB accuracy assessments are a bootstrapped technique which validate the model’s 

classification schema through a held out portion of training data. Although the randomization 

introduced throughout this process bolsters predictive power and accuracy, held out validation 

data represent areas consistent with those by which the model was developed from. An 

additional step that researchers often implement is a secondary validation assessment in a novel 

area to determine how well the model performs outside of the areas in which those models were 

designed. Validation techniques used in secondary validation vary based on research objectives, 
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data types, and data availability. Additionally, the randomization incorporated into each step of 

random forest models introduce significant data variation so that wetland-like uplands and 

upland-like wetlands are better differentiated, for improved ‘cryptic’ wetland detection and 

mapping (O’Neill et al. 2020).  

 

1.3. Challenges and Innovations: Headwater Wetlands of the Eastern Gulf Coastal Plain 

Headwater slope wetlands are associated with a variety of wetland and upland features 

that can be difficult to discern. Forested canopies share visual and spectral characteristics with 

those in surrounding uplands (Lang et al. 2013) and can be misleading to both aerial imagery 

interpreters and pixel-based classifiers (Huang et al. 2014). Publicly available imagery datasets 

currently lack adequate balances of spatial, spectral, and temporal resolutions necessary for 

mapping applications in small, forested, and rarely flooded wetlands (Christensen et al. 2022). 

Spatial configurations of headwater wetlands are often linear and narrow and limit the use of 

many datasets which have minimum mapping units that exceed wetland widths. High spatial 

resolution imagery (< 10 m) datasets are still limited in use for surface water detection of 

forested wetlands, where open water remains largely indetectable through dense canopies and 

where its presence is temporally variable (Barksdale and Anderson 2014; Christensen et al. 

2022).  

Landform associations with wetlands can be made evident through DTM derivatives and 

have shown to be consistent predictors of wetland status (Miller 2003; Halabisky et al. 2023). 

Gradient raster products characterize differences in relief between DTM cells and are expected to 

occur within a limited range for slope wetlands, with slope values below this range associated 
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with depressions and flats, and slopes values above this range with hillsides and channel banks. 

Planform curvature describes slope direction between adjacent cells in the horizontal plane, with 

negative values indicating slope convergence, positive values indicating divergence, and a value 

of 0 indicating uniform slope direction for all cells considered. Profile curvature describes slope 

shape in the vertical plane, with negative values indicating convexity, positive values indicating 

concavity, and a value of 0 indicating a linear slope. Both curvature metrics describe slope 

dimensions that exert various levels of control on flow direction and accumulation and may be 

associated with wetland vs. upland status. (Miller 2003; Halabisky et al. 2023a). Elevation 

deviation is another topographic index which identifies the standard deviation of DTM cell 

elevations within a focal neighborhood. This metric shows promise for mapping areas with 

consistent elevational patterns relative to surrounding wetland and upland areas (Miller 2003). 

Hydrologic proxies are also examples of DTM derivatives, such as topographic wetness 

index (TWI), which is a measure of inundation via landform influences on flow patterns (Beven 

and Kirkby 1978). Cartographic depth to water (DTW) is another example of a hydrologic proxy 

which models water table depth based on elevations of nearby waterbodies (Murphy et al. 2011). 

DTW and TWI may also be important predictor variables of headwater wetlands, as they are 

based on shallow subsurface flows, characteristic of headwater catchment hydrology. 

Additionally, the spatial resolution of aerial imagery datasets via the National Agricultural 

Imagery Program (NAIP) have substantially improved in recent years, with resolutions up to 

0.91 m. Despite limitations in surface water detection, these datasets may be useful for 

calculation of the Normalized Difference Vegetation Index (NDVI) to depict vegetated vs. non-

vegetated areas at relevant scales for headwater slope wetlands.   
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1.4. The Wetland Intrinsic Potential Tool: Applications in Coastal AL 

The ability of random forest to present significant data variations in gradational 

landcovers provides the basis for our research.  For this purpose, we utilized the Wetland 

Intrinsic Potential (WIP) Tool, as a random forest model tailored to forested and cryptic wetland 

prediction (Halabisky et al. 2023a). A headwater dense area was identified in coastal Alabama in 

which to apply the WIP Tool for an assessment of predicted wetland probability and extent, 

using various imagery and DTM derivatives as model covariates. The WIP tool has demonstrated 

high levels of accurate predictions in the pacific northwest region, with an overall accuracy of 

91.8% in secondary validation datasets (Halabisky et al. 2023a). When compared to NWI, errors 

of omission were reduced by 33.4% and errors of commission increased by 8.6% (Halabisky et 

al. 2023a). Our model was expected to behave similarly in coastal Alabama, provided that 

accurate and representative training data were used. Although some differences arise from local 

geology, the hydrologic and geomorphic profiles in headwater wetlands of coastal Alabama are 

consistent with others throughout the coastal plain region of the gulf and Atlantic coasts 

(Rheinhardt et al. 2000, 2013; Noble et al. 2007, 2011; Tufford 2011). The objectives of this 

research study were to 1) identify metrics which accurately depict the wetland-upland matrix 

within coastal Alabama and 2) produce wetland probability maps and accuracy metrics in which 

to contextualize the best use of such models for wetland prediction in the eastern gulf coastal 

plain region.  
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2. Methods 

2.1. Characterization of Alluvial Wetlands Within the Study Area 

Forested wetlands of the eastern gulf coastal plain occur extensively throughout 

headwater networks. Additionally, the dense network of headwater streams in the region result in 

a disproportionate influence on water quality regulation in mainstem streams (Nadeau and Rains 

2007; Armstrong et al. 2012). Extending from eastern Louisiana to the Florida panhandle, the 

region experiences a subtropical climate with abundant precipitation, high humidity, hot 

summers, mild winters, and an extensive growing season. Headwater wetlands exhibit varying 

degrees of slope and floodplain wetland hydrology, dependent on geomorphic position, 

contributing drainage area, flow accumulation, and stream order. Headwater wetlands are 

described hereon after as wetlands occurring within or in association with 1st-3rd order streams, 

while Mainstem wetlands are those associated with mainstem streams, being 4th order and above. 

Headwater wetland hydrology is characterized by groundwater seepage, with surface 

hydrology represented to a lesser degree. Headwater wetlands associated with 1st order streams 

occur in low sloping drainages, typically at toe slopes below flatwood pine forests. This 

geomorphic position (Fig. 3.1) ensures important connections with the hydrologic cycle and 

surrounding landscape, acting as a biogeochemical and physical buffer between upland drainage 

areas and headwater streams (Nadeau and Rains 2007; Ramesh et al. 2020). Headwater wetlands 

associated with 2nd-3rd order streams are more representative of surface water hydrology, though 

groundwater seepage in these gently sloped wetlands still remains a dominant component of 

water budgets. The link between mainstem wetlands and groundwater seepage lessen as the role 

of surface water hydrology increases with drainage area and flooding frequency. Mainstem 

streams have wider and more visible channels as a result, with wider wetland perimeters.  
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Figure 3.1. Geomorphic position plays a large role in headwater wetland hydrology. As headwater slope wetlands 
converge along a downslope gradient, flows concentrate into perennial streams where surface water processes 
become more representative. 

 

Headwater wetlands in this region are associated with bay-tupelo forests which contain 

an array of facultative and obligate wetland species. Canopy tree strata are characterized by 

relatively low densities (250 – 425 stems/ha) of moderate to high basal area (≥ 30 cm) trees, for 

characteristic species such as sweet bay (M. virginiana), slash pine (P. elliottii), swamp tupelo 

(N. biflora), black gum (N. sylvatica), sweet gum (L. styraciflua), and tulip poplar (L. tulipifera) 

(Noble et al. 2007; Barksdale and Anderson 2014). Canopy trees associated with frequent 

flooding such as bald cypress (T. distichum) and water tupelo (N. aquatica), or with stream 

channel banks such as black willow (S. nigra) and American sycamore (P. occidentalis) are rare 

to nonexistent. These species occur primarily in mainstem wetlands instead (Reinhardt et al. 

2013). Midstories of headwater wetlands consist of variably dense subcanopy trees and saplings, 



75 
 

shrubs, and vines. Common species include red bay (P. borbonia), red maple (A. rubrum), 

yaupon (I. vomitoria), coastal doghobble (L. axillaris), titi (C. racemiflora), and greenbrier 

(Smilax spp.) (Noble et al. 2007; Barksdale and Anderson 2014). Herbaceous vegetation is 

typically sparse for grasses, forbs, and rushes, though cinnamon fern (O. cinnamomea) and chain 

fern (Woodwardia spp.) can occur in relatively high densities (Noble et al. 2007; Barksdale and 

Anderson 2014).  

All soil hydrologic groups (A, B, C, D) are represented in headwater wetlands soils 

throughout the region, reflecting their gradational nature between uplands and streams. Seasonal 

variation is also reflected in soil hydrologic groups, with many wetland soils characterized by 

both wet and dry ratings dependent on season (A/B, A/C, A/D, B/C, B/D) (Noble et al. 2007). 

Within the upper 15.25 cm of soil horizons, the accumulation of organic material results from 

infrequent flooding in these low slope environments. In-situ decomposition of detritus and plant 

materials is further prolonged by hummocky microtopography, the influence of fine root mass 

dynamics, and continuously saturated soils that contribute to considerable rates of carbon and 

nitrogen sequestration and cycling (Jones et al. 1996; Ramesh et al. 2020; Stewart et al. 2024). 

Soil textures beneath organic layers are variable, with some wetland soils containing sandy 

textures greater than 2 meters below the soil surface and others with sandy clay loams at 40 cm 

from the soil surface (Noble et al. 2007). Porosity and drainage characteristics are enhanced by 

sandy textures, though holding capacities are often exceeded by excess saturation (Noble et al. 

2007; Tufford 2011). 

Within this region, our model was applied to the ‘Bushy Creek – Dyas Creek’ located in 

central Baldwin County, AL. This watershed is described as a hydrologic unit code 10 watershed 

(HUC10) and is hereon referred to as BcDc10, referring to the total spatial extent of our study 
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area (Fig. 3.2). Topography throughout the region is relatively flat with steeper areas associated 

with alluvial valleys and terraces (Ebersole et al. 2019). 

A challenge in wetland prediction using the WIP tool or similar models is reduced 

accuracy where hydrology has been modified through agricultural and urban LULC and land use 

practices (Halabisky et al., 2023a). The selection of our study watershed reflects its relatively 

undeveloped and highly forested LULC to provide a basis for wetland prediction throughout 

coastal Alabama. BcDc10 also contains a dense network of headwater streams, with 92% of 

stream miles being 1st-3rd order (Table 3.1). BcDc10 is comprised of three individual hydrologic 

unit code 12 (HUC12) watersheds. The HUC12 watershed, ‘Bushy Creek – Dyas Creek’ 

(BcDc12), represents roughly half of the study area and was the extent for model training and 

building. ‘McCurtin Creek’ and ‘Dyas Creek’ HUC12s represent the remaining spatial extent of 

the study area, and were combined into a new boundary, ‘McCurtin Creek- Dyas Creek’ 

(McDc12), which was used for model validation. All watershed boundaries and their locations 

within Baldwin County, AL are depicted in Fig. 3.2. 
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Figure 3.2. The HUC10 watershed, 'Bushy Creek - Dyas Creek’, encompasses the study area and is comprised of 3 
separate HUC12 watersheds. The HUC12 watershed of the same name was used for the model training extent 
(BcDc12), while the other HUC12 watersheds were combined to create the extent for model validation (McDc12). 
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Table 3.1. Stream order and length attributes for BcDc10. Wetland training and validation data locations followed 
a stratified random sampling design based on stream order length per total watershed stream length. Wetlands 
associated with headwater streams represent 92% of training and validation data. 

 

 

2.2. Data Sources, Transformations, & Definitions 

 Spatial datasets were acquired for various objectives related to image interpretation and 

model building/validation. The high-resolution national release of the National Hydrography 

Dataset (NHDPlus HR) was accessed via the National Map database (U.S. Geological Survey 

2022). Select streamlines, water bodies, HUC10, and HUC12 watershed boundaries were 

extracted from NHDPlus HR. Streamline segments contained within the study area were 

manually assigned Stahler stream orders for use in stratified sampling methods. NHD 

streamlines and water bodies were additionally combined into a raster depicting total surface 

water extent for use in calculating cartographic depth to water (DTW). Mapped wetland 

boundary features were obtained through The National Wetland Inventory (NWI) (U.S. Fish and 

Wildlife Service 2022). 

One-meter DTM tiles which encompassed the study were accessed through the National 

Map database (U.S. Geological Survey 2015). DTM tiles were mosaicked into a single raster and 

subsequently resampled with bilinear interpolation to 3 m resolution. The DTM was extracted to 

the boundaries of BcDc12 and McDc12, resulting in a 3 m DTM for each spatial extent. 

BcDc10

Stahler Stream 
Order

Stream Length 
(km)

Proportion of 
Total Length

Wetlands Sites 
Per Stream Order

1 177.8 0.61 61
Headwater 2 55.0 0.19 19

3 36.4 0.12 12
Mainstem ≥ 4 24.6 0.08 8

Total 293.9
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Additionally, a 1 m DTM hill shade derivative was obtained through the geospatial data gateway 

(NGCE 2022), for the extent of Baldwin County, AL for use in image interpretation. The WIP 

tool was downloaded from the ‘Forested Wetlands’ GitHub repository, published by 

TerrainWorks-Seattle (Halabisky et al. 2023b). The tool functions as two ESRI toolboxes which 

allow for the production of model covariates with the DEM Utilities toolbox, and random forest 

model building/validation with the Wetland Tools toolbox. Multi-scale topographic indices used 

as model covariates were produced from the DEM utilities toolbox, while ArcHydro’s, ‘Wetland 

Identification Model’ (WIM) was used to produce all hydrologic proxies used as model 

covariates.   

Aerial imagery products included four-band natural color (NC) and color infrared (CIR) 

National Agricultural Imagery Program (NAIP) orthophoto mosaics, acquired from the 

geospatial data gateway for the extent of Baldwin County, AL (NGCE 2023a, 2023b). Both 

datasets reflect 2021 acquisition years with 0.3 m spatial resolutions. NC imagery was used 

exclusively for image interpretation, and CIR imagery was resampled to 3 m resolution using 

bilinear interpolation and extracted to the extent of both BcDc12 and McDc12 for use in 

Normalized Difference Vegetation Index (NDVI) calculations.  

 

2.3. Training & Validation Datasets 

 Mapped wetland presence, absence, and extent are largely a function of training and 

validation data used in the WIP tool. To ensure accurate representations of wetlands and uplands, 

wetlands from both BcDc12 and McDc12 were field verified prior to building training and 

validation datasets (Fig. 3.3). Patterns observed in aerial imagery and hill shade rasters for field 
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verified wetlands were referenced to manually adjust upland vs. wetland training and validation 

data locations when necessary. NWI was chosen as a primary bounding extent between wetlands 

and uplands, so that 100 wetland points were placed within NWI boundaries and 200 upland 

points were randomly distributed outside of NWI wetland boundaries for both BcDc12 and 

McDc12. 

 

 

Figure 3.3. Thirteen wetlands were field verified throughout BcDc10 prior to modelling. These were referenced to 
determine if and where manual adjustments of wetland and upland training data locations were necessary, based 
on DTM and imagery based indicators of wetland status.  

 

A stratified sampling method was implemented for wetland points, based on the 

proportion of total stream km per stream order throughout BcDc10 (Fig. 3.4). This resulted in 61 

points occurring along 1st order streams, 19 points along 2nd order streams, 12 points along 3rd 

order streams, and 8 points along streams being 4th order and above. Within each stream order 
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class, points were distributed randomly along NHDPlus HR streamlines. To avoid spatial biases 

by placing training and validation points directly on streamlines, the cross sectional width of 

NWI wetlands were measured at each points location. A random multiplier between 0 – 100 was 

then chosen to determine an adjusted distance of the total cross sectional width. Points were 

manually adjusted to this distance, measured from the left most (facing up flow) to the right most 

extent of the wetland cross section. 

Of the 61 first order wetlands, 30 were manually adjusted to locations which were 

mapped by NWI but lacked a mapped stream within the wetland boundary, to avoid further 

biases with NHD streamline presence. The longitudinal length of the wetland was measured from 

crown to outlet, and a random multiplier from 0 – 100 was chosen to adjust this distance. 

Measured downflow from the wetland crown to outlet, each point was placed at the adjusted 

distance. From this location, the cross sectional width rule was once again applied to determine 

its latitudinal position. Validation points followed the same protocol in McDc12, with 200 

random upland locations and 100 wetland locations which were randomly selected within a 

stratified sampling design (Fig. 3.4). 
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Figure 3.4. Wetland training data points were placed at random locations along designated stream orders and 
adjusted to randomly selected positions perpendicular to the streamline. Half of the training points along 1st order 
streams were moved to the nearest wetland without a mapped stream and given a random longitudinal position as 
well. Upland locations were randomly distributed throughout non-NWI areas, points were manually adjusted where 
locations did not represent target classes, and the process was repeated for validation points as well. 
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2.4. WIP Model Covariates  

All WIP model covariates were 3m resolution rasters, as this provided a balance between 

excess variability that could lessen predictive relationships associated with high resolution 

datasets (Oruc et al. 2004) and a minimum mapping unit capable of headwater wetland detection 

(Christensen et al. 2022). DTW and TWI were generated using the ‘calculate depth to water 

index (DTW) using surface parameters’, and ‘calculate topographic wetness index (DTW) using 

surface parameters’ tools within Arc Hydro Pro tools for ArcGIS Pro. NDVI was additionally 

calculated with ArcGIS Pro's NDVI function using CIR imagery (Table 3.2). Along with 

hydrologic proxies (DTW, TWI) and a vegetative index (NDVI) (Fig. 3.5), multi-scale 

topographic indices were included as predictor variables in our model (Fig. 3.6). Multi-scale 

products were created for each topographic index relative to a specified length scale, similar to a 

focal neighborhood. The use of multi-scale topographic indices allows for landform associations 

to be contextualized so that metrics represent those at the wetland-upland interface at smaller 

length scales, and at the hillslope-valley complex at larger length scales.  

Multi-scale topographic indices were produced within the WIP tool’s DEM Utilities 

toolbox. Planform curvature, profile curvature, elevation deviation, and gradient were created at 

length scales of 50-, 150-, 300-, and 1000-m length scales, for a total of 16 multi-scale 

topographic indices (Table 3.2). Selected length scales reflect those used by Halabisky et al. 

(2023a) and are expected to depict representative scales of landform associations with 

topographic indices but are also exploratory for the selected study area. Total model covariates 

used (n = 19) were limited to the extent of either BcDc12 for model building and training 

purposes or McDc12 for model validation purposes. Short form abbreviations of topographic 

indices used are defined as ElevDev (elevation deviation), gradient (gradient), ProfCurv (profile 
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curvature), and PlanCurv (planform curvature). Each index is further identified by an appended 

length scale, i.e., PlanCurv300. 

 

Table 3.2. Environmental variables used in random forest modeling (n = 19) and validation. NDVI was used as a 
singular vegetative index and the WIM tool was used to produced hydrologic proxies. All multi-scale (50 m, 150 m, 
300 m, 1000 m) topographic indices were produced within the DEM Utilities toolbox housed within the WIP tool. 

 

 

 

Tool Source Function Additional Paramters Name Resolution (x, y)

NDVI Function
ArcGIS Pro 3.2.0; 

Analysis Tools
calculate normailzed difference 

vegetaion index (NDVI)
NA NDVI 3.0 m

Wetland Identification Model 
(WIM)

ArcGIS Pro 3.2.0;          
Arc Hydro Tools Pro

calculate depth to water index (DTW) 
using surface parameters

slope neigborhood = 10 m DTW 3.0 m

calculate topographic wetness index 
(TWI) using surface parameters

slope neigborhood = 10 m 
hydrocondition = fill

TWI 3.0 m

Wetland Intrinsic Potential 
Tool (WIP): DEM Utilities

Halabisky et al. 2023b length scale = 50 m Gradient_50 3.0 m

length scale = 150 m Gradient_150 3.0 m

length scale = 300 m Gradient_300 3.0 m

length scale = 1000 m Gradient_1000 3.0 m

length scale = 50 m ElevDev_50 3.0 m

length scale = 150 m ElevDev_150 3.0 m

length scale = 300 m ElevDev_300 3.0 m

length scale = 1000 m ElevDev_1000 3.0 m

length scale = 50 m PlanCurv_50 3.0 m

length scale = 150 m PlanCurv_150 3.0 m

length scale = 300 m PlanCurv_300 3.0 m

length scale = 1000 m PlanCurv_1000 3.0 m

length scale = 50 m ProfCurv_50 3.0 m

length scale = 150 m ProfCurv_150 3.0 m

length scale = 300 m ProfCurv_300 3.0 m

length scale = 1000 m ProfCurv_1000 3.0 m

create planfrom curvature (ProfCurv) 
raster using surface metrics

Model Covaraites (n = 19)Geoprocessing

create gradient raster using surface 
metrics

create elevation deviation (ElevDev) 
raster using surface metrics

create planfrom curvature (PlanCurv) 
raster using surface metrics
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Figure 3.5. Hydrologic variables were represented with TWI, representative of flow accumulation, and DTW, 
representative of areas with shallow depths to groundwater. NDVI was used as a sole vegetation variable, 
indicating vegetated areas.  

 

Figure 3.6. Multi-scale topographic indices used in wetland prediction modeling. Examples show 50- and 1000-
meter length scales for demonstration purposes, but each metric was additionally represented by 150- and 300-
meter length scales as well. Gradient characterizes change in slope from one cell to the next, curvature metrics 
depict hillslope complexity and convergence, and elevation deviation describes how elevations deviate from those 
in nearby cells.  
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2.5. Statistical Analysis 

Model covariates and training data for BcDc12 were used to train and build a random 

forest model using 200 decision trees. From this model, a wetland probability map was produced 

for BcDc12, with raster cells containing values from 0 – 1, depicting low to high probabilities of 

wetland presence. Various statistical outputs were generated from the random forest model, all of 

which reflect a class threshold of 0.5, with raster cells above this threshold identified as wetlands 

and cells below as uplands. OOB error and OOB accuracy are reported for the model building 

procedure and spatial extent (BcDc12), which is further summarized with a confusion matrix to 

generate additional statistics. These include errors of omission (false negative rate) and 

commission (false positive rate), specificity (true negative rate), sensitivity (true positive rate), 

and a kappa coefficient (accuracy of results relative to random chance). Additionally, two charts 

depicting variable importance to model decisions were produced. A Gini coefficient output 

ranked variables in terms of contributions to majority voting by decision trees, while an 

additional plot ranked variables in terms of contributions to OOB accuracy. To determine how 

well our model performs in other areas of coastal Alabama, it was applied to the extent of 

McDc12 and assessed for accuracy with a novel validation dataset. 

Running the model on McDc12 followed the same protocols as BcDc12 and produced a 

wetland probability map based on a threshold of 0.5 along with various statistical outputs. Model 

statistics for McDc12 included a confusion matrix to determine overall model error & accuracy, 

errors of omission and commission, sensitivity, specificity, and a kappa coefficient. To determine 

the model’s efficacy to successfully distinguish classes, a receiving operator characteristic 

(ROC) curve was generated for McDc12s validation dataset from which area under the ROC 

(AUC) was calculated based on the specified threshold of 0.5.  
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Wetland presence, absence, and extent were mapped by reclassifying wetland probability 

maps for both BcDc12 and McDc12 by respective thresholds. Our initial assessment was based 

on a threshold of 0.5, as this was the default for model building. Raster cells with WIP values 

less than 0.5 were classified as uplands and cells with WIP values greater than or equal to 0.5 

were classified as wetlands. Reclassified wetland probability maps are hereafter referred to as 

WIP wetland extent maps which are binary class-based rasters. 

Cell values of McDc12s wetland probability map were extracted at each validation data 

point to further analyze accuracy metrics as model thresholds were adjusted. The wetland 

probability map was reclassified using alternative threshold values, resulting in alternative 

wetland extent maps for each iteration. Confusion matrices were built and analyzed from each 

wetland extent map until an ideal threshold was identified by optimal values of kappa, overall 

model accuracy, and class error rates. These data were then used to compare WIP wetland extent 

maps with NWI maps for differences in class area and coverage, and to contextualize model 

behaviors.  

 

3. Results 

3.1. Random Forest Model: Training, Validation, and Accuracy Metrics 

 The following section reflects model results with a class threshold of o.5, as our default 

model. Variables which demonstrated the greatest relative contributions towards model decisions 

were DTW, ElevDeV1000, and Gradient50 with Gini coefficients of 40.8, 19.9, and 13.9, 

respectively (Fig. 3.7). Gini coefficients for NDVI (1.67) and TWI (1.48) were low in terms of 

importance, though most other topographic indices were closely aligned near this range as well. 

AUC for McDc12 validation data was calculated to be 0.98, and WIP values for these validation 
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data were additionally plotted, showing bimodal distributions of wetlands and uplands, which 

were clustered at high and low ranges, respectively (Fig. 3.8). A mean WIP value for wetland 

validation data was calculated to be 0.79 ± 0.02, and 0.08 ± 0.01 for upland validation data. 

These results suggest that our model performed exceptionally well at distinguishing between 

upland and wetland classes for our validation dataset, though bimodal distributions of WIP 

values indicate that an adequate amount of variation may not captured in this data.   

 

 

Figure 3.7. Gini coefficients for all model covariates represent contributions to the BcDc12 random forest models’ 
classification logic and are plotted by relative importance. DTW was substantially impactful for model decisions 
relative to other variables. 

 



89 
 

 

Figure 3.8. Area under the receiving operator curve for the McDc12 validation dataset was 0.98, suggesting that 
the random forest model was especially effective at differentiating between upland and wetland classes. The 
distribution of WIP values for upland and wetland classes are additionally provided for context on the ranges 
present in validation data relative to the designated threshold of 0.5. 
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Our random forest model, as it was applied to BcDc12, resulted in wetland omission and 

commission errors at 7.0% (false negative rate) and 2.5% (false positive rate), respectively. 

Sensitivity and specificity values were respectively, 0.93 (true positive rate) and 0.98 (true 

negative rate). This initial validation based on OOB procedures revealed that wetland sites in our 

training dataset were more frequently misclassified as uplands than upland sites were 

misclassified as wetlands. An OOB accuracy rate of 96.0% reflects highly accurate predictions 

when both metrics are considered, and a kappa coefficient of 0.91 indicate that our results are 

highly accurate compared with expected class agreement by chance. Upon running and 

validating the random forest model for the extent of McDc12, a confusion matrix resulted in 

overall model accuracy of 92.3%. Wetland omission errors were 14.0% (false negative rate) and 

wetland commission errors were 4.5% (false positive rate). Sensitivity and specificity values 

were respectively, 0.96 (true positive rate) and 0.86 (true negative rate), and a kappa coefficient 

was calculated to be 0.83. Although lower rates of accuracy are generally expected as models are 

applied to new areas, our random forest model remained highly accurate when validated on 

McDc12. Misclassification of wetlands as uplands continued to be the main source of error, 

though all metrics indicate a well performing model. Confusion matrices and model accuracy 

metrics relative to a class threshold of 0.5 are reported in Tables 3.3a and 3.3b for the random 

forest model (BcDc12) and the validation extent of the random forest model (McDc12). 

 

3.2. Alternative Class Thresholds: Validation and Accuracy Metrics 

The following section reports alternative threshold values and resulting statistics as they 

were applied to our model for the extent of McDc12. These findings are thus an exploratory 

analysis of alternative thresholds to guide future model building, rather than a validation of 
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distinct and separate models. In general, kappa coefficients increased as thresholds decreased 

from 0.5 (0.825) to 0.4 (0.836) to 0.3 (0.840) and decreased outside of this range. Overall model 

accuracy increased from 92.3% at a threshold of 0.5, to 92.7% at thresholds of both 0.3 and 0.4. 

Wetland omission (false negative rate) errors fell from a threshold of 0.5 (14.0%) to 0.4 (10.0%) 

while wetland commission errors (false positive rate) rose from 4.5% to 6.0%. Moving from a 

threshold of 0.4 to 0.3, wetland omission errors fell from 10.0% to 5.0% and wetland 

commission errors rose from 6.0% to 8.5%. These data are reported in Tables 3.3c and 3.3d and 

suggest an optimal threshold of 0.3 or 0.4, dependent on class-specific objectives.  

 
Table 3.3. Confusion Matrices and additional validation related statistics are reported for models with threshold 
values set at 0.5 for (a) BcDc12 and (b) McDc12. These statistics are also reported for alternate threshold values 0.4 
(c) and 0.3 (d) for McDc12. BcDc12 statistics were based on an OOB assessment of training data and does not 
represent an equal method for comparisons for those in McDc12. With decreasing threshold values, Omission errors 
declined while commissions errors, overall accuracy, and kappa coefficients increased. Differences between (c) 0.4 
and (d) 0.3 represent tradeoffs between class related errors. 
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3.3. Mapped Wetland Presence, Absence, and Extent 

Wetland probability, presence, absence, and extent are mapped in Fig. 3.9 for the extent 

of BcDc10. Our WIP model agreed with 89.1% of NWI classes, while 4.4% of NWI wetlands 

were recognized as uplands and 6.6% of NWI uplands were recognized as wetlands, for a 

cumulative difference of 2.2% in increased wetland coverage (Fig. 3.10). Land cover classes for 

BcDc10 were represented as 80.7% uplands and 19.3% wetlands, while our WIP model 

represented 78.4% of BcDc10 as uplands and 21.6% as wetlands. In terms of wetland area, this 

represents an 8.7% increase in total wetland area from that mapped by NWI. 

Visual trends noted between NWI and WIP maps included considerable disagreement 

near wetland edges and headwater wetlands associated with 1st order streams. Rather than 

identifying newly mapped headwater wetlands which were undetected by NWI, areas around 

mapped NWI headwater wetlands often expanded, while the areas around unmapped NWI 

headwater wetlands were often omitted. Mapped NWI headwater wetlands were omitted as well 

and were often those which did not contain mapped streams within their boundaries.  
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Figure 3.9. Wetland probability (intrinsic potential) modeled for BcDc10, and a resulting wetland presence, 
absence, and extent map based on the model threshold of 0.5. 
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Figure 3.10. WIP was highly representative of NWI wetland and upland classes (89.1% agreement). Of the classes 
which disagreed, the cumulative difference resulted in a 2.2% increase of wetland cover by the WIP model. This 
represented an 8.7% increase in total wetland area from the former extent mapped by NWI.  
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4. Discussion 

 The WIP tool as it was applied to the total extent of the study area (BcDc10) resulted in 

highly accurate predictions of wetland presence and absence, indicated by validation metrics 

(omission rate, commission rate, sensitivity, specificity, overall accuracy, kappa). Through visual 

inspections of wetland extent maps, we observed potential model behaviors that tended towards 

the inclusion of wetland edges into total wetland cover for previously mapped headwater 

wetlands, while omitting entire headwater wetlands previously mapped by NWI. Though we 

expected increased coverage of previously unmapped wetlands, total wetland coverage increased 

nominally compared with NWI maps. This may have been the result of sampling designs and 

model covariates used, the spatial extent in which our analyses were constrained, or the 

unreliability of NWI boundaries. Alternatively, NWI may be an accurate representation of 

wetland presence, absence, and extent throughout BcDc10. While our methods sought to 

improve wetland mapping techniques, there was no immediate evidence to suggest that NWI had 

considerably under-mapped wetlands for this region in particular, and further efforts to field 

validate NWI wetlands are needed to fully address this possibility.  

  Bimodal distributions of wetland vs. upland WIP values resulted in an exceptionally high 

model AUC. These distributions indicate clear distinctions on the landscape between wetlands 

and uplands, which do not reflect the gradational nature of headwater wetlands. A possible 

explanation is that representation of headwater wetlands through stratified random sampling was 

an adequate approach to isolate landscape features associated with their occurrence relative to 

surrounding uplands. Alternatively, as these distributions are not indicative of the gradational 

nature of headwater wetlands, training/validation data may have been unrepresentative of 

wetlands with midrange WIP values, such as those near wetland edges. This may have 



96 
 

additionally resulted in overrepresentation of wetland extent for those which were most similar 

to training data locations, and underrepresentation for those which were dissimilar despite true 

wetland status. Optimal threshold values reported are thus relative to stratified random sampling 

designs and would likely be lower with greater representation of wetlands associated with 

mainstem wetlands. If differentiation between target wetlands and surrounding uplands is a 

primary mapping objective, stratified random sampling may be appropriate. Detection of all 

wetlands would be better guided by a completely randomized sampling design. 

  Another consideration for potential bias introduced by our sampling design was the 

method to manually adjust half of the randomly placed points along 1st order streams to the 

nearest headwater wetland with an unmapped stream. As the model was trained on BcDc12, 

morphological differences with those in McDc12 may have influenced predictive abilities. In 

BcDc12, headwater wetlands were noted for higher rates of convergence with other headwater 

wetlands at farther distances upstream than observed in McDc12. In McDc12, headwater 

wetlands were noted for regular spacing at perpendicular angles from the streams which they 

drained directly to. In BcDc12, adjusted locations for headwater wetlands without mapped 

streams were still fairly close to mapped streams, though in McDc12, headwater wetlands were 

spaced further apart, and potentially undetected where DTW values did not reflect those in 

training data. This method may have additionally excluded headwater wetland extent for those 

which drain directly to mainstem streams, as these were rarely the closest wetlands to mapped 

random points placed along 1st order streams. 

 Based on visual assessments of WIP wetland probability and extent maps, headwater 

wetlands which did not contain mapped streams showed evidence of omission via DTW, which 

was the most impactful predictor of wetland presence or absence. Wetland extent maps were 
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compared for all thresholds which were noted for closer alignment to known wetland boundaries 

as thresholds decreased from 0.5 to 0.3 (Fig 3.11). Conversely, mainstem wetlands appeared to 

be unrepresented by training data, as the processes which characterize flooding were diminished 

in mapped wetland extent. TWI was relatively unimpactful as a predictor variable, though is 

likely a better predictor where surface water hydrology and periodic flooding determine wetland 

status. Low TWI values present in headwater training data locations likely diminished this 

predictive relationship for those in mainstem wetlands. Through visual assessments of wetland 

extent maps, we infer that sampling designs may have constrained covariate ranges used for 

prediction to those in similar locations. Thus, accuracy metrics do not represent the totality of 

wetland conditions throughout BcDc10. Extended wetland boundaries around NWI wetland 

edges were noted as unlikely in many cases, especially where these areas were associated with 

agricultural ditches, ponds, and dams. The function of DTW assumes these areas to have shallow 

depths to groundwater, despite dissimilarity in these landscape modifications with reference 

wetland topography that induces groundwater upwelling. 

Wetland extent maps with lowered thresholds resulted in fewer wetland omission errors 

and better captured portions of those omitted by a threshold of 0.5. While wetland commission 

errors remained low at thresholds of 0.3 (8.5%) - 0.4 (6.0%), the mapped extent of wetlands 

occurring in indisputable upland areas provides further evidence that validation data are not 

wholly representative of upland conditions. This issue was addressed by Halabisky et al. (2023a) 

through the use of a preliminary model, trained on 2000 upland points and 1000 wetlands. The 

training data used in the final model were stratified by areas of low to high wetland probability, 

amongst four classes of WIP value bins (0-0.24, 0.25-0.49, 0.50-0.74, 0.75-1.0). Although AUC 

was exceptionally high in our validation dataset, bimodal distributions of probability near 
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minimum and maximum values further supports the merit provided by this additional step. We 

suggest this method to be prioritized in future modeling efforts to better represent areas of 

uncertainty. 

 

 

Figure 3.11. Headwater wetlands present in NWI were often omitted in WIP models where (a) variables such as 
DTW may have disproportionately affected those lacking mapped streams. Core areas of floodplain wetlands 
associated with mainstem rivers were (b) largely agreed on between NWI and WIP models, though floodplain width 
was reduced considerably in all variations of model thresholds.            
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5. Conclusion 

The objectives which guide the use of wetland predictive models vary, as do the results 

which support those objectives. If headwater wetland detection is a primary objective, a stratified 

sampling design by stream order may be useful despite inaccuracies in wetlands that are not of 

interest. If the accurate detection of all wetlands is desired, alternative sampling designs such as 

equally stratified groups or complete randomization may be more appropriate. Our work 

explores a single design, focused on headwater wetland detection. The use of NWI as a 

restraining feature additionally presents biases towards wetlands associated with NWI wetland 

detection, such as areas associated with or closely aligned to mapped streams. For detection of 

previously unmapped wetlands, training and validation data are most robust where they include 

areas which are not mapped by NWI.  

Results from this study are meant to introduce valuable perspectives to wetland mappers 

of the coastal plain region on potential tradeoffs between detection, accuracy, and target 

wetlands. Such models should be treated as tools to better guide wetland resource managers 

towards accurate and representative wetland inventories, rather than a single step from which to 

produce them. The need for field validated wetlands and data unrepresentative of NWI is critical 

for improved wetland mapping. The availability of standardized, georeferenced, and open source 

wetland delineations could greatly improve models that rely on training data for wetland 

mapping applications. Field validated boundaries like these could help address uncertainties 

regarding optimal thresholds near wetland edges and in slope wetlands. With improved sampling 

designs and model building processes, our exploratory analysis may be furthered throughout the 

region to identify metrics which are highly predictive and representative of wetlands across the 

landscape. 
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Appendix 

Table 1. Locations of study sites per dataset. Coordinates reflect Locations within wetland boundaries. 

    Location (UTM 16N)     

Dataset Site Easting Northing State County 

2010 Bark_4 3371302 435590 AL Baldwin 
2010 Bark_9 3364875 440948 AL Baldwin 
2010 Bark_11 3359898 441733 AL Baldwin 
2010 Bark_14 3371367 433756 AL Baldwin 
2010 Bark_17 3368210 418788 AL Baldwin 
2010 Bark_20 3370704 422239 AL Baldwin 
2010 Bark_23 3362378 427593 AL Baldwin 
2010 Bark_25 3361361 423899 AL Baldwin 
2010 Bark_26 3365731 421442 AL Baldwin 
2010 Bark_27 3364974 416420 AL Baldwin 
2010 Bark_28 3373476 412034 AL Baldwin 
2010 Bark_32 3361336 455592 AL Baldwin 
2010 Bark_36 3361471 442471 AL Baldwin 
2010 Bark_37 3366498 435561 AL Baldwin 
2010 Bark_39 3358564 450336 AL Baldwin 
2010 Bark_40 3359940 450405 AL Baldwin 
2010 Bark_41N 3357456 439043 AL Baldwin 
2010 Bark_41S 3362213 455777 AL Baldwin 
2010 Bark_43 3368401 434267 AL Baldwin 
2010 Bark_52 3363620 429530 AL Baldwin 
2010 Bark_53 3364590 430219 AL Baldwin 
2010 Bark_56 3371342 447141 AL Baldwin 

2022 - 2023 BayM_ACC 3413799 425490 AL Baldwin 
2022 - 2023 BayM_BAMS_N 3421344 428677 AL Baldwin 
2022 - 2023 BayM_BAMS_S 3419967 428781 AL Baldwin 
2022 - 2023 BayM_UlmP 3414128 425070 AL Baldwin 
2022 - 2023 Citr_OC 3433369 385734 AL Mobile 
2022 - 2023 Citr_PRC 3437197 382749 AL Mobile 
2022 - 2023 Dap_BS 3389959 418420 AL Baldwin 
2022 - 2023 Dap_JB 3389135 413104 AL Baldwin 
2022 - 2023 Dap_SP 3388393 413775 AL Baldwin 
2022 - 2023 Elb_BC 3358302 443029 AL Baldwin 
2022 - 2023 Elb_LF_NW 3368517 451519 AL Baldwin 
2022 - 2023 Elb_LF_SE 3367541 452804 AL Baldwin 
2022 - 2023 Elb_WolfNolf 3356599 448749 AL Baldwin 
2022 - 2023 Fol_BS 3356420 431719 AL Baldwin 
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Table. 1. Continued. 

    Location (UTM 16N)     

Dataset Site Easting Northing State County 

2022 - 2023 Fol_MkF 3368466 429912 AL Baldwin 
2022 - 2023 Gbay_Drisk_BB 3382164 369216 AL Mobile 
2022 - 2023 Gbay_Drisk_CC 3382947 367138 AL Mobile 
2022 - 2023 Gbay_Drisk_SL 3384586 365645 AL Mobile 
2022 - 2023 Irv_Drisk_NE 3368317 375057 AL Mobile 
2022 - 2023 Irv_Drisk_SW 3368127 374900 AL Mobile 
2022 - 2023 Mob_BMS 3387807 385951 AL Mobile 
2022 - 2023 Mob_MemG 3385736 386002 AL Mobile 
2022 - 2023 Mob_MIMS 3388551 388070 AL Mobile 
2022 - 2023 Mob_UM 3407525 392220 AL Mobile 
2022 - 2023 Mob_USA_01 3397477 387049 AL Mobile 
2022 - 2023 Mob_USA_02 3396734 386579 AL Mobile 
2022 - 2023 Per_WMA_N 3399060 450778 AL Baldwin 
2022 - 2023 Per_WMA_S 3393506 457538 AL Baldwin 
2022 - 2023 Prd_MTEP 3406547 387914 AL Mobile 
2022 - 2023 RobD_BeHP 3378944 436847 AL Baldwin 
2022 - 2023 RobD_BFA 3381180 430664 AL Baldwin 
2022 - 2023 RobD_DB 3385206 437185 AL Baldwin 
2022 - 2023 RobD_MHP 3384796 436440 AL Baldwin 
2022 - 2023 RobD_RC 3381383 432184 AL Baldwin 
2022 - 2023 Sem_EdAd 3399361 383119 AL Mobile 
2022 - 2023 SF_GW 3395892 422051 AL Baldwin 
2022 - 2023 SF_SFHS 3395481 417494 AL Baldwin 
2022 - 2023 SF_SR 3395114 421591 AL Baldwin 
2022 - 2023 SumD_BeAP 3373142 438360 AL Baldwin 
2022 - 2023 SumD_LFF 3374231 435992 AL Baldwin 
2003 - 2004 Nob_WMS 3401311 411849 MS Harrison 
2003 - 2004 Nob_Tar 3401511 411880 AL Mobile 
2003 - 2004 Nob_SHB 3400684 413406 AL Baldwin 
2003 - 2004 Nob_PC 3400953 382577 AL Mobile 
2003 - 2004 Nob_LDM 3363597 328122 MS Jackson 
2003 - 2004 Nob_GVC 3389966 322104 MS Jackson 
2003 - 2004 Nob_GC 3431197 372630 AL Mobile 
2003 - 2004 Nob_BSP_SB 3434242 435775 AL Baldwin 
2003 - 2004 Nob_BSP_JS 3393884 382446 AL Baldwin 
2003 - 2004 Nob_BSP_5 3377793 308784 AL Baldwin 
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Table 2.  Slope and area metrics for each site’s watershed, initital contributing area, and wetland. The proportion of 
wetland area vs. initial contribting area coverage is additionally reported as coverage per watershed.   

 

  Watershed Initial Contributing Area Headwater Wetland 

Site Area 
(ha) 

Mean 
Slope 

(%) 

Area 
(ha) 

Mean 
Slope 

(%) 

Coverage 
(%) 

Area 
(ha) 

Mean 
Slope 

(%) 

Coverage 
(%) 

 
Bark_4 224.9 2.2 220.2 2.2 97.9 4.7 1.7 2.1  

Bark_9 170.6 3.3 151.1 3.3 88.6 19.5 3.7 11.4  

Bark_11 98.1 2.6 93.2 2.6 95.0 4.9 2.3 5.0  

Bark_14 315.7 1.5 309.3 1.5 98.0 6.4 2.1 2.0  

Bark_17 102.1 5.0 96.1 4.9 94.2 6.0 6.3 5.8  

Bark_20 83.8 3.4 73.9 3.5 88.2 9.9 3.1 11.8  

Bark_23 143.6 3.2 131.1 3.2 91.3 12.5 4.0 8.7  

Bark_25 170.1 2.4 167.0 2.3 98.2 3.1 4.8 1.8  

Bark_26 158.8 3.8 146.6 3.8 92.3 12.3 3.7 7.7  

Bark_27 531.2 2.7 477.9 2.7 90.0 53.3 2.7 10.0  

Bark_28 123.3 4.5 120.9 4.4 98.1 2.4 6.2 1.9  

Bark_32 216.1 3.5 200.4 3.4 92.7 15.7 4.2 7.3  

Bark_36 107.2 3.1 102.2 3.1 95.3 5.0 4.4 4.7  

Bark_37 59.7 2.5 54.7 2.6 91.7 5.0 1.9 8.3  

Bark_39 31.8 5.6 29.3 5.6 92.1 2.5 5.1 7.9  

Bark_40 160.9 3.1 156.1 3.0 97.0 4.9 7.2 3.0  

Bark_41N 183.1 2.6 168.3 2.6 91.9 14.8 2.7 8.1  

Bark_41S 39.2 4.6 37.1 4.5 94.6 2.1 5.9 5.4  

Bark_43 268.1 2.1 260.4 2.1 97.1 7.7 2.2 2.9  

Bark_52 183.4 2.6 179.6 2.6 97.9 3.8 3.0 2.1  

Bark_53 264.6 3.1 259.2 3.1 98.0 5.4 5.1 2.0  

Bark_56 30.7 3.8 28.5 3.9 92.8 2.2 2.7 7.2  

BayM_ACC 73.5 3.6 71.9 3.6 97.8 1.6 5.4 2.2  

BayM_BAMS_N 33.6 8.2 29.1 8.7 86.8 4.4 5.0 13.2  

BayM_BAMS_S 73.9 6.3 61.1 6.8 82.6 12.9 3.7 17.4  

BayM_UlmP 37.6 4.7 36.8 4.7 97.9 0.8 5.4 2.1  

Citr_OC 53.7 9.2 48.4 9.5 90.3 5.2 6.0 9.7  

Citr_PRC 47.7 9.6 43.2 10.0 90.6 4.5 6.0 9.4  

Dap_BS 69.3 4.9 65.7 4.8 94.8 3.6 5.2 5.2  

Dap_JB 76.1 7.6 71.2 7.3 93.5 4.9 11.3 6.5  

Dap_SP 143.6 6.8 138.6 6.8 96.6 4.9 7.6 3.4  

Elb_BC 74.0 2.6 72.0 2.5 97.3 2.0 5.0 2.7  

Elb_LF_NW 714.6 1.8 697.3 1.7 97.6 17.3 2.5 2.4  

Elb_LF_SE 237.7 2.0 214.4 2.0 90.2 23.3 2.2 9.8  

Elb_WolfNolf 146.8 3.6 138.8 3.6 94.6 8.0 3.5 5.4  

Fol_BS 76.2 2.6 73.1 2.6 96.0 3.0 2.9 4.0  
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Table 2. Continued. 

  Watershed Initial Contributing Area Headwater Wetland 

Site Area 
(ha) 

Mean 
Slope 

(%) 

Area 
(ha) 

Mean 
Slope 

(%) 

Coverage 
(%) 

Area 
(ha) 

Mean 
Slope 

(%) 

Coverage 
(%) 

 
Fol_MkF 292.7 1.8 285.0 1.7 97.4 7.6 6.0 2.6  

Gbay_Drisk_BB 324.8 2.1 295.9 2.1 91.1 28.9 2.2 8.9  

Gbay_Drisk_CC 247.8 1.6 237.6 1.5 95.9 10.2 4.7 4.1  

Gbay_Drisk_SL 279.2 3.2 271.9 3.1 97.4 7.3 5.0 2.6  

Irv_Drisk_NE 388.0 1.4 384.4 1.4 99.1 3.7 3.1 0.9  

Irv_Drisk_SW 48.7 2.2 47.5 2.1 97.5 1.2 5.1 2.5  

Mob_BMS 166.6 6.6 153.0 6.9 91.8 13.6 3.9 8.2  

Mob_MemG 200.0 7.1 182.4 7.2 91.2 17.6 6.0 8.8  

Mob_MIMS 52.4 9.2 46.4 9.0 88.4 6.1 10.5 11.6  

Mob_UM 149.1 5.7 134.1 5.9 90.0 15.0 4.3 10.0  

Mob_USA_01 146.0 4.5 140.8 4.3 96.5 5.1 10.5 3.5  

Mob_USA_02 46.5 6.5 44.5 6.4 95.8 1.9 8.5 4.2  

Per_WMA_N 56.7 5.7 46.4 6.4 81.8 10.3 2.7 18.2  

Per_WMA_S 92.9 4.9 86.5 4.6 93.2 6.4 9.6 6.8  

Prd_MTEP 42.2 7.1 40.0 7.0 94.8 2.2 9.1 5.2  

RobD_BeHP 104.2 3.7 96.6 3.8 92.7 7.6 3.2 7.3  

RobD_BFA 162.1 2.6 153.5 2.7 94.7 8.5 1.4 5.3  

RobD_DB 309.0 3.0 283.9 3.1 91.9 25.1 1.5 8.1  

RobD_MHP 133.7 3.9 121.3 4.0 90.7 12.4 2.9 9.3  

RobD_RC 1566.5 1.7 1539.5 1.7 98.3 27.0 3.1 1.7  

Sem_EdAd 163.3 4.9 153.9 4.6 94.2 9.4 8.9 5.8  

SF_GW 58.3 9.3 55.2 8.8 94.6 3.1 18.5 5.4  

SF_SFHS 13.0 7.6 12.3 6.9 94.5 0.7 19.0 5.5  

SF_SR 81.9 7.0 74.3 6.0 90.8 7.6 15.9 9.2  

SumD_BeAP 325.7 1.7 320.3 1.7 98.3 5.5 2.3 1.7  

SumD_LFF 160.4 2.6 147.6 2.5 92.0 12.8 4.0 8.0  

Nob_WMS 27.9 6.4 24.7 5.6 88.8 3.1 13.0 11.2  

Nob_Tar 217.0 6.2 207.7 6.1 95.7 9.3 10.3 4.3  

Nob_SHB 56.0 5.4 51.1 4.5 91.2 4.9 14.3 8.8  

Nob_PC 118.7 7.5 106.1 7.5 89.4 12.6 7.8 10.6  

Nob_LDM 9.9 6.7 8.7 6.6 88.2 1.2 7.6 11.8  

Nob_GVC 1.2 8.7 1.0 9.1 82.0 0.2 6.5 18.0  

Nob_GC 173.3 5.5 164.3 5.5 94.8 8.9 6.0 5.2  

Nob_BSP_SB 62.8 8.5 52.7 9.8 83.9 10.1 1.5 16.1  

Nob_BSP_JS 45.2 8.1 35.9 8.5 79.5 9.3 6.6 20.5  

Nob_BSP_5 32.2 9.3 29.7 9.8 92.3 2.5 4.4 7.7  
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Table 3. LULC proportions and Comp. loading scores for each initial contributing area that drains to a wetland site. 
Open water is provided as supplementary data but was not used in PCA to create Comps. 1, 2, and 3.  

  Initial Contributing Area: LULC (%) PCA Loading Scores 

Site Water Urban Forest Agriculture Comp. 1 Comp. 2 Comp. 3 

Bark_4 1.03 6.69 18.04 74.24 -50.48 -20.04 -0.07 
Bark_9 2.80 10.88 19.90 66.42 -43.58 -14.27 -1.12 
Bark_11 0.00 18.50 21.55 59.96 -37.75 -6.14 0.46 
Bark_14 0.07 23.33 4.51 72.08 -58.30 0.04 0.43 
Bark_17 2.19 8.81 54.55 34.45 3.50 -17.56 -0.85 
Bark_20 0.35 10.71 54.93 34.01 4.10 -15.99 0.20 
Bark_23 0.21 7.83 24.34 67.63 -41.34 -19.08 0.39 
Bark_25 0.38 8.39 35.51 55.72 -25.01 -18.50 0.25 
Bark_26 0.31 10.90 70.10 18.69 25.66 -16.01 0.18 
Bark_27 1.17 12.48 32.97 53.39 -25.10 -13.17 -0.22 
Bark_28 5.90 28.40 58.93 6.78 26.43 7.69 -3.12 
Bark_32 0.58 41.96 36.08 21.38 0.12 22.42 -0.06 
Bark_36 2.09 26.92 46.30 24.70 4.80 4.56 -0.87 
Bark_37 0.00 15.71 45.31 38.98 -6.15 -9.90 0.40 
Bark_39 1.37 5.28 84.33 9.03 42.48 -22.65 -0.44 
Bark_40 0.06 7.78 73.41 18.75 27.92 -19.95 0.34 
Bark_41N 3.23 4.52 54.70 37.55 1.36 -22.37 -1.43 
Bark_41S 0.00 98.52 1.48 0.00 -8.48 91.56 0.05 
Bark_43 0.21 22.42 20.25 57.12 -36.61 -1.26 0.31 
Bark_52 0.50 16.63 23.18 59.68 -36.42 -8.23 0.16 
Bark_53 0.56 22.24 30.43 46.78 -22.10 -1.50 0.09 
Bark_56 0.00 11.68 53.94 34.38 3.15 -14.93 0.40 
BayM_ACC 0.00 81.55 15.97 0.28 1.35 71.56 -1.17 
BayM_BAMS_N 0.00 0.00 100.00 0.00 59.87 -29.86 0.34 
BayM_BAMS_S 0.23 3.49 96.04 0.24 56.95 -25.46 0.20 
BayM_UlmP 0.00 71.39 27.69 0.91 9.05 58.14 0.13 
Citr_OC 0.17 3.08 49.21 47.54 -9.61 -25.26 0.37 
Citr_PRC 0.00 11.32 73.01 15.67 29.86 -15.66 0.35 
Dap_BS 0.27 35.44 33.20 31.08 -8.86 14.41 0.16 
Dap_JB 0.00 33.43 62.96 3.62 31.57 11.39 0.26 
Dap_SP 0.00 65.14 24.77 10.09 0.41 50.58 0.18 
Elb_BC 0.13 6.59 30.60 62.69 -33.44 -20.72 0.43 
Elb_LF_NW 0.18 4.88 17.49 77.45 -53.17 -22.58 0.44 
Elb_LF_SE 0.30 3.91 18.06 77.73 -52.97 -23.72 0.37 
Elb_WolfNolf 0.79 22.87 64.12 12.21 26.17 -1.15 -0.15 
Fol_BS 0.25 9.57 34.43 55.76 -25.79 -17.10 0.33 
Fol_GCNP_E 0.00 0.00 83.32 16.68 36.28 -29.60 0.39 
Fol_GCNP_W 0.00 0.77 96.82 2.40 55.93 -28.87 0.34 
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Table 3. continued. 

  Initial Contributing Area: LULC (%) PCA Loading Scores 

Site Water Urban Forest Agriculture Comp. 1 Comp. 2 Comp. 3 

Fol_MkF 0.22 5.59 4.93 89.26 -70.39 -21.50 0.45 
Gbay_Drisk_BB 4.14 5.16 29.17 61.53 -33.63 -20.84 -1.89 
Gbay_Drisk_CC 0.68 4.21 8.67 86.44 -65.77 -23.06 0.18 
Gbay_Drisk_SL 2.82 1.39 16.71 79.08 -54.91 -25.76 -1.07 
Irv_Drisk_NE 1.71 7.16 16.47 74.66 -51.88 -19.18 -0.46 
Irv_Drisk_SW 1.47 5.17 27.16 66.20 -38.37 -21.86 -0.34 
Mob_BMS 0.00 74.33 25.21 0.46 7.65 61.75 0.12 
Mob_MemG 0.00 18.23 76.12 5.65 39.23 -7.30 0.30 
Mob_MIMS 0.00 73.67 26.14 0.19 8.49 60.93 0.13 
Mob_UM 0.00 49.18 49.35 1.47 23.67 30.77 0.20 
Mob_USA_01 0.00 88.21 11.74 0.06 -1.40 78.85 0.09 
Mob_USA_02 0.04 85.35 12.42 2.19 -2.47 75.38 0.07 
Per_WMA_N 0.00 8.32 90.91 0.78 53.00 -19.59 0.32 
Per_WMA_S 0.10 4.33 93.59 1.98 54.00 -24.45 0.28 
Prd_MTEP 0.00 34.68 56.66 8.66 23.56 13.02 0.26 
RobD_BeHP 0.00 3.58 34.56 61.86 -30.09 -24.49 0.50 
RobD_BFA 0.00 53.78 7.93 38.29 -31.59 37.01 0.29 
RobD_DB 1.58 6.78 29.13 62.51 -34.34 -19.88 -0.42 
RobD_MHP 0.00 7.19 64.05 28.76 14.21 -20.55 0.40 
RobD_RC 0.27 24.06 10.85 64.82 -48.68 0.90 0.30 
Sem_EdAd 0.23 63.12 31.59 5.06 8.76 48.10 0.04 
SF_GW 0.00 54.59 42.89 2.52 18.43 37.46 0.19 
SF_SFHS 0.16 44.20 55.64 0.00 29.09 24.68 0.12 
SF_SR 0.00 52.06 38.44 9.51 10.31 34.44 0.22 
SumD_BeAP 0.08 25.16 6.62 68.13 -53.99 2.24 0.41 
SumD_LFF 0.24 15.91 6.01 77.84 -61.41 -8.95 0.37 
Nob_WMS 0.00 1.37 98.63 0.00 58.92 -28.17 0.34 
Nob_Tar 0.00 8.04 91.96 0.00 54.29 -19.95 0.32 
Nob_SHB 0.00 13.03 86.82 0.14 50.63 -13.79 0.30 
Nob_PC 0.14 23.89 48.99 26.98 5.04 0.06 0.27 
Nob_LDM 0.00 34.27 65.73 0.00 36.10 12.38 0.24 
Nob_GVC 0.00 9.96 89.46 0.58 52.14 -17.57 0.31 
Nob_GC 1.09 0.74 94.23 3.94 53.02 -28.43 -0.28 
Nob_BSP_SB 3.09 0.00 96.91 0.00 57.70 -28.58 -1.44 
Nob_BSP_JS 0.14 61.02 26.37 12.47 -0.20 45.59 0.12 
Nob_BSP_5 0.00 7.57 88.50 3.93 49.06 -20.47 0.33 
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Table. 4. Wetland Field Measurements for all study sites. 

 

 
Canopy Tree 

Structure Cover (%) 
Munsell Soil 

Color 

Site 
Mean 
DBH 
(cm) 

Stems/ha Canopy 
Tree 

Shrub/ 
Sapling Herbacious Detritus Value Chroma 

Bark_4 48.77 1350 72.50 40.00 15.00 80.00 3.00 2.00 
Bark_9 49.28 625 52.50 55.00 71.25 82.50 2.70 1.40 
Bark_11 50.80 1475 67.50 43.75 28.13 100.00 2.00 2.00 
Bark_14 61.47 900 46.25 30.00 62.50 92.50 2.50 2.30 
Bark_17 61.47 825 83.75 15.00 26.25 73.80 3.00 1.80 
Bark_20 53.09 375 57.50 58.75 52.50 88.80 2.60 1.40 
Bark_23 52.58 1550 85.00 38.75 2.00 25.00 3.00 2.30 
Bark_25 40.64 1125 81.25 18.75 41.25 42.50 3.00 2.40 
Bark_26 49.28 750 52.50 66.25 9.50 80.00 2.80 1.30 
Bark_27 57.91 700 85.00 57.50 16.25 38.80 3.00 2.20 
Bark_28 55.63 1025 71.25 55.00 81.25 83.80 3.00 2.50 
Bark_32 34.80 1100 66.25 22.50 50.00 50.00 3.00 1.60 
Bark_36 46.23 975 71.25 40.00 60.00 82.50 2.60 1.40 
Bark_37 45.72 1175 75.00 32.50 60.00 91.30 3.10 1.10 
Bark_39 43.43 1000 67.50 43.75 28.13 92.50 2.90 2.30 
Bark_40 58.67 1050 71.25 65.00 41.25 52.50 3.00 1.50 
Bark_41N 43.18 750 43.75 57.25 77.50 91.50 2.40 1.20 
Bark_41S 62.48 1100 -- 47.50 73.75 100.00 2.20 1.00 
Bark_43 44.20 875 88.75 12.50 16.25 100.00 2.90 2.00 
Bark_52 68.07 725 40.00 66.25 27.50 100.00 2.90 2.30 
Bark_53 61.21 425 40.00 73.75 11.25 88.80 3.40 2.30 
Bark_56 55.88 1050 76.25 40.00 36.25 37.50 2.50 1.20 
BayM_ACC 32.21 225 -- -- -- 73.75 3.19 3.19 
BayM_BAMS_N 22.85 575 54.00 4.38 14.38 74.75 2.84 1.69 
BayM_BAMS_S 19.84 800 58.00 2.50 5.13 60.00 2.16 1.31 
BayM_UlmP 24.49 600 NA NA NA 30.00 3.84 4.00 
Citr_OC 23.54 900 66.25 42.50 7.38 76.25 3.66 2.38 
Citr_PRC 23.09 875 61.88 26.25 6.88 46.88 3.41 2.81 
Dap_BS 19.18 975 59.63 38.75 21.25 56.88 3.94 3.81 
Dap_JB 24.38 725 50.88 25.00 6.38 51.25 3.44 1.94 
Dap_SP 15.49 1750 60.00 36.25 5.63 64.38 4.56 2.50 
Elb_BC 25.35 500 -- 32.50 -- 70.00 3.81 2.63 
Elb_LF_NW 20.83 575 26.88 51.25 21.25 48.75 4.69 3.69 
Elb_LF_SE 24.38 825 70.00 19.38 36.25 81.88 2.56 1.50 
Elb_WolfNolf 21.40 1475 60.25 3.13 1.25 32.50 4.31 1.69 
Fol_BS 25.12 700 62.50 41.25 12.50 58.75 2.31 1.88 
Fol_GCNP_E 21.34 1300 65.50 4.25 4.88 86.25 2.63 1.06 
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Table. 4. Continued. 

 
Canopy Tree 

Structure Cover (%) 
Munsell Soil 

Color 

Site 
Mean 
DBH 
(cm) 

Stems/ha Canopy 
Tree 

Shrub/ 
Sapling Herbacious Detritus Value Chroma 

Fol_GCNP_W 22.50 775 59.50 8.75 26.25 87.50 2.19 1.38 
Fol_MkF 28.09 925 47.50 51.25 17.50 74.38 3.06 1.50 
Gbay_Drisk_BB 34.49 225 38.75 30.00 18.13 29.25 2.00 1.56 
Gbay_Drisk_CC 26.62 800 46.88 37.50 11.88 69.38 3.56 3.25 
Gbay_Drisk_SL 28.13 750 46.25 13.75 77.50 38.38 2.19 1.81 
Irv_Drisk_NE 28.85 525 29.38 30.00 0.75 57.50 3.06 1.56 
Irv_Drisk_SW 23.37 275 25.00 43.75 1.75 63.75 3.75 3.06 
Mob_BMS 54.00 575 -- -- -- 96.25 3.69 3.38 
Mob_MemG 16.13 1200 -- -- -- 87.50 4.25 2.19 
Mob_MIMS 53.95 450 -- -- -- 77.50 4.19 2.33 
Mob_UM 49.68 725 -- -- -- 55.00 2.63 -- 
Mob_USA_01 54.74 675 -- -- -- 51.25 3.75 2.38 
Mob_USA_02 28.85 525 -- -- -- 88.75 3.03 1.63 
Per_WMA_N 20.14 975 -- 12.75 -- 51.25 2.38 1.00 
Per_WMA_S 41.50 525 -- NA -- 0.00 2.75 1.06 
Prd_MTEP 17.70 1650 -- NA -- 71.25 4.03 2.66 
RobD_BeHP 45.25 700 48.75 25.63 50.63 35.50 3.69 2.50 
RobD_BFA 36.73 1250 -- 78.75 -- 34.25 4.25 1.69 
RobD_DB 58.48 800 66.80 32.50 -- 36.25 2.63 1.75 
RobD_MHP 80.04 325 -- -- -- 60.00 3.00 1.81 
RobD_RC 28.27 700 -- 52.50 28.13 67.50 4.00 2.50 
Sem_EdAd 44.45 550 -- -- -- 100.00 3.44 2.75 
SF_GW 33.78 450 60.00 55.00 11.25 45.63 3.72 2.13 
SF_SFHS 23.37 800 -- 25.00 -- 78.13 3.78 2.34 
SF_SR 34.21 1075 -- 12.50 -- 25.00 4.88 4.31 
SumD_BeAP 30.18 925 51.25 28.75 26.25 42.50 2.34 1.38 
SumD_LFF 59.82 500 -- 45.00 -- 62.50 2.69 1.88 
Nob_WMS 53.34 350 -- 15.00 10.00 98.00 3.50 -- 
Nob_Tar 99.06 300 -- 19.00 27.50 99.38 3.50 -- 
Nob_SHB 52.07 663 -- 11.00 6.50 82.88 4.25 -- 
Nob_PC 76.20 300 -- 34.00 34.00 98.25 4.00 -- 
Nob_LDM 86.36 550 -- 10.00 26.00 100.00 3.50 -- 
Nob_GVC 73.66 638 -- NA 25.00 91.25 3.63 -- 
Nob_GC 80.01 300 -- 48.50 4.00 100.00 2.00 -- 
Nob_BSP_SB 66.04 250 -- 9.00 14.00 99.50 4.00 -- 
Nob_BSP_JS 92.29 200 -- 61.33 61.67 10.83 5.33 -- 
Nob_BSP_5 76.20 400 -- 25.00 18.00 98.25 3.25 -- 
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Table. 5.  HGM Variable scores for average canopy tree diamter (Vctd), canopy tree density (Vctden), shrub/sapling 
cover (Vssc), ground vegetation cover (Vgvc), and vegetative compositon (Vcomp) for our 2022-23 dataset. Scores 
were generated with vegetative field measurements for each site per HGM protocol specified by Noble et al. 2007. 

  HGM Variable Score 
SITE Vctd Vctden Vssc Vgvc Vcomp 

BayM_ACC 0.22 0.90 -- -- -- 
BayM_BAMS_N 0.22 0.75 0.02 0.21 0.57 
BayM_BAMS_S 0.00 0.39 0.00 0.07 0.35 
BayM_UlmP 0.08 0.71 -- -- -- 
Citr_OC 0.07 0.22 0.59 0.11 0.43 
Citr_PRC 0.06 0.26 0.34 0.10 0.37 
Dap_BS 0.00 0.10 0.53 0.30 0.17 
Dap_JB 0.08 0.51 0.33 0.09 0.33 
Dap_SP 0.00 0.10 0.49 0.08 0.29 
Elb_BC 0.10 0.88 0.44 -- 0.36 
Elb_LF_NW 0.02 0.75 0.72 0.30 0.19 
Elb_LF_SE 0.08 0.35 0.24 0.52 0.22 
Elb_WolfNolf 0.03 0.10 0.00 0.02 0.21 
Fol_BS 0.00 0.55 0.57 0.18 0.84 
Fol_GCNP_E 0.03 0.10 0.01 0.07 0.26 
Fol_GCNP_W 0.05 0.43 0.10 0.38 0.37 
Fol_MkF 0.15 0.18 0.72 0.25 0.19 
Gbay_Drisk_BB 0.26 0.90 0.40 0.26 0.29 
Gbay_Drisk_CC 0.12 0.39 0.51 0.17 0.33 
Gbay_Drisk_SL 0.15 0.47 0.16 1.00 0.26 
Irv_Drisk_NE 0.00 0.67 0.40 0.01 0.17 
Irv_Drisk_SW 0.06 1.00 0.61 0.03 0.27 
Mob_BMS 0.61 0.75 -- -- -- 
Mob_MemG 0.00 0.10 -- -- -- 
Mob_MIMS 0.61 0.96 -- -- -- 
Mob_UM 0.53 0.51 -- -- -- 
Mob_USA_01 0.62 0.59 -- -- -- 
Mob_USA_02 0.16 0.84 -- -- -- 
Per_WMA_N 0.01 0.10 -- -- -- 
Per_WMA_S 0.39 0.84 -- -- -- 
Prd_MTEP 0.00 0.10 -- -- -- 
RobD_BeHP 0.45 0.55 0.33 0.72 0.35 
RobD_BFA 0.30 0.10 -- -- -- 
RobD_DB 0.69 0.39 0.44 -- 0.49 
RobD_MHP 1.00 1.00 -- -- -- 
RobD_RC 0.15 0.55 0.74 0.40 0.28 
Sem_EdAd 0.44 0.80 -- -- -- 
SF_GW 0.25 0.96 0.78 0.16 0.76 
SF_SFHS 0.06 0.39 -- -- -- 
SF_SR 0.26 0.10 -- -- -- 
SumD_BeAP 0.18 0.18 0.38 0.38 0.20 
SumD_LFF 0.71 1.00 0.61 1.00 0.54 
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Table. 6. HGM Variable scores for hydrologic alterations (Vhalt), detritus cover (Vdetritus), soil organic matter 
content (Vssom), upland land use (Vupuse), change in catchment size (Vcatch), and habitat connections (Vconnect) 
for our 2022-23 dataset. Scores were generated with for each site per HGM protocol specified by Noble et al. 2007. 

  HGM Variable Score 
SITE Vhalt Vdetritus Vssom Vupuse Vcatch Vconnect 

BayM_ACC 0.00 0.76 0.80 0.41 0.10 0.68 
BayM_BAMS_N 1.00 0.77 0.80 0.41 1.00 0.68 
BayM_BAMS_S 0.00 0.62 1.00 1.00 0.91 1.00 
BayM_UlmP 0.00 0.31 0.60 0.47 0.35 0.64 
Citr_OC 0.52 0.79 0.60 0.94 1.00 0.28 
Citr_PRC 1.00 0.48 0.80 0.63 1.00 1.00 
Dap_BS 1.00 0.59 0.60 0.88 1.00 0.28 
Dap_JB 1.00 0.53 0.8 1.00 1.00 0.37 
Dap_SP 1.00 0.66 0.4 0.92 1.00 0.33 
Elb_BC 0.000 0.72 0.60 0.90 1.00 0.47 
Elb_LF_NW 0.00 0.50 0.40 0.81 1.00 0.34 
Elb_LF_SE 1.00 0.84 0.80 0.87 1.00 0.18 
Elb_WolfNolf 0.00 0.34 0.60 0.97 1.00 1.00 
Fol_BS 1.00 0.61 1.00 0.71 1.00 0.62 
Fol_GCNP_E 1.00 0.89 0.80 1.00 1.00 1.00 
Fol_GCNP_W 1.00 0.90 1.00 1.00 1.00 1.00 
Fol_MkF 1.00 0.77 0.80 0.48 0.58 0.22 
Gbay_Drisk_BB 0.00 0.30 1.00 0.92 1.00 0.18 
Gbay_Drisk_CC 0.00 0.72 0.60 0.58 0.65 0.13 
Gbay_Drisk_SL 0.00 0.40 1.00 0.87 0.79 0.17 
Irv_Drisk_NE 0.04 0.59 0.80 0.43 0.10 0.00 
Irv_Drisk_SW 0.00 0.66 0.60 0.53 1.00 0.00 
Mob_BMS 1.00 0.99 0.60 0.90 1.00 0.51 
Mob_MemG 1.00 0.90 0.60 1.00 1.00 0.82 
Mob_MIMS 1.00 0.80 0.60 1.00 1.00 0.22 
Mob_UM 1.00 0.57 0.80 1.00 1.00 0.43 
Mob_USA_01 0.00 0.53 0.60 0.96 1.00 0.23 
Mob_USA_02 0.00 0.91 0.80 1.00 1.00 0.13 
Per_WMA_N 0.47 0.53 1.00 1.00 1.00 1.00 
Per_WMA_S 0.00 0.00 0.80 0.97 1.00 1.00 
Prd_MTEP 1.00 0.73 0.60 0.92 1.00 1.00 
RobD_BeHP 0.00 0.37 0.60 0.87 0.76 0.25 
RobD_BFA 0.00 0.35 0.60 0.52 1.00 0.33 
RobD_DB 0.00 0.37 0.80 0.72 0.89 0.30 
RobD_MHP 1.00 0.62 0.80 0.77 0.93 0.37 
RobD_RC 0.00 0.70 0.60 0.61 0.71 0.34 
Sem_EdAd 1.00 1.00 0.80 1.00 1.00 0.50 
SF_GW 1.00 0.47 0.60 0.68 1.00 0.24 
SF_SFHS 1.00 0.81 0.60 1.00 1.00 0.43 
SF_SR 0.00 0.26 0.40 0.95 1.00 0.31 
SumD_BeAP 0.00 0.44 1.00 0.54 1.00 0.39 
SumD_LFF 0.00 0.64 0.80 0.65 0.99 0.17 
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Figure 1. Distributions for all field measurements relative to HGM variable index score ranges. Shrub/sapling index 
scores reflect wetland sites with < 20% canopy tree cover and are thus not indicative of true wetland conditions 
observed in any sites. The same applies to ground vegetation index scores for sites with < 20% canopy tree and 
shrub/sapling cover. Munsell chroma and canopy tree cover are not HGM variables but were included as response 
variables in linear regression. 
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