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Abstract

In this dissertation, we explore the properties and significance of inverse limit spaces where

the factor spaces are path graphs. We define the graph topology for finite graphs and discuss

the properties of a continuous map between graphs as well as properties of a traditional inverse

limit of graphs. Most importantly, that a traditional inverse limit of finite path graphs is non-

Hausdorff. We introduce a generalized inverse limit, where the first space is a metric arc and

all other spaces are finite path graphs. By example, a technique is shown for constructing a

generalized inverse limit, where the first space is a metric arc and the others are finite path

graphs, that is homeomorphic to a traditional inverse limit of Hausdorff arcs.

Using crooked chains, we construct and analyze a non-Hausdorff hereditarily indecom-

posable continuum. This continuum has some interesting properties. These properties and the

continuum’s relationship with the Pseudo-arc is discussed. Ongoing work and open problems

are stated.
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Chapter 1

Introduction

1.1 Motivation

In [7] Smith and Varagona describe a method for representing the Bucket Handle continuum

as a generalized inverse limit where the first factor space is a metric arc and the remaining

factor spaces are finite path graphs. It is noted that a point in the inverse limit is completely

determined by whether each coordinate is on the left or right side of the roof top map. Then it

is reasonable to consider the left and right intervals as single points of the space, or better yet,

as edges of a graph. The ends of such intervals would then be vertices of the graph. By doing

so, we obtain the generalized inverse limit described above. Smith and Varagona then extend

this idea to n-type Bucket Handle continua.

In [2] we generalize this technique even further, by considering any traditional inverse

limit space with continuous and onto bonding maps that are piecewise-linear and constructing

a homeomorphic generalized inverse limit space. However, these bonding maps must meet

certain conditions that are somewhat restricting. This dissertation explores the limitations of

the technique used in [2] as well as the limitations of the inverse limits of graphs in general. A

possible solution using infinite graphs is presented.

According to Smith’s theorem proved in [6], if a traditional inverse limit of Hausdorff

arcs is hereditarily indecomposable, then the space is metric. In Chapter 3, we construct an

inverse limit of non-Hausdorff arcs that is hereditarily indecomposable but not metric. An

example showing that without Hausdorffness, the conclusion of the theorem does not hold, and

so Smith’s theorem cannot be improved.
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1.2 Definitions and Notation

A topological space X is a continuum if it is compact and connected. A topological space H is

a subcontinuum of X if H ⊂ X and H is closed compact and connected in X. A continuum is

decomposable if it is the union of two proper subcontinua. A continuum is indecomposable if

it is not decomposable and is hereditarily indecomposable if every subcontinuum is indecom-

posable. A chain is a collection of sets C = {c1, c2, ..., cn} such that ci ∩ c j , ∅ if and only if

|i − j| ≤ 1. A chain is an i-chain if diam(c j) < i all j. A metric continuum X is chainable if

for every open cover M of X, there is a chain with open links that refines M and covers X. For

information on chainable hereditarily indecomposable continua see [4] and [5].

Suppose {Xi}
∞
i=1 is a sequence of topological spaces, called factor spaces, and { fi}

∞
i=1, fi :

Xi+1 → Xi, is a sequence of continuous onto functions, called bonding maps. Then, X =

lim
←−−T
{Xi, fi}

∞
i=1 denotes the traditional inverse limit space where (xi)∞i=1 ∈ X if fi(xi+1) = xi for all

i. For an open set Ui ⊂ Xi, define
←−
Ui = {(xi)∞i=1 ∈ X : xi ∈ Ui}. Then, B = {

←−
Ui : Ui open in Xi}

forms a basis for the topology on X. Now, suppose {gi}
∞
i=1, gi : Xi+1 → 2Xi , is a sequence of

upper semi-continuous functions. Then, X = lim
←−−G
{Xi, gi}

∞
i=1 denotes the generalized inverse

limit space where (xi)∞i=1 ∈ X if xi ∈ gi(xi+1) for all i. The basic open sets of X are as in the

product topology, of the form
∏n

i=1 Ui ×
∏∞

i=n+1 Xi where Ui is an open set of Xi for all i.

Consider a finite graph X. In this thesis, we will almost always consider finite graphs. A

simple graph is an undirected graph that has no loops and no multiple edges. From now on, we

assume every graph is finite and simple unless otherwise stated. Then X is a space where each

vertex is an element of X and each edge is an element of X. LetV(X) and E(X) denote the set

of vertices and edges of X respectively, so that X = V(X) ∪ E(X). A vertex v and edge e are

incident if v is one of the ends of e. Two vertices are adjacent if they share an edge. The degree

of a vertex v is the number of edges incident to v, denoted d(v). A graph C is a component

of a graph G if it is a maximal connected subgraph of G. If C1 and C2 are components of a

graph G with C1 ∩ C2 = ∅, then we say C1 and C2 are incident if there is some x1 ∈ C1 and

x2 ∈ C2 that are incident. A path graph is a graph X with vertex setV(X) = {v1, v2, ..., vn}where
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d(v1) = d(vn) = 1, d(vi) = 2 all 2 ≤ i ≤ n− 1, and vi is adjacent to vi+1 for all 1 ≤ i ≤ n− 1. The

vertices v1 and vn are the ends of the path.

Now we define the graph topology on the graph X. The basic open set around an edge

e ∈ E(X) is B(e) = {e}. The basic open set around a vertex v ∈ V(X) is B(v) = {v} ∪ {e ∈ E(X) :

e is incident to v}. Then the graph topology on X is generated by the basis B(X) = {B(v) : v ∈

V(X)} ∪ {B(e) : e ∈ E(X)}. A topological space X is T0 if for any x, y ∈ X, x , y, there exists

an open set U so that x ∈ U, y < U or y ∈ U, x < U. We note that a graph X with the graph

topology is T0 but is not T1 or Hausdorff, as a vertex cannot be separated from an incident edge.

Suppose f : X → Y is a map from a graph X to a graph Y . We say f has level pieces if

there is some v ∈ V(X) and e ∈ E(X) that are incident and f (v) = f (e).

u1

u2

u3

d1

d2

f

v1

v2

v3 v4

v5

e1

e2

e3

e4

Figure 1.1: A Map with Level Pieces

In Figure 1.1, we see two different types of level pieces. The vertex v3 and the edge e3

both map to the vertex u2. Notice that this portion of the map f is visually a level. The vertex

v2 and the edge e1 both map to the edge d1. Then, by definition, this is a level piece even though

it does not visually look level.

We note that two possible interpretations of the word graph are used in this thesis: one the

mathematical object made up of vertices and edges and the other a representation of a map f (x)

in the plane with points (x, f (x)). From now on, a graph will refer to the former and we will

use gr( f ) to refer to the latter.
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Chapter 2

Inverse Limits of Path Graphs

2.1 Properties of Continuous Maps

Let X and Y be path graphs with the graph topology and consider a continuous and onto function

f : X → Y . First, we investigate the pre-image of elements of Y . If e ∈ E(Y), then the pre-image

f −1(e) must be a union of components where every component is a path that starts and ends with

an edge. Some or all of these components could be a single edge, as a single edge is open in

X. Consequently, if v ∈ V(Y), then the pre-image f −1(v) must be a union of components where

every component is a path that starts and ends with a vertex. Some or all of these components

could be a single vertex, as a single vertex is closed in X. Now, we consider two properties that

will be referred to as Incidence Properties.

1. if v ∈ V(X), e ∈ E(X) and v and e are incident, then f (v) = f (e) or f (v) and f (e) are

incident, where f (v) is a vertex of Y and f (e) is an edge of Y

2. assume X is a path graph, if u ∈ V(Y), d, d′ ∈ E(Y) and d, d′ are both incident to u, then

there are components C2 ∈ f −1(u),C1 ∈ f −1(d),C3 ∈ f −1(d′) such that C2 is incident to

C1 and C3 is incident to C1

Proof of 1. Suppose v ∈ V(X), e ∈ E(X) and v is incident to e. Then f (v) = u, some u ∈ Y and

f (e) = d some d ∈ Y . By way of contradiction, assume f (v) is not incident to f (e) in Y and

f (v) , f (e). Now we show that in each case we reach a contradiction.

Case 1: u and d are both vertices

By assumption, u , d so that u and d are distinct vertices in V(Y). Consider the basic

open set B(u); the set containing the vertex u and its incident edges. Because f is continuous,

4



the pre-image f −1(B(u)) must be open. Clearly v ∈ f −1(B(u)), as we assumed f (v) = u. Then,

all edges incident to v must also be contained in f −1(B(u)). But v is incident to the edge e,

and f (e) = d, some vertex that is not in B(u). Then e < f −1(B(u)), contradicting that f is

continuous.

Case 2: u and d are both edges

By assumption, u , d so that u and d are distinct edges in E(Y). Consider the basic

open set B(u) = {u}. Because f is continuous, the pre-image f −1(B(u)) = f −1({u}) must be

open. Clearly v ∈ f −1({u}), as we assume f (v) = u. Then, all edges incident to v must also be

contained in f −1(B(u)). But v is incident to the edge e, and f (e) = d, some edge that is not in

B(u) = {u}. Then e < f −1(B(u)), contradicting that f is continuous.

Case 3: u is a vertex and d is an edge

By assumption, u and d are not incident in Y . Consider the basic open set B(u); the set

containing the vertex u and its incident edges. Because f is continuous, the pre-image f −1(B(u))

must be open. Clearly v ∈ f −1(B(u)), as we assumed f (v) = u. Then, all edges incident to v

must also be contained in f −1(B(u)). But v is incident to e, and f (e) = d. By assumption, u and

d are not incident, so d < B(u). Then, e < f −1(B(u)), contradicting that f is continuous.

Case 4: u is an edge and d is a vertex

Consider the basic open set B(u) = {u}. Because f is continuous, the pre-image f −1(B(u))

must be open. Clearly v ∈ f −1(B(u)) as we assumed f (v) = u. Then, all edges incident to v

must also be contained in f −1(B(u)). But v is incident to e and f (e) = d , u, so d < f −1(B(u)),

contradicting that f is continuous.

Then, we must have that f (v) = f (e) or f (v) and f (e) are incident in Y . Now, we may

show that if f (v) = u and f (e) = d are incident in Y , then u must be a vertex and d must be

an edge. By way of contradiction, assume u is an edge. Then f −1(B(u)) contains v but not e, a

contradiction. So, u must be a vertex. If d is incident to u, it must be an edge. □

Proof of 2. LetV(X) = {u1, u2, ..., un} so that u = u j, d = d j−1, and d′ = d j for some j. Because

u j is incident to d j−1, d j in Y , by Incidence Property 1., all components of f −1(u j) are either

incident to a component of f −1(d j−1) or f −1(d j).

5



u1

u2

u
f

d1

d

d′

un−1

un

dn−1

v1

v2

e1

C1

C2
C3

Figure 2.1: Incidence Property 2
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Suppose, by way of contradiction, that there is no component of f −1(u j) that is incident to

both a component of f −1(d j−1) and a component of f −1(d j).

Notice that the path graph X is made up of the components of the pre-images of elements

of Y . Meaning, X = ∪y∈Y f −1(y). Let S 1, S 2, ...., S t be these components of X, ordered naturally

in X. Then, by definition, f (S i) = y, some y ∈ Y , meaning every element of S i ⊂ X maps to

the same element of Y . Let S i be the first component so that f (S i) = u j. By assumption, S j

is not incident to both a component of f −1(d j−1) and a component of f −1(d j). Without loss of

generality, assume S i is only incident to a component of f −1(d j). Then, f (S i−1) = d j = f (S i+1).

Now, we will consider the components S k with k > i and show that no component maps to

d j−1. Because f is continuous and by Incidence Property 1., we have the following possibilities:

(1) if f (S k) = u j, then f (S k+1) = d j

(2) if f (S k) = um, then f (S k+1) = dm or dm+1, m > 0

(3) if f (S k) = dm, then f (S k+1) = um−1 or um, m ≥ 1

Notice that the only way a component S k can map to d j−1 is if f (S k−1) = u j, but this is

precisely (1) above. So, no component S k, k > j maps to d j−1 in Y .

The same proof shows that no component S k, k < j maps to d j−1, contradicting that f is

continuous. In Figure 2.1 above, we see an example of Incidence Property 2. □

2.2 Representing Inverse Limits of Metric Arcs as a Generalized Inverse Limit of Path Graphs

A finite graph with the graph topology is a very simple space, not only being finite but also non-

Hausdorff. However, when we consider an inverse limit of such spaces, we are able to create

something much more complex. It is natural to ask the broad question: for what traditional

inverse limits of metric arcs are we able to choose finite graphs and bonding maps so that the

inverse limits are homeomorphic? In an attempt to answer this question, we first notice that the

traditional inverse limit of path graphs is non-Hausdorff.

Proof. If X = lim
←−−T
{Xi, fi}

∞
i=1 is a traditional inverse limit with each Xi a path graph with the

graph topology, then we can construct two points v = (vi)∞i=1 and e = (ei)∞i=1 in X that cannot be

separated. In the first factor space, choose any incident vertex and edge, v and e. Let v1 = v and

e1 = e. By Incidence Property 2., there is some u ∈ f −1
1 (v) and some d ∈ f −1

1 (e) such that u and

7



d are incident in X2. Let v2 = u and e2 = d. Continue this process so that vi and ei are incident

in every Xi and therefore every open set containing vi also contains ei. Then v and e are points

in X that cannot be separated. □

v1

e1

X1

v2

e2

X2

f1

v3

e3

X3

f2 ...

Figure 2.2: Non-Hausdorffness of Traditional Inverse Limits of Path Graphs

Then no traditional inverse limit of metric arcs can be represented as a traditional in-

verse limit of graphs, as the inverse limits of graphs is non-Hausdorff and therefore not metric.

Instead, we will use a generalized inverse limit where the first space is a metric arc and the re-

maining spaces are path graphs. There are two methods for choosing such graphs and bonding

maps. Both will be shown using the example below.

At the end of this section, we give a generalization of Method 2. This generalization

requires that the bonding maps have no level pieces, otherwise the inverse limit will not be

Hausdorff. So, we will first prove that if Y = lim
←−−G
{Yi, gi}

∞
i=0 is a generalized inverse limit space

where Y0 is a metric arc and Yi, i > 0, is a path graph, then if any gi has level pieces, the inverse

limit space Y is non-Hausdorff.

Proof. Assume there is some g j that has at least one level piece. We will construct two

points, y = (yi)∞i=0 and y′ = (y′i)
∞
i=0, in Y that cannot be separated. Because g j has a level piece,

there is some v ∈ V(Y j+1) and e ∈ E(Y j+1) incident in Y j+1 such that g j(v) = g j(e).

Let y j+1 = v and y′j+1 = e. Then, y j = g j(v) = g j(e) = y′j, so that yi = y′i for all i ≤ j.

By Incidence Property 2., there is some u ∈ g−1
j+1(v) and some d ∈ g−1

j+1(e) so that u and d are

incident in Y j+2. Let y j+2 = u and y′j+2 = d. Continue this process so that yi and y′i are incident

for all i > j. This is the same process used in Figure 2.2. Then for all i, every open set in Yi

8



containing yi must also contain y′i so that every open set in Y containing y must also contain y′.

Then y and y′ are points in Y that cannot be separated. □

Naturally, we wonder if the other direction of the implication is true. If Y is non-Hausdorff,

must it be true that some g j has level pieces? We provide a counter-example below.

Counter-example. Let Y = lim
←−−G
{Yi, gi}

∞
i=0 where Y0 = [0, 1] with the usual metric topology.

Let Y1 be a path graph with 3 vertices whereV(Y1) = {v1
1, v

1
2, v

1
3} and Yi be a path graph with 4

vertices for i > 1 where V(Yi) = {vi
1, v

i
2, v

i
3, v

i
4}. We will define the maps g0 and g1 below. All

other maps, gi with i > 1, will be like the identity, so that gi(vi+1
j ) = {vi

j} and gi(ei+1
j ) = {ei

j}.

Define g0 : Y1 → 2[0,1] as follows:

{1}

{0}

{(0, 1
2 )}

{( 1
2 , 1)}

{12 }
g0

v1
1

v1
3

v1
2

e1
1

e1
2

Define g1 : Y2 → 2Y1 as follows:

v1
1

v1
3

v1
2

e1
1

e1
2

v2
1

v2
3v2

2

v2
4

e2
1

e2
3

e2
2

g1

9



Note that for each gi, there are no incident elements that map to the same element, so every

gi has no level piece. Consider the point y = (yi)∞i=0 where y0 =
1
2 , y1 = v1

2, and yi = vi
2 for all

i > 1. Consider a second point y′ = (y′i)
∞
i=0 where y′0 =

1
2 , y′1 = v1

2, and yi = vi
3 for all i > 1. Then,

y and y′ cannot be separated in the first factor space, as y1 =
1
2 = y′1. Similarly, they cannot be

separated in the second factor space, as y1 = v1
2 = y′1. When i > 1, yi = vi

2 and y′i = vi
3, but

Bi(vi
2) ∩ Bi(vi

3) = {ei
2}, so that any two open sets that contain y and y′ must intersect.

So, the absence of level pieces is necessary for Hausdorffness, but does not guarantee

Hausdorffness. Now we see the example illustrating the two methods mentioned above.

Example. Let X = lim
←−−T
{Xi, fi}

∞
i=1 be a traditional inverse limit space where each Xi = [0, 1]

with the usual topology and each fi = f , shown below.

f (x) =


3x if 0 ≤ x ≤ 1

3 ,

−3x + 2 if 1
3 ≤ x ≤ 2

3 ,

3x − 2 if 2
3 ≤ x ≤ 1

1

1

(0, 0)

(1
3 , 1)

(2
3 , 0)

(1, 1)

f

We offer two methods for constructing a homeomorphic generalized inverse limit of graphs.

Method 1. Consider the generalized inverse limit space Y = lim
←−−G
{Yi, gi}

∞
i=0 where Y0 = [0, 1]

with the usual metric topology, each Yi, i ≥ 1 a graph with the graph topology, g0 an upper

semi-continuous map, and each gi, i ≥ 1 a continuous map. Our goal is to choose appropriate

10



Yi’s and gi’s so that X is homeomorphic to Y . We do so by using edges and vertices to mimic

the shape of f , like so:

Y2

Y1

g1

Y3

Y2

g2

So that |V(Y1)| = 2 and |V(Yi)| = 4 + 3(|V(Yi−1)| − 2) for i ≥ 2. Now, we only need to

define the map g0 : Y1 → [0, 1]. Let V(Y1) = {v1, v2} and E(Y1) = {e1}. Then, define the map

g0:

g0(v1) = {0} ; g0(e1) = {x : x ∈ (0, 1)} ; g0(v2) = {1}

{1}

{0}

{(0, 1)}
g0

v1

v2

In [2], it is shown that X and Y are homeomorphic.

Method 2. We again consider a generalized inverse limit space Y = lim
←−−G
{Yi, gi}

∞
i=1, where

Y1 = [0, 1], but the remaining factor spaces and bonding maps will be defined differently than

in Method 1. We look at gr( fi) ⊂ Xi × Xi−1. In this example, every gr( fi) can be written as the

union of Mi
1 = (0, 0), Li

1 = {(x, 3x) : 0 < x < 1
3 },M

i
2 = (1

3 , 1), Li
2 = {(x,−3x + 2) : 1

3 < x <

2
3 },M

i
3 = (2

3 , 0), Li
3 = {(x, 3x − 2) : 2

3 < x < 1},Mi
4 = (1, 1).

Then, the path graph Yi, i > 1 is the graph gr( fi) where V(Yi) = {Mi
1,M

i
2,M

i
3,M

i
4} and

E(Yi) = {Li
1, L

i
2, L

i
3}.

We define the map g1 : Y2 → 2[0,1] as follows:

g1(M2
1) = g1(M2

3) = {0} ; g1(M2
2) = g1(M2

4) = {1}

11



Mi
1

Mi
2

Mi
3

Mi
4

Li
1 Li

2 Li
3

g1(L2
1) = g1(L2

2) = g1(L2
3) = {(0, 1)}

And we define the maps gi : Yi+1 → Yi, i > 1 as follows:

gi(Mi+1
1 ) = gi(Mi+1

3 ) = {Mi
1} ; gi(Mi+1

2 ) = gi(Mi+1
4 ) = {Mi

4}

gi(Li+1
1 ) = gi(Li+1

2 ) = gi(Li+1
3 ) = {Li

1,M
i
2, L

i
2,M

i
3, L

i
3}

In [2], it is shown than X and Y are homeomorphic and that, in general, if X = lim
←−−G
{Xi, fi}

∞
i=1

where each Xi is a metric arc and each fi is a piecewise-linear map, we can find a homeomorphic

Y as in the example if each Yi meets the following conditions:

H1. If (x, y) ∈ V(Yi+1), then (y, z) ∈ V(Yi), some z.

H2. If (x1, y) ∈ V(Yi) and (x2, y) ∈ V(Yi), then Bi((x1, y)) ∩ Bi((x2, y)) = ∅.

We note that we may add vertices to the Yi’s to meet condition H1. and that H2. implies that

each map gi has no level pieces. Then with the map g1 : Y2 → 2Y0:

g1(p) =


{y} if p = (x, y) ∈ V(Y2),

D2
n if p = L2

n ∈ E(Y2), n ≤ ϵ1.

12



And gi, for i > 1, gi : Yi+1 → 2Yi:

gi(p) =



{(y, z)|(y, z) ∈ V(Yi)}if p = (x, y) ∈ V(Yi+1)

{Li
k|k ≤ ϵ

i and Di+1
n ⊆ Ri

k} ∪ {(x, y) : (x, y) ∈ V(Yi) and x ∈ Di+1
n }

if p = Li+1
n , n ≤ ϵ

i+1

where Di
n and Ri

n represent the domain and range of Li
n respectively and ϵ i is the size ofV(Yi).

The inverse limit space Y = lim
←−−G
{Yi, gi}

∞
i=1 is homeomorphic to X = lim

←−−T
{Xi, fi}

∞
i=1.

2.3 Infinite Graphs

If the bonding maps meet conditions H1. and H2., then we can use Method 1 and Method 2.

If they do not, it is unclear if the traditional inverse limit can be represented as a generalized

inverse limit of graphs. In this section, we offer a possible solution when all bonding maps are

the same but do not meet the conditions.

Consider an arbitrary graph G equipped with the graph topology which contains a ray R.

Let G∞ be the graph made up of the singleton {v∞} and no edges so that G∪G∞ is the one-point

compactification of G. Then, we say that v∞ is the ray end of the ray R.

v∞

Figure 2.3: Ray and Ray End v∞

We note that the rays we will be considering have a natural ordering, so that we may mod-

ify the graph topology for such an infinite graph as follows: an open set containing the point

v∞ is as in the order topology. There may be multiple rays, which do not intersect, that have

the same ray end, v∞. Suppose R1,R2, ...,Rn are such rays with Ri = {vi
0, e

i
1, v

i
1, e

i
2, ...}. Then an

open set containing v∞ is of the form {e1
j , v

1
j+1, ...} ∪ ... ∪ {e

n
k , v

n
k+1, ...} ∪ {v∞}.

Example. Let X = lim
←−−T
{Xi, f }∞i=1 be a traditional inverse limit space where each Xi = [0, 1]

13



with the usual topology and each fi = f , shown below.

f (x) =


f1(x) = 4x if 0 ≤ x ≤ 1

4 ,

f2(x) = −1
4 x + 17

16 if 1
4 ≤ x ≤ 3

4 ,

f3(x) = 1
2 x + 1

2 if 3
4 ≤ x ≤ 1

1

1

(0, 0)

(1
4 , 1)

(3
4 ,

7
8 )

(1, 1)

f1

f2 f3

Now, we attempt to define a generalized inverse limit Y = lim
←−−G
{Yi, gi}

∞
i=1 that is homeo-

morphic to X using the methods described in the previous section. Then, Y1 = [0, 1] and the

graphs Yi must at least have the following vertices and edges:

V(Yi) =
{

(0, 0) ,
(
1
4
, 1

)
,

(
3
4
,

7
8

)
, (1, 1)

}

E(Yi) =
{{

(x, f1(x)) : 0 < x <
1
4

}
,

{
(x, f2(x)) :

1
4
< x <

3
4

}
,

{
(x, f3(x)) :

3
4
< x < 1

}}
Then, the vertex ( 3

4 ,
7
8 ) is in every Yi, but there is no vertex (x, y) with x = 7

8 , failing condition

H1. However, it is permissible to add vertices so that the conditions are met. To do so, we must

add the vertex ( 7
8 ,

15
16 ) to each Yi. But now this new vertex fails our conditions. We notice that

f i
3(x) = 1

2i x + 2i−1
2i , so that f i

3 < 1 for all 3
4 < x < 1 and is increasing, so that an attempt to meet

our conditions will result in adding infinitely many vertices (x, y) with y approaching 1.

14



Instead, we will define new Yi’s equipped with the graph topology, allowing for rays in our

graphs. We define the vertices of Yi as follows:

Mi
1 = (0, 0) ; Mi

2 =

(
1
4
, 1

)

N i
1 =

(
3
4
, f3

(
3
4

))
; N i

2 =

(
f3

(
3
4

)
, f 2

3

(
3
4

))
=

(
7
8
,

15
16

)
...

N i
j =

(
f j
3

(
3
4

)
, f j+1

3

(
3
4

))
...

N i
∞ = (1, 1)

where the N i’s represent the vertices approaching (1, 1), so that the set of vertices
{
N i

j

}∞
j=1

is a

ray in Yi with end N i
∞. Now we may define the edges of Yi as follows:

Li
1 =

{
(x, f (x)) : 0 < x <

1
4

}
; Li

2 =

{
(x, f (x)) :

1
4
< x <

3
4

}

T i
1 =

{
(x, f (x)) :

3
4
< x < f3

(
3
4

)}
; T i

2 =

{
(x, f (x)) : f3

(
3
4

)
< x < f 2

3

(
3
4

)}
...

T i
j =

{
(x, f (x)) : f j−1

3

(
3
4

)
< x < f j

3

(
3
4

)}
...

Then g1 : Y2 → 2[0,1] is the map:

g1(M2
1) = g1((0, 0)) = {0} ; g1(M2

2) = g1((
1
4
, 1)) = {1} ; g1(N2

j ) = g1((x, y)) = {y}

g1(L2
j) = D2

j(L
2
j) ; g1(T 2

j ) = D2
j(T

2
j )

15



Mi
1

Mi
2

N i
1

N i
∞

Li
1

Li
2 N i

2

T i
1

And gi : Yi+1 → 2Yi , i > 1 is the map:

gi(Mi+1
1 ) = {Mi

1} ; gi(Mi+1
2 ) = gi(N i+1

∞ ) = {N i
∞} ; gi(N i+1

j ) = {N i
j+1}

gi(Li+1
1 ) = Yi − {Mi

1,N
i
∞} ; gi(Li+1

2 ) = {N i
2,T

i
2,N

i
3,T

i
3, ...} ; gi(T i+1

j ) = {T i
j+1}

We first show that Y is Hausdorff.

Proof. Suppose p = (pi)∞i=1, q = (qi)∞i=1 ∈ Y and p , q.

Case 1. p1 , q1

If p1 , q1, then because Y1 = [0, 1] is metric, we may find disjoint open sets U and V

separating p and q.

If p1 = q1, we may assume p j , q j for some smallest j > 1.

Case 2. p j ∈ E(Y j), q j ∈ E(Y j)

Let U =
←−−
{p j} and V =

←−−
{q j} so that U and V separate p and q.

Case 3. p j ∈ E(Y j), q j ∈ V(Y j)

Let U =
←−−
{p j} and V =

←−−−−
B(q j). Clearly p ∈ U and q ∈ V , then we only need to check that

U ∩ V = ∅. By way of contradiction, assume U ∩ V , ∅. Then, p j must be incident to q j.

But by assumption, p j−1 = q j−1 ⇒ g j−1(p j) = g j−1(q j), contradicting that each gi has no level

pieces. The case when p j ∈ V(Y j), q j ∈ E(Y j) is the same as Case 3.

Case 4. p j ∈ V(Y j), q j ∈ V(Y j)

Let U =
←−−−−
B(p j) and V =

←−−−−
B(q j). Clearly p ∈ U and q ∈ V , then we only need to check that

U ∩ V = ∅. By assumption, p j , q j and p j−1 = q j−1 ⇒ g j−1(p j) = g j−1(q j). But, there are only
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two possible vertices that map to the same element. We may assume p j = M j
1 and q j = N j

∞,

otherwise they would just be switched, so U ∩ V = ∅. □

Now we show that X and Y are homeomorphic.

Proof. Define a homeomorphism h : X → Y as follows:

y1 = x1

for i ≥ 1, if (xi, f (xi)) = Mi+1
j then yi+1 = Mi+1

j , j ∈ {0, 1}

if (xi, f (xi)) ∈ Li+1
j then yi+1 = Li+1

j , j ∈ {1, 2}

if (xi, f (xi)) = N i+1
j then yi+1 = N i+1

j , j ≥ 0

if (xi, f (xi)) ∈ T i+1
j then yi+1 = T i+1

j , j ≥ 1

Proof that h is one-to-one. Let p = (pi)∞i=1, q = (qi)∞i=1 ∈ X and assume p , q. Then, for some

first j, p j , q j so that f (p j) , f (q j). Then (p j, f (p j)) , (q j, f (q j)) so that h(p) , h(q). □

Proof that h is continuous. Let U be an open set in Y , so that U =
←−
Ui some Ui open in Yi.

Define Vi = {x : (x, f (x)) ∈ V(Ui)} ∪ {x : a < x < b ∈ E(Ui)}. Then, h−1(U) =
←−
Vi = V . The set

Vi is open in Xi, so the set V is open in X. □

Proof that h−1 is continuous. We will show that h is a closed map. Let H ⊂ X be a

closed set. Because X is compact, the closed subset H is compact and because h is continuous,

h(H) = K is compact and therefore closed in the Hausdorff space Y . □

Certainly we could generalize this technique as in the previous section whenever the bond-

ing maps fi are all a piecewise defined function f that has no level pieces. By allowing infinite

graphs, we increase the number of spaces that can be represented as a generalized inverse limit

of graphs where the first space is a metric arc, as this technique does not require condition H1.
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Chapter 3

A Hereditarily Indecomposable Inverse Limit of Path Graphs

3.1 Construction

Though in [7] and [2] we are able to give some generalizations of these inverse limits of graphs,

we still question what limitations they have. In an attempt to test these limitations, we consider

a complicated space, the Pseudo-arc, and want to determine if such a space can be represented

using graphs.

A Pseudo-arc is a hereditarily indecomposable chainable metric continuum. Before giving

a construction of the Pseudo-arc, we must define crooked chains. Suppose we have a chain

C = {c1, c2, ..., cn} with |C| ≥ 5. Then the chain D = {d1, d2, ..., dk} is crooked in C if it is a

proper refinement of C and if C′ = {cm, ...cl}, |C′| ≥ 5, is a subchain of C and D′ = {dp, ..., dq} is

a subchain of D such that:

• if dp ⊂ cm and dq ⊂ cl then there is some s, t with p < s < t < q such that ds ⊂ cl−1 and

dt ⊂ cm+1

• if dp ⊂ cl and dq ⊂ cm then there is some s, t with q < t < s < p such that dt ⊂ cl−1 and

ds ⊂ cm+1

Suppose X is a metric continuum and there is a sequence of chains {Ci}∞i=1 such that each

Ci+1 is a proper refinement of Ci, each Ci is a 1
i -chain, and each Ci+1 is crooked in Ci. Notice

that the size of the links of the chains decreases as i increases. Then, ∩∞i=1 ∪Ci is a hereditarily

indecomposable chainable metric continuum, and therefore a Pseudo-arc. We will reference

[8] for one construction of such a sequence of chains.
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cm cl

dp
ds

dt dq

Figure 3.1: A Crooked Chain

The given definition of crookedness relies on the metric of the space X. Because our

spaces with the graph topology are not metric, we give another definition of crookedness using

maps and graphs. Suppose X and Y are path graphs and C and D are chains covering X and

Y respectively, |C| ≥ 5. Then D is mapped crookedly in C if there exists a continuous map

f : Y → X such that if {cm, ..., cl} is a subchain of C and {dp, ..., dq} is a subchain of D such that:

• if f (dp) ⊆ cm and f (dq) ⊆ cl then there is some s, t with p < s < t < q such that

f (ds) ⊆ cl−1 and f (dt) ⊆ cm+1

• if f (dp) ⊆ cl and f (dq) ⊆ cm then there is some s, t with q < t < s < p such that

f (dt) ⊆ cl−1 and f (ds) ⊆ cm+1

From now on, when proving crookedness we will assume we are in the case where f (dp) ⊆

cm and f (dq) ⊆ cl, as the other case would be very similar.

X

cm

cl

dp

ds

dt

dq

Y

Figure 3.2: Mapping Crookedly
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This new definition of crookedness gives us, in a sense, a decreasing size of links as in

the construction of the Pseudo-arc. If a link d of D maps into a link c of C, so f (d) ⊆ c,

then this takes the role of subsets in the usual construction of the Pseudo-arc. If multiple links

d1, d2, ..., dn of D map into a link c of C, so f (di) ⊆ c all 1 ≤ i ≤ n, then we can think of the

links d1, d2, ..., dn as being “smaller” than the link c.

We now give a detailed construction of an inverse limit of path graphs that is non-metric

and hereditarily indecomposable. Our goal is to mimic the shapes in the construction of the

Pseudo-arc as in [8].

Theorem 1. If X is a path graph with |V(X)| = n ≥ 5 and C = {B(v) : v ∈ V(X)} is a chain cov-

ering X, then there is some path graph Y and continuous map gn so that D = {B(u) : u ∈ V(Y)}

maps crookedly in C.

Note that the chains C and D are chosen for simplicity, but certainly the theorem could be

re-stated and proved with different chains covering X and Y .

Proof. We will give a proof by induction, but first we must construct two maps g3 and g4.

Construction of g3. The map g3 will be used to map crookedly into a graph with vertex

set of size 3. Suppose V(X) = {v1, v2, v3}, so that C = {B(v1), B(v2), B(v3)}. Then, define

V(Y) = {u1, u2, ...uk3}, k3 = 10, so Y is a path graph with 10 vertices. Then, g3 is the map

satisfying:

g3(u4i−3) = g3(u4i−3u4i−2) = g3(u4i−2) = vi ∈ V(X), i ∈ {1, 2, 3}

g3(u4i−2u4i−1) = g3(u4i−1) = g3(u4i−1u4i) = g3(u4i) = g3(u4iu4i+2) = vivi+1 ∈ E(X), i ∈ {1, 2}

We construct g3 so that the pre-image of a vertex contains two vertices and the pre-image

of an edge also contains two vertices. By doing so, the links of the chain D are smaller than the

links of the chain C, in the sense that multiple links of D are mapped into a single link of C.

Certainly g3 is continuous, as the pre-image of an edge is a component of Y with an edge

at both ends and the pre-image of a vertex is a component of Y with a vertex at both ends. It is

vacuously true that D maps crookedly in C, as |C| < 5.
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v1

v2

v3

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

X

Y

g3

Figure 3.3: Mapping Crookedly for Chain of Size 3

Construction of g4. The map g4 will be used to map crookedly into a graph with a vertex

set of size 4. Suppose V(X) = {v1, v2, v3, v4}, so that C = {B(v1), B(v2), B(v3), B(v4)}. Then,

define V(Y) = {u1, u2, ..., uk4}, k4 = 22, so Y is a path graph with 22 vertices.Then, g4 is any

map satisfying:

v1

v2

v3

v4

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22

X

Y

g4

Figure 3.4: Mapping Crookedly for Chain of Size 4

g4(u4i−3) = g4(u4i−3u4i−2) = g4(u4i−2) = vi ∈ V(X), i ∈ {1, 2, 3}

g4(u4i−2u4i−1) = g4(u4i−1) = g4(u4i−1u4i) = g4(u4i) = g4(u4iu4i+2) = vivi+1 ∈ E(X), i ∈ {1, 2}

g4(u4i+5) = g4(u4i+5u4i+6) = g4(u4i+6) = vi ∈ V(X), i ∈ {2, 3, 4}

g4(u4i+6u4i+7) = g4(u4i+7) = g4(u4i+7u4i+8) = g4(u4i+8) = g4(u4i+8u4i+9) = vivi+1 ∈ E(X), i ∈ {2, 3}
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As in the previous construction, g4 is continuous and D is mapped crookedly in C. We

proceed to prove the theorem using induction.

Basis Step. Assume |V(X)| = 5. LetV(X) = {v1, v2, v3, v4, v5}, so that C = {B(v1), B(v2), B(v3), B(v4), B(v5)}.

Let Y be the path graph with |V(Y)| = (k4 + k3 + k4) − 4 = (22 + 10 + 22) − 4 = 50 = k5. Let

Y1 = Y({u1, ..., u22}),Y2 = Y({u21, ..., u30},Y3 = Y({u29, ..., u50)}. Define the map g5 as follows:

g4 : Y1 → X({v1, v2, v3, v4})

g3 : Y2 → X({v4, v3, v2})

g4 : Y3 → X({v2, v3, v4, v5})

v1

v2

v3

v4

v5

u1u2

X

Y
u50

Y1 Y2 Y3

g4

g3
g4

Figure 3.5: Basis Step: Mapping Crookedly for Chain of Size 5

Now we must show that D is mapped crookedly in C. Notice that C′ = {B(v1), B(v2), B(v3),

B(v4), B(v5)} is the only subchain of C of size at least 5, so it is the only one we need to

consider. Let D′ = {B(up), B(up+1), ..., B(uq)} be a subchain of D such that g5(B(up)) ⊂ B(v1)
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and g5(B(uq)) ⊂ B(v5). Then, up is some vertex with p ∈ {1, ..., 4} and uq is some vertex with

q ∈ {47, ..., 50}

Choose us = u22 and ut = u29. Then, p ≤ 4 < 22 = s < t = 29 < 47 ≤ q. The vertex

u22 ∈ Y1, so g5(B(u22)) = g4(B(u22)) = v3v4 ⊂ B(v4). The vertex u29 ∈ Y3, so g5(u29) = g4(u29) =

v2v3 ⊂ B(v2). Then, D maps crookedly in C.

Now, we may assume such a Y and gn−1 exists for any path graph X with |V(X)| = n − 1

and C = {B(v1), B(v2), ..., B(vn−1)} so that Y maps crookedly in X.

Induction Step. Assume |V(X)| = n. Let V(X) = {v1, v2, ..., vn}. Let Y be the path graph

|V(Y)| = (kn−1 + kn−2 + kn−1)− 4 = kn. Let Y1 = Y({u1, ..., ukn−1}), Y2 = Y({ukn−1−1, ..., ukn−1+kn−2−2}),

Y3 = Y({ukn−1+kn−2−3, ..., u2kn−1+kn−2−3}), so that |V(Y1)| = kn−1, |V(Y2)| = kn−2, and |V(Y3)| = kn−1.

Define the map gn as follows:

v1

v2

vn−1

vn

X

Yu1 u2 ukn−1+kn−2+kn−1

Y1 Y2 Y3

gn−1

gn−2

gn−1

Figure 3.6: Induction Step: Mapping Crookedly for Chain of Size n

• gn−1 : Y1 → X({v1, v2, ..., vn−1})

• gn−2 : Y2 → X({vn−1, vn−2, ..., v2})

• gn−1 : Y3 → X({v2, v3, ..., vn})
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Now we must show that D is mapped crookedly in C. Suppose C′ = {B(vm), B(vm+1), ..., B(vl)}

is a subchain of C, |C′| ≥ 5, and D′ = {B(up), B(up+1), ..., B(uq)} with gn(B(up)) ⊂ B(vm) and

gn(B(uq)) ⊂ B(vl) is a subchain of D. Because X is a path graph and C′ must be connected, the

subchain C′ will be the chain C with some number of links removed from both ends of C.

Case 1. C′ is C with at least two links removed from both ends

Then, D′ is fully contained in Y1,Y2, or Y3. By induction, we can choose us and ut that

satisfy the conditions for D to map crookedly in C.

Case 2. C′ = C

Then, C′ = {B(v1), B(v2), ..., B(vn)}. Because gn(B(up)) ⊂ B(v1), the vertex up is some

vertex with p ∈ {1, ..., 4}. Because gn(B(uq)) ⊂ B(vn), the vertex uq is some vertex with q ∈

{kn − 3, ..., kn}.

Let us = ukn−1 , the last vertex in Y1, so that gn(B(ukn−1) = {vn−2vn−1, vn−1} ⊂ B(vn−1) =

B(vl−1). Let ut = ukn−1+kn−2−2, the last vertex in Y2, so that gn(B(ukn−1+kn−2−2)) = {v2, v2v3} ⊂

B(v2) = B(vm+1). And p ≤ 4 < kn−1 = s < t = kn−1 + kn−2 − 2 < kn−3 ≤ q, so that p < s < t < q.

Case 3. C′ is C with one link removed from one end

Assume the last link is removed, so C′ = {B(v1), ...B(vn−1)}. Then, either 1. or 2. is true:

1. D′ is fully contained in Y1

2. D′ ∩ Y1 , ∅, D′ ∩ Y2 , ∅, |V(D′) ∩V(Y2)| ≤ 4, D′ ∩ Y3 = ∅

If 1. is true, then by induction, we can choose us and ut that satisfy the conditions for D to

map crookedly in C. If 2. is true, then D′ is almost fully contained in Y1, but contains at most

two links in Y2 that are not in Y1. One such possibility is shown in blue in the figure below.

Then, we can choose the same us and ut as in 1. If instead C′ = {B(v2), ..., B(vn)}, then the proof

is similar.
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v1

v2

vn−1

vn

X

Yu1 u2 ukn−1+kn−2+kn−1

Y1 Y2 Y3

Case 4. C′ is C with one link removed from both ends

Then, C′ = {B(v2), ..., B(vn−1)} and one of the following must be true:

1. D′ is fully contained in Y1

2. D′ is fully contained in Y2

3. D′ is fully contained in Y3

4. D′ ∩ Y1 , ∅, D′ ∩ Y2 , ∅, |V(D′) ∩V(Y2)| ≤ 4, D′ ∩ Y3 = ∅

5. D′ ∩ Y3 , ∅, D′ ∩ Y2 , ∅, |V(D′) ∩V(Y2)| ≤ 4, D′ ∩ Y1 = ∅

6. D′ ∩ Y1 , ∅, D′ ∩ Y2 , ∅, D′ ∩ Y3 , ∅

If 1., 2., or 3. is true, then by induction, we can choose us and ut that satisfy the conditions

for D to map crookedly in C. If 4. is true, then D′ is almost fully contained in Y1 but contains

at most two links in Y2 that are not in Y1. As in Case 3., we may choose the same us and ut as

in 1. If 5. is true, then D′ is almost fully contained in Y3 but contains at most two links in Y2

that are not in Y3. We may choose the same us and ut as in 3. Finally, if 6. is true, then we may

choose the same us and ut as in Case 2.
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Case 5. C′ is C with one link removed from one end and two links removed from the other end

Assume C′ = {B(v2), ..., B(vn−2)}. Then, one of the following must be true:

1. D′ is fully contained in Y1

2. D′ is fully contained in Y2

3. D′ is fully contained in Y3

4. D′ ∩ Y2 , ∅, D′ ∩ Y3 , ∅, |V(D′) ∩V(Y3)| ≤ 4, D′ ∩ Y1 = ∅

5. D′ ∩ Y3 , ∅, D′ ∩ Y2 , ∅, |V(D′) ∩V(Y2)| ≤ 4, D′ ∩ Y1 = ∅

If 1., 2., or 3. is true, then by induction, we can choose us and ut that satisfy the conditions

for D to map crookedly in C. If 4. is true, then D′ is almost fully contained in Y2 but contains

at most two links in Y3 that are not in Y2. We may choose the same us and ut as in 2. If 5. is

true, then D′ is almost fully contained in Y3 but contains at most two links in Y2 that are not in

Y3. We may choose the same us and ut as in 3. If instead C′ = {v3, ..., vn−1}, then the proof is

similar. □

Then we can construct an inverse limit space X = lim
←−−T
{Xi, fi}

∞
i=1 where X1 is a path graph

of any size. Choose X2 and f1 to be constructed as Y and gn are in Theorem 1. Continue this

process to choose each Xi and fi. In the next section, we will show that an X constructed this

way is hereditarily indecomposable.

3.2 Properties of the Space

Consider the traditional inverse limit space X = lim
←−−T
{Xi, fi}

∞
i=1 where X1 is a path graph and

X2, X2, ... and f1, f2, ... are chosen using the construction in Theorem 1. Notice that the size

of X1 is not specified, so that this is a family of inverse limit spaces where Xi+1 is mapped

crookedly in Xi for all i. Call this family X. We prove some observations about X ∈ X.

Observation 1(a). If H and K are subcontinua of X ∈ X and H ∪ K is a continuum, then

either H ⊆ K or K ⊆ H.
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Proof. Assume by way of contradiction that there is some h = (hi)∞i=1 ∈ H − K and k = (ki)∞i=1 ∈

K − H. Let Li
h be the link in Xi containing hi and Li

k be the link in Xi containing ki. If hi is an

edge, then it is contained in two links of Xi. If this is the case, just choose either link to be Li
h.

Do the same for Li
k.

Let X j be the first space where L j
h ∩ π j(K) = ∅ and L j

k ∩ π j(H) = ∅. We know such a j

exists, if not, then every open set containing hi contains a point of πi(K). Therefore every open

set containing h intersects K, so that h is a limit point of K. But h < K, contradicting that K is

closed. Note that L j
h ∩ L j

k = ∅, so that there is at least one link between them.

Let Xm be the first space after X j where at least one of the links next to Lm
h contains a point

of H that is not h. First, we must show such an m exists. Choose h′ = (h′i)
∞
i=1 ∈ H − {h}. Let

Xm be the first space where m > j and hm , h′m. Because H is connected, πm(H) must also be

connected. Then, there is some sequence of links Lm
h , L

m
2h
, Lm

3h
, ..., Lm

h′ that start at hm, end at h′m,

and are fully contained in πm(H). Then the link Lm
2h

is the one we are looking for. Assume Lm
2

occurs after Lm
h in the graph Xm. We use a similar proof to choose a link Lm

2k
that contains a

point of πm(K) and assume it occurs before Lm
k in the graph Xm. Let C′ = {Lm

h , L
m
2h
, ..., Lm

2k
, Lm

k }.

Without our assumptions, the first two links might be switched and the last two links might be

switched and the proof would be the same. Because there was at least one link between L j
h and

L j
k and because of the level pieces of the maps, it must be true that |C′| ≥ 6 > 5. We note that

without the level pieces, we may have |C′| < 5, and would not be able to get crookedness.

Now, consider the pre-images of the four links Lm
h , L

m
h2
, Lm

k2
, Lm

k . According to Incidence

Property 2, we are able to find a sequence of components of these pre-images that are incident

and start in Lm+1
h and end in Lm+1

k . Let D′ = {Lm+1
h , L

m+1
2 , L

m+1
3 , ..., L

m+1
k }, this sequence of incident

components. By our construction, D maps crookedly in C, so that there is some links Lm+1
s and

Lm+1
t in D′ such that fm(Lm+1

s ) ⊆ Lm
k2

and fm(Lm+1
t ) ⊆ Lm

h2
.

But then we can write H = (H∩∪s
i=1

←−−−
Lm+1

i )∪ (H∩∪|V(Xm+1)|
i=s

←−−−
Lm+1

i ), so that H is disconnected,

contradicting that H is a continuum. □
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s ∩ πm+1(H) = ∅

Lm+1
t Lm+1

k

fm

Figure 3.7: Indecomposability of X ∈ X
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Observation 1(b). Any X ∈ X is indecomposable and hereditarily indecomposable.

Proof. Follows from Observation 1(a). □

Then X is hereditarily indecomposable but is not Hausdorff because it is a traditional

inverse limit of path graphs, as shown in Section 2.2, so it is not metric and therefore not a

Pseudo-arc. If we attempt to find a homeomorphic generalized inverse limit where the first

space is a metric arc using one of the given methods, we still will not have Hausdorffness be-

cause of the level pieces of the maps, as shown in Section 2.2. We then wonder, if use the same

construction described in the Theorem but without the level pieces, will we get a Pseudo-arc?

Observation 2(a). If X is an inverse limit of path graphs and each fi has no level pieces,

then X is not hereditarily indecomposable.

Proof. We will choose a set {u1, d1, u2, d2, u3} ⊂ X that is decomposable. Choose any three

vertices in X1 that are adjacent and the two edges between them, u1
1, d

1
1, u

1
2, d

1
2, u

1
3.

u1
1

u1
2

u1
3

d1
1

d1
2

We claim that there are three vertices in X2 that are adjacent along with the edges between

them, u2
1, d

2
1, u

2
2, d

2
2, u

2
3, so that f1(u2

j) = u1
j and f1(d2

j ) = d1
j . We prove this claim by noticing the

bonding map f1 is continuous, onto, and has no level pieces and the path graph X2 is connected,

so that the map f1, assuming it starts at the first vertex, must eventually reach the last vertex, as

shown in the figure below.
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f1

X2

X1

u1
1

u1
2

u1
3

u2
1 u2

2 u2
3

Using the same proof, we can find three vertices in X3 that are adjacent along with the

edges between them, u3
1, d

3
1, u

3
2, d

3
2, u

3
3, so that f2(u3

j) = u2
j and f2(d3

j ) = d2
j . We continue this

process and let u j = (ui
j)
∞
i=1 and d j = (di

j)
∞
i=1. Then the set {u1, d1, u2, d2, u3} = H ∪ K, where

H = {u1, d2, u2} and K = {u2, d2, u3}.

□

Observation 2(b). If we remove the level pieces in the construction of X, then X will not be

hereditarily indecomposable.

Proof. The proof follows from Observation 2(a). □

So, if we try to remove the level pieces in our construction, we lose the property of heredi-

tary indecomposability.

However, we notice that there is only one type of set causing X to be non-Hausdorff, a

pair {(vi)∞i=1, (ei)∞i=1} that cannot be separated. We define a two-point incidence set to be a set

{(vi)∞i=1, (ei)∞i=1} such that vi is incident to ei for all i or vi = ei for all i < k and vi is incident to ei

for all i ≥ k.

Suppose {v = (vi)∞i=1, e = (ei)∞i=1} is a two-point incidence set and vi is incident to ei for

i > k. We note that one point in the set, say v, is such that vi is a vertex for i > k and similarly

ei is an edge for i > k. This follows from the fact that a component in the pre-image of vk has a
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vertex at each end and a component in the pre-image of ek has an edge at each end, so that the

only way vk+1 can be incident to ek+1 is if vk+1 is a vertex and ek+1 is an edge.

These two-point incidence sets can also be given one of two classifications: a left two-

point incidence set or a right two-point incidence set. A left two-point incidence set is an

incidence set {(vi)∞i=1, (ei)∞i=1} where ei precedes vi for all i ≥ k. A right two-point incidence

set is an incidence set {(vi)∞i=1, (ei)∞i=1} where vi precedes ei for all i ≥ k. The proof that any

X ∈ X contains these two-point incidence sets follows from Figure 2.2 in the proof of the

non-Hausdorffness of a traditional inverse limit of path graphs.

We notice some interesting properties of these two-point incidence sets in X ∈ X.

Observation 3. Each two-point incidence set is unique, meaning if {v, e} is a two-point in-

cidence set in X then there is no other two-point incidence set containing v or e.

Proof. Let v = (vi)∞i=1, e = (ei)∞i=1 so that {v, e} is a two-point incidence set of X ∈ X. First, we

show that v cannot be in any other two-point incidence set. Let d = (di)∞i=1 , e and suppose, by

way of contradiction, that {v, d} is a two-point incidence set. Because e , d, for some first j,

e j , d j.

Case 1: v j is incident to e j and v j is incident to d j

Because e j , d j, it must be true that e j+1 , d j+1. By the definition of a two-point incidence

set, v j+1 is incident to both e j+1 and d j+1. But because of the shape of the maps fi, one vertex of

f −1
j (v j) can only be incident to a component of f −1

j (e j) or f −1(d j), but not both, contradicting

that v j+1 is incident to e j+1 and d j+1. This is shown in the figure below. Notice that each vertex

of f −1
j (v j) is incident to one edge of f −1

j (e j) or f −1
j (d j), but not both.
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e j

d j

X j+1

X j

v j f −1
j (v j)

f −1
j (e j)

f −1
j (d j)

Case 2: v j = e j and v j is incident to d j

But v , e, so for some k > j, vk , ek. Then, vk is incident to both ek and dk and ek , dk.

Then, the proof follows as in Case 1.

Now, we show that e cannot be in any other two-point incidence set. Let u = (ui)∞i=1 and

suppose, by way of contradiction, that {u, e} is a two-point incidence set. Because v , u, for

some first j, v j , u j.

Case 1: e j is incident to v j and e j is incident to u j

Because v j , u j, it must be true that v j+1 , u j+1. By definition of a two-point incidence

set, e j+1 is incident to both v j+1 and u j+1. But because of the shape of the maps fi, one edge of

f −1
j (e j) can only be incident to a component of f −1

j (v j) or f −1
j (u j), but not both, contradicting

that e j+1 is incident to v j+1 and u j+1.

Case 2: e j = v j and e j is incident to u j

But e , v, so for some k > j, ek , vk. Then, ek is incident to both vk and uk and vk , uk.

Then, the proof follows as in Case 1. □

Observation 4. Each two-point incidence set is closed in X.

Proof. Let {v, e} be a two-point incidence set and let p = (pi)∞i=1 ∈ X, p , v, e. Then, by

Observation 2, p does not form a two-point incidence set with v or e. Then, for some j, p j , v j
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and p j is not incident to v j. Similary, for some k, pk , ek and pk is not incident to ek. Let

l = max{ j, k}, so that pl is not incident to vl and is not incident to el.

If pl is an edge, then let U =
←−−
{pl} so that p ∈ U, v, e < U. If pl is a vertex, then let

U =
←−−−−
Bl(pl). Then {v, e} contains all of its limit points, and is therefore closed. □

Let M = {x ∈ X : x is in some two-point incidence set}.

Observation 5. The set M is dense in X.

Proof. Let p = (pi)∞i=1 ∈ X − M and U be an open set containing p. Then U =
←−
U j some open

U j ⊂ X j. We construct two points, v and e, that are in U and form a two-point incidence set.

Let vi = pi = ei for all i ≤ j. Notice that f −1
j (U j) must contain an incident vertex and edge, (in

fact, it contains several incident pairs). Let v j+1 and e j+1 be one such pair. Similarly, we can

choose v j+2 and e j+2 to be such a pair in f −1
j+1({v j+1, e j+1}), and continue this process so that vi is

incident to ei for all i > j. Then, U ∩ M , ∅. □

3.3 The Family X and the Pseudo-arc

In this section, we circle back to our original question: can we use our methods to represent a

Pseudo-arc as an inverse limit of path graphs? In the previous section, we have shown that our

given construction does not result in a Psuedo-arc, but we wonder what relationship the family

X has with the Pseudo-arc.

We notice that there are two ways to use any X ∈ X to create a Pseudo-arc. First, let

Y = {{v, e} ⊂ X : v, e form and incidence set in X} ∪ {{p} : p ∈ X − M}. Certainly X/Y is

separable and chainable as each of the factor spaces are finite. If it can be shown that X/Y is

metric and hereditarily indecomposable, then X/Y is a Pseudo-arc.

Proof of Hausdorffness of X/Y . Let p1, p2 ∈ X/Y, p1 , p2.

Case 1: p1 = {(xi)∞i=1}, p2 = {(x′i)
∞
i=1}

Then, for some j, x j and x′j are not incident in X j. It is possible that the basic open sets

intersect in X j, so we instead consider the basic open sets B j+1(x j+1) and B j+1(x′j+1) so that they
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do not intersect. Then U = (X/Y) ∩ 2
←−−−−−−−−−
B j+1(x j+1) and V = (X/Y) ∩ 2

←−−−−−−−−−
B j+1(x′j+1) separate p1 and p2.

Notice that we use the power set of these open sets because points in X/Y are sets of X.

Case 2: p1 = {(xi)∞i=1}, p2 = {(vi)∞i=1, (ei)∞i=1}

Then, for some j1, x j1 is not incident to v j1 ∈ X j1 and for some j2, x j2 is not incident to e j2

in X j2 . Let j = max( j1, j2) so that x j is not incident to v j or e j in X j. However, the basic open

set containing x j might intersect the basic open set containing v j, so instead we consider the

basic open sets in X j+1. Let U = (X/Y) ∩ 2
←−−−−−−−−−
B j+1(x j+1) and V = (X/Y) ∩ 2

←−−−−−−−−−
B j+1(v j+1)∪

←−−−−−−−−−
B j+1(e j+1), so that

U and V separate p1 and p2.

Case 3: p1 = {(vi)∞i=1, (ei)∞i=1} and p2 = {(ui)∞i=1, (di)∞i=1}

By Observation 2, the sets p1 and p2 are unique, so for some j1, v j1 is not incident to d j1

and for some j2, e j2 is not incident to u j2 . Let j = max( j1, j2). However, the basic open set

containing v j and the basic open set containing u j may still intersect at an edge. Instead, we

consider the basic open sets in X j+1. Let U = (X/Y) ∩ 2
←−−−−−−−−−
B j+1(v j+1) and V = (X/Y) ∩ 2

←−−−−−−−−−
B j+1(u j+1), so

that U and V separate p1 and p2. □

To show X/Y is hereditarily indecomposable, we use the same proof as in Observation

1(a). We notice that X/Y is compact, Hausdorff, and second-countable, so it is metric. Then

X/Y is a Pseudo-arc.

We could also consider the subspace X−E of X, where E = {e : the edge points of the incidence sets}

[1]. We can show that X/Y is homeomorphic to X − E using the homeomorphism h : X/Y →

X − E:

h({x}) = x, if x is not in any two-point incidence set of X

h({v, e}) = v, if v, e form a two-point incidence set in X

Then, X − E is also a Pseudo-arc. This leads us to two more observations of the spaces X ∈ X.

Observation 6. The Pseudo-arc is a continuous image of any X ∈ X.

Proof. We define a continuous map f : X → X/Y . For x ∈ X, let f (x) = the set containing x in

X/Y . □
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Observation 7. Any X ∈ X is a continuous image of the Pseudo-arc.

Proof. Let X = lim
←−−T
{Xi, fi}

∞
i=1 ∈ X. We begin by strategically defining an inverse limit space

that is a Pseudo-arc. Let P = lim
←−−T
{Pi, gi}

∞
i=1 where Pi = [0, 1] with the usual metric topology for

all i, and gi is the piece-wise linear function with the same shape as fi. Notice that if we define

a chain Ci = {[0, 1
|V(Xi)|−1 ), ( 1

|V(Xi)|−1 ,
2

|V(Xi)|−1 ), ..., ( |V(Xi)|−2
|V(Xi)|−1 , 1]} covering each Pi, then {Ci}∞i=1 is a

sequence of chains such that each Ci+1 is a proper refinement of Ci, each Ci+1 maps crookedly

in Ci, and each Ci is a 1
i -chain, so that P is a Pseudo-arc.

Define a map f : P→ X as follows: (pi)∞i=1 → (xi)∞i=1 where

if pi =
n

|V(Xi)| − 1
, n ∈ {0, 1, ..., |V(Xi)| − 1} then xi = vn+1 ∈ V(Xi)

if pi ∈

(
n

|V(Xi)| − 1
,

n + 1
|V(Xi)| − 1

)
, n ∈ {0, 1, ..., |V(Xi)| − 2} then xi = vn+1vn+2 ∈ E(Xi)

Let U be an open set of X. Then U =
←−
U j where U j is some open set of X j. Because

U j is open, it must be a union of components where each component has an edge at each

end. Let V = (∪vn∈V(U j)
n−1

|V(X j)|−1 ) ∪ (∪vnvn+1∈E(U j)

(
n−1

|V(Xi)|−1 ,
n

|V(Xi)|−1

)
). V is open, as it is a union

of points and open intervals where an open interval is always on both sides of a point. Then

f −1(U) = f −1(
←−
U j) =

←−
V , which is open in P. □
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Chapter 4

Conclusion and Open Problems

In this dissertation, we explore several methods for representing an inverse limit of metric

arcs as a generalized inverse limit of path graphs where the first factor space is a metric arc.

In Chapter 2, we present some important properties, referred to as Incidence Properties, of a

continuous map from one path graph to another and use them to show that an inverse limit of

path graphs is not Hausdorff. This is unfortunate, as we would like the inverse limit to be a

metric space. We remedy this issue by instead considering a generalized inverse limit space.

Starting with some inverse limit of metric arcs, we present two methods to construct a

homeomorphic generalized inverse limit where the first factor space is a metric arc with the

usual topology and every other space is a path graph with the graph topology. For these methods

to be successful, the bonding maps must meet certain conditions, H1. and H2. This limits the

use of these methods. We outline one more method that allows infinite graphs, though this

method also requires that the bonding maps meet certain limiting conditions.

This leads us to the main question: can a Pseudo-arc be represented as a generalized

inverse limit of path graphs using methods similar to the ones in Chapter 2? In Chapter 3, we

attempt to construct such an inverse limit of path graphs. This construction results in a family

of hereditarily indecomposable inverse limit of path graphs. However, these spaces are not

Hausdorff, and therefore not a Pseudo-arc. The other sections of Chapter 3 analyze properties

of this family of spaces and their relationship with the Pseudo-arc.

In terms of future research, we first consider a continuation of the work in Chapter 3 and

wonder what else the spaces in X have in common with the Pseudo-arc. The Pseudo-arc P is

homogeneous, so for every p, q ∈ P, there is a homeomorphism h : P → P such that h(p) = q
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[3]. However, a space X ∈ X has several different types of points. X contains points in left

two-point incidence sets, right two-point incidence sets, and points that are not in any incidence

set. We conjecture that every X ∈ X is non-homogeneous but that for any p and q ∈ X that are

both in left or both in right two-point incidence sets, there is a homeomorphism h : X → X so

that h(p) = q.

To support this conjecture, we notice that if h : X → X is continuous and {v, e} is a

two-point incidence set, then h({v, e}) = {u, d} where {u, d} is a two-point incidence set.

Proof. Note that because {v, e} is a two-point incidence set, every open set containing v must

also contain e. Let h(v) = u and h(e) = d. Assume, by way of contradiction, that u and d do not

form a two-point incidence set. Then, there is some j so that B j(u j) ∩ B j(d j) = ∅. Consider the

open set U =
←−−−−
B j(u j). Then v ∈ h−1(U) but e < h−1(U), a contradiction. So the set {u, d} must be

a two-point incidence set. □

Certainly it is worth exploring what other properties the spaces X ∈ X have.

More broadly, we wonder what other spaces can be represented using graphs. In [2], a unit

triod is represented using similar techniques as in Chapter 2. Below, we give an example of a

generalized inverse limit of graphs where the first space is a metric space that is homeomorphic

to the dyadic solenoid.

Example. Let X = lim
←−−T
{X j, f j}

∞
j=1 where each Xi is the circle {z = cos θ+i sin θ ∈ C : θ ∈ [0, 2π]}

and each fi : Xi+1 → Xi is fi = z2, so that X is the dyadic solenoid. Let Y = lim
←−−G
{Y j, g j}

∞
j=0 be

the generalized inverse limit space with Y0 = {z = cos θ + i sin θ ∈ C : θ ∈ [0, 2π]} and Y j be a

cycle graph with |V(Y j)| = 2 j soV(Y j) = {v
j
1, v

j
2, ..., v

j
2 j} and E(Y j) = {e

j
1, e

j
2, ..., e

j
2 j}. Define the

map g0 : Y1 → Y0 as follows:

g0(v1
1) = cos

(
π

2

)
+ i sin

(
π

2

)

g0(e1
1) =

{
z = cos θ + i sin θ ∈ C : θ ∈

[
0,
π

2

)
∪

(
π

2
, 2π

]}
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(0, 1)

g0

Y0 v1
1

e1
1

Y1

Define the map g j : Y j+1 → Y j as follows:

g j(v
j+1
k ) = g j(v

j+1
k+2 j−1) = {v

j
k}

g j(e
j+1
k ) = g j(e

j+1
k+2 j−1) = {e

j
k}

g1

v1
1

e1
1

v2
1

v2
2

e2
1

e2
2

Y1 Y2

Y2 Y3

g2

In the figure above, g2 maps the red vertices in Y3 to the red vertex in Y2 and does the same

for the blue vertices.

We can show that X and Y are homeomorphic. In general, if X is the n-adic solenoid, we

can let Y = lim
←−−G
{Y j, g j}

∞
j=0 be the generalized inverse limit space with Y0 = {z = cos θ+ i sin θ ∈

C : θ ∈ [0, 2π]} and Y j be a cycle graph with |V(Y j)| = n j so V(Y j) = {v
j
1, v

j
2, ..., v

j
n j} and
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E(Y j) = {e
j
1, e

j
2, ..., e

j
n j}. We define the map g j : Y j+1 → Y j as follows:

g j(v
j+1
k ) = g j(v

j+1
k+n j−1) = ... = g j(v

j+1
k+(n−1)n j−1) = {v

j
k}, 1 ≤ k ≤ n j−1

g j(e
j+1
k ) = g j(e

j+1
k+n j−1) = ... = g j(e

j+1
k+(n−1)n j−1) = {e

j
k}, 1 ≤ k ≤ n j−1

So that Y is homeomorphic to the n-adic solenoid. If instead the solenoid wraps n1, n2, ... times,

then we just replace the appropriate n with ni.

If we consider the Pseudo-solenoid, we conjecture that as in Chapter 3 we will not be

able to use our methods to construct an inverse limit of graphs homeomorphic to the Pseudo-

solenoid. Finally, we consider infinite graphs with a natural ordering with the graph topology

and wonder how they might expand our methods for representing spaces using inverse limits

of graphs. In particular, whether we can use infinite graphs to represent the Pseudo-arc or

Pseudo-solenoid.
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