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Abstract 

 
 

 The main goals of this study were to evaluate the performance of commercial sweet corn 

cultivars in southeastern U.S. and to identify the effect weather variability on cultivar 

development; to find best practices for nitrogen (N) management and to identify the effect of 

weather in N management; lastly, to use the CSM-CERES-Sweetcorn model to analyze sweet corn 

production under different N fertilizer rates and application timing in different weather scenarios. 

Field trials for this study were conducted in three locations of the State of Georgia, and two 

locations of the State of Alabama, in 2020, 2021, and 2022. Heavy rainfall events, unpredictable 

heat and drought stresses, and frequent high-temperature fluctuation create challenges during crop 

growing seasons. Results indicated that cultivar performance was rather impacted by season rather 

location, and yields were higher in the spring compared to fall. Affection, GSS1170, Passion, and 

SCI336 had best performance for most locations in both season and showed high potential against 

environmental stresses. Higher total soil N was found in treatments with high N rate; however, it 

was not translated to yield. Moreover, yield did not show a significant difference among 

treatments, which may be explained by the same amount of N uptake by the plant in all treatments. 

Nitrogen use efficiency (NUE) was higher in lower N fertilizer treatments, and it was positively 

correlated to yield. Therefore, there is no need to increase N fertilization to achieve higher yields, 

instead it will increase N leaching and waste. The CSM-CERES-Sweetcorn model was able to 

simulate sweet corn growth and development under different N fertilizer rates across two years 

with different weather patterns. However, the model was not sensitive enough to detect differences 

in the N fertilizer rates applied, which require further research to improve the model and allow 

better predictions among the different N fertilizer rates. 
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Chapter 1 (Introduction) 

Horticulture crops, vegetables and fruits, cover most parts of U.S. agriculture (Johnson, 2014). 

Particularly, vegetable crops have important nutritional values being a source of vitamins, fibers, 

and minerals. These characteristics increase human health, reducing the risks of many diseases 

such as heart and gastrointestinal diseases or diabetes (Silva Dias, 2010).  

Maize (Zea mays L.) is a cereal crop and one of the most important in the world, playing a 

significant role in human and animal foods (Adinurani et al., 2019; Budak & Aydemir, 2018). 

Sweet corn (Zea mays L.; Poaceae family), an annual grass and widely grown in temperate and 

tropical climates (Barros-Rios et al., 2015; Gross et al., 2016), considered one type of maize and 

only differ from the common maize due to its higher sugar content. Moreover, sweet corn has an 

important nutritional value, such as higher vitamins A and C compared to maize, low fat and low 

sodium contents (Adinurani et al., 2019). Particularly, sweet corn can be used for fresh 

consumption, canned, or frozen (USDA, 2020). 

The U.S. is one of the main sweet corn-producing countries (Khan et al., 2017). Sweet corn 

is well-distributed crop inside the U.S., being produced in all 50 states, and is considered one of 

25 main annual vegetable crops produced in the country. It is a commercial valuable crop valued 

at over U$1.2 billion. Upper Midwest and Pacific Northwest regions are the main regions for 

processing sweet corn production; and Georgia, Florida, and California are the most important 

states for fresh market production (Morton et al., 2017). 

Sweet corn and maize are examples of grasses crops and those crops have advantages such as 

better water-use efficiency, better nitrogen use efficiency (NUE), and increased productivity 

(Leegood, 2016; Kar et al., 2017).  
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To achieve a higher commercial and nutritional value for this crop, it is necessary to update 

the current N fertilizer recommendation and provide best plant nutrient management strategies to 

ensure sweet corn quality, maximize crop yield, and decrease the negative impact of excess of 

fertilizer being leached to the environment (Calabi-Floody et al., 2018). 

Thus, the main goal of this research is to develop a guideline to a better nitrogen 

recommendation for sweet corn crop as well as to evaluate the performance of 10 cultivars of sweet 

corn according to the weather variability of each region of the southeastern U.S. 
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Chapter 2 (Literature Review) 

Sweet corn importance and characteristics 

Horticulture crops, vegetables, and fruits cover most of U.S. agriculture (Johnson, 2014). 

Particularly, sweet corn is widely grown due to its economic and cultural importance, which place 

U.S. as one of the top production countries in the world. It is mainly produced for fresh and 

processed consumption (canned or frozen) and is a staple of summer picnics and barbecues (Khan 

et al., 2017; USDA, 2020). In U.S., sweet corn is in the top 25 vegetable crops grown and is one 

of the most important crops produced in the southeast. Upper Midwest and Pacific Northwest 

regions are the main regions for processing sweet corn production; Georgia, Florida, and California 

are the most important states for fresh market production (Morton et al., 2017; USDA-NASS, 

2024). In 2023, the U.S. sweet corn production for fresh and processing marked had a value of 

U$1 billion with over U$330 million coming only from the southeastern U.S. (USDA-NASS, 

2024). 

Sweet corn (Zea mays L.; Poaceae family) is an annual grass crop and widely grown in 

temperate and tropical climates (Barros-Rios et al., 2015; Gross et al., 2016). It is considered one 

type of maize, differing from maize only by the higher sugar content, with a high nutritional value 

(Adinurani et al., 2019; Silva Dias, 2010). Sweetness is the main characteristic of sweet corn which 

most attracts consumers (Marinho et al., 2019). Another important difference between sweet corn 

and maize is found in the harvest period, in which maize is harvested when kernels are fully mature 

and hardened while sweet corn is harvested at “milk stage”, giving the sweet taste and unique 

texture to this vegetable (Marinho et al., 2019). In short, sweet corn is harvested before reaching 

physiological maturity, which can be an advantage over maize (Khan et al., 2017). According to 

Morton et al. (2017), the window to harvest sweet corn is from 65 to 90 days after planting 
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day. However, differences in sweet corn genotype and environments may affect their harvest and 

storage time (Pairochteerakul et al., 2018). 

To increase the sweetness and shelf life, breeding programs have been working on the 

manipulation of endosperm genes, which control the level of sugar found in the corn kernel (Lertrat 

& Pulan, 2017). The production of ‘super sweet’ varieties is increasing in the US, mainly in the 

most important sweet corn growing regions (Gross et al., 2016). However, super sweet varieties 

do not show a good performance in the field due to poor seed germination and vigor, more 

susceptibility to pests and diseases, and reduced yield (Pairochteerakul et al., 2018). Temperature 

and soil can also be a challenge for production due to their impact on seeding, tasseling, pollination 

and kernel development, and harvest (Morton et al., 2017). 

Sweet corn varieties contain sugar levels greater than 25% during the milking stage when 

compared to field corn, and its sweet taste comes from a spontaneous mutation in the su (“sugary”) 

gene of the field corn, which controls conversion of sugar to starch inside the endosperm of the 

corn kernel (Singh & Yadava, 2014). Regarding the sugar content in sweet corn, there are three 

main types of sweet corn including regular sweet corn (su), sugar enhanced sweet corn (se), and 

super sweet corn (sh2). They differ mainly on sugar content, storage and quality, and seed vigor. 

The type ‘su’ is more common among home gardeners and it contains 5-10% of sugar. The ‘su’ 

varieties are usually considered early varieties, which has the disadvantage of sugar being quickly 

turned into starchy after harvest even in a good storage condition. The type ‘Se’ is sweeter than 

‘su’ as it contains 12-20% of sugar and holds it for a longer time post-harvest/shelf life. The 

heterozygous hybrids are composed of 25 % of ‘se’ genotype and 75 % of ‘su’ genotype; however, 

the homozygous hybrids have two 100 % of ‘se’ kernel. Ultimately, the ‘Sh2’ has a very slow 

conversion of sugar into starch, which increase storage time (10 to 14 days) but also a higher cost 
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for growers with seeds, which are typically smaller in size (East & Kemble 2021; Singh et al., 

2014). Synergistic and augmented shrunken are two other types of sweet corn related to the 

sweetness, but they are less common. Synergistic is a hybrid between su-1, sh2, and two copies of 

se, resulting in a very high sugar content and tender kernels. Augmented shrunken or augmented 

super sweet hybrid is a combination of Su-1, two copies of se, and two copied of sh2, resulting in 

100% of tender super sweet varieties (Singh et al., 2014).  

Besides the sweetness, sweet corn varieties can differ on kernel color, but the main types of 

sweet corn grown in the U.S. are yellow, white, and/or bicolor. White kernels have a creamy 

texture and mild flavor while yellow kernels, the most common in the U.S., are firm with a very 

sweet and juicy texture. The bicolor kernels are a combination of yellow and white characteristics 

and flavor (East & Kemble 2021). When growing sweet corn of different color types, isolation is 

required to avoid cross-pollination. Isolation can be done by distance (215-305 m) or by timing 

the maturity, ensuring that the tasseling and silking periods (when pollination occurs) of different 

types do not overlap, usually 10-14 days between varieties (Brandenberger et al., 2006; Hoeft et 

al., 2000). Regarding sweetness, cross-pollination can affect the taste (lost the sweetness and get 

starchy), texture, and color of the corn. For instance, supersweet (sh2) types cannot cross-pollinate 

with ‘se’ (Sugary Enhanced) or ‘su’ (normal sugary) types. If this happens, it will result in starchy 

kernels because ‘sweet’ genes are recessives, and field corn and popcorn carry dominant gene for 

starch. If one of them pollinates sweet corn, sweetness will be lost, and the starch will be expressed 

in the ‘sweet’ cultivars (Singh et al., 2014).  

Most sweet corn breeding programs are focused on increased sugar content instead of yield 

(Dhaliwal & Williams, 2019) however, a proper agronomic management, good nutrition, and 

breeding strategies can improve their performance in the field (Pairochteerakul et al., 2018). 
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Therefore, (N) fertilizer management, one of the most important macronutrients, can be optimized 

to increase sweet corn yield (Khan et al., 2017 - 2). 

Importance of Nitrogen fertilizer  

Macronutrients are required in large amounts by the plants, and N is one of the most important 

macronutrients required by the plants (Khan et al., 2017 – 2; Kumar et al., 2002). The 

photosynthesis is the main process that allows plants growth, and its rate is directly related to N 

availability due to the presence of N in proteins, amino acid structures, and in chlorophyll pigments 

(Evans & Clarke, 2019). 

N can be assimilated in different forms by the plants, such as nitrate, nitrite (present in low 

amounts), and ammonium (can be toxic) (Foyer & Noctor, 2002). Nitrate, the main form of N 

found in shoots and roots, acts as an important signal in plants, inducing gene expression of 

enzymes for its own metabolism and development (Campbell, 2002). When nitrate is the main 

source of N in plants, its conversion to ammonia happens obligatorily to allow the synthesis of 

amino acids (Rosenblueth et al., 2018). Therefore, the availability of soil N can be a limiting factor 

in sweet corn production (Rosenblueth et al., 2018) and proper N fertilization ensures increases in 

the plant’s growth and development, increased photosynthetic rates, leaf area, biomass, yield, and 

helps in a better kernel development and quality (Evans & Clarke, 2019; Leghari et al., 2016; 

Morton et al., 2017; Sugiyama & Sabakibara, 2002).  

Currently, there are challenges that may affect the N uptake by sweet corn plants, such as lack 

of nutrients in the soil, temperature, precipitation, and soil management, triggering reductions in 

sweet corn production (Leghari et al., 2016; Morton et al., 2017). The lack of a proper amount of 

soil N available to plants or the excess of N leads to a significant reduction in growth and 

development, presence of chlorosis, early senescence, reduced yield, and poor ear quality (Abkar 
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et al., 2002; Capon et al., 2017; Cazetta et al., 1999; Chen et al., 2017; Leghari et al., 2016; Oketem 

& Oktem, 2005). A good understanding of nutritional requirements for each sweet corn growth 

stage is, thereby, essential to develop a good fertilization program.  

Prior to any fertilizer application, soil testing is highly recommended to check the levels of 

N in the soil and all other macro and micronutrients available (Stephens & Liu, 2022). At planting 

or early vegetative stage, it is recommended to use a source of N fertilizer combined with 

phosphorus (P) and potassium (K) to enhance root development and allow a better initial growth 

(Jones et al.,1990). The recommended N rate for pre-plant application in sweet corn ranges from 

33 to 56 kg N per hectare (Stephens & Liu, 2022). At vegetative growth stage (V6-V14), sweet 

corn has a rapid nutrient uptake, in this stage N promotes leaf and stem growth and K support 

continued growth and nutrient transport within the plant. The timing for its application will depend 

on soil fertility, weather conditions, and genotype/cultivar (Camberato et al., 2017). During 

tasseling and silking (VT and R1) nutritional needs peek, and adequate amounts of nutrients are 

crucial for ear development. However, it is also important remember micronutrients, such as zinc 

(Zn) and boron (B), are required in smaller quantities but critical for optimum yield (Ciampitti and 

Vyn, 2013). At grain filling (R2-R6) plants require adequate nutrient availability, mainly of N and 

K, to support kernel development and avoid limitation in yield, however, fertilizer applications are 

not recommended during this stage (Jones et al.,1990).  

The soils in the southeastern U.S. are sandy soils, characterized by low water-holding 

capacity, high infiltration, low nutrient retention, and high soil surface temperature (Herawati et 

al., 2021; Kemble et al., 2023). Thus, the recommendation for N fertilization in this region is to 

apply a total of 140 to 196 kg ha-1, where 45-68 kg ha-1 is applied before planting, 22 kg ha-1 band-

place with planter, and 56-85 kg ha-1 at side-dress (12 to 18 inches tall) (Kemble et al., 2023). 
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However, growers are following the N recommendations for field corn production, and it is 

common to see N being applied at rates above 336 kg N ha-1 to ensure a good yield (Malik & 

Dechmi, 2019). The main impacts caused by higher amounts of N besides are yield losses, lodging, 

higher susceptibility to pest and diseases, and the negative impacts on groundwater quality (Calabi-

Floody et al., 2018; Chivenge et. Al., 2021) in addition to can be the high cost for growers. 

Nitrogen use efficiency (NUE) is a short-term measurement of the balance between N used 

for grain production and N lost to the environment, describing how effectively plants uptake N by 

the plants (Chivenge et al., 2021; Congreves et al., 2021; Kumar et al., 2002). However, it is hard 

to have full control over the NUE by the plants once it might be impacted by extreme weather, 

such as precipitation and temperatures fluctuations. As a result, the global NUE remains below 

40%. One initiative, promoted to help growers with this, is called the 4Rs which focus on the Right 

source of fertilizer that matches the crop’s need; Right rate of the fertilizer, Right time of 

application, and Right place of application to ensure optimal crop use (Omara et al., 2019; Tao et 

al., 2018). 

The impact of the weather variability  

The weather in the southeastern U.S., classified as a humid subtropical climate or warm 

temperate climate (Cfa), with heavy rainfall events during a hot summer and dry periods during 

the winter (Beck et al., 2018; Kalvová et al., 2003), makes this region the most important producer 

in the winter season for sweet corn fresh market (y Garcia et al., 2009). However, climate change 

and weather variability bring significant challenges to global food production, including to the 

southeastern U.S. (Rosenzweig et al., 2014), which have brought agricultural and economic 

consequences (Thornton et al., 2014) due to its direct and indirect impact on crop growth and 
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development. Some of the challenges caused by weather variability may be related to the N 

availability to the plants and insect pressure on the field. 

For instance, southeastern U.S. soils are more susceptible to weather variability (Herawati et 

al., 2021; Kemble et al., 2023) due to its characteristics. N is a very mobile and unstable nutrient 

in the soil increasing chances of getting lost (Panison et al., 2019). Heavy precipitation, drought 

events, or even heat waves may impact the N availability to the plants, leaching, denitrification, 

and volatilization (Congreves et al., 2016; Fowler et al., 2013; Galloway et al., 2008; Iqbal et al., 

2017; Kay et al., 2006).  

Besides nitrogen deficiency, the combination of excess water and N fertilizer (mainly nitrate 

form) in the soil may affect plant growth, furthermore, may increase the nitrate leaching rate 

through soil and drainage systems due to its mobility and cause negative impacts for both human 

and environmental healthy (He et al., 2011; Johnson et al., 2021; Silva et al., 2005). 

The most common caterpillar pests that affects sweet corn production in the southeastern U.S. 

are corn earworm (Helicoverpa zea), fall armyworm (Spodoptera frugiperda), and european corn 

borer (Ostrinia nubilalis). Corn earworm and fall armyworm are predominantly ear feeding pests 

and European corn borer feeds on multiple parts of the plant. Caterpillar feeding may significantly 

decrease yield and quality (Kemble et al., 2023; Griffin & Williamson, 2021). Changes in 

temperature, precipitation, drought, and other weather patterns may cause fluctuations in insect 

populations, changing their key life cycle as emergence, reproduction, and hibernation (Steven et 

al., 2004; Prakash et al.2014). Understanding these impacts is crucial for developing effective 

strategies to mitigate potential threats to agriculture and ecosystems (Karp et al., 2018; Skendzic 

et al., 2021).  
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Warmer temperatures can advance insect development and cause earlier emergence, 

accelerating insect reproduction rates (more generations per year and potentially higher population 

densities), increase damage to crops, and reduced yields. Extended cold periods or late frosts can 

delay or disrupt life cycle events (Field et al., 2014; Prakash et al., 2014; Steven et al., 2004).  

In sweet corn, the optimal temperature for a better development is around 20-30 °C. However, 

if higher or lower temperatures are present there may be damage to roots, leaves, grains and, 

consequently, yield losses. Temperature stress at seeding stage may affect sweet corn growth and 

yield. Besides temperature, changes in rainfall patterns can also reduce sweet corn production since 

drought (water stress) or flooding affect seeds germination, growth, biomass, and yield (Revilla et 

al., 2021). 

According to Reilly et al. (2003), changes were observed in yield for different crops (i.e., 

maize, wheat, potatoes) due to the weather variability. Models predicted a warmer and drier 

climate, mainly in 2030, which may negatively affect crop production. For the southeastern U.S., 

the prediction shows a 70% of decrease in soybean, rice, and tomato production due to weather 

changes, however, may be beneficial for crops such as citrus. Some other studies also show an 

increase in temperatures, but also a decrease in the rainfall events in temperate regions. These 

changes may affect sweet corn production. A model prediction for sweet corn shows its season 

cycle will be decreased in about 20 days due to the higher temperatures, consequently, and yield 

and water requirements will also be reduced (Revilla et al., 2021). 

Crop models can be a key in reducing the impacts caused by weather variability. The weather 

knowledge allows decision-making by the growers including choosing the best planting date, best 

fertilizer programs, best management practices and IPM strategies, best harvesting date to ensure 

better results to the growers and to the U.S. economy (Lazo et al., 2011; Ben-Asher et al., 2008).  
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Crop model and CSM-CERES-Sweetcorn 

Crop models are mathematical equations used to simulate crop growth and development. This 

tool has been used as new approach in agriculture, making crop simulations and predictions which 

allows a better decision-making by the growers (Lykhovyd, 2020).  

For instance, is it possible to simulate and predict the effects of weather variability on different 

crops yields over time (Karp et al., 2018). Moreover, crop models may provide insights into the 

complex relationships between climate, N fertilizer, insect populations, and crop performance, 

aiding the development of a better N fertilizer program, anticipating pest outbreaks and leading to 

the implementation of better management strategies (Kasampalis et al., 2018; Jin et al., 2018; 

Tonnang et al., 2022; Zhao et al., 2019). 

Among several software available for crop modeling, the DSSAT (Decision Support System 

for Agrotechnology Transfer) is a free software available for crop modeling purposes (Zhao et al., 

2019). It was designed to be an integrated platform of modeling and to be “self-explained” to users 

without experience be able to insert data sets and make simulations. However, DSSAT is only able 

to simulate crop models if the database has enough data. The database includes weather, soil, 

experiments, pests, genetics, and economics data, and for each one a minimum data set (MDS) is 

required. For example, a MDS for weather includes daily maximum and minimum temperature, 

rainfall, solar radiation; a MDS for soil includes color, slope, texture, permeability and more; a 

MDS of a crop management include the cultivars, planting date, population, row spacing, irrigation 

type and amount, fertilizer applications and its amounts. Those data are the required data to initiate 

the simulation of a model (Boote, 2019; Jones et al., 2003; Jin et al., 2018). 

Inside the DSSAT software we can find the model CERES (Crop Estimation through 

Resource and Environment Synthesis) which is a powerful tool to simulate growth, biomass 
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accumulation, yield under different environments and with different crop management (Geng et 

al., 2017; Zhao et al., 2019). The CERES‐Maize is a very popular corn model that has been widely 

used for predictions on nitrate leaching, uptake, N stressed conditions, phenology and growth, 

growth response to N, leaf area, biomass, and yield (Adnan et al., 2017; He et al., 2011). 

According to Reid (2017), there is still a lack of sweet corn models able to predict growth and 

development or its responses to environment and weather changes. As we know, sweet corn and 

maize differ in many aspects such as in the presence of sugar content, ear and kernel growth and 

development, susceptibility to water stress, root growth, leaf area growth, some nutrients response, 

and harvest time (Reid, 2017). The differences between maize and sweet corn lead us to understand 

that there is a need to well adapt maize models to sweet corn crop model. Therefore, Lizaso et al. 

(2007) were responsible to make the first adaptation of the CERES-Maize model to develop and 

release the sweet corn growth and development model, the CERES-Sweet Corn model. 

CERES-Sweet Corn model had an adjustment in the description of ear and kernel growth and 

development characteristics. Now, the adjusted model can simulate sweet corn growth as well as 

simulate best N fertilization, ear growth, ear quality, marketable yield, under different weather 

conditions (Lizaso et al., 2007; Lone et al., 2020; Jones et al., 2003; Zhang et al., 2019).  

Application of crop models can be found in the literature. Yuan et al (2017) used the AMaize 

model (daily-time-step decision-support system for optimizing N management) to calibrate to 

sweet corn and simulate the best N practices for sweet corn. The results showed the possibility to 

reduce around 30-48% of N fertilizer (typical N fertilizer rates described as 200 kg N ha-1) at the 

same time to enhance crop yield by approximately 40%. Zhang et al. (2019) used three years of 

wheat data on DSSAT-CERES to identify the best N rates management to achieve a good yield on 

wheat. Moreover, Malik & Dechmi (2019) used DSSAT-CERES-Maize to improve N 



 

 23 

management practices got simulations showing growers can reduce the N fertilizer currently 

applied (390 kg ha-1) to reduce N leaching and still have a good yield. These are examples of how 

crop models can be applied to agriculture aiming higher quality and profits. 

Objectives 

The main goal of this project is to promote a sustainable intensification of sweet corn 

production by minimizing the excessive N-fertilizer applied during growing seasons, mitigate 

environmental concerns, reduce cost of production, identify the effect of weather variability in 

different sweet corn varieties in the southeastern U.S., and increase crop yield.  

The specific objectives are: 

i) To evaluate the performance of commercial sweet corn cultivars in southeastern U.S. and 

to identify the effect weather variability on cultivar development and selection. 

ii) To develop a guideline for optimum N-fertilizer strategies for sweet corn production in the 

southeastern U.S. and to identify the effects of weather variability on N fertilizer application on 

sweet corn. 

iii) Use the CSM-CERES-Sweet Corn model to analyze sweet corn production under different 

N rates and timing in different weather scenarios and make future predictions. 
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Chapter 3 (Characterization of sweet corn production in subtropical environmental 

conditions) 

Abstract 

Weather variability in subtropical environmental conditions of southeastern U.S. impact sweet 

corn production in the region, which is one of the most important in the country. Understanding 

sweet corn performance under these environmental conditions is important to help growers with 

decision making. Thus, the objectives of this study were to evaluate and characterize the 

performance of ten commercial sweet corn cultivars exposed to several environmental conditions 

of southeastern U.S. and to describe impacts of weather variability on cultivar development, yield, 

and ear quality. Field experiments were conducted in five locations of southeastern U.S. during 

the spring and fall of 2020 and 2021. Weather data, biomass accumulation, yield, and ear quality 

were measured for all cultivar within seasons and locations. Heavy rainfall events created 

waterlogging conditions for sweet corn development; however, it was daily air temperature of 

seasons that mostly impacted yield and ear quality. Daily air temperatures extended the growing 

season of spring but reduced crop development in the fall. Consequently, biomass accumulation 

was higher in the spring (4243 kg ha-1) compared to fall (1987 kg ha-1). Biomass accumulation 

translated into yield, which was, thereby, generally higher in the spring compared fall. Therefore, 

cultivars with great potential against environmental stresses and best performance for most 

locations were Affection, GSS1170, Passion, and SCI336 in the spring, and Affection, GSS1170, 

and SC1136 in the fall. Ultimately, sweet corn yield was strongly correlated to ear dimensions but 

poorly correlated with number of grains in a kernel, suggesting that breeding programs trying to 

increase potential yield should be focused on ear diameter and length.  

Keywords: weather variability, yield, ear parameters, multivariate analysis.  
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Introduction  

Sweet corn (Zea mays subsp. Mays L.) is an annual grass and a warm-weather vegetable crop 

widely grown in the U.S., where it ranks the third most grown vegetable crop [1-3]. Annually 

planted in approximately 150,178 ha, sweet corn is valued in $775 million with 44% of the national 

production relying on the environmental conditions of southeastern U.S. [4].   

The southeastern U.S. is classified with a humid subtropical climate (Cfa), characterized by 

heavy rainfall events during summer and dry periods during winter [5,6]. This climate is 

considered optimal for sweet corn production; however, recent high spatial and temporal 

variability of regional weather conditions, also known as weather variability, has created 

challenges for sweet corn production in the southeastern U.S. [5,7,8]. Daily air temperatures have 

been impacting seed germination, roots and leaf development, tasseling, pollination, grain filling, 

and yield [9-11]. Particularly, sweet corn yield has been reported to drop in 23% due to heat stress 

in the southeastern U.S. [7]. Changes in rainfall patters also have been creating challenges [12]. 

Heat and drought events were reported to increase osmotic stress and reductions on seed 

germination, plant growth, leaf expansion, and ear development [13]. Whether heat stress is 

present during ear differentiation, there is decrease in ear length and number of kernel rows. 

Whether heat stress is present during tasseling, there is a significantly reduction in ear weight [14]. 

In the case of excessive rainfall events, saturated soils are reported to cause anaerobic conditions 

in the root zone, reducing water uptake, stomal conductance, photosynthesis rate, and chlorophyll 

content [13]; ultimately, excessive rainfall events reduce grain fill and ear weight [14].  

Overall, the current weather variability of the subtropical climate in the southeastern U.S. 

requires a better understand of how weather is affecting the sweet corn growing seasons, plant 

development, yield, and ear quality. Information can help growers to ensure crop quality and 
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potential yields. Thus, the objectives of this study were to evaluate and characterize the 

performance of ten commercial sweet corn cultivars exposed to several environmental conditions 

of the southeastern U.S. and to describe the impacts of weather variability on cultivar development, 

yield, and ear quality.  

Materials and Methods 

Sites description and experimental design 

Field experiments were conducted in collaboration with sweet corn growers during the spring 

and fall growing seasons of 2020 at three sites in Georgia, U.S., and during the spring and fall 

growing season of 2021 at two sites in Alabama, U.S. (Table 3.1). All 5 locations were classified 

within the humid subtropical climate (Cfa), with heavy rainfall events during a hot summer and 

dry periods during the winter [5-6]. Soil characteristics of each location are shown in Table 3.1. 

Table 3.1 Location, geographic coordinates, year, season, soil type, planting space (IRS), planting 

date (PD), Biomass sampling events (S) in days after planting (DAP), harvesting date, and growing 

degree days (GDD) accumulated for all field experiments. 

      3DAP  

Location  Coordinates Year Season Soil type 1IRS 

(cm) 

2PD 4S0 5S1 6S2 7S3 8S4 9S5 Harvest 10GDD 

Southwest GA 
31.18269ºN 

84.40958ºW 

2020 Spring 
Troup sand 

15.24 April 15 1 43 55 69 - - 69 898 

2020 Fall 17.78 Aug 26 1 14 28 47 66 - 66 928 

Southeast GA 
32.01807ºN 

82.22108ºW 

2020 Spring Irvington 

loamy sand 

15.24 June 3 1 14 30 44 58 - 58 930 

2020 Fall 17.78 Aug 21 1 19 40 54 68 - 68 898 

South GA 
31.42378ºN 

83.68807ºW 

2020 Spring Tifton loamy 

sand 

15.24 April 2 1 47 60 68 - - 68 877 

2020 Fall 17.78 Aug 18 1 15 31 44 57 66 66 916 

Southwest AL 
31.14055ºN 

87.04885ºW 

2021 Spring Benndale fine 

sandy loam 

15.24 March 23 1 52 65 85 - - 85 930 

2021 Fall 15.24 Aug 6 1 19 40 63 73 - 73 992 

Central AL 2021 Spring 15.24 April 14 1 30 43 64 78 - 78 991 
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32.50058ºN 

85.89150ºW 
2021 Fall 

Kalmia loamy 

sand 
15.24 Aug 12 1 29 48 64 78 - 78 965 

 

In all locations, a factorial experimental design of sweet corn cultivar was arranged in a 

complete randomized block design with four replications in the Georgia sites and three replications 

in the Alabama sites. Sweet corn cultivars (n = 10) are described in Table 3.2. Experimental units 

were comprised of 80 sweet corn plants in all sites. Crop management practices associated with 

soil preparation, irrigation, and management of pests, weeds, and diseases followed 

recommendations of the Southeastern U.S. Vegetable Crop Handbook, for all locations [15]. 

Table 3.2 Overview of sweet corn commercial cultivars evaluated. 

Cultivar Color Disease resistance 

Passion Yellow Rust, HR: Rp1D, IR: Pst, Et 

SCI336  Yellow M: Ps, Et, Pst 

Obsession Bicolor Ps, Et, Pst 

Affection  Bicolor - 

EX08767143 Bicolor Rust, IR: Et, Pst 

Coastal  Bicolor HR: Ps (Rp1-g) 

Flagler  Bicolor HR: Ps (Rp1-g) 

BSS1075 Bicolor HR: PS: Rp1-i 

BSS8021  Bicolor HR: PS: Rp1-i, Et 

GSS1170 Yellow HR: Et, Ps: Rsp1-i 

*HR: high resistance; M: moderate resistance; IR: intermediate resistance; Rp1D, Rp1-g, Rsp1-i, and Rp1-i: genes 

that confer resistance to Puccinia sorghi, agent of common rust; Ps: fungus Puccinia sorghi (common rust); Pst: 

bacteria Pantoea stewartii (Stewart’s wilt); Et: fungus Exserohilum turcicum (northern leaf blight). 

Weather data and growing degree days (GDD) 

During all growing seasons, daily maximum and minimum air temperature, and rainfall events 

in each location were monitored using the closest weather station from the Georgia Automated 

Weather Network or the Auburn University Mesonet. 
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Accumulated growing degree days (GDD) were determined using the following equation. 

𝐺𝐷𝐷 = ("#$%&	(#)*	)
,

− 𝑇𝑏𝑎𝑠𝑒  

where “Tmax” means average daily maximum temperature, “Tmin” means average daily 

minimum temperature, “Tbase” means the sweet corn base temperature, which was set at 10 ºC 

[7]. 

Biomass accumulation, yield, and ear quality 

Sweet corn biomass was monitored with plant tissue samples collected at least 4 times during 

each growing season (Table 3.1). Samples were comprised of two representative plants of each 

plot, oven-dried at 65.5°C until a constant weight. Subsequently, sweet corn maximum crop 

biomass accumulation (NM), sweet corn biomass accumulation rate constant (k), and half 

maximum sweet corn biomass accumulation (l) of each variety within each season and location 

was simulated by fitting sweet corn biomass data into the Witty (1983) model [16] using the Sigma 

Plot Version 14.5 (Systat Software), as follows: 

𝐶𝑟𝑜𝑝	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
NM

1 + 𝑒-.(/-0)
 

where “NM” is maximum crop biomass accumulation, “k” is crop biomass accumulation rate 

constant, “t” is time in days, and “l” is days to half maximum biomass accumulation. 

At maturity, sweet corn ears were harvested in all locations (Table 3.1). During harvest, the 

number of ears and total weight were recorded. Additionally, five ears were randomly selected 

from each plot and ear length, ear diameter, number of kernel rows in an ear (KR), number of 

kernel grains in an ear row (KIR), and the total number of kernels in an ear (KTG) were measured. 
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Statistical analysis 

Statistical analyses were performed using linear mixed techniques as implemented in the SAS 

PROC GLIMMIX (SAS/STAT 9.4; SAS Institute Inc., Cary, NC). All response variables were 

analyzed with location, year, and season as fixed effects. Blocks within location and season were 

considered a random effect. When the F value of the analysis of variance was significant, least-

square means comparisons were performed using Tukey’s Honest Significant Difference Test 

(P<0.05) and means were portioned using the slice command in SAS. 

A multivariate analysis was also performed, using the R Studio software (version 4.0.2), 

RStudio Team, 2020. The dissimilarity among all response variables (biomass, yield, and ear 

quality parameters) was measured by the Euclidean distance and presented as a cluster analysis, 

which was built based on a hierarchical Unweighted Pair-Group Method Using Arithmetic 

Averages. In addition, all data were submitted to a Principal Component Analysis (PCA) to verify 

the contribution of biomass, yield, ear quality parameters, cultivars, location, and season to the 

construction of the principal components. A correlation-based network analysis was also 

performed using Pearson's method. 

Results 

Weather data and growing degree days (GDD) 

 Rainfall events and minimum and maximum daily air temperature of all locations are shown 

in Figure 3.1, while the total GDD accumulated within each season of all locations is shown in 

Table 3.1.  

In southwest GA, average minimum and maximum daily air temperatures were 17 and 30 ºC 

during the spring growing season and averaged 19 and 30 ºC during the fall growing season of 
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2020, respectively. There were 280 and 233 mm of precipitation in spring and fall 2020, 

respectively.  

In southeast GA, average minimum and maximum daily air temperatures were 22 and 33 ºC 

during the spring season and averaged 18 and 28 ºC during the fall growing season of 2020. There 

were 218 and 175 mm of precipitation in the spring and fall 2020, respectively. 

In south GA, average minimum and maximum daily air temperatures were 15 and 28 ºC 

during the spring growing season and averaged 18 and 28 ºC in the fall growing season of 2020, 

respectively. There were 150 and 229 mm of precipitation at the study locations in spring and fall 

2020, respectively.  

In southwest AL, average minimum and maximum daily air temperatures were 15 and 27 ºC 

during spring 2021 and averaged 19 and 29 ºC in the fall 2021, respectively. There were 446 and 

355 mm of precipitation at the study locations in spring and fall 2021, respectively. 

In central AL, average minimum and maximum air daily temperatures were 17 and 29 ºC 

during the spring growing season and averaged 18 and 29 ºC in the fall growing season of 2021, 

respectively. There were 303 and 293 mm of precipitation at the study locations in spring and fall 

2021, respectively. 
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Figure 3.1 Rainfall and maximum and minimum daily air temperature in the spring (a, b, c, d, and 

e) and fall (f, g, h, i, and j) of southwest GA (a and f), southeast GA (b and g), south GA (c and h), 

southwest AL (d and i), and central AL (e and j). 

Biomass accumulation 

Biomass accumulation was not statistically compared among cultivars, locations, and seasons. 

Instead, biomass accumulation was fitted in the Witty (1983) model for characterization of the 

performance of sweet corn cultivars [16]. Table 3.3 has the NM, l, and k values for all cultivars 

within each season and location. In general, the NM of sweet corn cultivars were greater in the 

spring season compared to fall season within all locations. While l and k, which indicate sweet 

corn growth, were greater for the fall season compared to spring season. 

Table 3.3. Effect of cultivar, location, and season on sweet corn maximum biomass accumulation 

(NM), days to reach half biomass (l), and crop biomass accumulation rate (k). 

Cultivar 
 Southwest GA Southeast GA South GA Southwest AL Central AL 

Spring Fall Spring Fall Spring Fall Spring Fall Spring Fall 

 
NM (kg ha-1) 

Affection 3505 1663 4030 2293 2819 1833 456 1418 9448 1754 

BSS1075 3880 2127 5946 2638 2759 2137 1833 1678 8372 2671 

BSS8021 3418 1947 4971 1777 2762 2209 486 1739 7056 1880 

Coastal 3280 1749 3307 2460 3029 2010 604 1009 8731 2207 

EX08767143 3475 1884 4641 2471 2726 2190 1237 1327 9568 2232 

Flagler 3433 2084 4263 2474 3193 2266 1167 1610 9807 1798 

GSS1170 3534 2191 4577 2221 2656 2219 506 1103 9149 1862 

Obsession 3522 1784 5409 2546 2721 2073 1053 1731 10525 2107 

Passion 3851 1959 5468 2546 2394 2189 879 1391 8731 2043 

SCI336 3506 2262 5115 2456 2457 2179 1150 1338 10764 1618 

  l (days) 

Affection 43.2 29.2 37.8 41.2 47.3 31.8 51.7 - 46.2 29.8 

BSS1075 42.9 29.3 38.7 39.8 48.7 34.1 52.6 - 46.4 29.6 



 

 41 

BSS8021 42.6 29.6 38.5 15.2 51.6 33.7 52.1 - 46.0 29.6 

Coastal 42.7 29.0 35.9 34.0 47.1 34.5 52.1 - 46.0 30.0 

EX08767143 42.7 29.0 36.2 36.8 45.7 37.0 52.3 - 46.4 29.9 

Flagler 42.9 30.9 38.2 39.7 51.5 36.5 52.6 - 46.2 3.00 

GSS1170 43.3 35.3 37.3 40.0 47.7 35.5 51.8 - 46.1 29.6 

Obsession 42.9 32.2 39.0 39.7 49.3 33.6 52.6 - 46.3 30.1 

Passion 41.7 29.1 38.5 38.2 51.0 34.6 52.0 - 46.3 29.6 

SCI336 40.4 37.7 39.0 40.4 45.3 36.3 54.6 - 46.4 30.3 

  k 

Affection 1.681 0.939 0.203 0.199 0.203 1.293 1.557 1.392 1.159 1.176 

BSS1075 1.703 0.721 0.148 1.509 0.241 0.276 1.621 1.427 1.184 1.086 

BSS8021 1.719 0.648 0.15 0.298 0.126 0.163 1.735 1.432 1.129 1.095 

Coastal 1.622 0.808 0.187 0.079 0.133 0.227 1.612 0.429 1.173 1.111 

EX08767143 1.325 0.6 0.202 0.117 0.167 0.141 2.604 1.423 1.172 1.193 

Flagler 1.612 0.265 0.133 0.213 0.125 0.237 1.529 0.062 1.172 1.188 

GSS1170 1.79 0.183 0.184 0.225 0.244 0.177 0.051 1.323 1.138 1.126 

Obsession 1.817 0.227 0.173 1.437 0.134 0.35 1.661 1.413 1.247 1.088 

Passion 0.209 0.682 0.152 0.203 0.138 0.236 - 1.356 1.192 2.069 

SCI336 0.206 0.142 0.158 0.229 0.215 0.161 0.395 1.378 1.198 1.105 

 

Sweet corn yield  

Sweet corn yield was significantly impacted by the interaction among cultivar, location, and 

season (Table 3.4).  

In southwest GA, cultivars Obsession (24.3 Mg ha-1) and Passion (24.3 Mg ha-1) had the 

highest yields in the spring, while cultivars GSS1170 (27.6 Mg ha-1) and Affection (25 Mg ha-1) 

had the highest yields in the fall. In southeast GA, cultivars EX08767143 (26.7 Mg ha-1) and 

Coastal (23.7 Mg ha-1) had the highest yield in the spring, while cultivars Affection (28.2 Mg ha-

1) and Coastal (27.8 Mgha-1) had the highest yields in the fall. In south GA, cultivars Coastal (19.1 

Mg ha-1), Affection (17.7 Mg ha-1) and GSS1170 (17.7 Mg ha-1) had the highest yields in the 

spring, while cultivars Affection (32.1 Mg ha-1) and SCI336 (30.5 Mg ha-1) had the highest yields 
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in the fall. In southwest AL, cultivars Coastal (35.8 Mg ha-1) and BSS1075 (23.9 Mg ha-1) had the 

highest yields in the spring, while cultivars SCI336 (15 Mg ha-1) and GSS1170 (14.8 Mg ha-1) had 

the highest yields in the fall. In central AL, cultivars EX08767143 (26.5 Mg ha-1) and SCI336 

(25.7 Mg ha-1) had the highest yields in the spring, while cultivars EX08767143 (19.7 Mg ha-1) 

and BSS1075 (16.7 Mg ha-1). 

For the yield comparison among cultivar in the spring and fall seasons within each location, 

cultivar Affection had the highest yield, which had no significant difference among location within 

the fall growing season. Cultivars BSS1075 and BSS8021 had the highest yield in the spring of 

southwest AL and central AL, and in the fall of southeast GA and south GA. Cultivar Coastal had 

the highest yields in the spring of central AL and southwest AL, and in the fall of southwest GA, 

southeast GA, and south GA. Cultivars EX08767143 and Flagler performed similarly and had the 

highest yields in the spring of southwest GA, southeast GA, southwest AL, and central AL, and in 

the fall of southwest GA and south GA. Cultivar GSS1170 had the highest yields in the spring for 

southwest AL, central AL, and southeast GA, and in the fall of southwest GA, south GA, and 

southeast GA. Cultivars Obsession and Passion had the highest yields in the spring of southwest 

AL, central AL, and southwest GA, and in the fall of southeast GA and south GA. Cultivar SCI336 

had similar yield for all locations in both spring and fall seasons, except for the spring in south 

GA. 
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Table 3.4. Effect of the interaction among sweet corn cultivar, season, and location on sweet corn total yield. 

Cultivar 
Southwest GA Southeast GA South GA Southwest AL Central AL 

Spring Fall Spring Fall Spring Fall Spring Fall Spring Fall 

 Mg ha-1 

Affection 22.8±1.7 Byaz 25.0±1.2 Aab 18.7±2.5 Bbc 28.2±2.2 Aa 17.7±2.2 Bab 32.1±4.6 Aa 20.4±5.9 Abcd 12.3±1.3 Ba 25.2±2.7 Aa 16.4±0.3 Bab 
BSS1075 21.3±0.7 Aa 19.6±0.2 Ac 20.1±0.2 Abc 22.3±0.7 Abcd 16.4±0.8 Bab 19.1±0.6 Ae 23.9±1.5 Aab 8.5±2.6 Ba 23.1±2.0 Aab 16.7±0.4 Bab 

BSS8021 22.1±0.8 Aa 21.3±1.8 Bbc 16.3±1.8 Ac 19.1±2.0Ad 14.2±1.1 Bab 19.6±0.7 Ae 23.1±2.7 Aab 9.5±0.8 Ba 19.2±3.0 Ab 8.7±0.6 Bc 

Coastal 19.9± 1.6 Ba 22.1±0.5 Abc 23.7±3.7 Bab 27.8±1.9 Aab 19.1±2.0 Ba 25.7±1.1 Abcd 35.8±1.2 Aa 9.5±0.3 Ba 24.8±2.5 Aab 12.1±0.8 Bbc 

EX08767143 23.2±1.7 Aa 22.2±0.4 Abc 26.7±2.5 Aa 25.4±0.6 Babc 17.2±1.0 Bab 26.1±1.2 Abc 19.7±2.4 Abcd 11.7±0.7 Ba 26.5±3.3 Aa 19.7±0.8 Ba 

Flagler 22.0±1.1 Aa 20.6±0.5 Abc 19.9±0.9 Abc 23.5±1.0 Aabcd 17.2±1.3 Bab 23.8±0.8 Acde 26.7±0.9 Ab 12.1±0.2 Ba 23.7±3.1 Aab 15.1±0.7 Babc 

GSS1170 22.5±1.1 Ba 27.6±2.3 Aa 19.9±2.4 Abc 24.9±2.1 Aabc 17.7±1.9 Bab 25.8±1.1 Abc 21.1±1.1 Aabcd 14.8±1.6 Ba 25.0±2.2 Aab 11.5±1.2 Bbc 

Obsession 24.3±3.1 Aa 19.6±0.7 Bc 18.2±2.3 Bc 24.5±1.3 Aabc 14.6±2.1 Bab 20.7±1.6 Ade 16.4±2.8 Ad 11.8±0.8 Ba 23.2±1.0 Aab 14.9±0.7 Babc 
Passion 24.3±0.6 Aa 20.7±1.2 Bbc 19.2±1.5 Abc 21.3±1.5 Acd 12.7±1.8 Bb 22.2±1.0 Acde 20.0±10.8 Abcd 11.9±0.8 Ba 23.4±2.0 Aab 16.4±0.5 Bab 

SCI336 23.2±0.5 Aa 23.9±0.7 Aabc 23.5±3.2 Aab 24.8±3.2 Aabc 15.0±1.5 Bab 30.5±2.1 Aab 16.8±7.5 Acd 15.0±1.0 Ba 25.7±2.0 Aa 21.2±0.1 Aa 
y Values followed by similar uppercase letters among season (column) within cultivar (row) indicate no significant difference according to the Tukey mean test. z 

Values followed by similar lowercase letters among cultivar (row) within season (column) indicate no significant difference according to the Tukey mean test. 

 
 
  
 



 

 44 

Ear quality parameters  

Among all ear quality parameters (i.e., ear diameter, ear length, KR, KIR, and KTG, there 

was a significant interaction between cultivar and location for KTG (Table 3.5); between location 

and season for ear diameter, KR, KIR, and KTG (Table 3.6); and between cultivar and season for 

ear diameter and ear length (Table 3.7). 

For the main effect of cultivar on KTG (Table 3.5), location cultivars SCI336 (671) and 

BSS1075 (651) had the highest KTG in southwest GA, cultivars Obsession (596) and BSS1075 

(594) had the highest KTG in southeast GA, cultivar GSS1170 (602) had the highest KTG in south 

GA, cultivar Coastal (528) had the highest KTG in southwest AL, and cultivars Passion (640), 

EX08767143 (627), and SCI336 (620) had the highest KTG in central AL.  

For the main effect of location on KTG within cultivars, southwest GA had the highest KTG 

within cultivars Affection (581), BSS1075 (651), EX08767143 (617), and SCI336 (671). 

Southeast GA had the highest KTG within cultivars BSS8021 (533), GSS1170 (588.0), and 

Obsession (596). South GA had the highest KTG within BSS8021 (526), Costal (571), Flagler 

(572), GSS1170 (602), and Obsession (546). Southwest AL had the highest KTG only within 

cultivar BSS8021 (465). Central AL had the highest KTG within cultivars BS8021 (511), Costal 

(576), EX08767143 (627), Obsession (581), and Passion (640). 

Table 3.5. Effect of the interaction between sweet corn cultivar and location for kernel total grains 

(KTG). 

Cultivar Southwest GA Southeast GA South GA Southwest AL Central AL 

Affection 581 ± 30.4 Aybc z 520 ± 17.3 ABbc 504 ± 27.7 BCc 444 ± 24.3 Cb 574 ± 34.7 ABabc 

BSS1075 651 ± 25.4 Aa 594 ± 17.8 Aba 581 ± 18.4 Bab 476 ± 53.8 Cab 594 ± 24.5  ABabc 

BSS8021 533 ± 21.6 Ac 514 ± 23.1 Ac 526 ± 20.7 Abc 465 ± 23.1 Aab 511 ± 37.2 Ac 

Coastal 552 ± 19.2  Abc 470 ± 16.2 Bc 571 ± 38.3 Aab 528 ± 45.5 ABa 576 ± 37.4 Aabc 
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EX08767143 617 ± 43.3 Aab 521 ±24.2  Bbc 526 ± 18.4 Bbc 491 ± 45.0 Bab 627 ± 30.4 Aa 

Flagler 533 ± 21.9 ABc 512 ± 27.0 ABc 572 ± 23.3 Aab 467 ± 37.8 Bab 534 ± 31.3 ABbc 

GSS1170 551 ± 16.1 ABbc 588 ± 23.8 Aab 602 ± 36.0 Aa 487 ± 3.81 Bab 574 ± 36.3 ABabc 

Obsession 576 ± 38.1 Abc 596 ± 31.4 Aa 564 ± 28.5 Aabc 478 ± 44.1  Bab 581 ± 39.2 Aabc 

Passion 580 ± 30.0 ABbc 589 ± 25.9 ABab 529 ± 29.4 BCbc 471 ± 25.6  Cab 640 ± 52.3 Aa 

SCI336 671 ± 50.1 Aa 583 ± 21.9 Bab 581 ± 26.2 Bab 487 ± 48.9 Cab 620 ± 25.0 Aba 
yValues followed by similar uppercase letters among location (column) within cultivar (row) indicate no significant 

difference according to the Tukey mean test. zValues followed by similar lowercase letters among cultivars (row) 

within location (column) indicate no significant difference according to the Tukey mean test. 

In the interaction between location and season for ear quality parameters (Table 3.6), the main 

effect of location within season indicated that ear diameter means were similar between spring and 

fall seasons in southwest GA (4.3 and 4.4 cm, respectively) and central AL (4.7 and 4.8 cm, 

respectively). In southeast GA and southwest AL, ear diameter was higher in the spring (4.4 and 

4.6 cm, respectively) compared to the fall season (4.2 and 4.3 cm, respectively); contrarily, ear 

diameter was higher in the fall (4.5 cm) compared to spring (4.2 cm) in south GA. For the main 

effect of season within location, ear diameter was largest in Central AL for both the spring and fall 

seasons.  

The KR were similar between spring and fall seasons for all locations, except in southwest 

GA where the KR were larger in spring (17.7) compared to fall (16.3). Contrarily, the KIR was 

higher in the spring compared to the fall for all locations, except in southeast GA where KIR was 

statistically similar in the spring (33.7) and fall (34.2). The average KTG in the spring was higher 

than in the fall for all locations, except in southeast GA where the KTG were statistically similar 

between spring and fall seasons (552 and 544, respectively). For the main effect of season, 

individually, the largest KR in the spring was in southwest GA (17.7), and the largest KR in the 

fall was in south GA and southwest GA (16.6 and 16.3, respectively). The largest KIR in the spring 

was in central AL (39.0), and the largest KIR in the fall was in southeast GA and central AL (34.2 

and 34.1, respectively). The KTG in the spring was the highest in southwest GA and central AL 
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(632 and 621, respectively), and the largest KTG in the fall was in the southeast GA (544), central 

AL (539), southwest GA (536), and south GA (528). 

Table 3.6. The interaction between season and location for ear diameter, kernel rows (KR), kernel 

grains in a row (KIR), and kernel total grains (KTG). 

Location 
Season 

Spring Fall Spring Fall Spring Fall Spring Fall 

 
Ear diameter Kernel rows Kernel grains in a row Kernel total grains 

 
cm # # # 

Southwest GA 4.3±0.02 Aycdz 4.4±0.02 Abc 17.7±0.3 Aa 16.3±0.3 Ba 35.8±0.3 Abc 32.9±0.4 Bab 632±13.4 Aa 536±12.5 Ba 

Southeast GA 4.4±0.03 Abc 4.2±0.02 Bd 16.4±0.3 Ab 16.0±0.2 Aab 33.7±0.5 Ad 34.2±0.5 Aa 552±13.0 Abc 544±11.0 Aa 

South GA 4.2±0.07 Bd 4.5±0.03 Ab 15.9±0.4 Abc 16.6±0.3 Aab 37.0±0.5 Ab 31.9±0.5 Bab 583±12.6 Ab 528±10.9 Ba 

Southwest AL 4.6±0.12 Aab 4.3±0.02 Bcd 15.2±0.3 Abc 15.4±0.2 Ab 35.3±0.7 Ac 27.9±0.6 Bc 534±15.8 Ac 428±11.1 Bb 

Central AL 4.7±0.03 Aa 4.8±0.06 Aa 16±0.4 Abc 15.8±0.3 Aab 39.1±0.5 Aa 34.1±0.5 Ba 621±15.7 Aa 539±12.9 Ba 
y Values followed by similar uppercase letters among season (column) within location (row) indicate no significant 

difference according to the Tukey mean test. z Values followed by similar lowercase letters among location (row) 

within season (column) indicate no significant difference according to the Tukey mean test. 

 
There was a significant interaction between cultivar and season for ear diameter and ear length 

(Table 3.7). For the main effect of cultivar within season, the ear diameter was similar between 

spring and fall seasons for all cultivars, except by Coastal which ear diameter was higher in spring 

(4.7 cm) compared to fall (4.5 cm), and cultivar SCI336 which ear diameter was higher in the fall 

(4.5 cm) compared to spring (4.3 cm). Ear length was higher in the spring compared to fall, 

regardless of cultivar. For the main effect of season within cultivar on ear diameter, the highest ear 

diameter in the spring was measure within cultivar Coastal (4.7 cm) but the lowest within cultivar 

BSS8021 (4.3 cm). The highest ear diameter in the fall was measured within cultivars SCI336 (4.5 

cm) and Affection (4.5 cm) and the lowest within cultivar BSS8021 (4.1 cm). The longest ear 

length in the spring season was measured within cultivar EX08767143 (18.8 cm); while cultivar 

Costal (17.3 cm) had the longest ear length in the fall season. The cultivar Affection had the lowest 

ear length in both the spring and fall seasons (17.5 and 16.4 cm, respectively). 
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Table 3.7 The interaction between sweet corn cultivar and season for ear diameter and ear length. 

Cultivar 
Season   

Spring Fall Spring Fall 

 
Ear diameter Ear Length 

 
cm cm 

Affection 4.4 ± 0.10 Aybc z 4.5 ±0.06 Aa 17.5 ± 0.33 Ae 16.4 ± 0.33 Bd 

BSS1075 4.5 ± 0.06 Aab 4.5 ± 0.08 Aab 18.2 ± 0.13 Aabcd 16.5 ± 0.30 Bcd 

BSS8021 4.3 ± 0.06 Ac 4.1 ± 0.04 Ad 17.6 ± 0.17 Ade 17.0 ± 0.20 Babc 

Coastal 4.7 ± 0.18 Aab 4.5 ± 0.05 Babc 18.6 ± 0.28 Aab 17.3 ± 0.27 Ba 

EX08767143 4.4 ± 0.08  Abc 4.5 ± 0.06 Aab 18.8 ± 0.24 Aa 16.7 ± 0.25 Bbcd 

Flagler 4.4 ± 0.06 Abc 4.5 ± 0.05 Aab 18.6 ± 0.21 Aab 17.0 ± 0.20 Bab 

GSS1170 4.4 ± 0.05 Abc 4.4 ± 0.06 Abc 17.7 ± 0.17 Acde 16.9 ± 0.18 Babcd 

Obsession 4.3 ± 0.07  Abc 4.4 ± 0.05 Ac 18.1 ± 0.31 Abcde 16.7 ± 0.26 Bbcd 

Passion 4.4 ± 0.08 Abc 4.4 ± 0.05 Abc 18.4 ± 0.34 Aabc 16.8 ± 0.25 Babcd 

SCI336 4.3 ± 0.07 Bbc 4.5 ± 0.08 Aa 17.9 ± 0.30 Acde 16.7 ± 0.20 Bbcd 
y Values followed by similar uppercase letters among season (column) within cultivar (row) indicate no significant 

difference according to the Tukey mean test. z Values followed by similar lowercase letters among cultivar (row) 

within season (column) indicate no significant difference according to the Tukey mean test. 

Multivariate and Correlation Analysis 

For the PCA, cultivars within location and season were considered an individual (Figure 3.2). 

For example, cultivar Affection grown in the spring season of southwest GA was an individual. 

Individuals were clustered in two groups, with PC1 and PC2 explaining 58.1% of the total variance 

of the data. Most individuals were clustered together in the largest group (represented by the blue 

color in Figure 3.2a) that had the highest values for all variable responses, except for the number 

of ears per plant (EAR). The second cluster group (represented in red color in Figure 3.2a) had a 

lower number of individuals compared to the first cluster group. Particularly, the second cluster 

group had higher values of EAR compared to the first cluster group. 

 



 

 48 

 

Figure 3.2 The principal component analysis (PCA) biplot is split into two graphics of all 

individuals and variables distribution and clustering (a) and variables correlation and contribution 

plot (b). Note: In figure a, first letter indicates season (S=Spring, F=Fall); second letter indicates 

location (D=Southwest GA, W=South GA, V=Southeast GA, S=Central AL, B=Southwest AL); 

third and fourth letter indicates cultivars (A=Affection, B5=BSS1075, B1=BSS8021, C=Coastal, 

E=EX08767143, F=Flagler, G=GSS1170, O=Obsession, P=Passion, S=SC1336). In figure b, 

EAR=number of ears, YD=yield, EW=ear weight, EL=ear length, BM=biomass, KIR=kernel grain 

in a row, EWI=ear width or diameter, KR=kernel row grain, KTG=kernel total grains. 

In the variable correlation analysis (Figure 3.2b), variable responses were all clustered on the 

right side of the plot, except for EAR, indicating that yield, ear weight, biomass, ear length, and 

KIR are positively correlated. Variables KTG, KR, and ear width were negatively correlated with 

EAR. The quality of the response variables can be analyzed through the distance between them 

and the origin in the plot. Variables that are far away from the origin are well represented in the 

data, for instance, the EAR, yield, ear weight, ear length, biomass, KIR, and KTG are variables 

with the highest quality of response. The contribution of the response variables is represented in 

percentage (%) where the “warmer” color represents a high percentage of contribution. For 
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instance, the KR and ear width had a lower percentage of contribution; contrarily, yield, ear weight, 

ear length, and KTG had a higher percentage of contribution. 

The Person’s correlation analysis (Figure 3.3) indicated that sweet corn yield is positively 

correlated to ear weight and biomass. Similarly, ear length had a positive correlation with biomass, 

ear weight, and KIR. The KTG was positively correlated with KIR and KR; contrarily, the KTG 

has a negative correlation with EAR. 

 

Figure 3.3 Correlation-based network analysis using Pearson's correlation method to compare all 

response variables, number of ears per plant (EAR), ear weight (EW), yield (Y), biomass (BM), 

ear diameter (EWI), ear length (EL), kernel rows (KR), kernel grains in a row (KIR), and kernel 

total grains (KIR). 

Discussion 

Climate change and weather variability have impacted growth and development of vegetable 

crops worldwide [17-23]. In the southeastern U.S., heavy rainfall events, unpredictable heat and 

drought stress, and frequent high-temperature fluctuation reduce sweet corn crop development, 

resulting in decreased yields and quality [19,24-27]. The impact of the weather variability is further 
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enhanced by the common use of super sweet cultivars of sweet corn, which have the highest 

potential yield but are the most sensitive for drastic changes in daily air temperature and soil water 

availability [28]. Understand the plant response to environmental conditions and selecting the most 

adaptable cultivar for the subtropical environmental conditions is the first step of developing best 

management practices for sweet corn production in the southeastern U.S. 

Rainfall accumulations were similar across locations and seasons, matching the crop water 

requirements of 268 mm for sweet corn grown in the southeastern U.S. [29]. However, scattered 

heavy rainfall events caused soil water saturation conditions, creating anaerobic conditions that 

reduce root growth while induce soil nutrient leaching [30]. Such heavy rainfall events occurred 

at 8 DAP (110 mm) in the spring and at 21 DAP (104 mm) in the fall of southwest GA, at 32 DAP 

(50 mm) in the spring and at 20 DAP (42 mm) in the fall of southeast GA, at 21 DAP (58 mm) and 

70 DAP (68 mm) in the spring and 29 DAP (65 mm) in the fall of south GA; as well as, at 18 DAP 

(81 mm) and 32 DAP (59 mm) in the spring and at 24 DAP (65 mm) in the fall of southwest AL, 

and at 10 DAP (52 mm) and 21 DAP (65 mm) in the spring of central AL. Particularly, southwest 

AL was the location with the largest number of rainfall events and accumulated rain, which explain 

the lowest yield of sweet corn cultivars within that location for both growing seasons. Cultivar 

Coastal stood out from the other cultivars in southwest AL and showed a high potential to have a 

good ear development and yield even in waterlogging conditions.  

Average daily air temperatures were also similar among locations and seasons and were 

within optimal range for sweet corn production, which varies between 20-30 ºC [24,26]. In general, 

daily air temperatures were lower than the optimal for sweet corn production early spring, when 

sweet corn plants were in the vegetative stage, but daily air temperature increased and reached 

optimum levels during late spring, when sweet corn plants were at ear development. Low daily air 
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temperatures in the early spring reduced GDD accumulation in the vegetative stage. Consequently, 

there was an increase in sweet corn l that allowed higher NM values during spring compared to 

fall. Ultimately, the extended growing season in the spring compared to fall allowed for the highest 

sweet corn yields [31-33]. Particularly, daily air temperatures later in the spring increased and were 

within optimum levels during sweet corn reproductive stages for all location, except in southeast 

GA, which had 20 days with daily air temperatures above 30 ºC during reproductive stages. Daily 

air temperatures above the optimum for sweet corn crop development decreased yield potential 

[16]; still, cultivars EX08767143 (26.7 Mg ha-1), Coastal (23.7 Mg ha-1), and SCI336 (23.5 Mg ha-

1) had the largest yields for that location demonstrating tolerance to heat stress. 

During the fall season, daily air temperatures were higher early season and reduced with crop 

development. In response, there was a quick GDD accumulation that increased sweet corn k and 

shortened the period between planting and harvest. This negatively impact ear diameter, KIR, KR, 

and KTG, which was caused because the poor biomass accumulated during the vegetative stage 

was not able to ensure grain filling during the reproductive stage [34]. Consequently, the shorter 

growing season of fall compared to spring resulted in the lowest sweet corn yields. Similar results 

were previously reported in cabbage production for southeastern U.S., where high temperatures 

early fall shortened the vegetative stage and reduce cabbage head size [35]. 

Overall, season followed by location were the main factors impacting sweet corn cultivars 

performance according to the PCA, which corroborate with previous studies [24-26]. Cultivars 

with best performance in the spring were Affection, GSS1170, Passion, and SCI336, and in the 

fall were Affection, GSS1170, and SC1136. Results also indicate that sweet corn yield is strongly 

correlated to ear width and ear length but poorly correlated with KTG, suggesting that breeding 
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programs trying to increase the potential yield in sweet corn should be focused on ear dimensions 

instead KR, KIR, and KTG. 

Conclusion 

Weather variability in the humid subtropical environmental conditions of southeastern U.S. 

is impacting sweet corn production. Particularly, heavy rainfall events, unpredictable heat and 

drought stresses, and frequent high-temperature fluctuation create challenges during crop growing 

seasons. In this study, sweet corn cultivars were evaluated for five locations of southeastern U.S. 

in the spring and fall. Daily air temperatures had a direct impact in sweet corn development, yield, 

and ear quality, while heavy rainfall events caused situations of waterlogging conditions in all 

locations for both growing seasons. Results indicated that cultivar performance was rather 

impacted by season than location. Low daily air temperatures early spring delayed crop growth 

and allowed for larger biomass accumulation in the spring compared to the fall, when high daily 

air temperatures shortened the growing season. Sweet corn yields were, thereby, higher in the 

spring compared to fall. Overall, heavy rainfall events negatively impacted sweet corn 

development, and cultivars with great potential against environmental stresses and best 

performance for most locations were Affection, GSS1170, Passion, and SCI336 in the spring 

growing season, and Affection, GSS1170, and SC1136 in the fall growing season. 
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Chapter 4 (Rethinking the sweet corn nitrogen fertilization in the Southeastern U.S.) 

Abstract 

Sweet corn (Zea mays convar. saccharata var. rugosa) is a key crop in the U.S., particularly in the 

southeastern region. Nitrogen (N) management is critical for optimizing yields, yet sandy soils and 

variable precipitation in this area affects N uptake. This study evaluated the effects of N fertilizer 

rate and timing on sweet corn growth and yield under Southeastern U.S. conditions. Field 

experiments were conducted at the University of Georgia and Auburn University over three years. 

Field experiments were in a complete randomized block design, with 5 N rates (from 224 to 336 

kg ha-1) and two application timing (Neme and Nsd) in a combination of 6 treatments. Higher N rates 

generally increased leaf area index (LAI), biomass, and total N uptake. However, excessive N led 

to increased N leaching, particularly during heavy rainfall events. Optimal yields were achieved 

at moderate N rates. The interaction between N rates and climatic conditions significantly 

influenced sweet corn performance. Effective N management, considering both application timing 

and environmental factors, is crucial for maximizing yields and minimizing negative impacts. This 

study highlights the importance of N management strategies in sweet corn production in the 

Southeastern U.S. to optimize yields while mitigating environmental risks. Further research is 

needed to refine these strategies and improve model predictions under varying climatic conditions. 

Keywords:  N fertilizer management, splitting N application, weather variability 
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Introduction 

Sweet corn (Zea mays convar. saccharata var. rugosa) is one of the most important vegetables 

in the U.S., with more than 3 mil tons produced a year, and the southeastern region represents 44% 

of the total sweet corn national production (USDA, 2022). However, significant precipitation and 

sandy soils common in the southeastern U.S. can affect nitrogen (N) fertilizer uptake and 

utilization, impacting yields (Leghari et al., 2016; Morton et al., 2017).  

N is the most crucial nutrient for crop productivity (Revilla et al., 2021) playing an essential 

role in plant growth and development, leading to increases in yield and food quality (Leghari et 

al., 2016). This is not different in sweet corn as N is the most critical nutrient and plays an essential 

role in both vegetative and reproductive stages (Khan et al., 2018) and can be a limiting factor in 

its production affecting plants growth and quality of the kernels (Oktem et al., 2010) 

An adequate supply of N in sweet corn triggers increases in growth, and kernel quality 

(Sugiyama & Sabakibara, 2002); its deficiency or excess can lead to decreased plant growth, 

presence of chlorosis, low ear quality, and low yields (Leghari et al., 2016; Evans & Clarke, 2019; 

Oketem & Okte, 2005). Excessive applications of N fertilizer can reduce yields and have negative 

impacts on the environment, such as groundwater pollution, and harm human and animal health 

(Calabi-Floody et al., 2018).   

At or before the planting date, the use of N fertilizer is recommended to provide adequate N 

for initial growth (Stephens & Liu, 2022). At early vegetative stages, rapid nutrient uptake by 

plants happens, and the use of N fertilizer enhances root development, ensures plant establishment, 

and promotes leaf and stem growth (Camberato et al., 2017; Jones et al.,1990). At the side dress 

stage or mid-vegetative stages, the N fertilizer application is crucial for proper ears and kernel 

development and consequently to increase the final yield (Panison et al., 2019). Khan et al (2018) 
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showed significant increases in sweet corn yield when N rates were raised from an untreated 

control (0 kg N ha-1) up to 120 kg N ha-1. Gao et al (2017) achieve the highest yield with 250 kg 

N ha-1 in sweet corn trials. Oktem et al (2010) defined the best N rate for sweet corn yield and 

quality as being 320 kg N ha-1. 

In an effort to increase yields, sweet corn growers may overfertilize with N which can increase 

input costs, but also negatively impact the environment. Thus, the objectives of this study were to 

evaluate the effect of N fertilizer rate and application timing on sweet corn development and yield 

under the environmental conditions of the Southeastern U.S. Hence, knowledge of nutrient 

management and application timing is extremely important to find a balance that benefits both 

growers and the environment, reducing risks and increasing yield and quality. 

Materials and Methods 

Sites description and experimental design  

Field experiments were conducted at the University of Georgia, Vidalia Onion and Vegetable 

Research Center (32.01814ºN 82.22138ºW), located in Southeast GA, in 2020; and at Auburn 

University, E.V. Smith Research Center (32.50053ºN 85.89281ºW), located in Central AL, during 

2021 and 2022. Field experiments in each growing season were characterized with a loamy sand 

soil (Table 4.1). According to the Kopen-Geiger climate classification, all locations are classified 

as a humid subtropical climate or warm temperate climate (Cfa), with heavy rainfall events during 

a hot summer and dry periods during the winter (Beck et al., 2018; Kalvová et al., 2003).   

Table 4.1 Location, geographic coordinates, year, season, soil type, planting spacing (IRS), 

planting date (PD), harvesting date, and accumulated growing degree days (GDD) from planting 

to harvest for each field experiment. 
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Location

   

Geographic 

Coordinates  

Year 

  

Season  Soil 

type  

1IRS  2PS  3PD

  

Harvest

  

4GDD  

Georgia  
32.01814ºN 

82.22138ºW  

2020 

  

Fall  Irvington 

loamy sand  

91.44

  

17.78

  

Aug 

26  

Nov 2  928  

Alabama  
32.50053ºN 

85.89281ºW  

2021 

  

Fall  

Kalmia 

loamy sand  

91.44

  

17.78

  

Aug 

16  

Nov 1   921 

Alabama  
32.50053ºN 

85.89281ºW   

2022  Fall  91.44

  

17.78

  

Aug 

17  

Nov 7   980 

*1IRS = in-row spacing measured in cm; 2PS: plant-spacing in cm, 3PD: Planting date; 4GDD: growing degree days 

(ºC; the base temperature for sweet corn is 10ºC).   

A two-factorial experimental design of N fertilizer application timing and N fertilizer rate was 

arranged in a complete randomized block design with three replicates (r = 3). Individual plots 

consisted of four rows planted 91.4 cm apart and plants spaced 17.7 cm apart (24684 plants/ha). 

Planting occurred on August 26th, August 16th, and August 17th during 2020, 2021 and 2022, 

respectively; and harvest at the beginning of November for all seasons (Table 4.1). Crop 

management practices associated with soil preparation, irrigation, and management of pests, 

weeds, and diseases were carried out following the standard practices for sweet corn in the 

southeastern United States. 

N fertilizer application treatments occurred before planting (Npl), at emergence (Neme), and at 

side dress (Nsd). The fertilizer source at Npl was 10-10-10, and at Neme and Nsd the fertilizer source 

was 34-0-0. At Npl, a 34 kg N ha-1 was applied in each trial for all treatments following the growers' 

standard practices for the region. Afterwards, two N fertilizer rates (56 N kg ha-1 or 112 N kg ha-

1) were applied separately at Neme, followed by a third application of three N fertilizer rates (134 

N kg ha-1, 162 N kg ha-1 or 190 N kg ha-1) applied separately at Nsd. The combination of Neme x 

Nsd application rates totaled six treatments (T1, T2, T3, T4, T5 and T6). N rates and timing of each 

treatment were detailed in (Table 4.2). Regarding the nature of the N fertilization applied, 

ammoniacal N (10% of N) was the source of N fertilizer applied at Npl, and ammonium nitrate 
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(24% of N) and urea N (10% of N) were used as the sources of N (34% total of N) fertilizer applied 

at Neme and Nsd. The Npl occurred at 0 days after planting (DAP) for all growing seasons, while 

Neme occurred at 19, 25, and 16 DAP during 2020, 2021, and 2022; and Nsd at 40, 44, and 41 

DAP in 2020, 2021, and 2022, respectively. Phosphorus (P) and potassium (K) were supplied only 

at planting using same 10-10-10 fertilizer source according to the growers’ standard practices. 

Table  4.2 Nitrogen fertilizer rates applied at planting (Npl), at emergence (Neme), and at side dress 

(Nsd) growth stages, and total N applied for each of the experimental fields in 2020, 2021, and 

2022 in the Southeastern U.S.  

Treatments  Npl  Neme  Nsd  Total 

N  

         N rates (kg ha-1)  

1  34  56  134  224  

2  34  56  162  252  

3  34  56  190  280  

4  34  112  134  280  

5  34  112  162  308  

6  34  112  190  336  

 

Weather conditions 

Daily maximum and minimum air temperature, and rainfall events were monitored using the 

closest weather station from the Georgia Automated Weather Network in the state of Georgia 

during 2020, and the Auburn University Mesonet in Alabama during 2021 and 2022.  

Accumulated growing degree days (GDD) were determined using the following formula (1): 

𝐺𝐷𝐷  = ((#$% - (#)*)
,

− 𝑇𝑏𝑎𝑠𝑒      (1)  
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where “Tmax” as the average daily maximum temperature, “Tmin” as the average daily 

minimum temperature, and “Tbase” as the sweet corn base temperature (10ºC).   

Soil nitrogen availability and total nitrogen  

Soil samples were collected and analyzed for nitrate (NO3-) and ammonium (NH4+) content in 

the soil in all growing seasons for all treatments. Soil samples were comprised of 5 subsamples 

per plot and collected at 0.30-0.60 m soil depth. In each growing season, samples were collected 

at least 4 times during crop development. Three samples were collected right before each N 

fertilizer application at 0, 19, and 40 DAP in 2020; at 0, 25, 44 DAP in 2021; and at 0, 28, and 40 

DAP in 2022, while the last samples were collected at silk and maturity (harvest) periods, as 

described in Table 4.3. Samples were dried and sent to waters agricultural laboratories (Water 

Agricultural Laboratories Inc., Camilla, GA; USA), for nitrate and ammonium analyses.   

Table 4.3 Sampling events, in days after planting (DAP), for soil nitrogen availability, nitrogen 

uptake accumulation, and biomass accumulation, in 2020, 2021, and 2022.  

           NO3 + NH4     Biomass and total N  

  2020  2021  2022    2020  2021  2022  
1PL  0  0  0     -   -   -  

2EME  19  25  28    19  25  28  
3SD  40  44 40    40  44 40  

4SILK  54  66  62    54  66  62  

Harvest 68  74  82    68  74  82  

*1PL: planting day sampling; 2EME: emergence stage sampling; 3SD: side-dress stage sampling; 4SILK: silk stage 

sampling. 
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Biomass accumulation and nitrogen uptake accumulation   

Plant tissue samples (leaf and stem) were collected four times at emergence (EME), side-dress 

(SD), silk, and at maturity (harvest) growing stages during each growing season (Table 4.3). Green 

leaf area index (LAI) was measured with an optical-electronic area meter LI-3100 (LI-COR Inc.) 

on two representative plants from each plot, then both plants were oven-dried at 65.5°C until 

constant weight and biomass dry weight was recorded. Dried samples were sent to waters 

agricultural laboratories (Waters Agricultural Laboratories Inc., Camilla, GA: USA) for total N 

Kjeldahl content (TKN). 

Plant tissue samples were used to measure biomass accumulation. To calculate the whole plant 

N uptake, the sum of the product of total dry biomass and total N (TKN) sampled throughout each 

growing season was used.  

In each growing stage, the nitrogen use efficiency (NUE) was calculated by as the ratio of the 

whole plant N uptake (TKN) by the total N supplied (total N fertilizer applied in each treatment 

minus the residual N fertilizer in the soil sampled before the planting date in each growing season) 

as shown in equation (2): 

𝑁𝑈𝐸 (%)  =  
𝑁 𝑢𝑝𝑡𝑎𝑘𝑒 

(𝑁 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟  −  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑁 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙) 

Yield and ear quality 

Sweet corn ears were harvested at maturity in all locations (Table 4.1), which ranged from 68 

to 82 DAP. Ears were hand harvested, and the total weight and number of ears were recorded for 

each row. Subsequently, five ears were randomly selected from each plot to determine the ear 

length and diameter, the number of kernels per row (KR), the number of kernels in an ear row 

(KIR), and the total number of kernels (KTG) per ear. 
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Statistical analysis 

Statistical analyses were performed using linear mixed techniques as implemented in the SAS 

PROC GLIMMIX (SAS/STAT 9.4; SAS Institute Inc., Cary, NC; USA). When the P value was 

significant, least-square means comparisons were performed using Tukey, adjusted at a probability 

value of 0.05, and means were portioned using the slice command in SAS. A correlation-based 

network analysis was performed using Pearson’s method in R Studio (R Foundation for Statistical 

Computing, Vienna, Austria). 

Results 

Weather data and growing degree days (GDD)  

Rainfall events and minimum and maximum daily air temperature of all locations are shown 

in Figure 4.1, and the total accumulated GDD for Georgia 2020, Alabama 2021, and Alabama 

2022 was 928, 921, and 980 ºC, respectively. 

In Georgia 2020, the average minimum and maximum daily air temperatures were 18 and 

28°C, and rainfall events accumulated 175 mm during the entire growing season. In Alabama 2021, 

the average minimum and maximum daily air temperatures were 17 and 29°C with 271 mm of 

precipitation during the entire growing season. Ultimately, minimum, and maximum daily air 

temperatures averaged 14 and 29°C and rainfall events accumulated 245 mm in Alabama 2022.  
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Figure 4.1 Rainfall and maximum and minimum daily air temperature during the sweet corn fall 

season of Georgia 2020 (a), Alabama 2021 (b), and Alabama 2022 (c). 
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Leaf area index, biomass accumulation, total N accumulated, and soil total N 

The LAI, biomass accumulation, total N, and soil total N were compared among locations by 

stages (Table 4.4). 

For LAI, there was a statistically significant difference among locations for EME, SD, and 

SILK stages. For biomass accumulation, there was significant differences among locations for SD, 

SILK, and Harvest stages. For total N, there were significant differences among locations for EME, 

SD, SILK, and Harvest stages. For soil total N, there were significance differences among 

locations for EME, SD, and SILK stages. 

Table  4.4 Effect of LAI, biomass accumulation, total N, and soil total N among locations by stages 

(EME, SD, SILK, and harvest). 

 
LAI Biomass Total N Soil total N 

Location cm2 kg ha-1 kg ha-1 kg ha-1 

 
EME 

Georgia 2020 323 cy 167 a - 9.9 b 

Alabama 2021 852 b 446 a 15.2 b 5.8 b 

Alabama 2022 1357 a 830 a 36.5 a 31.8 a 

Pvalue *** ns * ** 

 
SD 

Georgia 2020 1792 b 1409 c 48.7 b 53.9 a 

Alabama 2021 1818 b 2014 b 53.5 b 3.4 b 

Alabama 2022 2282 a 3012 a 94.1 a 60.2 a 

Pvalue ** *** *** ** 

 
SILK 

Georgia 2020 1858 b 2288 c 58.9 b 49.7 b 

Alabama 2021 1424 c 2748 b 68.5 b 194.5 a 

Alabama 2022 2251 a 3066 a 162.2 a 69.2 b 

Pvalue *** *** *** ** 

 
Harvest 
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Georgia 2020 1416 a 2108 b - 9.3 a 

Alabama 2021 1364 a 1857 b 40.6 b 98.8 a 

Alabama 2022 1181 a 2695 a 166.2 a 93.6 a 

Pvalue ns *** *** ns 
 yValues followed by similar lowercase letters among locations (row) indicate no significant difference according to 

the Tukey mean test. Levels of significance (Pvalue): ns, non-significant; *, P<0.05; **, P<0.01.  

At the EME stage, the highest LAI was in Alabama 2022 (1357 cm2), followed by Alabama 

2021 (852 cm2) and Georgia 2020 (323 cm2); the highest total N was in Alabama 2022 (36.5 kg 

ha-1), followed by Alabama 2021 (15.2 kg ha-1); and the highest soil total N was in Alabama 2022 

(31.8 kg ha-1), followed by Georgia 2020 (9.9 kg ha-1) and Alabama 2021 (5.8 kg ha-1). 

At the SD stage, the highest LAI was in Alabama 2022 (2282 cm2), followed by Alabama 2021 

(1818 cm2) and Georgia 2020 (1792 cm2); the highest biomass accumulation was in Alabama 2022 

(3012 kg ha-1), followed by Alabama 2021 (2014 kg ha-1) and Georgia 2020 (1409 kg ha-1); the 

highest total N was in Alabama 2022 (94.1 kg ha-1), followed by Alabama 2021 (53.5 kg ha-1) and 

Georgia 2020 (48.7 kg ha-1); and the highest soil total N was in Alabama 2022 (60.2 kg ha-1) and 

Georgia 2020 (53.9 kg ha-1). 

At the silk stage, the highest LAI was in Alabama 2022 (2251 cm2), followed by Georgia 2020 

(1858 cm2) and Alabama 2021 (1424 cm2); the highest biomass accumulation was in Alabama 

2022 (3066 kg ha-1), followed by Alabama 2021 (2748 kg ha-1) and Georgia 2020 (2288 kg ha-1); 

the highest total N was in Alabama 2022 (162.2 kg ha-1), followed by Alabama 2021 (68.5 kg ha-

1) and Georgia 2020 (58.9 kg ha-1); and the highest soil total N was in Alabama 2021 (194.5 kg ha-

1), followed by Alabama 2022 (69.2 kg ha-1) and Georgia 2020 (49.7 kg ha-1). 

At the maturity stage (harvest), the highest LAI and soil total N were not statistically significant 

among locations. The highest biomass accumulation was in Alabama 2022 (2695 kg ha-1), 
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followed by Georgia 2020 (2108 kg ha-1) and Alabama 2021 (1857 kg ha-1); and the highest total 

N was in Alabama 2022 (166.2 kg ha-1), followed by Alabama 2021 (40.6 kg ha-1). 

Biomass accumulation, total N, and soil total N were statistically compared between Neme 

treatment by stages (Table 4.5). For biomass accumulation, there was statistical significance 

between Neme treatments for the SD and SILK stages. For total N, there was a statistical difference 

between Neme treatments for the SD and Harvest stages. For soil total N, there was a statistical 

difference between Neme treatments for the EME and SD stages. 

Table 4.5 Effect of biomass accumulation, total N, and soil total N between Neme treatment by 

stages. 

 
Biomass Total N Soil total N 

Neme (kg ha-1) kg ha-1 kg ha-1 kg ha-1 

 
SD SILK SD Harvest EME SD 

56 2298 ay 2604 a 69.5 a 98.0 a 12.4 a 27.3 b 

112 1992 b 2797 a 61.4 b 108.8 a 19.3 a 50.9 a 

Pvalue ** ns * ns ns *** 
y Values followed by similar lowercase letters among locations (row) indicate no significant difference according to 

the Tukey mean test. 

At the EME stage, the highest soil total N was found in the Neme 112 kg ha-1 treatment (19.3 

kg ha-1). At the SD stage, the highest biomass accumulation was found in the Neme 56 kg ha-1 

treatment (2298 kg ha-1); the highest total N was found in the Neme 56 kg ha-1 treatment (69.5 kg 

ha-1); and the highest soil total N was found in the Neme 56 kg ha-1 treatment (50.9 kg ha-1). At the 

Silk stage, the highest biomass accumulation was found in the Neme 112 kg ha-1 treatment (2797 

kg ha-1). At the maturity stage (harvest), the highest total N was found in the Neme 112 kg ha-1 

treatment (108.8 kg ha-1). 
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LAI and soil total N were statistically compared among Nsd treatments by stages (Table 4.6). 

For LAI, there was a statistical difference among Nsd treatments for the SD stage. For soil total N, 

there was a statistical difference among Nsd treatments for the silk stage. 

Table 4.6 Effect of LAI and soil total among Nsd treatments by stages. 

 
LAI Soil total N 

Nsd (kg ha-1) cm2 kg ha-1 

 
SD SILK 

190 1870 ay 138.9 a  

162 2069 a 93.1 b 

134 1953 a 81.4 b 

Pvalue ns * 
yValues followed by similar lowercase letters among Nsd treatment (row) indicate no significant difference according 

to the Tukey mean test. 

At the SD stage, the highest LAI was found in the treatment Nsd 162 kg ha-1 (2069 cm2), 

followed by treatment Nsd 134 kg ha-1 (1953 cm2) and 190 kg ha-1 (1870 cm2). At the silk stage, 

the highest soil total N was found in the treatment Nsd 190 kg ha-1 (138.9 kg ha-1), followed by Nsd 

162 kg ha-1 (93.1 kg ha-1) and Nsd 134 kg ha-1 (81.4 kg ha-1). 

There was a significant interaction between locations and Neme treatments for total N and soil 

total N, by stage (Table 4.7). For total N, there were significant differences between locations and 

Neme treatments for the maturity (harvest) stage. For soil total N, there were significant differences 

between locations and Neme treatments for the SD stage. 

Table 4.7 Effect of the interaction between location and Neme treatment for total N and soil total 

N. 

 
Location 

 

Georgia 

2020 

Alabama 

2021 

Alabama 

2022 
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Harvest 

Neme (kg ha-1) Total N (kg ha-1) 

56 - 41.40 aB 154.59 bA 

112 - 39.78 aB 177.77 aA 

Pvalue - * * 

 
SD 

 
Soil total N (kg ha-1) 

56 24.36 byBz 3.78 aB 53.93 aA 

112 83.54 aA 2.99 aB 66.41 aA 

Pvalue ** ** ** 
yValues followed by similar lowercase letters between Neme treatments within each location (column), individually, 

indicate no significant difference according to the Tukey mean test. z Values followed by similar uppercase letters 

between each Neme treatment (row), individually, indicate no significant difference according to the Tukey mean. 

For the main effect of location on total N (Table 4.7), at the maturity (harvest) stage, in Georgia 

2020, total N was not statistically compared due to missing data; in Alabama 2021 total N was not 

different between Neme treatments but the highest was in the Neme 56 kg ha-1 treatment (41.40 kg 

ha-1). In the Alabama 2022 study N treatments were significantly different and the highest total N 

was in the Neme 112 kg ha-1 treatment (177.77 kg ha-1) followed by Neme 56 kg ha-1 treatment 

(154.59 kg ha-1). 

For the main effect of Neme treatment on total N (Table 4.7), at the maturity (harvest) stage, the 

highest total N for the Neme 56 kg ha-1 treatment was in Alabama 2022 (154.59 kg ha-1), followed 

by Alabama 2021 (41.40 kg ha-1); and the highest total N for the Neme 112 kg ha-1 treatment was 

in Alabama 2022 (177.77 kg ha-1), followed by Alabama 2021 (39.78 kg ha-1). 

For the main effect of location on soil total N (Table 4.7), at the SD stage, in Georgia 2020, 

the highest soil total N was in the Neme 112 kg ha-1 treatment (83.54 kg ha-1) followed by the Neme 

56 kg ha-1 treatment (24.36 kg ha-1). In the Alabama 2021 study there were not differences between 

Neme treatmentsbut the highest was in the Neme 56 kg ha-1 treatment (3.78 kg ha-1). In the Alabama 
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2022 study there were no differences between Neme treatments, but the highest value was in the 

Neme 112 kg ha-1 treatment (66.41 kg ha-1). 

For the main effect of Neme treatment on soil total N (Table 4.7), at the SD stage, the highest 

soil total N for the Neme 56 kg ha-1 treatment was in Alabama 2022 (53.93 kg ha-1), followed by 

Georgia 2020 (24.36 kg ha-1) and Alabama 2021 (3.78 kg ha-1). The highest soil total N for the 

Neme 112 kg ha-1 treatment was in Georgia 2020 (83.54 kg ha-1), followed by Alabama 2022 (66.41 

kg ha-1) and Alabama 2021 (3.99 kg ha-1). 

There was a significant interaction between locations and Nsd treatments for LAI, biomass 

accumulation, and total N, by stage (Table 4.8). For LAI, there was a statistical difference between 

locations and Nsd treatments at the EME stage. For biomass accumulation, there was a statistical 

difference between locations and Nsd treatments for the EME stage. For total N, there was a 

statistical difference between locations and Nsd treatments for the EME and SD stages.  

For the main effect of location on LAI (Table 4.8), at the EME stage, in Georgia 2020 the LAI 

was not statistically different among Nsd treatments but the highest LAI value was in the Nsd 190 

kg ha-1 treatment (344 cm2). In Alabama in 2021 the highest LAI was in the Nsd 190 kg ha-1 

treatment (965 cm2), followed by Nsd 162 kg ha-1 treatment (814 cm2) and Nsd 134 kg ha-1 treatment 

(777 cm2) In Alabama in 2022 the highest LAI was in the Nsd 134 kg ha-1 treatment (1467 cm2), 

followed by Nsd 162 kg ha-1 treatment (1335 cm2) and Nsd 190 kg ha-1 treatment (1268 cm2).  

For the main effect of Nsd treatment on LAI (Table 4.8), at the EME stage, the highest LAI for 

the Nsd 134 kg ha-1 treatment was in Alabama 2022 (1467 cm2), followed by Alabama 2021 (777 

cm2) and Georgia 2020 (303 cm2); while the highest LAI for the Nsd 162 kg ha-1 treatment was in 

Alabama 2022 (1335 cm2), followed by Alabama 2021 (814 cm2) and Georgia 2020 (322 cm2). 
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The highest LAI for the Nsd 190 kg ha-1 treatment was in Alabama 2022 (1268 cm2), followed by 

Alabama 2021 (965 cm2) and Georgia 2020 (344 cm2). 

For the main effect of location on biomass accumulation (Table 4.8), at the SD stage, in 

Georgia 2020 and Alabama 2021, the biomass accumulation was not statistically different among 

Nsd treatments. In Alabama in 2022 there were statistical differences among N rates where the 

highest biomass accumulation was in the Nsd 134 kg ha-1 treatment (3217 kg ha-1), followed by Nsd 

190 kg ha-1 treatment (3095 kg ha-1) and Nsd 162 kg ha-1 treatment (2724 kg ha-1).  

For the main effect of Nsd treatment on biomass accumulation (Table 4.8), at the SD stage, the 

highest biomass accumulation for the Nsd 134 kg ha-1 treatment was in Alabama 2022 (3217 kg ha-

1), followed by Alabama 2021 (2116 kg ha-1) and Georgia 2020 (1179 kg ha-1). The highest 

biomass accumulation for the Nsd 162 kg ha-1 treatment was in Alabama 2022 (2724 kg ha-1), 

followed by Alabama 2021 (1890 kg ha-1) and Georgia 2020 (1573 kg ha-1); and the highest 

biomass accumulation for the Nsd 190 kg ha-1 treatment was in Alabama 2022 (3095 kg ha-1), 

followed by Alabama 2021 (2035 kg ha-1) and Georgia 2020 (1475 kg ha-1). 

Table 4.8 Effect of the interaction among locations and Nsd treatments for LAI, biomass, and total 

N, by stages. 

 
Location 

 

Georgia 

2020 

Alabama 

2021 

Alabama 

2022 

Stage EME 

Nsd (kg ha-1) LAI (cm2) 

134 303 ayCz 777 bB 1467 aA 

162 322 aC 814 abB 1335 abA 

190 344 aC 965 aB 1268 bA 

Pvalue * * * 

 
SD 
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Biomass (kg ha-1) 

134 1179 aC 2116 aB 3217 aA 

162 1573 aB 1890 aB 2724 bA 

190 1475 aC 2035 aB 3095 aA 

Pvalue * * * 

 
EME 

 
Total N (kg ha-1) 

134 - 13.00 aB 67.58 aA 

162 - 15.01 aA 21.36 bA 

190 - 17.71 aA 20.67 bA 

Pvalue - * * 

 
SD 

 
Total N (kg ha-1) 

134 41.91 aB 57.37 aB 96.44 aA 

162 53.83 aB 50.52 aB 83.18 bA 

190 50.54 aB 52.61 aB 102.61 aA 

Pvalue * * * 
yValues followed by similar lowercase letters among Nsd treatments within each location (column), individually, 

indicate no significant difference according to the Tukey mean test. z Values followed by similar uppercase letters 

among each Nsd treatment (row), individually, indicate no significant difference according to the Tukey mean. 

For the main effect of location on total N (Table 4.8), at the EME stage, in Georgia 2020, total 

N was not compared due to missing data. When evaluating total N in Alabama in 2021 there were 

differences among Nsd. However, in Alabama in 2022 there were differences between N rates for 

total N, where the highest total N was in the Nsd 134 kg ha-1 treatment (67.58 kg ha-1), followed by 

Nsd 162 kg ha-1 treatment (21.36 kg ha-1) and Nsd 190 kg ha-1 treatment (20.67 kg ha-1).  

For the main effect of Nsd treatment on total N (Table 4.8), at the EME stage, the highest total 

N for the Nsd 134 kg ha-1 treatment was in Alabama 2022 (67.58 kg ha-1), followed by Alabama 

2021 (13.00 kg ha-1); the highest total N for the Nsd 162 kg ha-1 treatment was in Alabama 2022 

(21.36 kg ha-1), followed by Alabama 2021 (15.01 kg ha-1); and the highest total N for the Nsd 190 
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kg ha-1 treatment was in Alabama 2022 (20.67 kg ha-1), followed by Alabama 2021 (17.71 kg ha-

1). 

For the main effect of location on total N (Table 4.8), at the SD stage, in Georgia 2020 and 

Alabama in 2021, the total N was not statistically different among Nsd. In Alabama in 2022 there 

were had statistical differences, with the the highest total N in the Nsd 190 kg ha-1 treatment (102.61 

kg ha-1) and Nsd 134 kg ha-1 treatment (96.44 kg ha-1); followed by Nsd 162 kg ha-1 treatment (83.18 

kg ha-1). 

For the main effect of Nsd treatment on total N (Table 4.8), at the SD stage, the highest total N 

for the Nsd 134 kg ha-1 treatment was in Alabama 2022 (96.44 kg ha-1), followed by Alabama 2021 

(57.37 kg ha-1) and Georgia 2020 (41.91 kg ha-1); the highest total N for the Nsd 162 kg ha-1 

treatment was in Alabama 2022 (83.18 kg ha-1), followed by Georgia 2020 (53.83 kg ha-1) and 

Alabama 2021 (50.52 kg ha-1); and the highest total N for the Nsd 190 kg ha-1 treatment was in 

Alabama 2022 (102.61 kg ha-1), followed by Alabama 2021 (52.61 kg ha-1) and Georgia 2020 

(50.54 kg ha-1). 

Sweet corn yield and ear quality parameters 

There was statistical significance among locations for yield, ear/plant, EWI, EL, KIR, and 

KTG (Table 4.9).  

Sweet corn yield was not significantly affected by treatment but was significantly affected by 

location (Table 4.9) where Alabama in 2022 had the highest yield (17,380 kg ha-1), followed by 

Georgia in 2020 (15,951 kg ha-1) and Alabama in 2021 (14,470 kg ha-1). 

Moreover, ear quality parameters were also not significantly affected by treatment, but instead 

were significantly affected by location (Table 4.9). Alabama 2022 had the highest average number 

of ears per plant (1.13), followed by Alabama 2021 (1) and Georgia 2020 (1). For the EWI, 
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Alabama had the highest value (4.77 cm), followed by Alabama 20202 (4.49 cm) and Georgia 

2020 (4.17 cm). For the EL, Alabama in 2022 was the highest (19 cm), followed by Alabama in 

2021 (18 cm) and Georgia in 2020 (17 cm). For the number of KIR, Alabama 2021 had the highest 

value (36), followed by Georgia 2020 (33) and Alabama 2022 (30). For the number of KTG, 

Alabama 2021 had the highest value (503), followed by Georgia 2020 (472) and Alabama 2022 

(437). 

Table 4.9 Effect of yield, ear/plant, EWI, EL, KIR, and KTG among locations. 

Location Yield Ear/plant EWI EL KIR KTG 

 
kg ha-1 # cm cm no. no. 

Georgia 2020 15,951 aby 1 b 4.17 c 17 c 33 a 472 ab 

Alabama 2021 14,470 b 1 b 4.77 a 18 b 36 a 503 ab 

Alabama 2022 17,380 a 1.13 a 4.49 b 19 a 30 b 437 b 

Pvalue *** *** *** *** *** ** 
 yValues followed by similar lowercase letters among locations (column) indicate no significant difference according 

to the Tukey mean test for each variable responsible in the table. 

There was a statistical difference between Neme treatment for the ear quality parameter EL 

(Table 4.10). For the EL, the treatment Neme 122 kg ha-1 was the highest value (18 cm), followed 

by Neme 56 kg ha-1 (17.6 cm) 

Table 4.10 Effect of EL between Neme treatment. 

Neme EL 

Kg ha-1 cm 

56 17.6 by 

112 18.0 a 

Pvalue ** 
yValues followed by similar lowercase letters between Neme treatment indicate no significant difference according to 

the Tukey mean test. 
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Nitrogen use efficiency (NUE) 

There was a statistical difference among locations for NUEeme, NUEsd, NUEsilk, and NUEharv 

(Table 4.11). For the main effect of location, the highest NUEeme was in Alabama 2022 (28.9%), 

followed by Alabama 2021 (23.0%); the highest NUEsd was in Alabama 2022 (60.6%), followed 

by Georgia 2020 (43.0%) and Alabama 2021 (37.5%); the highest NUEsilk was in Alabama 2022 

(51.0%), followed by Alabama 2021 (22.1%) and Georgia 2020 (15.5%); and the highest NUEharv 

was also in Alabama 2022 (51.6%), followed by Georgia 2020 (21.0%) and Alabama 2021 

(13.2%). 

Table 4.11 Effect of NUE at EME (NUEeme), SD (NUEsd), SILK (NUEsilk), and harvest (NUEharv) 

among locations, between treatment Neme and among treatment Nsd. 

Effect NUEeme NUEsd NUEsilk NUEharv 

 % 

Location     

Georgia 2020 - 43.0 b 15.5 b 21.0 b 

Alabama 2021 23.0 b 37.5 b 22.1 b 13.2 c 

Alabama 2022 28.9 a 60.6 a 51.0 a 51.6 a 

Pvalue * *** *** *** 

Neme (kg ha-1)     

56 26.5 a 58.8 a 31.7 a 29.3 a 

112 25.4 a 35.2 b 27.3 b 27.8 a 

Pvalue ns *** * ns 

Nsd (kg ha-1)     

135 25.9 a 46.3 a 33.7 a 29.8 ab 

163 25.2 a 45.2 a 27.6 b 30.5 a 

191 26.8 a 49.5 a 27.2 b 25.4 b 

Pvalue ns ns * ** 

Location*Neme ns ns ns ns 

Location*Nsd ns ns ns ns 

Neme*Nsd ns ns ns ns 
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Location* 

Neme*Nsd 
ns ns ns ns 

* < 0.05; ** < 0.01, *** < 0.001 

There was a statistical difference between Neme treatments for NUEsd and NUEsilk, (Table 4.11). 

For the main effect of Neme, the highest NUEsd was at Neme 56 kg ha-1 (58.8%), followed by Neme 

112 kg ha-1 (35.2%); and the highest NUEsilk was at Neme 56 kg ha-1 (31.7%), followed by Neme 112 

kg ha-1 (27.3%). 

There was a statistical difference among Nsd treatments for NUEsilk and NUEharv, (Table 4.11). 

For the main effect of Nsd, the highest NUEsilk was at Nsd 135 kg ha-1 (33.7%), followed by Nsd 

163 kg ha-1 (27.6%) and Nsd 191 kg ha-1 (27.2%); and the highest NUEharv was at Nsd 163 kg ha-1 

(30.5%), followed by Nsd 135 kg ha-1 (29.8%) and Nsd 191 kg ha-1 (25.4%). 

Correlation analysis 

Pearson’s correlation analysis (Figure 4.2) indicated that sweet corn yield is positively 

correlated with the number of ears per plant, ear weight, biomass, EW, BD biomass, total N, NUE, 

and ear length. It was negatively correlated with the number of KIR and KTG. 
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Figure 4.2 Correlation-based network analysis using Pearson’s correlation method to compare all 

response variables, number of ears per plant (EAR), ear weight (EW), leaf area index (LAI), 

biomass (BD), yield (Y), soil total N (SN), total N (TKN), nitrogen use efficiency (NUE), ear 

diameter (ED), ear length (EL), kernel rows (KR), kernel grains in a row (KIR), and kernel total 

grains (KIR). 

NUE was positively correlated with the number of ears per plant, biomass, total N (TKN), and 

ear length, while it was negatively correlated with the number of KIR and KTG. LAI was positively 

correlated with ear weight and biomass (BD). Biomass was positively correlated with the number 

of ears per plant, ear weight, ear length, and TKN; and it was negatively correlated with the number 

of KIR and KTG. TKN was positively correlated with the number of ears per plant, ear length, and 

soil total N (SN), and it was negatively correlated with the number of KIR and KTG. The SN was 

positively correlated with ear diameter. The number of KIR was positively correlated only with 

the number of KTG, and KTG was also positively correlated with the number of KR. Moreover, 

the EL did not correlate with KR, KIR, and KTG; and SN did not correlate with BD. 
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Discussion 

N fertilization is essential in sweet corn production to achieve high yields and profits, but sweet 

corn has shown different responses to N in different environments (Evans & Clarke, 2019; Khan 

et al., 2017). Different N fertilizer rates have a significant impact on sweet corn yield (Revilla et 

al., 2021) and choosing the adequate N fertilization rate and timing for sweet corn production will 

increase yield and total N uptake (Kar et al., 2006). Moreover, appropriate N applications have 

been reported to lead to better ear quality results, such as increased ear diameter, ear length, 

number of ears per plant, and ear weight (Khan et al., 2017; Revilla et al., 2021). Alternatively, 

excessive N applications can have negative effects, such as reduced plant growth as well as poor 

ear quality (Leghari et al., 2016). Many commercial growers in the southeastern U.S. were do not 

follow current N fertilizer recommendations for sweet corn, instead, they are overfertilizing (over 

a 340 kg ha-1 of N) in an attempt to reach high yields (Malik et al., 2019).  

In addition to N fertilizer application rates and timing, weather events in the southeastern U.S. 

can also impact vegetable crop growth and development, nutrient absorption, and subsequently 

yield (Abewoy, 2018). Temperature, rainfall, and drought may influence N uptake and utilization 

by plants. Temperature has a significant impact on the rate of nutrient absorption and plant 

metabolism. In warmer conditions, metabolic processes in plants tend to be more active, which 

can lead to increased N uptake (Maranon et al., 2018). However, excessively high temperatures 

cause stress in plants and affect their ability to absorb nutrients efficiently (Jones et al., 2013). 

Adequate moisture is essential for N uptake as well; however, excessive rainfall can leach N from 

the soil, making it less available to the plants. Conversely, drought conditions can limit the 

availability of water, affecting N uptake and consequently yield (Cazetta et al., 1999; Leghari et 

al., 2016). Understanding the importance of N for the plant’s growth, development, and yield, the 
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ideal application timing, and how the weather may impact it is the first step in developing a better 

N fertilizer recommendation for sweet corn production in the Southeastern U.S. Sweet corn fields 

in the southeastern U.S. are typically characterized by soils with a sandy to loam sandy texture 

with low water holding capacity (Kemble et al., 2023), which combined with frequent heavy 

rainfall events may induce N leaching, which can bring negative affects to plants and to the 

environment (Guo et al., 2008; Subedi & Ma, 2009). 

Rainfall accumulations were similar in Alabama 2021 and Alabama 2022, matching the crop 

water requirements of 268 mm for sweet corn growth in the southeastern U.S. (Ertek & Kara, 

2013), while in Georgia 2020, the rainfall accumulation was about 100 mm less compared to the 

other two locations. In Georgia 2020, at 19 DAP, exactly in the day of Neme fertilization, there was 

31 mm of rainfall, which likely resulted in N leaching. After the Nsd fertilization there was a period 

of occurred reduced soil moisture, where there was only 14.5 mm of rain in the next 18 days post 

fertilization. In Alabama 2021, there were 70 mm of rainfall after Neme fertilization and 71 mm of 

rainfall after the Nsd fertilization, increasing soil moisture levels and possibly resulting in some N 

loss. In Alabama 2022, the rainfall events were better distributed during the growing season and 

the isolated periods of heavy rainfall did not impact the Neme or Nsd fertilizations, and consequently 

did not impacted yield. The yield potential is defined in the vegetative stage of the sweet corn crop, 

thus, limiting N fertilizations or increased N leaching in this phase cause reductions in the yield 

(Ciam-pitti &Tony, 2011), and excessive soil moisture levels may have negative impacts on grain 

filling and the grain weight of sweet corn (Nemeskeri & Helyes, 2019). Conversely drought 

periods lead to osmotic stress which also reduce the nutrient absorption (Revilla et al., 2021), 

reasons that may explain a reduced yield in Alabama 2021 (14,470 kg ha-1) and in Georgia 2020 

(15,951 kg ha-1). 
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Average daily air temperatures were similar among locations, where the average daily air 

minimum temperatures were below the ideal range to grow sweet corn, which ranges between 20 

and 30 °C (Ben-Asher et al., 2008; Dhaliwal & Williams, 2022; Liliane & Charles, 2020). In 

general, daily air temperatures were lower in Georgia 2020 and in Alabama 2021, with lower GDD 

accumulated when compared to Alabama 2022, which had the lower average minimum 

temperature but had the higher GDD accumulated. It also can explain the higher yield in this last 

location because the warmer temperatures increased the N uptake (Maranon et al., 2018). 

The LAI, biomass, total N, and the soil total N at EME were higher in Alabama 2022. In this 

case, the treatment Npp was the same for all plants and there is no influence in the result. Therefore, 

it is likely that weather factors impacted those variables instead of N fertilization rate, as has been 

reported previously (Cazetta et al., 1999; Leghari et al., 2016; Revilla, 2021). The LAI, biomass, 

total N, and the soil total N at SD, silk, and harvest stages were also higher in Alabama 2022.  

The interaction between Neme treatment and location indicated that total N at harvest stage was 

higher for all Neme rates in Alabama 2022 compared to other locations. In this location plants were 

likely able to uptake more N more efficiently. Similarly, the interaction between Nsd treatment and 

location showed the LAI and total N at EME stage, and the biomass and total N at SD stage, were 

higher for all Nsd rates in Alabama 2022 compared to other locations and were higher at the lower 

Nsd rate of 134 kg ha-1. In both cases, the results showed that higher amount of N did not lead to 

increased values of LAI and biomass and did not increase the N uptake by the plants, which is 

supported by Capon et al. (2017), where lower N rates lead to higher NUE by the plants. This 

contradicts some results in the literature which report that N uptake, LAI, biomass, yield, and ear 

quality are increased when supplied with higher rates of N (Abkar et al., 2002; Chen et al., 2017; 

Khan et al., 2018). 
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Kernel development, higher LAI, biomass, and yield depend on N availability (Cazetta et al., 

1999; Leghari et al., 2016). Besides N availability, drought stress also leads to reduced LAI, 

biomass, ear diameter, weight per ear, and yield (Revilla et al., 2021). The higher number of ears 

per plant and EL were found in Alabama 2022, were positively correlated with yield. The treatment 

Neme 122 kg ha-1 was responsible for an increased EL compared to the treatment N eme 56 kg ha-1, 

showing the importance of N fertilization on ear quality and yield since they are positively 

correlated. These results corroborated with Oketem & Oktem (2005) who showed that higher N 

rates promoted an increase in EL and in the number of ears per plant. 

NUE represents the percentage of N uptake by the plants of the total N fertilizer applied, 

therefore this is a way to describe how effectively plants are using applied N (Kumar et al., 2002; 

Subedi & Ma, 2009). N uptake was more efficient in Alabama 2022 for all stages NUEeme, NUEsd, 

NUEsilk, and NUEharv, and this location had higher yields. Several factors can impact NUE, such 

as environmental stresses, soil type, temperature, and moisture, years, locations, and application 

timing, for example (Subedi & Ma, 2009; Nielsen, 2006), thus, we can see the location Alabama 

2022 had the lowest impact on NUE. 

The Neme fertilization impacted the NUE at SD and silk, where the higher NUE came from the 

lower Neme fertilization. Similarly, the Nsd fertilization impacted the NUE at silk and harvest where 

the higher NUE also came from the lower Nsd fertilizations. Strategies to fertilize N sweet corn are 

very important and help minimizing costs and harms to the environment as well as optimize crop 

results and NUE. Identification of the most effective N rate, timing, and split application (ie., Neme 

and Nsd) of N fertilizer over a single application can lead to an increased N uptake by the plants 

and reduced leaching (Panison et al., 2019; Subedi & Ma, 2009). 
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Conclusions 

The differences among locations and year are expected once the weather and soil vary 

among them impacting nutrient absorption and crop results. Higher total soil N was found in 

treatments with high N rate; however, it was not translated to yield. Moreover, yield did not show 

a significant difference among treatments, which is explained by the same amount of N uptake by 

the plant in all treatments. However, yield was different among location; Alabama 2022 had the 

higher yield (17,380 kg ha-1), which can be explained by the high NUE for all stages (EME, SD, 

SILK, and Harvest). NUE translates how efficient plants are using the available N. Therefore, there 

is no need to increase N fertilization to achieve higher yields, instead it will increase N leaching 

and waste. Moreover, it is clear the understanding of N fertilizer is important to achieve good yield 

while minimizing costs and harms to the environment, humans, and animal’s health. Split 

applications at the right timing are extremely beneficial to sweet corn growth and development. 

Finally, according to all results presented in this study, treatment 3 (280 kg ha-1) had increased 

NUE and yield. 

References 

Abewoy, D. (2018). Review on impacts of climate change on vegetable production and its 

management practices. Advances in Crop Science and Technology, 6(01), 1-7. 

Akbar, H., Jan, M. T., & Jan, A. (2002). Yield potential of sweet corn as influenced by different 

levels of nitrogen and plant population. Asian Journal of Plant Sciences. ISSN 1682-3974  

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). 

Present and future Köppen-Geiger climate classification maps at 1-km 

resolution. Scientific data, 5(1), 1-12. 



 

 85 

Ben-Asher, J., Garcia y Garcia, A., & Hoogenboom, G. (2008). Effect of high temperature on 

photosynthesis and transpiration of sweet corn (Zea mays L. var. 

rugosa). Photosynthetica, 46, 595-603. 

Calabi-Floody, M., Medina, J., Rumpel, C., Condron, L. M., Hernandez, M., Dumont, M., & de la 

Luz Mora, M. (2018). Smart fertilizers as a strategy for sustainable agriculture. Advances 

in agronomy, 147, 119-157.   

Camberato, J., Nielsen, R. L., & Joern, B. (2017). Nitrogen management guidelines for corn in 

Indiana. Purdue Nitrogen Management Update. Available online: https://www. agry. 

purdue. 

Capon, D. S., Nitural, P. S., & Dela Cruz, N. E. (2017). Nutrient Use Efficienty, Yield and Fruit 

Quality of Sweet Corn (Zea mays saccharata Sturt.) Grown Under Different Fertilizer 

Management Schemes. International Journal of Agricultural Technology, 13(7.1), 1413-

1435.  

Cazetta, J. O., Seebauer, J. R., & Below, F. E. (1999). Sucrose and nitrogen supplies regulate 

growth of maize kernels. Annals of Botany, 84(6), 747-754. 

Ciampitti, I. A. and V yn, T. J. (2011), A comprehensive study of plant density consequences on 

nitrogen uptake dynamics of maize plants from vegetative to reproductive stages, Field 

Crops Res., 121(1), 2-18.  

Chen, D., Jiang, Y., Zhou, W., Shen, D., Ao, J., Huang, Y., ... & Li, Q. (2017). Effects of Different 

Kinds of Synergistic Urea on the Yield and Nitrogen Use Efficiency of Sweet Corn.  

Dhaliwal, D. S., & Williams, M. M. (2022). Evidence of sweet corn yield losses from rising 

temperatures. Scientific reports, 12(1), 18218. 



 

 86 

Ertek, A., & Kara, B. U. R. H. A. N. (2013). Yield and quality of sweet corn under deficit 

irrigation. Agricultural water management, 129, 138-144. 

Evans, J. R., & Clarke, V. C. (2019). The nitrogen cost of photosynthesis. Journal of experimental 

botany, 70(1), 7-15. doi:10.1093/jxb/ery366    

Guo, R., Li, X., Christie, P., Chen, Q., & Zhang, F. (2008). Seasonal temperatures have more 

influence than nitrogen fertilizer rates on cucumber yield and nitrogen uptake in a double 

cropping system. Environmental Pollution, 151(3), 443-451. 

Jones, C., Brown, B. D., Engel, R., Horneck, D., & Olson-Rutz, K. (2013). Nitrogen fertilizer 

volatilization. Montana State University Extension, EBO208 

Jones Jr, J. B., Eck, H. V., & Voss, R. (1990). Plant analysis as an aid in fertilizing corn and grain 

sorghum. Soil testing and plant analysis, 3, 521-547. 

https://acsess.onlinelibrary.wiley.com/doi/epdf/10.2136/sssabookser3.3ed.c20  

Kar, P., Barik, K., Mahapatra, P., Garnayak, L., Rath, B., Bastia, D. and Khanda, C. (2006), Effect 

of planting geometry and nitrogen on yield, economics and nitrogen uptake of sweet corn 

(Zea mays), Indian J. Agron., 51(1), 43-45.  

Kalvová, J., Halenka, T., Bezpalcová, K., & Nemešová, I. (2003). Köppen climate types in 

observed and simulated climates. Studia Geophysica et Geodaetica, 47, 185-202. 

Kemble, J. M et al. 2023. Southeastern U.S. Vegetable Crop Handbook.  

Khan, A. A., Hussain, A., Ganai, M. A., Sofi, N. R., & Hussain, S. T. (2018). Yield, nutrient uptake 

and quality of sweet corn as influenced by transplanting dates and nitrogen levels. Journal 

of Pharmacognosy and Phytochemistry, 7(2), 3567-3571. 

https://acsess.onlinelibrary.wiley.com/doi/epdf/10.2136/sssabookser3.3ed.c20


 

 87 

Khan, Z. H., Khalil, S. K., Iqbal, A., Ullah, I., Ali, M., Shah, T., ... & Shah, F. (2017). Nitrogen 

doses and plant density affect phenology and yield of sweet corn. Fresenius environmental 

bulletin, 26(6), 3809-3815. 

Leghari, S. J., Wahocho, N. A., Laghari, G. M., Hafeez Laghari, A., Mustafa Bhabhan, G., Hussain 

Talpur, K., ... & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: 

A review. Advances in Environmental Biology, 10(9), 209-219. ISSN 1995-0756   

Liliane, T. N., & Charles, M. S. (2020). Factors affecting yield of crops. Agronomy-climate change 

& food security, 9. 

Malik, W., Isla, R., & Dechmi, F. (2019). DSSAT-CERES-maize modelling to improve irrigation 

and nitrogen management practices under Mediterranean conditions. Agricultural Water 

Management, 213, 298-308. 

Marañón, E., Lorenzo, M. P., Cermeño, P., & Mouriño-Carballido, B. (2018). Nutrient limitation 

suppresses the temperature dependence of phytoplankton metabolic rates. The ISME 

journal, 12(7), 1836-1845. 

Morton, L. W., Cooley, D., Clements, J., & Gleason, M. (2017). Climate, Weather and 

Apples. Sociology Technical Report, 1046.   Author 1, A.B. (University, City, State, 

Country); Author 2, C. (Institute, City, State, Country). Personal communication, 2012. 

Nemeskéri, E., & Helyes, L. (2019). Physiological responses of selected vegetable crop species to 

water stress. Agronomy, 9(8), 447. 

Nielson, R.L. (2006). N loss mechanisms and nitrogen use efficiency. 2006 Purdue University 

Nitrogen Management Workshop. Purdue University, USA. 

Oktem, A. G., & Oktem, A. (2005). Effect of nitrogen and intra row spaces on sweet corn (Zea 

mays saccharata Sturt) ear characteristics. Asian Journal of Plant Sciences, 4(4), 361-364   



 

 88 

Oktem, A., Oktem, A. G., & Emeklier, H. Y. (2010). Effect of nitrogen on yield and some quality 

parameters of sweet corn. Communications in Soil Science and Plant Analysis, 41(7), 832-

847. 

Panison, F., Sangoi, L., Durli, M. M., Leolato, L. S., Coelho, A. E., Kuneski, H. F., & Liz, V. O. 

D. (2019). Timing and splitting of nitrogen side-dress fertilization of early corn hybrids for 

high grain yield. Revista Brasileira de Ciência do Solo, 43. 

Revilla, P., Anibas, C. M., & Tracy, W. F. (2021). Sweet Corn Research around the World 2015–

2020. Agronomy, 11(3), 534.   

Stephens, J. M., Liu, G. (2022). Soil preparation and liming for vegetable gardens. University of 

Florida, IFAS Extension. https://edis.ifas.ufl.edu/publication/VH024 accessed on June 12 

of 2023.  

Sugiyama, T., & Sakakibara, H. (2002). Regulation of carbon and nitrogen assimilation through 

gene expression. In Photosynthetic nitrogen assimilation and associated carbon and 

respiratory metabolism (pp. 227-238). Springer, Dordrecht.   

Subedi, K. D., & Ma, B. L. (2009). Corn crop production: growth, fertilization and 

yield. Agriculture issues and policies. 

USDA, 2022. 

 

https://edis.ifas.ufl.edu/publication/VH024


 

 89 

Chapter 5 (Impact of N management on sweet corn performance under varying climate in 

the state of Alabama, USA) 

Abstract 

Efficient N fertilizer use is critical to maximize sweet corn yields, but over fertilizer application 

can lead to environmental issues. Alabama's coarse textured soils exacerbate N loss, which is 

further impacted by weather variability. The use of crop models can optimize N fertilizer 

management for sweet corn production. Field experiments in the E.V. Smith Research and 

Extension Center from Auburn University were conducted in 2021 and 2022 using different N 

rates (224 to 336 kg ha-1), and timings of fertilizer application at pre-planting (Npp), emergence 

(Neme), and at side dress (Nsd).The CSM-CERES-Sweetcorn model, calibrated and validated with 

these data, was used to simulate growth, N uptake, and N leaching across 25 years of historical 

weather data. The model effectively simulated leaf area index and total soil N but was less accurate 

in predicting N uptake, biomass, and yield. Higher N rates resulted in increased N leaching, 

particularly in years with high rainfall. The model’s performance highlighted the complexity of N 

management under variable weather conditions, suggesting that while it is a useful tool, it requires 

further refinement to improve sensitivity of the model to different N fertilizer rates. The CSM-

CERES-Sweetcorn model provided valuable insights into sweet corn N management in Alabama's 

subtropical climate; however, further research is needed to enhance its predictive accuracy for 

optimizing N management in sweet corn production and minimizing environmental impacts. 

Keywords: CSM-CERES-Sweetcorn, N management, sustainability 
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Introduction 

The availability of nitrogen in the soil can be a limiting factor for sweet corn production 

(Rosenblueth et al., 2018). In modern agriculture, the efficient use of nitrogen fertilizers is 

extremely important to ensure higher yields. However, overapplication by growers has been 

described in the literature, leading to excessive N losses and negative impacts to crops and the 

environment (Kumar et al., 2024).  

The combination of sandy soils in the state of Alabama (Herawati et al., 2021) and the 

mobility of N increase the chances that N fertilizer is lost (Panison et al., 2019). Additionally, the 

literature describes that the relationship between soil N and crop response to N may vary according 

to the weather. The weather variability may impact N uptake and N leaching, due to variations in 

precipitation (Congreves et al., 2016; Fowler et al., 2013; Galloway et al., 2008; Iqbal et al., 2017; 

Kay et al., 2006). Consequently, weather variability increases the complexity to determine the best 

N management practices.  

One way to optimize N management for sweet corn production is using crop models. Crop 

models can be used to provide insights and support strategies to optimize N fertilizer management 

and minimize the impact of weather variability. Importantly, crop models can contribute to a more 

sustainable agriculture (Kumar et al., 2024). The DSSAT (Decision Support System for 

Agrotechnology Transfer) is an example of group of crop models modeling that can be used 

(Hoogenboom et al., 2019; Kumar et al., 2024; Jones et al., 2003; Zhao et al., 2019). It requires a 

minimum data set to be able to describe crop’s growth and development as a function of genotype, 

crop management, soil characteristics, and weather conditions. After a model calibration and 

evaluation, the model simulates results to support data analysis and decision making towards some 
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agronomic practices, such as N fertilizer management (Boote, 2019; Jones et al., 2003; Jin et al., 

2018). 

In the DSSAT, there is model CERES series (Crop Estimation through Resource and 

Environment Synthesis), which is a powerful tool to simulate growth, biomass accumulation, 

yield, among other, in different environments and with different crop management (Geng et al., 

2017; Zhao et al., 2019), including the CSM-CERES-Sweetcorn. The CSM-CERES-Sweetcorn is 

the only well-established model for sweet corn, but it still requires further research to increase the 

sensitivity of the model and allow better simulations (Lizaso et al., 2007). Nevertheless, using the 

CSM-CERES-Sweetcorn to simulate coarse-textured soils in a subtropical environment can 

provide valuable information on crop growth, yield, N uptake, and N leaching under different 

management scenarios N fertilizer application rate.  

In this context, the objectives of this study were: i) to evaluate the performance of the CSM-

CERES-Sweetcorn to simulate plant growth and N dynamics, using data from field trials with 

different N rate treatments; and ii) to assess the impact of weather variability, using historical data, 

on N fertilizer rate treatments to provide insights for N leaching reduction and optimization of 

sweet corn yield. 

Materials and Methods 

Site description and experimental design  

Field experiments were conducted at Auburn University, E.V. Smith Research and Extension 

Center (32.50053ºN 85.89281ºW), located in Central AL, in 2021 and 2022. Field experiments in 

each growing season were characterized by a loamy sand soil (Table 5.1). According to the Kopen-

Geiger climate classification, all locations are classified as a humid subtropical climate or warm 
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temperate climate (Cfa), with heavy rainfall events during a hot summer and dry periods during 

the winter (Beck et al., 2018; Kalvová et al., 2003).   

Table 5.1 Location, geographic coordinates, year, season, soil type, planting spacing (IRS), 

planting date (PD), harvesting date, and accumulated growing degree days (GDD) for each field 

experiment. 

Location   Geographic 

Coordinates  

Year 

  

Season  Soil 

type  

1IRS  2PS  3PD  Harvest  4GD

D  

Alabama 2021  
32.50053ºN 

85.89281ºW  

2021 

  

Fall  
Kalmia 

loamy 

sand  

91.44  17.78  Aug 16  Nov 1   921 

Alabama 2022 
32.50053ºN 

85.89281ºW   

2022  Fall  91.44  17.78  Aug 17  Nov 7   980 

*1IRS = in-row spacing measured in cm; 2PS: plant-spacing in cm, 3PD: Planting date; 4GDD: growing degree days 

(ºC).   

A two-factorial experimental design of N fertilizer application timing and N fertilizer rate was 

arranged in a complete randomized block design with three replicates (r = 3). Individual plots 

consisted of four rows planted 91.4 cm apart and plants spaced 17.7 cm apart. Planting occurred 

on August 16th and August 17th of 2021 and 2022, respectively. Sweet corn ears were harvested at 

the beginning of November for both growing seasons (Table 5.1). Pursuit (Syngenta, Attribute II) 

was the sweet corn cultivar used in both years. Crop management practices associated with soil 

preparation, irrigation, and management of pests, weeds, and diseases were carried out following 

the Alabama Cooperative Extension System recommendations. 

The N fertilizer application treatments occurred before planting (Npl), at emergence (Neme), 

and at side dress (Nsd). At Npl, a 34 kg N ha-1 was applied for all treatments following the growers' 

standard practices, afterwards, two N fertilizer rates (56 N kg ha-1 or 112 N kg ha-1) were applied 

separately at Neme, followed by a third application of three N fertilizer rates (134 N kg ha-1, 162 N 



 

 93 

kg ha-1 or 190 N kg ha-1) at Nsd. The combination of Neme x Nsd application rates totaled six 

treatments (T1, T2, T3, T4, T5 and T6). N fertilizer rates and application timing of each treatment 

were detailed in Table 5.2. The ammoniacal nitrogen (10% of N) was the source of nitrogen 

fertilizer applied at Npl, and ammonium nitrate (24% of N) and urea nitrogen (10% of N) were 

used as the sources of nitrogen (34% total of N) fertilizer applied at Neme and Nsd. The Npl occurred 

at 0 days after planting (DAP) for both growing seasons, while Neme occurred at 25 and 16 DAP 

during 2021 and 2022; and Nsd at 44 and 41 DAP in 2021 and 2022, respectively. 

Table 5.2 Nitrogen fertilizer rates applied at planting (Npl), at emergence (Neme), and at side dress 

(Nsd) growth stages, and total N applied for each of the experimental fields in 2021 and 2022 in 

the Southeastern U.S.  

Treatments  Npl  Neme  Nsd  Total N  

         N rates (kg ha-1)  

1  34  56  134  224  

2  34  56  162  252  

3  34  56  190  280  

4  34  112  134  280  

5  34  112  162  308  

6  34  112  190  336  

  

Data collection 

Daily air temperatures, solar radiation, and precipitation were recorded for both years using 

an on-site weather station (WatchDog Wireless Station, WD Wireless ET Weather Station, LTE-

M 50500102).  
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Soil samples were collected and analyzed for nitrate (NO3-) and ammonium (NH4+) content in 

the soil in all growing seasons for all treatments. Soil samples were comprised of 5 subsamples 

per plot and collected at 0.30-0.60 m soil depth. In each growing season, samples were collected 

at least 4 times during crop development. Three samples were collected right before each N 

fertilizer application at 0, 25, and 44 DAP in 2021; and at 0, 28, and 40 DAP in 2022, while the 

last samples were collected at silk and harvest (maturity), 66 and 74 DAP in 2021, and at 62 and 

82 DAP in 2022, as described in Table 5.3. Samples were dried and sent to Waters Agricultural 

laboratories (Water Agricultural Laboratories Inc., Camilla, GA; USA), for nitrate and ammonium 

analyses.   

Table 5.3 Sampling events, in days after planting (DAP), for soil nitrogen availability, nitrogen 

uptake accumulation, and biomass accumulation, for 2021 and 2022.  

     Soil NO3 + 

NH4  

Biomass and 

total N  

  2021  2022  2021  2022  
1PL  0  0   -   -  

2EME  25  28  25  28  
3SD  44 40  44 40  

4SILK  66  62  66  62  

Harvest  74  82  74  82  
*1PL: planting day sampling; 2EME: emergence stage sampling; 3SD: side-dress stage sampling; 4SILK: silk stage 

sampling. 

Plant tissue samples (leaf and steam) were collected four times at emergence (EME), side-

dress (SD), silk, and at maturity (harvest) growth stages (Table 5.3). Green leaf area index (LAI) 

was measured with an optical-electronic area meter LI-3100 (LI-COR Inc.) on two representative 

plants from each plot, then the plant tissue was oven-dried at 65.5°C until constant weight and 
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biomass dry weight recorded. Dried samples were sent to Waters Agricultural laboratories (Waters 

Agricultural Laboratories Inc., Camilla, GA: USA) for the analysis of total nitrogen Kjeldahl 

content (TKN). 

Plant tissue samples were used to measure biomass accumulation. Subsequently, to calculate 

the whole plant N uptake, we used the nitrogen content (TKN) multiplied by the total dry biomass 

and TKN sampled throughout each growing season was used. Sweet corn ears were harvested at 

maturity in both years (Table 5.1), which was 77 and 82 DAP in 2021 and 2022, respectively. Ears 

were hand-harvested, and the total weight was recorded.  

CERES-Sweet Corn Model evaluation 

CSM-CERES-Sweetcorn is a processed-based simulation model adapted from the CSM-

CERES-Maize module (version 4.0) (Lizaso et al., 2007) to improve simulations of sweet corn 

growth and development, ear quality, and yield. 

Cultivar coefficients, experimental, soil, and weather data were used as inputs for the 

evaluation of the CSM-CERES-Sweetcorn model. Field experiment data from 2021 were used for 

the model calibration, and the field data from 2022 were used for the model validation. The 

model’s ability to predict growth and N accumulation for the cultivar “Pursuit” required further 

calibration from the predetermined cultivar coefficients provided for the refereed sweet corn 

cultivar (BSS0977) as shown in Table 5.4. The genetic coefficients of the standard cultivar 

(BSS0977) were used for proper parameterization. Table 5.4 shows the adjustable genetic 

coefficients used in the model calibration comparing the standard cultivar and the new cultivar. 
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Table 5.4 Cultivar genetic coefficients used in the calibration of the CSM-CERES-Sweetcorn 

model. 

Genetic 

Parameters 

Description BSS0977 

(sh21) 

Pursuit 

(se2) 

P1 Thermal time from seedling emergence to the end of the 

juvenile phase (expressed in degree days above a base 

temperature of 8°C) during which the plant is not 

responsive to changes in photoperiod. 

175.0 158.4 

P2 Extent to which development (expressed as days) is 

delayed for each hour increases in photoperiod above the 

longest photoperiod at which development proceeds at a 

maximum rate (which is 12.5 hours). 

0.3 0.3 

P5 Thermal time from silking to physiological maturity 

(expressed in degree days above a base temperature of 

8°C). 

700.0 695.8 

PHINT Phylochron interval; the interval in thermal time (degree 

days) between successive leaf tip appearances. 

50.0 50.0 

G2 Maximum possible number of kernels per plant. 500.0 593.0 

G3 Kernel filling rate during the linear grain filling stage and 

under optimum conditions (mg/day). 

5.0 16.0 

1sh2: Shrunken genotypes ('super sweet' cultivars). 2se: sugar enhanced. 

Crop model performance was evaluated by comparing simulated and observed data. 

Experimental crop and soil measurements included LAI, total biomass accumulation (kg ha−1), 

total yield (kg ha−1), total soil N (kg ha−1), N uptake (kg ha−1), and N leached (kg ha−1). Model 

performance was evaluated by the mean error or bias (ME), the mean absolute error (MAE), the 

root means square error (RMSE), the relative RMSE (RRMSE), and Willmott’s agreement index 

(d) (Willmott et al., 1985) as follow: 

𝑀𝐸 =
1
𝑛 ×H(𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖)

2

345
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𝑀𝐴𝐸 =	
1
𝑛 ×H(|𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖|)

2

345

 

𝑅𝑆𝑀𝐸 =	N
1
𝑛 ×H(𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖),

2

345

 

𝑅𝑅𝑀𝑆𝐸 = O
𝑅𝑀𝑆𝐸
𝑂𝑏𝑠𝑚P × 100 

𝑑 = 1 −	
∑ (𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑖)!"
#$%

∑ (|𝑆𝑖𝑚𝑖 − 𝑂𝑏𝑠𝑚| + |𝑂𝑏𝑠𝑖 − 𝑂𝑏𝑠𝑚|)!"
#$%

 

Where: Simi and Obsi are the simulated and observed values, respectively; Obsm is the average of 

observed values. 

Values close to 1 for d (ranges from 0 to 1) and lower values of error metrics imply better 

model performance. Graphs and data processing were built using the support of 

the DSSAT package (Alderman, 2020). 

Seasonal analysis 

The analysis of different environmental scenarios was performed after the CSM-CERES-

Sweetcorn model evaluation using a historical weather data set from 1998 to 2023. Weather data 

consisted of maximum and minimum air temperatures, solar radiation, wind speed, relative 

humidity, and precipitation, all collected from the Prediction of Worldwide Energy Resources 

(POWER; https://power.larc.nasa.gov/). This analysis provides an evaluation of the variability of 

the data according to the weather variability over the years.  

The seasonal analysis was conducted using the six N fertilizer treatments combined with 25 

years of weather data; thereby, there was a total of 150 simulations. For this analysis, leaf area 

https://power.larc.nasa.gov/
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index (LAI), total biomass accumulation (kg ha−1), total yield (kg ha−1), total soil N (kg ha−1), N 

uptake (kg ha−1), and N leached (kg ha−1) were compared among treatments. 

Results 

Model evaluation 

The CSM-CERES-Sweetcorn model was evaluated for simulation of LAI, biomass, N uptake, 

total soil N, and total yield, according to soil parameters, weather conditions (Table 5.1), and N 

fertilizer treatments (Table 5.2) from field trials conducted in 2021 and 2022. Overall results for 

the performance of the CSM-CERES-Sweetcorn model (Table 5.5) shows there was a good 

accuracy by the model in predicting N leaching; moderate accuracy in the model for LAI and N 

uptake predictions but still room for improvement; and a weak accuracy in the model in predicting 

biomass, total soil N, and yield, indicating the model can be improved. 

Table 5.5  Performance of CSM-CERES-Sweetcorn to simulate crop over seasons 2021 and 2022 

for all nitrogen treatments in Tallassee, Alabama, USA. n is the number of observations, ME is the 

mean error (variable unit), MAE is the mean absolute error (variable unit), RMSE is the root mean 

square error (variable unit), RRMSE is the relative root mean square error (%), and d is the 

Willmott’s agreement index (unitless).  

Variable n ME MAE RMSE RRMSE d 

Leaf area index 15 0.03 0.5 0.58 68 0.66 

Biomass (kg ha −1) 18 95 1307 2679 175 0.61 

Total soil N (kg ha−1) 15 4.7 57 105 211 0.46 

N uptake (kg ha−1) 15 -5.3 64 18.3 10.9 0.1 

N leached (kg ha−1) 15 1.3 16.2 13.6 14.7 0.57 

Yield (kg ha−1) 15 93 1116 1511 46 0.3 
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The RSME for LAI was 0.58 and MAE was 0.5, indicating moderate accuracy by the model 

for LAI prediction. Willmott’s agreement index and ME, 0.66 and 0.03, respectively, indicated 

moderate agreement and very small bias. Moreover, the prediction values made by the CSM-

CERES-Sweetcorn model tended to overestimate LAI (Figure 5.1) mainly after 40 DAP.  

a) 2021 

 

b) 2022 

 
Figure 5.1 Simulated (lines) and observed (symbols) data of leaf area index for each N treatment 

over days after planting (DAP) in both years, 2021 and 2022. 
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The RSME for biomass was 2679.3 kg ha-1 and MAE of 1307 kg ha-1 indicating the accuracy 

by the model for biomass predictions can be improved. Willmott’s agreement index was 0.61, and 

ME was 95.2 kg ha-1 indicating moderate agreement and small bias. There was an exponential 

increase in biomass accumulation for both simulated and observed values (Figure 5.2) after 

planting, however, the CSM-CERES-Sweetcorn model overestimated biomass accumulation close 

to harvest, where values typically decrease. A slight difference is observed between simulated 

treatment 3 (280 kg of N applied) and treatment 6 (336 kg of N applied). 

a) 2021 

 
b) 2022 

 

Figure 5.2 Simulated (lines) and observed (symbols) data of biomass (kg ha-1) for each N treatment 

over days after planting (DAP) in both years, 2021 and 2022. 
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The RSME for N uptake was 18.3 kg ha-1 and MAE was 64 kg ha-1, indicating a moderate 

accuracy by the model for N uptake prediction. Willmott’s agreement index of 0.1 and ME slight 

negative of -5.3 kg ha-1 indicating very low agreement but small bias. The negative value of ME 

indicates an underestimation of the simulated values by the CSM-CERES-Sweetcorn model 

(Figure 5.3). It is observed a slight difference between treatments where higher N fertilizer rates 

had a slight increase in simulated N uptake over lower N fertilizer rates after the second N fertilizer 

application, followed by a plateau. 

a) 2021 

 
b) 2022 

 
Figure 5.3 Simulated (lines) and observed (symbols) data of N uptake (kg ha-1) for each N 

treatment over days after planting (DAP) in both years, 2021 and 2022. 
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The RSME for total soil N was 105.7 kg ha-1 and MAE was 57 kg ha-1, indicating moderate 

accuracy by the model for total soil N predictions. Willmott’s agreement index of 0.46 and ME of 

4.7 kg ha-1 indicating low agreement but small bias. Total soil N accumulation over time was well 

represented by the CSM-CERES-Sweetcorn model for different N fertilizer rates (224 kg of N - 

T1 to 336 kg of N -T6). Figure 5.4 shows an overestimation by the model of soil total N predictions. 

Total soil N simulated by the model is higher for the highest N fertilizer rate (T6) and lower for 

the lowest N fertilizer rate (T1). It is also observed a peak of total soil N content after each N 

fertilizer application, followed by a plateau established after 40 DAP, however, soil samples were 

collected shortly before N fertilizer applications. 

a) 2021 

 
b)  2022 

 
Figure 5.4 Simulated (lines) and observed (symbols) data of total soil N (kg ha-1) for each N 

treatment over days after planting (DAP) in both years, 2021 and 2022. 
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a) 2021 

 
b) 2022 

 
Figure 5.5 Simulated (lines) and observed (symbols) data of total yield (kg ha-1) for each N 

treatment over days after planting (DAP) in both years, 2021 and 2022. 

The RSME for yield was 1511.8 kg ha-1 and MAE was 116 kg ha-1, indicating moderate 

accuracy by the model for yield predictions. Willmott’s agreement index of 0.3 and ME of 93 kg 

ha-1 indicating low agreement but small bias. Simulations for yield by the CSM-CERES-Sweetcorn 

model show no difference between simulated N fertilizer treatments (Figure 5.5), which reflects 

the previous results of biomass and N uptake. Besides, the model overestimated the yield for N 

fertilizer treatments. It is observed a slight difference between treatments where higher N fertilizer 

rates had a slight increase in simulated yield over lower N fertilizer rates. 
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Seasonal analysis 

Following the model evaluation, CSM-CERES-Sweetcorn was employed to assess crop 

responses between N fertilizer treatments over different climate scenarios, for biomass, N uptake, 

and N leached. The analysis of different environmental scenarios was performed using a historical 

weather data set from 1998 to 2022. 

Average rainfall accumulation during the fall sweet corn season (August to November) for 

the 25 years studied was 228 mm. The highest volume of rainfall was in 2009 with 435 mm while 

the lowest volume of rainfall was in 2016 with 103 mm (Figure 5.6). Increases in rainfall 

accumulation impacted the N leached. In the Figure 5.6, it was observed the N leached had a peak 

when rainfall accumulation was higher in 2009, leading to a reduction in the N uptake and 

consequently in biomass accumulation. Contrarily, when rainfall accumulation is low, the N 

leached reduces considerably leading to higher N uptake and biomass accumulation. 
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Figure 5.6 Simulated biomass (a, kg ha− 1), N uptake (b, kg ha− 1), N leached (c, kg ha− 1) and 

observed precipitation accumulated from the start of the simulation to harvest (d, mm) from 1998 

to 2022, for N rate T1 (224 kg ha-1 of N), T3 (280 kg ha-1 of N)  and T6 (336 kg ha-1 of N). 

 

c) 
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Simulated N fertilizer rate treatments were applied to this scenario analysis. The N fertilizer 

treatments chosen were 224 kg of N ha-1 (T1), 280 kg of N ha-1 (T3), and 336 kg of N ha-1 (T6) 

seeking to identify the best total N fertilizer application that along 25 years could reduce the N 

leached with no effect on biomass, N uptake; consequently, total yield. The difference in biomass 

accumulation, N uptake, and N leached for the 25 years simulated considering T1, T3, and T6 is 

shown in the Figure 5.6. The CSM-CERES-Sweet corn model did not detect significative 

difference between simulated biomass averages, which averaged 8980, 8993, and 9185 kg ha-1 for 

T1, T3, and T6, respectively. The same was observed for N uptake, which averaged 116, 117, and 

119 kg ha-1 for T1, T3, and T6, respectively. Overall, biomass was responsive to total soil N 

availability, where T1 had lower N leached than T3 and T6. Simulated N leached averaged 47, 92, 

and 154 kg ha-1 for T1, T3, and T6, respectively. 

Cumulative probability function plots, where the distribution is ordered from the smallest to 

the largest value and plotted against equal increments of cumulative probability, are presented in 

Figure 5.7. 
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Figure 5.7 Cumulative probability distribution of simulated biomass (a, kg ha− 1), N uptake (b, kg 

ha− 1), N leached (c, kg ha− 1), soil N  at maturity (d, kg ha− 1), fertilizer N use efficiency (FNUE) 

(e, kg[yield]/kg[N fertilizer]), and total yield (f, kg ha− 1) from 1998 to 2022, for N treatments 1 

(T1, blue), 2 (T2, red), and 3 (T3, green). 

Cumulative probability (Figure 5.7) showed the worst-case scenario of 4000 kg ha-1 for 

biomass accumulation for all treatments. Treatments had similar probability performance; 

however, T6, T5, and T4 had a high probability (75% or more) of reach biomass accumulation 

higher than 7000 kg ha-1. Cumulative probability of N uptake performed similarly to biomass 

accumulation for all treatments. The cumulative probability of N leached showed a high 

probability of high N leaching according to the increase in N fertilizer rate applied. Cumulative 

probability of the total soil N showed higher cumulative probabilities (75% to 100%) of T2 and 

T3 show higher soil N levels at maturity compared to other treatments; T1, T4, T5, and T6 had 

more consistent and lower soil N levels; T2 and T3 may be preferred for maximizing soil N. The 

FNUE had a medium to high probability (>50%) of reaching high FNUE with the lower N fertilizer 

rates (T1 and T2). 
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Discussion 

CSM-CERES-Sweetcorn was the first simulation model, adapted from CSM-CERES-Maize, 

mainly to improve simulations of ear growth and yield components (Lizaso et al., 2007). A 

preliminary new sweet corn model was developed by Reid (2017), which can be considered the 

second model for sweet corn, can be considered useful in predicting factors that may affect ear and 

yield but still requires adjustments. It can explain the lack of studies using the CSM-CERES-

Sweetcorn model, mainly for N fertilizer management. Despite that, the literature cites the use of 

CSM-CERES-Maize model for sweet corn crops (Beltrao et al., 1992; He et al., 2009; He et al., 

2011; He et al., 2012; He et al., 2012-1; Rawat, 2020; y Garcia et al., 2005). 

In the present study, the response of the sweet corn crop to N fertilizer treatments was 

reasonably simulated by the CSM-CERES-Sweetcorn model with only one change in the genotype 

coefficient G3. The G3 is the potential kernel growth rate during the linear grain filling stage, the 

original value of 5 given by the model was changed to 16 for the cultivar Pursuit used in this study 

(Table 4). The new value for the G3 coefficient is very similar to the sweet corn cultivar ‘Saturn’ 

(G3=15), as described by Lizaso et al. (2007). 

A study using CSM-CERES-Maize for maize growth and N dynamics predictions showed a 

RSME for biomass yield of 1439 kg ha-1, which was considered a strong performance. However, 

this value was lower than the value found for RSME in sweet corn biomass (2679.3 kg ha-1). The 

RSME for leaf area index of maize was 0.57, very similar value was found in the present study for 

sweet corn (RSME = 0.58). The RSME value for simulated N uptake in maize was 16.21 kg ha -1, 

similar value was found in the present study (RSME = 18.3 kg ha -1). The RSME for simulated 

yield of maize was 1755 kg ha-1, similar value was found in the present study (RSME = 1116 kg 

ha -1) (Kumar et al., 2024). Thus, we can consider both models performed similarly for their 



 

 109 

respective crops, sweet corn using CSM-CERES-Sweetcorn and maize using CSM-CERES-

Maize. 

As part of Lizaso et al. (2007) study, two total N fertilizer rates of 252 and 419 kg ha-1 were 

used to validate the CSM-CERES-Sweetcorn model. Simulated and observed values showed no 

difference between N fertilizer rates for shoot dry mass (RSME = 690 kg ha-1), ear dry mass 

(RSME = 509.2 kg ha-1), and ear fresh mass (RSME = 2649.3 kg ha-1). This was similar to what 

was shown in the present study, with no difference between the N fertilizer treatments that ranged 

from 224 to 336 kg of N ha-1 for simulated values for leaf area index, biomass, N uptake, and yield, 

except by the total soil N. 

Simulations of N management in sandy soils for sweet corn crop, using CERES-Maize, 

showed an increase in N leaching with the increase of N fertilizer rate applied (He et al., 2012). 

Similar results were observed in the present study, where higher N fertilizer rates showed higher 

N leaching rates. A rate of 168 kg ha-1 was defined as enough to reach marketable yield with 

reductions in N leaching. N rates above 168 kg ha-1 were not statistically different, while N 

leaching continued to increase (He et al., 2012), which is harmful to the environment and increases 

growers’ costs of N fertilizers.  

A study, using the CSM-CERES-Maize, showed grain yield was increased in higher N 

fertilizer rates, however, the highest yield observed was at N fertilizer rate of 252 kg ha-1 (Irmak 

et al., 2024). Similar results were reported in the literature, where the N fertilizer rate of 140 kg 

ha-1 resulted in increased yield and reduced N leaching (Xu et al., 2020). Moreover, da Silva et al. 

(2024) described results using the CSM-SUBSTOR-Potato model where lower N fertilizer 

treatment result was more accurate for potato production. 
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The CSM-CERES-Sweetcorn model overestimated simulated values mainly for biomass, 

total soil N, and yield. According to da Silva et al. (2024), the CSM-SUBSTOR-Potato model also 

overestimated simulated values for tuber dry biomass and soil N accumulation for potato and it 

may be attributed to the lack of maturation prediction by the model or even by other crop yield-

limiting factors. Total soil N content was satisfactorily simulated by the CSM-CERES-Sweetcorn 

model, however, discrepancies between observed and simulated data were observed in the present 

study and reported in the literature for other crops (da Silva et al., 2024; Lizaso et a., 2007). It can 

be attributed to the reduced number of soil samples collected during the season. 

Rainfall events during a sweet corn crop season increased the N leached, which had a negative 

impact on N uptake and dry, especially in sandy soils, that easily moves the N across soil layers, 

increasing the chances of soil N leaching (He et al., 2011; Jhonson et al., 2021).  

Overall, the CSM-CERES-Sweet corn evaluation was able to mimic sweet corn growth and 

development under subtropical environmental conditions, the model was not sensitive enough to 

detect differences in the N fertilizer application, mainly when the N fertilizer rates are high (>150 

kg of N ha-1). The model detected how much was applied in the soil, however, it was not able to 

detect difference of how much was uptake by the different N fertilizer treatments. Similar results 

were found by Lizaso et al. (2007), who described the lack of sensitivity in the model and the need 

of further research to improve simulations of yield in response to soil N supply. 

Conclusion 

The CSM-CERES-Sweetcorn model was able to simulate sweet corn growth and development 

under different N fertilizer rates across two years with different weather patterns. Weather 

conditions have directly impacted N management. The combination of high rainfall events with 

high N rate led to an increase in N leaching and consequently, reduction in N uptake, biomass, and 
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yield. However, the model is not sensitive enough to detect differences in the N fertilizer rates 

applied, which require further research to improve the model and allow better predictions among 

the different N fertilizer rates. 
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Chapter 6 (Overall Conclusion) 

Weather variability in the humid subtropical environmental conditions of southeastern U.S. 

is impacting sweet corn production. Particularly, heavy rainfall events, unpredictable heat and 

drought stresses, and frequent high-temperature fluctuation create challenges during crop growing 

seasons and bring negative impacts. Daily air temperatures had a direct impact in sweet corn 

development, yield, and ear quality, while heavy rainfall events and drought impacted N leaching 

and uptake. 

The importance of N fertilization is known for crops growth and development. Our 

experiment evaluated different N rates and and timing and we concluded that higher total soil N 

comes from treatments with high N rate; however, it did not translate to higher yield. Moreover, 

yield did not show a significant difference between treatments, which may be explained by the 

same amount of N uptake by the plant in all treatments. Yield was directly related to NUE, which 

shows how efficient plants are using the available N. Therefore, there is no need to increase N 

fertilization to achieve higher yields, but there is a need to understand the best N fertilizer 

management strategy to achieve adequate yield and minimize input costs and environment. 

Splitting applications associated with the right timing are extremely benefic to sweet corn growth 

and development.  

The CSM-CERES-Sweetcorn model was able to simulate sweet corn growth and development 

under different N fertilizer rates across two years with different weather patterns. However, the 

model is not sensitive enough to detect differences in the N fertilizer rates applied, which require 

further research to improve the model and allow better predictions among the different N fertilizer 

rates. 


