
Mitigation of Security Misconfigurations in Kubernetes-based Container
Orchestration: A Techno-Educational Approach

by

Md Shazibul Islam Shamim

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 3, 2024

Keywords: security misconfiguration, security practices, kubernetes, model checking,
cybersecurity education, authentic learning

Copyright 2024 by Md Shazibul Islam Shamim

Approved by

Dr. Akond Rahman, Assistant Professor of Computer Science and Software Engineering
Dr. Drew Springall, Assistant Professor of Computer Science and Software Engineering
Dr. Jakita O. Thomas, Philpott-WestPoint Stevens Associate Professor of Computer

Science and Software Engineering
Dr. Samuel Mulder, Associate Research Professor of Computer Science and Software

Engineering
Dr. Mehdi Sadi, Assistant Professor of Electrical and Computer Engineering

Abstract

Kubernetes has emerged as the preferred tool for implementing automated container

orchestration, offering significant advantages for IT organizations. However, the presence

of security misconfigurations can render Kubernetes-based software deployments vulnerable

to security attacks. The goal of this doctoral dissertation is to help practition-

ers secure their Kubernetes-based container-orchestration process by adopting a

techno-educational approach. This PhD dissertation advances the science of Kubernetes

misconfigurations by conducting three empirical studies. First, in order to assist practition-

ers in enhancing the security of their Kubernetes clusters, a qualitative analysis is conducted

on 104 Internet artifacts, including blog posts, resulting in the identification of 11 Kuber-

netes security best practices. Second, to help practitioners secure the container orchestration

with Kubernetes, we conduct a systematic investigation of configuration parameters that can

aid practitioners in identifying configuration parameters that need to be avoided in order to

secure a Kubernetes-based deployment infrastructure. Our approach is informed by gaining

an understanding of the states associated with the pod lifecycle. Using our approach, we

identify 6 attacks unique to Kubernetes that can be facilitated using combinations of 21

configuration parameters. Finally, we adopt authentic learning-based exercise to provide

students with practical, hands-on experiences in addressing real-world challenges in Kuber-

netes security. We deploy our authentic learning-based exercise in 4 semesters among 246

students. Furthermore, we observe that 90.6% and 93.3% students report that they learned

about Kubernetes security misconfigurations and the automated configuration management

tools, respectively. Furthermore, students report that the instructor’s academic, industry,

and research backgrounds are useful for authentic learning exercises.

ii

Acknowledgments

First and foremost, I express my deepest gratitude to Almighty Allah for His blessings

throughout my PhD journey. I extend my heartfelt thanks to my parents, especially my

mother, Mst Selina Akhter Jahan, whose unwavering support has been the cornerstone of

my academic career. I am also profoundly grateful to my father, Md Shafiqul Islam, for

his steadfast support and faith in me. I am thankful to my brother, Sakibul Islam Shimul,

and my cousin, Saimum Rahman, Firoz Hasan, Shariful Alam for their support during the

challenging pandemic era, when I had just started my PhD. I thank my wife, Marufa Islam,

for her constant support and inspiration during the challenging phase of my PhD research.

Without the love and sacrifices of my family, this achievement would not have been possible.

I am also grateful to all my extended family members for their inspiration, prayers, and

support.

I would like to thank my PhD supervisor, Dr. Akond Rahman, for his invaluable guid-

ance, continuous support, and patience throughout my PhD journey. Special thanks to my

dissertation committee members, Dr. Drew Springall, Dr. Jakita Owenby Thomas, and Dr.

Samuel Mulder, for their thorough review of my PhD proposal documents and dissertation,

and for their valuable suggestions that significantly enhanced the quality of my work. My

sincere thanks also go to Dr. Mehdi Sadi for serving as the University reader for my PhD

dissertation and providing invaluable feedback.

I would like to thank my friends from Bangladesh University of Engineering Technology,

Tennessee Tech University, and Auburn University. I am also grateful to my colleagues at

iPay Systems Limited. My gratitude extends to Dr. Abul Kashem Mia, Dr. A.B.M Alim Al

iii

Islam, Abdus Salam Azad, Dr. Abu Wasif, and Mohsin Khan for recommending me to apply

for a PhD program. I am thankful to Dr. B K Bose and Dr. Kanta Roy for inspiring me

to pursue this academic path. Special thanks to Arafat Mahmood, Chowdhury Md Rakin

Haider, Md Arifuzzaman, Akhter Al-Amin, Saadbin Khan, Muhammad Ahad Ul Alam,

Raisul Islam Zaeem, Mohammad Salman Yasin, Arifur Reza, Ishriak Ahmed, Md Touhiduz-

zaman, Mostafiz Rahman, Rafi Kamal, Sheikh Shakib Ahmed, Abdullah Al Fahim, Nafisa

Anzum, Tanzeer Hossain, Saiful Islam, Dipayan Banik, Ahsan Ayub, Bulbul Sharif, Golam

Maula Mehedi Hasan, Nishan Biswas, Sk. Yasir Arafat, Nafiul Huda, Al Artat Bin Ali,

Muntasir Maruf, Minarul Islam, Monir Hossain, Raisul Arefin, Shafiqul Islam, Mozahidul

Islam, Muhammad Nafisur Rahman, Sk. Alimuzzaman, Ishita Islam, Fahmida Shabnam,

Rakibul Hasan Reyad and Monzurul Quader for all their support and inspiration, from ap-

plying to the PhD program to defending my dissertation.

I would like to thank my colleagues from the PASER group at Auburn University for

their constructive feedback and support. Special thanks to Farzana Ahamed Bhuiyan, Justin

Murphy, Raunak Shakya, Yue Zhang, and Pemsith Mendis, my former colleagues from the

PASER group, for their valuable feedback on my research. I am grateful to my internship

supervisor, Dr. Seratun Jannat, at GEODIS, and to Hanyang Hu, under whose supervision

my research and technical skills expanded significantly. My gratitude also extends to my

graduate writing partner, Sidharth Suresh Gautam, for his valuable suggestions and feed-

back.

During my PhD tenure, I have authored or co-authored six publications with eight

different authors. I am grateful to all my co-authors for their contributions, which enriched

my research. I also express my gratitude to Dr. Xiao Qin and Dr. Hari Narayanan, the

chair of the Computer Science and Software Engineering department at Auburn University.

I would like to thank Dr. Sheikh Ghafoor, Dr. William Eberle, Dr. Manak Gupta, Dr.

iv

Muhammad Ismail, and Dr. Doug Talbert for their support and feedback, and Dr. Jerry

Gannod, the chair of Computer Science at Tennessee Tech University, for funding my PhD

research. I am also thankful to the National Science Foundation (NSF) for their financial

support of my PhD research.

v

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . ix

List of Tables . xiii

1 Introduction . 1

2 Background and Related Work . 9

2.1 Background . 9

2.1.1 Kubernetes Architecture . 9

2.1.2 Kubernetes Manifest . 10

2.1.3 Pod Life Cycle . 11

2.1.4 Background on Authentic Learning 12

2.2 Related Works in the Domain of Kubernetes 16

3 Systemization of Kubernetes Security-related knowledge 24

3.1 Kubernetes-related Security Best Practices 24

3.2 Methodology . 25

3.3 Results . 27

4 Motivating Example . 31

5 Configuration Parameters that Facilitate Security Attacks for Kubernetes Pods . 34

5.1 Methodology for RQ 5.1 . 35

5.1.1 Threat Model . 35

5.1.2 Translation of Pod Life Cycle to Finite State Transitions 39

5.1.3 Encoding Logic Formula for Finite State Transitions and Requirements 45

5.1.4 Mapping of Pod Events to Finite State Machines 49

vi

5.1.5 Counterexample Generation . 51

5.1.6 Attack Validation . 55

5.2 Methodology for RQ 5.2 . 65

5.2.1 SLIKUBE . 66

5.2.2 SLIKUBE+ . 69

5.2.3 Evaluation of SLIKUBE+ . 74

5.2.4 Metrics for Frequency Analysis . 74

5.3 Methodology for RQ 5.3 . 76

5.4 Answer to RQ 5.1 . 76

5.4.1 Identification of Pod-related Configuration Parameters 76

5.5 Answer to RQ 5.2 . 84

5.5.1 Frequency of Pod Configuration Parameters 84

5.5.2 Comparison of SLIKUBE+ with Existing Tools 88

5.6 Answer to RQ 5.3 . 89

5.6.1 Identification of Pod States Related to Security Attacks 89

6 Authentic Learning for Learning Kubernetes Security Misconfiguration Analysis 93

6.1 Methodology . 94

6.1.1 Authentic Learning Exercise Design 94

6.1.2 Questionnaire Design and Deployment 97

6.1.3 Questionnaire Analysis . 100

6.2 Results . 102

6.2.1 Answer to RQ 6.1 . 103

6.2.2 Answer to RQ 6.2 . 108

6.2.3 Answer to RQ 6.3 . 111

7 Discussion . 112

7.1 Implication for Practitioners . 112

7.1.1 Application of Kubernetes Security Best Practices 112

vii

7.1.2 Application of Security Static Analysis 112

7.1.3 Better Understanding of Pod-related Configuration Parameters 112

7.2 Implication for Researchers . 113

7.2.1 Baseline for Future Research . 113

7.2.2 Enhancing Security Analysis Tools 113

7.2.3 Automated Framework for Identifying Pod-Related Configuration Pa-

rameters . 114

7.3 Implication for Educators . 116

7.4 Threats to Validity . 117

7.4.1 Conclusion Validity . 117

7.4.2 Construct Validity . 117

7.4.3 External Validity . 118

7.4.4 Internal Validity . 118

8 Conclusion . 119

Bibliography . 121

A Appendix . 129

viii

List of Figures

1.1 Anecdotal evidence of security misconfigurations in Kubernetes manifests that

shows an example of a security misconfiguration related to privilege escalation in

a Kubernetes manifest . 4

2.1 A brief overview of Kubernetes. Kubernetes users interact with the installation

using the Kubernetes dashboard and ‘kubectl’. The purpose of control-plane

node is to maintain the desired cluster state and manage worker nodes. Worker

nodes are used to run containerized applications inside the pod. 10

2.2 A simple graphical demonstration of a pod life cycle. 12

2.3 The diagram illustrates the three distinct steps of the authentic learning-based

exercise, encompassing pre-lab content dissemination, hands-on exercise and ac-

tive learning, and post-lab exercise with real-world scenarios. 13

3.1 A brief overview of the methodology to derive security best practices related to

Kubernetes from Internet artifacts. 25

3.2 An example of open-coding to derive a category of security best practices in

Kubernetes . 27

3.3 The occurrences of security best practices in Kubernetes in the Internet Artifacts 28

4.1 Example code snippet to demonstrate attack-akin configurations. 33

5.1 An overview of methodology to identify pod-related configuration parameters

that can facilitate security attacks . 36

ix

5.2 Internet artifact search and filtering process . 38

5.3 A description of our open coding process to derive pod properties related param-

eters from Internet artifacts. 38

5.4 The sequence diagram of pod events after a practitioner requests for pod deployment 42

5.5 A finite state machine representing the a subset of the states related to the

‘Pending’ phase of Pod . 47

5.6 A pod state transition of event . 49

5.7 A finite state machine representing the states of a pod. 54

5.8 A counter-example for over privileged pod . 82

5.9 Example code snippet to demonstrate attack-akin configurations. 83

6.1 A Sample Kubernetes Manifest (example-nginx.yaml) with Security Misconfigu-

rations for Concept Dissemination in the Authentic Learning-based Exercise . . 95

6.2 Overview of in-class experience to detect Kubernetes security misconfigurations

in Kubernetes manifests . 96

6.3 Overview of Authentic Learning-based Kubernetes Security Misconfiguration Anal-

ysis . 97

6.4 Educational Background of Students Participating in the Authentic Learning-

based Exercise . 103

6.5 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Kubernetes Misconfigurations Based on Their Educational Background . 104

x

6.6 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Kubernetes Misconfigurations Based on Their Expertise in Software Qual-

ity Assurance . 104

6.7 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Kubernetes Misconfigurations Based on Their Expertise in Cybersecurity 105

6.8 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Kubernetes Misconfigurations Based on Their Expertise in Static Analysis

Tools . 105

6.9 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Automated Configuration Management Tools and How the Tools Work

Based on Their Educational Background . 106

6.10 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Automated Configuration Management Tools and How the Tools Work

Based on Their Expertise in Software Quality Assurance 106

6.11 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Automated Configuration Management Tools and How the Tools Work

Based on Their Expertise in Cybersecurity . 107

6.12 Reported Perception of Students on the Authentic Learning-based Exercise to

Learn Automated Configuration Management Tools and How the Tools Work

Based on Their Expertise in Static Analysis Tools 107

6.13 Reported Perception of Students on the usefulness of Authentic Learning-based

Exercise . 109

6.14 Overall Perception of Students on the Authentic Learning-based Exercise to

Learn Kubernetes Security Misconfiguration . 109

xi

6.15 Overall Perception of Students on the Authentic Learning-based Exercise to

Learn Automated Configuration Management Tools and How the Tools Work . 110

6.16 Reported Perception of Students of the Instructor Background for Authentic

Learning-based Exercise . 111

xii

List of Tables

2.1 Mapping Between Publications and Research Topics 17

5.1 Identified Pod Properties from the Internet Artifacts 43

5.2 Pod Security Requirements and Corresponding LTL formula 44

5.3 Implementation of Each Transition Condition (T) 53

5.4 Misconfigurations that invoke insecure provisioning 65

5.5 Examples of Security Misconfiguration Categories of SLIKUBE 69

5.6 Rules Used by SLIKUBE . 70

5.7 String Patterns Used for Rules in SLIKUBE 71

5.8 Additional Rules for SLIKUBE+ to Extend SLIKUBE 72

5.9 Additional String Patterns Used for Functions in SLIKUBE+ Rules 73

5.10 Dataset for SLIKUBE+ . 75

5.11 Dataset Attributes . 76

5.12 Pod Configuration Parameters that Invoke Security Attacks 81

5.13 Manifest-based Attack Coverage (MAC) . 85

5.14 Repository-based Attack Coverage (RAC) . 85

5.15 Kubernetes Security Misconfigurations in OSS 86

5.16 Mapping of Configuration Parameters to Pod-related Attacks 87

5.17 Comparison of SLIKUBE+ with Existing Tools 88

5.18 Comparison between SLIKUBE+ and SLIKUBE 89

5.19 Mapping between Pod State and Attacks . 92

6.1 Educational Background of Participating Students 104

A1 List of 105 Publications for Literature Review 129

xiii

Chapter 1

Introduction

Container technologies, such as Docker and LXC are gaining popularity amongst in-

formation technology (IT) organizations for deploying software applications. For example,

PayPal uses 200,000 containers to manage 700 software applications [74]. For managing

these containers at scale, practitioners often use automated container orchestration, i.e, the

practice of pragmatically managing the life-cycle of containers with tools, such as Kuber-

netes [73].

Since its inception in 2014, Kubernetes has established itself as the de-facto tool for

automated container orchestration [93, 13]. According to Stackrox survey [104], 91% of

the surveyed 500 practitioners use Kubernetes for container orchestration. As of Sep 2020,

Kubernetes has a market share of 77% amongst all container orchestration tools [106]. Or-

ganizations, such as Adidas, Twitter, IBM, U.S. Department of Defense (DOD), and Spotify

are currently using Kubernetes for automated container orchestration. Use of Kubernetes

has resulted in benefits, e.g., using Kubernetes the U.S. DoD decreased their release time

from 3∼8 months to 1 week [18]. In the case of Adidas, the load time for their e-commerce

website was reduced by half, and the release frequency increased from once every 4∼6 weeks

to 3∼4 times a day [60].

Kubernetes-based container orchestration, similar to every other configurable software,

is susceptible to security misconfigurations. However, due to the pervasive nature of Kubernetes-

based container orchestration, such misconfigurations can have severe security implications.

According to the 2021 ‘State of Kubernetes Security Report’, 94% of 500 practitioners experi-

enced at least one Kubernetes-related security incident, majority of which can be attributed

1

to security misconfigurations [93]. The survey also states Kubernetes-related misconfigu-

rations to “pose the greatest security concern” for Kubernetes-based container orchestra-

tion [93]. Anecdotal evidence attests to such perceptions: for example, a Kubernetes-related

security misconfiguration resulted in a data breach that affected 106 million users of Capital

One, a U.S.-based credit card company [54, 107]. We also observe cryptomining attack in

electric car manufacturer company Tesla’s Amazon Web Services (AWS) resources due to

Kubernetes security misconfiguration [22]. In case of security breach, an organization often

face project delays or disruptions that causes revenue or customer loss, financial loss such as

fines as well as legal actions or lawsuits. [95]. The end user of the service of the organiza-

tion also gets affected in the security breach which includes private data leak, data loss and

service disruption [95].

Practitioners often report what security practices they use in Internet artifacts [32, 34]

rather than in academic forums such as conferences. One strategy to address this problem is

to systematize available knowledge regarding Kubernetes security practices that could sup-

port practitioners to secure their Kubernetes environment. Systematization of knowledge

can be conducted by analyzing Internet artifacts, such as blog posts and video presenta-

tions. Such systematization of knowledge can be beneficial for practitioners to understand

what practices need to follow to secure Kubernetes components and use the derived list of

practices as a benchmark to compare their existing state of security practices. To systemat-

ically synthesize practitioner-reported security best practices for Kubernetes, we answer the

following research question in Section 3:

• RQ 3.1 What Kubernetes security practices are reported by practitioners?

Additionally, we observe anecdotal evidence in open-source software (OSS) repositories

that provide clues on what security misconfigurations can occur for Kubernetes. In the

case of Kubernetes, a pod is considered the most fundamental unit for performing container

orchestration. In order to facilitate automated management of containers, pods provide a

wide range of configuration parameters using which Kubernetes users provision and manage

2

the behavior of containers. In Figure 1.1 we present a code snippet related to Kubernetes

manifests, and mined from OSS repositories [24, 105] that has a security misconfiguration

allowPrivilegeEscalation:True. When a practitioner configures a pod using this Ku-

bernetes manifest, the allowPrivilegeEscalation:True misconfiguration allows a child

process of a container to gain more privileges than its parent process. As a result, any mali-

cious user can leverage this misconfiguration to gain unauthorized access to the underlying

host machine [71].

3

1 securityContext:
2 capabilities:
3 drop:
4 - ALL
5 runAsUser: 101
6 allowPrivilegeEscalation: true
7 ...

privileged security context

1

Figure 1.1: Anecdotal evidence of security misconfigurations in Kubernetes manifests that
shows an example of a security misconfiguration related to privilege escalation in a Kuber-
netes manifest

Existing security analysis tools for Kubernetes [103], [58], [3], [23], [14] scan Ku-

bernetes manifests, repositories and report one misconfiguration at a time and they do not

provide any additional context how a misconfiguration can be leveraged by a malicious user

with the combination of other security misconfiguration to conduct a security attack. As a

result, the practitioners can not identify the pod-related configuration parameters that can

facilitate a security attack. In order to secure the container orchestration process with Ku-

bernetes, practitioners must identify pod-related configuration parameters that can facilitate

security attacks. However, identifying pod-related configuration parameters that facilitate

security attacks pose the following challenges:

Stateful nature of configuration parameters: Configuration parameters of pods are

stateful, i.e., certain configuration parameters are only activated at certain states of the pod

lifecyle. An automated approach aimed at finding configuration parameters that facilitate

security attacks must account for the lifecycle states and their corresponding configuration

parameters.

Security requirements for pods: Kubernetes pods have unique properties that ne-

cessitates accounting for security requirements unique to pods. In order to find configuration

parameters that facilitate security attacks, security require- ments unique to pods need to

be identified.

Exploration of configuration parameters: Kubernetes allows multiple configura-

tions to provision pods, each of which have multiple parameters. Manual exploration of all

4

of these combinations of configuration parameters is practically impossible, necessitating an

automated approach.

To mitigate the above mentioned challenges and perform systematic investigation to

determine which configuration parameters facilitate security attacks for Kubernetes pods we

answer the following research questions in Section 5:

• RQ 5.1What configuration parameters facilitate security attacks for Kubernetes pods?

• RQ 5.2 How frequently do identified configuration parameters appear in Kubernetes

manifests?

• RQ 5.3 What states in the pod lifecycle map with security attacks for Kubernetes

pods?

As an open source software, Kubernetes codebase is large and complex with minimal

documentation [108] and as of April 2024 Kubernetes GitHub repository has 2.2 million lines

of code [46]. As a result, it becomes difficult for practitioners to learn and grow Kubernetes-

related skills from the official codebase and documentation. A recent survey conducted by

Cloud Native suggests that 48% (595) of the survey respondents among 1,240 participants

reported “Lack of in-house skills/limited manpower” for running and maintaining their Ku-

bernetes cluster [62]. According to the state of Kubernetes survey, among 247 participants

70% and 67% cited lack of experience and expertise as a top deployment and top manage-

ment challenges [111] respectively. Moreover, practitioners often lack knowledge needed to

mitigate security misconfigurations [71].According to red hat 2024 survey, among 600 prac-

titioners 30% of them reported that they lack internal security talents for their Kubernetes

security solutions [95]. Although the internet artifacts, and survey shows the lack of security

talent in Kubernetes, academic researchers have not yet proposed any educational approach

to train the Kubernetes practitioners. A Kubernetes practitioner is an individual who de-

ploys, manages, and maintains applications using Kubernetes. Kubernetes practitioners also

5

include individuals such as graduate and undergraduate students who are learning Kuber-

netes in academic classrooms or as learners in a non-academic environment. Prior research

has shown that students can be used as a surrogate measurement for experiments in software

engineering [27], [28]. The researchers describe the drawback of using professionals compared

to students in software engineering experiment such as compensation for time, low sample

size, less commitment issue, lower internal validity for the experiment [28].

To mitigate the challenge of a lack of security experts in Kubernetes, we take an ed-

ucational approach to train the practitioners in Kubernetes security. We use an authentic

learning-based instructional approach as authentic learning exercises have proven effective

in enhancing students’ understanding of various subjects, such as mobile application secu-

rity [83] and infrastructure-as-code (IaC) [89]. We answer the following research questions

in Section 6:

• RQ 6.1: How to design authentic learning-based exercise to help students for secure

development of Kubernetes Manifests?

• RQ 6.2: How does authentic learning help students to learn about the secure devel-

opment of Kubernetes Manifests?

• RQ 6.3: What instructor-related attributes are useful for students in an authentic

learning-based exercise used for Kubernetes security misconfiguration analysis?

This dissertation thesis will impact the state-of-the-art secure development of Kuber-

netes. We hypothesize that through systematically synthesizing the knowledge related to

Kubernetes security best practices study, we can help the practitioners to integrate best

security practices. All of the evidence mentioned above emphasizes the need for a security

analysis of pod-related configuration parameters that can weaken the security posture of the

pod at runtime. Such analysis can help practitioners understand the Kubernetes security

attacks due to the pod-related configuration parameters. We leverage our understanding of

Kubernetes pod lifecycles to construct finite state machines (FSM). We hypothesize that

6

FSM will be used to identify pod-related configuration parameters that can be used to con-

duct security attacks. Moreover, we create authentic learning-based exercises for the next

generation of Kubernetes practitioners to learn about Kubernetes security misconfiguration

and provide empirical analysis for the effectiveness of the exercise.

The goal of this doctoral dissertation is to help practitioners secure their

Kubernetes-based container-orchestration process by adopting a techno-educational

approach.

In this dissertation, we make the following contributions:

• A synthesized list of security practices for Kubernetes(Section 3.3);

• A curated dataset with a mapping between Internet artifact and identified security

best practices [7];

• A list of 21 configuration parameters combinations of which facilitate 6 security attacks

for Kubernetes pods (Section 5.4);

• An empirical validation of the identified attacks from Kubernetes formal verification

using pod-related configuration parameters (Section 5.1);

• A mapping between of pod-related configuration parameters and Kubernetes-related

security attacks (Section 5.5);

• An empirical analysis of open-source Kubernetes manifests to identify pod-related con-

figuration parameters that can facilitate security attack (Section 5.5.1);

• A mapping between states and pod-related security attacks (Section 5.6);

• An evaluation of students’ perception of authentic learning to design a more effective

curriculum for students (Section 6.2.1);

7

• An evaluation of the authentic learning module’s effectiveness in teaching students

Kubernetes security misconfiguration (Section 6.2.2); and

• An evaluation of the students’ perception on the usefulness of instructor-related at-

tributes in an authentic learning-based exercise used for Kubernetes security miscon-

figuration analysis (Section 6.2.3).

8

Chapter 2

Background and Related Work

2.1 Background

In this section, we provide relevant background and discuss related academic works.

First, we provide a brief background on Kubernetes and its architecture. Then we provide

background on Kubernetes manifests, which are files used to define and deploy pods, the

fundamental units of applications in Kubernetes. We also provide background on the life

cycle of pod in Kubernetes. After that, we provide a brief description on authentic learning,

an instructional approach that emphasizes real-world problem-solving activities. We end

this section by describing related academic research.

2.1.1 Kubernetes Architecture

Kubernetes is an open-source software for automating management of computerized

services such as containers [73]. A Kubernetes installation is colloquially referred to as a

Kubernetes cluster [73]. Each Kubernetes cluster contains a set of worker machines defined

as nodes. As shown in Figure 2.1, two types of nodes exist for Kubernetes: master nodes

and worker nodes.

Each control-plane node includes the following components: ‘API server’, ‘scheduler’,

‘controller’, and ‘etcd’ [73]. The ‘API server’ is responsible for orchestrating all the opera-

tions within the cluster. Kubernetes serves its functionality through an application program

interface from the ‘API server’. The ‘controller’ is a component on the control-plane that

watches the state of the cluster through the ‘API server’ and changes the current state to-

wards the desired state. The ‘scheduler’ is the component in the control plane responsible

for scheduling pods across multiple nodes. The ‘etcd’ is a key-value based database that

9

 Control Plane

kube-scheduler

kube-controller-

manageretcd

kube-api-server

Worker Nodes

kube-proxy

Pod kubelet

Containers
Practitioners

Kubernetes
Dashboard

Kubectl

Figure 2.1: A brief overview of Kubernetes. Kubernetes users interact with the installation
using the Kubernetes dashboard and ‘kubectl’. The purpose of control-plane node is to
maintain the desired cluster state and manage worker nodes. Worker nodes are used to run
containerized applications inside the pod.

stores all configuration information for the Kubernetes cluster. Users use a command-line

tool ‘Kubectl’ to communicate with the ‘API server’ in the control-plane node.

The worker nodes host the applications that run on Kubernetes [73]. The following

components are included in the worker node: ‘kube-proxy’, ‘kubelet’ and ‘pod’. ‘kube-

proxy’ maintains the network rules on nodes. ‘kubelet’ is an agent that ensures containers

are running inside a pod. The pod is the smallest Kubernetes entity, which includes at least

one active container. A container is a standard software unit that packages the code and

associated dependencies to run in any computing environment [73].

2.1.2 Kubernetes Manifest

Kubernetes allows practitioners to create persistent objects using declarative configu-

rations [59]. Kubernetes provides a command line tool called “kubectl” that allows the

10

practitioners to communicate with the Kubernetes cluster to create, update, and delete Ku-

bernetes objects with desired state using object configuration files called Kubernetes mani-

fests [59]. Practitioners write Kubernetes manifests and use the “kubectl apply” command

in the command line terminal using appropriate privilege to configure objects and update

the live configuration of an object [59]. Kubernetes manifests are written as a YAML file

that describes the desired state of a Kubernetes object in a Kubernetes cluster [88]. In

Listing 1, we provide a sample example of a Kubernetes object pod defined by Kubernetes

manifest [59].

2.1.3 Pod Life Cycle

In Kubernetes, the pod is the smallest deployable and manageable unit. Each pod goes

through certain phases during their life cycle depending on the condition of the containers

inside the pod. The ‘kube-scheduler’ in the control-plane node schedules each pod only once.

After scheduling a worker node for the pod, the pod runs in the worker-node until the worker

node stops or the pod terminates.

Once an authenticated and authorized user creates a valid pod creation request, the

Kubernetes API server accepts the request and stores the information in ‘etcd’ database in

control plane node. After Kubernetes API accepts the pod creation request the pod goes

to ‘pending’ phase. Kube-scheduler assigns the pod to a node and Kubernetes API server

stores that information to ‘etcd’. Finally, the ‘kubelet’ agent in the worker node receives the

pod specification, pulls the image from the container registry and provides the image to the

container runtime to run the container. If container runtime starts at least one container

or in the process of starting or restarting then the pod goes to ‘running’ phase. When

the containers inside the pod terminates and at least one container ends with failure such as

terminated by system or exited with non-zero status, the pod goes to ‘failed’ state. The failed

container may restart based on restart-policy upon failure if it is created by other workloads

such as replica sets. If the containers in a pod ends in success and will not restart then pod

11

1 apiVersion: v1

2 kind: Pod

3 metadata:

4 name: nginx

5 spec:

6 containers:

7 - name: nginx

8 image: nginx:1.14.2

9 ports:

10 - containerPort: 80

Listing 1: An example of Kubernetes manifest for Pod

reaches ‘succeeded‘ state. The figure 2.2 demonstrates the pod life cycle as described in this

section.

Running

Failed

SucceededPending

Request accepted by
Kubernetes API server

At least one
container is running

After Restart,
container is running

again

At least one container
terminated with

non-zero exit code

All containers
terminated with 0

Unknown

Kubelet fails to
communicate with

Kubernetes API server

Figure 2.2: A simple graphical demonstration of a pod life cycle.

2.1.4 Background on Authentic Learning

Authentic learning is recognized as an instructional approach that prioritizes the engage-

ment of students in problem-based activities that reflect real-world contexts [68]. Authentic

learning is more of philosophy for exercise design rather than learning theory [37]. Herring-

ton et al. [38] describes that Authentic learning comprises 9 design elements: (i) authentic

context, (ii) authentic tasks and activities (iii) access to expert performances, (iv) multiple

12

roles and perspectives, (v) support collaborative construction of knowledge, (vi) reflection

(vii) articulation, (viii) coaching and scaffolding and (ix) authentic assessment. When imple-

menting authentic learning based exercise, the exercise follow the the elements for creating

authentic learning environment for the students. The exercises also exhibit distinct charac-

teristics that contribute to its effectiveness. These characteristics include [70]: (i) it focuses

on hands-on exercises relevant to the real-world problems, (ii) it encourages students to have

a diverse set of perspectives for the same exercise, and (iii) it utilizes available resources to

solve exercises.

Figure 2.3: The diagram illustrates the three distinct steps of the authentic learning-based
exercise, encompassing pre-lab content dissemination, hands-on exercise and active learning,
and post-lab exercise with real-world scenarios.

The implementation of an authentic learning-based exercise typically involves three

distinct steps. In Figure 2.3, we have demonstrated three steps of authentic learning steps.

The inclusion of these three steps in the authentic learning-based exercise ensures a holistic

and practical learning experience for students, promoting deeper engagement and mastery of

the subject matter. In these three steps core authentic learning elements are incorporated to

provide a supportive environment that motivates student to learn in relevant and real-word

scenarios [38]. The three steps are as follows:

• Step 1: Pre-Lab Content Dissemination

• Step 2: Hands-On Exercise

• Step 3: Post-Lab Exercise

13

Step 1: Pre-Lab Content Dissemination: In this step, the instructor introduces the

students to the fundamental concepts related to the topic at hand. Through various teaching

methods, such as lectures or presentations, the instructor imparts the necessary theoretical

knowledge and background information to the students. In this step, the instructor provides

authentic context to the student by disseminating the knowledge related to the subject

matter [38]. This phase sets the foundation for the subsequent hands-on exercises.

Step 2: Hands-On Exercise: In this step of the authentic learning-based exercise

involves providing students with hands-on exercises that are directly relevant to the real-

world application of the subject matter. Through active learning strategies, students engage

directly with the material and apply their theoretical knowledge in practical scenarios. The

instructor guides and supports the students during this hands-on exercise phase, facilitating

their learning and understanding of the subject matter through active participation. In this

step, the students learn to conduct authentic activities, and get access to expert assessment

and coaching support from the instructor to create a supportive learning environment [37].

The students also get the opportunity to get perspective on multiple roles. Following the

completion of the hands-on exercise, the authentic learning-based exercise progresses to the

post-lab exercise stage.

Step 3: Post-Lab Exercise: In this phase, the instructor presents the students with

exercises based on real-world scenarios that reinforce and deepen their understanding of the

subject matter. These exercises challenge students to apply their acquired knowledge and

skills to solve complex problems or address practical challenges. By working through these

real-world scenarios, students develop a more comprehensive understanding of the subject

matter and enhance their problem-solving abilities in authentic contexts. In the post lab

step, the students get the opportunity to reflect and articulate their learning to perform

authentic assessment [37].

Authentic learning and experiential learning are two distinct instructional approaches

that are often compared in the context of education. While authentic learning emphasizes

14

real-world problem-solving activities, experiential learning follows a four-phase model con-

sisting of design, conduct, evaluation, and feedback [33].

In experiential learning, the instructor plays a pivotal role in creating a structured and

supportive environment for students throughout the design and conduct phases [33],[72].

The learning experience is carefully designed to facilitate active engagement and experiential

opportunities [33], [53]. Subsequently, in the evaluation phase, the instructor assesses the

specific learning outcomes achieved through the experience, followed by providing feedback

to the students [33], [72].In contrast, authentic learning focuses on exposing students to

real-world problem-solving scenarios based on their in-class experiences. By engaging in

authentic tasks, students have the opportunity to develop and refine both soft and hard

employable skills that are aligned with market demands [81].In our research, we choose to

adopt the authentic learning approach instead of experiential learning to prepare a highly

employable cybersecurity workforce with expertise in Kubernetes security misconfiguration

analysis.

Herrington et al. described the usefulness of engaging students in reflective and in-

tentional learning [38].Researchers applied authentic learning in learning security threats in

machine learning models [4], improving competency in real cybersecurity incidents [49], im-

proving students competency geospatial information system(GIS) skills [6]. Prior research

has successfully integrated authentic learning-based exercises into various domains, such as

secure software development in mobile computing [83], resulting in improved self-efficacy and

confidence among students. Authentic learning has also been applied to enhance learning

in secure infrastructure-as-code (IaC) development, enabling students to gain insights into

secure IaC practices [89]. Researchers applied authentic learning in learning security threats

in machine learning models [4], improving competency in real cybersecurity incidents [49],

improving students competency geospatial information system(GIS) skills [6]. We take

motivation from prior work on authentic learning in various domains and design authentic

learning exercises for practitioners to learn Kubernetes security misconfigurations.

15

2.2 Related Works in the Domain of Kubernetes

We follow Garousi et al.’s [31] recommendations to conduct a systematic literature

review study on Kubernetes. To identify necessary peer-reviewed publications, we use five

scholar databases, namely, (i) ACM Digital Library, (ii) IEEE Xplore, (iii) Springer Link,

(iv) Science Direct, and (v) Wiley Online Library. We use these five scholar databases for our

MLR study because Kuhrmann et al. [63] recommend these databases to use in systematic

mapping studies and systematic literature reviews. Following Garousi et al.’s [31] guidelines,

we apply an inclusion and exclusion criteria to filter irrelevant search results we identify a

set of 105 publications from 3,856 peer-reviewed articles. Each of the publications’ names

are listed in Table A1 of the Appendix. We index each publications as ‘P#’, for example

the index ‘1’ refers to the publication ‘Modelling performance & resource management in

kubernetes’. We identify the topics that have been researched in the area of Kubernetes by

applying qualitative analysis on the content of the 105 publications. Through our qualitative

analysis, we identify 14 research topics. A publication can belong to multiple topics implying

that the identified topics are not orthogonal to each other.We provide a mapping between

the research topics and publications in Table 2.1. The description of each of the research

topic is given below:

Performance Evaluation (50): Performance evaluation is the category of peer-reviewed

publications that investigates performance issues in Kubernetes-based deployments. We

observe this category of publication to include two sub-categories:

(i) Technique for Performance Improvement : Publications that belong to this category

proposes and evaluates techniques that can improve a Kubernetes-based deployment.

For example, in P18, the authors propose a technique called ‘AlloX’, and evaluated the

performance improvement obtained by Allox for TensorFlow [1]. In P19, the authors

proposed and evaluated a configuration tuning tool called ‘Accordia’ that generates

configurations so that performance overhead is reduced for resource-intensive software.

16

Table 2.1: Mapping Between Publications and Research Topics
Topic Publication Index Count

Performance Evaluation P1, P2, P6, P7, P14, P17, P18,
P19, P21, P22, P23, P24, P27,
P35, P37, P39, P41, P42, P43,
P46, P47, P51, P52, P53, P55,
P57, P58, P59, P60, P61, P67,
P68, P69, P70, P73, P75, P77,
P78, P79, P84, P86, P87, P91,
P95, P96, P99 ,P101, P103,
P104, P105

50

Resource Allocation P1, P2, P4, P5, P6, P8, P16,
P18, P19, P21, P22, P23, P24,
P26, P27, P28, P32, P41, P50,
P51, P52, P54, P55, P57, P58,
P62, P70, P73, P77, P78, P79,
P80, P81, P82, P83, P84, P86,
P88, P91, P95, P99, P102, P104,
P105

44

Internet of Things (IoT) P5, P14, P34, P35, P38, P45,
P46, P47, P54, P57, P62, P63,
P76, P86, P102, P104

16

Networking P6, P7, P15,P45, P47, P54, P56,
P64, P65, P76, P85, P86, P87,
P100

14

Data Mining & Machine
Learning

P9, P11, P14, P18, P25, P51,
P71, P79, P80, P93, P98

11

Microservice Orchestra-
tion

P42, P59, P66, P72, P74, P90,
P92, P94

8

Security P3, P33, P47, P66, P92, P93,
P100

7

Fault tolerance P10, P17, P44, P59, P96, P97 6
High Performance Com-
puting

P68,P71 2

Logging & Monitoring P30, P60 2
Configuration Abstraction P20 1
Database Management P12 1
Electronic Vehicle P49 1
Discrete Time System
Simulation

P36 1

Similarly, in P53, the authors propose ‘ConfAdvisor’ to improve container performance.

In P23, the authors propose a tool called ‘KubeShare’ that allows graphics processing

units (GPU)-based deployments using Kubernetes. In P52, the authors propose a

technique to minimize CPU consumption when the CPU resources are shared among

co-located containerized software. In P91, the authors propose a technique that uses

17

the non-dominated sorting genetic algorithm II (NSGA II) to optimize container CPU

and memory.

(ii) Performance Benchmarks : Publications that belong to this category investigate and

compare performance of Kubernetes-based deployments using curated data bench-

marks. For example, in the publication P37, P41 and P43 the authors investigated

performance comparison of Kubernetes with other deployments tools, performance of

Kubernetes in AWS, Azure and GCP platforms and performance comaparison with

Docker Swarm and Kubernetes respectively.

Resource Allocation (44): Resource allocation is the category of peer-reviewed publica-

tions that proposes and evaluates techniques on how Kubernetes can be configured so that

resources are efficiently allocated for one our multiple software deployments using Kuber-

netes. We observe prior research to apply a diverse set of algorithms, such as search-based

algorithms, graph algorithms, and machine learning algorithms to efficiently allocate re-

sources. For example, in P8, the authors use search-based algorithms, namely, the ant colony

algorithm [26], and the particle swarm optimization algorithm [102] to develop a scheduling

model for Kubernetes-based deployments. In P21, authors use BestConfig algorithm [112]

and Bayesian optimization [5] to find cost-effective resource allocation policies for SLOs in

Kubernetes. In P26, the stable marriage algorithm [75] is used to find compatible hosts

and containers in order to achieve the best deployment with respect to deployment speed.

In P55, the authors provide an effective resource allocator for containers running on the Ku-

bernetes cluster. In P80, authors use deep reinforcement learning [65] to allocate resources

for deployments in Kubernetes. In P105, authors use a graph algorithm called the minimum

cost flow algorithm [35] where resources are allocated by representing each container request

with a graph.

Internet of Things (16): Internet of things (IoT) is the category of peer-reviewed publi-

cations that investigates how Kubernetes can be used for IoT-based software applications.

Peer-reviewed publications that belong to this category focus on improving network latency,

18

scheduling, and fault tolerance of IoT applications. For example, In P38, the authors propose

a fault-tolerant architecture for IoT applications in the cloud. In P45, the authors propose

an extension to Kubernetes called ‘KubeEdge’ architecture with a network protocol stack

called ‘KubeBus’ for IoT applications. In P62, the authors propose a custom Kubernetes

scheduler where the nodes decide scheduling for IoT agents.

Networking (14): Networking is the category of peer-reviewed publications that investi-

gates networking-related challenges in Kubernetes-based deployments. For example, in P64,

the authors propose a remote direct memory access (RDMA) architecture to control net-

work bandwidth in Kubernetes. In P65, the authors propose a framework to automatically

configure virtualized networks with Kubernetes. In P85, the authors propose a solution for

monitoring vehicular networks provisioned using Kubernetes. In P87, the authors analyze

performance bottlenecks for container network interface (CNI) plugins used in Kubernetes.

Data Mining & Machine Learning (11): Data mining & machine learning is the

category of peer-reviewed publications that investigates how software projects that use data

mining and machine learning algorithms can be deployed in Kubernetes. For example,

in P71, the author uses Kubernetes to design and deploy experiments for a data mining

application used in particle imaging [11]. In P98, the authors propose ‘JOVIAL’ a cloud-

based data mining platform that can be used for astronomical data analysis with JupyterHub

and Kubernetes.

Microservice Orchestration (8): Microservice orchestration is the category of peer-

reviewed publications that investigates techniques on how to orchestrate microservice-based

software applications while maintaining availability. For example, in P59, the authors pro-

pose a strategy to improve availability of microservices that relies on the state of the service

by implementing state controller support for Kubernetes. In P72, the authors propose a

new framework to support synchronization among microservices in Kubernetes/Openstack

and test various use cases. In P74, the authors compare the deployment of microservices in

19

CI/CD pipelines with Rundeck, Docker, Kubernetes and report that Kubernetes provides

the most efficient way to achieve highly available and scalable microservices.

Security (7): Security is the category of peer-reviewed publications that investigates tech-

niques to mitigate security weaknesses for Kubernetes. Anomaly detection is one security-

related topic that has been addressed by researchers. In P3, the authors propose an anomaly

detection tool for detecting anomalies in astronomy data analysis tools that are deployed with

Kubernetes. In P93, the authors implement ‘KubeAnomaly’ a tool for anomaly detection in

the Kubernetes cluster, using neural network approaches. Security-focused frameworks have

also garnered interest: in P33, the authors propose an automated threat mitigation architec-

ture for Kubernetes that continuously scan containers for vulnerabilities to quarantine and

isolate vulnerable containers. In P92, the authors built a security framework for integrity

protection for microservices-based systems. In P100, the authors propose a zero-trust secure

design for a Kubernetes-based data center. Zero-trust refers to the concept that requires all

users to be authenticated, authorized, and continuously validated before being granted or

keeping access to software and data [51].

Fault Tolerance (6): Fault tolerance is the category of peer-reviewed publications that

proposes frameworks to increase reliability for Kubernetes. For example in P96, the authors

propose a Kubernetes Multi-Master Robust (KMMR) platform to facilitate robust fault

tolerance of Kubernetes.

High Performance Computing (2): High performance computing (HPC) is the category

of peer-reviewed publications that investigates techniques on how to efficiently provision

HPC applications on Kubernetes. For example in P68, the authors discuss how Kubernetes

can be used to deploy HPC applications. The authors further compare Kubernetes-based

deployments with Docker Swarm, and bare metal deployments with respect to memory and

network bandwidth. The authors of P68 observe Docker Swarm to outperform Kubernetes.

Logging & Monitoring (2): Logging & monitoring is the category of peer-reviewed

publications that investigates how logging can integrated in Kubernetes-based deployments.

20

For example, in P30, the author proposes a technique to mitigate challenges related to logging

in pods and containers.

Configuration Abstraction (1): Configuration abstraction is the category of peer-

reviewed publications that investigates how novel configuration abstractions can be con-

ducted for Kubernetes. The only publication belonging to this category is P20, where the

authors propose ‘Isopod’ that directly identifies and abstracts Kubernetes objects using the

Kubernetes API instead of using Kubernetes manifests. The authors of P20 reported that

YAML-based Kubernetes manifests are untyped, can contain wrong indents, and miss im-

portant fields, which necessitates abstractions of Kubernetes objects using the Kubernetes

API.

Database Management (1): Database management is the category of peer-reviewed

publications that investigates how database management tools can be provisioned using

Kubernetes. The only publication belonging to this category is P12, where authors propose

the Greenplum Database for Kubernetes (GP4K) tool to aid database administrators in

automatically deploying databases in Kubernetes.

Electronic Vehicle (1): Electronic vehicle is the category of peer-reviewed publications

that investigates how Kubernetes can be used to simulate behaviors of electronic vehicles.

The only publication belonging to this category is P49, where the authors use Kubernetes

to simulate electric vehicle fleet behavior in a distributed manner.

Discrete Time System Simulation (1): Discrete time system simulation is the category

of peer-reviewed publications that investigates how Kubernetes can be used to simulate

discrete time systems. The only publication belonging to this category is P36, where the

authors use Kubernetes to simulate a linear multi-variable discrete time system. A discrete-

time system is a system that takes a discrete time signal as input and generates a discrete

time signal as output [80].

21

Based on the discussion mentioned above we identified the following under-investigated

research areas in the domain of Kubernetes and presented three empirical studies in this

dissertation.

• Systemization of knowledege related to Kubernetes Security: We do not find

any publication that focus on systematization of security practices in Kubernetes in

our 105 Kubernetes-related publications. Systematizing available knowledge regarding

Kubernetes security practices could support practitioners in securing their Kubernetes

installations. In addition, such systematization of knowledge can be beneficial for

practitioners who (i) want to understand what activities need to be executed to secure

Kubernetes components and (ii) can use the derived list of practices as a benchmark

to compare their state of security practices.

• Pod-related configuration parameters for security attack: In our set of 105 Ku-

bernetes related publications, we observe researchers use anomaly detection approach

and security analysis approach to address security related challenges in Kubernetes [88].

However, such security analysis tools do not provide adequate context to the practi-

tioners how the configuration parameters can cause a security attack in Kubernetes.

To address that challenge, we conducted systematic investigation to determine which

configuration parameters facilitate security attacks for Kubernetes pods. Such investi-

gation could yield an approach that address the above-mentioned challenges in order

to derive relevant configuration parameters. While empirical research related to Ku-

bernetes have addressed topics related to quality assurance [12], [88], there is a lack

of investigation on what configuration parameters facilitate security attacks. Such an

investigation can be helpful for (i) toolsmiths to enhance detection of pod-related se-

curity weaknesses in Kubernetes manifests; and (ii) researchers to understand what

configuration parameters facilitate security attacks.

22

• Authentic learning based exercise for Kubernetes security: Although, lack

of security expert is reported by the practitioners [111] , [62], [71], we observe no

academic publication address that challenge and propose an educational approach on

how we can train the practitioners to learn Kubernetes security. By utilizing authentic

learning, we aim to provide students with practical, hands-on experiences in addressing

real-world challenges in Kubernetes security. This approach aligns with our objective

of equipping students with the necessary skills and knowledge to meet the demands of

the industry in the field of Kubernetes security.

23

Chapter 3

Systemization of Kubernetes Security-related knowledge

In this chapter, we describe our research study to systematize Kubernetes-related secu-

rity knowledge by synthesizing Kubernetes security best practices.

3.1 Kubernetes-related Security Best Practices

Systematization of knowledge in Kubernetes can be conducted by analyzing Internet ar-

tifacts, such as blog posts and video presentations. Practitioners often report what practices

they use in Internet artifacts [32, 34] rather than in academic forums such as conferences.

In this study, we synthesize Kubernetes security practices by conducting a grey literature

review [39]. A grey literature review is the process of reviewing and synthesizing content

included in Internet artifacts, such as blog posts and video presentations [39]. A grey liter-

ature review differs from a systematic mapping study or systematic literature review, as in

these types of literature reviews, researchers use peer-reviewed scientific articles indexed in

scholarly databases. In prior work, researchers have reported that practitioners use Internet

artifacts, such as blog posts to report their experiences, recommendations, and the practices

they follow. Previously, researchers have systematically studied Internet artifacts to iden-

tify challenges in microservices development, identify practices used in continuous deploy-

ment [90], identify security practices used in organization who have adopted DevOps [110],

and software testing [30].

To systematically synthesize practitioner-reported security best practices for Kuber-

netes, we answer the following research question:

• RQ 3.1 What Kubernetes security practices are reported by practitioners?

24

3.2 Methodology

A brief overview of the methodology of this study is demonstrated in Figure 3.1. We

synthesize Kubernetes security practices by conducting a grey literature review [39]. A grey

literature review is the process of reviewing and synthesizing content included in Internet

artifacts, such as blog posts and video presentations [39]. A grey literature review is different

from a systematic mapping study or systematic literature review, as in these types of liter-

ature reviews, researchers use peer-reviewed scientific articles indexed in scholar databases.

In prior work, researchers have reported that practitioners use Internet artifacts, such as

blog posts to report their experiences, recommendations, and the practices they follow.

Previously, researchers have systematically studied Internet artifacts to identify challenges

in microservices development, identify practices used in continuous deployment [90], iden-

tify security practices used in organization who have adopted DevOps [110], and software

testing [30]. Our hypothesis is that by systematically analyzing Internet artifacts we can

synthesize Kubernetes security practices reported by practitioners.

Figure 3.1: A brief overview of the methodology to derive security best practices related to
Kubernetes from Internet artifacts.

25

We use the Google search engine to collect our Internet artifacts. We use three search

strings: ‘kubernetes security practices’, ‘kubernetes security good practices’, and ‘kubernetes

security best practices’. After performing the search, we collect the first 100 search results, as

Google displays the results in a sorted order based on relevance. We apply inclusion criteria

on the collected search results to identify Internet artifacts that discuss security practices

for Kubernetes. The inclusion criteria are listed below:

• The Internet artifact is not a duplicate;

• The Internet artifact is available for reading; and

• The Internet artifact discusses security practices for Kubernetes;

We use open coding [98], a qualitative analysis technique, to determine the security

practices for Kubernetes. In open coding, a rater observes and synthesizes patterns within

unstructured text [98]. Figure 3.2 shows an example of open-coding to derive a category

of security best practices in Kubernetes. The first rater is a PhD student with 1 year of

experience in Kubernetes. The identified practices are also susceptible to biases of the rater

who identified the practices by applying open coding. We mitigate this bias by allocating

another rater, who apply closed coding [21] on a randomly selected set of 50 Internet artifacts.

Closed coding is the technique of mapping an entry to a predefined category [21]. For each of

the 50 Internet artifacts, the second rater examined whether the artifact of interest includes

a discussion related to the security practices identified by the first rater. The second author

has 3 years of experience in software security. We calculate the agreement rate between the

first and second author for the 50 Internet artifacts using Cohen’s Kappa [19]. The Cohen’s

Kappa between the two raters is 0.8, which is substantial [64]. After the closed coding

exercise, the first rater and second rater discuss each of their disagreements and resolve

conflicts.

26

Figure 3.2: An example of open-coding to derive a category of security best practices in
Kubernetes

3.3 Results

After applying open coding and closed coding exercise on 104 Internet artifacts we de-

rive 11 best practices for Kubernetes security. Of the 104 Internet artifacts 90.38%, 4.81%,

and 4.81% are respectively blog posts, videos and presentations. Among the 11 Kubernetes

security best practices mostly discuss about ensuring Authentication and Authorization and

Kubernetes-specific policies. In figure 3.3, we have listed 11 security best practices and their

occurrences in the curated 104 Internet artifacts. We describe the 11 identified Kubernetes

security best practices as follows where the number between parentheses indicates their oc-

curences in the Internet artifacts:

1. Authentication and Authorization (82): The practice of applying authentication

and authorization rules to prevent malicious users from getting access and performing unau-

thorized activities inside the Kubernetes cluster. Authentication in Kubernetes refers to the

authentication of API requests through authentication plugins[59]. Authorization in Kuber-

netes refers to the evaluation of each authenticated API request against all policies to allow

or deny the request[59].

27

82

81

63

47

36

34

28

18

18

14

9

Count

Authentication and Authorization

Implementing Kubernetes-specific
Security Policies

Vulnerability Scanning

Logging

Namespace separation

Encrypt and restrict access to
etcd

Continous update

Limit CPU and memory quota

Enable SSL/TLS support

Separate sensitive workload

Secure metadata access

0 10 20 30 40 50 60 70 80 90 100

Figure 3.3: The occurrences of security best practices in Kubernetes in the Internet Artifacts

2. Implementing Kubernetes-specific Security Policies (81): The practice of applying

policies to secure Kubernetes components, pods, and networks of Kubernetes clusters to

prevent security breaches.

• Network-specific policies : The practice of applying a network policy to protect com-

munication between Kubernetes pods from undesirable network communications. By

default, all Kubernetes pods can communicate with other pods. Practitioners recom-

mend policies to restrict traffic between pods, restrict API server access and reducing

network exposure to secure the network.

• Pod-specific policies : The practice of implementing a policy for pods to apply security

context to pods and containers. Pod policies determine how the workloads should run

in the Kubernetes cluster. Without defining a secure context for the pod, a container

may run with root privilege and write permission into the root file system, which can

make the Kubernetes cluster vulnerable. Practitioners recommend containers inside a

pod must run as a non-root user with read-only permission and enabling Linux security

modules.

28

• Generic policies : The practice of applying a generic security policy to protect Kuber-

netes cluster components from external malicious users. TCP ports for kubelet, API

server, etcd, and network plugins should not be left open and should require authen-

tication to have visibility. Every user in the system should have the least privilege by

default.

3. Vulnerability scanning (63): The practice of scanning Kubernetes components and

continuous delivery (CD) components for vulnerabilities.

• Kubernetes components, such as containers can contain vulnerabilities and malicious

malware. If vulnerabilities are present in a Kubernetes cluster, then the entire con-

tainer orchestration system, and the provisioned applications, become susceptible to

attacks. For example, in 2017, researchers found Docker images embedded with mali-

cious malware. Practitioners recommended scanning containers for vulnerabilities with

tools,such as ‘Dockscan’ 1 and ‘CoreOS Clair’ 2.

• If images and deployment configurations within CD components are not inspected,

then it can make the Kubernetes cluster vulnerable to malicious users. The malicious

users can gain access at a later point when these images are deployed and may exploit

the latent vulnerabilities in Kubernetes production environments. Practitioners recom-

mend pulling images from a trusted private registry and checking for the vulnerability

of code and images.

4. Logging (47): The practice of enabling and monitoring logs for the Kubernetes

cluster. Practitioners recommend that logging should be enabled for (i) applications, (ii) the

containers within each pod, and for (iii) Kubernetes clusters for system health checking.

5. Namespace separation (36): The practice of separating namespaces so that the

resource of one namespace are not shared with another. A ‘namespace’ in Kubernetes is a

1https://github.com/kost/dockscan
2https://github.com/quay/clair

29

logically isolated virtual cluster within the same physical cluster.[59] Creation of separate

namespaces enables resources to be isolated between namespaces. If a separate namespace

is not created for a resource then the resource gets ‘default’ namespace.

6. Encrypt and restrict access to etcd (34): The practice of encrypting and

restricting access to ‘etcd’, the internal database used by Kubernetes[59]. By default, Ku-

bernetes stores secret data as plaintext in ‘etcd’3. Practitioners recommend using secret

management tools for additional security[59], such as ‘Vault’4 for encryption.

7. Continuous update (28): The practice of applying security patches to keep the

Kubernetes cluster updated with latest security fixes. Practitioners recommend that Ku-

bernetes users apply updates as well as conducting continuous updates for the deployed

applications within the Kubernetes pods.

8. Limit CPU and memory quota (18): The practice of limiting CPU and memory

to a pod or a namespace so that malicious attacks can be mitigated. By default, all resources

in Kubernetes start with unbounded memory requests/limits and unbounded CPU access.

9. Enable SSL/TLS support (18): The practice of enabling secure sockets layer

(SSL) or transport layer security (TLS) protocol to ensure secure and encrypted communi-

cation between Kubernetes components. Enabling TLS between kubernetes api server, etcd,

kubelet and kubectl ensures secure communication between cluster components. Practition-

ers suggest enabling TLS and SSL certificates for Kubernetes components.

10. Separate sensitive workload (14): The practice of running sensitive applications

on a dedicated set of machines to limit the potential impact of a security breach.

11. Secure metadata access (9): The practice of securing the sensitive metadata of

the Kubernetes cluster. Practitioners state that the Kubernetes metadata APIs provide a

gateway to expose ‘kubelet’ admin credentials.

3https://ubuntu.com/kubernetes/docs/encryption-at-rest
4https://www.vaultproject.io

30

Chapter 4

Motivating Example

We motivate our empirical study further by using Figure 4.1, where we present an ex-

ample Kubernetes manifest. The manifest is used to specify configurations for a pod called

‘sample’ with ‘nginx’ container images, using the namespace ‘sample-app-space’. We also

observe the manifest to include specifications for role-based access control (RBAC) using

kind: RoleBinding, kind: ServiceAccount, and kind: Role objects. In the case of

configurations, such as name and namespace, a practitioner can assign any strings so that the

pod ‘sample’ is deployed with adequate RBAC configurations, However, prior to execution,

in the case of nine configurations, as indicated with the green circles, the practitioner must

determine if one or a combination of these configuration values can yield security attacks.

Of these nine configurations, (i) 5 are Boolean, (ii) 2 are of type Integer, each yielding 232

possible values, (iii) one configuration with 3 values, and (iv) 1 configuration with 7 possi-

ble strings. To determine if these nine configurations cause attacks, a Kubernetes user can

manually explore all possible combinations for the 9 configurations by accounting for the se-

mantics of pods, RBAC policies, and their interactions. However, such manual exploration

is practically impossible as the user has to provision the pod for 1.2× 1022 possible configu-

ration combinations. Hence, an automated approach is required that can aid in automated

determination of what pod-related configurations can cause security attacks. As the focus

is on identifying configurations that can cause pod-related attacks, the automated approach

should also account for pod states, i.e., the states that a pod traverse upon execution. In

the context of Figure 4.1, prior to executing the pod with the provided configurations, a pod

will undergo the through following states: ‘request initiated’, ‘request authenticated’, and

31

‘request authorized’ [59]. Therefore, the automated approach must account for these states

unique to pods to determine attack-akin configurations.

To that end, we use model checking to determine attack-akin configurations. Model

checking leverages finite state machines, which will allow us to account for the pod-related

states [17]. Our hypothesis is that use of model checking will be useful to determine: (i) if the

9 configuration combinations can lead to a security attack, and (ii) what configuration values

can be used to demonstrate the attacks. We describe our model checking-based approach

and findings in Section 5.

32

kind: Pod
metadata:
name: sample
namespace: sample-app-space

spec:
securityContext:

runAsGroup: 3000
fsGroup: 2000
readOnlyRootFilesystem: false
runAsNonRoot: false

containers:
- image: nginx

name: kubectl
hostIPC: false
hostNetwork: true
hostPID: false

...
kind: Role
metadata:
name: sample-app-role
namespace: sample-app-space

rules:
- apiGroups:

- batch
- extensions
- policy

verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]
...
kind: ServiceAccount
metadata:
name: app-service-account
namespace: sample-app-space

...
kind: RoleBinding
metadata:
name: app-rolebinding
namespace: sample-app-space

roleRef:
kind: Role
name: app-role

subjects:
- namespace: sample-app-space
kind: ServiceAccount
name: app-service-account

1

2
3

4

5

6

7

8

9

1
Figure 4.1: Example code snippet to demonstrate attack-akin configurations.

33

Chapter 5

Configuration Parameters that Facilitate Security Attacks for Kubernetes Pods

Despite the reported benefits, security is identified as one of the prime concerns for

practitioners who utilize containers for the construction and deployment of applications in

Kubernetes. According to the State of Kubernetes and Container Security Report 2020, pub-

lished by Stackrox, it is suggested that containerized application deployment was delayed by

44% of organizations due to security concerns. Furthermore, it is stated in the report that

security incidents were experienced by 94% of organizations in the last 12 months, with 69%

of these incidents being attributed to misconfiguration-related security issues.[92].

To identify security misconfigurations in source code, researchers use static analysis

tools to detect code smells, such as in Infrastructure as Code (IaC) scripts [85], [86] and

misconfiguration in Kubernetes manifests [88]. However, the precision required for evalu-

ating source code soundness and completeness cannot be achieved by static analysis tools

alone [48]. The generation of potential attack scenarios or the demonstration of a realizable

attack path when identifying a security misconfiguration in a source code file is not within the

capabilities of security analysis tools [14], [58], [3], [23] as they report one misconfiguration at

a time without any additional context for the practitioners. Researchers use model checking

to identify configurations that can cause attacks in cellular network protocols [45], [48]. In

this research, we combine model checking with static analysis tool to identify the pod-related

configuration parameters that can cause security attacks. While empirical research related

to Kubernetes have addressed topics related to quality assurance [13], [88] there is a lack of

investigation on what configuration parameters facilitate security attacks. We provide the

34

overview of our methodology in Figure 5.1.

In this research, we answer the following questions:

• RQ 5.1What configuration parameters facilitate security attacks for Kubernetes pods?

• RQ 5.2 How frequently do identified configuration parameters appear in Kubernetes

manifests?

• RQ 5.3 What states in the pod lifecycle map with security attacks for Kubernetes

pods?

5.1 Methodology for RQ 5.1

5.1.1 Threat Model

In our threat model, we assume that Kubernetes manifests are developed by system

administrators without malicious intent, but still can include security misconfigurations.

Our assumption is consistent with prior research that shows the existence of known security

misconfigurations [88]. In our threat model, a malicious user, i.e., an attacker attempts

to launch attacks against Kubernetes-based containers by leveraging one or multiple com-

binations of these misconfigurations. The goal of the attacker is to (a) gain unauthorized

access and/or (b) disrupt availability for any Kubernetes-based container infrastructure. If

successful, the attacker may also perform other pernicious attacks including crypto-mining

attacks and stealing intellectual property. Disruption in availability can cause large-scale

outages for end-users.

Pod Security Requirement Derivation from Internet Artifacts

The phase of a pod during its life cycle is influenced by cluster configurations and

environment variables, as described in Section 2.1.3. To replicate the behavior of a pod

35

Figure 5.1: An overview of methodology to identify pod-related configuration parameters
that can facilitate security attacks

throughout its life cycle, we develop a finite state machine using NuXMV. In our model in

NuXMV, we incorporate the Kubernetes cluster configurations and environment variables

as pod properties, which define the pod’s behavior. We use open coding to identify codes for

pod properties related to pod security requirements from the Internet artifacts. Open coding

is a qualitative analysis technique that identifies the underlying code from unstructured text

data [99].

Pod Security Guideline Extraction from Internet Artifacts

We conduct a grey literature review [31] on available Internet artifacts that discuss the

pod security requirements. We use the Google search engine to collect the internet artifacts

in incognito mode. We use two search strings: “Kubernetes pod security guidelines” and

“Kubernetes pod security rules”. We start our Internet artifact search with the initial search

36

string “Kubernetes pod security guidelines”. We add the later search string as we observe

the practitioners often refer pod security rules instead of pod security guidelines. Then, we

search with the search string “Kubernetes pod security rules”. We collect the first 100 search

results for each of the search strings. To perform the filtering for the Internet artifacts, we

apply the following exclusion and inclusion criteria according to the guideline of Garousi et

al. [31].

Exclusion Criteria: We adhere following guideline to exclude an Internet artifact.

• The Internet artifact is not written in English.

• The Internet artifact is published before 2014, as the initial version of Kubernetes was

released in 2016. [73].

Inclusion Criteria: We apply the following criteria to include an Internet artifact.

• The Internet Artifact is available for reading.

• The Internet artifact is not a duplicate.

• The content of the Internet artifact explicitly describes the Kubernetes security guide-

line that includes pod related security guidelines.

After combining two search results for our search strings, we remove the duplicates. We

read each of the Internet artifact, and filter 21 Internet artifacts to gather pod properties

related to pod security requirements. Figure 5.2 illustrates our Internet artifact collection

process.

We apply an open coding technique to derive pod properties related pod security re-

quirements from the Internet artifacts. In Figure 5.3, we illustrated our open coding pro-

cess. First, we collect the text from the Internet artifacts that discuss pod-related secu-

rity and form initial code. In Figure 5.3, we create initial code “Admission controller

can scan images and block insecure images” and “ Admission controller can scan images

37

FilteringInternet artifact search

After Applying Filtering CriteriaSearch Results

Internet artifacts

After applying exclusion, inclusion
criteria and removing duplicates

Top 100 search results with 'Kubernetes
pod security guidelines' and 'Kubernetes

pod security rules' each

Figure 5.2: Internet artifact search and filtering process

Text from Internet Artifact Initial Code Code
Pod Properties Related to

Pod Security Requirements

A custom or proprietary web-

hook can be implemented to

scan any image before it is de-

ployed in the cluster.

Admission Controller enhances

the capacity of the image scan-

ner to check images for Com-

mon Vulnerabilities and Expo-

sures.

Admission con-

trollers can scan

images and block

insecure images

Kubernetes Admis-

sion controller can

scan images for

misconfiguration

and vulnerabilities.

Scan images with

admission con-

troller to block in-

secure images

Scan images with

Kubernetes admis-

sion controller for

vulnerabilities

image scan admission controller

Figure 5.3: A description of our open coding process to derive pod properties related pa-
rameters from Internet artifacts.

for misconfiguration and vulnerabilities.” respectively. In the next step, we identify codes

“Scan images with Kubernetes admission controller to block insecure images” and “Scan

images with Kubernetes admission controller for vulnerabilities” from the initial code. Fi-

nally, we construct the pod properties as parameters related to pod security requirement

as a boolean variable, such as image scan admission controller. If the value of the

image scan admission controller is true, then the admission controller for scanning con-

tainer image is present in the Kubernetes cluster. Altogether, we derive 71 pod security

related properties from the Internet artifacts. We represent our derived pod properties with

their appearance frequency in Table 5.1.

We also define the pod security requirements from the 21 Internet artifacts. To construct

the pod security requirement, we translate the pod property to corresponding NuXMV LTL

38

formulas for pod security requirements. We identify 9 requirements: ‘any container run-

ning in a pod must specify resource limits’, ‘containers with unnecessary privilege cannot be

executed inside a pod’, ‘images with incorrect configurations can not be pulled from an unau-

thorized registry’, ‘unnecessary permission to host file system need to be revoked’, ‘restrict

malicious users in obtaining secrets from the container inside a pod’, ‘admission controller

must be enabled for pods’, ‘network policies must be enabled for pods’, ‘TLS encryption must

be enabled for pod-related communication’, and ‘restrict permission to read/watch secret’.

Table 5.2 describes our pod security requirements and corresponding NuXMV LTL formu-

las. We use the parameters related to pod security requirements gathered from the Internet

artifacts to construct the NuXMV LTL formulas for the pod security requirements. For

instance, in the first row of the Table 5.2 we describe pod security requirement, “containers

with unnecessary privilege cannot be executed inside a pod”. We construct corresponding

LTL formula in NuXMV such as if the container has CAP SYS ADMIN privilege then there will

not be a over privileged container while the pod state = pod running.

We translate the pod security requirements to the NuXMV LTL property as follows:

LTLSPEC G (!TC 18 & !TC 19 & new pod creation request) -> G ((CAP SYS ADMIN)

-> G X(!over privileged container & pod state=pod running))

In the propositional LTL formula, we use TC 18 and TC 19& new pod creation request

as constants. Here TC 18 and TC 19 are transition conditions and both are set to False and

state variable new pod creation request is set to True.

5.1.2 Translation of Pod Life Cycle to Finite State Transitions

A pod is considered as the unit entity in the Kubernetes-based container orchestration.

In Kubernetes, each pod has a definite life cycle as described in Section 2.1 in Figure 2.1.3.

When the Kubernetes API server accepts pod creation requests, it creates a pod object, and

the pod goes to the Pending phase. The scheduler in the Kubernetes API server schedules

the pod object to a node. In the first step, the scheduler finds a set of candidate nodes and

39

assigns ranks to the candidate nodes to find the most suitable node for the pod object. In

the second step, the scheduler binds the feasible node for a pod object. A pod remains in the

Pending phase until the kubelet in the assigned node receives the pod object specification

and provides the container runtime engine with the image to start a container. The pod has

its IP address in the Running phase and can communicate with all other pods on the node or

any other node in the Kubernetes cluster. The pod can be accessed outside the Kubernetes

cluster as a service with a service IP address managed by kube-proxy. Each pod is assigned

storage while in the Running phase, and the Kubernetes volume abstracts the storage of a

pod. Kubernetes destroys the ephemeral volume of a pod when a pod terminates. However,

a pod can have a persistent volume that exists beyond the life cycle of a pod. If at least

one container terminates with a non-zero exit code, the pod goes to Failed phase. If the

container runs again after the restart, the pod goes to the Running phase. If the kubelet

fails to communicate with the Kubernetes API server from the node, then the pod goes to

Unknown phase. The pod controller replaces the pod in the node in case of pod failure or

another node in case of node failure. If all the container terminates with zero exit code the

pod terminates in Succeeded phase.

When a practitioner sends a request to the Kubernetes API server to create a pod, we

observe a temporal ordering of events for a pod when there is a transition of the pod phase.

Each event depends upon pod configurations, conditions and Kubernetes cluster states. In

the sequence diagram in Figure 5.4, we illustrate only the sequence of events at the pod

creation time. In section 2.1, we discuss the events while a pod reaches its Running phase

from the Pending phase. We list the temporal events for the scenario as follows:

Event 1: The practitioner initiates a pod creation request to the API server.

Event 2: The API server authenticates the request. This event can lead to two events:

successful or failed authentication.

Event 3: Upon successful authentication, the API server can authorize or fail to au-

thorize the request.

40

Event 4: The API server writes the information to the etcd database and returns a

response to the practitioner.

Event 5: Upon successful authentication, and authorization, the Kubernetes API server

creates a pod object and sends the pod specification to Scheduler, which watches for a new

pod.

Event 6: Upon successful node allocation to the pod, the Kubernetes API server binds

the pod to a node and stores the desired pod state in the etcd database.

Event 7: The kubelet agent in the worker node watches for the pod bound to it.

Event 8: The API server sends the pod specification to the kubelet worker node.

Event 9: Upon receiving the pod specification, the kubelet attempts to pull the con-

tainer image from the registry. If the kubelet in the worker node can pull the image from

the registry, it sends the image to a container runtime such as Docker engine. Upon failure

to pull the image from the registry, kubelet reports an error to the Kubernetes API server.

Event 10: If the container runtime, such as the Docker engine, can create a container

from the image or encounter any issue, the kubelet updates the API server regarding the

pod update.

41

Figure 5.4: The sequence diagram of pod events after a practitioner requests for pod deploy-
ment

42

Table 5.1: Identified Pod Properties from the Internet Artifacts
Pod Properties Count
Privilege escalation (privilege escalation) 10
System admin capability (CAP SYS ADMIN) 10
Run as user (run as user) 10
Privileged security context (security context privileged) 9
Drop container capabilities container DropCapabilities 9
Allow container capabilities (container AllowedCapabilities) 9
Default container capabilities (container DefaultCapabilities) 9
Host IPC enabled (hostIPC enabled) 8
Linux security module SELinux enabled (lsm SELinux enabled) 8
Linux security module Seccomp enabled (lsm SECCOMP enabled) 8
Read only root file system (read only root file system) 8
Running as non root (running as NON ROOT) 8
Pod Restricted Admission (pod admission RESTRICTED) 8
Host PID enabled (hostPID enabled) 7
Host Network enabled (hostNetwork enabled) 7
Default network policy deny everything (default network policy all ns deny everything) 7
FS group (fsGroup) 7
Supplemental group (supplementalGroup) 7
Run as group(run as group) 7
Host path enabledhost path enabled 6
Admission controller image scan (admission controller image scan) 6
Default namespace (default namespace) 6
Pod admission baseline (pod admission BASELINE) 6
Pod admission privileged (pod admission PRIVILEGED) 6
Enforce pod admission controller (pod admission ENFORCE) 6
Namespace resource quota enabled (namespace resource quota enabled) 6
Pod CPU and memory request limit enabled (pod cpu memory request limit enabled) 6
Pod CPU memory limit enabled (pod cpu memory limit enabled) 6
Namespace resource quota enabled (namespace resource quota enabled) 6
Host process enabled (hostprocess enabled) 5
Host port enabled (host port enabled) 5
Linux security module apparmor enabled (lsm APPArmor enabled) 5
Use of base container images (use of base container images) 5
Avoid tags and latest image tags (avoid tags and latest tags) 5
Use sha256 digest for image (use sha256 digest for image) 5
Admission image policy webhook (admission image policy webhook) 5
Avoid default service account (avoid default service account) 5
Default proc mount (default proc mount) 4
Avoid environment variables in images (avoid env variables images images) 4
Use secret in images (use secret in images) 4
Service account automount token (service account automount token) 4
Container network interface supports network policy (cni supports network policy) 4
Pod security exemption for user (pod security exemption user) 4
Pod security exemption for workload pod (pod security exemption workload pod) 4
Pod security exemption for namespace (pod security exemption namespace) 4
Minimal distroless image (minimal distroless image) 3
Unprivileged user for image build (unprivileged user for build image) 3
Capability NET RAW (CAP NET RAW) 2
Docker socket enabled (docker socket enabled) 2
Volume usage permission (volume usage permission) 2
Sysctl namespaced (sysctl namespaced) 2
Image pull policy (image pull policy) 2
Use external secret storage (use external secret storage) 2
Network policy between pods (network policy between pods) 2
File system (FS) group change policy (fsGroupChangePolicy) 2
Admission namespace lifecycle (admission namespace lifecycle) 1
Get secret (GET secret) 1
List secret (LIST secret) 1
Watch secret (WATCH secret) 1
All verb secret (ALL verb secret) 1
All verb role (ALL verb role) 1
All verb resources (ALL verb resources) 1
Cluster admin (ClusterRole cluster admin) 1
Security context enabled (security context enabled) 1
Admission always pull images (admission always pull images) 1
Liveness probe enabled (livenessprobe enabled) 1
Readiness probe enabled (readinessprobe enabled) 1
Limit node PID (limit node PID) 1
Limit pod PID (limit pod PID) 1
Pod eviction policy (pod eviction policy) 1

43

Table 5.2: Pod Security Requirements and Corresponding LTL formula
Pod Security Requirements Corresponding LTL Formula in NuXMV
Containers with unnecessary privi-
lege cannot be executed inside a pod

LTLSPEC G (!TC 18 & !TC 19 & new pod creation request) -> G ((CAP SYS ADMIN)

-> G X(!over privileged container & pod state=pod running))

Admission controller must be en-
abled for pods

LTLSPEC G (!TC 18 & !TC 11 2 & !TC 19) -> G(!admission image signature verification)

-> G X (!admission control bypass & pod state = host system access)

TLS encryption must be enabled for
pod-related communication

LTLSPEC G (TC 18 = FALSE & !TC 15 & !TC 25 & !TC 26 & !TC 19)

-> G((!mTLS encryption) -> G X(!network misconfiguration &

pod state=host network access))

Network policies must be enabled for
pods

LTLSPEC G (TC 18 = FALSE & !TC 15 & !TC 25 & !TC 26 & !TC 19)

-> G((!default network policy all ns deny everything) -> G

X(!network request other workload & pod state=service exposed))

Restrict malicious users in obtaining
secrets from the container inside a
pod

LTLSPEC G(!TC 11 2 & !TC 19) -> G (!container secret exfiltration)

Restrict permission to read/watch se-
cret

LTLSPEC G (!TC 26 & !TC 15 & !TC 19 & !TC 25) -> G(WATCH secret) -> (G X

(!host secret exfiltration))

Unnecessary permission to host file
system need to be revoked

LTLSPEC G (!TC 18 & !TC 19 & !security context run as user) -> G ((fsGroup) ->

G X(!host file system access))

Images with incorrect configurations
can not be pulled from an unautho-
rized registry

LTLSPEC G (!TC 15 & !TC 11 2) -> G(!use sha256 digest for image) -> G

(!misconfigured image)

Any container running in a pod must
specify resource limits

LTLSPEC G (!TC 18 & node resource quota enabled) -> G

(!pod eviction from node)

44

To answer RQ 5.1, we need to represent above-mentioned pod phases in a manner so

that the each pod events belong to pod phase. We use a FSM to represent the lifecycle

of a pod. We select a FSM-based representation because (i) pod-related configurations are

stateful, i.e., certain configurations are exhibited in certain phases; and (ii) the life- cycle of

a pod can be represented as an FSM as it has starting and ending states, where transitions

between states occur due to certain conditions.

5.1.3 Encoding Logic Formula for Finite State Transitions and Requirements

Mitigation of Challenges

We address two primary challenges while encoding a finite state model and constructing

logic formula for the pod life cycle. We organize our challenges as below:

Challenge #1: Search-space explosion: Kubernetes pod-related events depend

upon the configurations of the pod and the Kubernetes cluster. Each pod event in Kubernetes

occurs due to a specific combination of configurations. In the Kubernetes cluster, the number

of combinations of configurations of the pod and the Kubernetes cluster makes the search

space computationally expensive. We construct 125 state variables to abstract pod and

Kubernetes cluster configurations. Each state variable is a configuration in Kubernetes

cluster that helps in describing the pod behaviour a pod state. Among 125 state variables,

71 of the state variables are the pod properties related to pod security requirements as

described in Table 5.1. The remaining 54 state variables helps describe pod behaviour in

Kubernetes cluster. In total, our FSM for a pod has 33 states, 125 state variables, and 43

transition conditions. The search space of our FSM for a pod has 2125 search space. Hence,

verifying the pod security requirements as a propositional formula built from a set of 125

state variables relates to boolean satisfiability problem (SAT) [20]. The SAT problem is an

NP-complete problem. NP-complete problems can not be solved in polynomial times but

can be verified in polynomial time. To verify SAT problem, the SAT solver is used as a

verification tool. The SAT solver uses approximation algorithms to verify a boolean formula

45

in polynomial time. We use NuXMV model checker that uses SAT solver to reduce the

search space of our FSM for a pod to verify pod security requirements in polynomial time.

Challenge #2 Intertwined component interactions: Identifying the pod events

due to the complex interaction between the Kubernetes components and pods is one of our

primary challenges in building a finite state model (FSM) for a pod. Each pod phase in the

pod life cycle depends on the container state, Kubernetes components, configurations and

pod conditions. We mitigate this challenge by identifying the transition conditions between

the FSM states for a pod as a form of propositional logic.

Construction of Finite State Machine

We model the events of the pod life cycle as a deterministic finite state machine. Our

state machine is 3-tuple (S, Σ, Γ) where S is the finite nonempty set of states, Σ is a finite

nonempty set of transitions and Γ is a finite nonempty set of transition conditions. We

define si ϵ S is the initial state of the pod,and so ϵ S is the final state of the pod. transition

action α ϵ Σ is a finite set of transitions and transition conditions γ ϵ Γ is a set of transition

condition.

Our FSM-based approach alleviates the challenge of accounting for the stateful nature of

configuration parameters through the usage of state variables, and transition conditions for

the derived FSM. We use Figure to further illustrate our FSM construction process. For the

sake of simplicity, we provide a subset of the state transitions that are possible for the ‘Pend-

ing’ phase. In this particular FSM has five states, where initial state is request initiated.

Σ represents as a set of the four transitioning conditions in forms of variable assignments,

namely, authorized bootstrapping, valid API request, valid admission controller,

and unsuccessful authorization. The input variables are the configuration parame-

ters along with other variables that are applicable for state. For example, in the case of

request initiated, example configuration parameters that we use as input variables are

default namespace, hostIPC and hostPID.

46

Figure 5.5: A finite state machine representing the a subset of the states related to the
‘Pending’ phase of Pod

We construct the FSM model for a pod and transition condition from one state to

another state with the combination of state variables defined as propositional logic for-

mula. Model checking is a method to check if a system’s finite state model (FSM) ful-

fils a particular set of specifications [10]. Model checking method explores all possible

states of a system and all possible values for the state variables [10]. We define a pod

state as the status of a pod in the Kubernetes cluster. In addition, we define state vari-

ables as configurations that can describe a pod state. A transition condition is an ex-

pression where a combination of state variables allows the transition from a state to a

subsequent state. A valid transition triggers a pod-related event to transition into a sub-

sequent pod state. For instance, when the Kubernetes API server starts the pod creation

request, the pod enters into request pod creation initiated state. If the pod stays in the

request pod creation initiated state and the state variable request accepted k8s api server,

then the transition condition for the subsequent state desired pod state stored in etcd

will be true. In this case, a valid transition and pod event will occur, as Figure 5.6 de-

scribes. If a state in the FSM is found under the property or specification that violates

the property then the model generates a counter-example. A counter-example describes the

execution step from the initial step to where the system violates the specific property. We

47

use 71 pod properties related to pod security requirements in our pod state model as de-

scribed in Table 5.1. Apart from these 71 properties related to pod security requirements,

we use 54 additional state variables as a parameter to define the transitions and transition

conditions of our FSM for a pod. We grouped the 71 pod properties related to pod security

requirements into 16 groups.

Each parameters related to pod security requirement can belong to multiple groups.

The intuition behind grouping the parameters related to pod security requirements is to

cluster them into a similar group so that we can construct propositional logic formula to

verify the pod security requirements in the NuXMV [16]. For instance, hostPID enabled,

hostIPC enabled, CAP SYS ADMIN, host path enabled, host port enabled, hostprocess enabled,

and hostNetwork enabled belongs to one single group host namespace access, because

any of the two parameters can be used to access host namespace. We define the relationships

as hostPID enabled | hostIPC enabled |hostprocess enabled| hostNetwork enabled

| CAP SYS ADMIN | host path enabled | host port enabled If a container can access

the shared namespace, it can potentially extract underlying host information such as host

process id, host network, and even host file system. Similarly, all of the variables also belongs

to over privileged container. The privilege to access host namespace gives the container

unnecessary privilege to compromise the underlying host.

Model checking is a method to check if a system’s finite state model (FSM) fulfils a

particular set of specifications [10]. Model checking method explores all possible states of

a system and all possible values for the state variables [10]. In the NuXMV, we verify the

pod security requirements in our FSM for a pod as a safety property [10]. A safety property

dictates that under certain condition bad events will never happen [10]. For model checking,

we use counter example guided abstraction refinement (CEGAR) principle [10]. According

to the CEGAR principle, we initially use the pod security requirements and our FSM for

verification in the NuXMV [16]. If the NuXMV generates erroneous counter-example then

48

request_pod_
creation_initiated

desired_pod_state_
stored_in_etcd

pod_state = request_pod_creation_initiated &
(request_accepted_k8s_api_server)

Figure 5.6: A pod state transition of event

we revise our pod security requirements to prevent the erroneous counter-examples. We con-

tinue this process for violation of each safety property until we find understandable counter-

example. Depending on counter-example output, we set the values of some state variables,

transition conditions as constant to prevent erroneous counterexamples. The value of the

state variables and transition conditions we set as constant in LTL formula do not change

during the execution for verification in NuXMV. For instance, in the following NuXMV LTL

formula as described in Table 5.2, we use TC 18 and TC 19 & new pod creation request

as constants. Here TC 18 and TC 19 are transition conditions and both are set to False.

LTLSPEC G (!TC 18 & !TC 19 & new pod creation request) -> G ((CAP SYS ADMIN)

-> G X(!over privileged container & pod state=pod running))

5.1.4 Mapping of Pod Events to Finite State Machines

Kubernetes provides support for practitioners to manage containerized applications at

scale [59] [15]. Practitioners can install Kubernetes on-premise, on cloud platforms, or a

combination of both. A Kubernetes installation is also colloquially referred to as a Kuber-

netes cluster [59]. A pod is the most fundamental unit of a Kubernetes cluster [59]. A

pod groups one or more containers with shared network and storage resources according

to the specifications practitioners provide in their Kubernetes manifest. Kubernetes allows

namesapces, which provide a mechanism to isolate groups of resources within a Kubernetes

cluster.

Using Figure 4.1, we also provide background information on pod lifecycle and states,

as our model checking-based approach to answer RQ1 accounts for pod-related states. The

49

lifecycle of a pod consists of five phases. Each phase consists of one or multiple states, which

we encode as described in Section 2.1.3. Transition from one state to another is dependent

Boolean conditions, which we refer to as transition conditions.

The first phase of a pod in Kubernetes is ‘Pending’ with the ‘request initiated’ and ‘re-

quest pod creation initiated’ states. The ‘kubectl’ command line interface is used to create a

pod. Next, with two states namely, ‘request authenticated’ and ‘request authorized’, the Ku-

bernetes API server authenticates and authorizes the request upon receiving the request. If

the requests are validated by the admission controller with the ‘request admission controller validated’

state, then a pod is created and all the configurations for the pod will be stored in etcd with

the ‘desired pod state stored in etcd’, ‘kubelet receives podspec’, and ‘etcd updated’ states.

‘etcd’ is a database that uses a key-value mechanism to store all pod-related data [59]. In

the context of Figure 4.1, at this phase all configurations for ‘sample’ will be stored in etcd.

Using the ‘pod schedule bind phase’ state, the Kubernetes scheduler schedules the pod, and

the container runtime engine pulls the container image for running the container using the

‘image pulled from registry’ state. For example, for Figure 4.1, the container runtime engine

will pull the ‘nginx’ image. A container runtime engine is the software that run containers in

a host machine [59]. Kubernetes scheduler is a component of the control plane node respon-

sible for selecting and binding a node for a newly created pod [59]. Upon completion, the pod

will reach ‘pod starting’ state. When the Kubernetes scheduler binds the pod to a worker

node, and at least one container has started, the pod reaches the ‘Running’ phase. A pod

in the ‘Running’ phase can communicate with all other pods on the node or any other node

in the Kubernetes cluster. As part of the ‘Running’ phase the following states are executed:

‘image provided to cri’, ‘volume mounted’, ‘host network access’, ‘host system access’, and

‘pod running’.

A container inside a pod can terminate after completing its task or terminate at runtime.

If at least one container terminates in failure at runtime, such as terminated by the system,

50

then the pod reaches the ‘Failed’ phase via the ‘pod failed’ state. Upon termination, a con-

tainer can be restarted based on the container restart policy. A pod reaches the ‘Succeeded’

phase if all its containers terminate after successful execution via the ‘pod succeeded’ state.

If the ‘kubelet’ component of the worker node where the pod is running fails to communicate

with the Kubernetes API server in the control plane node, the pod reaches ‘Unknown’ phase.

For both succeeded and failed phases, the ‘pod terminate’ state is executed.

5.1.5 Counterexample Generation

Model checking is a method to check if a system’s finite state model (FSM) fulfils a

particular set of specifications [10]. Model checking method explores all possible states of a

system and all possible values for the state variables [10]. In the NuXMV, we verify the pod

security requirements in our FSM for a pod as a safety property [10]. A safety property dic-

tates that under certain condition bad events will never happen [10]. For model checking,

we use counter example guided abstraction refinement (CEGAR) principle [10]. Accord-

ing to the CEGAR principle, we initially use the pod security requirements and our FSM

for verification in the NuXMV [16]. If the NuXMV generates erroneous counter-example

then we revise our pod security requirements to prevent the erroneous counter-examples.

We continue this process for violation of each safety property until we find understand-

able counter-example. Depending on counter-example output, we set the values of some

state variables, transition conditions as constant to prevent erroneous counterexamples. The

value of the state variables and transition conditions we set as constant in LTL formula do

not change during the execution for verification in NuXMV. Execution for each of the 9

pod security requirements resulted in generation of counterexamples. Each generated coun-

terexample includes the following items: (i) states of the pod lifecycle that changed prior

to generating the counterexample, (ii) the state and transition conditions that led to the

generation of the counterexample, and (iii) encoded configuration parameters represented as

state variables. Inclusion of a configuration parameter within a counterexample is indicative

51

of facilitating an attack, however, whether or not the configuration parameter facilitates an

attack is subject to further validation.

For instance, in the following NuXMV LTL formula as described in Table 5.2, we use

TC 18 and TC 19 & new pod creation request as constants. Here TC 18 and TC 19 are

transition conditions and both are set to False.

LTLSPEC G (!TC 18 & !TC 19 & new pod creation request) -> G ((CAP SYS ADMIN)

-> G X(!over privileged container & pod state=pod running))

52

Table 5.3: Implementation of Each Transition Condition (T)
Transition
Condi-
tion

Propositional Logic Formula for Transition

T1 (pod state = request initiated ∧ (Valid Kubeconfig ∨ Auth Bootstrap Token))
T2 (pod state = request initiated ∧ (¬(Valid Kubeconfig ∨ Auth Bootstrap Token)))
T3 (pod state = request authenticated ∧ (((API request verb GET ∨ API request verb LIST ∨ API request verb DELETE

∨ API request verb UPDATE ∨ API request verb PATCH ∨ API request verb CREATE) ∧ API resource pod) ∨ Cluster-
Role cluster admin))

T4 (pod state = request authenticated ∧ (¬(API request verb GET ∨ API request verb LIST ∨ API request verb DELETE ∨
API request verb UPDATE ∨ API request verb PATCH ∨ API request verb CREATE) ∧ ¬API resource pod))

T5 0 pod state = request authorized ∧ (((mutating validating admission controller available)))
T5 1 pod state = request admission controller validated ∧ (((mutating validating admission controller available ∧ mutat-

ing validating admission validation)))
T5 2 pod state = request authorized ∧ ((¬mutating validating admission controller available))
T6 pod state = request authorized ∧ ((authentication authorization successful ∧ default admission controller pass ∧ mutat-

ing validating admission controller available) ∧ ¬(mutating validating admission validation))
T7 pod state = request pod creation initiated ∧ (request accepted k8s api server)
T7 2 pod state = desired pod state stored in etcd ∧ (desired state written at etcd by api server ∧ pod object created by resource controller)
T7 3 pod state = pod schedule score phase ∧ (pod creation pending state ∧ pod schedule initiated)
T8 pod state = pod schedule bind phase ∧ (scheduler binds node to pod ∧ podspec poll by kubelet)
T9 pod state = kubelet receives podspec ∧((¬image present ∧ image pull policy=NEVER) ∨ ¬imagepull registry valid credentials)
T10 pod state = kubelet receives podspec ∧ (image present ∧ (image pull policy=NEVER ∨ image pull policy=IFNOTPRESENT))
T11 pod state = kubelet receives podspec ∧ ((image pull policy=ALWAYS ∨ image pull policy =IFNOTPRESENT) ∧ im-

agepull registry valid credentials)
T11 2 pod state = image pulled from registry ∧ ((image pull policy=ALWAYS ∨ image pull policy =IFNOTPRESENT) ∧ im-

agepull registry valid credentials)
T12 pod state = image provided to cri ∧ (persistent volume ∧ persistent volume claim ∧ secret configmap volume mount)
T13 pod state = volume mounted ∧ (container initializing or ready ∧ pod has network)
T14 pod state = pod starting ∧ container poststart webhook
T15 pod state = pod running ∧ (missing dependency for pod ∨ pod runtime error)
T16 pod state = error crash loop backoff ∧ (pod runtime error ∧ ¬(livenessprobe enabled ∨ startupprobe enabled))
T17 pod state = pod failed ∧ (¬sigkill zero exit ∧ ((livenessprobe enabled ∨ readinessprobe enabled)))
T18 pod state = pod running ∧(((pod disruption budget ∧ (pod disruption allowed ∧ pod disruption budget max available min unavailable condition satisfied))

∧ container prestop webhook ∧ pod termination grace period default 30s ∧ ¬pod termination force NO grace period ∧
API request verb DELETE ∧ API resource pod))

T19 pod state = pod running ∧ (((¬pod cpu memory limit enabled ∧ ¬pod cpu memory request limit enabled) ∧
node resource quota enabled) ∨ (¬readinessprobe enabled ∧ pod eviction pod preemtion ∧ node resource quota enabled)
∨ (¬limit node PID ∨ ¬limit pod PID ∨ ¬pod eviction policy) ∨ (namespace resource quota enabled ∧(
¬pod cpu memory request limit enabled ∧ ¬pod cpu memory request limit enabled)))

T20 pod state = pod running ∧ (pod CNI enabled ∧ clusterIP NodePort exposed)
T22 pod state = pod running ∧ (CAP NET RAW ∨ CAP SYS ADMIN ∨ network request other workload ∨security context privileged

∨ ¬security context run as user ∨ lsm SECCOMP enabled ∨ lsm APPArmor enabled ∨ lsm SELinux enabled
∨ hostprocess enabled ∨ hostNetwork enabled ∨ hostPID enabled ∨ hostIPC enabled ∨ host path enabled ∨
¬container DropCapabilites ∨ ¬running as NON ROOT ∨ pod admission BASELINE ∨ ¬pod admission RESTRICTED ∨
pod admission PRIVILEGED ∨ ¬pod admission ENFORCE ∨ pod security exemption user ∨ pod security exemption namespace
∨ pod security exemption workload pod ∨ ¬network policy between pods ∨ docker socket enabled ∨ default namespace ∨ ser-
vice account privileged ∨ service account automount token)

T23 pod state = service exposed ∧ (¬CAP NET RAW ∧ ¬CAP SYS ADMIN ∧ ¬security context privileged ∧
security context run as user ∧ lsm SECCOMP enabled ∧ lsm APPArmor enabled ∧ lsm SELinux enabled ∧
¬hostprocess enabled ∧ ¬hostNetwork enabled ∧ ¬hostPID enabled ∧ ¬hostIPC enabled ∧ ¬host path enabled ∧ con-
tainer DropCapabilites ∧ running as NON ROOT ∧ ¬pod admission BASELINE ∧ pod admission RESTRICTED ∧
¬pod admission PRIVILEGED ∧ pod admission ENFORCE ∧ pod security exemption user ∧ pod security exemption namespace
∧ pod security exemption workload pod ∧ network policy between pods ∧ ¬default namespace ∧ ¬docker socket enabled ∧
¬service account privileged ∧ ¬service account automount token)

T24 pod state = service exposed ∧ (CAP NET RAW ∨ CAP SYS ADMIN ∨ network request other workload ∨ secu-
rity context privileged ∨ security context run as user ∨ lsm SECCOMP enabled ∨ lsm APPArmor enabled ∨ lsm SELinux enabled
∨ hostprocess enabled ∨ hostNetwork enabled ∨ hostPID enabled ∨ hostIPC enabled ∨ host path enabled ∨
¬container DropCapabilites ∨ ¬running as NON ROOT ∨ pod admission BASELINE ∨ ¬pod admission RESTRICTED ∨
pod admission PRIVILEGED ∨ ¬pod admission ENFORCE ∨ pod security exemption user ∨ pod security exemption namespace
∨ pod security exemption workload pod ∨ ¬network policy between pods ∨ docker socket enabled ∨ default namespace ∨ ser-
vice account privileged ∨ service account automount token)

T25 pod state = pod running ∧ new pod creation request ∧ (container breakout ∨ malicious container ∨ pod admission PRIVILEGED
∧ (¬admission namespace lifecycle ∧ admission control bypass))

T26 pod state = host system access ∧ (container secret exfiltration)
T28 pod state = image pulled from registry ∧ unscanned container image
T29 pod state = container registry poisoned ∧ (misconfigured image ∨ unscanned container image)
T30 pod state = pod running ∧ network misconfiguration
T31 pod state = pod terminated ∧ sigkill zero exit
T32 pod state = pod terminated ∧ ¬sigkill zero exit
T33 pod state = pod unrestricted communication ∧ (network misconfiguration ∨ remote service connected from cluster)
T35 pod state = host system access ∧ (RCE vulnerability ∨ misconfigured image)
T36 pod state = host system access ∧ container breakout
T38 pod state = host system access ∧ service account privileged
T40 pod state = host network access ∧ (malicious container ∨ over privileged container ∨ network request other workload)
T41 pod state = host system access ∧ network misconfiguration
T42 pod state = remote service connected ∧ remote service connected from cluster ∧ malicious container
T43 pod state = remote service connected ∧ service account privileged
T44 pod state = kube api server is updated by kubelet ∧ container breakout
T45 pod state = kubelet receives podspec ∧ container state = WAITING ∧ pod schedule completed

53

REQ_INI

REQ_AUTH
T1

REQ_AUTH_Z

T3

REQ_ADM

T5_0

R_POD_I

T5_1

T5_2

POD_IN_ETCD

T7

POD_BIND

T7_2

POD_SCORE

T7_3

KUBE_SPEC

T8

IMG_CRI

KUB_SPE

T10IMG_REG

T11

T11_2

V OL_MNT

T12

POD_STA

T13

POD_RUN

T14

POD_F

T17

POD_T

T18

HOST_S

T22

T25, T42

HOST_N

T30

POD_SU

T31

T32

T38

T41

Figure 5.7: A finite state machine representing the states of a pod.

54

Figure 5.7 summarizes the states that a pod encounters. For example, ‘REQ INI’ repre-

sents the ‘request initiated’ state, which transitions to the next state called ‘request authentication’

(‘REQ AUTH’) if the transition condition T1 is true. Here, T1 corresponds to the condition

of (Valid Kubeconfig ∨ Auth Bootstrap Token)), which means either the pod has a valid

configuration or authentication bootstrap token. A description of the transition conditions

is available in Table 5.3. Certain configurations are only applicable during certain states of

the pod. For example, the configuration hostNetwork is applicable when the state of the

pod is ‘host network access’. The context of states for pod configurations requires encoding

and analyzing these states in forms of a finite state machine.

5.1.6 Attack Validation

Execution Environment

We validate the attacks for misconfigurations using kubeadm installation of Kubernetes

cluster. The kubeadm installation provides multi-node vanilla Kubernetes cluster. We use

vagrant to set up a three node Kubernetes cluster with one control plane and two worker

nodes using virtual box VMs for nodes in our local workstation. The configuration of the

local machine is Mac OS Intel Core i7, 8 core CPU with 16GB of memory. We assign the

control plane 4GB of memory and 2 virtual central processing unit (vCPU) and the worker

nodes have 3GB of memory and 2 virtual central processing unit each. The virtual central

processing unit(vCPU) represents the central processing unit (CPU) of a virtual machine.

We deploy the microservice-demo [36] application to demonstrate our attack which has 11

microservices. We use this application as Google uses this application to demonstrate the use

of Kubernetes [36]. We edit the Kubernetes manifests of cartservice and checkoutservice

of the microservice-demo by providing root privilege, privilege escalation, host namespaces

and container privileges so that we can exploit the misconfigurations to conduct an attack.

We assume that the attacker has an “initial access” into the Kubernetes cluster [41]. In

55

each of our attack validation set up, the attacker has an access to a valid Kubeconfig file

and uses the kubectl CLI interface to communicate with the Kubernetes API server.

Description of Attacks

We verify the pod security requirements using NuXMV model checker with our FSM

model for a pod. We validate attacks against each of the counter examples generated by

NuXMV. We demonstrate 6 attacks for 9 pod security requirements. We describe the attacks

as follows:

Attack #1 Access cluster secrets: In this attack, an attacker exploits the unnec-

essary privilege of a container running inside a pod to access cluster secrets.

Detection and attack description:

We verify the pod security requirement “Any container running inside a pod with un-

necessary privilege will not be in an unsafe state at runtime”. We observe a counterexample

for this pod security requirement and detect an attack where an attacker can generate a new

pod creation request from a running pod.

We validate the capability of an attacker to perform the attack with the following steps:

Step-1: The attacker gets access to a privileged pod that starts with missing admission

controller misconfiguration [42] [79]. The pod has the privileges: hostNetwork: true ,

hostIPC: true, hostPID: true, allowPrivilegeEscalation: true, active hostPath ,

Capability abuse, privileged securityContext, automountServiceAccountToken: true,

readOnlyRootFileSystem: False, runAsNonRoot:False, runAsUser: False. The pod

is associated with the serviceAccount: default. The privileges of the pod allows the at-

tacker to escalate pod isolation boundary in the host [100].

Step-2: The attacker can access the underlying host with pod misconfiguration hostNetwork:

true, hostIPC: true, hostPID: true, privileged securityContext, active hostPath and

automountServiceAccountToken: true to get the service account token of serviceAcco

unt: default [100].

56

Step-3: The attacker has access to the service account token of serviceAccount:

default as privileged ServiceAccount that has privileged role. The attacker uses the

privileged ServiceAccount which has over-privileged permission as a cluster-admin role.

Step-4: The attacker installs kubectl tool from the container for misconfiguration

readOnlyRootFileSystem: False. The attacker can send a request to the Kubernetes

API server with the service account token of privileged ServiceAccount.

Step-5 The attacker leverages the misconfigurations and creates a new malicious priv-

ileged pod with the service account token of privileged ServiceAccount. The malicious

pod can run as cryptominer to disrupt other running pods. The attacker can also read

Kubernetes cluster secrets, modify/delete running pods in the Kubernetes cluster from the

malicious pod.

Implication: An attacker can run malicious applications such as a cryptominer and

consume excessive resource to disrupt running pods, get secrets from the Kubernetes API

server or modify/delete any running pods causing service disruption to the victim organi-

zation. Hence, with this “workload privilege escalation attack”, an attacker can violate the

confidentiality, integrity and availability of the Kubernetes cluster.

Mitigation: We mitigate this attack by eliminating our identified privileged pod mis-

configurations: hostNetwork:true , hostIPC:true, hostPID:true, privileged securityContext,

allowPrivilegeEscalation:true, readOnlyRootFileSystem:False, runAsNonRoot:False,

runAsUser: False, active hostPath, Capability abuse, so that the attacker can not access

the pod to get the root privilege with write permission and get unnecessary access to the

host machine. We eliminate any privileged role and role binding to default service account

and disabled token mounting in the pod by eliminating the following misconfigurations if

available: privileged role, privileged ServiceAccount, automountServiceAccountToken:

true, serviceAccount: default.

Attack #2 Dashboard maneuver: In this attack, an attacker can exploit over-

privileged RBAC permission in Kubernetes cluster.

57

Detection and attack description:

We verify the pod security requirement “An over-privileged RBAC permission in Ku-

bernetes cluster will not lead a pod to an unsafe state.”. We observe a counterexample for

this pod security requirement and detect an attack where an attacker can create a new

pod creation request from the Kubernetes dashboard using a default service account with

over-privileged RBAC permission.

We validate the capability of an attacker to perform the attack with the following steps:

Step-1: The attacker has access to the kubernetes dashboard with the service ac-

count token of serviceAccount: default as privileged default ServiceAccount that has

cluster-admin role to access the Kubernetes dashboard.

Step-2: The attacker can access the Kubernetes dashboard with the cluster-admin

and privileged default ServiceAccount. The attacker leverages the misconfigurations miss-

ing admission controller to deploy malicious pod. The attacker can also modify/delete nodes,

expose secrets and sensitive applications with the cluster-admin privilege.

Implication: An attacker with over-privileged RBAC permission, such as cluster-admin

privilege can provide an attacker a complete control over the Kubernetes cluster of an orga-

nization and violate confidentiality, integrity, availability.

Mitigation: To mitigate the attack, We eliminate any privileged role and role binding

to default service account and disabled token mounting in the pod by eliminating the fol-

lowing misconfigurations if available: privileged role, privileged ServiceAccount, privileged

Default ServiceAccount, serviceAccount: default, cluster-admin.

Attack #3 Databse tampering: In this attack, an attacker leverages misconfigu-

rations related to network segmentation and exploits unrestricted sensitive applications.

Detection and attack description:

We verify pod security requirement “Misconfigurations in network segmentation will

not lead a pod to an unsafe state”. We observe a counterexample for this pod security

58

requirement and detect an attack where an attacker can access a sensitive pod, such as a

database, from a malicious pod.

We validate the capability of an attacker to perform the attack with the following steps:

Step-1: An attacker creates a malicious pod with an unscanned container image with

missing admission controller misconfiguration [42] [79]. The manifest contains a remote code

execution vulnerability that can communicate with a remote attacker machine. The pod has

the misconfigurations: hostNetwork: true, readOnlyRootFileSystem: False, namespace:

default, runAsNonRoot:False, runAsUser: False

Step-2: The attacker uses the ncat [78] tool and listens to the malicious pod IP and

port to connect with the malicious pod to get a remote shell from the remote attacker

machine [100].

Step-3: The attacker again uses the ncat tool using privilege hostNetwork: true,

missing network policy in namespace: default to establish a connection with the Redis

database in port 6379.

Step-4: The attacker can update the data in the Redis database as Redis does not

require any authentication by default [96], [109]. The attacker can modify or delete sensitive

information from the redis database. As a result the pods may get tampered data when

required. This attack violates confidentiality, integrity and availability of Kubernetes cluster.

Implications: Any attacker can leverage the network misconfigurations to connect

with sensitive applications such as database and get sensitive data or modify existing data.

The attacker can also cause a network-related denial of service attack to business-critical

applications.

Mitigation: To mitigate this attack, we apply network policy for the sensitive applica-

tions such as redis database and avoid using default namespace. We apply non root user with

read only permission and eliminate access to host network privilege from the pods as well. We

eliminate the following misconfigurations if available: missing network policy, namespace:

default, hostNetwork: True, readOnlyRootFileSystem: False, runAsUser: False.

59

Attack #4 Denial of service (DOS): In this attack, an attacker leverages the lack

of centralized policy and missing resource limit specification for pods in Kubernetes cluster.

In the attack, attacker deploys the pod without specifying resource limits to create denial of

service attack.

Detection and attack description:

We verify pod security requirement “Lack of centralized policy such as missing admission

controller will not lead a pod to an unsafe state.” We observe a counterexample for this pod

security requirement and detect an attack where an attacker can cause a denial of service

attack from a running pod.

We validate the capability of an attacker to perform the attack with the following steps:

Step-1: An attacker creates a malicious pod with an unscanned container image with

missing admission controller and missing resource limit misconfigurations [42] [79]. The

manifest contains a remote code execution vulnerability that can communicate with a re-

mote attacker machine [100]. The pod has the misconfigurations: runAsNonRoot:False,

runAsUser: False

Step-2: The attacker uses the ncat [78] tool and listens to the malicious pod IP and

port to connect with the malicious pod to get a remote shell from the remote attacker

machine [100]

Step-3: The attacker runs a malicious program inside the running container of the

pod with readOnlyRootFileSystem: False, absent resource limit misconfigurations. The

pod consumes the entire CPU and memory limit of the node and disrupts the availability of

running pods in the Kubernetes cluster.

Implications: Lack of centralized policy can allow outdated, vulnerable images, de-

pendencies to run as containers. As a result, any attacker can leverage the underlying image

vulnerability to cause critical service disruption, such as a resource-related denial of service

attack in the Kubernetes cluster. This attack violates the availability of the Kubernetes

cluster.

60

Mitigation: To mitigate the attack, We eliminate missing resource limit, disable root

user and enable read only file system in pod configuration. We also recommend using “Val-

idatingAdmissionPolicy” to eliminate missing admission controller so that any pod with-

out resource limit never gets deployed at the Kubernetes cluster. We eliminate the fol-

lowing misconfigurations if available: missing admission controller, absent resource limit,

runAsUser:False, readOnlyFileSystem:True.

Attack #5 Etcd takeover: In this attack, an attacker can leverage secret management-

related misconfigurations to steal secrets from Kubernetes cluster. By default, the etcd

database in the control plane is not encrypted, and access to an unencrypted etcd database

can leak sensitive cluster information.

Detection and attack description:

We verify pod security requirement, “If any secrets are accessible and stored without

encryption in Kubernetes cluster, it can lead a pod to an unsafe state”. We observe a

counterexample for this pod security requirement and detect an attack where an attacker

can access a pod with a privileged service account, deploy a pod in the control plane node,

and extract the unencrypted etcd database contents.

We validate the capability of an attacker to perform the attack with the following steps:

Step-1: The attacker gets access to a privileged pod that starts with missing admis-

sion controller misconfiguration [42] [79]. The pod has the privileges: hostNetwork:true ,

hostIPC:true, hostPID: true, allowPrivilegeEscalation: true, privileged securityContext,

automountServiceAccountToken: true, readOnlyRootFileSystem: False,

active hostPath, Capability abuse, runAsNonRoot:False, runAsUser: False. The pod

is associated with the serviceAccount: default. The privileges of the pod allows the

attacker to escalate pod isolation boundary in the host [100].

Step-2: The attacker uses the ncat [78] tool and listens to the malicious pod IP and

port to connect with the malicious pod to get a remote shell from the remote attacker

machine [100].

61

Step-3: The attacker can access the underlying host with pod misconfiguration hostNetwork:

true, hostIPC: true, hostPID: true, active hostPath, privileged securityContext,

automountServiceAccountToken: true to get the service account token of serviceAccount:

default [100].

Step-4: The attacker installs kubectl tool from the container for misconfiguration

readOnlyRootFileSystem: False. The attacker can send a request to the Kubernetes

API server with the service account token of privileged ServiceAccount.

Step-4: The attacker creates a privileged pod in the control plane node with misconfig-

urations missing admission controller, nodeName:master. The privileged pod has the permis-

sions: hostNetwork: true , hostIPC: true, hostPID: true, allowPrivilegeEscalation:

true, runAsNonRoot: false, privileged securityContext, readOnlyRootFileSystem:

False, Capability abuse and the pod runs in the control-plane node.

Step-5: The attacker installs etcd client and can access the key and certificate for etcd

using hostNetwork: true , hostIPC: true, hostPID: true, allowPrivilegeEscalation:

true, runAsNonRoot: false privileged securityContext, readOnlyRootFileSystem:

False, and Capability abuse misconfigurations.

Step-6: The attacker can use the key and certificate to access the unencrypted etcd

database that contains all cluster secrets and information. This action from the attacker

violates the confidentiality of the Kubernetes cluster.

Implication: Any attacker who has access to Kubernetes API server can extract un-

encrypted cluster secrets such as database credentials and cluster information and violate

confidentiality of the Kubernetes cluster.

Mitigation: To mitigate the attack, we avoid the configuration nodeName:master so

that the pods are not deployed in the control-plane node. We also eliminate the following

misconfiguration if present in the pod configurations: hostNetwork:true , hostIPC:true,

62

hostPID:true, privileged:true, allowPrivilegeEscalation:true, active hostPath, Ca-

pability abuse, readOnlyRootFileSystem:False, runAsNonRoot:False, runAsUser: False

privileged role, privileged ServiceAccount and missing admission controller.

Attack #6 Pod disruption: In this attack, an attacker exploits any vulnerabilities

in the library, dependencies, container images of the pod deployment manifest to disrupt the

availability running pod.

Detection and attack description:

We verify the pod security requirement “Any unscanned or misconfigured container

image will not lead a pod to an unsafe state”. We observe a counterexample for this pod

security requirement and detect an attack where an attacker can remotely connect to a

running pod and create a new pod creation request.

We validate the capability of an attacker to perform the attack with the following steps:

Step-1: An attacker creates a malicious pod with an unscanned container image with

missing admission controller misconfiguration [42] [79]. The manifest contains a remote

code execution vulnerability that can communicate with a remote attacker machine. The

pod has the misconfigurations: hostNetwork: true, hostIPC: true, hostPID: true,

allowPrivilegeEscalation: true, automountServiceAccountToken: true, privileged

securityContext, Capability abuse, readOnlyRootFileSystem: False, runAsNonRoot:False,

runAsUser: False.

Step-2: The attacker uses the ncat [78] tool and listens to the malicious pod IP and

port to connect with the malicious pod to get a remote shell from the remote attacker

machine [100].

Step-3: The attacker can access the underlying host with pod misconfiguration hostNetwork:

true, hostIPC: true, hostPID: true, automountServiceAccountToken: true, priv-

ileged securityContext, and active hostPath to get the service account token of serviceAccount:

default [100].

63

Step-4: The attacker has access to the service account token of serviceAccount:

default as privileged ServiceAccount that has privileged role. The attacker uses the

privileged ServiceAccount which has over-privileged permission as a cluster-admin role.

Step-5: The attacker installs kubectl tool from the container for misconfiguration

readOnlyRootFileSystem: False. The attacker can send a request to the Kubernetes

API server with the service account token of privileged ServiceAccount.

Step-6 The attacker leverages the misconfiguration missing admission controller and

creates a new malicious privileged pod with the service account token of privileged ServiceAccount.

The malicious pod can run as cryptominer to disrupt other running pods. The attacker can

also read Kubernetes cluster secrets, modify/delete running pods in the Kubernetes cluster

from the malicious pod.

Implication: An attacker can exploit the remote code execution vulnerability to get

access to the Kubernetes cluster and leverage the misconfigurations in pod manifests to

create malicious applications such as cryptominers. The attacker can also leak secrets,

capture the network communication, and modify/delete pods without getting noticed by the

cluster administrator. Hence, this “remote code execution attack” can violate confidentiality,

integrity and availability of the Kubernetes cluster.

Mitigation: We mitigate this attack by applying “ValidatingAdmissionPolicy” [59]

that checks container image origin and eliminates missing admission controller misconfigura-

tion so that any malicious container with remote code execution vulnerability never gets into

Kubernetes cluster. After that, we eliminate our identified privileged pod misconfigurations:

hostNetwork:true , hostIPC:true, hostPID:true, privileged securityContext, active

hostPath, capability abuse, allowPrivilegeEscalation:true, readOnlyRootFileSystem:False,

runAsNonRoot:False, runAsUser: False so that the attacker can not access the pod

to get the root privilege with write permission and get unnecessary access to the host

machine. We eliminate any privileged role and role binding to default service account

and disabled token mounting in the pod by eliminating the following misconfigurations if

64

available: privileged role, privileged ServiceAccount, automountServiceAccountToken:

true, serviceAccount: default.

In Table 5.4, we list our attacks, configuration sequences and dependencies for insecure

pod provisioning.

Table 5.4: Misconfigurations that invoke insecure provisioning
Attack Name Configuration Sequence Dependencies
Access cluster secrets missing admission controller --> (hostIPC:True,

hostPID:True, hostNetwork:True, active hostPath,

allowPrivilegeEscalation:True, Capability

abuse, privileged securityContext) -->

(serviceAccount: default,runAsNonRoot:False,

runAsUser: False, readOnlyRootFileSystem: False,

automountServiceAccountToken: True, privileged role) -->

privileged ServiceAccount, missing admission controller

kubectl exec checkoutservice /bin/sh

serviceaccount -> ca.crt namespace token

wget

kubectl

Dashboard maneuver serviceAccount: default, automountServiceAccountToken:

True, runAsNonRoot:False, runAsUser: False, -->

privileged default ServiceAccount, cluster-admin, missing

admission controller
kubernetes dashboard access

serviceaccount -> ca.crt namespace token

dashboard service account

Denial of service(DOS) missing admission controller, absent resource limit -->

readOnlyRootFileSystem: False, runAsNonRoot: False

ncat -vlp <PORT>

revshell-pod.yaml

DoS-Daemonset.yaml

Database tampering missing network policy, missing admission controller -->

(hostNetwork:True, runAsNonRoot:False, runAsUser:False)

--> namespace: default revshell.yaml

ncat -vlp <PORT>

ncat -vn redis:6379

Etcd takeover missing admission controller -->(hostIPC:

True, hostPID:True, hostNetwork:True,

allowPrivilegeEscalation: True, Capability abuse,

privileged securityContext) --> readOnlyRootFileSystem:

False, automountServiceAccountToken: False,

runAsNonRoot:False, runAsUser: False, -->

(serviceAccount: default, privileged ServiceAccount)

revshell.yaml

ncat -vlp <PORT>

apt-get

curl

kubectl

serviceaccount -> ca.crt namespace token

nodeselector-controlplane

hack-control plane.yaml

wget etcd

/etc/kubernetes/pki/etcd/ca.crt,

healthcheck-client.crt

etcdctl IP:2379 ca.crt healthcheck-client.crt

Pod disruption missing admission controller --> (hostIPC: True,

hostPID:True, hostNetwork:True, allowPrivilegeEscalation:

True, Capability abuse, privileged securityContext) -->

readOnlyRootFileSystem: False, runAsNonRoot:False,

runAsUser: False, serviceAccount: default,

automountServiceAccountToken: True, privileged role -->

privileged ServiceAccount, missing admission controller

ncat -vlp <PORT>

revshell-pod.yaml

serviceaccount -> ca.crt namespace token

apt-get

curl

kubectl

5.2 Methodology for RQ 5.2

Prior survey among practitioners demonstrated the prevalence of the misconfigurations

in Kubernetes [93]. Rahman et al. identified misconfigurations in Kubernetes manifests in

open source software(OSS) repositories [88]. We extend the open source tool SLIKUBE [88]

65

and build the tool (SLIKUBE+) to detect the presence of additional 13 security misconfigu-

rations in Kubernetes OSS repositories. As an input the user will provide the directory path

with Kubernetes manifests and SLIKUBE+ will output the count of misconfigurations for

each of the Kubernetes manifests in the directory. In this section, we describe our method-

ology to construct SLIKUBE and extended the implementation of SLIKUBE to construct

SLIKUBE+.

5.2.1 SLIKUBE

We used the qualitative analysis technique - open coding [99] to derive security miscon-

figuration categories for the tool SLIKUBE. Open coding is well-suited to identify insights

in an under-explored domain, such as Kubernetes security misconfigurations. Furthermore,

open coding provides a systematic way to surface similarities across textual artifacts, and

group such similarities into categories [99].

Identification Misconfiguration Categories for SLIKUBE

As part of the open coding process, first, the rater identifies configurations in a Ku-

bernetes manifest. Second, the rater inspects the values for each identified configuration to

determine if the configuration is in fact a security misconfiguration. While determining mis-

configurations, the rater uses the following definition of security misconfiguration provided

by the U.S. National Institute of Standards and Technology (NIST) [77] “A setting within

a computer program that violates a configuration policy or that permits unintended behavior

that impacts the security posture of a system”. Both raters, who are well-versed on Kuber-

netes (having used them in practice) initially came up with a list of security misconfigurations

that can potentially cause unintended behaviors based on their experience.

Third, the rater derives categories based on similarities between the identified instances

of security misconfigurations. For each identified security misconfiguration category, the

66

rater further checks if the category violates any of the Kubernetes-related security best prac-

tices as documented in Section 3.1. We use our study because it (i) systematically synthesizes

security-related best practices from multiple Internet artifacts, and (ii) is peer-reviewed and

leveraged a grey literature review with 101 Internet artifacts including multiple artifacts that

came out of Snyk [103], where practitioners have discussed the security best practices for

Kubernetes. Other artifact sources that we leverage include artifacts authored by practi-

tioners from Google Cloud, Cloud Native Computing Foundation (CNCF), VMWare, Tech

Republic, DZone, SonaType, IBM, and Microsoft.

Upon completing the aforementioned three steps, we derive a list of security miscon-

figuration categories. In this manner, our identified security misconfigurations convey the

message that if identified security misconfigurations are not mitigated, they can permit un-

intended behaviors.

Rater Verification for Misconfiguration Categories for SLIKUBE

The first and second authors act as raters, and conduct the open coding process. The

first author and second author respectively, has experience in working with Kubernetes for

one and two years. Both rater individually manually inspects 1,796 Kubernetes manifests

provided by Brinto et al. [13]. Brinto et al. [13]’s dataset includes 1,796 Kubernetes manifests

that are modified in 5,193 commits, and collected from 38 OSS repositories. Of the 1,796

Kubernetes manifests, 90% and 10% are respectively, Kind and Helm manifests. For each

Kubernetes manifest, both raters individually apply the aforementioned open coding process.

Upon completion of the open coding process, the first and second authors respectively,

identify 8 and 6 categories of security misconfigurations. We compute Krippendorff’s α [55]

to quantify agreement, similar to prior work in software engineering [8, 91, 29]. The Krip-

pendorff’s α is 0.45, indicating ‘unacceptable’ agreement [55]. Both raters discussed their

disagreements and observed that root cause of their disagreements occur due to the second

67

author missing five categories, identified by the other author. These categories are: activa-

tion of hostIPC, activation of hostNetwork, activation of hostPID, capability misuse, and

Docker socket mounting. The second rater missed categories because of being unaware of

these configurations. Upon discussion, both raters conduct the inspection process again.

After completing the inspection process, we calculate Krippendorff’s α to be 1.0, indicating

‘perfect’ agreement [55]. We use Krippendorff’s α instead of Cohen’s κ, because Krippen-

dorff’s α: (i) emphasizes disagreement leading to more reliability on the achieved agreement

rate, and (ii) handles multiple categories [55]. Furthermore, qualitative analysis experts have

advocated for the use of Krippendorff’s α over Cohen’s κ [56, 66]

Altogether, we identify 8 categories of security misconfigurations in Kubernetes man-

ifests. An example of each category with a mapping to the violated security practice is

presented in Table 5.5. All the examples presented in Table 5.5 are obtained from Kind

manifests. ‘Count’ corresponds to the count for the Brinto et al. [13] dataset for each cate-

gory.

Methodology to Construct SLIKUBE

Step-1: Parsing: SLIKUBE parses Kubernetes manifests into key-value pairs. For each

key, a value can be a nested dictionary, or a list, or a single value. In the case of nested dic-

tionaries, SLIKUBE preserves the hierarchy of the extracted keys for Kubernetes manifest.

Step-2: Rule Matching: From the parsed content of Kubernetes manifests, SLIKUBE

applies rule matching to identify security misconfigurations. The rules needed to identify

categories are listed in Table 5.6. The rules are derived by abstracting code snippets for

each misconfiguration category. The rules presented in Table 5.6 leverage pattern matching

similar to prior research [85, 87]. The string patterns used by each rule in Table 5.6 is

provided in Table 5.7.

68

Table 5.5: Examples of Security Misconfiguration Categories of SLIKUBE
Category (Count) Violated Practice Example Code Snippet
Active hostIPC Implementing Pod-

specific Policies [101]
spec:

hostIPC: true

Active hostNetwork Implementing Pod-
specific Policies [101]

spec:

hostNetwork: true

Active hostPID Implementing Pod-
specific Policies [101]

spec:

hostPID: true

Capability Misuse Implementing Pod-
specific Policies [101]

capabilities:

add:

- CAP_SYS_ADMIN

- CAP_SYS_MODULE
Escalated Privileges for Child
Container Processes

Implementing Pod-
specific Policies [101] allowPrivilegeEscalation: true

Missing SSL/TLS for HTTP Enable SSL/TLS Sup-
port [101] value: http://elastisearch-logging:9200

Missing resource limit Limit CPU and Memory
Quota [101]

spec:

containers:

- name: employee

image: piomin/employee-service
Privileged securityContext Implementing Pod-

specific Policies [101]
securityContext:

privileged: true

Rule Derivation Process : We identify the commonalities in patterns capable of express-

ing security misconfigurations, and abstract such commonalities as rules to detect misconfigu-

rations. For instance, privileged keyword is used to specify the coding pattern. SLIKUBE

can parse both coding patterns as key value pairs, where privileged is the key and true is

the value. In both coding patterns we notice commonality in the key value pairs, which can be

abstracted to a rule isKey(x)∧isSecuirtyContext(x)∧isPrivileged(x)∧isEnabled(x.value).

We repeat the same abstraction process for other misconfiguration categories.

5.2.2 SLIKUBE+

In Section 5.4.1, we identify 13 additional security misconfigurations along with 8

security misconfigurations that can be identified with SLIKUBE described in Table 5.6. To

identify the 13 security misconfigurations we extend SLIKUBE to derive 13 additional rules

for parsing and rule matching in Kubernetes manifest by following the technique described in

69

Table 5.6: Rules Used by SLIKUBE
Category Rule

Activation of hostIPC (isKey(x) ∧ isHostIPC(x) ∧ isEnabled(x.value)
Activation of hostPID (isKey(x) ∧ isHostPID(x) ∧ isEnabled(x.value)
Activation of hostNetwork (isKey(x) ∧ isHostNetwork(x) ∧

(isEnabled(x.value)
Capability Misuse (isKey(x) ∧ isContainer(x) ∧ hasCapability(x) ∧

(isCAPSY SADMIN(x.value) ∨
isCAPSY SMODULE(x.value))

Escalated Privileges for Child
Container Processes

isKey(x) ∧ isPrivEscalation(x) ∧
isEnabled(x.value)

Missing SLL/TLS for HTTP isKey(x)(∧isProtocol(x.name) ∨
isHTTP (x.value))

Missing Resource Limit (isKey(x) ∧ (isSpec(x) ∨ isContainer(x)) ∧
¬(isLimitResources ∧ (isLimitMemory ∧
isLimitRequests))))

Privileged securityContext isKey(x)∧isSecuirtyContext(x)∧isPrivileged(x)∧
isEnabled(x.value)

Section 5.2.1. We describe the rules to extend SLIKUBE in Table 5.8. We also describe the

string pattern for the rules in Table 5.9. In total, we identify 21 types of misconfigurations

that are related pod security requirements described in Section 5.4.

70

Table 5.7: String Patterns Used for Rules in SLIKUBE
Function String Pattern

hasCapability() ‘capabilities’
isCAPSY SADMIN() ‘CAP SYS ADMIN’
isCAPSY SMODULE() ‘CAP SYS MODULE’
isContainer() ‘container’
isDockerSocket() ‘/var/run/docker.sock’
isEnabled() ‘true’
isHostIPC() ‘hostIPC’
isHostNetwork() ‘hostNetwork’
isHostPID() ‘hostPID’
isHTTP () ‘http:’
isLimitMemory() ‘limits’
isLimitRequests() ‘requests’
isLimitResources() ‘resources’
isPath() ‘path’
isPassword() ‘password’
isPrivEscalat() ‘allowPrivilegeEscalation’
isProtocol() ‘protocol’
isPriviledged() ‘privileged’
isSecurityContext() ‘securityContext’
isSpec() ‘spec’
isToken() ‘key’
isUser() ‘user’

71

Table 5.8: Additional Rules for SLIKUBE+ to Extend SLIKUBE
Misconfiguration Name Rule
Missing Admission Controller isKind(x) ∧ (isApiV ersion(x) ∧ (¬isAdmissionConfiguration(x.value) ∨

¬isAdmissionReview(x.value) ∨ ¬isV alidationAdmission(x.value) ∨
¬isMutatingAdmission) ∨ ¬isApiV ersionAdmission(x.value))

Missing Network Policy isKind(x) ∧ (isApiV ersion(x) ∧ (¬isNetworkPolicy(x.value) ∨
¬isIngress(x.value) ∨ ¬isEgress(x.value))

Privileged Role (isKind(x) ∧ (isRole(x.value) ∨ isClusterRole(x.value))) ∧ ((isV erb(x) ∧
hasRiskyV erbPrivilege(x)) ∧ ((isResource(x) ∧ hasRiskyResourcePrivilege)) ∧
isName(x)∧

Privileged ServiceAccount (isKind(x) ∧ (isRole(x.value) ∨ isClusterRole(x.value))) ∧ ((isV erb(x) ∧
hasRiskyV erbPrivilege(x))∧((isResource(x)∧hasRiskyResourcePrivilege(x))∧
isName(x) ∧ (isKind(x) ∧ isClusterRoleBinding(x) ∨ isRoleBinding(x) ∧
(isRole(x) ∧ isKindClusterRole(x) ∧ isKindServiceAccount(x)))

Privileged RoleBinding (isKind(x)∧(isClusterRoleBinding(x)∨isRoleBinding(x)∧(isClusterAdmin()))
Inactive read-only root filesystem isKind(x) ∧ ((isKindPod(x) ∨ isKindDeployment(x) ∨ isKindDaemonSet(x) ∨

isReplicaSet(x)) ∧ isV olumeMount(x) ∧ (isReadOnlyRootF ileSystem(x) ∨
isReadOnlyF ileSystem(x)∧ (isEnabled(x)∨ (¬isReadOnlyRootF ileSystem(x)∧
¬isReadOnlyF ileSystem(x))

Auto mounted token isKind(x) ∧ (isKindPod(x) ∨ isKindDeployment(x) ∨ isKindDaemonSet(x) ∨
isReplicaSet(x) ∨ isKindService(x)) ∧ ((isAutomountServiceToken(x) ∧
(isEnabled(x))) ∨ ¬(isAutomountServiceToken(x)))

Default ServiceAccount isKind(x) ∧ (isKindPod(x) ∨ isKindDeployment(x) ∨ isKindDaemonSet(x) ∨
isReplicaSet(x) ∨ isKindService(x)) ∧ ¬isKeyServiceAccountName(x)

Default Namespace isKind(x) ∧ (isKindPod(x) ∨ isKindDeployment(x) ∨ isKindDaemonSet(x) ∨
isReplicaSet(x) ∨ isKindService(x)) ∧ ¬isKeyNamespace(x)

Privileged default ServiceAccount isKind(x) ∧ (isRole(x.value) ∨ isClusterRole(x.value)) ∧ ((isV erb(x) ∧
hasRiskyV erbPrivilege(x))∧ (isResource(x)∧hasRiskyResourcePrivilege(x))∧
(isName(x) ∧ (isDefault(x)))

Active hostPath isKind(x) ∧ ((isKindPod(x) ∨ isKindDeployment(x) ∨ isKindDaemonSet(x) ∨
isReplicaSet(x)) ∧ isHostPath(x) ∧ (isReadOnlyRootF ileSystem(x) ∨
isReadOnlyF ileSystem(x)∧ (isEnabled(x)∨ (¬isReadOnlyRootF ileSystem(x)∧
¬isReadOnlyF ileSystem(x))

Inactive runAsNonRoot isKind(x) ∧ ((isKindPod(x) ∨ isKindDeployment(x) ∨ isKindDaemonSet(x) ∨
isReplicaSet(x)) ∧ (isRunAsNonRoot(x) ∧ (isEnabled(x) ∨
(¬isRunAsNonRoot(x))

Inactive runAsUser isKind(x) ∧ ((isKindPod(x) ∨ isKindDeployment(x) ∨ isKindDaemonSet(x) ∨
isReplicaSet(x)) ∧ (¬(isRunAsUser(x)) ∨ (¬isRunAsGroup(x)))

72

Table 5.9: Additional String Patterns Used for Functions in SLIKUBE+ Rules
Function String Pattern
isImagePullSecrets() ‘imagePullSecrets’
isImagePullPolicy() ‘imagePullPolicy’
isAlways() ‘Always’
isNodeName() ‘nodeName’
hasNameMaster() ‘master’, ‘control-plane’, ‘controlplane’
isKind() ‘kind’
isApiV ersion() ‘apiVersion’
isApiV ersionAdmission() ‘admissionregistration.k8s.io/v1’
isAdmissionConfiguration() ‘AdmissionConfiguration’
isAdmissionReview() ‘AdmissionReview’
isV alidationAdmission() ‘ValidatingWebhookConfiguration’
isMutatingAdmission() ‘MutatingWebhookConfiguration’
isRole() ‘Role’
isClusterRole() ‘ClusterRole’
isV erb() ‘verbs’
isResource() ‘resources’
hasRiskyV erbPrivilege() ‘list’, ‘watch’, ‘create’, ‘update’, ‘patch’,

‘delete’, ‘*’
hasRiskyResourcePrivilege() ‘pod’, ‘daemonset’, ‘secrets’, ‘*’
isClusterRoleBinding ‘ClusterRoleBinding’
isRoleBinding ‘RoleBinding’
isServiceAccount ‘ServiceAccount’
isClusterAdmin() ‘cluster-admin’
isDefault() ‘default’
isKindPod() ‘Pod’
isKindDeployment() ‘Deployment’
isKindService() ‘Service’
isKindDaemonSet ‘daemonset’
isKindReplicaSet() ‘ReplicaSet’
isV olumeMount() ‘volumeMounts’
isReadOnlyRootF ileSystem() ‘readOnlyRootFileSystem’
isReadOnlyF ileSystem() ‘readOnlyFileSystem’
isEnabled() ‘True’, ‘true’
isAutomountServiceToken() ‘automountServiceAccountToken’
isKeyServiceAccountName() ‘serviceAccountName’
isV erb() ‘verbs’
isResource() ‘resources’
isName() ‘name’
isRunAsNonRoot() ‘runAsNonRoot’
isRunAsUser() ‘runAsUser’
isRunAsGroup() ‘runAsGroup’

73

5.2.3 Evaluation of SLIKUBE+

We evaluate SLIKUBE+ with the dataset used to evaluate SLIKUBE [88]. We describe

the dataset filtering criteria in Table 5.10 and attributes of the dataset in Table 5.11.

Prior research describe that software projects in GitHub and GitLab often do not represent

professional software projects [76]. To mitigate this challenge, researchers used criteria

to curate professional software engineering projects such as commits per month, count of

contributors [84], [2], [57]. Based on these attributes we use the following criteria to filter

our open source repositories:

• Criterion-1: The repository must have at least 10% files that are Kubernetes mani-

fests.

• Criterion-2: The repository is available to download.

• Criterion-3: The repository is not a clone to another repository.

• Criterion-4: The repository has at least 2 commits per month. We set this criteria

to filter out repository that has little activity.

• Criterion-5: The repository has at least five contributors. We set this criteria so that

we can eliminate projects for personal use.

• Criterion-6: The repository does not contain projects that is used to demonstrate

examples, conduct course works and used as book chapter.

5.2.4 Metrics for Frequency Analysis

We answer RQ2 by using two metrics. Both of these metrics are related to quantifying

how many of the configuration parameters that are needed to conduct a security attack,

reside in a single manifest or in all manifests within a repository. The two metrics are:

(i) manifest-based attack coverage (MAC) that measures the proportion of configuration

74

parameters needed to execute attack a that reside in a manifest; and (ii) repository-based

attack coverage (RAC) that measures the proportion of configuration parameters needed to

execute attack a that reside in manifests within the repository. We use Equations 5.1 and

5.2 respectively, to calculate MAC and RAC. Let us consider two manifests m1 and m2 to

reside in repository r. For attack a, if three configuration parameters c1, c2, and c3 are

required, and m1 and m2 respectively includes c1 and c2, then the manifest coverage for m1

and m2 will be 33.3%, whereas the repository coverage will be 66.6%.

Manifest Coverage (a) =
of configuration parameters used for attack ia in the manifest

total of configuration parameters needed for attack a
∗ 100% (5.1)

Repository Coverage (a) =
of configuration parameters used for attack ia in the manifests of the repository

total of configuration parameters needed for attack a
∗ 100%

(5.2)

Table 5.10: Dataset for SLIKUBE+
GitHub GitLab

Initial Repo Count 3,405,303 546,000
Criterion-1 ≥10% YAML files) 6,633 8,194
Criterion-2 (Available) 6,512 7,914
Criterion-3 (Non-duplicates) 4,317 5,871
Criterion-4 (Commit/month≥2.0) 1,325 671
Criterion-5 (Contrib. ≥5) 189 44
Criterion-6 (Not Toy Project) 51 14
Final Repo Count 51 14

75

Table 5.11: Dataset Attributes
Attribute GitHub GitLab
Repositories 71 21
Kubernetes Objects 3,630 827
Kind Manifests 1,508 369
Helm Charts 82 80
Kubernetes Manifests 1,590 449
Contributors 1,187 977
Commits 37,184 15,870
Size (LOC) 148,588 51,512
Duration 9/2015-12/2021 (75 months) 10/2015-12/2021 (74 months)

5.3 Methodology for RQ 5.3

The focus of RQ3 is to identify a mapping between pod states and identified attacks.

As states are integral to the pod lifecycle, by deriving a mapping between states and attacks

we can generate further insights. These insights can be helpful for (i) researchers to gain an

understanding of how states are related with attacks, and (ii) toolsmiths on how to detect

and mitigate configuration parameters that facilitate attack. We answer RQ3 by using the

mapping of configuration parameters and attacks. For each configuration parameter, we

identify the correspond- ing pod state. We determine a mapping to exist between a state

s and an attack a if one or multiple configuration parameters that are used in an attack a,

belongs to state s.

5.4 Answer to RQ 5.1

5.4.1 Identification of Pod-related Configuration Parameters

If the NuXMV generates counter-examples, we analyze the counter-examples. We

trace the sequence of configurations and events that lead to the violation of the prop-

erty given an initial configuration of pod. For example, the pod security requirement

“An over privileged running pod will never go to an unsafe state” can be represented as

!over privileged container & pod state = pod running) is false. We illustrate the

76

generated counter-example for the requirement and only represent its relevant configura-

tions in Figure 5.8.

In the initial state 1.1, the pod state is request initiated. We find that the state

variables in our model related to pod security requirements hostPID enabled,

service account automount token, pod security exemption workload pod,

security context privileged, and service account privileged are all set to TRUE. In

the next state 1.2, the pod state is request authenticated and state variables in our

model related to pod security requirements ClusterRole clusteradmin, host namespace accesss

and RCE vulnerability becomes TRUE. In the next state 1.3, the pod state is request authorized

and the state variables in our model related to pod security requirements API request verb UPDATE,

API request verb PATCH, API request verb DELETE and API resource pod becomes TRUE.

In the state 1.7, the pod state is pod schedule bind phase and the state variables in our

model related to pod security requirements host secret exfiltration, host file system access

becomes TRUE. Eventually, in the state 1.12, the pod state becomes pod starting, which

symbolizes that the pod has started. In state 1.13, the pod state becomes pod running,

and the state variable container prestop webhook becomes TRUE. In prior states, the pod

has got access to host secret with host secret exfiltration and privileged service account.

Hence in the next state 1.14, the pod again initiates a pod creation request and reaches

state request pod creation initiated. Finally, in state 1.22, the pod reaches the state

pod running, which means the over privileged pod initiated another pod with privileged

service account.

We identify 21 attack-akin configuration from our counterexample-based analysis. Def-

initions for each configuration is provided below. The configurations that are common

across all six attacks are: escalated child process, capability abuse, active hostIPC, active

hostNetwork, active hostPID, missing admission controller, privileged securityContext,

inactive read-only for root filesystem, inactive runAsNonRoot, inactive runAsUser, and de-

fault serviceAccount.

77

1. Active hostIPC - This configuration provides a container within a pod with the privilege

to intercept all IPC communications of the host machine.

2. Active hostNetwork - The configuration to activate hostNetwork with hostNetwork:

true. This configuration provides applications the privilege to ping and intercept all network

interfaces of the host machine.

3. Active hostPID - The configuration to activate hostPID with hostPID: true. This

configuration allows a pod to access the namespace and find all the processes running on the

host.

4. Capability abuse - The configuration to activate Linux capabilities. This category

includes configurations that allow a pod to gain root-level access. This category includes

two sub-categories: CAP SYS ADMIN and CAP SYS MODULE.

5. Escalated child process - The configuration that allows a child process in a container

to gain more privilege than its parent process.

6. Privileged securityContext - The configuration that allows a privileged securityContext

by disabling all security features of the pod or container.

7. Missing resource limit - The configuration that allows a container within a pod to run

without CPU and memory limit, in turn consuming all available resources. The limits and

resources keywords are used to specify resource limits for containers within a pod.

8. Default namespace - The configuration that activates usage of the default namespace.

The configuration allows a pod to be deployed in a shared virtual cluster.

9. Missing network policy - The configuration of not using the NetworkPolicy object to

specify network policies for pods. This configuration facilitates unrestricted traffic between

pods as NetworkPolicy is used to control the flow of traffic between pods.

10. Missing SSL/TLS for HTTP - The configuration of using HTTP without SSL or

TLS support. This configuration allows the transmission of HTTP-based pod traffic between

pods inside the Kubernetes cluster without SSL/TLS encryption.

78

11. Missing admission controller - The configuration of not using an admission controller

with AdmissionConfiguration. An admission controller intercepts requests to the Kuber-

netes API server prior to persistence of the object, but after the request is authenticated and

authorized. This configuration allows an authenticated and authorized request to bypass the

security compliance for pod creation.

12. Privileged role - The configuration that allows excessive permission to a role. A role is

a code construct that allows permissions for a particular namespace [59]. Using the verbs:

["*"] configuration for role-related rules, a role becomes privileged. Verbs in Kubernetes

are used to specify all possible permissions for a Kubernetes pod.

13. Privileged ServiceAccount - The configuration of creating a privileged ServiceAccount.

A service account is a non-human account that provides an identity for processes that run

in a pod. In Figure 5.9, ‘sample-sa’ is a privileged ServiceAccount as it uses a Role and

RoleBinding with a default namespace.

14. Privileged RoleBinding - The configuration that allows a RoleBinding object for a

Kubernetes-based cluster to list, create, modify, and delete any resources in the entire cluster

in an unauthorized fashion. RoleBinding is a Kubernetes object that grants the permissions

defined in a role to a user or set of users. The cluster-admin configuration used in the

context of roleRef allows a RoleBinding object to become privileged.

15. Inactive read-only for root filesystem - The configuration that allows the mounting

of the container’s root file system to be writable with readOnlyRootFileSystem: False.

16. Auto mounted token - The configuration that allows a pod to automatically acti-

vate tokens used for service accounts inside the pod with automountServiceAccountToken:

false. These tokens are used to authenticate requests from processes within the cluster to

the Kubernetes API server.

17. Default ServiceAccount - The configuration that allows a pod to use the default

service account.

79

18. Privileged default ServiceAccount - The configuration that allows a privileged role

to be used by a default service account.

19. Active hostPath - The configuration that allows mounting of a file or a directory from

the host node filesystem into a pod with active hostPath.

20. Inactive runAsNonRoot - The configuration that allows unauthorized write permissions

for the filesystem inside a container of a pod using runAsNonRoot: false.

21. Inactive runAsUser - The configuration that allows a container to run as a root user

inside a pod using runAsUser: false.

Table 5.4 provides a mapping between pod-related security attacks and the derived

configuration parameters. We observe, each attack to include a combination configuration

parameters, e.g., executing the ‘access cluster secret’ requires 15 configuration parameters.

The implication of this finding is that a single configuration in a Kubernetes manifest cannot

lead to any of the studied attacks listed in Section 5.1.6.

80

Table 5.12: Pod Configuration Parameters that Invoke Security Attacks
Current state Expected State Unsafe State Transition Conditions
pod running service exposed ,

pod terminated

pod creation request initiated

(request_authorized &

!mutating_validating_admission_controller_available)

--> (new_pod_creation_request

& (container_breakout | malicious_container |

pod_admission_PRIVILEGED)

--> ((!admission_namespace_lifecycle

& admission_control_bypass))

--> (remote_service_connected_from_cluster

& malicious_container)

pod running service exposed,
pod terminated

pod evicted

(((!pod_cpu_memory_limit_enabled &

!pod_cpu_memory_request_limit_enabled)

& node_resource_quota_enabled) |

(!readinessprobe_enabled & pod_eviction_pod_preemtion &

node_resource_quota_enabled) | (!limit_node_PID

|!limit_pod_PID | !pod_eviction_policy)

| (namespace_resource_quota_enabled &

(!pod_cpu_memory_request_limit_enabled &

!pod_cpu_memory_request_limit_enabled)))

service exposed pod terminated pod unrestricted communication

(request_authorized &

!mutating_validating_admission_controller_available)

--> (new_pod_creation_request

& (container_breakout | malicious_container |

pod_admission_PRIVILEGED)

--> ((!admission_namespace_lifecycle

& admission_control_bypass))

--> (remote_service_connected_from_cluster

& malicious_container)

--> (CAP_NET_RAW | CAP_SYS_ADMIN

| network_request_other_workload

| security_context_privileged

| security_context_run_as_user

| lsm_SECCOMP_enabled | lsm_APPArmor_enabled

| lsm_SELinux_enabled | hostprocess_enabled

| hostNetwork_enabled | hostPID_enabled

| hostIPC_enabled | host_path_enabled

| !container_DropCapabilites | !running_as_NON_ROOT

| pod_admission_BASELINE | !pod_admission_RESTRICTED

| pod_admission_PRIVILEGED | !pod_admission_ENFORCE

| pod_security_exemption_user

| pod_security_exemption_namespace

| pod_security_exemption_workload_pod

| !network_policy_between_pods

| docker_socket_enabled | default_namespace

| service_account_privileged

| service_account_automount_token)

81

 -> State: 1.1 <-
 hostPID_enabled = TRUE
 service_account_automount_token = TRUE
 pod_security_exemption_workload_pod = TRUE
 security_context_privileged = TRUE
 admission_controller_image_scan = FALSE
 service_account_privileged = TRUE
 -> State: 1.2 <-
 ClusterRole_cluster_admin = TRUE
 host_namespace_access = TRUE
 RCE_vulnerability = TRUE
 pod_state = request_authenticated
 -> State: 1.3 <-
 API_request_verb_UPDATE = TRUE
 API_request_verb_PATCH = TRUE
 API_request_verb_DELETE = TRUE
 API_resource_pod = TRUE
 -> State: 1.4 <-
 pod_object_created_by_resource_controller = TRUE
 remote_service_connected_from_cluster = TRUE
 pod_state = request_pod_creation_initiated
 ...
 -> State: 1.5 <-
 pod_state = desired_pod_state_stored_in_etcd
 ...
 -> State: 1.6 <-
 pod_state = pod_schedule_score_phase
 ...
 -> State: 1.7 <-
 host_secret_exfiltration = TRUE
 host_file_system_access = TRUE
 pod_state = pod_schedule_bind_phase
 ...
 -> State: 1.8 <-
 pod_state = kubelet_receives_podspec
 ...
 -> State: 1.9 <-
 pod_state = image_pulled_from_registry
 ...
 -> State: 1.10 <-
 pod_state = image_provided_to_cri
 ...
 -> State: 1.11 <-
 pod_state = volume_mounted
 ...
 -> State: 1.12 <-
 pod_state = pod_starting
 ...
 -> State: 1.13 <-
 pod_state = pod_running
 ...
 -- Loop starts here
 -> State: 1.14 <-
 pod_state = request_pod_creation_initiated
 ...
 -> State: 1.15 <-
 pod_state = desired_pod_state_stored_in_etcd
 ...
 -> State: 1.16 <-
 pod_state = pod_schedule_score_phase
 ...
 -> State: 1.17 <-
 pod_state = pod_schedule_bind_phase
 -> State: 1.18 <-
 image_pull_policy = IFNOTPRESENT
 pod_state = kubelet_receives_podspec
 ...
 -> State: 1.19 <-
 pod_state = image_provided_to_cri
 ...
 -> State: 1.20 <-
 pod_state = volume_mounted
 ...
 -> State: 1.21 <-
 pod_state = pod_starting
 ...
 -> State: 1.22 <-
 pod_state = pod_running
 ...
 -> State: 1.23 <-
 pod_state = request_pod_creation_initiated
 ...

Figure 5.8: A counter-example for over privileged pod

82

1 kind: Pod
2 metadata:
3 name: simple−pod
4 spec:
5 hostPID: true
6 hostNetwork: true
7 hostIPC: true
8 containers:
9 − name: simple−nginx

10 image: nginx
11 command: ['sh', '−c', 'echo Hello World. & & sleep 3600']
12 env:
13 − name: CURRENCY_EXCHANGE_URI
14 value: http://currency−exchange
15 serviceAccountName: sample−sa
16 securityContext:
17 capabilities:
18 add:
19 − CAP_SYS_ADMIN
20 fsgroup: 2000
21 runAsNonRoot: False
22 allowPrivilegeEscalation: true
23 readOnlyRootFileSystem: False
24 automountServiceAccountToken: True
25 privileged: true
26 volumes:
27 − name: test−volume
28 hostPath:
29 path: /data
30 ...
31 kind: RoleBinding
32 metadata:
33 namespace: default
34 subjects:
35 − kind: ServiceAccount
36 name: sample−sa
37 − kind: ServiceAccount
38 name: default
39 roleRef:
40 kind: ClusterRole
41 name: cluster−admin
42 ...
43 kind: Role
44 metadata:
45 name: sample−role
46 namespace: default
47 rules:
48 − resources: ["∗"]
49 verbs: ["∗"]
50 ...
51 kind: Deployment
52 metadata:
53 name: simple−deployment
54 labels:

Active hostPID

Active
hostNetwork Active

hostIPC

Missing resource limits

Missing SSL/TLS
for HTTP

Inactive runAsUser

Capability abuse

Inactive runAsNonRoot
Escalated child process

Inactive
readOnlyRootFileSystem

Auto
mounted token

Privileged securityContext

Active hostPath

Privileged RoleBinding
Default namespace Privileged

ServiceAccount

Default
ServiceAccount

Privileged default
ServiceAccount

Privileged Role

Missing
admission
controller

1

Figure 5.9: Example code snippet to demonstrate attack-akin configurations.

83

5.5 Answer to RQ 5.2

5.5.1 Frequency of Pod Configuration Parameters

We report manifest-based attack coverage (MAC) and repository-based attack coverage

(RAC) metrics. The distribution of MAC and RAC values are presented in Table V. The

‘Combined’ row presents the distribution of MAC and RAC values considering all 6 attacks.

Based on MAC values, on average, a manifest includes 13.7 and 18.1 of the configuration

parameters needed to conduct an attack respectively, for the GitHub and GitLab dataset.

Based on RAC values, on average, a repository includes 18.3 and 22.3 of the configuration

parameters needed to conduct an attack respectively, for the GitHub and GitLab dataset.

Considering both datasets, on average a single manifest and a single repository respectively,

includes 15.9% and 20.3% of the configuration parameters needed to conduct an attack. We

describe the manifest-based attack coverage (MAC) and repository-based attack coverage

(RAC) for GitHub and GitLab dataset for 6 attacks in Table 5.13 and Table 5.14 re-

spectively. For the GitHub dataset, the maximum MAC and RAC values are observed for

database tampering, where a manifest includes 58.8% of the required configuration parame-

ters. In the case of GitLab dataset, maximum MAC and RAC values are observed for four

attacks: access cluster secrets, dashboard maneuver, etcd takeover, and pod disruption. We

observe missing network policy is the most frequently occurring category. We describe the

evaluation result of SLIKUBE+ on the dataset in Table 5.15. We also describe the pod

configuration parameters related to security attacks in Table 5.16.

84

Table 5.13: Manifest-based Attack Coverage (MAC)
Attack
Name

MAC
GitHub GitLab

Min Median Avg. Max Min Median Avg. Max

Access cluster secrets 0.0 16.6 17.4 55.5 0.0 5.5 12.9 55.5
Dashboard maneuver 0.0 16.6 17.4 55.5 0.0 5.5 12.9 55.5
Database tampering 0.0 17.6 21.6 58.8 0.0 17.6 17.6 47.0
Denial of service 0.0 13.3 17.5 53.3 0.0 6.6 13.2 46.6
Etcd takeover 0.0 16.6 17.4 55.5 0.0 5.5 12.9 55.5
Pod disruption 0.0 16.6 17.4 55.5 0.0 5.5 12.9 55.5

Combined 0.0 16.6 18.1 58.8 0.0 5.5 13.7 55.5

Table 5.14: Repository-based Attack Coverage (RAC)
Attack
Name

RAC
GitHub GitLab

Min Median Avg. Max Min Median Avg. Max

Access cluster secrets 0.0 16.6 17.7 55.5 0.0 16.6 21.5 55.5
Dashboard maneuver 0.0 16.6 17.7 55.5 0.0 16.6 21.5 55.5
Database tampering 0.0 17.6 21.9 58.8 0.0 23.5 25.3 47.0
Denial of service 0.0 13.3 17.5 58.8 0.0 20.0 22.5 46.6
Etcd takeover 0.0 16.6 17.4 55.5 0.0 16.6 21.5 55.5
Pod disruption 0.0 16.6 17.4 55.5 0.0 16.6 21.5 55.5

Combined 0.0 16.6 18.3 58.8 0.0 16.6 22.3 55.5

85

Table 5.15: Kubernetes Security Misconfigurations in OSS
Misconfigurations GitHub GitLab

Active hostIPC 1 0
Active hostPID 5 0
Active hostNetwork 11 3
Escalated child process 3 0
Capability abuse 0 20
Privileged securityContext 3 9
Missing Resource Limit 69 10
Missing Network Policy 1,508 396
Default Namespace 95 2
Missing SSL/TLS for HTTP 395 217
Missing admission controller 1509 395
Privileged Role 47 35
Privileged ServiceAccount 73 51
Privileged RoleBinding 11 1
Inactive read-only root file system 227 43
Auto mount token 1 0
Privileged default ServiceAccount 0 1
Default ServiceAccount 784 125
Active hostPath 86 12
Inactive runAsNonRoot 560 72
Inactive runAsUser 556 72

86

Table 5.16: Mapping of Configuration Parameters to Pod-related Attacks
Attack Name Config. Params. Count
Access cluster
secrets

cluster-escalated child process, auto mounted token, capability
abuse, active hostIPC, active hostNetwork, active hostPID, miss-
ing admission controller, privileged securityContext, privileged
role, privileged service account, inactive read-only for root filesys-
tem, inactive runAsNonRoot, inactive runAsUser, default ser-
viceAccount

14

Dashboard ma-
neuver

serviceAccount, escalated child process, auto mounted token, ca-
pability abuse, privileged role binding, active hostIPC, active
hostNetwork, active hostPID, missing admission controller, priv-
ileged securityContext, privileged default serviceAccount, inac-
tive read-only for root filesystem, inactive runAsNonRoot, inactive
runAsUser, default serviceAccount

14

Database tam-
pering

escalated child process, capability abuse, active hostIPC, active
hostNetwork, active hostPath, active hostPID, auto mounted to-
ken, default namespace, missing admission controller, missing net-
work policy, privileged securityContext, privileged service ac-
count, inactive read-only for root filesystem, inactive runAsNon-
Root, inactive runAsUser

15

DOS escalated child process, capability abuse, active hostIPC, active
hostNetwork, active hostPath, active hostPID, auto mounted to-
ken, missing admission controller, missing resource limit, privi-
leged securityContext, inactive runAsNonRoot, inactive runA-
sUser, inactive read-only for root filesystem

13

Etcd takeover escalated child process, auto mounted token, capability abuse, ac-
tive hostIPC, active hostNetwork, active hostPID, missing admis-
sion controller, privileged securityContext, privileged service ac-
count, inactive read-only for root filesystem, inactive runAsNon-
Root, inactive runAsUser, default serviceAccount

13

Pod disruption escalated child process, auto mounted token, capability
abuse, active hostIPC, active hostNetwork, active hostPath,
active hostPID, missing admission controller, privileged
securityContext, privileged role, privileged service account,
inactive read-only for root filesystem, inactive runAsNonRoot,
inactive runAsUser, default serviceAccount

15

87

5.5.2 Comparison of SLIKUBE+ with Existing Tools

We compare our SLIKUBE+ with SLIKUBE tool and existing static analysis tools for

identifying Kubernetes security misconfigurations. SLIKUBE+ reports 12 more security

misconfigurations than SLIKUBE [3]. Similar to SLIKUBE, compare our tool SLIKUBE+

with four state-of-the-art static analysis tool as follows: Checkov [14], KubeLinter [58],

Datree [23], and Snyk [103]. We inspect the policy or rules of each the static analysis tool

from their online documentation and idnetify which of the categories of our SLIKUBE+ tool

are identified by each of these tools. We observe that only SLIKUBE+ detects all 23 category

of security misconfigurations. Checkov, KubeLinter, Datree and Snyk do not identify 7, 3, 4

and 7 categories of Kubernetes security misconfigurations respectively.

Table 5.17: Comparison of SLIKUBE+ with Existing Tools
Misconfiguration Name SLIKUBE+ Checkov KubeLinter Datree Snyk

Active hostIPC ✓ ✓ ✓ ✓ ✓
Active hostNetwork ✓ ✓ ✓ ✓ ✓

Active hostPID ✓ ✓ ✓ ✓ ✓
Capability Abuse ✓ ✓ ✓ ✓ ✓

Escalated child process ✓ ✓ ✓ ✓ ✓
Privileged securityContext ✓ ✓ ✓ ✓ ✓

Missing Resource Limit ✓ ✓ ✓ ✓ ✓
Missing SSL/TLS for HTTP ✓ × × × ×

Default namespace ✓ ✓ ✓ ✓ ✓
Missing network policy ✓ × ✓ × ✓

Missing admission controller ✓ × × × ×
Privileged role ✓ ✓ ✓ ✓ ✓

Privileged ServiceAccount ✓ ✓ ✓ ✓ ✓
Privileged RoleBinding ✓ × ✓ ✓ ×

Inactive read-only for root filesystem ✓ ✓ ✓ ✓ ✓
Auto mounted token ✓ ✓ × ✓ ×

Privileged default ServiceAccount ✓ ✓ ✓ ✓ ✓
Active hostPath ✓ × ✓ ✓ ×

Default ServiceAccount ✓ ✓ ✓ ✓ ✓
Inactive runAsNonRoot ✓ × ✓ ✓ ✓
Inactive runAsUser ✓ × ✓ ✓ ✓

88

Table 5.18: Comparison between SLIKUBE+ and SLIKUBE
Misconfiguration Name SLIKUBE+ SLIKUBE
Active hostIPC ✓ ✓
Active hostPID ✓ ✓
Active hostNetwork ✓ ✓
Escalated child process ✓ ✓
Capability Abuse ✓ ✓
Privileged securityContext ✓ ✓
Missing Resource Limit ✓ ✓
Missing SSL/TLS for HTTP ✓ ✓
Missing network policy ✓ ×
Default namespace ✓ ×
Missing admission controller ✓ ×
Privileged role ✓ ×
Privileged ServiceAccount ✓ ×
Privileged RoleBinding ✓ ×
Inactive read-only root filesystem ✓ ×
Auto mount token ✓ ×
Privileged default ServiceAccount ✓ ×
Active hostPath ✓ ×
Default ServiceAccount ✓ ×
Inactive runAsNonRoot ✓ ×
Inactive runAsUser ✓ ×

5.6 Answer to RQ 5.3

5.6.1 Identification of Pod States Related to Security Attacks

NuXMV generates counterexamples when there is a pod security requirement violation

in our FSM for a pod. We observe the change of individual state variables in the counterexam-

ples. We construct transition conditions as propositional logic. The change of state variables

causes the change in the transition condition. When the transition condition changes, such

as True from False, we observe a transition to an event from the previous event. From

Figure 5.8, we observe that the change of state variables in every pod state of the FSM

allows transition to the subsequent event. We extract the events from the counterexample,

the change in the value of state variables, and pod state.In Table 5.12, in the leftmost

column “Current State”, we specify the state of FSM for a pod from before transition such

as pod running state. Then, in the next column, “Expected State,” we list all the safe states

of the FSM for a pod transitioning from “Current State” state. For instance, a pod should

be in service exposed or pod terminated state as the next state of the pod running state.

In the third column “Unsafe state,” we provide the state of FSM for a pod for transition

from “Current State” due to a combination of misconfigurations. For instance, a transition

89

from pod running state to pod creation request initiated state can happen due to com-

bination of misconfigurations in transition conditions. In the rightmost column “ Transition

Conditions”, we provide the combination of misconfigurations which lead a pod to unsafe

state such as from pod running state to pod creation request initiated state.

We identify the following pod events that occur prior to insecure pod events from the

counterexamples as follows:

Request authenticated (request authenticated): This is the pod event where the

Kubernetes API server authenticates the pod creation request from the practitioner.

Request authorized (request authorized): This is the pod event where the Kuber-

netes API server authorizes the pod creation request.

Pod creation request initiated (request pod creation initiated:): This is the

pod event where the Kubernetes API server creates a pod object from the authenticated and

authorized pod creation request.

Desired pod state stored in etcd (desired pod state stored in etcd): This is

the pod event where the Kubernetes API stores the pod object specification in the etcd

database as a desired pod state.

Pod scheduling score phase(pod schedule score phase): This is the pod event

where the Kubernetes scheduler calculates scores for scheduling a pod.

Pod scheduling bind phase(pod schedule bind phase): This is the pod event where

the Kubernetes scheduler binds the pod to a specific worker node.

Kubelet receives pod specification (kubelet receives podspec): This is the pod

event where the kubelet agent in the worker node receives the pod specification from the

Kubernetes API server.

Image pull from registry (image pulled from registry): This is the pod event

where the kubelet agent in the worker node pulls image from the container image registry.

90

Container registry poisoned (container registry poisoned): This is the pod

event where a malicious agent provides malicious image to kubelet and pushes malicious

image to the container image registry with stolen credentials from kubelet agent.

Image provided to container runtime interface (image provided to cri): This

is the pod event where the kubelet agent provides the container image to the container

runtime interface (CRI).

Volume mounted(volume mounted): This is the state of pod event where the pod

mounts volume for the container and allocates persistent storage for stateful pods.

Pod starting(pod starting): This is the pod event where the pod has a network, has

storage, and at least one container started running inside the pod.

Pod running(pod running): This is the pod event where the container state is RUNNING.

Pod evicted(pod evicted): This is the pod event where one misconfigured pod evicts

other pods from the worker node due to high resource consumption causing a resource-related

denial of service attack.

Service exposed(service exposed): This is the pod event where the running pod

creates an endpoint and exposes the IP address so that other services can access it.

Pod unrestricted communication (pod unrestricted communication): This is

the pod event where the pod or exposed service has some misconfiguration that allows open

network communication and lateral movement inside the Kubernetes cluster.

Remote service connected (remote service connected): This is the pod event

where the pod or exposed service has exposed shell to an unauthorized remote machine.

Among the states involved in the counterexamples, we observe the following states are

involved in security attacks as described in Table 5.19.

91

Table 5.19: Mapping between Pod State and Attacks
State Name Attack
Desired pod state stored in etcd All
Image provided to container runtime interface All
Image pull from registry All
Kubelet receives pod specification All
Pod creation request initiated All
Pod evicted DOS
Pod running Dashboard maneuver, Pod disruption
Pod starting All
Remote service connected Access cluster secrets, Database tampering, Etcd takeover
Request authenticated All
Request authorized All
Volume mounted All

92

Chapter 6

Authentic Learning for Learning Kubernetes Security Misconfiguration Analysis

As per the 2021 CNCF annual survey, 96% of the 19,000 practitioners surveyed are

either using or evaluating Kubernetes for their respective organizations [43]. Furthermore,

the survey highlights that approximately 5.6 million developers globally are utilizing Ku-

bernetes [43]. However, practitioners also acknowledge that Kubernetes has evolved into a

complex software platform with a steep learning curve, emphasizing the need for a skilled

workforce proficient in Kubernetes. [44] [40]. According to the Redhat survey conducted

in 2021, 94% of practitioners reported experiencing incidents related to Kubernetes secu-

rity misconfigurations [94]. To address this issue and cultivate a more skilled cybersecurity

workforce in the industry with expertise in Kubernetes, one potential solution is to educate

students on Kubernetes security misconfigurations

Previous research has demonstrated that authentic learning exercises have proven ef-

fective in enhancing students’ understanding of various subjects, such as mobile application

security [83] and infrastructure-as-code (IaC) [89]. Building upon this, we formulate the

hypothesis that an authentic learning-based exercise will help students in comprehending

Kubernetes security misconfigurations.

• RQ 6.1: How to design authentic learning-based exercise to help students for secure

development of Kubernetes Manifests?

• RQ 6.2: How does authentic learning help students to learn about the secure devel-

opment of Kubernetes Manifests?

93

• RQ 6.3: What instructor-related attributes are useful for students in an authentic

learning-based exercise used for Kubernetes security misconfiguration analysis?

6.1 Methodology

In this section, we describe our methodology by discussing the authentic learning exercise

design for Kubernetes security misconfiguration analysis. Next, we describe our questionnaire

design and deployment process. After that, we discuss the analysis of our questionnaire

results.

6.1.1 Authentic Learning Exercise Design

We designed our authentic learning-based exercise for the Kubernetes security misconfig-

uration and deployed it in the “Software Quality Assurance” course in the fall 2022 semester

at Auburn University. After collecting the feedback from the students, we redeployed our au-

thentic learning-based exercise into two different classes at Auburn University and Tuskegee

University in the spring 2023 semester, respectively. After that, we again deployed the ex-

ercise in fall 2023 and spring 2024 semester at Auburn University. We follow Herrington et

al.’s guidelines for creating authentic learning based exercise [38], [37]. We construct the

three steps of our authentic learning-based exercise as follows:

Concept Dissemination

In this step, we provide authentic context to the student by disseminating the knowledge

related to Kubernetes security misconfigurations [38]. In the class, we introduce students to

containers and tools to automate the management of containers. We specifically focus on one

container management and orchestration tool, Kubernetes. Practitioners use configuration

files known as manifests and the ‘kubectl’ tool to execute the manifests to manage containers

in the Kubernetes cluster. Practitioners develop the manifests using a language called Yet

Another Markup Language (YAML) with .yaml or .yml extension. We introduce the students

94

to Kubernetes security misconfigurations and the use of static security analysis tools to

identify Kubernetes security misconfigurations in Kubernetes manifests. National Institute

of Standards and Technology (NIST) defines a security misconfiguration as a setting within a

computer program that violates a configuration policy, or that permits unintended behavior

that impacts the security posture of a system [77]. In Figure 6.1, we demonstrate a

sample Kubernetes Manifest with security misconfigurations for concept dissemination in

our authentic learning-based exercise in class.

kind: Pod
metadata:
name: example-nginx

spec:
hostPID: true
hostNetwork: true
hostIPC: true
containers:
- name: example-nginx
image: nginx:latest

securityContext:
capabilities:
add:

- CAP_SYS_ADMIN
allowPrivilegeEscalation: true
privileged: true

Activation of hostPID
Activation of hostNetwork

Activation of hostIPC

Capability Misuse
Activation of PrivilegeEscalation

Privileged securityContext

1

Figure 6.1: A Sample Kubernetes Manifest (example-nginx.yaml) with Security Misconfigu-
rations for Concept Dissemination in the Authentic Learning-based Exercise

Hands-on Exercise

In this step, the students learn to conduct authentic activities, and get access to expert

assessment and support from the instructor while participating in the hands-on exercise

taught in the class [38]. The students also get the opportunity to get perspective on multiple

roles both as a practitioner who develops the manifest and who scans the Kubernetes manifest

for security misconfiguration [37]. In the hands-on exercise, we instructed each students to

participate in the exercise individually. We asked the students install ‘Docker’ on their

computers. We introduce the students to an open-source static security analysis tool called

SLIKUBE [3]. We conduct a live demonstration for the students on using SLIKUBE to detect

95

security misconfigurations in Kubernetes. We demonstrated how to download the tool from

DockerHub [25] and instructed them to run it inside the Docker container. We explain to the

students the detailed output of the SLIKUBE presented as a CSV file, such as the directory

column, the path of the manifests column, specific misconfiguration columns, and the total

column that reports the total occurrences of misconfiguration in Kubernetes manifest. For

instance, when students scan the ‘example-nginx.yaml’ Kubernetes manifest in Figure 6.1

as demonstrated by the instructor, the security analysis tool SLIKUBE reports 6 security

misconfigurations: activation of hostPID, activation of hostNetwork, activation of hostIPC,

capability misuse, activation of privilege escalation, privileged securityContext with

1 occurrence for each of the misconfigurations.

Figure 6.2: Overview of in-class experience to detect Kubernetes security misconfigurations
in Kubernetes manifests

Post-lab Exercise

In the post-lab exercise, we provide students with Kubernetes manifests from open-

source repositories(OSS) such as GitHub and GitLab. We ask the students to execute the

security static analysis tool SLIKUBE on the provided Kubernetes manifests. After running

the SLIKUBE on provided manifests, we ask the students to analyze the output of SLIKUBE

and report the top 3 most frequent Kubernetes security misconfigurations with the definition

and consequences for the corresponding Kubernetes security misconfigurations. Moreover,

96

we asked students to complete a survey on authentic learning-based exercises. In Figure 6.3,

we demonstrate all three steps of our authentic learning-based exercise.

Figure 6.3: Overview of Authentic Learning-based Kubernetes Security Misconfiguration
Analysis

6.1.2 Questionnaire Design and Deployment

Previous research has demonstrated that authentic learning exercises have proven ef-

fective in enhancing students’ understanding of various subjects, such as mobile application

security [83] and infrastructure-as-code (IaC) [89]. We take motivation from prior work and

expanded their questionnaires and included in our questionnaire set. We use questionnaires

to collect feedback from the students after the post-lab exercise on the usefulness of the

authentic learning exercise for Kubernetes security misconfiguration analysis. We design our

questions related to students’ backgrounds with the following questions:

(i) students’ academic background and prior experience in software engineering,

(ii) students’ experience of the authentic learning-based exercise,

(iii) students’ perception of the usefulness of the exercise, and

(iv) students’ perception of the instructor.

We deploy the survey using the online Qualtrics platform. We describe our survey design

and deployment in this section.

97

Question-Related to Students’ Background and Experience in Software Engi-

neering

As part of our study, we administered a questionnaire consisting of three questions

aimed at assessing the students’ background in the class. The participating students are

from “Software Quality Assurance” course. As part of our study, we ask the following

question to assess the students’ academic background in the class. We also ask questions

to gather information regarding the students’ prior experience in cybersecurity, software

quality assurance activities, and program analysis tools before participating in the workshop

exercise. The specific questions were as follows:(i) How would you rate your experience in

cybersecurity prior to the workshop? (ii) How would you rate your experience in software

quality assurance activities prior to the workshop? (iii) How would you rate your experience

with program analysis tools prior to the workshop?

We follow the recommendations of Kitchenham [52] and create a five-item Likert scale

as follows: ‘Expert’, ‘Somewhat Expert’, ‘Knowledgable’, ‘Little knowledge’ and ‘No knowl-

edge’.

Question Related to Usefulness of Authentic Learning-based Exercise

As part of our evaluation process, we administered a six-question questionnaire to the

students to assess the perceived usefulness of our authentic learning-based motivated from

the prior work in IaC [89]. Additionally, we included one question specifically targeting

the workshop’s usefulness in facilitating learning about Kubernetes misconfigurations. The

questions and response options were as follows:

(i) Which part of the authentic learning experience was useful for you? - Pre-stage

(ii) Which part of the authentic learning experience was useful for you? - In-class experience

(iii) Which part of the authentic learning experience was useful for you? - Post-stage

(iv) Which part of the authentic learning experience was useful for you? - Pre-stage and

98

in-class experience

(v) Which part of the authentic learning experience was useful for you? - Pre-stage and

post-stage

(vi) Which part of the authentic learning experience was useful for you? - All three steps

We ask the participating students to rate the usefulness of each aspect of the authentic

learning experience using a five-item Likert scale, with response options ranging from ‘Ex-

tremely useful’, ‘Useful’, ‘Moderately useful’, ‘Little useful’, to ‘Not at all useful’.

Question Related to Student’s Perception on Instructor Attributes

Prior research revealed that instructor attribute is correlated with students’ learning

experience [67], [97]. Researchers also report that instructor background [47], [82], en-

thusiasm [50], and engagement [69]are correlated with student’s learning experiences. In

our study we considered five instructor-related attributes as follows: ‘academic background’,

industry background’, ‘conducted research’, ‘enthusiasm’, and ‘in-person engagement’. As

part of our study, we provided a set of questionnaires to the students, consisting of six ques-

tions that aimed to assess the perceived usefulness of our instructor attributes for authentic

learning-based exercises. We use a five-item Likert scale: ‘Extremely Useful’, ‘Useful’, ‘Mod-

erately Useful’, ‘Little Useful’ and ‘Not at all Useful’ to answer each question.

The questions and response options were as follows:

(i) Which attributes of the instructor was useful for you ? - Academic background

(ii) Which attributes of the instructor was useful for you ? - Industry background

(iii) Which attributes of the instructor was useful for you ? - Conducted research

(iv) Which attributes of the instructor was useful for you ? - Enthusiasm

99

(v) Which attributes of the instructor was useful for you ? - In-person engagement

(vi) Which attributes of the instructor was useful for you ? - All of the above

Question Related to Student’s Perception on Usefulness of Authentic-learning

Exercise

We provide two questions that aimed to assess the perceived usefulness of our exercise

in learning Kubernetes misconfigurations and secure automated Kubernetes configuration

management for authentic learning-based exercise. We use the questions based on the use-

fulness of authentic learning in IaC [89]. The questions and response options were as follows:

(i) Did the workshop help you to learn about Kubernetes misconfigurations?

(ii) Did the workshop help you to learn about automated configuration management tools

and how they work?

We use a five-item Likert scale: ‘Extremely Helpful’, ‘Helpful’, ‘Somewhat Helpful’,

‘Little Helpful’ and ‘Not at all Helpful’ to answer each question. Moreover, we ask students

for additional

Questionnaire Deployment

We deployed the questionnaires using the online Qualtrics platform. The students pro-

vided answers in the questionnaires after completing the post-lab exercise. We asked for

consent from the students before their participation.

6.1.3 Questionnaire Analysis

We use the responses from the students participating in the online questionnaire to

answer our research questions.

100

Methodology to Answer RQ 6.1

We answer RQ1 by analyzing the responses from the questionnaire described in Sections

6.1.2 and 6.1.2. We consider the educational background of the students in the class, whether

undergraduates or graduates. We also consider students’ prior experiences in software engi-

neering, namely (i) students’ experience in software quality assurance, (iii) students’ expe-

rience in cybersecurity, and (iv) students’ experience in program analysis tools. Regarding

students’ prior experience, we recorded their responses using a five-item Likert scale: ‘Ex-

pert,’ ‘Somewhat Expert,’ ‘Knowledgeable,’ ‘Little Knowledge,’ and ‘No Knowledge.’ We

also consider the usefulness of the students’ authentic learning experience on each step of the

authentic learning exercise, namely ‘Pre-stage’, ‘In-class experience’, ‘Post-stage’, ‘Pre-stage

and in-class experience’, ‘Pre-stage and post-stage’, and ‘All three steps’. We record their

responses using a five-item Likert scale: ‘Extremely Useful’, ‘Useful’, ‘Somewhat Useful’,

‘Little Useful’ , and ‘Not Useful’. Furthermore, we address the students’ comments as part

of their feedback. We report the analysis of students’ feedback for authentic learning. Based

on the students’ feedback and comments, we modify and design our authentic-learning-based

exercise to deploy them in the subsequent semester for their effective learning.

Methodology to Answer RQ 6.2

We answer RQ2 by analyzing the responses from the questionnaire described in Sec-

tion 6.1.2. We report the usefulness of our authentic learning-based exercise by getting the

students’ responses on (i) whether the exercise helps the students in learning Kubernetes

security misconfiguration and (ii) whether the exercise helps the students learn about auto-

mated configuration management tools and how they work. We record their responses using

a five-item Likert scale: ‘Extremely Useful’, ‘Useful’, ‘Somewhat Useful’, ‘Little Useful’ and

‘Not Useful’. We report the student’s perception of the usefulness of the authentic learning

exercise.

101

Methodology to Answer RQ 6.3

We answer the RQ3 by analyzing the responses from the questionnaire described in Sec-

tion ref survey-design-instructor-attributes. We consider five instructor-related attributes:

‘Academic background’, ‘Industry background’, ‘Conducted research’, ‘Enthusiasm’ and ‘In-

person engagement’. Additionally, we include an option for students to indicate whether all

the attributes are useful by providing ‘All of the above’ option. We record their responses

using a five-item Likert scale: ‘Extremely Useful’, ‘Useful’, ‘Somewhat Useful’, ‘Little Useful’

and ‘Not useful’. We report the perceived usefulness of instructor attributes for authentic

learning.

6.2 Results

During our first deployment of the exercise in the fall 2022 semester, we conducted

data collection by administering a survey to students enrolled in the “Software Quality

Assurance” course at the Auburn University. A total of 61 responses were collected from

the students, providing valuable feedback on the authentic learning-based exercise. Based

on the feedback received in the fall 2022 semester, we redeployed the authentic learning-

based exercise in Spring 2023. We repeat the process and deploy in the Fall 2023 and

Spring 2024 semesters. In total, we collect 246 responses from the students. Each student

who participated in the exercise completed all 3 steps and completed the survey. To provide

further insights into the survey participants, Figure 6.4 showcases the distribution of students

based on their educational background during their participation in the survey. Notably, we

observe that 82.93% of the students identified themselves as undergraduate seniors, while

15.45% were graduate master’s students. Furthermore, we notice that a minority of the

students, comprising less than 2% of the total, consisted of graduate PhD students and junior

undergraduates. In Table 6.1, we provide the educational background of the participating

students per semester.

102

0.41%

1.22%
15.45%

82.93%

Response Undergraduate − JUNIOR Undergraduate − SENIOR Graduate − MSC Graduate − PHD

Figure 6.4: Educational Background of Students Participating in the Authentic Learning-
based Exercise

6.2.1 Answer to RQ 6.1

We answer RQ1 by presenting the findings regarding the perception of students based

on their diverse backgrounds, including their educational level, expertise in software quality

assurance, expertise in software security, and expertise in static analysis tools. We report

our findings related to students’ perception of learning security misconfigurations in Figure

6.5, Figure 6.6, Figure 6.7 and Figure 6.8, respectively. We also report our findings related

to students’ perception in learning about automated configuration management tools and

how the tools work in Figure 6.9, 6.10, 6.11 and 6.12

103

Table 6.1: Educational Background of Participating Students
Semester Undergraduate Junior Undergraduate Senior Graduate Masters Graduate PhD Total
Fall 2022 0 55 6 0 61

Spring 2023 1 54 14 1 70
Fall 2022 0 44 16 0 60

Spring 2024 2 51 2 0 55
Total 3 204 38 1 246

36.8% 5.3% 2.6%21.1%34.2%

100.0%

33.3% 33.3%33.3%

40.2% 5.9% 3.4%19.1%31.4%

Undergraduate − JUNIOR

Undergraduate − SENIOR

Graduate − MSC

Graduate − PHD

0% 25% 50% 75% 100%
Percentage

E
du

ca
tio

n
Le

ve
l

Did the workshop help you to learn about Kubernetes misconfigurations? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.5: Reported Perception of Students on the Authentic Learning-based Exercise to
Learn Kubernetes Misconfigurations Based on Their Educational Background

10.0% 10.0%80.0%

41.9% 3.8% 3.8%16.2%34.3%

38.8% 8.2% 2.0%25.5%25.5%

31.2% 18.8% 6.2%25.0%18.8%

52.9% 5.9%5.9%35.3%

No knowledge

Little knowledge

Knowledgable

Somewhat Expert

Expert

0% 25% 50% 75% 100%
Percentage

E
xp

er
tis

e
in

 S
of

tw
ar

e
Q

ua
lit

y
A

ss
ur

an
ce

Did the workshop help you to learn about Kubernetes misconfigurations? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.6: Reported Perception of Students on the Authentic Learning-based Exercise to
Learn Kubernetes Misconfigurations Based on Their Expertise in Software Quality Assurance

104

100.0%

40.3% 4.2% 4.2%15.3%36.1%

38.9% 6.1% 2.3%25.2%27.5%

43.5% 17.4% 8.7%13.0%17.4%

46.7% 6.7%46.7%

No knowledge

Little knowledge

Knowledgable

Somewhat Expert

Expert

0% 25% 50% 75% 100%
Percentage

E
xp

er
tis

e
in

 C
yb

er
se

cu
rit

y

Did the workshop help you to learn about Kubernetes misconfigurations? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.7: Reported Perception of Students on the Authentic Learning-based Exercise to
Learn Kubernetes Misconfigurations Based on Their Expertise in Cybersecurity

10.0%90.0%

44.3% 4.3% 4.3%14.3%32.9%

40.2% 6.3% 3.1%26.0%24.4%

37.5% 16.7% 4.2%12.5%29.2%

33.3% 13.3%53.3%

No knowledge

Little knowledge

Knowledgable

Somewhat Expert

Expert

0% 25% 50% 75% 100%
Percentage

E
xp

er
tis

e
in

 S
ta

tic
 A

na
ly

si
s

To
ol

s

Did the workshop help you to learn about Kubernetes misconfigurations? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.8: Reported Perception of Students on the Authentic Learning-based Exercise to
Learn Kubernetes Misconfigurations Based on Their Expertise in Static Analysis Tools

Upon analysis, we observed that a significant majority of graduate master’s students

(92.1%), undergraduate senior students (90.7%),and graduate PhD students (100%) find our

designed authentic learning-based exercise to be helpful in learning about Kubernetes mis-

configurations. We also observe 92.7% of the undergraduate senior students, 92.1% graduate

master’s students, and 100% graduate PhD students report that they learn about auto-

mated configuration management tools and how they work. However, it is noteworthy that

only 66.66% undergraduate students reported finding the exercise to be helpful in learning

105

31.6% 5.3% 2.6%21.1%39.5%

100.0%

33.3% 33.3%33.3%

46.6% 4.4% 2.9%18.1%27.9%

Undergraduate − JUNIOR

Undergraduate − SENIOR

Graduate − MSC

Graduate − PHD

0% 25% 50% 75% 100%
Percentage

E
du

ca
tio

n
Le

ve
l

Did the workshop help you to learn about automated configuration management tools and how they work? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.9: Reported Perception of Students on the Authentic Learning-based Exercise to
Learn Automated Configuration Management Tools and How the Tools Work Based on Their
Educational Background

10.0%90.0%

44.8% 3.8% 2.9%17.1%31.4%

46.9% 5.1% 2.0%23.5%22.4%

31.2% 18.8% 6.2%18.8%25.0%

58.8% 5.9%5.9%29.4%

No knowledge

Little knowledge

Knowledgable

Somewhat Expert

Expert

0% 25% 50% 75% 100%
Percentage

E
xp

er
tis

e
in

 S
of

tw
ar

e
Q

ua
lit

y
A

ss
ur

an
ce

Did the workshop help you to learn about automated configuration management tools and how they work? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.10: Reported Perception of Students on the Authentic Learning-based Exercise
to Learn Automated Configuration Management Tools and How the Tools Work Based on
Their Expertise in Software Quality Assurance

Kubernetes security misconfigurations and automated configuration management tools, re-

spectively. In Figure 6.5, and 6.9, we provide an overview of the student’s perception of

our authentic learning-based exercise based on their education level.

From Figure 6.6, 6.7, 6.8, 6.10, 6.11, and 6.12, we observe that the students who

has prior expertise in software quality analysis, software security and static analysis report

the exercises are helpful for them to learn about Kubernetes security misconfigurations and

automated configuration management tools. Also, We find that the students who evaluate

themselves as “Expert” and “Somewhat Expert” have learned better than other students

106

100.0%

44.4% 5.6% 2.8%15.3%31.9%

45.8% 3.8%2.3%23.7%24.4%

43.5% 13.0% 8.7%13.0%21.7%

40.0% 6.7%53.3%

No knowledge

Little knowledge

Knowledgable

Somewhat Expert

Expert

0% 25% 50% 75% 100%
Percentage

E
xp

er
tis

e
in

 C
yb

er
se

cu
rit

y

Did the workshop help you to learn about automated configuration management tools and how they work? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.11: Reported Perception of Students on the Authentic Learning-based Exercise
to Learn Automated Configuration Management Tools and How the Tools Work Based on
Their Expertise in Cybersecurity

100.0%

45.7% 4.3% 2.9%17.1%30.0%

47.2% 3.9% 3.1%22.8%22.8%

41.7% 16.7% 4.2%12.5%25.0%

40.0% 13.3%46.7%

No knowledge

Little knowledge

Knowledgable

Somewhat Expert

Expert

0% 25% 50% 75% 100%
Percentage

E
xp

er
tis

e
in

 S
ta

tic
 A

na
ly

si
s

To
ol

s

Did the workshop help you to learn about automated configuration management tools and how they work? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.12: Reported Perception of Students on the Authentic Learning-based Exercise
to Learn Automated Configuration Management Tools and How the Tools Work Based on
Their Expertise in Static Analysis Tools

in the class. One potential reason can be the lack of adequate technical background to

follow through with the hands-on exercise and perform post-lab exercise. For instance, one

student reports that “I could not get docker to install correctly. I don’t know why, but with

many of the recent workshops, even if I follow the instructions one-to-one, my laptop just

doesn’t agree with the software. It is pretty frustrating to not even be able to start these

workshops.” Another student reports that “This workshop was very informative, and using

docker was a plus because it is useful in industry.”. Our results suggest that our designed

workshop exercise is more suitable for students with prior relevant technical background.

107

In the subsequent iteration of our exercise deployment, we integrate prerequisite technical

background concept dissemination and more detailed installation instruction in the workshop

to make our authentic learning-based exercise more usable for students with little to no

background in security, static analysis, and software quality assurance.

These findings demonstrate the importance of considering students’ prior software en-

gineering background and educational levels when designing and implementing authentic

learning-based exercises. The results highlight the positive impact of our authentic learning-

based exercise on students with higher educational levels and expertise in software quality

assurance, software security, and static analysis tools.

6.2.2 Answer to RQ 6.2

We report students’ perceptions on the usefulness of the authentic learning exercise

steps. We find that students perceive the usefulness of our ‘Pre-Stage’ step, ‘In-Class Ex-

perience’ step and ‘Post-Stage’ step of our authentic learning exercises are 88.7%, 93.1% ,

and 91.5% , respectively. Based on the students response on the usefulness of the authentic

learning-based exercise steps, we observe that 29.3%, and 48.8% of the students find all the

three steps “Extremely useful” and “Useful” respectively. We notice that only 2.4% of the

students report that all 3 steps of our designed authentic learning-based exercise are “Not

useful at all”.

108

2.8%8.5%21.5%41.1%26.0%

2.4%4.5%15.9%33.3%43.9%

2.8%5.7%15.4%42.7%33.3%

2.4%4.9%18.3%37.8%36.6%

2.4%4.9%16.3%46.3%30.1%

2.4%3.7%15.9%48.8%29.3%

Pre−Stage

In−Class Experience

Post−Stage

Pre−Stage and In−Class Experience

Pre−Stage and Post−Stage

All three steps

0.00 0.25 0.50 0.75 1.00
Proportion

A
ut

he
nt

ic
 L

ea
rn

in
g

E
xe

rc
is

e
S

te
ps

Responses Not at all useful Little useful Moderately useful Useful Extremely useful

Figure 6.13: Reported Perception of Students on the usefulness of Authentic Learning-based
Exercise

3.3%

6.1%

19.5%

31.7%

39.4%

Did the workshop help you to learn about Kubernetes misconfigurations? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.14: Overall Perception of Students on the Authentic Learning-based Exercise to
Learn Kubernetes Security Misconfiguration

109

We demonstrate the overall perception among all the students in the class on how this

authentic learning-based exercise helps them understand Kubernetes security misconfigura-

tion in Figure 6.14. We find that 31.7%, 39.4% , 19.5% of the students report that they

find the authentic learning-based exercise “Very helpful”, “Helpful” and “Somewhat helpful”

respectively. We find 6.1% and 3.3% students report the exercise is “Little helpful” and “Not

at all helpful”.

2.8%
4.9%

18.7%

29.7%

43.9%

Did the workshop help you to learn about automated configuration management tools and how they work? Not at all helpful Little helpful Somewhat helpful Helpful Very helpful

Figure 6.15: Overall Perception of Students on the Authentic Learning-based Exercise to
Learn Automated Configuration Management Tools and How the Tools Work

We also discuss the overall perception among all the students in the class on how this

authentic learning-based exercise helps them learn automated configuration management

tools and how they work in Figure 6.15. We find that 29.7%, 43.9% , 18.7% of the students

110

report that they find the authentic learning-based exercise “Very helpful”, “Helpful” and

“Somewhat helpful” respectively. We find 4.9% and 2.8% students report the exercise is

“Little helpful” and “Not at all helpful”.

6.2.3 Answer to RQ 6.3

We answer RQ3 by reporting students’ perceptions of instructor attributes in Fig-

ure 6.16. The students find instructor attributes to be beneficial for authentic learning-based

exercises. From Figure 6.16, we observe that 84.2% of students find the instructor’s industry

background ‘Extremely Useful’ or ‘Useful.’ We also observe that on average, ¡1% students

report that the instructor’s background is ‘Not useful at all’. Students find the instructor’s

academic background, industry experience, prior research background, enthusiasm, and in-

person engagement to be useful for concept dissemination.

0.8%6.5%13.8%34.6%44.3%

0.8%5.3%9.8%38.2%45.9%

0.8%5.3%15.9%37.8%40.2%

0.4%4.1%12.2%38.2%45.1%

1.2%3.7%12.6%35.8%46.7%

0.8%2.8%12.2%41.1%43.1%

Academic background

Industry background

Conducted research

Enthusiasm

In−person engagement

All Instructor Attributes

0.00 0.25 0.50 0.75 1.00
Proportion

In
st

ru
ct

or
 A

ttr
ib

ut
es

Responses Not at all useful Little useful Moderately useful Useful Extremely useful

Figure 6.16: Reported Perception of Students of the Instructor Background for Authentic
Learning-based Exercise

111

Chapter 7

Discussion

7.1 Implication for Practitioners

7.1.1 Application of Kubernetes Security Best Practices

Kubernetes provides utilities for users to manage containers at scale. However, our

description of the 11 practices in Section 3.3 shows that effective and secure usage of Kuber-

netes requires the implementation of security practices applicable for multiple components

within the Kubernetes installations: containers, pods, ‘etcd’ database etc. Applying the 11

practices mentioned above in Section 3.3 also needs a deep understanding of Kubernetes

components and configurations. Our discussion in Section 3.3 can be helpful in two ways:

first, understand the components where security practices are applicable. Second, practition-

ers who already have Kubernetes in place can use our identified practices as a benchmark

and compare their usage of practices.

7.1.2 Application of Security Static Analysis

SLIKUBE+ extends SLIKUBE with 13 additional security misconfigurations. We rec-

ommend practitioners use our security static analysis tool SLIKUBE+ to perform regular

scanning to avoid the propagation of misconfigurations.

7.1.3 Better Understanding of Pod-related Configuration Parameters

We verify the pod security requirements using the NuXMV model checker and identify

security attacks from the counterexamples. The practitioner can use our research to have

112

a better understanding of the consequences of pod configuration parameters and how the

parameters can pose a threat to the overall security posture of Kubernetes cluster.

7.2 Implication for Researchers

7.2.1 Baseline for Future Research

Our discussion in Section 2.2 shows that Kubernetes security to be an under-explored

research area. Our derived list of security practices can provide the groundwork for Ku-

bernetes security research. Our empirical study lays the groundwork for conducting future

research in the following directions: (i) derivation and application of FSM-based approaches

to investigate reliability concerns for Kubernetes along with security attacks; and (ii) repli-

cation of our FSM-based approach for other Kubernetes entities, such as opera- tors, control

planes, and network planes.

7.2.2 Enhancing Security Analysis Tools

Researchers constructed security analysis tools that detect 11 pod-related configuration

parameters [88]. Researchers conclude that each of the configuration parameter is important

as they can cause security attack [88]. Moreover, existing security analysis tools such as

KubeLinter [58], Checkov [14], Snyk [103] report one configuration parameter at a time. In

our research we have demonstrated that a single configuration parameter can not be used

to conduct a security attack and we have demonstrated in Table 5.16 that we need at

least a combination 13 pod-related configuration parameters to conduct an security attack

in Kubernetes. Researchers can incorporate attack-related information by emphasizing the

fact that a single configuration parameter does not cause an attack. Without any context,

a practitioner may ignore the detected misconfiguration as false alert and not take any

action to fix. That is why encourage researchers and toolsmiths to improve security analysis

tools for Kubernetes. In Table 5.13 and Table 5.14, we not only report the percentage of

configuration parameters present in each manifest or repository rather we show the relevance

113

of pod configuration parameters in a manifest or in a repository to cause a security attack

in Kubernetes.

7.2.3 Automated Framework for Identifying Pod-Related Configuration Param-

eters

We describe the existing challenges in constructing finite state machines for Kubernetes

and discuss the possible ways for future researchers to address the challenges.

Advancing Context-Aware FSM Models

Our approach involves creating a finite state machine for a pod in Kubernetes by har-

nessing knowledge extracted from various Internet artifacts and the official Kubernetes doc-

umentation. As a result, the state of the finite state machine in our model is influenced by

specific pod security requirements and assumptions of the model designer. In the past, re-

searchers have extracted finite state machines from component interactions by instrumenting

conformance tests to detect logical vulnerabilities in cellular network protocols [48].

Presently, Kubernetes requires approximately 380 conformance tests for all its distri-

butions from various vendors, making them essential components of the system [61]. Re-

searchers can now employ source code level instrumentation through annotations in Kuber-

netes conformance tests to generate information-rich logs. These logs can help identify the

state of a Kubernetes object, corresponding actions, and the values of function parameters,

thus enabling the detection of state transitions.

Utilizing instrumentation in conformance tests will help researchers in generate information-

rich logs for all the conformance tests. From the logs, researchers can identify the interaction

between the components in Kubernetes and build semantically meaningful models. Such

models can play a crucial role in identifying misconfiguration-related vulnerabilities and

logical vulnerabilities present in Kubernetes.

114

Extending Verification for Enhancing Completeness

In our research, we have developed a finite state model based on existing knowledge

extracted from the official Kubernetes documentation and various Internet artifacts. Our

model abstracts a running Kubernetes cluster in the context of its individual components.

It represents the abstraction of the pod life cycle, its phases, the containers within each pod,

and their states. Prior research has demonstrated that achieving soundness and completeness

for parameterized verification problems is generally undecidable [9] [45].

In constructing the pod finite state model, we primarily focused on soundness rather

than completeness. We have ensured that our FSM model is sound and does not generate

false positives. Hence, whenever our model checker identifies a pod security requirement

violation, it is indeed valid. However, our approach is not complete, as it cannot detect all

possible violations. We have only extracted the necessary information from the documenta-

tion and internet artifacts to construct state machines. To improve the completeness of our

approach, researchers can incorporate Kubernetes conformance testing to cover more interac-

tion among the Kubernetes components. The coverage of tests will enhance the completeness

of our approach, as it can detect more possible violations.

Utilizing Isolation Boundaries for Kubernetes Entities

Kubernetes is a complex software system with various isolation boundaries. The isola-

tion boundary can be defined as the separation between the entities in a system environment

that protects each entity from threats from other entities in the system. Isolation boundary

can be specified as machine-level, process or component-level, and trust boundary level. For

instance, a pod running with a misconfiguration hostIPC: true may put the other pods

at a security risk if they run in the same worker node rather than a different worker node.

If an attacker get an access to the misconfigured pod with remote code execution then the

attack path to compromise the pods in the same worker node will be different than the pods

running in the other working nodes in the cluster. In our research, we did not explicitly

115

define the isolation boundary to establish the threat model against a motivated attacker and

extracting the attack context from the counterexamples.

To address this, future researchers can design the model to specify machine-level isola-

tions, such as those for the scheduler, controller, and API server residing in control plane

nodes, as well as Kubelet, Kube-proxy, and user-specified pods running in worker nodes.

Additionally, researchers can include the trust boundary of components within their model

design consideration. For example, a pod and the containers inside it are within the same

trust boundary. By defining isolation boundaries, researchers can better identify the attack

context from the counterexamples.

7.3 Implication for Educators

Our result in Section 6.2.1 suggests that students with prior background in security,

software quality assurance and static analysis tools find the exercise helpful for them to learn

about the Kubernetes security misconfigurations. From Figure 6.14 and 6.15, we observe

that 90.6% and 92.3% of the students report that they learn Kubernetes security miscon-

figuration and how the automated configuration management tools work. Also, from Figure

6.13, we observe that 94% of the students perceive the steps of authentic learning-based

exercise as ‘Extremely Useful’, ‘Useful’ and ‘Somewhat Useful’. Based on the student’s re-

sponses, the authentic learning-based exercise is very effective for learning about Kubernetes

and misconfigurations. From Figure 6.16, we observe that the industry experience of the

instructor is pivotal for concept dissemination as 84.2% students report it as ‘Extremely Use-

ful’ or ‘Useful.’ However, we also observe students find other attributes such as ‘Enthusiasm’

and ‘In-person Engagement’ beneficial. Even if the instructor does not have adequate experi-

ence in industry or research background, they can conduct effective, authentic learning-based

exercises by showing enthusiasm and engaging with the students in class.

116

7.4 Threats to Validity

In this Section, We describe the limitations of our research work.

7.4.1 Conclusion Validity

The identified security best practices described in Section 3.3 can be susceptible to biases

of the rater who identified the practices by applying open coding. We mitigate this limitation

by allocating another rater who applied closed coding. The 13 additional misconfiguration

categories of SLIKUBE+ described in Section 5.5 may return false positives if it is evaluated

on the proprietary dataset. Our construction of a finite state machine to abstract Kubernetes

cluster is dependent on pod phases, container states, pod status and their relationships

described in the Internet artifacts and Kubernetes documentation. Hence the transition

relations may result in an unrealistic attack path with false positive counter-examples. We

mitigated this limitation by validating each of the counterexamples with counterexample

guided abstraction refinement(CEGAR) approach to derive realizable attack steps to conduct

security attack. Our evaluation result in Section ?? of the survey consists of 127 members

and the background of the students may create a bias. We mitigate this bias by deploying

the authentic learning module into 3 courses in 2 universities in fall 2022 and spring 2023

semester.

7.4.2 Construct Validity

Our identified categories in Section 3.3 are susceptible to experimenter bias in which

author’s professional experience can influence the category results. To collect the pod prop-

erties, we systematically curating Internet artifacts to identify pod properties related to pod

security requirements in Section 5.1.1. The list of pod properties in Table 5.1 can be

susceptible to author’s bias.

117

7.4.3 External Validity

Our identified security best practices in Section 3.3 might not be generalizable as we

might have excluded practices unique to the proprietary domains, and not discussed publicly

in Internet artifacts. The evaluation of SLIKUBE+ is limited to our dataset described in

Table 5.10. The validation of attacks in the kubeadm cluster may not be generalizable and

replicable in all other distribution of Kubernetes as the Kubernetes version and relevant

components change very frequently. Results in Section 6.2.2, may not be generalizable as

we did not survey the students who are enrolled in other courses where Kubernetes security

is taught.

7.4.4 Internal Validity

We acknowledge that the our Internet artifact search process describe in Section 3.2

and Section 5.1 are not comprehensive. We also acknowledge that the limited number of

manifests we consider for constructing SLIKUBE+ rules can impact the credibility of our

tool.

118

Chapter 8

Conclusion

Kubernetes has become the go-to tool for implementing the practice of automated con-

tainer orchestration. While Kubernetes has yielded benefits for IT organizations, security

misconfigurations can make Kubernetes-based software deployments susceptible to security

attacks. To help practitioners secure their Kubernetes cluster, systematization of knowledge

related to practitioner-reported security best practices can help practitioners in securing

Kubernetes installations. We conduct a qualitative analysis of 104 Internet artifacts, such

as blog posts, to identify 11 security best practices for Kubernetes. To help practitioners

understand the consequences of pod related security misconfiguration, we conduct a system-

atic investigation of pod-related configuration parameters that can cause security attacks in

kubernetes pods. In our empirical study, we have used a FSM-based approach to determine

a set of configuration parameters that facilitate security attacks for pods. We identify 6 at-

tacks unique to Kubernetes that can be facilitated using combina- tions of 21 configuration

parameters. We construct an authentic learning module for Kubernetes security misconfig-

urations and a survey to collect feedback. We deploy the authentic learning module into

among 246 students across 4 semesters. We evaluate the feedback from the students and

observe that 90.6% and 92.3% of the students report that they learn Kubernetes security

misconfiguration and how the automated configuration management tools work. We also

observe that 94% of the students perceive the steps of authentic learning-based exercise as

‘Extremely Useful’, ‘Useful’ and ‘Somewhat Useful’. Students also report that industry ex-

perience of the instructor is pivotal for concept dissemination as 84.2% students report it as

‘Extremely Useful’ or ‘Useful.’

119

We discuss the limitations of the dissertation in Section 7.4. Furthermore, we provide

the implication for practitioners, opportunities for future researchers to build upon our work

and implication for educators in Section 7.1, Section 7.2 and Section 7.3, respectively.

Our work will help practitioners in adopting security best practices. Moreover, practitioners

will understand how the misconfigurations in Kubernetes manifests can make the Kubernetes

environment susceptible to security attacks. We expect our research will help the researchers

further advance the science of secure Kubernetes manifest development.

120

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In
12th USENIX symposium on operating systems design and implementation (OSDI 16),
pages 265–283, 2016.

[2] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies. We don’t need
another hero?: The impact of ”heroes” on software development. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP ’18, pages 245–253, New York, NY, USA, 2018. ACM.

[3] akondrahman. akondrahman/sli-kube, 2022.

[4] M. S. Akter, H. Shahriar, D. Lo, N. Sakib, K. Qian, M. Whitman, and F. Wu. Authen-
tic learning approach for artificial intelligence systems security and privacy. In 2023
IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC),
pages 1010–1012. IEEE, 2023.

[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. Cherryp-
ick: Adaptively unearthing the best cloud configurations for big data analytics. In 14th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
17), pages 469–482, 2017.

[6] S. K. Andrew Fletcher and H. Huijser. Authentic learning using mobile applications
and contemporary geospatial information requirements related to environmental sci-
ence. Journal of Geography in Higher Education, 46(2):185–203, 2022.

[7] Anonymous. Dataset for paper.

[8] V. Antinyan, M. Staron, and A. Sandberg. Evaluating code complexity triggers, use
of complexity measures and the influence of code complexity on maintenance time.
Empirical Software Engineering, 22(6):3057–3087, 2017.

[9] K. R. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett., 22(6):307–309, 1986.

[10] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.

[11] S. Bobkov, A. Teslyuk, S. Zolotarev, M. Rose, K. Ikonnikova, V. Velikhov, I. Var-
tanyants, and V. Ilyin. Software platform for european xfel: Towards online experi-
mental data analysis. Lobachevskii Journal of Mathematics, 39(9):1170–1178, 2018.

121

[12] D. B. Bose, A. Rahman, and M. S. I. Shamim. ’under-reported’ security defects in
kubernetes manifests. In EnCyCriS 2021. IEEE, 2021.

[13] D. B. Bose, A. Rahman, and S. I. Shamim. ‘under-reported’ security defects in ku-
bernetes manifests. In 2021 IEEE/ACM 2nd International Workshop on Engineering
and Cybersecurity of Critical Systems (EnCyCriS), pages 9–12. IEEE, 2021.

[14] bridgecrew. checkov. https://www.checkov.io/4.Integrations/Kubernetes.html,
2022. [Online; accessed 12-May-2022].

[15] Canonical. Kubernetes and cloud native operations report 2021, 2021.

[16] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuxmv symbolic model checker. In International
Conference on Computer Aided Verification, pages 334–342. Springer, 2014.

[17] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem, et al. Handbook of model checking,
volume 10. Springer, 2018.

[18] CNCF. With kubernetes, the u.s. department of defense is enabling devsecops on f-16s
and battleships, 2020.

[19] J. Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1):37–46, 1960.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press, 2022.

[21] B. F. Crabtree and W. L. Miller. Doing qualitative research. sage publications, 1999.

[22] Tesla cloud resources are hacked to run cryptocurrency-mining malware, February
2018.

[23] datree. datree. https://hub.datree.io/built-in-rules#containers, 2022. [On-
line; accessed 14-May-2022].

[24] dghubble. dghubble/go-twitter. https://github.com/dghubble/go-twitter, 2022.
[Online; accessed 12-Jan-2022].

[25] Docker. Daemon socket option. https://docs.docker.com/engine/reference/

commandline/dockerd/, 2022. [Online; accessed 19-Jan-2022].

[26] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2006.

[27] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka, and M. Oivo.
Empirical software engineering experts on the use of students and professionals in
experiments. Empirical Software Engineering, 23:452–489, 2018.

122

https://www.checkov.io/4.Integrations/Kubernetes.html
https://hub.datree.io/built-in-rules#containers
https://github.com/dghubble/go-twitter
https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/commandline/dockerd/

[28] R. Feldt, T. Zimmermann, G. R. Bergersen, D. Falessi, A. Jedlitschka, N. Juristo,
J. Münch, M. Oivo, P. Runeson, M. Shepperd, et al. Four commentaries on the use
of students and professionals in empirical software engineering experiments. Empirical
Software Engineering, 23:3801–3820, 2018.

[29] E. Friess. Scrum language use in a software engineering firm: An exploratory study.
IEEE Transactions on Professional Communication, 62(2):130–147, 2019.

[30] V. Garousi, M. Felderer, and T. Hacaloğlu. Software test maturity assessment and
test process improvement: A multivocal literature review. Information and Software
Technology, 85:16 – 42, 2017.

[31] V. Garousi, M. Felderer, and M. V. Mäntylä. Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Information and
Software Technology, 106:101–121, 2019.

[32] V. Garousi and B. Küçük. Smells in software test code: A survey of knowledge in
industry and academia. Journal of Systems and Software, 138:52–81, 2018.

[33] J. W. Gentry. What is experiential learning. Guide to business gaming and experiential
learning, 9:20, 1990.

[34] R. L. Glass. Software Creativity 2.0. developer.* Books, 2006.

[35] A. V. Goldberg and M. Kharitonov. On implementing scaling push-relabel algorithms
for the minimum-cost flow problem. Department of Computer Science, Stanford Uni-
versity, 1992.

[36] Google. microservice-demo. https://github.com/GoogleCloudPlatform/

microservices-demo, 2023. [Online; accessed 10-Apr-2023].

[37] J. Herrington. Introduction to authentic learning. In Activity theory, authentic learning
and emerging technologies, pages 61–67. Routledge, 2015.

[38] J. Herrington, T. C. Reeves, and R. Oliver. Authentic learning environments. Springer,
2014.

[39] S. Hopewell, M. Clarke, and S. Mallett. Grey literature and systematic reviews. Pub-
lication bias in meta-analysis: Prevention, assessment and adjustments, pages 49–72,
2005.

[40] https://cloudnativenow.com. The Brutal Learning Curve of a New
Kubernetes Cluster . https://cloudnativenow.com/features/

the-brutal-learning-curve-of-a-new-kubernetes-cluster/, 2023. [Online;
accessed 20-June-2023].

[41] https://microsoft.github.io/. Microsoft Threat Matrix. https://microsoft.github.
io/Threat-Matrix-for-Kubernetes/tactics/InitialAccess/, 2023. [Online; ac-
cessed 28-April-2023].

123

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://cloudnativenow.com/features/the-brutal-learning-curve-of-a-new-kubernetes-cluster/
https://cloudnativenow.com/features/the-brutal-learning-curve-of-a-new-kubernetes-cluster/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/tactics/InitialAccess/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/tactics/InitialAccess/

[42] https://www.armosec.io. Definitive Guide to Kubernetes Admission Controller.
https://www.armosec.io/blog/kubernetes-admission-controller/, 2023. [On-
line; accessed 28-April-2023].

[43] https://www.cncf.io. CNCF ANNUAL SURVEY 2021 . https://www.cncf.io/

wp-content/uploads/2022/02/CNCF-Annual-Survey-2021.pdf, 2022. [Online; ac-
cessed 20-June-2023].

[44] https://www.forbes.com. Addressing The Kubernetes Skills Gap
. https://www.forbes.com/sites/forbestechcouncil/2023/05/10/

addressing-the-kubernetes-skills-gap/?sh=6f5bc84e23f4, 2023. [Online;
accessed 20-June-2023].

[45] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. Lteinspector: A systematic
approach for adversarial testing of 4g lte. In Network and Distributed Systems Security
(NDSS) Symposium 2018, 2018.

[46] IBM. A tour of the kubernetes source code. https://developer.ibm.com/articles/
a-tour-of-the-kubernetes-source-code/, 2024. [Online; accessed 29-May-2024].

[47] L. Ingvarson, M. Meiers, and A. Beavis. Factors affecting the impact of professional
development programs on teachers’ knowledge, practice, student outcomes & efficacy.
2005.

[48] I. Karim, S. R. Hussain, and E. Bertino. Prochecker: An automated security and
privacy analysis framework for 4g lte protocol implementations. In 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS), pages 773–785.
IEEE, 2021.

[49] M. Karjalainen and A.-L. Ojala. Authentic learning environments for in-service train-
ing in cybersecurity: a qualitative study. International Journal of Continuing Engi-
neering Education and Life Long Learning, 33(1):128–147, 2023.

[50] M. Keller, K. Neumann, and H. E. Fischer. Teacher enthusiasm and student learning.
In International guide to student achievement, pages 247–249. Routledge, 2013.

[51] J. Kindervag et al. Build security into your network’s dna: The zero trust network
architecture. Forrester Research Inc, pages 1–26, 2010.

[52] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, 28(8):721–734, 2002.

[53] A. Y. Kolb and D. A. Kolb. Experiential learning theory as a guide for experiential
educators in higher education. Experiential Learning & Teaching in Higher Education,
1(1):7–44, 2017.

[54] D. Kortepeter. U.S. lawmakers eye AWS role in Capital One data breach, 2019.

124

https://www.armosec.io/blog/kubernetes-admission-controller/
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-Annual-Survey-2021.pdf
https://www.cncf.io/wp-content/uploads/2022/02/CNCF-Annual-Survey-2021.pdf
https://www.forbes.com/sites/forbestechcouncil/2023/05/10/addressing-the-kubernetes-skills-gap/?sh=6f5bc84e23f4
https://www.forbes.com/sites/forbestechcouncil/2023/05/10/addressing-the-kubernetes-skills-gap/?sh=6f5bc84e23f4
https://developer.ibm.com/articles/a-tour-of-the-kubernetes-source-code/
https://developer.ibm.com/articles/a-tour-of-the-kubernetes-source-code/

[55] K. Krippendorff. Content analysis: An introduction to its methodology. Sage publica-
tions, 2018.

[56] K. Krippendorff and J. L. Fleiss. Reliability of binary attribute data, 1978.

[57] R. Krishna, A. Agrawal, A. Rahman, A. Sobran, and T. Menzies. What is the connec-
tion between issues, bugs, and enhancements?: Lessons learned from 800+ software
projects. In Proceedings of the 40th International Conference on Software Engineer-
ing: Software Engineering in Practice, ICSE-SEIP ’18, pages 306–315, New York, NY,
USA, 2018. ACM.

[58] kubelinter. kubelinter. https://docs.kubelinter.io/#/generated/checks, 2022.
[Online; accessed 13-May-2022].

[59] Kubernetes. Production-grade container orchestration.

[60] Kubernetes User Case Studies, May 2020.

[61] Kubernetes. Kubernetes Conformance Tests . https://github.com/kubernetes/

kubernetes/blob/master/test/conformance/testdata/conformance.yaml, 2024.
[Online; accessed 26-March-2024].

[62] Kubernetes and cloud native. Cloud native usage report 2022.

[63] M. Kuhrmann, D. M. Fernández, and M. Daneva. On the pragmatic design of literature
studies in software engineering: an experience-based guideline. Empirical software
engineering, 22(6):2852–2891, 2017.

[64] J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical
data. Biometrics, 33(1):159–174, 1977.

[65] Y. Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,
2017.

[66] M. Lombard, J. Snyder-Duch, and C. C. Bracken. Practical resources for assessing and
reporting intercoder reliability in content analysis research projects. 2010.

[67] M. M. Lombardi and D. G. Oblinger. Approaches that work: How authentic learning is
transforming higher education. EDUCAUSE Learning Initiative (ELI) Paper, 5(2007),
2007.

[68] M. M. Lombardi and D. G. Oblinger. Authentic learning for the 21st century: An
overview. Educause learning initiative, 1(2007):1–12, 2007.

[69] A. M. Love, J. A. Findley, L. A. Ruble, and J. H. McGrew. Teacher self-efficacy for
teaching students with autism spectrum disorder: Associations with stress, teacher en-
gagement, and student iep outcomes following compass consultation. Focus on Autism
and Other Developmental Disabilities, 35(1):47–54, 2020.

[70] F. W. Maina. Authentic learning: Perspectives from contemporary educators. 2004.

125

https://docs.kubelinter.io/#/generated/checks
https://github.com/kubernetes/kubernetes/blob/master/test/conformance/testdata/conformance.yaml
https://github.com/kubernetes/kubernetes/blob/master/test/conformance/testdata/conformance.yaml

[71] A. Martin and M. Hausenblas. Hacking Kubernetes: Threat-Driven Analysis and De-
fense. O’Reilly Media, 2021.

[72] M. McCarthy. Experiential learning theory: From theory to practice. Journal of
Business & Economics Research, 14(3), 2016.

[73] S. Miles. Kubernetes: A Step-By-Step Guide For Beginners To Build, Manage, De-
velop, and Intelligently Deploy Applications By Using Kubernetes (2020 Edition). In-
dependently Published, 2020.

[74] Mirantis. What are the primary reasons your organization is using Kubernetes?, 2021.

[75] Y. Morizumi, T. Hayashi, and Y. Ishida. A network visualization of stable matching
in the stable marriage problem. Artificial Life and Robotics, 16(1):40–43, 2011.

[76] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan. Curating GitHub for engineered
software projects. Empirical Software Engineering, pages 1–35, 2017.

[77] NIST. misconfiguration, 2021.

[78] Nmap.org. netcat tool. https://nmap.org/ncat/, 2023. [Online; accessed 28-April-
2023].

[79] NSA. Kubernetes Hardening Guidance. https://media.defense.gov/2021/Aug/

03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF, 2021. [Online;
accessed 10-Jan-2022].

[80] A. V. Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

[81] A. Ornellas, K. Falkner, and E. Edman St̊albrandt. Enhancing graduates’ employa-
bility skills through authentic learning approaches. Higher education, skills and work-
based learning, 9(1):107–120, 2019.

[82] G. J. Palardy and R. W. Rumberger. Teacher effectiveness in first grade: The impor-
tance of background qualifications, attitudes, and instructional practices for student
learning. Educational evaluation and policy analysis, 30(2):111–140, 2008.

[83] K. Qian, D. Lo, R. Parizi, F. Wu, E. Agu, and B.-T. Chu. Authentic learning se-
cure software development (ssd) in computing education. In 2018 IEEE Frontiers in
Education Conference (FIE), pages 1–9. IEEE, 2018.

[84] A. Rahman, A. Agrawal, R. Krishna, and A. Sobran. Characterizing the influence
of continuous integration: Empirical results from 250+ open source and proprietary
projects. In Proceedings of the 4th ACM SIGSOFT International Workshop on Soft-
ware Analytics, SWAN 2018, pages 8–14, New York, NY, USA, 2018. ACM.

[85] A. Rahman, C. Parnin, and L. Williams. The seven sins: Security smells in infrastruc-
ture as code scripts. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 164–175. IEEE, 2019.

126

https://nmap.org/ncat/
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF
https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETESHARDENINGGUIDANCE.PDF

[86] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams. Security smells in ansible
and chef scripts: A replication study. ACM Trans. Softw. Eng. Methodol., 30(1), Jan.
2021.

[87] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams. Security smells in ansible
and chef scripts: A replication study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(1):1–31, 2021.

[88] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita. Security misconfigurations
in open source kubernetes manifests: An empirical study. ACM Trans. Softw. Eng.
Methodol., dec 2022. Just Accepted.

[89] A. Rahman, S. I. Shamim, H. Shahriar, and F. Wu. Can we use authentic learning
to educate students about secure infrastructure as code development? In Proceedings
of the 27th ACM Conference on on Innovation and Technology in Computer Science
Education Vol. 2, pages 631–631, 2022.

[90] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin. Synthesizing continuous
deployment practices used in software development. In Proceedings of the 2015 Agile
Conference, AGILE ’15, page 1–10, USA, 2015. IEEE Computer Society.

[91] P. Raulamo-Jurvanen, S. Hosio, and M. V. Mäntylä. Practitioner evaluations on soft-
ware testing tools. In Proceedings of the Evaluation and Assessment on Software Engi-
neering, EASE ’19, page 57–66, New York, NY, USA, 2019. Association for Computing
Machinery.

[92] RedHat. Kubernetes adoption, security, and market trends report, 2021.

[93] RedHat. State of Kubernetes Security Report 2021, 2021.

[94] RedHat. State of Kubernetes Security Report 2022, 2021.

[95] RedHat. State of Kubernetes Security Report 2024, 2024.

[96] redis.io. Redis Security. https://redis.io/docs/management/security/, 2023. [On-
line; accessed 28-April-2023].

[97] D. G. Rees Lewis, E. M. Gerber, S. E. Carlson, and M. W. Easterday. Opportunities
for educational innovations in authentic project-based learning: understanding instruc-
tor perceived challenges to design for adoption. Educational technology research and
development, 67:953–982, 2019.

[98] J. Saldaña. The coding manual for qualitative researchers. Sage, 2015.

[99] J. Saldana. The Coding Manual for Qualitative Researchers. SAGE, 2015.

[100] Seth Art, Principal Security Consultant. Bad Pods: Kubernetes Pod Privilege Es-
calation. https://bishopfox.com/blog/kubernetes-pod-privilege-escalation,
2023. [Online; accessed 28-April-2023].

127

https://redis.io/docs/management/security/
https://bishopfox.com/blog/kubernetes-pod-privilege-escalation

[101] M. I. Shamim, F. A. Bhuiyan, and A. Rahman. Xi commandments of kubernetes
security: A systematization of knowledge related to kubernetes security practices. In
2020 IEEE Secure Development (SecDev), pages 58–64, Los Alamitos, CA, USA, sep
2020. IEEE Computer Society.

[102] Y. Shi et al. Particle swarm optimization: developments, applications and resources.
In Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No.
01TH8546), volume 1, pages 81–86. IEEE, 2001.

[103] Snyk. snyk. https://snyk.io/security-rules/kubernetes/, 2022. [Online; ac-
cessed 15-May-2022].

[104] Stackrox. Kubernetes and container security and adoption trends, 2021.

[105] stefanprodan. stefanprodan/podinfo. https://github.com/stefanprodan/podinfo,
2022. [Online; accessed 12-Jan-2022].

[106] T4. Container Platform Market Share, Market Size and Industry Growth Drivers, 2018
- 2023, 2020.

[107] T. Taylor. 5 Kubernetes security incidents and what we can learn from them, 2020.

[108] I. Turner-Trauring. “let’s use kubernetes!” now you have 8 problems. https:

//pythonspeed.com/articles/dont-need-kubernetes/, 2024. [Online; accessed 29-
May-2024].

[109] tutorialspoint.com. Redis - Security. https://www.tutorialspoint.com/redis/

redis_security.htm, 2023. [Online; accessed 28-April-2023].

[110] A. A. Ur Rahman and L. Williams. Software security in devops: Synthesizing prac-
titioners’ perceptions and practices. In Proceedings of the International Workshop on
Continuous Software Evolution and Delivery, CSED ’16, pages 70–76, New York, NY,
USA, 2016. ACM.

[111] VMWare. What is a Kubernetes Deployment? https://www.vmware.com/topics/

glossary/content/kubernetes-deployment, 2021. [Online; accessed 01-Nov-2021].

[112] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang. Bestconfig:
tapping the performance potential of systems via automatic configuration tuning. In
Proceedings of the 2017 Symposium on Cloud Computing, pages 338–350, 2017.

128

https://snyk.io/security-rules/kubernetes/
https://github.com/stefanprodan/podinfo
https://pythonspeed.com/articles/dont-need-kubernetes/
https://pythonspeed.com/articles/dont-need-kubernetes/
https://www.tutorialspoint.com/redis/redis_security.htm
https://www.tutorialspoint.com/redis/redis_security.htm
https://www.vmware.com/topics/glossary/content/kubernetes-deployment
https://www.vmware.com/topics/glossary/content/kubernetes-deployment

Appendix A

Appendix

Table A1: List of 105 Publications for Literature Review

Index Publication

P1 Medel, Vı́ctor, Omer Rana, José Ángel Bañares, and Unai Arronategui. “Mod-

elling performance & resource management in kubernetes.” In Proceedings of

the 9th International Conference on Utility and Cloud Computing, pp. 257-262.

2016.

P2 Takahashi, Kimitoshi, Kento Aida, Tomoya Tanjo, Jingtao Sun, and Kazushige

Saga. “A Portable Load Balancer with ECMP Redundancy for Container Clus-

ters.” IEICE TRANSACTIONS on Information and Systems 102, no. 5 (2019):

974-987.

P3 Hariri, Sahand, and Matias Carrasco Kind. “Batch and online anomaly detec-

tion for scientific applications in a Kubernetes environment.” In Proceedings

of the 9th Workshop on Scientific Cloud Computing, pp. 1-7. 2018.

P4 Sarajlic, Semir, Julien Chastang, Suresh Marru, Jeremy Fischer, and Mike

Lowe. “Scaling JupyterHub using Kubernetes on Jetstream cloud: Platform

as a service for research and educational initiatives in the atmospheric sci-

ences.” In Proceedings of the Practice and Experience on Advanced Research

Computing, pp. 1-4. 2018.

P5 Li, Qiankun, Gang Yin, Tao Wang, and Yue Yu. “Building a Cloud-Ready

Program: A highly scalable Implementation based on Kubernetes.” In Pro-

ceedings of the 2nd International Conference on Advances in Image Processing,

pp. 159-164. 2018.

Continued on next page

129

Table A1 – continued from previous page

Index Publication

P6 Xu, Cong, Karthick Rajamani, and Wesley Felter. “Nbwguard: Realizing net-

work qos for kubernetes.” In Proceedings of the 19th International Middleware

Conference Industry, pp. 32-38. 2018.

P7 Liu, Haifeng, Shugang Chen, Yongcheng Bao, Wanli Yang, Yuan Chen, Wei

Ding, and Huasong Shan. “A High Performance, Scalable DNS Service for

Very Large Scale Container Cloud Platforms.” In Proceedings of the 19th

International Middleware Conference Industry, pp. 39-45. 2018.

P8 Wei-guo, Zhang, Ma Xi-lin, and Zhang Jin-zhong. “Research on Kubernetes’

Resource Scheduling Scheme.” In Proceedings of the 8th International Confer-

ence on Communication and Network Security, pp. 144-148. 2018.

P9 Zhuang, Jinfeng, and Yu Liu. “PinText: A Multitask Text Embedding Sys-

tem in Pinterest.” In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 2653-2661. 2019.

P10 Tu, Tengfei, Xiaoyu Liu, Linhai Song, and Yiying Zhang. “Understanding

real-world concurrency bugs in Go.” In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 865-878. 2019.

P11 Govind, Yash, Pradap Konda, Paul Suganthan GC, Philip Martinkus, Pala-

niappan Nagarajan, Han Li, Aravind Soundararajan et al. “Entity matching

meets data science: A progress report from the magellan project.” In Pro-

ceedings of the 2019 International Conference on Management of Data, pp.

389-403. 2019.

P12 Patel, Jemish, Goutam Tadi, Oz Basarir, Lawrence Hamel, David Sharp, Fei

Yang, and Xin Zhang. “Pivotal Greenplum© for Kubernetes: Demonstration

of Managing Greenplum Database on Kubernetes.” In Proceedings of the 2019

International Conference on Management of Data, pp. 1969-1972. 2019.

Continued on next page

Table A1 – continued from previous page

Index Publication

P13 Carcassi, Gabriele, Joe Breen, Lincoln Bryant, Robert W. Gardner, Shawn

Mckee, and Christopher Weaver. “SLATE: Monitoring Distributed Kubernetes

Clusters.” In Practice and Experience in Advanced Research Computing, pp.

19-25. 2020.

P14 Huang, Yuzhou, Kaiyu cai, Ran Zong, and Yugang Mao. “Design and im-

plementation of an edge computing platform architecture using docker and

kubernetes for machine learning.” In Proceedings of the 3rd International Con-

ference on High Performance Compilation, Computing and Communications,

pp. 29-32. 2019.

P15 Kouchaksaraei, Hadi Razzaghi, and Holger Karl. “Service function chaining

across openstack and kubernetes domains.” In Proceedings of the 13th ACM

International Conference on Distributed and Event-based Systems, pp. 240-

243. 2019.

P16 Thurgood, Brandon, and Ruth G. Lennon. “Cloud computing with Kubernetes

cluster elastic scaling.” In Proceedings of the 3rd International Conference on

Future Networks and Distributed Systems, pp. 1-7. 2019.

P17 Ambati, Pradeep, and David Irwin. “Optimizing the cost of executing mixed

interactive and batch workloads on transient vms.” Proceedings of the ACM

on Measurement and Analysis of Computing Systems 3, no. 2 (2019): 1-24.

P18 Le, Tan N., Xiao Sun, Mosharaf Chowdhury, and Zhenhua Liu. “AlloX: com-

pute allocation in hybrid clusters.” In Proceedings of the Fifteenth European

Conference on Computer Systems, pp. 1-16. 2020.

P19 Liu, Yang, Huanle Xu, and Wing Cheong Lau. “Accordia: Adaptive cloud

configuration optimization for recurring data-intensive applications.” In Pro-

ceedings of the ACM Symposium on Cloud Computing, pp. 479-479. 2019.

P20 Xu, Charles, and Dmitry Ilyevskiy. “Isopod: An Expressive DSL for Ku-

bernetes Configuration.” In Proceedings of the ACM Symposium on Cloud

Computing, pp. 483-483. 2019.

Continued on next page

Table A1 – continued from previous page

Index Publication

P21 Kaminski, Matthijs, Eddy Truyen, Emad Heydari Beni, Bert Lagaisse, and

Wouter Joosen. “A framework for black-box SLO tuning of multi-tenant ap-

plications in Kubernetes.” In Proceedings of the 5th International Workshop

on Container Technologies and Container Clouds, pp. 7-12. 2019.

P22 Verreydt, Stef, Emad Heydari Beni, Eddy Truyen, Bert Lagaisse, and Wouter

Joosen. “Leveraging Kubernetes for adaptive and cost-efficient resource man-

agement.” In Proceedings of the 5th International Workshop on Container

Technologies and Container Clouds, pp. 37-42. 2019.

P23 Yeh, Ting-An, Hung-Hsin Chen, and Jerry Chou. “KubeShare: A Framework

to Manage GPUs as First-Class and Shared Resources in Container Cloud.” In

Proceedings of the 29th International Symposium on High-Performance Parallel

and Distributed Computing, pp. 173-184. 2020.

P24 Zhong, Zhiheng, and Rajkumar Buyya. “A Cost-Efficient Container Orches-

tration Strategy in Kubernetes-Based Cloud Computing Infrastructures with

Heterogeneous Resources.” ACM Transactions on Internet Technology (TOIT)

20, no. 2 (2020): 1-24.

P25 Lee, Chun-Hsiang, Zhaofeng Li, Xu Lu, Tiyun Chen, Saisai Yang, and Chao

Wu. “Multi-Tenant Machine Learning Platform Based on Kubernetes.” In

Proceedings of the 2020 6th International Conference on Computing and Arti-

ficial Intelligence, pp. 5-12. 2020.

P26 Alimudin, Akhmad, and Yoshiteru Ishida. “Service-Based Container Deploy-

ment on Kubernetes Using Stable Marriage Problem.” In Proceedings of the

2020 The 6th International Conference on Frontiers of Educational Technolo-

gies, pp. 164-167. 2020.

P27 Li, Dong, Yi Wei, and Bing Zeng. “A Dynamic I/O Sensing Scheduling Scheme

in Kubernetes.” In Proceedings of the 2020 4th International Conference on

High Performance Compilation, Computing and Communications, pp. 14-19.

2020.

Continued on next page

Table A1 – continued from previous page

Index Publication

P28 Fan, Dayong, and Dongzhi He. “A Scheduler for Serverless Framework base

on Kubernetes.” In Proceedings of the 2020 4th High Performance Computing

and Cluster Technologies Conference & 2020 3rd International Conference on

Big Data and Artificial Intelligence, pp. 229-232. 2020.

P29 Burns, Brendan, Brian Grant, David Oppenheimer, Eric Brewer, and John

Wilkes. “Borg, Omega, and Kubernetes: Lessons learned from three container-

management systems over a decade.” Queue 14, no. 1 (2016): 70-93.

P30 Singh, Satnam. “Cluster-level Logging of Containers with Containers: Logging

Challenges of Container-Based Cloud Deployments.” Queue 14, no. 3 (2016):

83-106.

P31 Bernstein, David. “Containers and cloud: From lxc to docker to kubernetes.”

IEEE Cloud Computing 1, no. 3 (2014): 81-84.

P32 Medel, Vı́ctor, Omer Rana, José Ángel Bañares, and Unai Arronategui.

“Adaptive application scheduling under interference in kubernetes.” In 2016

IEEE/ACM 9th International Conference on Utility and Cloud Computing

(UCC), pp. 426-427. IEEE, 2016.

P33 Bila, Nilton, Paolo Dettori, Ali Kanso, Yuji Watanabe, and Alaa Youssef.

“Leveraging the serverless architecture for securing linux containers.” In 2017

IEEE 37th International Conference on Distributed Computing Systems Work-

shops (ICDCSW), pp. 401-404. IEEE, 2017.

P34 Dupont, Corentin, Raffaele Giaffreda, and Luca Capra. “Edge computing in

IoT context: Horizontal and vertical Linux container migration.” In 2017

Global Internet of Things Summit (GIoTS), pp. 1-4. IEEE, 2017.

P35 Tsai, Pei-Hsuan, Hua-Jun Hong, An-Chieh Cheng, and Cheng-Hsin Hsu. “Dis-

tributed analytics in fog computing platforms using tensorflow and kuber-

netes.” In 2017 19th Asia-Pacific Network Operations and Management Sym-

posium (APNOMS), pp. 145-150. IEEE, 2017.

Continued on next page

Table A1 – continued from previous page

Index Publication

P36 Sima, Vasile, Alexandru Stanciu, and Florin Hartescu. “New software appli-

cations for system identification.” In 2017 21st International Conference on

System Theory, Control and Computing (ICSTCC), pp. 106-111. IEEE, 2017.

P37 Coullon, Hélène, Christian Perez, and Dimitri Pertin. “Production deployment

tools for IaaSes: an overall model and survey.” In 2017 IEEE 5th International

Conference on Future Internet of Things and Cloud (FiCloud), pp. 183-190.

IEEE, 2017.

P38 Javed, Asad, Keijo Heljanko, Andrea Buda, and Kary Främling. “Cefiot: A

fault-tolerant iot architecture for edge and cloud.” In 2018 IEEE 4th world

forum on internet of things (WF-IoT), pp. 813-818. IEEE, 2018.

P39 Tosh, Deepak, Sachin Shetty, Peter Foytik, Charles Kamhoua, and Laurent

Njilla. “CloudPoS: A proof-of-stake consensus design for blockchain integrated

cloud.” In 2018 IEEE 11th International Conference on Cloud Computing

(CLOUD), pp. 302-309. IEEE, 2018.

P40 Herger, Lorraine M., Mercy Bodarky, and Carlos Fonseca. “Breaking down the

barriers for moving an enterprise to cloud.” In 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD), pp. 572-576. IEEE, 2018.

P41 Podolskiy, Vladimir, Anshul Jindal, and Michael Gerndt. “Iaas reactive au-

toscaling performance challenges.” In 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD), pp. 954-957. IEEE, 2018.

P42 Vayghan, Leila Abdollahi, Mohamed Aymen Saied, Maria Toeroe, and Ferhat

Khendek. “Deploying microservice based applications with Kubernetes: ex-

periments and lessons learned.” In 2018 IEEE 11th international conference

on cloud computing (CLOUD), pp. 970-973. IEEE, 2018.

P43 Modak, Arsh, S. D. Chaudhary, P. S. Paygude, and S. R. Ldate. “Techniques

to secure data on cloud: Docker swarm or kubernetes?.” In 2018 Second In-

ternational Conference on Inventive Communication and Computational Tech-

nologies (ICICCT), pp. 7-12. IEEE, 2018.

Continued on next page

Table A1 – continued from previous page

Index Publication

P44 Netto, Hylson Vescovi, Aldelir Fernando Luiz, Miguel Correia, Luciana de

Oliveira Rech, and Caio Pereira Oliveira. “Koordinator: A service approach

for replicating Docker containers in Kubernetes.” In 2018 IEEE Symposium

on Computers and Communications (ISCC), pp. 00058-00063. IEEE, 2018.

P45 Xiong, Ying, Yulin Sun, Li Xing, and Ying Huang. “Extend cloud to edge with

kubeedge.” In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pp.

373-377. IEEE, 2018.

P46 Aly, Mohab, Foutse Khomh, and Soumaya Yacout. “Kubernetes or openShift?

Which technology best suits eclipse hono IoT deployments.” In 2018 IEEE

11th Conference on Service-Oriented Computing and Applications (SOCA),

pp. 113-120. IEEE, 2018..

P47 Brito, Andrey, Christof Fetzer, Stefan Köpsell, Marcelo Pasin, Pascal Felber,

Keiko Fonseca, Marcelo Rosa et al. “Cloud challenge: Secure end-to-end pro-

cessing of smart metering data.” In 2018 IEEE/ACM International Conference

on Utility and Cloud Computing Companion (UCC Companion), pp. 36-42.

IEEE, 2018.

P48 Shah, Jay, and Dushyant Dubaria. “Building modern clouds: using docker, ku-

bernetes & Google cloud platform.” In 2019 IEEE 9th Annual Computing and

Communication Workshop and Conference (CCWC), pp. 0184-0189. IEEE,

2019.

P49 Rehman, Kasim, Orthodoxos Kipouridis, Stamatis Karnouskos, Oliver Frendo,

Helge Dickel, Jonas Lipps, and Nemrude Verzano. “A cloud-based development

environment using hla and kubernetes for the co-simulation of a corporate

electric vehicle fleet.” In 2019 IEEE/SICE International Symposium on System

Integration (SII), pp. 47-54. IEEE, 2019.

P50 Townend, Paul, Stephen Clement, Dan Burdett, Renyu Yang, Joe Shaw, Brad

Slater, and Jie Xu. “Improving data center efficiency through holistic schedul-

ing in kubernetes.” In 2019 IEEE International Conference on Service-Oriented

System Engineering (SOSE), pp. 156-15610. IEEE, 2019.

Continued on next page

Table A1 – continued from previous page

Index Publication

P51 Bao, Yixin, Yanghua Peng, and Chuan Wu. “Deep learning-based job place-

ment in distributed machine learning clusters.” In IEEE INFOCOM 2019-IEEE

conference on computer communications, pp. 505-513. IEEE, 2019.

P52 Podolskiy, Vladimir, Michael Mayo, Abigail Koay, Michael Gerndt, and Panos

Patros. “Maintaining SLOs of cloud-native applications via self-adaptive re-

source sharing.” In 2019 IEEE 13th International Conference on Self-Adaptive

and Self-Organizing Systems (SASO), pp. 72-81. IEEE, 2019.

P53 Chiba, Tatsuhiro, Rina Nakazawa, Hiroshi Horii, Sahil Suneja, and Seetharami

Seelam. “Confadvisor: A performance-centric configuration tuning framework

for containers on kubernetes.” In 2019 IEEE International Conference on Cloud

Engineering (IC2E), pp. 168-178. IEEE, 2019.

P54 Santos, Jose, Tim Wauters, Bruno Volckaert, and Filip De Turck. “Towards

network-aware resource provisioning in Kubernetes for fog computing appli-

cations.” In 2019 IEEE Conference on Network Softwarization (NetSoft), pp.

351-359. IEEE, 2019.

P55 Rattihalli, Gourav, Madhusudhan Govindaraju, Hui Lu, and Devesh Tiwari.

“Exploring potential for non-disruptive vertical auto scaling and resource esti-

mation in kubernetes.” In 2019 IEEE 12th International Conference on Cloud

Computing (CLOUD), pp. 33-40. IEEE, 2019.

P56 Gawel, Maciej, and Krzysztof Zielinski. “Analysis and evaluation of kubernetes

based nfv management and orchestration.” In 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), pp. 511-513. IEEE, 2019.

P57 Kaur, Kuljeet, Sahil Garg, Georges Kaddoum, Syed Hassan Ahmed, and Mo-

hammed Atiquzzaman. “Keids: Kubernetes-based energy and interference

driven scheduler for industrial iot in edge-cloud ecosystem.” IEEE Internet

of Things Journal 7, no. 5 (2019): 4228-4237.

P58 Kelley, Jaimie, and Nathaniel Morris. “Rapid In-situ Profiling of Colocated

Workloads.” In IEEE INFOCOM 2019-IEEE Conference on Computer Com-

munications Workshops (INFOCOM WKSHPS), pp. 528-534. IEEE, 2019.

Continued on next page

Table A1 – continued from previous page

Index Publication

P59 Vayghan, Leila Abdollahi, Mohamed Aymen Saied, Maria Toeroe, and Fer-

hat Khendek. “Microservice based architecture: Towards high-availability

for stateful applications with Kubernetes.” In 2019 IEEE 19th International

Conference on Software Quality, Reliability and Security (QRS), pp. 176-185.

IEEE, 2019.

P60 Astyrakakis, Nikolaos, Yannis Nikoloudakis, Ioannis Kefaloukos, Charalabos

Skianis, Evangelos Pallis, and Evangelos K. Markakis. “Cloud-Native Appli-

cation Validation & Stress Testing through a Framework for Auto-Cluster De-

ployment.” In 2019 IEEE 24th International Workshop on Computer Aided

Modeling and Design of Communication Links and Networks (CAMAD), pp.

1-5. IEEE, 2019.

P61 Marathe, Nikhil, Ankita Gandhi, and Jaimeel M. Shah. “Docker swarm and

kubernetes in cloud computing environment.” In 2019 3rd International Con-

ference on Trends in Electronics and Informatics (ICOEI), pp. 179-184. IEEE,

2019.

P62 Casquero, Oskar, Aintzane Armentia, Isabel Sarachaga, Federico Pérez, Daŕıo

Orive, and Marga Marcos. “Distributed scheduling in Kubernetes based on

MAS for Fog-in-the-loop applications.” In 2019 24th IEEE International Con-

ference on Emerging Technologies and Factory Automation (ETFA), pp. 1213-

1217. IEEE, 2019.

P63 Chen, Hung-Li, and Fuchun Joseph Lin. “Scalable IoT/M2M platforms based

on kubernetes-enabled NFV MANO architecture.” In 2019 International Con-

ference on Internet of Things (iThings) and IEEE Green Computing and Com-

munications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData), pp. 1106-1111. IEEE, 2019.

P64 Link, Coleman, Jesse Sarran, Garegin Grigoryan, Minseok Kwon, M. Mustafa

Rafique, and Warren R. Carithers. “Container Orchestration by Kubernetes for

RDMA Networking.” In 2019 IEEE 27th International Conference on Network

Protocols (ICNP), pp. 1-2. IEEE, 2019.

Continued on next page

Table A1 – continued from previous page

Index Publication

P65 Bringhenti, Daniele, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, and

Jalolliddin Yusupov. “Towards a fully automated and optimized network se-

curity functions orchestration.” In 2019 4th International Conference on Com-

puting, Communications and Security (ICCCS), pp. 1-7. IEEE, 2019.

P66 Hussain, Fatima, Weiyue Li, Brett Noye, Salah Sharieh, and Alexander Fer-

worn. “Intelligent Service Mesh Framework for API Security and Manage-

ment.” In 2019 IEEE 10th Annual Information Technology, Electronics and

Mobile Communication Conference (IEMCON), pp. 0735-0742. IEEE, 2019.

P67 Pan, Yao, Ian Chen, Francisco Brasileiro, Glenn Jayaputera, and Richard

Sinnott. “A performance comparison of cloud-based container orchestration

tools.” In 2019 IEEE International Conference on Big Knowledge (ICBK), pp.

191-198. IEEE, 2019.

P68 Beltre, Angel M., Pankaj Saha, Madhusudhan Govindaraju, Andrew Younge,

and Ryan E. Grant. “Enabling HPC workloads on cloud infrastructure using

Kubernetes container orchestration mechanisms.” In 2019 IEEE/ACM Interna-

tional Workshop on Containers and New Orchestration Paradigms for Isolated

Environments in HPC (CANOPIE-HPC), pp. 11-20. IEEE, 2019.

P69 Ferreira, Arnaldo Pereira, and Richard Sinnott. “A performance evaluation of

containers running on managed kubernetes services.” In 2019 IEEE Interna-

tional Conference on Cloud Computing Technology and Science (CloudCom),

pp. 199-208. IEEE Computer Society, 2019.

P70 Wu, Qiang, Jiadi Yu, Li Lu, Shiyou Qian, and Guangtao Xue. “Dynamically

adjusting scale of a kubernetes cluster under QoS guarantee.” In 2019 IEEE

25th International Conference on Parallel and Distributed Systems (ICPADS),

pp. 193-200. IEEE, 2019.

P71 Tesliuk, Anton, Sergey Bobkov, Viacheslav Ilyin, Alexander Novikov, Alexey

Poyda, and Vasily Velikhov. ”Kubernetes container orchestration as a frame-

work for flexible and effective scientific data analysis.” In 2019 Ivannikov Ispras

Open Conference (ISPRAS), pp. 67-71. IEEE, 2019.

Continued on next page

Table A1 – continued from previous page

Index Publication

P72 De Iasio, Antonio, and Eugenio Zimeo. “Avoiding Faults due to Dangling De-

pendencies by Synchronization in Microservices Applications.” In 2019 IEEE

International Symposium on Software Reliability Engineering Workshops (IS-

SREW), pp. 169-176. IEEE, 2019.

P73 Fu, Yuqi, Shaolun Zhang, Jose Terrero, Ying Mao, Guangya Liu, Sheng Li, and

Dingwen Tao. “Progress-based container scheduling for short-lived applications

in a kubernetes cluster.” In 2019 IEEE International Conference on Big Data

(Big Data), pp. 278-287. IEEE, 2019.

P74 Rajavaram, Harika, Vineet Rajula, and B. Thangaraju. “Automation of Mi-

croservices Application Deployment Made Easy By Rundeck and Kubernetes.”

In 2019 IEEE International Conference on Electronics, Computing and Com-

munication Technologies (CONECCT), pp. 1-3. IEEE, 2019.

P75 Dewi, Lily Puspa, Agustinus Noertjahyana, Henry Novianus Palit, and Kezia

Yedutun. “Server Scalability Using Kubernetes.” In 2019 4th Technology

Innovation Management and Engineering Science International Conference

(TIMES-iCON), pp. 1-4. IEEE, 2019.

P76 Schneider, Stefan, Manuel Peuster, Kai Hannemann, Daniel Behnke, Marcel

Muller, Patrick-Benjamin Bök, and Holger Karl. ““Producing Cloud-Native”:

Smart Manufacturing Use Cases on Kubernetes.” In 2019 IEEE Conference on

Network Function Virtualization and Software Defined Networks (NFV-SDN),

pp. 1-2. IEEE, 2019.

P77 Beltre, Angel, Pankaj Saha, and Madhusudhan Govindaraju. “Kubesphere:

An approach to multi-tenant fair scheduling for kubernetes clusters.” In 2019

IEEE Cloud Summit, pp. 14-20. IEEE, 2019.

P78 Wang, Mingming, Dongmei Zhang, and Bin Wu. “A Cluster Autoscaler Based

on Multiple Node Types in Kubernetes.” In 2020 IEEE 4th Information Tech-

nology, Networking, Electronic and Automation Control Conference (ITNEC),

vol. 1, pp. 575-579. IEEE, 2020.

Continued on next page

Table A1 – continued from previous page

Index Publication

P79 Surya, Rahmad Yesa, and Achmad Imam Kistijantoro. “Dynamic Resource

Allocation for Distributed TensorFlow Training in Kubernetes Cluster.” In

2019 International Conference on Data and Software Engineering (ICoDSE),

pp. 1-6. IEEE, 2019.

P80 Huang, Jiaming, Chuming Xiao, and Weigang Wu. “RLSK: A Job Scheduler

for Federated Kubernetes Clusters based on Reinforcement Learning.” In 2020

IEEE International Conference on Cloud Engineering (IC2E), pp. 116-123.

IEEE, 2020.

P81 Balla, David, Csaba Simon, and Markosz Maliosz. “Adaptive scaling of Ku-

bernetes pods.” In NOMS 2020-2020 IEEE/IFIP Network Operations and

Management Symposium, pp. 1-5. IEEE, 2020.

P82 Liu, Qingyang, E. Haihong, and Meina Song. “The Design of Multi-Metric

Load Balancer for Kubernetes.” In 2020 International Conference on Inventive

Computation Technologies (ICICT), pp. 1114-1117. IEEE, 2020.

P83 Donca, Ionut-Catalin, Cosmina Corches, Ovidiu Stan, and Liviu Miclea. “Au-

toscaled RabbitMQ Kubernetes Cluster on single-board computers.” In 2020

IEEE International Conference on Automation, Quality and Testing, Robotics

(AQTR), pp. 1-6. IEEE, 2020.

P84 Donca, Ionut-Catalin, Cosmina Corches, Ovidiu Stan, and Liviu Miclea. “Au-

toscaled RabbitMQ Kubernetes Cluster on single-board computers.” In 2020

IEEE International Conference on Automation, Quality and Testing, Robotics

(AQTR), pp. 1-6. IEEE, 2020.

P85 Botez, Robert, Calin-Marian Iurian, Iustin-Alexandru Ivanciu, and Virgil Do-

brota. “Deploying a Dockerized Application With Kubernetes on Google

Cloud Platform.” In 2020 13th International Conference on Communications

(COMM), pp. 471-476. IEEE, 2020.

Continued on next page

Table A1 – continued from previous page

Index Publication

P86 Eidenbenz, Raphael, Yvonne-Anne Pignolet, and Alain Ryser. “Latency-Aware

Industrial Fog Application Orchestration with Kubernetes.” In 2020 Fifth

International Conference on Fog and Mobile Edge Computing (FMEC), pp.

164-171. IEEE, 2020.

P87 Qi, Shixiong, Sameer G. Kulkarni, and K. K. Ramakrishnan. “Understanding

container network interface plugins: design considerations and performance.”

In 2020 IEEE International Symposium on Local and Metropolitan Area Net-

works (LANMAN, pp. 1-6. IEEE, 2020.

P88 Nguyen, Nguyen, and Taehong Kim. “Toward Highly Scalable Load Balancing

in Kubernetes Clusters.” IEEE Communications Magazine 58, no. 7 (2020):

78-83.

P89 Muddinagiri, Ruchika, Shubham Ambavane, and Simran Bayas. “Self-Hosted

Kubernetes: Deploying Docker Containers Locally With Minikube.” In 2019

International Conference on Innovative Trends and Advances in Engineering

and Technology (ICITAET), pp. 239-243. IEEE, 2019.

P90 Rossi, Fabiana, Valeria Cardellini, and Francesco Lo Presti. “Hierarchical scal-

ing of microservices in Kubernetes.” In 2020 IEEE International Conference

on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 28-37.

IEEE, 2020.

P91 Guerrero, Carlos, Isaac Lera, and Carlos Juiz. “Genetic algorithm for multi-

objective optimization of container allocation in cloud architecture.” Journal

of Grid Computing 16, no. 1 (2018): 113-135.

P92 Ahmadvand, Mohsen, Alexander Pretschner, Keith Ball, and Daniel Eyring.

“Integrity protection against insiders in microservice-based infrastructures:

From threats to a security framework.” In Federation of International Confer-

ences on Software Technologies: Applications and Foundations, pp. 573-588.

Springer, Cham, 2018.

Continued on next page

Table A1 – continued from previous page

Index Publication

P93 Tien, Chin-Wei, Tse-Yung Huang, Chia-Wei Tien, Ting-Chun Huang, and Sy-

Yen Kuo. “KubAnomaly: Anomaly detection for the Docker orchestration

platform with neural network approaches.” Engineering Reports 1, no. 5

(2019): e12080.

P94 Bogo, Matteo, Jacopo Soldani, Davide Neri, and Antonio Brogi. “Component-

aware orchestration of cloud-based enterprise applications, from TOSCA to

Docker and Kubernetes.” Software: Practice and Experience 50, no. 9 (2020):

1793-1821.

P95 Medel, Vı́ctor, Rafael Tolosana-Calasanz, José Ángel Bañares, Unai Ar-

ronategui, and Omer F. Rana. “Characterising resource management perfor-

mance in Kubernetes.” Computers & Electrical Engineering 68 (2018): 286-

297.

P96 Diouf, Gor Mack, Halima Elbiaze, and Wael Jaafar. “On Byzantine fault

tolerance in multi-master Kubernetes clusters.” Future Generation Computer

Systems 109 (2020): 407-419.

P97 Netto, Hylson V., Lau Cheuk Lung, Miguel Correia, Aldelir Fernando Luiz,

and Luciana Moreira Sá de Souza. “State machine replication in containers

managed by Kubernetes.” Journal of Systems Architecture 73 (2017): 53-59.

P98 Araya, Mauricio, Maximiliano Osorio, Mat́ıas Dı́az, Carlos Ponce, Mart́ın Vil-

lanueva, Camilo Valenzuela, and Mauricio Solar. “JOVIAL: Notebook-based

astronomical data analysis in the cloud.” Astronomy and computing 25 (2018):

110-117.

P99 Christodoulopoulos, Christos, and Euripides GM Petrakis. “Commodore: fail

safe container scheduling in kubernetes.” In International Conference on Ad-

vanced Information Networking and Applications, pp. 988-999. Springer,

Cham, 2019.

Continued on next page

Table A1 – continued from previous page

Index Publication

P100 Surantha, Nico, and Felix Ivan. “Secure kubernetes networking design based

on zero trust model: A case study of financial service enterprise in indone-

sia.” In International Conference on Innovative Mobile and Internet Services

in Ubiquitous Computing, pp. 348-361. Springer, Cham, 2019.

P101 Mercl, Lubos, and Jakub Pavlik. “Public Cloud Kubernetes Storage Perfor-

mance Analysis.” In International Conference on Computational Collective

Intelligence, pp. 649-660. Springer, Cham, 2019.

P102 Goethals, Tom, Filip De Turck, and Bruno Volckaert. “Fledge: Kubernetes

compatible container orchestration on low-resource edge devices.” In Inter-

national Conference on Internet of Vehicles, pp. 174-189. Springer, Cham,

2019.

P103 Kratzke, Nane. “About the complexity to transfer cloud applications at run-

time and how container platforms can contribute?.” In International Conference

on Cloud Computing and Services Science, pp. 19-45. Springer, Cham, 2017.

P104 Zheng, Wei-Sheng, and Li-Hsing Yen. “Auto-scaling in Kubernetes-based fog

computing platform.” In International Computer Symposium, pp. 338-345.

Springer, Singapore, 2018.

P105 Hu, Yang, Huan Zhou, Cees de Laat, and Zhiming Zhao. “Concurrent container

scheduling on heterogeneous clusters with multi-resource constraints.” Future

Generation Computer Systems 102 (2020): 562-573.

143

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Background
	Kubernetes Architecture
	Kubernetes Manifest
	Pod Life Cycle
	Background on Authentic Learning

	Related Works in the Domain of Kubernetes

	Systemization of Kubernetes Security-related knowledge
	Kubernetes-related Security Best Practices
	Methodology
	Results

	Motivating Example
	Configuration Parameters that Facilitate Security Attacks for Kubernetes Pods
	Methodology for RQ 5.1
	Threat Model
	Translation of Pod Life Cycle to Finite State Transitions
	Encoding Logic Formula for Finite State Transitions and Requirements
	Mapping of Pod Events to Finite State Machines
	Counterexample Generation
	Attack Validation

	Methodology for RQ 5.2
	SLIKUBE
	SLIKUBE+
	Evaluation of SLIKUBE+
	Metrics for Frequency Analysis

	Methodology for RQ 5.3
	Answer to RQ 5.1
	Identification of Pod-related Configuration Parameters

	Answer to RQ 5.2
	Frequency of Pod Configuration Parameters
	Comparison of SLIKUBE+ with Existing Tools

	Answer to RQ 5.3
	Identification of Pod States Related to Security Attacks

	Authentic Learning for Learning Kubernetes Security Misconfiguration Analysis
	Methodology
	Authentic Learning Exercise Design
	Questionnaire Design and Deployment
	Questionnaire Analysis

	Results
	Answer to RQ 6.1
	Answer to RQ 6.2
	Answer to RQ 6.3

	Discussion
	Implication for Practitioners
	Application of Kubernetes Security Best Practices
	Application of Security Static Analysis
	Better Understanding of Pod-related Configuration Parameters

	Implication for Researchers
	Baseline for Future Research
	Enhancing Security Analysis Tools
	Automated Framework for Identifying Pod-Related Configuration Parameters

	Implication for Educators
	Threats to Validity
	Conclusion Validity
	Construct Validity
	External Validity
	Internal Validity

	Conclusion
	Bibliography
	Appendix

