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We examine the problem of k-star decompositions on λ-fold complete multipartite

graphs. After a brief examination of the computational complexity issues involved, we

present complete proofs for necessary and sufficient conditions in the case where k = 2 and

the case where λ = 2 and k = 3. We then show some partial results for k = 3 and higher

values of λ along with some helpful tools, including some necessary conditions, which may

help in solving further cases.
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Chapter 1

Introduction

An H-decomposition (or H-design) of a graph G is a set of subgraphs of G, called

blocks, with the properties that each block is isomorphic to H and every edge in G is in

exactly one block. A Steiner Triple System, for example, is a K3-decomposition of Kn.

We will be examining the problem of k-star decompositions of λ-fold complete multipartite

graphs. First, some definitions.

1.1 Definitions

For most definitions we will use terms as defined in [1]. We will use the notation

G = (V (G), E(G)) where V (G) is the set of vertices of G and E(G) is the set of edges of

G. A λ-fold complete multipartite graph is a graph in which the vertices are partitioned

into p partite sets (or parts) A1, . . . , Ap with the property that each pair of vertices have

either λ edges between them (if they are in different parts) or zero edges between them (if

they are in the same part). We will use the notation λKa1,...,ap where ai = |Ai| to indicate

a λ-fold complete multipartite graph. We will also put the parts in increasing order of size

so a1 ≤ a2 ≤ . . . ≤ ap. Then, let n =
∑p

i=1 ai be the total number of vertices in the graph,

m =
∑p−1

i=1

∑p
j=2 aiaj the number of edges in the underlying simple graph, and e(G) = λm

the total number of edges of G. We will also use the notation µ(xy) to indicate the number

of edges between vertices x and y and for A,B ⊆ V (G) let e(AB) be the number of edges

with one end in A and the other in B. Finally, for S ⊆ V (G), let mS be the number of

edges in the underlying induced simple subgraph on S.
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Figure 1.1: An S3-decomposition of 2K4.

A k-star (also known as a k-claw) is a simple (λ = 1) complete multipartite graph with

one part of size one and one of size k, that is, K1,k. We will call the part of size 1 adjacent

to the other k vertices the center of the star and the other k vertices the ends of the star.

1.2 A Small Example

For a small example, let us consider the graph 2K4. We will label the vertices as

V (G) = {1, 2, 3, 4}. By simply centering one 3-star at each vertex of 2K4 and carefully

selecting the ends, we get the S3-design on 2K4 shown in Figure 1.1.

1.3 Previous Results

A λ-fold complete graph λKn is a complete multipartite graph with n parts of size one

and each pair of vertices has λ edges between them. In [2] Tarsi proved that the following

conditions are necessary and sufficient for λKn to have an Sk-decomposition:

2



Theorem 1.1 (Tarsi). λKn has an Sk-decomposition if and only if

1. λn(n− 1) ≡ 0 mod 2k

2. a. n ≥ 2k if λ = 1

b. n ≥ k + 1 if λ is even

c. n ≥ k + 1 + k
λ if λ is odd

In [3] Tazawa proved that the following conditions are necessary and sufficient for

Ka1,...,ap to have an Sk-decomposition:

Theorem 1.2 (Tazawa). Ka1,...,ap has an Sk-decomposition if and only if

1. k|m

2. k(n− ap) ≤ m if k ≤ n− ap

3. m
k

∣∣(n− ap) if n− ap < k

With these results in mind, we will assume that G is neither simple nor Kn; that is,

λ ≥ 2 and ap ≥ 2.

1.4 k = 2 and Complexity

In [4], Priesler and Tarsi proved that Sk-decomposition can be done in polynomial time

if k = 2 and it is NP-complete for multigraphs of any multiplicity λ and k ≥ 3. Decomposing

graphs into copies of S2 is equivalent to finding a perfect matching in the λ-line graph of

G, Lλ(G). Lλ(G) consists of a vertex for each edge of G and two vertices are adjacent

in Lλ(G) if and only if they form a path of length 2 in G. Edmonds proved in [5] that a

3
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Figure 1.2: S2-decomposition when N(u) = 2j.

perfect matching could be found in polynomial time. Priesler and Tarsi give a method that

is easier to check in [4] for determining whether a graph admits an S2-decomposition, but

for λKa1,...,ap one must only check that 2|e(G), n ≥ 3, and p ≥ 2.

Theorem 1.3. G = λKa1,...,ap has an S2-decomposition if and only if 2 | e(G), n ≥ 3, and

p ≥ 2.

Proof. Necessity is clear. For sufficiency, suppose first that λ is even; in this case, we will

use induction. Start with a vertex u ∈ A1. Let {v1, . . . , vt} = N(u), the vertices adjacent

to u. If t = 2j we may center j copies of S2 with ends {v1, v2}, {v3, v4}, . . . , {vt−1, vt} and

repeat this λ times. Figure 1.2 shows an example.

If t = 2j+1, we may first center λj stars at u with ends {v1, v2}, {v3, v4}, . . . , {vt−2, vt−1}.

Then reorient one copy of S2 with ends {vi, vi+1} to have its ends as {vi, vt}. Finally, add

λ
2 more stars centered at u with ends {vi+1, vt}. All edges incident to u have now been

covered. Repeat the same assignment in all other vertices in A1. If there are still uncovered
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Figure 1.3: S2-decomposition when N(u) = 2j + 1 and λ = 2.

edges remaining, move on to the next-indexed part and repeat the above steps until no

uncovered edges remain. An example is shown in Figure 1.3.

If λ is odd, then we need 2 |m. But then this (and ap ≥ 2 as previously assumed) is

all that is needed to satisfy Tazawa’s three conditions in [3] for an S2-decomposition in the

underlying simple graph. Thus we need only take an S2-decomposition on the underlying

simple graph and make λ copies of it.

Not surprisingly, it is rather easy to determine whether an S2-decomposition exists for

λKa1,...,ap and then construct it. In the chapters that follow, however, we take on values of

k ≥ 3; again, not surprisingly, things get much more complicated as [4] has shown that the

general problem is NP-complete. For 2Ka1,...,ap and k = 3, we have necessary and sufficient

conditions that may be quickly checked, and present this in Chapter 3.

In Chapter 2 we will start by gathering some information and tools for narrowing the

search down a bit as well as some necessary (but not always sufficient) conditions. We
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will then examine the case where λ = 2 and present necessary and sufficient conditions for

2Ka1,...,ap to have an S3-decomposition. The case where λ ≥ 3 and k = 3, presented in

Chapter 4 is unfortunately incomplete at this time. There are a few subcases where greater

values of λ pull the inequalities we will be using a little too much and we cannot, at this

time, draw any conclusions. We will, however, present the subcases that we have completed

in Chapter 4.
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Chapter 2

Our General Approach for λ ≥ 2 and k ≥ 3

Now we will begin putting together some helpful tools to help us in the search for

graphs with Sk-decompositions. We will start with an important theorem giving us a place

to start looking. We then present some small Lemmas useful in many of the cases to follow

and necessary conditions for λKa1,...,ap to have an Sk-decomposition. Finally we construct

a set of inequalities that will be our main tool in proving the sufficiency of these conditions.

2.1 Central Functions

We will define a central function on the vertices of a graph G as c : V (G) → N where N

is the set of nonnegative integers and c(x) is the number of blocks of the Sk-decomposition

whose center is x. In [6] Hoffman proved that the following conditions are necessary and

sufficient for any graph to have an Sk-decomposition with a given function c:

Theorem 2.1 (Hoffman). G has an Sk-decomposition with central function c if and only

if:

1. k
∑

x∈V (G)

c(x) = e(G)

2. µ(xy) ≤c(x)+ c(y) for all x, y ∈ (
V (G)

2

)
, where

(
V (G)

2

)
is the set of all pairs of vertices

in G

3. e(S) +
∑

x∈S
y/∈S

min{c(x), µ(xy)} ≥ kc(S) for all S ⊆ V (G)

7



We will use this theorem as the basis for finding necessary conditions specific to

λKa1,...,ap .

2.1.1 The Greedy Central Function

In most of the cases we will examine, we shall use a greedy central function to attempt

to center copies of Sk in G. Let Ci, the capacity of the part Ai, be the maximum number

of blocks of an Sk-decomposition we may center at a vertex in Ai. If n − ai ≥ k, then

Ci =
⌊

λ(n−ai)
k

⌋
; if n − ai < k then Ci = 0. We will say that a part Ai is at capacity if

c(t) = Ci for all t ∈ Ai. We will run the greedy central function algorithm as follows:

Initialization: Let i = 1, c(t) = 0 for all t ∈ V (G), and r = e(G)/k.

1. If Ai is not already at capacity:

a. If r ≥ ai increase c(t) by one at each vertex t ∈ Ai and decrease r by ai. If i = p,

set i = 1 and repeat Step 1. If i < p, increase i by one and repeat Step 1.

b. If 0 < r < ai, let t1, . . . , tai be the vertices in Ai. Increase c(x) by one on vertices

t1, . . . , tr and stop.

c. If r = 0, stop.

2. If Ai is at capacity, set i = 1 and go back to Step 1.

As the greedy central function respects the capacities of each part and does not move

up to a higher value until the all vertices not already at capacity have been increased, there

will be at most one part Aβ with c(t) = c(u) + 1 for some vertices t and u in Aβ. We will

call Aβ the split part. In every other part, c is constant; for simplicity, we will let qi be the

8



least value of c(x) for x ∈ Ai, Ti ⊆ S be the vertices x in non-split parts with c(x) = i, and

ti = |Ti|.

As we will see in Chapters 3 and 4, in most cases where k = 3 this greedy central

function will yield an S3-decomposition of λKa1,...,ap . There are a few exceptions when

λ = 2, but we have backup central functions that work. There are, however, possibly

several cases when λ ≥ 3 where this function will not yield an S3-decomposition.

2.2 Some General Results and Lemmas

We have a few more or less straightforward (but helpful) lemmas to aid us in the cases

ahead. This result for graphs where the greedy central function stops on a split part is

trivial, but as we refer to it in several cases that follow, we present it as a lemma.

Lemma 2.1. If the greedy central function c terminates in Aβ and Aβ is a split part, then

max
x∈V (G)

{c(x)} = qβ + 1. If Aβ is not split, then max
x∈V (G)

{c(x)} = qβ.

Proof. As c respects the capacities of each part, the central function algorithm will only go

back to A1 (and thus increase the maximum value of c) when it has added one to the value

of c in all of the vertices in parts that are not already at capacity. Thus, if the algorithm

ends in a part Aβ, then the central function value in all parts Ai where i < β must be the

same, namely, the greatest value of c(x) for x ∈ Aβ. This is qβ + 1 if Aβ is split, and qβ if

it is not. As the central function is decreasing as the indices increase, this is the maximum

value of c.

The following is simply a straightforward counting of edges in a subset S ⊆ V (G), but

again, it is used in many cases ahead so we present it as a lemma.

9



Lemma 2.2. If S ⊆ V (G) consists of p parts of size at least t, then mS ≥ p−1
p st, where

s = |S|.

Proof. If S consists of p parts of size at least t, then

s

p
t ≥

(
pt

p

)
t = t2

So then

mS ≥ t(s− t) = st− t2 ≥ st− st

p
=

(
p− 1

p

)

2.2.1 Some Necessary Conditions

Here we present two necessary conditions for a graph to have an Sk-decomposition. In

the case where λ = 2 and k = 3, as we will see in Chapter 3 these are also sufficient. For

k = 3 and higher values of λ, we will need another condition which we present in Chapter

4.

Theorem 2.2. If G = λKa1,...,ap has an Sk-decomposition, then

1. k | e(G)

2. a. k(n− ap) ≤ m if 2ap ≥ n

b. n + ε
λ(n− 2ap) ≤ 2m

k where ε = λ mod 2 if 2ap ≤ n.

Proof. The necessity of Condition 1 is obvious; we cannot have any leftover edges. Now we

examine each case of Condition 2.

10



Case 1 (2ap ≥ n) Condition 2a. is equivalent to λm
k ≥ λ(n − ap). Suppose then, that

λm
k < λ(n− ap) ≤ λn

2 . There must be, then, a vertex x in some part Ai with q = c(x) < λ
2 .

Hoffman’s Condition 2 in Theorem 2.1 must hold here; thus every other vertex y in G \Ai

must have c(y) ≥ λ− q. But then

λ(n− ap) >
λm

k
≥ (λ− q)n− (λ− q)ai + qai

= (λ− q)n− (λ− 2q)ai

≥ (λ− q)n− (λ− 2q)ap

= λ(n− ap) + q(2ap − n)

But here 2ap ≥ n, so the above inequality cannot hold.

Case 2 (2ap ≤ n) We will examine subcases by whether λ is even or odd.

Case 2.1 (λ is even) Here Condition 2b. is equivalent to λm
k ≥ λn

2 . Suppose, then, that

λm
k < λn

2 . There must be, then, a vertex x in some part Ai with q = c(x) < λ
2 . Again by

Hoffman’s Condition 2 in Theorem 2.1 we need that for every other vertex y in G \Ai that

11



c(y) ≥ λ− q. But then we need

λn

2
>

λm

k
≥ (λ− q)(n− ai) + qai

= (λ− q)n− (λ− 2q)ai

≥ (λ− q)n− (λ− 2q)ap

= (λ− q)(n− ap) + qap

=
(

λ− q − λ

2

)
(n− ap) +

λ

2
(n− ap) + qap

=
λn

2
+

(
λ

2
− q

)
(n− 2ap)

But with q < λ
2 and n ≥ 2ap, the above inequality cannot hold.

Case 2.2 (λ is odd) Here Condition 2b. is equivalent to λm
k ≥ λ+1

2 n − ap. Suppose, then,

that λm
k < λ+1

2 n−ap. There must be, then, a vertex x in some part Ai with q = c(x) ≤ λ−1
2 .

Once again by Hoffman’s Condition 2 in Theorem 2.1 we need that for every other vertex

y in G \Ai that c(y) ≥ λ− q. We have, then, that

λ + 1
2

n− ap >
λm

k
≥ (λ− q)(n− ai) + qai

= (λ− q)n− (λ− 2q)ai

≥ (λ− q)n− (λ− 2q)ap

= (λ− q)(n− ap) + qap

=
(

λ− q − λ + 1
2

)
(n− ap) +

λ + 1
2

(n− ap) + qap

=
λ + 1

2
n− ap +

(
λ− 1

2
− q

)
(n− 2ap)

12



But with q ≤ λ−1
2 and n ≥ 2ap, the above inequality cannot hold.

2.3 The Subsets and The Inequalities

In most cases of the proofs for sufficiency of these conditions, we will show that the

greedy central function meets Hoffman’s Condition 3 in Theorem 2.1. Checking every

possible subset of V (G), however, is a daunting task; we want to narrow down the subsets

S ⊆ V (G) that we need to examine. From this point forward, we will let S ⊆ V (G) be a

largest subset that minimizes

f(S) = e(S)− 3c(S) +
∑

x∈S
y/∈S

min{c(x), µ(xy)} (2.1)

The following lemma shows that, in each part, all of the vertices with the same value of c

are all either in S or none of them are. Thus, if the central function is constant across each

part (and the only one where it may not be is the part where the algorithm stops), then

we may select S part-by-part instead of vertex-by-vertex. If a part Ai is split, either all of

the vertices are in S, none of them are, only those with c(x) = qi are, or only those with

c(x) = qi + 1 are.

Lemma 2.3. Let x and y be two vertices in a part Ai such that c(x) = c(y). Then x ∈ S

if and only if y ∈ S.

13



Proof. Let q = c(x) = c(y). Assume without loss of generality that x ∈ S and y /∈ S.

Removing x from S increases f by

−λ(n− ai) + kq −
∑

t/∈S

min{q, µ(xt)}+
∑

t∈S

min{c(t), µ(xt)} ≥ 0

However, all terms in the above sums of minimums corresponding to vertices in Ai other

than x are zero, as there are no edges between them. We may ignore those terms. So the

above inequality becomes

−λ(n− ai) + kq −
∑

t/∈S∪Ai

min{q, λ}+
∑

t∈S
t/∈Ai

min{c(t), λ} ≥ 0 (2.2)

Adding y to S increases f by

λ(n− ai)− kq +
∑

t/∈S

min{q, µ(yt)} −
∑

t∈S

min{c(t), µ(yt)} > 0

As above, we can ignore all terms in the sums corresponding to vertices in Ai other than y.

The above inequality becomes

λ(n− ai)− kq +
∑

t/∈S∪Ai

min{q, λ} −
∑

t∈S
t/∈Ai

min{c(t), λ} > 0 (2.3)

Adding the corresponding left and right sides of 2.2 and 2.3 above gives 0 > 0, obviously a

contradiction.

With this lemma in mind, we will define the following subsets of indices of the p parts.

Let I = {1, 2, . . . , p} be the indices of the parts, Bi = {x ∈ Ai | c(x) = qi} be the vertices in

14



a part with the least value of the central function, and bi = |Bi|. Then let

U = {i ∈ I|Bi = Ai}

U = {i ∈ I|bi < ai}

V = {i ∈ U |Ai ∩ S = ∅}

W = {i ∈ U |Ai ⊆ S}

X =
{
i ∈ U |Ai ∩ S = ∅

}

Y =
{
i ∈ U |Ai ∩ S = Bi

}

Y ′ =
{
i ∈ U |Ai ∩ S = Ai\Bi

}

Z =
{
i ∈ U |Ai ⊆ S

}

Now instead of picking subsets vertex-by-vertex, we may select them part-by-part (or

one of the ”halves” of the part if it is split). We still have a lot of work to do, and there are

still many possible subsets, but this greatly simplifies things.

2.3.1 The Inequalities

Now we may put together the primary means of proving the cases to come. The

following inequalities result from giving a largest set minimizing S a small nudge; that is,

we will either add one part to S that was not in there before or remove one part from S

and examine the change in f . As we are assuming that S is a largest set that minimizes f ,

adding any vertices to S will always increase f ; removing vertices may or may not increase

f but will not decrease it.

15



For all v ∈ V , adding Av to S gives

λsav − kqvav + (n− s− av)
∑

t∈Av

min {qv, λ} − av

∑

t∈S

min {c(t), λ} > 0 (2.4)

For all w ∈ W , removing Aw from S gives

−λ(s− aw)aw + kqwaw − (n− s)
∑

t∈Aw

min {qv, λ}+ aw

∑

t∈S\Aw

min {c(t), λ} ≥ 0 (2.5)

For all x ∈ X, adding Bx to S gives

λsbx − kqxbx + (n− s− ax)
∑

t∈Bα

min {qx, λ} − bx

∑

t∈S

min {c(t), λ} > 0 (2.6)

Adding Ax\Bx to S gives

λs(ax−bx)−k(qx +1)(ax−bx)+(n−s−ax)
∑

t∈Ax\Bx

min {qx, λ}−(ax−bx)
∑

t∈S

min {c(t), λ} > 0

(2.7)

For all y ∈ Y , adding By to S gives

λsby − kqyby + (n− s− by)
∑

t∈By

min {qy, λ} − by

∑

t∈S\(Ay\By)

min {c(t), λ} > 0 (2.8)

Removing Ay \By from S gives

− λ(s− (ay − by))(ay − by) + k(qy + 1)(ay − by)−

(n− s− by)
∑

t∈Ay\By

min {qx, λ}+ (ay − by)
∑

t∈S\(Ay\By)

min {c(t), λ} ≥ 0 (2.9)
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For all y ∈ Y ′, removing By from S gives

−λ(s− by)by + kqyby − (n− s− (ay − by))
∑

t∈By

min {qy, λ}+ by

∑

t∈S\By

min {c(t), λ} ≥ 0 (2.10)

Adding Ay \By to S gives

λs(ay − by)− k(qy + 1)(ay − by)+

(n− s− (ay − by))
∑

t∈Ay\By

min {qy, λ} − (ay − by)
∑

t∈S\By

min {c(t), λ} > 0 (2.11)

For all z ∈ Z, removing Bz from S gives

−λ(s− az)bz + kqzbz − (n− s)
∑

t∈Bx

min {qz, λ}+ bx

∑

t∈S\Az

min {c(t), λ} ≥ 0 (2.12)

Removing Az \Bz from S gives

− λ(s− (az − bz))(az − bz) + k(qz + 1)(az − bz)−

(n− s)
∑

t∈Az\Bz

min {qz, λ}+ (az − bz)
∑

t∈S\(Az\Bz)

min {c(t), λ} ≥ 0 (2.13)

As awful as some of these inequalities look, they are very valuable tools in examining

sufficiency in the cases to come. We will generally divide these cases by the value of

min{qi, λ}, greatly simplifying the work ahead. In fact, if min{qi, λ} = λ we usually only

have two terms in each inequality to deal with. Now, we will put them to use in the case

where k = 3 and λ = 2.
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Chapter 3

k = 3, λ = 2

Here we present our result on S3-decompositions of 2-fold complete multipartite graphs.

We will show that conditions given in Theorem 2.2 are necessary and sufficient.

Theorem 3.1. Let G = 2Ka1,...ap. G has an S3-decomposition if and only if:

1. 3 |m

2. a. If 2ap ≤ n then 3n ≤ 2m

b. If 2ap ≥ n then 3(n− ap) ≤ m

Proof. The necessity of these conditions was proved in Theorem 2.2. For sufficiency, we will

examine four main cases. In the first three we will assume that the capacities of each part

are positive and then examine cases according to the values c takes, specifically, when c(x)

is at most 2 or at least 2 for all x ∈ V (G). For the last case, we will examine graphs where

the capacity of Ap is zero.

We will let S ⊆ V (G) be a largest subset that minimizes

f(S) = e(S)− 3c(S) +
∑

x∈S
y/∈S

min{c(x), µ(xy)}

Note that f(V (G)) = f(∅) = 0; we will assume that S is neither. We then use the

inequalities and subsets from Section 2.3 to find all of the possible subsets S that minimize

f(S). In each of these cases, our goal will either be to show that even if that set minimizes
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S, f(S) ≥ 0, or, that S cannot minimize f due to some contradiction. We begin with the

case where all vertices receive exactly one star from the greedy central function.

Case 1 (qi = 1 for all i): We may assume that V 6= ∅ 6= W , or else we would have

S = G or S = ∅. From 2.4 and 2.5 we get aw > av. Here f(S) = e(S) − s(3 − (n − s));

with aw ≥ 2 by Lemma 2.2, e(S) = 2m ≥ 2s, so f(S) ≥ 0.

Case 2 (1 ≤ qi ≤ 2, qi = 1 for some i ∈ I, qj = 2 for some j ∈ I)

Case 2.1 (V 6= ∅ 6= W ): From 2.4 and 2.5 we have

[3− (n− s)](qw − qv) + (2− qw)aw − avqv − 1 ≥ 0 (3.1)

so we cannot have qv = qw = 2 for any v ∈ V or w ∈ W ; in other words, the partite sets

with qi = 2 are all either in V or W .

Case 2.1.1 ({ i | qi = 2} ⊆ W ) Here qv = 1 for all v ∈ V . Then the inequality in 3.1 becomes

[3− (n− s)] ≥ av + 1 so we must have av = n− s = 1 and thus U = ∅; the central function

must be constant across each part. Thus S consists of all of the vertices in G except for a

part Aβ of size 1 with aβ = 1. So then

f(S) = e(S)− 2c(S)

= 3c(G)− 2(n− 1)− 2[c(G)− 1]

= c(G)− 2n + 4

= 2n− 1− s1 − 2n + 4

= 3− s1

We will then assume that s1 > 3 and eliminate this case by contradiction.
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With G 6= 2Kn, there must be a w ∈ W such that aw ≥ 2 and qw = 1. Here, then,

Tj =
⋃

i∈W
qi=j

Ai and tj = |Tj |. Let Awo be a smallest part in T1. Removing Aw0 from S we

get from 2.5

−2(n− 1− aw0) + 2 + (c(S)− aw0) ≥ 0

and by our assumptions in this case, c(S) = 2n − 2 − s1 so the above inequality becomes

s1 − aw0 ≤ 2; removing Aw1 would leave at most 2 vertices in T1. And, by the inequality

in 3.1 above, awo > av = 1. With c(G) = 2n − 1 − s1, m = 3n − 3
2 (s1 + 1) so s1 must be

odd. But then if removing the least-sized part in T1 leaves at most two vertices in T1 and

Ap ⊆ T1 has size at least 2, we must have T1 = Ap and so G consists of p− 1 parts of size

1 and Ap.

We will now count edges to arrive at the promised contradiction. We must have here that

e(G) = 6n− 3ap − 3 = 2
(

n− ap

2

)
+ 2ap(n− ap)

= (n− ap)(n− ap − 1) + 2ap(n− ap)

= n2 − n + ap − a2
p

This is a little easier to prove if we substitute n = t2 + 1 + ap. With a little shuffling of

terms, the above equation becomes

ap + 3 = t2(t2 − 5) + 2apt2 ≥ −6 + 4ap

But this is only true when ap ≤ 3, contradicting our assumption here that s1 > 3.

Case 2.1.2 ({i | qi = 2} ⊆ V )
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Case 2.1.2.1 (U = ∅) Here c(S) = s and f(S) = e(S) − [3 − (n − s)]s. By 3.1, for aw1 ∈

W and v2 ∈ V with qv2 = 2, we have

aw1 ≥ [3− (n− s)] + 2av + 1

S must consist of at least two parts, as the greedy central function respects the capacities

of each part, all parts have capacity of at least 1, and qi ≥ 1 for all i by assumption. Let

Aw0 be a smallest part in T1. By the above inequality, aw1 ≥ 4 and then by Lemma 2.2,

e(S) ≥ 4s and so f(S) ≥ 0.

Case 2.1.2.2 (U 6= ∅) If U = X, f(S) = e(S)− [3− (n− s)]s. With V 6= ∅ and ax ≥ 2 we

have n− s ≥ 3 and so f(S) ≥ 0. If U = Y , we have

f(S) = e(S)− 3c(S) + (n− s)c(S)− 2by(ay − by)

= e(T1) + 2(ay − by)t1 − 2by(ay − by)− [3− (n− s)]c(S)

= 2(ay − by)[t1 − by] + e(T1)− [3− (n− s)]c(S)

and with t1 > by, we may again assume that n− s ≤ 2. But then this means av = 1, by = 1

(so n − s = 2), and {i ∈ V |qi = 1} = ∅. So c(G) = 2n− 1− t1 and so m = 3n − 3
2 − 3

2s1;

s1, then, must be odd. By 3.1, we have for any w1 ∈ T1 that aw1 ≥ 4. Here, c(S) =

2(ay − 1) + t1, so we will show 2(ay − 1)[t1 − 1] ≥ 2(ay − 1) + t1, or 2(ay − 1)[t1 − 2] ≥ t1.

But when t1 ≥ 4, we have 2(s1 − 2) ≥ s1, and so f(S) ≥ 0.
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If U = Y ′, then we have

f(S) = e(S)− [3− (n− s)]s− by(ay − by)

= e(T1) + by[t1 − (ay − by)]− [3− (n− s)]s

As t1 > (ay − by), we may again assume that n− s = 2. But then the inequality from 2.10

becomes t1 ≤ 2, contradicting 3.1 above.

Lastly, in the case where U = Z, we have

f(S) = e(S)− [3− (n− s)]c(S) = e(S)− [3− (n− s)](s + (az − bz))

so we may again assume that n − s < 3. We will show that mS ≥ (s + (az − bz)). In this

case c(G) = 2n − bz − t1 and m = 3n − 3
2bz − 3

2 t1 so bz + t1 must be even. If az = 2 then

bz = 1 and thus (as bz + t1 must be even) s1 ≥ 3. We then need mS ≥ s+1; with mS ≥ 2t1

and t1 ≥ 3 this is always the case. If az ≥ 3, then by Lemma 2.2, mS ≥ 3
2s ≥ s + (az − bz),

as az < t1.

Case 2.2 (V 6= ∅,W = ∅) If U = ∅ or U = X then S = ∅ and f(S) = 0. So first suppose

U = Y . Then f(S) = −3c(S) + (n− s− by)c(S). But G must have at least one part other

than Ay and it must be in V . With qy = 1 there must be at least three other vertices outside

of Ay as the greedy central function respects the capacities of each part, thus f(S) ≥ 0.

The cases where U = Y ′ and U = Z are similar.

Case 2.3 (V = ∅,W 6= ∅) If either U = ∅ or U = Z, then S = V (G) and f(S) = 0. We

will examine the remaining cases separately.
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Case 2.3.1 (U = X) Here f(S) = e(S) − 3c(S) + axc(S), so we will assume that ax = 2.

Combining inequalities from 2.5 and 2.6 for W and X, we get (2− qw)aw + qw − 3 > 0, so

qw = 1 for all w ∈ W thus c(S) = s and f(S) = e(S) − s. Since aw ≥ ax = 2, by Lemma

2.2 we have e(S) ≥ 2s > c(S).

Case 2.3.2 (U = Y ) In all of the other cases we have examined, we have been able to show

that either f(S) ≥ 0 directly, or, assuming that a particular set minimized f lead to a

contradiction. In this case, assuming that S = V (G) \ By minimizes f , this implies that

f(S) < 0. Thus we would hope that the usual inequalities and other properties of the

graph would lead to a contradiction. We will be able to use the usual inequalities to greatly

narrow the field, but, as we will see, one graph will remain.

In graphs where S = G\By, f(S) = e(S)− c(S)+(n−s− by)c(S) and c(S) = 2n−2by− t1.

Note also here that c(G) = 2n − by − t1 and so m = 3n − 3
2by − 3

2 t1; thus by + t1 must be

even.

From the inequalities in 2.8 and 2.9 we have

2(n− ay)− 3− [2n− 2by − t1 − 2(ay − by)] > 0

(so t1 ≥ 4 and thus T1 6= ∅) and −2(n − ay) + 6 + 2n + 2ay − t1 ≥ 0, (and so t1 ≤ 6).

Removing any Aw1 ⊆ T1, from 2.5 we get t1 − aw ≤ 3 − by. This means there are at most

two more vertices in T1 outside of Aw1 ; so either Ap is the only part in W with qw = 1

or T1 = Ap−1 ∪ Ap where ap−1 = ap = 2. In the latter case, as ay ≤ ap−1 we must have

ay = 2 and so by = 1; but this contradicts the condition above that by + t1 must be even.

So T1 = Ap.
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×2

Figure 3.1: An S3-decomposition of 2K3,5.

Now we need to see if T2 6= ∅. By our assumptions in this case about the central function,

we have m = 3n− 3
2by − 3

2 t1; counting edges we have

3n− 3
2
by − 3

2
ap ≥ t2(ay + ap) + ayap

3t2 + 3ay + 3ap − 3
2
by − 3

2
ap ≥ t2ay + t2ap + ayap

ap

(
3
2
− t2 − ay

)
≥ −3t2 + t2ay +

3
2
by

6
(

3
2
− t2 − ay

)
≥ −3t2 + t2ay +

3
2
by

9 ≥ 3t2 + (t2 + 6)ay +
3
2
by

Assuming that t2 ≥ 1, we have a contradiction. Thus, T2 = ∅ and G must be bipartite. Here

is where we have a problem; the graph 2K3,5 meets all of the conditions above (and is the

only graph that does), and if we apply the greedy central function to this graph, f(S) < 0!

Fortunately, this is the only such graph and it has a straightforward S3-decomposition.
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Letting c(x) = 0 for x ∈ A1 and c(x) = 2 for x ∈ A2 gives an S3-decomposition on 2K3,5,

as illustrated in Figure 3.1.

Case 2.3.3 (U = Y ′) Here f(S) = e(S) − 3c(S) + c(S)[n − s − (ay − by)]. The inequalities

from 2.11 and 2.10 for Y ′ give 2(n−ay)−6−c(S)+by > 0 and −2(n−ay)+3+c(S)−by ≥ 0;

adding the left sides of these, we have −3 > 0, obviously a contradiction.

Case 3 (qi ≥ 2 for all i ∈ I) First, we will need a lemma. We will show that the greedy

central function will not fill the largest two parts (Ap−1 and Ap) to capacity. This will

reduce the number of distinct values of c to at most three.

Lemma 3.1. qp−1 <

⌊
2(n− ap−1)

3

⌋
.

Proof. If Ap−1 and Ap are both at capacity, then we must have

(n− ap)
⌊

2(n− ap−1)
3

⌋
+ ap

⌊
2(n− ap)

3

⌋
≤ 2m

3

so

(n− ap)
[
2(n− ap−1)

3
− 2

3

]
+ ap

[
2(n− ap)

3
− 2

3

]
≤ 2m

3

Maximizing the possible number of edges in V (G)\Ap in the graph gives

(n− ap)[2(n− ap−1)− 2] + ap[2(n− ap)− 2] ≤ 2
(

n− ap

2

)
+ 2ap(n− ap)

and so

(n− ap)[n− 2ap−1 + ap − 1] ≤ 2ap
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G cannot be bipartite; both parts cannot be at capacity, for we would need 2m ≥ 4m − 4

which certainly cannot be the case if 3|m. So p ≥ 3 and we have

(n− ap)

[
p−2∑

i=1

ai − 1 + ap − ap−1 + ap

]
≤ 2ap

but with n− ap ≥ 3,
∑p−2

i=1 ai ≥ 1, and ap−1 ≤ ap, we have a contradiction.

From this, we now know that the only step of size two or greater can be from Ap−1 to Ap.

Note that in the case U = Y ′, the inequalities from 2.11 and 2.10 give a direct contradiction.

Case 3.1 (V 6= ∅ 6= W ) From the inequalities for V and W from 2.4 and 2.5, we get

qw − qv ≥ 2
3av + 1

3 . (Note that this also eliminates the case where the central function is

constant and q ≥ 2.) The central function is decreasing, so we get aw ≤ av. If qw − qv = 1,

we must have av = 1 for all v ∈ V , but then ap = 1 and so G = 2Kn, which we are assuming

it is not in light of Theorem 1.1. So under our previous assumption that ap ≥ 2 we must

have qw − qv ≥ 2, and Ap must be at capacity.

Case 3.1.1 (U = ∅) Here W = {1, . . . , p− 1}, V = p, and f(S) = e(G)− 3c(S) > 0. Note

that if U = Z, f has the same value.

Case 3.1.2 (U = X) From 2.5 and 2.6 we have qw−qx ≥ 2
3ax + 1

3 . Since ax ≥ 2, qw−qx ≥ 2,

but we must have maxi∈I{qi} = qx + 1 by Lemma 2.1, so we have a contradiction.

Case 3.1.3 (U = Y ) From inequalities 2.5 and 2.8 we have qw−qy ≥ 2
3by + 1

3 . Thus if by ≥ 2,

qw − qy ≥ 2 and, similar to the previous case we have maxi∈I{qi} = qy + 1, a contradiction.

If by = 1 then we need to examine f(S) a little differently. As a split part must have size

at least two and qw > qy ≥ qv, all parts in V must be at capacity; by Lemma 3.1 only Ap
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may be at capacity, thus V = {p}. Then

f(S) = e(S)− 3c(S) + 2(s− (ay − by))(n− s) + 2(ay − by)ap

= e(S)− 3c(S) + e(SS)

= e(G)− e(S)− 3c(S)

= 3c(S)− e(S)

= 3c(S)− 2ap > 4ap

and as qp ≥ 2 = λ by assumption in this case, f(S) > 0.

Case 3.2 (W = ∅) First, assume that U = Y . Then f(S) = −3(qy + 1)(ay − by) + 2(ay −

by)(n− ay), so we need 2(n− ay) ≥ 3(qy + 1) or qy ≤ 2(n−ay)
3 − 1. But since Ay is split, it

cannot be completely filed to capacity, so qy ≤
⌊

2(n−ay)
3

⌋
− 1 and so f(S) > 0. If U = Z,

then from 2.12 we have 2(n− az) ≤ 3qz, but this would put qz + 1 over capacity.

Case 3.3 (V = ∅) Here we can only have U = X or U = Y , and these cases are similar in

the case where V 6= ∅ 6= W above.

Case 4 (n− ap < 3 so qp = Cp = 0) In this case we will use a different central function

than the other cases. First, we will eliminate the case when n − ap < 3 and 2ap < n.

Our assumption that ap ≥ 2 leaves only three possible graphs: 2K1,2, 2K1,1,2, and 2K2,2.

None of these graphs satisfy the edge-multiplicity Condition 1. Thus if n − ap < 3, we

must have ap ≥ 3. Fortunately, there are only three cases to consider here, and all three

are straightforward assuming the graph satisfies 3 | e(G). If G is bipartite, then condition

1 says we must have 3 | ap. We then need only put 2ap

3 copies of S3 at each vertex in A1,

grouping the ends in threes. If G = 2K1,1,ap , and 3 |m we must have ap ≡ 1 mod 3 and
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a

b

1

2

3

4

Figure 3.2: An S3-decomposition of 2K1,1,4.

so ap ≥ 4. We may, then, construct an S3-decomposition on G as follows: we will label

the vertices as A1 = {a}, A2 = {b}, and Ap = {v1, v2, . . . , vap}. Then we may center three

stars at a with ends {b, 1, 2}, {1, 3, 4}, and {2, 3, 4}. Then center three stars at b with ends

{b, 1, 2}, {1, 3, 4}, and {2, 3, 4}. All edges between A1 and A2 are covered, as are the edges

between A1∪A2 and four vertices of Ap. If ap ≥ 7, the number of vertices in Ap whose edges

incident to A1 ∪ A2 have not yet been covered is a multiple of 3 and may be covered in a

straightforward manner by grouping ends in threes. Figure 3.2 shows this S3-decomposition

on 2K1,1,4.
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We have now have necessary and sufficient conditions for an S3-decomposition on

2Ka1,...,ap . With λ = 2, many of the inequalities were as tight as they could be; in par-

ticular, in the cases where min{qi, 2} = qi there were not many possibilities for values of

qi. It was also helpful in many cases that we could assume n − s ≤ 2 = λ. This will be

the main difficulty in the next chapter where we examine S3-decompositions for λKa1,...,ap

where λ ≥ 3.

29



Chapter 4

Partial Results for k = 3, λ > 2

Here we examine the problem of S3-decompositions of λ-fold complete multipartite

graphs where λ ≥ 3. We have similar necessary conditions here as we did in the previous

case where λ = 2, along with one small exception to give another necessary condition.

Conjecture 4.1. Let G = λKa1,...ap. G has an S3-decomposition if and only if:

1. 3 |m

2. a. 3(n− ap) ≤ m if 2ap ≥ n

b. n + ε
λ(n− 2ap) ≤ 2m

3 where ε = λ mod 2 if 2ap ≤ n

3. If G = λK1,1,ap and λ is odd, then 3 |λ.

The necessity of Conditions 1 and 2 were proved in Theorem 2.2. The proof for the

necessity of Condition 3 will be similar to Tazawa’s proof of necessity for his Condition 3

in Theorem 1.1, though of course we will have to consider higher values of λ.

Let G = λK1,1,ap and suppose that G has an S3-decomposition. Here Cp = 0; we

cannot center any stars in Ap. The copies of S3 centered in either A1 or A2 must cover all

λap edges between then and Ap. We then have, for all i < p that

⌈
λap

3

⌉
≤ qi ≤

⌊
λ(ap + 1)

3

⌋
(4.1)
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We will assume here that λ is odd and either λ ≡ 1 mod 3 or λ ≡ 2 mod 3. Then by

Condition 1 we must have 3 |m = 2ap + 1; thus ap ≡ 1 mod 3. If λ ≡ 1 mod 3 then 4.1

above becomes

⌈
λap

3

⌉
=

λap

3
+

2
3
≤ qi ≤

⌊
λ(ap + 1)

3

⌋
=

λ(ap + 1)
3

− 1
3

=
λap

3

And so we have a contradiction. The case where λ ≡ 2 mod 3 is similar. Thus, 3 |λ.

Unfortunately we are not, at this time, able to prove that these conditions are always

sufficient; that is, for all of the possible subsets S ⊆ V (G) that either f(S) ≥ 0 or that

assuming that set minimizes f , that there is a contradiction. We present the cases that we

have finished and comment on the ones still open.

Case 1 (qi < λ for all i ∈ I): We will first examine the case where the central function

is constant.

Case 1.1 (qi = qj for all i, j ∈ I) We may assume that V 6= ∅ 6= W , or else we would have

S = G or S = ∅. Let q = λm
3n be the value of the central function on all vertices. Here

f(S) = e(S)− qs[3− (n− s)]; if n− s ≥ 3 then f(S) ≥ 0 so we will assume that n− s < 3.

By 2.4 and 2.5 we have

λ− q

q
aw > av (4.2)

for all w ∈ W and v ∈ V . Since the central function is constant on all vertices we must

have q ≥ λ
2 and so aw > av. Also, since the greedy central function respects the capacities

of each part and q > 0, S must consist of at least two parts. First we will examine the case

when n− s = 2.
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Case 1.1.1 (n− s = 2) Here f(S) = e(S)− qs = λmS − qs. Since q < λ here by assumption

and aw ≥ 2 for all w ∈ W , by Lemma 2.2 mS ≥ s ≥ q
λs and thus f(S) ≥ 0.

Case 1.1.2 (V = {1} and a1 = 1) Here we have f(S) = e(S) − 2qs. Let aw0 be the least

size of a partite set in S. If aw0 ≥ 4, then again by Lemma 2.2 mS ≥ 2s ≥ 2q
λ s and thus

f(S) ≥ 0. We must then consider the cases when aw0 is equal to either 2 or 3.

Case 1.1.2.1 (aw0 = 2) By 4.2 above, 2 > q
λ−q so q = λm

3n < 2λ
3 . Now, if S consists of

three or more parts, by Lemma 2.2 mS ≥ 2q
λ s and so f(S) ≥ 0; we will assume that S is

bipartite and so G = λK1,2,n−3. However, then m = 3n − 7 = 3
λqn, which implies that

3n
(

λ−q
q

)
= 7 ≥ 3

2n, which is only true when n ≤ 4, a contradiction.

Case 1.1.2.2 (aw0 = 3) As in the previous case, we will assume that S is bipartite and further

assume that ap ≤ 5 as mS ≥ 3(s − 3) ≥ 2s when s ≥ 9. By 4.2, 3 > q
λ−q so q = λm

3n < 3λ
4 .

But if S is bipartite then G = λK1,3,n−4 so m = 4n−13 and q = λ(4n−13)
3n < 3λ

4 implies that

n < 6. With S consisting of at least two parts of size at least three, we have a contradiction.

Case 1.2 (qi ≤ λ for all i ∈ I, qi = qj + 1 for some i, j ∈ I) These cases are the ones that

prevent this conjecture from being a theorem at this time. In the λ = 2 case, the necessary

conditions in the related cases there implied that 1 ≤ qi ≤ 2 for all i. However, increasing

lambda stretches out this set of inequalities, and we have λ
2 possible central function values

to consider. In particular, in the case where λ = 2 the fact that the greater of the two values

in the central function was equal to λ was particularly helpful. In these cases, however, the

inequalities in section 2.3.1 alone are not enough to draw any conclusions toward proving

that either f(S) ≥ 0 or that a given set cannot minimize f .

Case 2 (qi ≥ λ for all i ∈ I) As before, we will first examine the case when the central

function is constant.
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Case 2.1 (qi = qj for all i, j ∈ I) As in other cases where the central function is constant,

we must have U = ∅, and if v = ∅ or W = ∅ then S = V (G) or S = ∅ respectively. Thus

we may assume W 6= ∅ 6= V . The inequalities 2.4 and 2.5 give qw − qv ≥ λav
3 + 1

3 ≥ 0, a

contradiction.

Case 2.2 (qi > qj for some i, j ∈ I)

Case 2.2.1 (W 6= ∅ 6= V ) First we will examine the case when U = ∅.

Case 2.2.1.1 (U = ∅ or U = Z) In this case we will need look at f a little bit differently;

we will put f in terms of S. Here we have

f(S) = e(S)− 3c(S) +
∑

x∈S
y/∈S

µ(xy)

= e(S)− 3c(S) + e(SS)

= e(G)− e(S)− 3c(S)

= 3c(G)− e(S)− 3c(S)

= 3c(S)− e(S)

If S consists of only one part, then e(S) = 0 and f(S) ≥ 0. Let us then assume that S

consists of two or more parts. Inequalities 2.4 and 2.5 give us

qw − qv ≥ λav

3
+

1
3

> 0

Thus, qw > qv and as c is decreasing, av ≥ aw for all v ∈ V and w ∈ W ; but then p ∈ V .

With our assumption that ap ≥ 2 and λ ≥ 3, we then have qw − qp ≥ 2. The greedy central
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function will only give two parts with such a difference in values if either every part in V is

at capacity.

We will now show that 3c(S) ≥ e(S). Let S =
⋃p

i=β+1 Ai and s = |S|. Then

3c(S) = 3
p∑

i=β+1

⌊
λ(n− ai)

3

⌋
ai ≥ 3

p∑

i=β+1

[
λ(n− ai)

3
− 2

3

]
ai

≥
p∑

i=β+1

[λ(n− ai)− 2ai] = λ

p∑

i=β+1

(n− ai)ai − 2s

With qβ − qβ+1 ≥ 2, Aβ+1 must be at capacity and Cβ > Cβ+1 so aβ+1 > aβ; by Lemma

2.2 we have e(S) ≥ 2s. Finally,

λ

p∑

i=β+1

(n− ai)ai − 2s ≥ λ

p∑

i=β+1

(n− ai)ai − e(S)

= 2e(S) + e(SS)− e(S)

= e(SS) + e(S) ≥ e(S)

The case where U = Z is similar, as S consists only of parts whose indices are in V .

Case 2.2.1.2 (U = X or U = Y ) From inequalities 2.5 and 2.6 we have qw − qx ≥ λ
3ax + 1

3 .

Since ax ≥ 2, qw − qx ≥ 2, but qx + 1 is the maximum value that the central function will

take, so we have a contradiction. The case where U = Y is similar.

Case 2.2.2 (W = ∅) In this case, we must have V = ∅ = U . Also, we may assume that U 6=

X as then S = ∅. Suppose that U = Y . Here f(S) = −3(qy+1)(ay−by)+λ(ay−by)(n−ay),

so we need λ(n− ay) ≥ 3qy + 3 or qy ≤ λ(n−ay)
3 − 1; this is always the case as qy + 1 is the

maximum value the greedy central function will take, and as it respects the capacities of

each part, qy + 1 ≤
⌊

λ(n−ay)
3

⌋
. Thus f(S) ≥ 0. The case where U = Z is similar.
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Case 2.2.3 (V = ∅) Here we will assume W = ∅ = U and U 6= Z as that would mean

S = V (G). From the inequalities 2.6 and 2.5 we have qw − qx ≥ λ
3 bx + 1

3 and with our

assumption that λ ≥ 3, we have qw − qx ≥ 2. However, by Lemma 2.1 the maximum value

that the greedy central function can take is qx + 1, so we have a contradiction. The case

where U = Y is similar.

Case 3 (n − ap < 3) As in the λ = 2 case, we will use a different central function

here and not the usual greedy one. We have from Condition 2a. that 3(n− ap) ≤ m, thus

guaranteeing that ap ≥ 3. If G is bipartite, then this along with Condition 1 is sufficient.

If G = λK1,ap or λK2,ap , we must have 3 | ap. We then need only put λ
3ap copies of S3 at

each vertex in A1, grouping ends in threes.

Things get a bit more complicated in the case where G = λK1,1,ap . If λ is even, we may

simply use λ
2 copies of the same S3-decomposition in Case 4 of Theorem 3.1. We have

shown necessity for Condition 3; for sufficiency we will present an S3-decomposition on

G = 3K1,1,ap which may then be copied as needed.

Now suppose λ is odd and 3 |λ. We will separate cases by values of ap mod 3. In each case

we will label the vertices as A1 = {a}, A2 = {b}, and Ap = {1, 2, . . . , ap}.

Case 3.1 (ap ≡ 0 mod 3) As ap ≥ 3, we will fill A1 to capacity first; the remainder of the

edges will have a straightforward S3-decomposition. Center 4 copies of S3 at a with ends

{b, 1, 2}, {b, 1, 3}, {b, 2, 3}, and {1, 2, 3}. The number of vertices in Ap whose edges incident

to a have not yet been covered is a multiple of 3 and may be covered in a straightforward

manner by grouping ends in threes. All vertices from A1 to A2∪Ap have now been covered.

As 3 | ap we may easily cover the edges from b to Ap with 3ap copies of S3.
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Case 3.2 (ap ≡ 1 mod 3) Here we must have that ap ≥ 4. As in the previous case, we fill A1

to capacity first. Center five copies of S3 at a with ends {b, 1, 2}, {b, 3, 4}, {1, 2, 3}, {b, 1, 4},

and {2, 3, 4}. Now center four copies of S3 at b with ends {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and

{2, 3, 4}. All edges between A1 and A2 as well as the edges from four of the vertices of Ap

to A1 ∪ A2 have now been covered. If ap ≥ 7, the number of vertices in Ap whose edges

incident to A1 ∪ A2 have not yet been covered is a multiple of 3 and may be covered in a

straightforward manner by grouping ends in threes.

Case 3.3 (ap ≡ 2 mod 3) Here we must have that ap ≥ 5. We will fill A1 to capacity first;

the remainder of the edges will have a straightforward S3-decomposition. Center at a copies

of S3 with ends {1, 2, 3} and {b, 4, 5}; repeat twice more. Now center five copies of S3 at b

with ends {1, 2, 3}, {1, 4, 5}, {2, 3, 4}, {1, 2, 5}, and {3, 4, 5}. All edges between A1 and A2

as well as the edges from five of the vertices of Ap to A1 ∪ A2 have now been covered. If

ap ≥ 8, the number of vertices in Ap whose edges incident to A1 ∪ A2 have not yet been

covered is a multiple of 3 and may be covered in a straightforward manner by grouping ends

in threes.

While many of the cases here are similar to those of Theorem 3.1, higher values of λ

can be problematic. In the cases where qi ≤ λ, even with the lower bound on qi from the

necessary conditions, we had λ
2 different values of the central function to consider. Even in

Case 2.3.2 of Theorem 3.1 the greedy central function would not yield an S3-decomposition.

We were then able to come up with a central function that worked, and we suspect the

same will need to be done in similar cases for λ ≥ 3.
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Chapter 5

Conclusion

We have only begun to scratch the surface of solving the most general problem of

finding Sk-decompositions of λ-fold complete multipartite graphs. Using Theorem 2.1 and

the fact that all vertices in a part of λKa1,...,ap have the same degree, we were able to

lay a foundation that we believe will helpful for solving the overall general problem of Sk-

decompositions of λ-fold complete multipartite graphs for higher values of k and λ. We

then developed a system of inequalities that, given a largest set S that minimizes f(S) gave

many necessary conditions on G, often leading to direct contradictions. We summarize here

the results we proved.

Proposition 5.1. We have necessary conditions that are easily checked for finding Sk-

decompositions of λ-fold complete multipartite graphs. These conditions are also sufficient

for k = 2 and all values of λ and for k = 3 and λ = 2.

In our attempt at the case where k = 3 and λ ≥ 3, we ran into difficulty in the

cases where qi ≤ λ for all i. It is likely, as in the related cases in Theorem 3.1, that we

will need to develop another central function to get the desired result. We have begun

some preliminary work in finding Sk-decompositions for 2Ka1,...,ap where k ≥ 4. The main

difficulty in this case is, again, when qi ≤ λ = 2. In most of those cases in the case where

k = 3, we could assume that n− s < 3, which only left a small handful of possible subcases.

A similar assumption is not nearly as helpful for larger values of k, especially in the case

where n− ap < k. We summarize the open cases remaining.
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Proposition 5.2. For k = 3, the problem of finding easily checked necessary and sufficient

conditions for Sk-decompositions of λ-fold complete multipartite graphs is still open for

graphs where λ ≥ 3, the greedy central function is not constant, and c(x) ≤ λ for all

x ∈ V (G). It is also open for λ ≥ 2 and k ≥ 4.

During our investigation, we developed a small computer program to search for graphs

with particular properties. We have included the source code for our program that finds

the set(s) that minimize f(S) for graphs with a given number of vertices in the Appendix.

Using this program, we are developing some ideas on how to proceed and what types of

graphs we may need to try a new central function on.
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Appendix

We include here the source code for a program written in C++ to examine when a
k-star design on a graph G is possible. Various adaptations of this program were also used
to find graphs with specific properties.

#include <iostream.h>
#include <math.h>

// Prototype for function that will use graph to figure things out

int kstars(int a[100], int n, int p, int lambda);

int main(int argc, char* argv[])
{
int n, p, i, x, s, y, lambda;
int a[100];
bool alldone = false;

/*
for (n = 4; n <= 20; n++)
{
p = n-1;
for (i=1; i<=p-1; i++) a[i] = 1;
a[p] = 2;

cout << "What about lambda?";
cin >> lambda;

// Now do what needs to be done on the graphs with n vertices

while (!alldone)
{
// Call function to figure out everything!

kstars(a, n, p, lambda);

// Compute the next graph to be worked on if needed

if (p > 1)
{
s = a[p - 1] + a[p];
x = a[p - 1];
y = floor(s / (x + 1));
for (i = p-1; i <= p-2 + y; i++) a[i] = x + 1;
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p = p - 2 + y;
a[p] = a[p] + s - y*(x+1);

}
else alldone = true;
}
alldone = false;
}

kstars(a, n, p, lambda);
}

int kstars (int a[100], int n, int p, int lambda)
{
int i, j, m, e_G, k, t, starsLeft, beta, b_beta, stopPart, f, c_S, e_S,

minsum, s, min_f, num_with_min, splittype, num_at_cap, g;
int cap[100], q[100], S[100], min_splittype[256];
int sets_with_min[256][256];
bool splitPart, donewithsets, foundone;

// Compute m (number of edges)

m = n*n;
for (i=1; i <= p; i++)
{
m -= a[i]*a[i];
}
m = m/2;
e_G = m * lambda;

// Print the graph and number of edges

cout << "\nG = ";

for (i=1; i<=p; i++)
{
cout << a[i] << " ";
}

// Start looking through the possible values of k for something
// that might work.
// We’ll start at k=3 as k<2 is done and/or trivial

for (k=3; k <= n - a[p]; k++)
{
foundone = false;
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// Check condition 1

if (e_G == 0 || e_G % k != 0)
{
// cout << ": Condition 1 failed for k = " << k << ".\n\n";
continue;
}

// Condition 2?

if (n - a[p] >= k && k*(n - a[p]) > m)
{
// cout << ": Condition 2 failed for k = " << k << ".\n\n";
// continue;
}

// This looks OK so far, so let’s compute the capacities of each part

for (i=1; i <= p; i++)
{
if (n-a[i] >= k) cap[i] = floor(lambda*(n-a[i])/k);
else cap[i] = 0;
}

// Now assign our greedy central function to this graph,
// going part by part.We’ll first see if we have enough stars
// for the whole part. If so, go ahead and give every vertex
// in this part a star. If there are some left but not
// enough to go around to every vertex, give out what we can
// and then make a note of the part number where we had to stop
// (beta) and where in the part we had to stop (a[beta]-b_beta).

starsLeft = e_G / k;

// Reset the q’s to all zeros

for (i=1; i<=p; i++) q[i] = 0;

// stopPart is the last part that isn’t at capacity (and therefore
// where we want to stop giving out stars).

stopPart = p;
splitPart = false;
b_beta = 0;

do
{
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for (i=stopPart; cap[i] == q[i] && i > 1; i--);

stopPart = i;

for (i=1; i<=stopPart && a[i] <= starsLeft; i++)
{
q[i] += 1;
starsLeft -= a[i];
}

// This checks to see if we didn’t have enough stars

if (a[i] > starsLeft && starsLeft > 0 && i <= stopPart)
{
beta = i;
b_beta = a[beta] - starsLeft;
starsLeft = 0;
splitPart = true;
}

} while (starsLeft > 0);

// Now that the greedy central function is set, we need to
// check condition ii). For the graphs we’re looking at though,
// it’s not too bad. We need only check to see if the values of
// the central function in the last two parts add to lambda.

if (q[p] + q[p-1] < lambda)
{
cout << ": Condition 2 failed for k = " << k << ". Moving on...\n";
continue;
}

// This prints out the central function.

num_at_cap = 0;

for (i=1; i<=p; i++) if (q[i] == cap[i] && cap[i] > 0) num_at_cap++;

cout << "\nOur central function for k = " << k << ":\n";
for (i=1; i<= p; i++) cout << "q[" << i << "] = " << q[i]

<< " capacity = " << cap[i] << "\n";
if (splitPart) cout << "beta = " << beta << ", b_beta = "

<< b_beta << ", a[beta] = " << a[beta] << "\n"; */
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// Now we’re going to check this to see what subset of parts
// minimizes the inequality in condition iii). To do this, we’re
// going to have to look at all possible subsets.

// To start off with, we need to set up an array, S, that will
// keep track of what parts are in the set we’re looking at (1)
// and aren’t (0). First we need to reset
// S to all zeros.

for (i=1; i<=100; i++)
for (j=1; j<=p; j++) sets_with_min[i][j] = 0;
min_f = 0;
num_with_min = 0;
for (i=1; i<=100; i++) min_splittype[i] = 0;

if (!splitPart)
{
for (i=1; i<=p; i++) S[i] = 0;
donewithsets = false;
while (!donewithsets)
{
donewithsets = true;
f = 0;
c_S = 0;
e_S = 0;
minsum = 0;
s = 0;

for (i=1; i<=p && donewithsets == true; i++) if (S[i] == 0)
donewithsets = false;

for (i=1; i<=p; i++)
{
if (S[i] == 1)
{
c_S += (a[i]*q[i]);
s += a[i];
e_S -= pow(a[i],2);
if (q[i] < lambda) minsum += a[i]*q[i];
else minsum += (a[i]*lambda);
}
}

e_S += pow(s,2);
e_S = e_S * lambda / 2;
minsum *= (n - s);
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f = e_S - k*c_S + minsum;

// Now we need to see if this is less than the minimum
// value of f we’ve reached so far.

if (f < min_f)
{
min_f = f;
num_with_min = 1;
for (j=1; j<=p; j++) sets_with_min[1][j] = S[j];
}
else if (f == min_f)
{
num_with_min++;
for (j=1; j<=p; j++) sets_with_min[num_with_min][j] = S[j];
}

// If this isn’t the last subset (namely, everything)
// then compute the next set

if (!donewithsets)
{
t=p;
while (S[t] != 0) t--;
S[t] = 1;
for (i=t+1;i<=p;i++) S[i] = 0;
}

}

}
else
{
// Now things get a little trickier. We’ve got a split part,
// so we’re going to have to look at three possibilities:
// the split part being in X, Y, or Z.
// The int splittype variable keeps track of what
// case we’re looking at:

// 0 = X
// 1 = Y
// 2 = Y’
// 3 = Z

for (splittype=0; splittype <=2; splittype++)
{
for (i=1; i<=p; i++) S[i] = 0;
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donewithsets = false;
while (!donewithsets)
{
donewithsets = true;
f = 0;
c_S = 0;
e_S = 0;
minsum = 0;
s = 0;

for (i=1; i<= p-1 && donewithsets == true; i++)
if (S[i] == 0) donewithsets = false;

for (i=1; i<beta; i++)
{
if (S[i] == 1)
{
c_S += (a[i]*q[i]);
s += a[i];
e_S -= pow(a[i],2);
minsum += (((q[i]) < (lambda)) ? (q[i]) : (lambda)) * a[i];
}
}
for (i=beta; i<=p-1; i++)
{
if (S[i] == 1)
{
c_S += (a[i+1]*q[i+1]);
s += a[i+1];
e_S -= pow(a[i+1],2);
minsum += (((q[i+1]) < (lambda)) ? (q[i+1]) : (lambda)) * a[i+1];
}
}

minsum *= (n - s);

switch (splittype)
{
case 0:
;
break;
case 1:
c_S += (q[beta] + 1)*(a[beta] - b_beta);
s += (a[beta] - b_beta);
e_S -= pow((a[beta] - b_beta),2);
minsum += (((q[beta]+1) < (lambda)) ? (q[beta]+1) :

(lambda)) * (a[beta] - b_beta) * (n - s - b_beta);
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break;
case 2:
c_S += (q[beta] * b_beta);
s += b_beta;
minsum += ((((q[beta]) < (lambda)) ? (q[beta]) :

(lambda)) * (b_beta) * (n - s - (a[beta] - b_beta)));
break;
case 3:
c_S += a[beta]*q[beta] + (a[beta] - b_beta);
s += a[beta];
e_S -= pow(a[beta],2);
minsum += (((q[beta]<lambda) ? (n - s)*a[beta]*q[beta]

+ (a[beta] - b_beta) : (n - s)*(a[beta]*lambda)));
break;
default:
cout << "Error checking for split parts. Exiting.";
return 1;
}

e_S += pow(s,2);
e_S = e_S * lambda / 2;
f = e_S - k*c_S + minsum;

// Now we need to see if this is less than the minimum value of f
// we’ve reached so far. Also keep track of the min’s split type.

if (f < min_f)
{
min_f = f;
num_with_min = 1;
for (j=1; j<=p-1; j++) sets_with_min[1][j] = S[j];
min_splittype[1] = splittype;
}
else if (f == min_f)
{
num_with_min++;
for (j=1; j<=p-1; j++) sets_with_min[num_with_min][j] = S[j];
min_splittype[num_with_min] = splittype;
}

// If this isn’t the last subset (namely, everything)
// then compute the next set

if (!donewithsets)
{
t=p-1;
while (S[t] != 0) t--;
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S[t] = 1;
for (i=t+1;i<=k;i++) S[i] = 0;
}
}
}
}

// Print the results out to the screen

cout << "For k = " << k << ", The minimum value of f is " << min_f << "\n";

for (i=1; i<=num_with_min; i++)
{
cout << "Min set " << i << ": ";
if (splitPart)
{
for (j=1; j<beta; j++) cout << sets_with_min[i][j];
switch (min_splittype[i])
{
case 0:
cout << "X";
break;
case 1:
cout << "Y";
break;
case 2:
cout << "Y’";
break;
case 3:
cout << "Z";
break;
default:
cout << "Error checking for split parts. Exiting.";
return 1;
}
for (j=beta; j<= p-1; j++) cout << sets_with_min[i][j];
}
else for (j=1; j<=p; j++) cout << sets_with_min[i][j];
cout << endl;
}
}
return 0;
}
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