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Abstract 

 

 

 Lifting weight estimation has gained attention in recent years due to its potential 

applications in ergonomics, human-robot collaboration systems, and wearable devices. The 

primary objective of this dissertation was to develop a machine learning based method that can 

recognize different levels of lifting weight without prior knowledge or measurement of the 

weight. This research investigated the effects of lifting weights on the upper-body joint 

kinematics and shoulder-elbow coordination. The results showed that lifting weight level had 

statistically significant effects on upper extremity kinematics such as velocities and shoulder-

elbow coordination.  

Building on these results and findings from previous studies, a BiLSTM-Transformer 

Encoder model was developed using lifting kinematics as input features for lifting weight 

recognition. This model demonstrated improvements over existing multi-level lifting weight 

recognition models. Furthermore, with feature importance analysis, we found that the model was 

able to focus on different features during different phases of the lifting process, highlighting its 

nuanced understanding of the lifting biomechanics involved. 

Further, the dissertation explores the application of the developed model to video data for 

lifting weight recognition. This approach demonstrated reasonable results in multi-level lifting 

weight recognition using video footage.  

This research demonstrated the potential for improved accuracy in lifting weight 

recognition tasks. The methods and models developed in this research have promising 

applications in various areas. The proposed method and findings in this research pave the way 

for future innovations and developments in lifting weight recognition tasks. 
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Chapter 1 

Introduction 

While Industry 4.0 has created opportunities for automation and robotization, some 

manufacturing contexts continue to rely heavily on a human workforce. Assembly lines, known 

for their intricate nature encompassing multifaceted products comprising hundreds of 

components and including assembly and handling tasks, necessitate an exceptional degree of 

adaptability that remains beyond the current capabilities of robots. Tasks and activities that 

involve navigating complex spaces and performing sophisticated motor skills continue to be 

carried out manually in logistics. Moreover, humans have cognitive abilities that are very 

challenging to imitate and replicate (Battini et al., 2022). In such settings, physical ergonomic 

risk factors can cause injuries like musculoskeletal disorders (MSDs). These factors include 

awkward working postures, overexertion including manual exertion related to handling objects, 

and exposure to repetitive motion.  

Musculoskeletal disorders are injuries to the body’s musculoskeletal system, including 

tendons, ligaments, muscles, nerves, and discs. MSDs would cause absenteeism and lost 

productivity and lead to increased health care, disability, and worker’s compensation costs. 

Musculoskeletal injuries are the most common injury among all occupational diseases. 

According to the European Agency for Safety and Health at Work (EU-OSHA), more than 50% 

of the EU workforce reported MSDs in 2019 (EU-OSHA, 2019). In the U.S., as of 2018, there 

were 900,380 cases of days away from work (DAFW) in the private sector, with 30% being 

MSD cases (U.S. Bureau of Labor Statistics, 2020). Overexertion has been the leading cause of 
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nonfatal injury or illness involving days away from work. According to the 2021 Liberty Mutual 

Workplace Safety Index, overexertion related to handling objects continues to rank first among 

the leading causes of disabling injuries and costs the U.S. $13.3 billion dollars in direct 

costs(Liberty Mutual, 2021). Therefore, ergonomics is still one of the most important parts of 

engineering, especially in industrial settings. Findings of scientific research have shown strong 

associations between physical ergonomic risk factors and the development of MSDs. The 

measurement of workers’ exposure to risk factors has been of vital importance. Subsequently, 

exposure assessment methods have been developed for physical factors that increase risk.  

Traditional exposure assessment methods have been categorized as self-reports, 

observational methods, and direct measurements. Generally, self-reports from workers can be 

used to collect data on workplace exposure to physical factors by using worker diaries, 

interviews, and questionnaires (David, 2005). These methods are straightforward to use and 

appropriate for a large number of workers at a low cost, but the gathered information (e.g., pain, 

postural discomfort, and levels of subjective exertion) is imprecise and unreliable (David, 2005). 

Observational methods are based on direct observation of workers while performing tasks 

(Diego-Mas et al., 2017). They are usually easy to use and applicable to a wide variety of work 

situations at a low cost, however, may be subjected to observer biases and are more suitable for 

the assessment of static jobs (H. Chen, 2017). Direct methods rely on sensors attached directly to 

the worker for the measurement of exposure variables (Diego-Mas et al., 2017). Although these 

methods collect accurate data, they are invasive and not suited to be used in real work situations 

due to the potential for disruption (Diego-Mas et al., 2017). 

The so-called ‘automated ergonomics assessment system’ takes advantage of the 

advancements in machine learning (ML) and device technologies to assess workplace exposures 
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to physical risk factors. Recently, the rapid development of machine learning technology has 

introduced a substantial impact on ergonomics research in manufacturing (S. Lee et al., 2021). 

Studies have been carried out to apply machine learning algorithms to automatically evaluate 

worker’s posture or quantify the duration of work activity (Lamooki et al., 2022; Lin et al., 2022; 

Nath et al., 2018). Various machine learning methods, such as neural networks, random forest, 

and deep learning, have been utilized based on data from sensors and cameras to solve a broad 

range of ergonomics problems. By focusing on some devices that are commonly used in the 

manufacturing context, the inertial measurement units (IMUs) and cameras gain higher and 

higher attention to collect data from workers.  

The goal of this research is to monitor external loading on hands by utilizing ML 

techniques based on data from IMUs and cameras in non-repetitive material handling work. The 

specific research objectives are to: 

1) Investigate the effects of lifting weights on upper limb joint kinematics and 

shoulder-elbow coordination. 

2) Develop a transformer-based model for lifting load recognition and evaluate the 

model. 

3) Examine the potential use of cameras for lifting load recognition. 
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Chapter 2 

Literature Review 

2.1 Introduction 

The rapidly evolving sensor technologies and artificial intelligence (AI) has permeated 

numerous aspects of our lives, including workplace environments. One such application is 

automated ergonomics assessment, which utilizes AI-powered systems, particularly machine 

learning, to evaluate ergonomic risks. According to the U.S. Bureau of Labor Statistics (BLS), 

musculoskeletal disorder (MSD) cases accounted for approximately 30% of all reported work-

related injuries and illnesses, and the incidence rate of MSD cases was 27.2 per 10,000 full-time 

workers (U.S. Bureau of Labor Statistics, 2020). Work-related MSDs occur across various 

industries, with a higher incidence in industries such as healthcare and social assistance, 

manufacturing, and retail trade (U.S. Bureau of Labor Statistics, 2020). Ergonomics assessment 

plays a crucial role in identifying and mitigating ergonomic risks in the workplace, ensuring the 

health and well-being of employees. Traditional ergonomic assessment methods often rely on 

manual observations and subjective assessments, which can be time-consuming, prone to bias, 

and limited in scope. Automated ergonomics assessment systems leverage machine learning 

algorithms and sensor technologies to overcome these limitations, providing objective and 

comprehensive analyses. In addition, these systems can evaluate and classify ergonomic risk 

exposure in real time. This allows for immediate feedback to employees and employers, 

facilitating timely interventions to improve ergonomic conditions. The rapid development in 
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wearable sensors, computer vision, machine learning and computing power provides solutions 

that enable automated ergonomic assessment with sufficient reliability and efficiency. 

The paradigm shift towards automated ergonomic assessment has opened up a multitude 

of opportunities for innovative solutions to prevent work-related MSDs. However, these novel 

advancements have also brought forth new challenges that necessitate a comprehensive 

understanding of the current state of automated ergonomic assessment. This review seeks to shed 

light on recent developments, explore potential opportunities, and address the emerging 

challenges within the domain of automated ergonomic assessment.     

2.2 Methods 

2.2.1 Search Strategy 

A literature review was conducted via Embase, Engineering Village and IEEE Xplore. A 

search was carried out for journal articles published from January 2007 through June 2022. Our 

search identified articles that focused on automated quantification of ergonomic risk factors and 

was limited to studies of ergonomic assessment. The search keywords used to identify studies on 

automated ergonomics assessment included [‘automat*’ or ‘real-time’] and [‘ergonomics’] and 

[‘assessment’ or ‘evaluation’ or ‘analysis’ or ‘quantif*’]. Any peer-reviewed journal articles, 

including the search keywords in the document title, abstract, or keywords, were selected. Only 

studies written in English were searched. The search process and exclusion criteria are 

summarized in Figure 2.1. 

2.2.2 Exclusion Criteria 

The initial search identified 623 studies based on title, abstract, and keyword, with 67 

duplicates. After removing duplicates, the selected articles were screened and assessed based on 

the title abstract, and then the full text. Studies were excluded from further analysis if they: (1) 
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described a study on ergonomics design. For example, studies used automated ergonomic 

evaluation to quantify ergonomic comfort in aircraft cockpit design; or (2) focused on 

rehabilitation ergonomics. For example, studies investigating digital ergonomic evaluation of 

exoskeleton for upper-limb rehabilitation; or (3) focused on autonomous vehicle ergonomics 

assessment. For example, studies investigating automated ergonomic evaluation of driver’s 

postures in autonomous and semiautonomous vehicles. 

 

Figure 2.1: Flow-chart according to the different phased of the systematic review as proposed by 

PRISMA 

 

2.2.3 Assessed Outcomes 

A total of 50 studies were retrieved after the full-text review. The following information 

was extracted from each article:  
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• general information: authors, year of publication, title, journal, study setting, tasks that 

were analyzed (i.e., material handling, assembling, stitching), study objective. 

• automated assessment of ergonomic risk: ergonomic risk factors (i.e., posture, load/force, 

movement frequency, repetition, duration, recovery), data acquisition sensors (e.g., 

surface electromyography, camera, inertial measurement units), data processing and 

analysis, ergonomic assessment criteria, and real-time feedback. 

2.3 Results 

Appendix A summarizes extracted information on the 50 studies reviewed. The results 

indicated that more than half of the studies were published after 2019 (Figure 2.2). Although in 

the search strategy, the starting year was 2007, the first relevant paper retrieved was published in 

2011 by Gong et al., 2011. The number of studies has steadily increased since then, except for 

the year 2022, for which we only searched studies published from January through June. 40 out 

of 50 studies examined the applicability of the proposed automated ergonomic assessment 

system only in laboratory experiments simulating real-field environments. Only 6 studies 

demonstrated the utility of their method in field-based settings, while the remaining 5 relied on 

both laboratory and field settings.  

 

Figure 2.2: Publication per year (n = 50) 
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Across all studies, various automated ergonomic assessment methods were developed for 

evaluating risk factors. Figure 2.3 provides a summary of the reviewed studies that reported on 

risk factors evaluated. The most frequently evaluated ergonomic risk factors were tasks and 

postures. 32 studies evaluated tasks and postures, with 11 studies assessing upper body 

ergonomic exposure and the remaining studies assessing the whole body. The upper extremities 

and low back were the most assessed body segments. 4 studies assessed repetition, frequency, 

and duration, while 7 studies focused only on forces and moments. Across the retrieved studies, 

7 studies evaluated more than one risk factor. In particular, 2 studies assessed different postures 

and the corresponding duration and frequency (Bortolini et al., 2020; Spector et al., 2014), 1 

study evaluated physical intensity as well as frequency and duration (Antwi-Afari et al., 2020), 2 

studies evaluated external loads along with postures (Oyekan et al., 2021; Vianello et al., 2022), 

and 2 studies evaluated all three types of factors (Van Crombrugge et al., 2022). 

 

Figure 2.3: The number of studies on each ergonomic risk factor 

 

2.3.1 Data Collection System 
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Various types of data collection systems were proposed by the retrieved studies for 

automated ergonomic assessment to gather real-time data on workplaces and evaluate potential 

risks associated with poor postures, forceful exertions, and prolonged and repetitive motions. 

These systems often incorporate one or several sensors to capture interested data. Based on 

sensor placement or location, we categorized data collection systems into two main types, 

including vision-based system and wearable sensor system.  

2.3.1.1 Vision-Based System 

Across the retrieved studies, 28 of them used vision-based system for data collection, 

with 14 studies using Depth camera/depth images, 13 studies using RGB camera/images, and 1 

study using optical motion capture system. Depth cameras, also known as 3D camera, capture 

depth information. Each pixel in a depth image represents the depth or distance information for a 

specific point in the scene. We categorized them into three categories based on the technologies 

they used: stereo camera (e.g., RealSense D455’ and RealSense D435), time-of-flight (ToF) 

camera (e.g., PMD CamCube 2.0, Kinect for Xbox One, Kinect for Windows v2, Azure Kinect 

DK), and structured light camera (e.g., Kinect for Xbox 360). Stereo cameras use two or more 

cameras to capture images from a slightly different perspective. Depth information can be 

calculated by comparing the disparities between corresponding points in the images. Stereo 

cameras are low-cost and generally work well in indoor environments with controlled lighting. 

While it can work outdoors, it may encounter challenges in direct sunlight or scenes with highly 

reflective surfaces. It is also sensitive to calibration errors and requires multiple calibrations. To 

automatically calculate Rapid Entire Body Assessment (REBA) scores, Van Crombrugge et al., 

2022 estimated 3D joint angles from depth data captured by a RealSense camera. Their results 

showed that the accuracy of the 3D joint angles from a RealSense was limited when compared to 
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the ground truth of VICON measurements (Van Crombrugge et al., 2022a). ToF cameras and 

structured light cameras are also known as range cameras. Compared to stereo cameras, range 

cameras generally offer higher accuracy and can cover a wider range of distances. ToF cameras 

measure the distance from the camera to a subject by measuring the time it takes for light to 

travel forth and back between them. It provides depth information in real-time and can work both 

indoors and outdoors. But it can be less accurate in extremely bright sunlight. Structured light 

cameras calculate depth by analyzing the deformation of the pattern of the light that is projected 

onto the scene. This type of camera can provide highly accurate depth measurements. But they 

are generally used indoors and require consistent lighting. Across the studies, the most widely 

used depth cameras were Kinect sensors. They have built-in skeletal joint tracking algorithms 

and are capable of tracking joint positions in real-time. However, the accuracy of the 3D skeleton 

estimation was limited when using Kinect in an industrial environment due to complex human 

motions and occlusions. To overcome this limitation and calculate more accurate Rapid Upper 

Limb Assessment (RULA) scores in real work conditions, Plantard et al., 2017 proposed using 

Filtered Pose Graph to reconstruct poses. Most studies used a single depth camera which was 

usually placed in front of the subject. Depth data were usually collected at 10 - 30 fps (frames 

per second), and the tracking distance was from 1.4 to 5 meters.  

Another imaging device used was RGB cameras that capture color images or video 

frames in color. Each pixel has three channels (red, green, and blue) representing its color. RGB 

cameras are widely available and cost-effective. They can be used in indoor and outdoor settings. 

In industrial cases, RGB cameras can be easily integrated into existing monitoring systems, 

minimizing the need for additional hardware. With a single RGB camera, it typically provides 

2D information rather than 3D information. For example, Greene et al., 2019 proposed a method 
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that automatically classified lifting postures (e.g., squatting, stooping and standing) using 2D 

information from video frames captured by a side view camera. However, using multiple RGB 

cameras, it is possible to estimate 3D information by combining information from different 

camera views. In Van Crombrugge et al., 2022, three cameras were positioned at different angles 

around the capture area where a subject performed work. 3D joint angles were obtained by 

triangulating 2D information from two and three cameras, respectively. Their results suggested 

the accuracy could be improved by using more cameras as it provides larger overlapping 

coverage and minimizes occlusion (Van Crombrugge et al., 2022a). Of 13 RGB camera-based 

studies, 9 studies reported sampling frequency varying from 7 to 30 fps, and only 4 studies 

reported the capture distance of the camera(s) which ranged from 2 to 3.3 meters from the 

subject. 

Optical motion capture (OMC) system is another vision-based technique for obtaining 3D 

information of subjects. With multiple cameras positioned around the capture area, optical 

motion capture system records video frames that contain information about the positions of 

reflective markers attached to subject’s body. By estimating tracked marker positions, it allows 

for detailed and accurate 3D kinematic measurements related to subject’s motion. Maruyama et 

al. used OMC system to estimate and track 3D joint positions for ergonomics assessment 

(Maruyama et al., 2021).  

2.3.1.2 Wearable Sensor System 

Wearable sensors, such as smart gloves, pressure insoles or inertial measurement units 

(IMUs), were also used to collect data on workers' physiological responses, joint forces and 

moments, and body movements and postures for ergonomic assessment. IMUs consist of 

multiple sensors, typically accelerometers, gyroscopes, and magnetometers, that work together to 
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provide information about a subject’s motion and orientation. To capture movements of different 

segments simultaneously, multiple IMUs are usually placed at various subject’s body parts. Then 

3D kinematic data of body segments or joints can be estimated either by commercially available 

software or custom-made scripts. The number of inertial sensors used in the reviewed literature 

varied from 1 to 17. Matijevich et al., 2021 evaluated the feasibility of using a reduced number 

of inertial sensors, with the number varying from 2 to 8 (Matijevich et al., 2021). IMU is also 

used in smartphones for motion tracking. Nath et al., 2018 used smartphones for manual work 

activity detection in addition to activity duration and frequency estimation (Nath et al., 2018). 

Pressure insoles, also known as plantar pressure measurement systems or foot pressure sensors, 

are devices designed to measure the distribution of pressure and force exerted on the foot soles. 

The use of pressure insoles measures the vertical ground reaction force (vGRF), which also 

provides an estimate of the external forces applied to the subject (Antwi-Afari et al., 2020; 

Lorenzini et al., 2018; Matijevich et al., 2021; Yu, Li, Umer, et al., 2019; Yu, Li, Yang, et al., 

2019). By combining the external forces measured from pressure insoles with joint kinematics 

from motion capture systems, inverse dynamics analysis can compute the internal joint forces 

and moments (Yu, Li, Umer, et al., 2019; Yu, Li, Yang, et al., 2019). Smart glove, often 

embedded with flexion sensors and pressure sensors, captures hand movements and finger 

motions. Malaise et al. used an e-glove to automatically track workers’ hand activities (Malaise 

et al., 2019). In the retrieved studies, surface electromyography (sEMG) was used to evaluate 

muscle effort during various work tasks. By combining sEMG and IMC system, Oyekan et al. 

and Peppoloni et al. developed frameworks for automatic ergonomic assessment concerning 

muscle effort intensity and work postures (Oyekan et al., 2021; Peppoloni et al., 2016). 

2.3.2 Data Processing and Analysis 
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Automated ergonomic assessment requires efficient, sometimes real-time, data analysis 

and modeling. Data characterizing ergonomic risks are high-dimensional, complex, and big in 

volume with various sources; often, advanced data processing and analytic techniques are used to 

extract from these data informative features that describe risk factors including postures, force 

exertion, and task duration and repetition. Depending on specific ergonomic assessment needs, 

technical expertise and resources, different data processing and analysis methods were used. 

These methods are categorized into two main categories: commercially available software-based, 

and machine learning-based.   

2.3.2.1 Commercially Available Software-Based  

Some studies used commercially available software packages for processing data from 

IMU sensors. Commercially available software packages often offer data visualization, analysis, 

and even real-time processing capabilities. Some of them are provided by sensor manufacturers, 

while others are from third-party developers. For example, Xsens (Technologies B.V., Enschede, 

Netherlands) offers manufacturer-developed software packages such as MVN Animate/Analyze, 

which can process motion data and estimate joint and segment kinematic parameters, such as 

orientation, position, angle, velocity, and acceleration. In a few studies, depth images captured 

by Kinect were processed by Kinect SDK, a commercial software developed by Microsoft. The 

software estimated the 3D coordinates of joints by built-in algorithms. The joint positions were 

then used for calculating joint angles which were used for risk posture assessment (E. Rocha-

Ibarra et al., 2021; Manghisi et al., 2017; Plantard et al., 2015). 

2.3.2.2 Machine Learning-Based  

Depending on the type of data collection sensors and specific ergonomic risks being 

assessed, different machine learning methods are applied to perform ergonomic evaluation. 
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These methods can be summarized into traditional machine learning methods and deep learning 

methods. Traditional machine learning refers to a subset of machine learning methods that rely 

on handcrafted features and mathematical models to make predictions. Deep learning is based on 

deep neural networks (DNNs) and can automatically learn hierarchical features from the data, 

eliminating the need for extensive manual feature engineering. 

1. Traditional Machine Learning 

1) Feature Engineering and Selection 

Feature engineering is the process of creating and transforming new features from raw 

data (e.g., wearable sensor data, images and videos), while feature selection involves selecting 

the most relevant ones from available features. The choice of feature engineering techniques 

depends on specific machine-learning tasks and data sources. Due to their distinct characteristics, 

different features were engineered for sensor data and vision-based data. Sensor data feature 

engineering involved summarizing temporal and frequency aspects and incorporating domain-

specific knowledge, while vision-based data feature engineering focused on spatial and temporal 

relationships, colors, and textures. 

Wearable Sensor-Based Data 

Traditional machine learning models were trained on IMU data for work posture and task 

recognition. Data from pressure sensors and sEMG were used for joint force and moment 

estimation, and muscle force estimation. Relevant features were most commonly engineered 

from sensor data using domain knowledge. Domain knowledge was used to extract key 

kinematic and kinetic features, such as range of motion, orientation of segments, position of 

joints, and foot plantar center of pressure (COP), containing meaningful information with respect 

to the target variable. Time domain statistical features, such as mean, minimum, maximum, root 
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mean square (RMS), and standard deviation (SD), were also extracted from time-series sensor 

data. Frequency domain features were derived from frequency domain data which were 

converted from time domain data by applying mathematical transformations (e.g., Fast Fourier 

Transform, FFT). Before feeding these features to a machine learning model, some studies 

implemented feature selection to choose a subset of the most relevant features from the whole set 

of features(Antwi-Afari et al., 2020; H. Jeong & W. Park, 2021; Malaise et al., 2019). Feature 

selection approaches included filter methods, wrapper methods, and hybrid methods. 

Vision-Based Data 

Vision-based data were mainly used to train traditional machine learning models for 

recognizing work tasks and detecting risk postures based on ergonomic assessment tools, 

including Ergonomic Assessment Worksheet (EAWS) and Ovako Working Posture Analysis 

System (OWAS). Relevant features were extracted from images and videos by different 

methods. The most straightforward features were kinematic features computed from body joint 

positions, which were detected and estimated by pose estimation techniques. For example, 

Kruger & Nguyen, 2015 extracted body angle features from joint positions to recognize 16 

postures. We will discuss pose estimation with deep learning methods in section 2.3.2.2.2. The 

position of certain body parts can also be tracked and features were extracted. Azari et al., 2019 

tracked hand motion and extracted from hand trajectories a set of features describing hand 

kinematics. Some studies extracted features from human body silhouettes. Ray & Teizer, 2012 

extracted a human body silhouettes feature vector representing work postures. In Greene et al., 

2019, the height and width of a bounding box around the body silhouettes were used as features. 

Seo & Lee, 2021 derived features from a bounding box and an ellipse around the body 

silhouettes. Silhouette features were used to train models for classifying different working 
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postures, such as twisting, crawling, stooping, etc. However, features from silhouettes are 

sensitive to camera location, occlusion, and subject appearance. The bag-of-vision-words 

approach was used to extract spatiotemporal features from video sequences of different actions 

(Gong et al., 2011). Bag-of-vison-words approach represents features as a collection of tokens 

and retains the information about feature occurrence for each action class. This technique is often 

used in classification tasks with Naïve Bayes which we will discuss in the next section. 

2) Learning Algorithms 

 A variety of algorithms were used for ergonomic assessment. Support vector machine 

(SVM) was used for recognizing ergonomic condition vs. unergonomic condition, such as squat 

lifting vs. stoop lifting, LI (lifting index) < 1 vs. LI > 1 (Conforti et al., 2020; Donisi et al., 

2021). SVM is initially designed for binary classification tasks, but it can be extended to handle 

multi-class classification problems through methods like one-vs-all or one-vs-one classification. 

Seo & Lee, 2021 used a one-vs-one SVM model to recognize multiple work postures, including 

back bending, arm raising, and knee bending. SVM was also used to recognize work activities, 

such as loading, carrying, pushing/pulling, lifting/lowering (Antwi-Afari et al., 2020; Nath et al., 

2018). Some studies classified multiple work postures using a decision tree (Azari et al., 2019; 

Greene et al., 2019). A decision tree partitions dataset into subsets based on simple rules (e.g., 

the values of input features) and creates a tree-like structure of decisions, where each internal 

node represents a feature, each branch represents a possible feature value, and each leaf node 

represents a prediction. However, decision trees can easily overfit the training data and are 

sensitive to changes in data where small changes in data can result in significantly different tree 

structures. Besides, single decision trees may not capture complex relationships in the data. 

Therefore random forest, an ensemble method that used multiple decision trees, was also used by 
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studies for posture and activity recognition (Antwi-Afari et al., 2020; Azari et al., 2019; Donisi et 

al., 2021; Kruger & Nguyen, 2015). Random forest combines the predictions of multiple 

individual decision trees to make more accurate and robust predictions. Both decision tree and 

random forest can provide measures of feature importance, which helps identify the most 

influential features in the dataset. As mentioned above, decision trees split data based on values 

of input features, while K-nearest neighbor (KNN) classifies data points based on their proximity 

to other data points. H. Jeong & W. Park, 2021 used a KNN classifier to classify eleven sitting 

postures. KNN can be computationally expensive, especially for large dataset, as it requires 

calculating distances to all data points. Naïve Bayes is a classification algorithm based on Bayes’ 

theorem. It assumes that each feature is independent of every other feature, which aligns with the 

idea the order of “words” is not considered in the bag-of-vision-words feature representation. 

Gong et al., 2011 used Naïve Bayes with bag-of-vision-words feature representation to classify 

three classes - relocating, excavating and swing. In order to model time-series data and retain 

temporal state information, Hidden Markov Models (HMMs) were used to recognize work 

activities (Azari et al., 2019; Malaise et al., 2019). Each work activity often consists of several 

actions. When performing a specific work activity, the next action should be expected based on 

the current state of action. HMM can be useful for understanding the sequential patterns and 

temporal dependencies for each activity class, and the extracted information can be used to 

determine which activity class is most probable. Another commonly used algorithm was 

Feedforward Neural Network (FNN), which outputs the probability for each class. Donisi et al., 

2021 used an FNN with a single hidden layer to recognize LI < 1 and LI > 1 during lifting. 

Although the algorithms mentioned above were used for classification tasks, most of 

them can be adapted for regression. That said, there are variations of them that are well-suited for 
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predicting continuous numerical values. For example, there are support vector regression and 

random forest regression. Similarly as random forest, gradient boosting decision tree algorithm 

also uses decision trees as fundamental building blocks. It builds decision trees sequentially and 

can be used for both classification and regression tasks. Matijevich et al., 2021 used a gradient 

boosted decision tree model to estimate lumbar moments. When using a single output neuron and 

a regression loss, FNN can be used for regression. In Lorenzini et al., 2018, an FNN with a 

single hidden layer was used for the estimation of feet ground reaction forces (GRFs) and centers 

of pressure (CoP). 

2. Deep Learning 

Wearable Sensor-Based Data 

Deep learning models such as Convolutional Neural Networks (CNNs) or Recurrent 

Neural Networks (RNNs) were applied to wearable sensor data to evaluate ergonomic risk 

factors. CNN was used to process and extract features from multi-channel data. For example, 

Lamooki et al., 2022 applied a 2D CNN on data from three accelerometer channels to extract 

spatial features representing different work tasks (e.g., lifting, pushing, typing, etc.). CNNs are 

designed for processing grid data and can be used to extract spatial information from sensor data, 

while RNNs are well-suited for handling sequential data such as time-series data. However, 

traditional RNNs have limitations on their ability to capture long-range dependencies in 

sequences due to the vanishing gradient problem. Sensor measurements used for ergonomic 

assessment could span a work shift, potentially containing thousands or millions of data points. 

Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) are a specific 

type of RNN and are designed to handle long sequences and mitigate the vanishing gradient 
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problem. Zhao et al., 2021 integrated a 2D CNN and LSTM as a convolutional LSTM (CLN) 

and applied it to data from 5 IMUs for detecting risk postures based on OWAS. 

Vision-Based Data 

Most vision-based studies applied deep learning methods for single-person 2D work pose 

estimation from which joint angles were calculated and used for risk postures assessment or 

inverse dynamic analysis. The models used for 2D pose estimation mainly included DeepPose 

(Toshev & Szegedy, 2014), stacked hourglass network (Newell et al., 2016), and convolutional 

pose machine (CPM) (Wei et al., 2016). A few studies also used computer vision libraries and 

toolkits, such as OpenPose (Cao et al., 2018) and Detectron2 (Wu et al., 2019), for pose 

estimation. In 2D pose estimation, the goal is to estimate the pixel coordinates (X, Y) of key 

body joints in a 2D image or video frame. Typically, key body joints include head, neck, 

shoulders, elbows, wrists, hips, knees, and ankles. The X and Y coordinates represent the 

positions of these joints in the image, with the origin (0,0) located at the top-left corner of the 

image, and X and Y corresponding to the horizontal and vertical axes. The angles () between 

body segments can be calculated with the formula  = arccos (a·b) / (||a|| ||b||), where vectors a 

and b represent body segments and can be obtained from 2D pose. For example, Pan et al., 2022 

and Z. Li et al., 2020 used CPM (Wei et al., 2016) with images from a side view camera to 

estimate 2D pose from which 2D joint angles in the sagittal plane and postures of neck/trunk 

twisting and side-bending were obtained for the calculation of REBA scores. However, 3D joint 

angles enable the assessment of complex, three-dimensional postures and movements, which is 

essential for jobs involving tasks, such as twisting, bending, reaching, crouching, etc. Some 

studies estimated 3D angles based on 3D pose estimation from multi-view images (Kim et al., 

2021; Van Crombrugge et al., 2022a). Multiple synchronized cameras recorded from different 
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angles, and 3D pose estimation was obtained by combining 2D pose estimation from each 

camera. For example, Kim et al., 2021 used OpenPose (Cao et al., 2018) to estimate whole-body 

2D poses from images of three different camera views, respectively. They then calculated 3D 

joint angles from 3D pose which was obtained by triangulating the estimated 2D pose. Fewer 

studies estimated 3D pose from a single image. For example, Yu, Yang, Li, et al., 2019 adopted a 

weakly-supervised approach proposed by Zhou et al., 2017 to estimate 3D pose estimation from 

a single image. In the study, 2D pose was first estimated by a stacked hourglass network (Newell 

et al., 2016), and then 3D pose was recovered from the 2D pose estimation by a depth regression 

network. But minor errors in the locations of the 2D body joints can have large consequences in 

the 3D space when recovering 3D from a single image (Sarafianos et al., 2016). Besides it 

requires additional steps to convert 3D coordinates of joint positions into joint angles. Abobakr 

et al., 2019 proposed a skeleton-free holistic posture analysis method to estimate 3D joint angles 

directly from a depth image. They used a deep residual network (ResNet) model (He et al., 2015) 

to map an input depth image to 15 joint angles. 

2.3.3 Ergonomic Assessment Criteria 

Different ergonomic assessment criteria were used to evaluate interested risk factors for 

various work tasks. In particular, 15 studies assessed upper body postures on the basis of RULA, 

while 10 studies applied REBA which is developed on the basis of the RULA and appropriate for 

whole body posture assessment. RULA and REBA identify harmful postures by evaluating 

postural angles of six different body positions, forceful exertions/load, static posture duration, 

action repetition, and coupling. In the studies, body position angles were derived automatically 

from motion data by commercially available software or machine learning methods, while other 

factors such as duration and repetition, force/load score, and coupling score were added 
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manually. Some studies applied OWAS, which identifies four postures for the back, three for the 

arms, and seven for the lower extremity, and has three weight categories for the load handled. 

Similar to RULA/REBA-based studies, work postures, such as back bending and rotation, arm 

elevation, and knee bending and kneeling, were recognized automatically by the use of machine 

learning method, while handled load were added manually. A few studies proposed automatic 

procedure for recognizing awkward postures based on EAWS. While these studies successfully 

demonstrated the use of machine learning methods to screen and identify awkward postures, 

other risk factors evaluated in EAWS, including action forces of whole-body and hand-finger, 

load conditions in manual material handling, and upper limb load in repetitive tasks, were not 

considered. NIOSH lifting equation is a tool to determine the recommended weight limit (RWL) 

for manual lifting tasks. The equation can be written: RWL = LC*HM*VM*DM*AM*FM*CM, 

where LC is the load constant, HM is the horizontal multiplier, VM is the vertical multiplier, DM 

is the distance multiplier, AM is the asymmetry multiplier, FM is the frequency multiplier, and 

CM is the coupling multiplier. Spector et al., 2014 automatically estimated the values of HM, 

VM, DM, AM and FM for the lifting equation. Another widely used tool for assessing lifting 

tasks is Lifting Fatigue Failure Tool (LiFFT). LiFFT estimates cumulative loading damage for 

the low back by taking into account the moment exerted on the low back from load, and the 

corresponding repetitions. Matijevich et al., 2021 estimated automatically lumbar moments that 

can be input into LiFFT. Another tool that is applicable to assess cumulative loading damage is 

the Shoulder Tool. Shoulder Tool takes into account types of manual tasks, the moment exerted 

on the shoulder from load, and the corresponding repetitions. Lamooki et al., 2022 demonstrated 

the use of machine learning methods to automatically recognize different manual tasks and the 

corresponding repetition and duration for the Shoulder Tool. Greene et al., 2017 and C.-H. Chen 
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et al., 2013 also presented a method for the automated estimation of frequency and duty cycle 

that can be used in hand activity level (HAL) analysis. To identify tasks that require excessive 

forceful exertion, some studies calculated joint torques with inverse dynamic analysis, where 

joint angles were automatically estimated from motion data, while external loads were manually 

added (Maruyama et al., 2021; Plantard et al., 2017), obtained from pressure insoles (Yu, Li, 

Umer, et al., 2019; Yu, Li, Yang, et al., 2019), or measured by torque sensors (Vianello et al., 

2022). 

2.3.4 Real-Time Ergonomic Assessment Feedback 

  Real-time feedback is an approach to identifying and addressing ergonomic issues as 

they occur, often using real-time data. It requires continuously monitoring workers’ activity, 

posture, force exertion, and duration and frequency of tasks. When specific ergonomic thresholds 

are reached, feedback is activated and sent out. Different types of feedback were used in the 

literature. Some studies used visual cues as feedback. Real-time posture angles or joint 

force/moments were visualized through a human body model or time-series graphs, and the level 

of ergonomic risk was color-coded. Cumulative ergonomic exposures in a work shift were also 

visualized and displayed in a few studies. Other studies also used visual cues with haptic or 

auditory cues, where visual cues were used for real-time, continuous risk factor monitoring and 

the vibration or auditory alert was sent out for ergonomic threshold breaching. For example, in 

Yan et al., 2017, real-time posture angle was visualized and displayed on a smartphone screen, 

and an auditory alert was sent out from the smartphone if an awkward posture was held for a 

period longer than the maximum holding time (MHT). In a few studies, immediate action was 

required if risk was detected. In Yan et al., 2017, an auditory alert would only be silenced until 

the detected prolonged awkward posture was adjusted to an acceptable one. 
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2.4 Discussion 

The use of automated assessment approaches in ergonomic research is on the rise. From 

work posture monitoring to predicting overload joint torques, the range of applications where 

advanced sensing systems and analytics can improve ergonomic research will continue to 

expand, particularly as machine learning methods are capable of learning from vast amounts of 

data. The aim of this review is to bring to light automated assessment approaches in ergonomic 

research and find research gaps that will inform future research in this area. 

2.4.1 Sensor Selection 

Choosing which type of sensor to collect data is a critical decision when considering the 

use of sensors for automated ergonomic risk assessment. In the reviewed studies, advanced 

sensing systems were used for motion capture and exerted force measurement with automated 

tools. Pressure insoles were mostly used to measure exerted force data in the literature due to its 

minimal influence on worker’s comfort and productivity. However, the type of sensors used for 

motion capture differed across the reviewed studies. Inertial sensors were capable of capturing 

accurate and reliable 3D motion data. It relied on direct measurements from sensors attached to 

worker’s body, which may not be feasible in long-time applications due to its intrusiveness. The 

number and anatomical locations of the sensors were dependent on the study’s research question 

and segments, or joints interested. For example, Lamooki et al., 2022 developed an effective 

method using just one IMU for activity recognition, while to capture whole-body kinematic data 

the studies used up to 17 IMUs on different body segments. Vision-based motion capture 

methods such as depth cameras and RGB cameras provided a non-intrusive and whole-body 

assessment. Depth camera was proved to be an effective tool for 3D motion capture. 

Biomechanically meaningful 3D motion data were also extracted from RGB images with the 
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help of computer vision algorithms. But the accuracy of these sensors was subject to illumination 

changes, viewpoint variation, background clutter and occlusions. Overall, this review identified a 

need for motion capture methods that are capable of capturing subtle movement and providing 

stable data and are robust to varying environments. These methods should also require minimal 

intrusiveness and disturbance.  

2.4.2 Analysis 

In the literature, working postures were assessed by a set of detailed segment kinematics 

that were derived from inertial data, depth images/video or RGB images/video. Different angle 

ranges corresponded different levels of risk on the basis of ergonomic criteria. But such methods 

didn’t provide contextual information for a given job (e.g., task type, duration, repetition). To 

extract task information, some studies used machine learning algorithms to classify different 

postures or tasks, using extracted features that represented different tasks. For example, Azari et 

al., 2019 calculated a feature set of 1213 predictor variables describing hands’ postures for 

surgical maneuver classification. Deep learning algorithms were also used for activity 

classification in three studies and were able to take raw data as input (Parsa et al., 2019; Roberts 

et al., 2020; Zhao, Obonyo, & G Bilén, 2021), skipping the feature extraction step. Six studies 

extracted activity repetition and duration based on counting activity types which were recognized 

by machine learning (or deep learning) algorithms. While posture, repetition and duration are 

important risk factors, overexertion injuries also result from accumulative microdamage caused 

by repetitive loading to musculoskeletal tissues, which is consistent with a fatigue failure process 

(Gallagher & Schall Jr., 2017). In reviewed studies, loadings were estimated based on posture 

data and exerted force data. Force data were either from prior knowledge of external load or 

derived from data from sensors such as pressure insole and sEMG.  
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2.4.3 Risk Factors and Ergonomic Criteria 

Motion capture sensors along with predictive modeling techniques have shown strong 

potential for extracting information representing posture risks. Most commonly used methods for 

posture evaluation are RULA, REBA, and EAWS. These methods require the estimation of 

segment angles and evaluate posture risk levels by some certain thresholds of segment angles, 

characterizing risk as low-risk level, medium-risk level and high-risk level. RULA only specifies 

angles in the sagittal plane, paying little attention to the movements in the coronal plane. LiFFT 

and Shoulder Tool investigate repetition and loading. LiFFT evaluates the risk of low back 

loading during lifting tasks where the low back tissues are exposed to cumulative damage. 

Shoulder Tool estimates cumulative damage to shoulder tissues during pulling and pushing. Joint 

torques and forces are also important to estimate the biomechanical constraints of working tasks 

in ergonomics. Multiple studies used data from motion sensors and pressure sensors for the 

estimation of joint torques. Messeri et al., 2022 trained a DNN model to predict muscle 

activation on the basis of motion data. This study shows potential for combining motion data 

with a deep learning model for estimating muscle activation and further predicting muscle force. 

2.4.4 Feedback 

Visual feedback often uses graphical icons, changing colors on a display or on-screen 

messages. It is highly effective for conveying information. But it may not be suitable in 

situations where workers’ visual attention is already engaged elsewhere, because looking at 

display could distract workers and increase the risk of accidents. However, it can be useful for 

ergonomists to observe trends and patterns of ergonomic risk from past and current data, 

potentially identifying improvements or deteriorations in workplace ergonomics. Besides, visual 

representations of risk factors are often accessible to non-expert audiences, which is important 
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when presenting findings to stakeholders. Haptic cues can use vibration alerts on wearable 

devices and allow workers to receive feedback without having to constantly look at a screen. It 

can be more immediate and attention-grabbing, which makes it suitable for real-time alerts where 

quick responses are necessary. But haptic cues can convey a limited amount of information due 

to the relatively simple nature of tactile feedback. It may not be as intuitive as visual cues, and its 

interpretation can be subjective. Similar to haptic cues, auditory cues are also effective for 

immediate attention and allow workers to receive feedback without having to divert their visual 

attention. But auditory cues can lack privacy, as they are audible to others nearby. In general, the 

choice of feedback type depends on the specific application context and the preferences and 

needs of the workers. Often, a combination of these feedback types can be used to ensure that 

ergonomic assessment feedback is communicated and acted upon effectively. 

2.4.5 Limitations 

The current review was limited to the assessment of physical risk factors. Exposure to 

job-related psychosocial stress and organizational factor have also been implicated in the 

development of work-related injuries. The study intentionally focused on data acquisition 

sensors, ergonomic risk factors, data modeling and ergonomic risk assessment criteria. Aspects 

related to feedback and intervention though being a step of the automated ergonomic assessment 

loop were outside of the scope of this study. This review also didn’t evaluate or rate the quality 

of individual studies. We only included journal papers available in three electronic databases. 

Therefore, we may have overlooked potential interesting studies if published in conferences, or 

not indexed in the selected electronic databases. 

2.5 Conclusion 
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This paper reviewed the current state of the method and system for automated ergonomic 

assessment. Findings suggest a growing number of studies pertaining to automating risk 

assessment in ergonomics. The main advantage of this trending research in ergonomics is its 

ability to evaluate ergonomic risk exposures continuously, automatically and in real-time. More 

than half of the studies relied on RULA and REBA that evaluate a single risk factor to assess the 

risk of work-related MSDs. New methods and systems are needed that are capable of automating 

ergonomic assessment criteria such as LiFFT and Shoulder tool which consider multiple risk 

factors. Additionally, analysis of joint loadings was largely limited to estimating external loads. 

Developing a modeling framework that has the ability to predict external loads would also be a 

direction for future research. 
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Chapter 3 

Assessment of the Effects of Lifting Weight on Upper Limb Joint Kinematics 

3.1 Introduction 

Musculoskeletal disorders (MSDs), encompassing conditions like low back pain, neck 

pain, and shoulder pain, are pervasive in the workforce. These MSDs not only lead to personal 

suffering but also impose substantial economic burdens on society through healthcare costs and 

reduced work productivity. Lifting objects is a common job demand in various industries, and it 

is frequently associated with increased risk for MSDs since lifting heavy weights places 

considerable mechanical demands on the human body. These demands manifest as changes in 

lifting kinematics and kinetics (Davis & Marras, 2000; T.-H. Lee, 2015; Norasi et al., 2019; 

Plamondon et al., 2017; Song & Qu, 2014). 

Previous studies have assessed the relationship between lifting weight and trunk 

kinematics and kinetics. Plamondon et al., 2017 reported significantly increased peak and 

cumulative low back moments with higher lifting weight. Similarly, Song & Qu, 2014 studied 

the effects of lifting weight on the low back moment and the sagittal plane kinematics. Their 

results showed that both peak and average low back moments increased with heavier lifting 

weight. Davis & Marras, 2000 investigated trunk peak kinematics of lifting 9.1 kg – 41.8 kg, and 

showed that there was an overall decrease in sagittal velocity and acceleration. Their result also 

indicated that there was no difference in spinal loads with small increases (3-9 kg) in box 

weights due to an offset by the sagittal velocity. In Norasi et al., 2019, they studied the effects of 

lifting weight on the variance in the ground reaction force (e.g., peak vertical ground reaction 

force, peak horizontal shear force), and the sagittal and transverse trunk kinematics (e.g., range 

of motion, average velocity, peak velocity, and peak acceleration). The results indicated that 
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there was no significant effect of lifting weight on the variance of trunk kinematic variables, 

while the lifting load had a significant effect on the variance of the peak shear ground reaction 

force. These studies demonstrated that changes of lifting weight generally led to changes of trunk 

kinematic and kinetic variables during lifting. 

However, these studies failed to consider the effects of lifting weight on whole body 

kinematics. Lifting is enabled by coordinated movements of a complex biomechanical system 

consisting of multiple body joints, mostly by those of the ankle, knee, hip, lumbar, shoulder and 

elbow. It is a process in which different joints interact and coordinate with each other to produce 

smooth and effective movements. When lifting different weights, the body instinctively adjusts 

the angles of joints to maximize mechanical advantage by aligning the limbs and joints in a way 

that allows the body to execute actions efficiently. Thus, the changes of lifting weight may 

influence not only trunk kinematics but also kinematics of other joints as well as the coordination 

between these joints within the whole-body biomechanical system. One study reported decreases 

were found in the peak trunk sagittal angular velocity and peak hip sagittal angular acceleration 

when lifting weight increased (Song & Qu, 2014). The limitation with this study is that they 

didn’t report upper limb kinematics which is a crucial body part during lifting. Furthermore, the 

gender of an individual may also affect joint kinematics and coordination, which could be a 

confounding factor when studying the effects of lifting weight on these variables. Previous 

studies found that females used different lifting techniques from males(Davis et al., 2003; K. Li 

& Zhang, 2009; Marras et al., 2003). 

The measurement of joint kinematics can be captured by optical motion capture systems 

(OMC), which are the most used and considered the benchmark in kinematics analysis. But 

OMC typically require controlled environment and are conducted inside laboratories. An 
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alternative is inertial measurement units (IMUs), which are portable, easy to set up, and able to 

be used in field settings. Previous studies have found good agreement in quantifying motion 

kinematics with IMUs (El-Gohary & McNames, 2012; Lee et al., 2003; Picerno et al., 2008; 

Robert-Lachaine et al., 2017; Schall et al., 2016). Schall et al., 2016 showed that the estimates of 

mean angular displacement and angular displacement variation for trunk and upper arm were to 

change < 1.5° on average in the field. In Lee et al., 2003, coefficient of multiple correlations  

(CMCs) for were found to range from 0.972 to 0.991 for trunk angular movement. El-Gohary & 

McNames, 2012 reported root-mean-square error (RMSE)  < 8° for shoulder and elbow angles 

and correlation coefficient > 0.95. Robert-Lachaine et al., 2017 reported accurate estimates of 

whole-body joint angles with CMCs > 0.92 and RMSE < 5°.  

The objective of this study was to investigate the effects of lifting weight on the upper 

body joint kinematics, considering gender difference. The study hypothesized that changes in 

lifting weight would affect lifting kinematics of upper limbs, and the effects varies between 

females and males. 

3.2 Methods 

3.2.1 Experiment Design 

The participants in this study were 9 male and 9 female who were college students and 

had a mean age, height, and weight of 30.0 (SD = 9.23) years, 173.7 (SD = 6.8) cm, and 67.1 

(SD =9.5) kg, respectively. The study was approved by Auburn University’s institutional review 

board. Prior to participation, each participant provided written informed consent and were 

screened for chronic pain, pre-existing disease, injury or surgery in the low back, neck/shoulder, 

or upper extremity. 
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To better simulate a realistic manual material handling task, participants lifted a weighted 

box and placed it on a shelf at three different heights set by individual anthropometry, including 

floor to knee height (Hfloor-knee), floor to elbow height (Hfloor-elbow) and knee to elbow height 

(Hknee-elbow) (Figure A1 in Appendix A). The weights evaluated in this study were 0.5, 2.3, 4.6, 

6.9, 9.2, 11.5, and 13.8 kg. For weight 0.5 kg, the dimension of the box was 41.2 × 27.1 × 14.2 

cm (length × width × height). While for the other weights, the box dimension was 46.3 × 31.3 × 

11.2 cm (length × width × height). The participants performed free-style liftings at a self-selected 

pace. A two-factor completely randomized design was used in the experiment. Each participant 

performed all combinations of lifting height and weight levels. The representation order of the 

combinations was randomized with three replications. 

3.2.2 Data Acquisition and Processing 

Whole-body kinematics were measured using a commercial IMU system (MVN Awinda, 

Xsens Technologies B.V., Enschede, Netherlands) with 17 inertial sensors positioned on the 

head, sternum and pelvis; and bilaterally on the scapulae, the upper and lower arms, hands, 

thighs, shanks and feet (Figure A2 in Appendix A). Before the measurements, anatomical 

measurements and calibration were performed according to the procedure provided by Xsens. 

The 17 inertial sensors synchronously recorded triaxial accelerometer, gyroscope, and 

magnetometer data at a sampling frequency of 60 Hz. Joint angles were computed using the 

segments’ orientations from Xsens .MVNX files with medio-lateral, anteroposterior, axial 

Cardan sequence (Grood & Suntay, 1983). Joint angular velocities were further obtained for the 

shoulder (humerus vs. thorax) and elbow. The continuous relative phase (CRP) was also 

calculated to quantify shoulder-elbow coordination using methods described by previous studies 

(Hamill et al., 1999). To calculate CRP, a phase plot of each lifting cycle was calculated for the 
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shoulder and elbow. In phase plots, sagittal angles and velocities were normalized to [-1, 1]. The 

normalized angles were then plotted versus normalized angular velocity. This was illustrated by 

Figure 3.1. The lift started at far right of the lower part (i.e. at the end of grasping the box), 

proceeded clockwise to left, and then proceeded upward and to the end (i.e. at the beginning of 

placing the box). Phase angles φ were calculated for both joints at each data point through the 

lifting cycle. CRP was obtained for shoulder-elbow coordination from the difference between 

phase angles (φshoulder- φelbow). Each CRP profile of shoulder-elbow was interpolated to 100 data 

points using cubic spline (Hamill et al., 1999). Ensemble CRP curves were calculated at each 

combination of lifting height and weight for each subject as the mean from three repetition CRP 

curves. 

 

Figure 3.1: A typical normalized phase plane plot of shoulder motion for one lifting cycle 
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3.2.3 Variables 

The independent variables in this experiment were gender (e.g., F and M), the height of 

lifting (Floor-Knee, Floor-Elbow and Knee-Elbow) and the weight of the box. The kinematics 

analysis was performed based on three-dimensional shoulder motion and sagittal elbow motion. 

Because the handles of the boxes did not rotate or change its orientation, a consistent grip and 

forearm posture were consistent throughout a lift cycle; thus, elbow pronation/supination were 

highly constrained and excluded from analysis. Peak and average joint velocities of the following 

motion were obtained: shoulder flexion and extension, shoulder abduction and adduction, 

shoulder external and internal rotation, and elbow flexion and extension. Since velocity is a 

vector quantity, positive and negative values of the velocity vector only denote direction, thus, 

for the purposes of analysis, only the magnitude was considered. We assumed that lifting was 

symmetric and there was no difference between the right and left side of the lifting kinematics. 

The dependent variables in this experiment were peak and average angular velocities on the right 

side during the lift phase. To quantify shoulder-elbow coordination, the mean absolute value of 

the ensemble CRP curve values (MARP) and the deviation phase (DP) were computed from the 

ensemble CRP curves (Stergiou et al., 2001). 

3.2.4 Statistical Analysis 

Data from one female participant was removed due to equipment failure. Mixed-factor 

analyses of variance (ANOVA) models were used in which lifting height and lifting weight were 

within-subjects factors and gender was between-subjects factor. In this study, the main focus was 

on lifting weight. Therefore, Bonferroni post hoc tests were conducted on lifting weight, 

interaction of lifting weight and gender, and interaction between lifting weight and lifting height 

if they showed significant effects (p<0.05). The coefficient of variation (CV) which was 
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calculated as the standard deviation divided by the mean was used to study the variations within 

subjects as well as between subjects (Kjellberg et al., 1998). To obtain within-subject CV, the 

CV was first calculated for each combination of lifting weight and height over the three 

repetitions for each subject. The within-subject CV was then calculated by taking the mean of 

CVs across all subjects for each combination of lifting weight and height. The between-subject 

CV was calculated for the 17 means of repetitions across subjects for each combination of lifting 

weight and height (Kjellberg et al., 1998). 

3.3 Results 

The ANOVA results showed that the main effects of lifting weight, lifting height and 

gender, and the two-way interactions of lifting weight and two other factors were significant (i.e., 

p < 0.05). The main and interaction effects of lifting weight on each dependent variable are 

presented below. 

3.3.1 Peak Angular Velocity 

The peak shoulder flexion velocity was significantly affected by the main effects of 

gender, lifting height, lifting weight and the interaction of gender and lifting height (Table 3.1). 

Peak shoulder flexion velocity had an overall decreased trend as lifting weight increased (Figure 

3.2). The results of the post-hoc comparisons indicated that the majority of significant 

differences between pairs were found when the lifting weight differences were greater than 4 kg, 

while there was no significance found between the three highest weights (9.1, 11.3, 13.6 kg) 

(Figure 3.2). Peak shoulder external rotation velocity was significantly affected by the main 

effects of gender, lifting height, lifting weight, the interaction of gender and lifting weight, the 

interaction of gender and lifting height, and the interaction of lifting height and weight (Table 

3.1). When investigating the effect of lifting weight within each gender group, it was found that 
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peak shoulder external rotation velocity decreased overall with increased lifting weight for both 

female and male subjects (Figure 3.3). The results of the post-hoc comparisons indicated that 

most of significant differences occurred between the two lowest levels and the higher levels 

(Figure 3.3). For the gender-related difference at each lifting weight level, significant gender 

effects were found on the peak shoulder external rotation velocity for all lifting weights (Table 

3.2). In particular, female subjects had significantly higher peak shoulder external rotation 

velocity at each lifting weight level comparing with male subjects. When examining the effect of 

lifting weight at each lifting height level, the peak shoulder external rotation velocity had an 

overall decreasing trend with increased lifting weight at each lifting height level (Figure 3.4). 

The post-hoc comparison results revealed that at each lifting height level most significant 

differences were only found between 2.3 kg and the higher levels, which were 4 kg greater 

(Figure 3.4). Peak shoulder abduction velocity was significantly affected by the main effects of 

gender, lifting height, lifting weight, the interaction of gender and lifting weight, and the 

interaction of gender and lifting height (Table 3.1). For the effect of lifting weight within each 

gender group, it was found that peak shoulder abduction velocity decreased overall with 

increased lifting weight in both gender groups (Figure 3.5). The post-hoc comparison results 

indicated that most significant differences occurred between the two lowest levels and the other 

higher levels (Figure 3.5). Significant gender effects were observed at each lifting weight level 

when examining the differences in peak shoulder abduction velocity related to gender (Table 

3.3), in which female subjects had a significantly higher value at each lifting weight level.  

The peak shoulder internal rotation velocity was significantly affected by the main effects 

of gender, lifting height and lifting weight (Table 3.1). However, there was not a noticeable 

increasing or decreasing trend observed for peak shoulder internal rotation velocity as lifting 
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weight increased (Figure 3.6). The post-hoc comparison results indicated that significant 

differences occurred only between the lowest weight (0.5 kg) and all the other levels (Figure 

3.6). Peak elbow extension velocity was also significantly affected by the main effects of gender, 

lifting height and lifting weight (Table 3.1). An overall decreased trend was observed for peak 

elbow extension velocity as lifting weight increased (Figure 3.7). The post-hoc comparison 

results indicated that most of significant differences between pairs were found when the lifting 

weight differences were greater than 4 kg (Figure 3.7). 

3.3.2 Average Angular Velocity 

The average shoulder flexion velocity was significantly affected by the main effects of 

lifting height, lifting weight, the interaction of gender and lifting weight, and the interaction of 

gender and lifting height (Table 3.4). For the effect of lifting weight within each gender group, 

an increase in lifting weight was associated with an overall decreased in the average shoulder 

flexion velocity in both gender groups (Figure 3.8). For both genders, most of significant 

differences between pairs were found when the lifting weight differences exceeded 4 kg (Figure 

3.8). However, there was no significant gender effects at each lifting weight level when 

examining the differences in average shoulder flexion velocity related to gender. Average 

shoulder external rotation velocity was significantly affected by the main effects of gender, 

lifting height, lifting weight, the interaction of gender and lifting weight, and the interaction of 

gender and lifting height (Table 3.4). When investigating the effect of lifting weight within each 

gender group, an increase in lifting weight was associated with an overall decreased in the 

average shoulder external rotation velocity in both gender groups (Figure 3.9). Most of 

significant differences occurred between pairs of which weight differences exceeded 4 kg 

(Figure 3.9). For the gender-related difference at each lifting weight level, significant gender 



61 

 

effects were found on the average shoulder external rotation velocity for most of lifting weights 

(Table 3.5), in which female subjects had a significantly higher value at each lifting weight level. 

Average shoulder Abduction velocity was significantly affected by the main effects of gender, 

lifting height, lifting weight, and the interaction of gender and lifting height (Table 3.4). For the 

effect of lifting weight, however, there was not a noticeable increasing or decreasing trend 

observed for the average shoulder abduction velocity as lifting weight increased (Figure 3.10). 

Post-hoc comparisons indicated significant differences were only found between the lowest 

weight (0.5 kg) and the other higher weights (Figure 3.10). Average elbow flexion velocity was 

significantly affected by the main effects of lifting height, lifting weight, the interaction between 

gender and lifting weight, the interaction between gender and lifting height, and the interaction 

between lifting height and lifting weight (Table 3.4). For the effect of lifting weight within each 

gender group, average elbow flexion velocity decreased overall with increased lifting weight for 

both female and male subjects (Figure 3.11). However, most of significant differences occurred 

only between the two lowest levels and the other higher levels (Figure 3.11). For the effect of 

lifting weight at each lifting height level, although the average elbow flexion velocity had an 

overall decreasing trend with increased lifting weight at each lifting height level (Figure 3.12), 

most of significant differences were only found between the two lowest weights and the other 

higher weights (Figure 3.12).  

Average shoulder extension velocity was significantly affected by the main effects of 

gender, lifting height, lifting weight, the interaction of gender and lifting weight, and the 

interaction of gender and lifting height (Table 3.4). For the effect of lifting weight within each 

gender group, an interesting trend was observed for both female and male subjects, in that the 

average shoulder extension velocity increased as lifting weights increased from 0.5 kg to 6.8 kg 
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whereas a downward trend was observed as the weights increased from 6.8 kg to 13.6 kg (Figure 

3.13). However, the magnitude of velocity was statistically equivalent between 2.3, 4.5, 6.8 and 

9.12 kg. Significant differences were only found between these lower weights and the two 

highest weights (11.3 and 13.6 kg) that had the lowest magnitude of velocity (Figure 3.13). For 

the gender-related differences at each lifting weight level, although female subjects had higher 

average shoulder extension velocity at each lifting weight level comparing with male subjects, 

significant gender effects were only found at lifting weights from 0.5 kg to 6.8 kg (Table 3.6). 

Average shoulder internal rotation velocity was significantly affected by the main effects of 

gender, lifting height, and lifting weight (Table 3.4). The average shoulder internal rotation 

velocity had an upward trend when weights increased from 0.5 kg to 6.8 kg, but a downward 

trend was observed as the weights increased from 6.8 kg to 13.6 kg (Figure 3.14). However, the 

post-hoc comparisons indicated that significant differences occurred only between the lowest 

weight (0.5 kg) and all the other levels, and between the highest weight  (13.6 kg) and weights 

that were ≤ 6.8 kg (Figure 3.14). Average elbow extension velocity was significantly affected by 

the main effects of gender, lifting height, and lifting weight (Table 3.4). The average elbow 

extension velocity decreased overall with increased weights (Figure 3.15). Post-hoc tests 

revealed that velocities of between 2.3, 4.5, 6.8 and 9.12 kg were equivalent, there were no 

significant differences between them. Significant differences occurred between the lowest weight 

(0.5 kg) and the other higher levels, and between the two highest weights (11.3 and 13.6 kg) and 

the other lower weights (Figure 3.15). 
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Table 3.1: Results of mixed-factor ANOVA for peak angular velocities. Cells entries are F 

values (p values). 

Dependent 

Variable 

Gender 

(G) 

Lifting 

Height 

 (LH) 

Lifting 

Weight 

 (LW) 

G x LW G x LH LH x LW 
G x LH x 

LW 

Shoulder 

Flexion 

33.178 

(0.001) 

855.427 

(<.001) 

36.326 

(0.001) 

1.959 

(0.151) 

16.502 

(<.001) 

0.913 

(0.562) 

0.405 

(0.962) 

Shoulder 

Extension 

291.351 

(<.001) 

26.486 

(<.001) 

20.757 

(0.062) 

0.341 

(0.902) 

3.624 

(0.059) 

1.32 

(0.319) 

1.623 

(0.08) 

Shoulder 

External 

Rotation 

81.853 

(<.001) 

346.169 

(<.001) 

14.076 

(<.001) 

5.186 

(0.008) 

37.002 

(<.001) 

3.035 

(0.033) 

0.201 

(0.998) 

Shoulder 

Internal 

Rotation 

339.297 

(<.001) 

23.421 

(<.001) 

22.88 

(0.006) 

0.51 

(0.79) 

3.858 

(0.051) 

1.622 

(0.207) 

1.256 

(0.239) 

Shoulder 

Abduction 

80.262 

(<.001) 

421.833 

(<.001) 

14.721 

(<.001) 

3.658 

(0.027) 

30.094 

(<.001) 

1.752 

(0.172) 

0.274 

(0.993) 

Shoulder 

Adduction 

478.836 

(<.001) 

35.817 

(<.001) 

39.369 

(0.059) 

0.353 

(0.895) 

3.397 

(0.068) 

1.219 

(0.369) 

1.289 

(0.219) 

Elbow 

Flexion 

15.213 

(0.008) 

1351.82 

(<.001) 

256.642 

(0.122) 

1.373 

(0.301) 

1.955 

(0.184) 

0.138 

(0.999) 

0.67 

(0.781) 

Elbow 

Extension 

23.409 

(0.003) 

34.111 

(<.001) 

29.037 

(<.001) 

1.35 

(0.309) 

1.225 

(0.328) 

2.503 

(0.063) 

0.926 

(0.52) 
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Table 3.2: Results of post-hoc comparison between genders at each lifting weight for peak 

shoulder external rotation velocity. Note that * denotes a significant difference between females 

and males. 

Weight (kg) Gender Mean SD 

0.5 F 96.87 * 18.53 

M 85.78 * 12.55 

2.3 F 103.46 * 19.83 

M 94.48 * 15.92 

4.5 F 94.24 * 15.79 

M 87.90 * 14.06 

6.8 F 92.92 * 15.10 

M 85.89 * 13.95 

9.1 F 90.07 * 14.10 

M 84.21 * 13.77 

11.3 F 89.65 * 16.90 

M 85.11 * 13.59 

13.6 F 87.69 * 15.96 

M 80.41 * 13.12 

 

 

Figure 3.2: Peak shoulder flexion velocity at different lifting weights. (Note that * denotes a 

significant difference between two weights.) 



65 

 

(a) 

 

(b) 

 

Figure 3.3: Peak shoulder external rotation velocity at different lifting weights for (a) female and 

(b) male. (Note that * denotes a significant difference between two weights.) 
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(a) 

 

(b) 
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(c) 

 

Figure 3.4: Peak shoulder external rotation velocity at different lifting weights for lifting height 

(a) floor-knee, (b) floor-elbow, and (c) knee-elbow. (Note that * denotes a significant difference 

between two weights.) 

(a) 
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(b) 

 

Figure 3.5: Peak shoulder abduction velocity at different lifting weights for (a) female and (b) 

male. (Note that * denotes a significant difference between two weights.) 

 

Table 3.3: Results of post-hoc comparison between genders at each lifting weight for peak 

shoulder abduction velocity. Note that * denotes a significant difference between females and 

males. 

Weight (kg) Gender Mean SD 

0.5 F 98.80 * 17.24 

M 87.88 * 12.90 

2.3 F 101.82 * 17.85 

M 92.92 * 14.54 

4.5 F 95.77 * 17.15 

M 88.87 * 14.27 

6.8 F 92.90 * 15.21 

M 86.02 * 14.57 

9.1 F 91.61 * 13.52 

M 86.09 * 14.87 

11.3 F 90.18 * 16.57 

M 85.51 * 14.60 

13.6 F 86.57 * 15.80 

M 80.47 * 14.54 
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Figure 3.6: Peak shoulder internal rotation velocity at different lifting weights. (Note that * 

denotes a significant difference between two weights.) 

 

 

Figure 3.7: Peak elbow extension velocity at different lifting weights. (Note that * denotes a 

significant difference between two weights.) 
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Table 3.4: Results of mixed-factor ANOVA for average angular velocities. Cells entries are F 

values (p values). 

 

Dependent 

Variable 

Gender 

(G) 

Lifting 

Height 

 (LH) 

Lifting 

Weight 

 (LW) 

G x LW G x LH 
LH x 

LW 

G x LH x 

LW 

Shoulder 

Flexion 

1.296 

(0.298) 

1128.301 

(<.001) 

84.399 

(<.001) 

3.55 

(0.029) 

4.726 

(0.031) 

1.552 

(0.229) 

0.255 

(0.995) 

Shoulder 

Extension 

27.955 

(0.002) 

24.238 

(<.001) 

26.83 

(<.001) 

3.326 

(0.036) 

4.089 

(0.044) 

1.459 

(0.261) 

0.466 

(0.935) 

Shoulder 

External 

Rotation 

46.8 

(<.001) 

795.559 

(<.001) 

34.772 

(<.001) 

4.663 

(0.011) 

63.284 

(<.001) 

1.799 

(0.161) 

0.204 

(0.998) 

Shoulder 

Internal 

Rotation 

293.803 

(<.001) 

10.027 

(0.003) 

25.717 

(<.001) 

1.003 

(0.467) 

1.756 

(0.214) 

2.293 

(0.082) 

0.8 

(0.651) 

Shoulder 

Abduction 

69.437 

(<.001) 

14.036 

(<.001) 

10.086 

(0.016) 

2.496 

(0.084) 

12.986 

(<.001) 

0.781 

(0.662) 

0.543 

(0.887) 

Shoulder 

Adduction 

195.421 

(<.001) 

22.884 

(<.001) 

31.315 

(0.55) 

0.257 

(0.947) 

5.029 

(0.026) 

0.938 

(0.543) 

0.997 

(0.449) 

Elbow 

Flexion 

5.174 

(0.063) 

46.176 

(<.001) 

47.031 

(<.001) 

10.855 

(<.001) 

10.947 

(0.002) 

5.882 

(0.002) 

0.127 

(1) 

Elbow 

Extension 

64.337 

(<.001) 

7.967 

(0.006) 

29.763 

(<.001) 

0.65 

(0.69) 

1.599 

(0.242) 

1.951 

(0.131) 

0.748 

(0.705) 
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(a) 

 

(b) 

 

Figure 3.8: Average shoulder flexion velocity at different lifting weights for (a) female and (b) 

male. (Note that * denotes a significant difference between two weights.) 
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(a) 

 

(b) 

 

Figure 3.9: Average shoulder external rotation velocity at different lifting weights for (a) female 

and (b) male. (Note that * denotes a significant difference between two weights.) 
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Figure 3.10: Average shoulder abduction velocity at different lifting weights. (Note that * 

denotes a significant difference between two weights.) 

 

(a) 
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(b) 

 

Figure 3.11: Average elbow flexion velocity at different lifting weights for (a) female and (b) 

male. (Note that * denotes a significant difference between two weights.) 

 

(a) 
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(b) 

 

(c) 

 

Figure 3.12: Average elbow flexion velocity at different lifting weights for lifting height (a) 

floor-knee, (b) floor-elbow, and (c) knee-elbow. (Note that * denotes a significant difference 

between two weights.) 



76 

 

(a) 

 

(b) 

 

Figure 3.13: Average shoulder extension velocity at different lifting weights for (a) female and 

(b) male. (Note that * denotes a significant difference between two weights.) 
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Figure 3.14: Average shoulder internal rotation velocity at different lifting weights. (Note that * 

denotes a significant difference between two weights.) 

 

 

Figure 3.15: Average elbow extension velocity at different lifting weights. (Note that * denotes a 

significant difference between two weights.) 
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Table 3.5: Results of post-hoc comparison between genders at each lifting weight for average 

shoulder external rotation velocity. Note that * denotes a significant difference between females 

and males. 

Weight (kg) Gender Mean SD 

0.5 
F 59.17 * 12.09 

M 52.82* 9.62 

2.3 
F 57.56* 11.27 

M 53.62* 10.71 

4.5 
F 51.89* 10.97 

M 49.17* 10.86 

6.8 
F 50.78* 10.53 

M 47.97* 10.61 

9.1 
F 49.38* 9.76 

M 46.84* 10.97 

11.3 
F 49.98* 11.16 

M 46.66* 10.17 

13.6 
F 45.23* 9.50 

M 42.66* 10.11 

 

 

Table 3.6: Results of post-hoc comparison between genders at each lifting weight for average 

shoulder extension velocity. Note that * denotes a significant difference between females and 

males. 

Weight (kg) Gender Mean SD 

0.5 
F 43.37* 5.66 

M 40.34* 5.47 

2.3 
F 46.10* 5.43 

M 43.36* 5.36 

4.5 
F 45.76* 5.79 

M 43.08* 4.74 

6.8 
F 46.91* 5.77 

M 43.17* 5.50 

9.1 
F 44.83 5.32 

M 43.10 5.92 

11.3 
F 41.32 5.96 

M 40.48 6.12 

13.6 
F 36.83 5.50 

M 36.01 5.55 
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3.3.3  Shoulder-Elbow Coordination 

MARP was significantly affected by the main effect of lifting height, weight, and the 

interaction of gender and lifting height (Table 3.7). Pairwise comparisons were used to further 

study the significant differences in MARP caused by the main effect of lifting weight. An overall 

increased trend in MARP was observed as lifting weight increased (Figure 3.16), which 

indicated that the shoulder-elbow coordination was less synchronized overall, and their 

movement was less efficient as lifting weight increased. Furthermore, the results of pairwise 

comparisons indicated that the MARPs of the three lowest weights (0.5, 2.3, 4.5 kg) were 

significantly smaller than that of two highest weights (11.3, 13.6 kg) (Figure 3.16). To better 

illustrate the effect of lifting weight on the shoulder-elbow coordination pattern throughout the 

lifting cycle, we plotted an average curve of ensemble curves which was computed by aligning 

ensemble curves in time and then taking the mean value at each time point for each weight 

across all subjects (Figure 3.17). Comparing the CRP curves of the three lowest and two highest 

weights, all began with shoulder leading, with higher weights having higher CRP values 

indicating a less synchronized movement between shoulder and elbow. While progressing 

through the middle stage, elbow and shoulder were relatively synchronized for the three lowest 

weights. For the two highest weights, first the elbow was leading and then the relationship was 

reversed with shoulder leading. Toward the ending stage elbow was leading for all weights, with 

higher weights having higher absolute CRP values indicating a less synchronized movement 

between shoulder and elbow. 

DP was significantly affected by the interaction of gender and lifting height and the 

interaction of gender and lifting weight (Table 3.7). For both female and male, increased lifting 

weights were generally associated with increased DP (Figure 3.18), indicating an overall less 
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consistent and more variable pattern of coordination with increased weights. The results of 

pairwise comparisons indicated the absence of any significant difference for male. For female, 

DPs of the two lowest weights (0.5, 2.3 kg) were significantly smaller than those of the two 

highest weights (11.3, 13.6 kg) (Figure 3.18). An average curve of ensemble curves was used to 

illustrate the interaction effects on the consistency pattern throughout the lifting cycle (Figure 

3.19). Comparing the fluctuation of CRP curves for different weights, a wider range of 

fluctuation was observed throughout the lifting cycle with higher weights for female. The 

fluctuation ranges were relatively similar during the majority of the cycle between different 

weights for male.  

Table 3.7: Results of mixed-factor ANOVA for MARP and DP. Cells entries are F values (p 

values). 

Dependent 

Variable 

Gender 

(G) 

Lifting 

Height 

 (LH) 

Lifting 

Weight 

 (LW) 

G x LW G x LH 
LH x 

LW 

G x LH x 

LW 

MAPR 
2.738 

(0.149) 

82.351 

(<.001) 

6.942 

(0.05) 

1.881 

(0.166) 

4.215 

(0.041) 

0.729 

(0.704) 

1.012 

(0.437) 

DP 
4.369 

(0.082) 

100.052 

(<.001) 

3.469 

(0.054) 

4.199 

(0.017) 

8.635 

(0.005) 

1.997 

(0.123) 

0.5 

(0.914) 
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Figure 3.16: MARP at different lifting weights. (Note that * denotes a significant difference 

between two weights.) 

 

 

Figure 3.17: Average of ensemble curves of continuous relative phase for different weights. 

(Note that * denotes a significant difference between two weights.) 
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(a) 

 

 

(b) 

 

Figure 3.18: DP at different lifting weights for (a) female and (b) male. (Note that * denotes a 

significant difference between two weights.) 
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(a) 

 

 

(b) 

 

Figure 3.19: Average of ensemble curves of continuous relative phase for (a) female and (b) 

male. (Note that * denotes a significant difference between two weights.) 
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3.3.4 Between-Subjects and Within-Subjects Variations 

For peak angular velocities, the variation intra-subjects was smaller than inter-subject 

variation (Table B1, Table B2 in Appendix B). Though the inter-subject variation varied in 

magnitude for different combinations of lifting height and weight, this variability was due to the 

inherent randomness in the data and not attributed to changes of lifting weight and height. 

Similar to inter-subject variation, there was no systematic variability in intra-subject variation for 

different combinations of lifting height and weight. The inter-subject CVs of each peak angular 

velocity were not substantially different, suggesting that the relative variability was consistent 

across these variables. This consistency was also found in intra-subject variation. While for 

average angular velocities, the inter-subject variation of shoulder abduction and adduction 

velocities was much higher than those of other average velocities (Table B3, Table B4 in 

Appendix B).  

3.4 Discussion 

The aim of this study was to investigate the effects of lifting weight on upper limb 

kinematics. It was hypothesized that shoulder and elbow kinematics would change as the level of 

lifting weights varies. Strong evidence was found to confirm the changing of the lifting weight 

impacts the peak and average angular velocities of shoulder and elbow, and shoulder-elbow 

coordination . 

Shoulder flexion and elbow flexion typically occurred during the box-raising phase, in 

which concentric muscle contractions are used to counter the weight of the box. Subjects tended 

to reduce their peak and average shoulder flexion velocities with increased lifting weight. This is 

because lifting heavier weight requires more muscle force. This increased force requirement may 

lead to slower muscle concentric contractions, which tends to result in slower shoulder flexion. 
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Another reason could be the coactivation of antagonist muscles increased with higher lifting 

weights (Yoon et al., 2012), which leads to slower and more controlled shoulder flexion. In 

Davis & Marras, 2000, they demonstrated that decreased trunk velocity was associated with 

increased lifting weight, which could be a protective motion pattern (Davis & Marras, 2000). For 

elbow flexion, peak and average velocities decreased with increased lifting weight, however, the 

average velocity was not significantly different when lifting heavier than 4.5 kg, and peak 

velocity was not significantly affected by lifting weight. This may be because the elbow is 

weaker than the shoulder, causing subjects to rely more on their shoulder than the elbow to raise 

boxes heavier than 4.5 kg. Consequently, the main joint responsible for movement shifts from 

elbow to shoulder. Shoulder extension and elbow extension typically occurred during the box-

placing phase, in which eccentric muscle contractions are responsible to lower or release the box. 

Shoulder average extension velocity significantly decreased at weight 11.3 and 13.6 kg for 

female and at 13.6 kg for male. The elbow average extension velocity was also significantly 

decreased at weight 11.3 and 13.6 kg. An explanation for this decreasing is placing heavier 

weights requires more control and stability to ensure proper form and prevent injury. To 

maintain control and stability, subjects tended to intentionally slow down the movement during 

heavy placements, reducing upper limb extension. In this study, the results indicated that there 

were gender-related differences in average shoulder extension velocity when lifting less than 9.1 

kg, with higher velocity observed for females. It seemed that female might adopt different lifting 

strategies that prioritize velocity, especially when the weight is relatively light or moderate 

compared to their maximal capacity. The average shoulder extension velocity differences 

between female and male were no longer significant when lifting weights were heavier than 9.1 

kg. This may be because females were closer to their maximal capacity and seemed to adapt their 
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kinematics by reducing velocities in response to increased weight. According to Stålhammar et 

al., 1989,  females rated the acceptable loads as on average 8.8 kg, males on average 19 kg, in a 

lowering-lifting test. If this explains the kinematic adaptation in female, it would be expected 

that female’s velocity would be lower than male’s as lifting weight further increases. Moreover, 

our results showed that subjects did not change shoulder average external and internal rotation 

velocities if varying weight 4.5 – 11.3 kg. However, shoulder peak and average external rotation 

velocities of female were significantly different from male’s during the box-raising phase. In a 

review conducted by Côté, 2012, it was reported that there may be indeed gender differences in 

movement strategies during upper limb tasks (Côté, 2012). Martinez et al., 2019 reported gender-

related difference in upper limb kinematics during above shoulder lifting task. Previous studies 

have reported that some lifting kinematics were different between female and male, e.g., trunk 

motion, hip motion, knee angle (Davis et al., 2003; Lindbeck & Kjellberg, 2001; Martinez et al., 

2019, 2020; Plamondon et al., 2017). Although a direct comparison with this study was not 

possible as different joints, these previous studies supported the findings obtained in this study 

that kinematic patterns of a lift task may be gender related. 

Our results indicated that the shoulder-elbow coordination, described by MARP, 

significantly decreased when lifting weight was heavier than 9.1 kg. With the increased lifting 

weight, shoulder flexion/extension and elbow flexion/extension did not occur synchronously, and 

the out-of-phase magnitude was lifting weight dependent. No significant gender difference was 

found in the current study. Our finding was generally consistent with those in Martinez et al., 

2019, who found that gender difference in upper limb coordination was not apparent when the 

lifting was lower than subject’s shoulder height (Martinez et al., 2019). DP was used to measure 

the variability of the coordination relationship. Our results showed that the variability of 
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shoulder-elbow coordination for male subjects did not change significantly as lifting weight 

increased, while the relative phase fluctuations of female subjects increased significantly at 

weights heavier than 9.1 kg. This may be because female subjects were closer to their maximal 

capacity, which corresponds on average to 48%-61% of male’s maximum (Plamondon et al., 

2014, 2017). Other studies investigating lifting weight effect on variability of joint coordination 

focused on lower limb and trunk. For example, increased variability of knee-shoulder 

coordination was found 0%-30% maximum lifting capacity (MLC) for males (Scholz, 1993), and 

that of knee-hip and ankle-hip coordination at 30%-75% MLC (Scholz, 1993).  

It was expected that the dependent variables would be less varied within subject than 

between subjects. The higher inter-subject variability could be a reflection of differences in 

individual characteristics such as age, anthropometry and gender. Another possible source was 

individual physical fitness such as muscular strength and flexibility which affect how the body 

moves and responds to physical demands. There was higher inconsistency between subjects in 

shoulder coronal average velocity. This was probably shoulder abduction/adduction involves a 

more complex movement pattern that requires shoulder stabilization and involvement of scapula 

rotation. Another reason may be shoulder abduction/adduction involves larger muscle groups and 

coordinating these muscles effectively can introduce variability. 

3.5 Limitations 

A few limitations should be noted. First, this study only investigated symmetric, two-

handed lifting. The highest lifting height examined in the study was at elbow level, while higher 

height, such as shoulder height or overhead height, wasn’t studied. Second, individuals with 

larger (BMI > 27.0) or smaller (BMI < 18.9) body size were underrepresented because they 

could not wear the tight suit required for accurate Xsens data collection. Third, we used 
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Bonferroni correction for the post-hoc analysis. But Bonferroni correction is known to be very 

conservative, which can increase Type II error rates, potentially overlooking significant effects 

(Cabin & Mitchell, 2000). Alternative methods, such as Holm method (Holm, 1979) or false 

discovery rate (FDR) (Benjamini & Hochberg, 1995), are less conservative and may potentially 

identify additional significant effects that the Bonferroni method may not detect. 

3.6 Conclusion 

The effects of lifting weight on upper extremity kinematics were explored during a 

laboratory study of a lifting task. This study found that lifting weight level had statistically 

significant effects on upper extremity kinematics, including peak angular velocity, average 

angular velocity and shoulder-elbow coordination. Other studies have reported significant effects 

of lifting weight on the kinematics of body segments and joints (Davis & Marras, 2000; Norasi et 

al., 2019; Plamondon et al., 2017; Song & Qu, 2014). Taken together, these findings serve as a 

foundation for subsequent studies using lifting kinematic variables to predict lifting weight. 
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Chapter 4 

A Transformer-Based Model for Lifting Load Recognition 

4.1 Introduction 

Estimation of the loads experienced in activities, such as lifting and carrying, is useful in 

many circumstances. In ergonomics, monitoring hand-handled loads can help identify and 

prevent excessive exertion. Repetitive manual handling of excessive weight can pose immediate 

risks of injury or long-term MSDs to workers and is a significant ergonomic concern. For 

example, workers in retail and distribution center centers are often involved in handling a wide 

range of boxes and packages. By monitoring hand-handled weight, high-risk tasks related to 

excessive exertion can be identified, and appropriate interventions can be implemented. Human-

robot collaboration systems may benefit from tracking the load weight being handled, enabling 

robots to provide additional assistance if a human worker encounters an object that exceeds their 

safe handling capacity. In addition, with weight estimation, wearable devices like exoskeletons 

can adjust the level of support provided to the user, which ensures that the device offers enough 

support to reduce strain without overburdening or restricting the user’s natural movement.  

Previous studies have demonstrated the feasibility of using data regarding human motion 

and posture (e.g., velocity, acceleration, displacement, angular rotations and angles) of to assess 

risks associated with manually handled activities (, such as carrying), by for predicting the 

weight of carried loads (Goršič et al., 2020; H. Lee et al., 2020; Lim & D’Souza, 2019; Yang et 

al., 2020). These studies leveraged fact that human movement and posture kinematic measures, 

such as gait parameters, segment displacement, joint angles, etc., change in response to the 

weight of the objects they are carrying (Caderby et al., 2013; Fowler et al., 2006; LaFiandra et 

al., 2003; Qu & Yeo, 2011). For instance, Yang et al., 2020 classified different load-carrying 
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levels (0 kg, 3.8 kg, 7.6 kg and 11.4 kg) using kinematics of lower body movement with a 

bidirectional long short-term memory (BiLSTM) model (Hochreiter & Schmidhuber, 1997; 

Schuster & Paliwal, 1997), and achieved an overall accuracy of 0.986, 0.864 and 0.746 for 2-

level, 3-level and 4-level classification, respectively. H. Lee et al., 2020 explored the utilization 

of a model consisting of Convolutional Neural Network (CNN) and long short-term memory (-

LSTM) modulesdel and kinematics derived specifically from ankles and waist to detect three 

levels of carried weight (0.2 kg, 13.6 kg and 24 kg) alongside two load-carrying postures (two-

hand and one-shoulder). The two studies implemented LSTM network (Gers et al., 2002; 

Hochreiter & Schmidhuber, 1997), a type of Recurrent Neural Networks (RNNs) designed for 

processing sequential data, to predict load weights from time series kinematic data derived from 

carrying activities. This deep learning approach circumvents the necessity for manual feature 

engineering, directly extracting and learning relevant features from the temporal sequences of 

kinematic data. Concurrently, there are studies employing traditional machine learning 

techniques for the prediction of carried load weights. These methods require explicit engineering 

of features, necessitating the handcrafting of relevant features from raw data to effectively train 

and develop predictive models. Using statistical features parameters (e.g., mean and variance) 

extracted from time series joint angle data, Goršič et al., 2020 trained a multiple linear regression 

(REG) classifier to detect balanced and, unbalanced loads with a weight difference of < 9 kgs (or 

< 4.5 kgs), and unbalanced with a weight difference of > 9 kgs (or > 4.5 kgs) in carrying tasks. In 

Lim & D’Souza, 2019, a set of gait parameters was engineered based on domain-specific 

knowledge. A classifier, based on a random forest algorithm, was then developed to discern four 

carrying modes as well as two levels of carrying weight (e.g., 50% and 75% of the subject’s 
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maximum acceptable weight of carry). In these studies, machine learning models were employed 

to recognize kinematic patterns and correlate them with the weight of the carried loads. 

On the other hand, a limited number of studies have investigated the application of 

machine learning techniques, with input features describing human motion and posture, to 

identify different levels of loads being lifted lifting load weights. G. Zhou et al., 2022 

investigated the application of both traditional machine learning and deep learning techniques for 

the purpose of identifying different levels of the NIOSH Lifting Index (LI) by solely altering the 

lifting load weight. Their results demonstrated that the LSTM-based deep learning approach, 

utilizing kinematic data from lifting activities, outperformed traditional machine learning 

methods, achieving an accuracy of 0.878 in binary classification tasks and 0.702 in three-level 

classification tasks. Y. Li et al., 2020 used a deep learning method, specifically 1D 

Convolutional Neural Network (CNN), to discern light (26.7 N – 53.4 N), medium (53.4 N – 

106.8 N), and heavy lifting (106.8 N – 133.4 N) loads. However, the achieved accuracy of the 

model was low, standing between 0.397 and 0.551.  

Despite the previous work in classifying various levels of lifting load weight, there 

remains a critical need for a model that achieves better-improved accuracy. In this study, we 

attempt to improve the accuracy of lifting weight recognition via a transformer-based model. 

Particularly, a BiLSTM-Transformer Encoder structure is proposed for lifting weight 

recognition. The Transformer encoder is a part of the Transformer (Vaswani et al., 2017) 

architecture. The Transformer model proposed by Vaswani et al. (Vaswani et al., 2017) was 

shown to outperform CNN s and RNNs (e.g., LSTMs) in tasks requiring understanding long-

range dependencies in sequence data, such as natural language modeling, machine translation, 

and text summarization, and achieved state-of-the-art performance (Devlin et al., 2018; Liu & 
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Lapata, 2019; Radford et al., 2018; Vaswani et al., 2017). Transformers have also been used with 

sequence sensor data or video frames for human activity recognition (Shavit & Klein, 2021; 

Wensel et al., 2022). A transformer encoder takes an input sequence and considers all parts of 

the input sequence simultaneously, while BiLSTM processes sequential data in temporal order 

(Schuster & Paliwal, 1997). Integrating a Transformer Encoder with a BiLSTM layer may be 

potentially complementary. By combining the two components, we present a joint model for 

lifting weight classification. Our contribution is fourfold: 1) We proposed the BiLSTM-

Transformer Encoder model structure. 2) Comparing with an LSTM model, we showed that the 

joint model can effectively improve the accuracy of LSTM models used in previous work on 

classifying lifting load weight. 3) To visualize important features in predictions, Integrated 

Gradients was employed. 4)  We explored using data from both full-body and half-body sensor 

configurations for lifting weight recognition. 

4.2 Methods 

4.2.1 Participants, Simulated Lifting Task, and Data 

The data used in the current study were obtained in the previous chapter of a prior study 

in which only the first three lifts of each combination of lifting weight and height were 

evaluated. Thus, details were only summarized here. A total of 18 gender-balanced participants 

from the local university and community completed the study. The participants moved a 

weighted box with the dimensions of 46.3 × 31.3 × 11.2 cm (length × width × height) from floor 

or knee height and placed it on a shelf at elbow height. The box weights evaluated in this study 

were in a range ranged between 0.5 and 13.8 kg. Participants were asked to perform each lifting 

using self-selected comfortable styles and speed. Each participant performed six lifting trials for 

each combination of lifting height and weight in random order. The whole-body motion of lifting 
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activity was captured using a commercial IMU system (MVN Awinda, Xsens Technologies 

B.V., Enschede, Netherlands), which were sampled at 60 Hz. Whole-body segment kinematics 

were used as inputs, including time-series three-dimensional acceleration and angular velocity of 

head, trunk, pelvis, shoulders, upper arms, forearms, hands, upper legs, lower legs and feet 

(Figure 4.1). Figure 4.1 showed the origins of these segments with the corresponding coordinate 

systems, which followed the Xsens guidelines (Xsens Technologies B.V., 2021). These 102 

Kinematic data were used as input features in the machine learning models. In addition, previous 

studies have demonstrated that angular velocities and accelerations of trunk and hip changed 

with lifting weight levels (Davis & Marras, 2000; Song & Qu, 2014). In the previous chapter, 

analysis showed that the kinematics and coordination of shoulder and elbow were affected by the 

varying lifting weight. Building on these findings data, we also used three-dimensional 

acceleration and angular velocity from 8 segments including trunk, pelvis, upper arms, forearms, 

and upper legs. Each participant finished 126 lifts with different load levels. Data from one 

participant was removed due to equipment failure. In total, 2142 lifts were completed by the 

participants in the experiment. All lifts were categorized into 4 levels based on lifting weights 

defined as class 0: 0.5 kg, class 1: 2.3 ~ 4.5 kg, class 2: 6.8 ~ 9.1 kg, class 3: 11.3 ~ 13.6 kg. To 

reduce noise and variability in the sequence data, a 5-frame moving average window was applied 

to the accelerations and angular velocities. Different window sizes were experimented with, and 

a moving window spanning 5 frames resulted in optimal performance. To address the variability 

in lengths of the lifting sequence data, an interpolation technique was implemented to 

standardize the sequences to have the same lengths equal to 109 frames which was the median 

length of the data. Min-max normalization was applied within each individual sequence 

individually to scale the data to the range of [0, 1]. This sequence-wise scaling allowed the 



98 

 

model to learn from the pattern and progression of lifting actions at different lifting weights, 

mitigating the variability introduced by individual subject’s characteristics. 

 

Figure 4.1: Whole-body segments and examples of coordinates 

4.2.2 Models 

1. BiLSTM Model 

A BiLSTM (Schuster & Paliwal, 1997) is an extension of LSTM (Hochreiter & 

Schmidhuber, 1997), which processes sequential data in both forward and backward directions. 

For a sequence of inputs X = (x1, x2, …, xT) with length T, LSTM processes data step by step 

from the beginning of the sequence x1 to the end xT. At each time step, LSTM produces a cell 

state vector Ct , 𝐶𝑡 ∈ ℝ𝐻, and hidden state vector ht, ℎ𝑡 ∈ ℝ𝐻, based on the current input 

information and its previous states. Specifically, the cell state at time t, Ct, is obtained by 

𝐶𝑡  =  𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝑔𝑡  , 

𝑓𝑡  =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑓), 
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𝑖𝑡  =  𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑖), 

𝑔𝑡  =  𝑡𝑎𝑛ℎ(𝑊𝑔 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑔), 

Where 𝜎 is the sigmoid function, W and b are the weights and biases. And the hidden 

state at time t, ht, is obtained by 

ℎ𝑡  =  𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡), 

𝑜𝑡  =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑜), 

Where W and b are the weights and biases. 

 For each LSTM layer l (l = 1, 2, …, L), the hidden states Hl = (ℎ1
𝑙 , ℎ2

𝑙 , … , ℎ𝑇
𝑙 ), ℎ𝑡

𝑙 ∈ ℝ𝐻 

are obtained and passed as input to the next layer where the sequence is processed from ℎ1
𝑙  to ℎ𝑇

𝑙 . 

A BiLSTM consists of a forward LSTM and a backward LSTM that are run in parallel. Forward 

LSTM processes the input sequence from the start  x1 to the end xT  just like a standard LSTM, 

while Backward LSTM processes the input sequence from the end xT to the start x1. Each 

BiLSTM layer produces the hidden states 𝐻𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙  = (ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,1

𝑙 , ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,2
𝑙 , … , ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑇

𝑙 ), 

ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑡
𝑙 ∈ ℝ𝐻 from the forward direction and the hidden states 𝐻𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑙  = (ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,1
𝑙 , 

ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,2
𝑙 , … , ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑇

𝑙 ), ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑡
𝑙 ∈ ℝ𝐻 from the backward direction. Before being 

passed to the next layer, the hidden states 𝐻𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙  and 𝐻𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑙  are combined usually by 

concatenation, addition or a fully-connected layer. This study uses concatenation. The 

concatenated hidden states at BiLSTM layer l, 𝐻𝐵𝑖𝐿𝑆𝑇𝑀
𝑙  = (ℎ𝐵𝑖𝐿𝑆𝑇𝑀,1

𝑙 , ℎ𝐵𝑖𝐿𝑆𝑇𝑀,2
𝑙 , … , ℎ𝐵𝑖𝐿𝑆𝑇𝑀,𝑇

𝑙 ) 

where ℎ𝐵𝑖𝐿𝑆𝑇𝑀,𝑡
𝑙 ∈ ℝ2𝐻, are then passed to the next layer. For the last BiLSTM layer L, only the 

concatenated hidden states from the final time step are used as input to a fully connected layer 

which is followed by a softmax layer for multi-class lifting weight recognition. 

2. BiLSTM-Transformer Encoder Model 
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Originally developed for natural language processing (NLP), the transformer model 

consists of an encoder and decoder, which are based on the self-attention mechanism (Vaswani 

et al., 2017). The encoder takes an input sequence and maps it to a sequence of continuous 

representations that contain the combined information of the input sequence, while the decoder 

predicts an output sequence based on the encoder’s output. We make use of the encoder 

architecture as shown in Figure 4.21. The encoder consists of a stack of blocks, with each block 

having a multi-head self-attention mechanism and a fully connected feed-forward network each 

of which is followed by a residual connection and layer normalization. The outputs of the 

encoder are aggregated into a single representation by mean pooling across all timesteps before 

being sent to the linear layers for classification. In (Vaswani et al., 2017), positional encoding is 

employed to capture the order of the sequence. However, we opted to use a BiLSTM layer to 

capture the sequential dependencies in the data. As shown in Figure 4.2, a BiLSTM layer is first 

used to process the data to learn the temporal patterns. The input sequence is fed into and 

processed by a forward and backward LSTM layer, and their outputs at each timestep are 

concatenated before being passed on to the encoder. For this joint model, if the number of hidden 

units from each LSTM layer is H, the BiLSTM layer outputs 2H-d vectors, and therefore the 

encoder takes 2H-d vectors as input.  

4.2.3 Hyperparameter Optimization 

Random search was used to find the best hyperparameters. For the BiLSTM model, a 

searching space was defined for each hyperparameter as follows: 

1) learning rate: (10-5, 10-2) 

2) dropout rate: (0.1, 0.5 ) 

3) batch size: [8, 16, 32, 64] 
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4) number of BiLSTM layers: (1, 5) 

5) number of hidden units: [32, 64, 128, 256] 

For the BiLSTM-Transformer Encoder model, we used the same searching space as 

BiLSTM for learning rate, dropout rate, batch size, and the number of hidden units for the single 

BiLSTM layer, while two additional hyperparameters were searched: 

1) number of transformer encoder block: (1, 5) 

2) number of attention head: [2, 4, 8] 

The hyperparameter optimization process involved 50 trials, with each trial trained for up 

to 50 epochs. Early stopping was implemented when validation loss was not improved by a 

minimum of 0.001 with 3 epochs. The best 102-input BiLSTM model has 3 BiLSTM layers with 

64-d hidden units at each direction for each layer. The model was trained with a learning rate of 

0.0003 and batch size of 8. The dropout rate was 0.1. The 48-input BiLSTM model uses 5 

BiLSTM layers with 64-d hidden units at each direction, which was trained with a learning rate 

of 0.0004, batch size of 8, and dropout rate of 0.15. In BiLSTM-Transformer Encoder models, 

the number of BiLSTM layer is one which is not a hyperparameter. The 102-input model is 

configured with the following architecture: 128-d hidden units at each direction for the BiLSTM 

layer, 3 transformer blocks with each having 8 attention heads, a learning rate of 0.0003, a 

dropout rate of 0.1, and a batch size of 8. The best configuration for the 48-input model is as 

follows: 64-d hidden units at each direction for the BiLSTM, 4 transformer blocks with each 

having 8 attention heads, a learning rate of 0.0003, a dropout rate of 0.11, and a batch size of 16. 

The models were trained by an Adam optimizer (Kingma & Ba, 2017) to minimize the Cross-

Entropy loss function with L2 regularization. 
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Figure 4.2: BiLSTM-Transformer Encoder model architecture 
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4.2.4 Model Evaluation 

A 5-fold cross-validation method was used to train the model. Specifically, the data was 

randomly divided into 5 folds, and the first fold (about 20% data) was used for testing, with the 

remaining 4 folds (about 80% data) for training. This procedure was repeated 5 times; each time, 

a different subset of data was used as a test set. The performance metrics obtained from each fold 

were averaged to get the final performance metrics. For each fold, the performance metrics were 

calculated as follows: 

Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Precision𝒾 =
𝑇𝑃𝒾

𝑇𝑃𝒾+𝐹𝑃𝒾
 for class i 

Recall𝒾 =
𝑇𝑃𝒾

𝑇𝑃𝒾+𝐹𝑁𝒾
 for class i 

F1 − score𝒾 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝒾  × 𝑅𝑒𝑐𝑎𝑙𝑙𝒾

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝒾  + 𝑅𝑒𝑐𝑎𝑙𝑙𝒾
 for class i 

Precision weighted = ∑
𝑁𝒾

𝑁

𝓃
𝒾=1  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝒾  

Recall weighted = ∑
𝑁𝒾

𝑁

𝓃
𝒾=1  𝑅𝑒𝑐𝑎𝑙𝑙𝒾(Diego-Mas et al., 2017) 

F1-score weighted = ∑
𝑁𝒾

𝑁

𝓃
𝒾=1  𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝒾 

where TP, FP, and FN are the numbers of true positives, false positives, and false 

negatives, respectively. For overall model performance, weighted precision, recall, and F1-score 

were also computed due to an imbalanced dataset where class 0 has about 50% fewer instances. 

The confusion matrix was computed by accumulating predictions and true labels from each fold. 

The models were trained with the PyTorch framework on an NVIDIA T4 GPU. 

4.2.5 Model Explanation with Integrated Gradients 
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To explain the rationale behind the BiLSTM-Transformer Encoder model, Integrated 

Gradients (IG) method was applied to gain insights into how the model relied on individual 

features to make predictions. Introduced in Sundararajan et al., 2017, IG is used to explain a 

model’s predictions in terms of individual features. This method typically generates feature-

based maps that quantify the importance of each feature for a given prediction. The importance is 

represented by accumulated gradients of the model’s output with respect to the inputs along a 

path from a baseline input to the actual input (Sundararajan et al., 2017). The baseline input is a 

reference point, providing no information. The integrated gradients of the i-th feature for an input 

x are computed as: 

IntegratedGradsi(x) ::= (𝑥𝑖  −  𝑥𝑖
, ) × ∫

𝜕𝐹(𝑥 , + 𝛼 × (𝑥 − 𝑥 ,))

𝜕𝑥𝑖

1

𝛼=0
𝑑𝛼 

Where x is an input, x’ is a baseline, and 𝛼 is an interpolation constant.  

In this study, we used as the baseline zero accelerations and zero angular velocities. For 

each time-series input sequence, we computed the IG score at each time step for each feature. To 

understand the overall importance of each feature for the model’s predictions, we further 

computed overall aggregated IG. We summed IG scores across all time steps for each input 

sequence, and then took the average across correctly classified sequences for each feature. We 

then took the absolute value and visualized the overall aggregated IG scores with a bar chart. We 

also visualized time-series aggregated IG scores, which were obtained by averaging across 

correctly classified sequences at each time step. 

4.3 Results 

The performance metrics of models using whole-body segment kinematics (102 features) 

and domain knowledge-selected Features (48 features) as inputs are presented in Table 4.1 and 

Table 4.2, respectively. The results showed varying performance across the models with 
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different numbers of input features. Overall, BiLSTM-Transformer Encoder had better 

performance than BiLSTM. Specifically, BiLSTM-Transformer Encoder with 102 features 

yielded the best performance, while BiLSTM model with 48 features performed slightly worse 

than the others. The BiLSTM model with 102 features and BiLSTM-Transformer Encoder with 

48 features exhibited similar performance. The training time for BiLSTM-Transformer Encoder 

model and BiLSTM model using 102 features were 19 minutes and 44 minutes, respectively, 

while their training time using  48 features were 18 minutes and 40 minutes, respectively. As 

shown in Table 4.1 and 4.2, most performance metrics for L1 and L2 were relatively lower than 

those for L0 and L34. The confusion matrices of BiLSTM-Transformer Encoder and BiLSTM 

are presented in Figure 4.3 and Figure 4.4, respectively.  

Table 4.1: Overall accuracy, precision, recall and F1-score values of lifting weight classification 

with whole-body segment kinematics. 

Model 
Lifting 

weight 
Accuracy 

Precision Recall F1-score 

Weighted Class i Weighted Class i Weighted Class i 

BiLSTM 

L0 

0.779 0.777 

0.92 

0.779 

0.90 

0.775 

0.91 

L1 0.78 0.86 0.82 

L2 0.72 0.59 0.65 

L3 0.75 0.83 0.79 

BiLSTM-

Transformer 

Encoder 

L0 

0.816 0.816 

0.98 

0.816 

0.96 

0.815 

0.97 

L1 0.83 0.77 0.80 

L2 0.72 0.70 0.71 

L3 0.81 0.91 0.86 
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 True 

L0 0.96 0.04 0.00 0.00  

True 

L0 0.96 0.04 0.00 0.00 

L1 0.01 0.77 0.20 0.01  L1 0.03 0.73 0.23 0.01 

L2 0.00 0.14 0.70 0.17  L2 0.00 0.18 0.57 0.25 

L3 0.00 0.00 0.09 0.91  L3 0.00 0.00 0.07 0.93 

  L0 L1 L2 L3    L0 L1 L2 L3 

 Predicted   Predicted 

         (a) whole-body segment kinematics                       (b) domain knowledge-selected Features 

Figure 4.3: Confusion matrices of BiLSTM-Transformer Encoder with (a) whole-body segment 

kinematics and (b) domain knowledge-selected features 

 

 

Table 4.2: Overall accuracy, precision, recall and F1-score values of lifting weight classification 

with domain knowledge-selected features. 

Model 
Lifting 

weight 
Accuracy 

Precision Recall F1-score 

Weighte

d 
Class i 

Weighte

d 
Class i 

Weighte

d 
Class i 

BiLSTM 

L0 

0.751 0.750 

0.86 

0.751 

0.94 

0.748 

0.90 

L1 0.70 0.78 0.74 

L2 0.66 0.59 0.63 

L3 0.84 0.78 0.81 

BiLSTM-

Transformer 

Encoder 

L0 

0.769 0.766 

0.94 

0.769 

0.96 

0.764 

0.95 

L1 0.78 0.73 0.76 

L2 0.67 0.57 0.62 

L3 0.75 0.93 0.83 
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True 

L0 0.90 0.10 0.00 0.00  

True 

L0 0.94 0.06 0.00 0.00 

L1 0.03 0.86 0.10 0.01  L1 0.09 0.78 0.13 0.00 

L2 0.01 0.18 0.59 0.22  L2 0.00 0.28 0.59 0.12 

L3 0.00 0.01 0.16 0.83  L3 0.00 0.01 0.21 0.78 

  L0 L1 L2 L3    L0 L1 L2 L3 

 Predicted   Predicted 

         (a) whole-body segment kinematics                       (b) domain knowledge-selected Features 

Figure 4.4: Confusion matrices of BiLSTM with (a) whole-body segment kinematics and (b) 

domain knowledge-selected features 

 

To understand how the BiLSTM-Transformer Encoder model generally relied on each 

feature when using whole-body segment kinematics as inputs, the overall aggregated IG scores 

across all correctly classified sequences in the test data were computed for each of the 102 

features. The top eight most important features were shown in Figure 4.5 (a) and highlighted on a 

skeleton model to provide a clearer visualization (Figure 4.5 (b)). The three most important 

features that had the highest overall aggregated IG score were pelvis acceleration on the x-axis, 

left shoulder acceleration on the x-axis, and right shoulder acceleration on the x-axis. The time-

series aggregated IG scores of each feature at each time step were also computed to understand 

how the model relied on input features over time when making predictions. For clarity and 

illustration purposes, we provided a heatmap for each class visualizing the time-series 

aggregated IG scores for the eight most important features identified by the overall aggregated 

IG (Figure 4.6 – 4.9). From the heatmaps, we observed the time-series aggregated IG scores of 

the features changed significantly over three distinct periods. These periods corresponded d to 

the three main phases of lifting: the initial lift phase, the mid-lift phase, and the final place phase. 
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This observed trend in the selected features’ IG score is representative of the overall pattern seen 

across all features, indicating that the model identified main lifting phases when making 

predictions. Focusing on selected features, during the initial lift, high positive IG scores were 

observed for shoulder and head accelerations at class L4 (≥11.3 kg) (Figure 4.9), while their IG 

scores were highly negative for lighter loads (Figure 4.6 - Figure 4.7). However, for 

accelerations of the pelvis and upper legs, the opposite trend was observed in the plots: high 

negative IG scores at class L4 (Figure 4.9) and high positive IG scores for lighter loads (Figure 

4.6 - Figure 4.7). In the mid-lift phase, shoulder accelerations showed high IG scores. 

Specifically, shoulder accelerations had high positive IG scores when lifting lighter weights 

(Figures 4.6 and 4.7), while they had high negative scores when lifting ≥11.3 kg. In the final 

place phase, the IG scores of these features mostly remained similar as those in the initial lift 

phase. Except for the lightest weight (0.5 kg) (Figure 4.6), the right shoulder acceleration shifted 

from highly negative in the initial lift to highly positive IG scores, and the right upper leg 

acceleration shifted from highly positive to highly negative IG scores. Moreover, we also 

observed high IG scores for angular velocities of left upper arm external/internal rotation and left 

upper leg abduction/adduction (Figure 4.6 - Figure 4.9). 
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(a) top 8 important features                         (b) skeletal model with top 8 important features 

Figure 4.5: Top 8 important features measured by aggregated IG in (a) top 8 important features 

and (b) skeletal model with top 8 important features, using BiLSTM-Transformer Encoder with 

whole-body segment kinematics as input features 

 

 

 
Figure 4.6: Visualizing time-series aggregated IG for class 0 
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Figure 4.7: Visualizing time-series aggregated IG scores for class 1 

 
Figure 4.8: Visualizing time-series aggregated IG scores for class 2 

 
Figure 4.9: Visualizing time-series aggregated IG scores for class 3 
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4.4 Discussion 

Accurate lifting weight recognition estimation has the potential to impact benefit many 

fields, such as improving ergonomics, enhancing human-robot collaboration, and advancing the 

effectiveness of wearable devices. Previous studies employed LSTM-based models with human 

motion data for hand-handled load recognition, demonstrating superior performance compared to 

other machine learning methods. Extending the groundwork laid by these previous works, we 

developed a new transformer-based model, BiLSTM-Transformer Encoder, aimed at improving 

the accuracy of lifting weight recognition. In our study, we employed both the BiLSTM model 

and the BiLSTM-Transformer Encoder model, experimenting with different input configurations 

such as whole-body segment lifting kinematics (102 input features) and domain knowledge-

selected segment lifting kinematics (48 input features). Our results demonstrated that the 

BiLSTM-Transformer Encoder outperformed BiLSTM, achieving an overall accuracy of 0.816 

with whole-body segment kinematics. The precision, recall, and F1-score of each class were also 

computed for all combinations of models and input configurations (Table 4.1 and 4.2), and were 

consistently better for L0 (0.5 kg) and L3 (11.3 ~ 13.6 kg) compared to the middle classes (e.g., 

L1: 2.3 ~ 4.5 kg and L2: 6.8 ~ 9.1 kg). Specifically, the confusion matrices revealed that 2.3 ~ 

4.5 kgL1 was misclassified as 6.8 ~ 9.1 kg L2 in 10% ~ 23% of the instances, and vice versa, 

with 6.8 ~ 9.1 kg L2 being misclassified as 2.3 ~ 4.5 kg L1 in 14% ~ 28% of the instances 

(Figure 4.3 and 4.4). Additionally, 6.8 ~ 9.1 kg L2 was misclassified as 11.3 ~ 13.6 kg L3 in 

12% ~ 25% of the instances (Figures 4.3 and 4.4). This may be because lifting less than 0.5 kg 

and more than 11.3 kg had more distinct lifting kinematic characteristics that set them apart, 

leading to better performance metrics. In contrast, the middle classes (e.g., lifting 2.3 ~ 4.5 kg 

and 6.8 ~ 9.1 kg) have more overlap in lifting kinematic characteristics, making them harder to 
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distinguish. For example, in the previous chapter, we have shown that upper limb lifting 

kinematics, such as angular velocities, didn’t have a significant difference when varying lifting 

weight between 4.5 kg and 11.3 kg. It is important to note that previous studies have shown some 

kinematics of lifting between 4.5 kg and 11.3 kg can be very similar, contributing to the 

difficulty in distinguishing between these lifting weight levels. This is a known challenge and not 

a unique shortcoming of our model. Moreover, with our model, there was a significant 

improvement in the performance metrics of distinguishing L1 and L2 by incorporating more 

(e.g., whole-body) kinematics as input. 

IG was used to gain insights into how the BiLSTM-Transformer Encoder model makes 

predictions. The overall aggregated IG results demonstrated that specific kinematic features, 

such as shoulder acceleration, pelvis acceleration and upper leg acceleration, were crucial for 

accurate lifting weight recognition. This aligns with our expectations based on the nature of 

lifting tasks during which shoulders control the movement of lifting (Constant, 1989), and pelvis 

and upper legs that form the hip joint provide stability and strength during lifting (Nordin & 

Frankel, 2012). This highlights the model’s ability to capture important body segments for 

lifting. We also obtained time-series aggregated IG scores for each feature. The changes of the 

time-series aggregated IG scores over the three phases indicated the influence of each feature 

varied between phases. This indicated that our model has the ability to understand the temporal 

dynamics of the lifting process, and process and identify important features during different 

phases. For instance, the IG scores revealed that during the initial lift, the model identified 

positive high contributions from shoulders and head accelerations to predicting lifting ≥11.3 kg, 

but they contributed negatively, though highly, to predicting lighter weights. This implied that in 

the initiation phase, a higher magnitude of shoulder and head accelerations increased the 
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likelihood of predicting heavier weights; however, it reduced that of predicting lighter weights. 

Additionally, the model identified higher magnitude accelerations of the pelvis and upper legs as 

reducing the likelihood of predicting ≥11.3 kg but increasing the likelihood of predicting lighter 

loads. This alignment aligns well with our knowledge of lifting biomechanics. In the initial 

phase, with heavier weight, individuals tended to bring the load to the body as quickly as 

possible to reduce the moment arm on shoulders, which optimized energy use and maximized 

body stability. Furthermore, in order to lift the weight off the place shoulder, muscles have to 

generate more force to overcome the inertia of the weight. Higher shoulder accelerations lead to 

not only rapid recruitment of larger, fast-twitch motor units but also an increased number of 

motor units (Desmedt & Godaux, 1978; Henneman et al., 1965), so shoulder muscles can 

generate higher force to meet the increased force demand. In the meantime, the pelvis and upper 

legs naturally reduce their accelerations to maintain body stability and prevent toppling. In 

contrast, higher shoulder accelerations decreased the likelihood of predicting ≥11.3 kg in the 

mid-lift phase when the load is elevated. This is because, when lifting heavy weight, decreased 

shoulder accelerations help maintain body balance and stabilize the load, preventing, for 

instance, unnecessary forward and backward movement. However, when lifting light weights, 

the body can afford faster shoulder movement without compromising stability and control. In the 

final placement, the influences of these features (e.g., accelerations of shoulders, pelvis, and 

upper legs) on predicting each level of weight were largely consistent with those in the initial lift 

phase. For instance, when lifting ≥11.3 kg, increased shoulder acceleration contributed 

positively to predictions, while increased hip and upper leg accelerations had negative 

contributions to predictions. These were as expected because increased shoulder acceleration 

helps generate more force to control the lowering of the load, and decreased hip and upper leg 
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accelerations allow the body to maintain stability and balance. It is noteworthy that when lifting 

0.5 kg, the roles of shoulder and upper leg accelerations on the right side diverged from theirs in 

the initiation phase and phase and were opposite to those on the left side. This asymmetry can 

occur because most individuals are right-hand dominant, which can lead to asymmetries in body 

movement when lifting a very light load like 0.5 kg. This asymmetry was captured by the model. 

Overall, the ability of the model to focus on different features during different phases of the 

lifting process highlights its nuanced understanding of the biomechanics involved.  

4.5 Conclusion 

In this study, a BiLSTM-Transformer Encoder model which incorporates a BiLSTM 

layer into transformer encoder layers was proposed to improve the accuracy of lifting weight 

recognition. The results showed consistent improvements in identifying lifting weight at 0.5 kg, 

2.3 ~ 4.5 kg, 6.8 ~ 9.1 kg, and 11.3 ~ 13.6 kg, which have a 2.3 kg difference. The model 

identified key kinematic features that vary with lifting weight, such as shoulder acceleration, 

pelvis acceleration and upper leg acceleration. The model’s capability to detect a 2.3 kg 

difference suggests that it has learned the subtle change in lifting kinematics corresponding to a 

2.3 kg difference in lifting weight. These kinematic changes will be more pronounced and easier 

to detect as the weight difference increases, which makes the model suitable for applying to 

ergonomic assessment methods that require the consideration of different levels of weight, such 

as Rapid Upper Limb Assessment (RULA) (McAtamney & Nigel Corlett, 1993), Rapid Entire 

Body Assessment (REBA) (Hignett & McAtamney, 2000), and Ovako Working Posture 

Analysis System (OWAS) (Karhu et al., 1977). In REBA, the weight of the handled loads is 

classified into weight < 5kg, 5 kg< weight < 10 kg, and weight >10kg. RULA considers weight < 

2kg, 2 kg < weight < 10 kg, and weight > 10 kg. OWAS considers a 10 kg difference of weight: 
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weight ≤ 10 kg , 10 kg < weight ≤ 20 kg, weight > 20 kg. In the future, this model can be 

integrated with posture recognition model to automate ergonomic assessment using methods 

including RULA, REBA and OWAS. 

      



116 

 

4.6 References 

Caderby, T., Dalleau, G., Leroyer, P., Bonazzi, B., Chane-Teng, D., & Do, M.-C. (2013). Does 

an additional load modify the Anticipatory Postural Adjustments in gait initiation? Gait 

& Posture, 37(1), 144–146. https://doi.org/10.1016/j.gaitpost.2012.06.012 

Constant, C. R. (1989). Historical background, anatomy and shoulder function. Baillière’s 

Clinical Rheumatology, 3(3), 429–435. https://doi.org/10.1016/S0950-3579(89)80002-0 

Davis, K. G., & Marras, W. S. (2000). Assessment of the Relationship between Box Weight and 

Trunk Kinematics: Does a Reduction in Box Weight Necessarily Correspond to a 

Decrease in Spinal Loading? Human Factors: The Journal of the Human Factors and 

Ergonomics Society, 42(2), 195–208. https://doi.org/10.1518/001872000779656499 

Desmedt, J. E., & Godaux, E. (1978). Ballistic contractions in fast or slow human muscles; 

discharge patterns of single motor units. The Journal of Physiology, 285(1), 185–196. 

https://doi.org/10.1113/jphysiol.1978.sp012566 

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep 

Bidirectional Transformers for Language Understanding (Version 2). arXiv. 

https://doi.org/10.48550/ARXIV.1810.04805 

Fowler, N. E., Rodacki, A. L. F., & Rodacki, C. D. (2006). Changes in stature and spine 

kinematics during a loaded walking task. Gait & Posture, 23(2), 133–141. 

https://doi.org/10.1016/j.gaitpost.2004.12.006 

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM 

recurrent  networks. Journal of Machine Learning Research, 3(1), 115–143. 

https://doi.org/10.1016/j.gaitpost.2012.06.012
https://doi.org/10.1016/S0950-3579(89)80002-0
https://doi.org/10.1518/001872000779656499
https://doi.org/10.1113/jphysiol.1978.sp012566
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.1016/j.gaitpost.2004.12.006


117 

 

Goršič, M., Dai, B., & Novak, D. (2020). Load Position and Weight Classification during 

Carrying Gait Using Wearable Inertial and Electromyographic Sensors. Sensors, 20(17), 

4963. https://doi.org/10.3390/s20174963 

Henneman, E., Somjen, G., & Carpenter, D. O. (1965). FUNCTIONAL SIGNIFICANCE OF 

CELL SIZE IN SPINAL MOTONEURONS. Journal of Neurophysiology, 28(3), 560–

580. https://doi.org/10.1152/jn.1965.28.3.560 

Hignett, S., & McAtamney, L. (2000). Rapid Entire Body Assessment (REBA). Applied 

Ergonomics, 31(2), 201–205. https://doi.org/10.1016/S0003-6870(99)00039-3 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 

Karhu, O., Kansi, P., & Kuorinka, I. (1977). Correcting working postures in industry: A practical 

method for analysis. Applied Ergonomics, 8(4), 199–201. https://doi.org/10.1016/0003-

6870(77)90164-8 

Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization (arXiv:1412.6980). 

arXiv. http://arxiv.org/abs/1412.6980 

LaFiandra, M., Wagenaar, R. C., Holt, K. G., & Obusek, J. P. (2003). How do load carriage and 

walking speed influence trunk coordination and stride parameters? Journal of 

Biomechanics, 36(1), 87–95. https://doi.org/10.1016/S0021-9290(02)00243-9 

Lee, H., Yang, K., Kim, N., & Ahn, C. R. (2020). Detecting excessive load-carrying tasks using 

a deep learning network with a Gramian Angular Field. Automation in Construction, 120, 

103390. https://doi.org/10.1016/j.autcon.2020.103390 

https://doi.org/10.3390/s20174963
https://doi.org/10.1152/jn.1965.28.3.560
https://doi.org/10.1016/S0003-6870(99)00039-3
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/0003-6870(77)90164-8
https://doi.org/10.1016/0003-6870(77)90164-8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/S0021-9290(02)00243-9
https://doi.org/10.1016/j.autcon.2020.103390


118 

 

Li, Y., Greene, R. L., Mu, F., Hu, Y. H., & Radwin, R. G. (2020). Towards Video-Based 

Automatic Lifting Load Prediction. Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting, 64(1), 962–963. https://doi.org/10.1177/1071181320641230 

Lim, S., & D’Souza, C. (2019). Statistical prediction of load carriage mode and magnitude from 

inertial sensor derived gait kinematics. Applied Ergonomics, 76, 1–11. 

https://doi.org/10.1016/j.apergo.2018.11.007 

Liu, Y., & Lapata, M. (2019). Text Summarization with Pretrained Encoders (Version 2). arXiv. 

https://doi.org/10.48550/ARXIV.1908.08345 

McAtamney, L., & Nigel Corlett, E. (1993). RULA: A survey method for the investigation of 

work-related upper limb disorders. Applied Ergonomics, 24(2), 91–99. 

https://doi.org/10.1016/0003-6870(93)90080-S 

Nordin, M., & Frankel, V. (2012). Basic biomechanics of the musculoskeletal system (4th ed.) 

(Fourth). Wolters Kluwer Health – Lippincott Williams & Wilkins. 

Qu, X., & Yeo, J. C. (2011). Effects of load carriage and fatigue on gait characteristics. Journal 

of Biomechanics, 44(7), 1259–1263. https://doi.org/10.1016/j.jbiomech.2011.02.016 

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language 

understanding by  generative pre-training. https://cdn.openai.com/research-

covers/language-unsupervised/language_understanding_paper.pdf 

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE 

Transactions on Signal Processing, 45(11), 2673–2681. 

https://doi.org/10.1109/78.650093 

https://doi.org/10.1177/1071181320641230
https://doi.org/10.1016/j.apergo.2018.11.007
https://doi.org/10.48550/ARXIV.1908.08345
https://doi.org/10.1016/0003-6870(93)90080-S
https://doi.org/10.1016/j.jbiomech.2011.02.016
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1109/78.650093


119 

 

Shavit, Y., & Klein, I. (2021). Boosting Inertial-Based Human Activity Recognition With 

Transformers. IEEE Access, 9, 53540–53547. 

https://doi.org/10.1109/ACCESS.2021.3070646 

Song, J., & Qu, X. (2014). Effects of age and its interaction with task parameters on lifting 

biomechanics. Ergonomics, 57(5), 653–668. 

https://doi.org/10.1080/00140139.2014.897376 

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic Attribution for Deep Networks 

(Version 2). arXiv. https://doi.org/10.48550/ARXIV.1703.01365 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & 

Polosukhin, I. (2017). Attention Is All You Need (Version 7). arXiv. 

https://doi.org/10.48550/ARXIV.1706.03762 

Wensel, J., Ullah, H., & Munir, A. (2022). ViT-ReT: Vision and Recurrent Transformer Neural 

Networks for Human Activity Recognition in Videos (Version 2). arXiv. 

https://doi.org/10.48550/ARXIV.2208.07929 

Xsens Technologies B.V. (2021). Xsens MVN User Manual. 

Yang, K., Ahn, C. R., & Kim, H. (2020). Deep learning-based classification of work-related 

physical load levels in construction. Advanced Engineering Informatics, 45, 101104. 

https://doi.org/10.1016/j.aei.2020.101104 

Zhou, G., Aggarwal, V., Yin, M., & Yu, D. (2022). A Computer Vision Approach for Estimating 

Lifting Load Contributors to Injury Risk. IEEE Transactions on Human-Machine 

Systems, 52(2), 207–219. https://doi.org/10.1109/THMS.2022.3148339 

 

  

https://doi.org/10.1109/ACCESS.2021.3070646
https://doi.org/10.1080/00140139.2014.897376
https://doi.org/10.48550/ARXIV.1703.01365
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.2208.07929
https://doi.org/10.1016/j.aei.2020.101104
https://doi.org/10.1109/THMS.2022.3148339


120 

 

Chapter 5 

A Video-Based Pipeline for Lifting Load Recognition 

5.1 Introduction 

Low back pain is the fifth most common reason for visiting a doctor in the USA (Atlas & 

Deyo 2001). Annually, the prevalence of low back pain in the general US adult population is 10–

30%.1 According to findings from Punnett et al., 2005, 37% of low back pain may be due to 

work-related risk factors. Previous studies show that manual lifting tasks are frequently 

associated with low back pain (Cheng et al., 1998; Cole & Grimshaw, 2003; de Looze et al., 

1998). 

Manual lifting tasks often require workers to lift variable, heavy loads. Several studies 

have revealed that higher lifting weights increase muscle activity and may sometimes increase 

spinal loads (Davis et al., 2000; Marras & Mirka, 1990; Marras & Sommerich, 1991). In 

ergonomics risk assessment, the amount of weight being lifted is one of the important variables 

related to the lifting task that needs to be measured or assessed. Ergonomists usually go out into 

the field to measure weight within the workplace using a scale, obtain it through worker 

estimates, or obtain information from product brochures and other sources. However, these 

approaches are cumbersome and time-consuming. Previous studies have shown that changes in 

the lifting weight have an impact on the variance in the lifter’s kinematics (Norasi et al., 2019; 

Plamondon et al., 2017; Song & Qu, 2014). The current surge of human pose estimation 

techniques, which attempt to extract human joint positions from images, has made it possible to 

extract lifting kinematic features from data collected by cameras. These extracted kinematics 

have been used for ergonomic assessment to identify posture-based risks(Kim et al., 2021; Van 

Crombrugge et al., 2022b; Yu, Yang, Li, et al., 2019). In the previous chapter, we leveraged data 
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from wearable IMU sensors for lifting weight recognition using a transformer-based model. We 

demonstrated that kinematic features representing lifting biomechanics can identify different 

levels of lifting weight with reasonable accuracy. However, IMU sensors rely on direct 

measurements from sensors attached to the worker’s body, which may not be feasible in long-

time applications due to their intrusiveness and potential disturbance. The aim of this chapter 

was to develop a video-based method for lifting weight recognition. 

5.2 Methods 

5.2.1 Participants, Simulated Lifting Task, and Data 

The data in the current chapter were obtained in the third chapter. Thus, we only 

summarized details here. A total of 18 participants (9 females and 9 males) from the local 

university and community completed the study. In the experiment, the participants lifted a 

weighted box with the dimensions of 46.3 × 31.3 × 11.2 cm (length × width × height) from the 

floor or knee height and placed it on a shelf at elbow height. The box weights evaluated in this 

study were in a range between 0.5 and 13.8 kg. Participants were asked to perform each lifting 

using self-selected comfortable styles and speed. Each participant performed six lifting trials for 

each combination of lifting height and weight in random order. All the trials were recorded by 

two synchronized RGB cameras from the right side (90°) and left frontal 60° positions (Figure 

5.1). The cameras recorded at 60 frames per second with 1920×1080 resolution. In this study, 

only videos captured by the frontal 60° angle were used. 
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Figure 5.1 Two cameras were used to record lifting 

 

5.2.2 Feature Extraction 

MediaPipe Pose, an open-source framework developed by Google, was used to estimate 

2D keypoint coordinates. The pose model provides 2D pose estimation of 33 landmarks (Figure 

5.2) from images (Bazarevsky et al., 2020). Each landmark consists of a vector representing the 

relative position in an image. MediaPipe pose also outputs Z-axis coordinate representing the 

depth of a keypoint relative to the midpoint of the hips. We extracted 12 2D landmarks with their 

relative depths at z-axis, including right/left shoulder, right/left elbow, right/left wrist, right/left 

hip, right/left knee and right/left ankle. Lifting trajectories and velocities of the 12 keypoints 

were computed and taken as input features for lifting weight recognition. For keypoint i (i = 1, 2, 

…, 12), the displacement, 𝒅𝑖,𝑡, at time T = t is calculated by 

𝒅𝑖,𝑡 =  𝒑𝑖,𝑡 – 𝒑𝑖,𝑡−1 

Where 𝒑𝑖,𝑡 is the position of joint i at time t. 

The velocity of keypoint i, 𝒗𝑖,𝑡 , at time t is calculated by 

𝒗𝑖,𝑡 =  
𝒅𝑖,𝑡

Δ𝑇
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Joint angles of elbows, shoulders, hips and knees were also calculated by vectors that 

form the joints. Since MediaPipe doesn’t extract keypoints related to the trunk, we calculated 

shoulder and hip angles as the angle between Hip-Shoulder vector and Shoulder-Elbow vector, 

and the angle between Hip-Knee vector and Knee-Ankle vector, respectively. For joint i (i = 1, 2, 

…, 8) defined by vectors vj and vk, its joint angle 𝜽𝑖,𝑡 at time t is calculated by 

𝜽𝑖,𝑡 =  𝑎𝑟𝑐𝑐𝑜𝑠 (
𝒗𝑗,𝑡∙𝒗𝑘,𝑡

‖𝒗𝑗,𝑡‖‖𝒗𝑘,𝑡‖
), 

Where vj,t, vk,t are vj and vk at time t, respectively. 

These extracted features were time-series sequences with different lengths. To ensure the 

sequences have equal lengths, post-padding was implemented, in which all sequences were 

padded with zeros at the end based on the maximum sequence length. Sequence-wise Min-max 

normalization was applied to scale the data to the range of [0, 1].  

 

Figure 5.2 33 Pose landmarks (MediaPipe Pose) 
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5.2.3 Lifting Weight Recognition 

A BiLSTM-Transformer Encoder model was trained and used in the stage. The model 

took 60 time-series features as input representing lifting biomechanics, and output the level of 

lifting weight. It consists of BiLSTM layers and transformer encoder blocks. The numbers of 

BiLSTM layers and transformer encoder blocks were hyperparameters to tune. We used 3 

BiLSTM layers with 128-d hidden state at each direction. The number of transformer encoder 

blocks was 2 with 8 attention heads and 256-d hidden state. An Adam optimizer is applied to 

minimize the Cross-Entropy loss function. The network was trained using a batch size of 32 for 

100 epochs on NVIDIA T4 GPU. 

5.2.4 Model Evaluation 

A leave-one-out cross validation method was used to train the model. Specifically, data 

from 17 subjects was used for training, with the data from the remaining 1 subject for testing. 

This procedure was repeated until 18 times; Each time, a different fold of data was used as a test 

set. The performance metrics obtained from each fold were averaged to get the final performance 

metrics. For each fold, the performance metrics were calculated as follows: 

Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Precision weighted = ∑
𝑁𝒾

𝑁

𝓃
𝒾=1  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝒾 , where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝒾 =

𝑇𝑃𝒾

𝑇𝑃𝒾+𝐹𝑃𝒾
 for class i 

Recall weighted = ∑
𝑁𝒾

𝑁

𝓃
𝒾=1  𝑅𝑒𝑐𝑎𝑙𝑙𝒾, where 𝑅𝑒𝑐𝑎𝑙𝑙𝒾 =

𝑇𝑃𝒾

𝑇𝑃𝒾+𝐹𝑁𝒾
 for class i 

F1-score weighted = ∑
𝑁𝒾

𝑁

𝓃
𝒾=1  𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝒾,  

where 𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝒾 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝒾  × 𝑅𝑒𝑐𝑎𝑙𝑙𝒾

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝒾  + 𝑅𝑒𝑐𝑎𝑙𝑙𝒾
 for class i 

where TP, FP, and FN are the numbers of true positives, false positives, and false 

negatives, respectively. For overall model performance, weighted precision, recall and F1-score 



125 

 

were also computed. Confusion matrix was computed by accumulating the predictions and true 

labels from each fold. 

5.3 Results 

The performance metrics of the lifting weight recognition model were presented in Table 

5.1, and the confusion matrices were shown in Figure 5.3. The overall accuracy was 0.766, and 

the percentage of actual L1 and L2 the model correctly classified were relatively lower than 

those for L0 and L3.   

Table 5.1: Overall accuracy, precision, recall and F1-score values of lifting weight classification  

Model Accuracy Precision Recall F1-score 

BiLSTM-

Transformer 

Encoder 

0.714 0.773 0.723 0.720 

 

True 

L0 0.98 0.02 0.00 0.00 

L1 0.01 0.47 0.47 0.05 

L2 0.00 0.00 0.72 0.28 

L3 0.00 0.00 0.15 0.85 

  L0 L1 L2 L3 

                     Predicted 

Figure 5.3: Confusion matrices of BiLSTM-Transformer Encoder model 

5.4 Discussion 

The current study aimed at examining the potential use of camera data to estimate the 

level of lifting weight. We used a validated human pose estimation framework that can estimate 
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keypoints from videos. Keypoints trajectories were calculated from the estimated positions and 

velocities were further calculated. These extracted features were then fed into a BiLSTM-

Transformer Encoder classifier for lifting weight recognition. The overall accuracy, precision, 

recall and F1-score were 0.766, 0.779, 0.766 and 0.768, respectively. While it was worse than 

using BiLSTM-Transformer Encoder with whole-body kinematics, the performance was 

comparable to BiLSTM model using IMU data in the previous chapter. In general data derived 

from IMU sensors are more accurate due to their direct measurement, while features from 

camera data are indirect and sensitive to recording environment such as occlusions. The 

performance metrics were worse for middle classes (e.g., L1: 2.3 ~ 4.5 kg and L2: 6.8 ~ 9.1 kg) 

compared to L0 (0.5 kg) and L3 (11.3 ~ 13.6 kg), which was consistent with the result from the 

previous chapter.  

5.5 Conclusion 

In this work, we explore the feasibility of using BiLSTM-Transformer Encoder model 

with videos. The result showed that it was comparable to BiLSTM model with IMU data. Both 

IMU data and videos with BiLSTM-Transformer Encoder model consistently performed worse 

in recognizing 2.3 ~ 4.5 kg and 6.8 ~ 9.1 kg. The underperformance can be attributed to the 

intrinsic kinematic similarity between lifting 4.5 kg and 11.3 kg. Future work should possibly 

integrate additional data sources to improve the accuracy in distinguishing between such lifting 

weight levels. 



127 

 

5.6 References 

Atlas, S. J., & Deyo, R. A. (2001). Evaluating and managing acute low back pain in the primary 

care setting. Journal of General Internal Medicine, 16(2), 120–131. 

https://doi.org/10.1111/j.1525-1497.2001.91141.x 

Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., & Grundmann, M. (2020). 

BlazePose: On-device Real-time Body Pose tracking (Version 1). arXiv. 

https://doi.org/10.48550/ARXIV.2006.10204 

Cheng, C.-K., Chen, H.-H., Kuo, H.-H., Lee, C.-L., Chen, W.-J., & Liu, C.-L. (1998). A three-

dimensional mathematical model for predicting spinal joint force distribution during 

manual liftings. Clinical Biomechanics, 13(1), S59–S64. https://doi.org/10.1016/S0268-

0033(97)00077-6 

Davis, K. G., Jorgensen, M. J., & Marras, W. S. (2000). An investigation of perceived exertion 

via whole body exertion and direct muscle force indicators during the determination of 

the maximum acceptable weight of lift. Ergonomics, 43(2), 143–159. 

https://doi.org/10.1080/001401300184521 

de Looze, M. P., Dolan, P., Kingma, I., & Baten, C. T. M. (1998). Does an asymmetric straddle-

legged lifting movement reduce the low-back load? Human Movement Science, 17(2), 

243–259. https://doi.org/10.1016/S0167-9457(97)00032-8 

Kim, W., Sung, J., Saakes, D., Huang, C., & Xiong, S. (2021). Ergonomic postural assessment 

using a new open-source human pose estimation technology (OpenPose). International 

Journal of Industrial Ergonomics, 84, 103164. 

https://doi.org/10.1016/j.ergon.2021.103164 

https://doi.org/10.1111/j.1525-1497.2001.91141.x
https://doi.org/10.48550/ARXIV.2006.10204
https://doi.org/10.1016/S0268-0033(97)00077-6
https://doi.org/10.1016/S0268-0033(97)00077-6
https://doi.org/10.1080/001401300184521
https://doi.org/10.1016/S0167-9457(97)00032-8
https://doi.org/10.1016/j.ergon.2021.103164


128 

 

Marras, W. S., & Mirka, G. A. (1990). Muscle activities during asymmetric trunk angular 

accelerations. Journal of Orthopaedic Research, 8(6), 824–832. 

https://doi.org/10.1002/jor.1100080607 

Marras, W. S., & Sommerich, C. M. (1991). A Three-Dimensional Motion Model of Loads on 

the Lumbar Spine: II. Model Validation. Human Factors: The Journal of the Human 

Factors and Ergonomics Society, 33(2), 139–149. 

https://doi.org/10.1177/001872089103300202 

MediaPipe Pose. (n.d.). Retrieved May 23, 2023, from https://github.com/google-ai- 

edge/mediapipe/blob/master/docs/solutions/pose.md 

Norasi, H., Koenig, J., & Mirka, G. (2018). Effect of Load Weight and Starting Height on the 

Variability of Trunk Kinematics. Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting, 62(1), 905–909. https://doi.org/10.1177/1541931218621208 

Plamondon, A., Larivière, C., Denis, D., Mecheri, H., & Nastasia, I. (2017). Difference between 

male and female workers lifting the same relative load when palletizing boxes. Applied 

Ergonomics, 60, 93–102. https://doi.org/10.1016/j.apergo.2016.10.014 

Punnett, L., Prüss‐Ütün, A., Nelson, D. I., Fingerhut, M. A., Leigh, J., Tak, S., & Phillips, S. 

(2005). Estimating the global burden of low back pain attributable to combined 

occupational exposures. American Journal of Industrial Medicine, 48(6), 459–469. 

https://doi.org/10.1002/ajim.20232 

Song, J., & Qu, X. (2014). Effects of age and its interaction with task parameters on lifting 

biomechanics. Ergonomics, 57(5), 653–668. 

https://doi.org/10.1080/00140139.2014.897376 

https://doi.org/10.1002/jor.1100080607
https://doi.org/10.1177/001872089103300202
https://github.com/google-ai-%20edge/mediapipe/blob/master/docs/solutions/pose.md
https://github.com/google-ai-%20edge/mediapipe/blob/master/docs/solutions/pose.md
https://doi.org/10.1177/1541931218621208
https://doi.org/10.1016/j.apergo.2016.10.014
https://doi.org/10.1002/ajim.20232
https://doi.org/10.1080/00140139.2014.897376


129 

 

Van Crombrugge, I., Sels, S., Ribbens, B., Steenackers, G., Penne, R., & Vanlanduit, S. (2022). 

Accuracy Assessment of Joint Angles Estimated from 2D and 3D Camera Measurements. 

Sensors, 22(5), 1729. https://doi.org/10.3390/s22051729 

Yu, Y., Yang, X., Li, H., Luo, X., Guo, H., & Fang, Q. (2019). Joint-Level Vision-Based 

Ergonomic Assessment Tool for Construction Workers. Journal of Construction 

Engineering and Management, 145(5), 04019025. 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001647 

   

https://doi.org/10.3390/s22051729
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001647


130 

 

Chapter 6 

Conclusions and Limitations 

This dissertation seeks to develop methods that simplify lifting weight recognition by 

leveraging kinematics and advanced machine learning models. By thoroughly investigating 

effects of lifting weight on the upper body joint kinematics and coordination, we showed that 

lifting weight level had statistically significant effects on upper extremity kinematics such as 

velocities and shoulder-elbow coordination. This research, along with previous studies, provides 

a robust basis for developing more effective lifting weight recognition methods with lifting 

kinematics. Building on this foundation, a machine learning model was developed and evaluated. 

This model was evaluated on IMU data. The results showed substantial improvements over 

existing lifting weight recognition models. Specifically, this model successfully recognized 

lifting between ≤0.5 kg, 2.3 ~ 4.5 kg, 6.8 ~ 9.1 kg, and  ≥11.3 kg with an accuracy of 0.816. 

Moreover, to explain the rationale behind the BiLSTM-Transformer Encoder model, Integrated 

Gradients (IG) was applied to gain insights into how the model relied on individual features to 

make predictions. The results indicated that our model captured the temporal dependencies, and 

identified three lifting phases such as the initial lift phase, mid-lift phase and final place phase. It 

also showed the model’s ability of focusing on different features during different phases of the 

lifting process, highlighting its nuanced understanding of the biomechanics involved. 

Additionally, the dissertation investigated the application of the developed machine learning 

model to videos for lifting weight recognition. The results showed that the BiLSTM-Transformer 

Encoder model applied to videos achieved comparable performance comparing to using IMU 

data, effectively recognizing multi-level lifting weight. In conclusion, this research demonstrated 

the potential for improved accuracy in lifting weight recognition tasks. The proposed method and 
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findings in this research pave the way for future innovations and developments in lifting weight 

recognition tasks. 

While these advancements are notable, a few limitations should be addressed in future 

research. The investigation on lifting weight effects on lifting kinematics was limited by the 

types of lifting. For instance, this study only investigated symmetric, two-handed lifting. The 

highest lifting height examined in the study was at elbow level, while higher lifting heights, such 

as shoulder height or overhead height, were not included. Besides, individuals with larger (BMI 

> 27.0) or smaller (BMI < 18.9) body sizes were underrepresented because they could not wear 

the tight suit required for accurate Xsens data collection. Future research should cover a broader 

range of lifting types and population. The model’s performance and its application to kinematic 

data, while promising, didn’t provide precise lifting weight information and, therefore, not ideal 

for contexts that require continuous weight values. Future research should explore different 

approaches such as adding additional data sources. 

In summary, while this research makes significant improvement in simplifying and 

improving lifting weight recognition tasks, ongoing research is needed to address these 

limitations and further improve the accuracy and applicability of lifting weight recognition 

model in diverse environments. 
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Appendix A 

Figure A1: Lifting a weighted box (a) from floor to knee (b) from floor to elbow (c) from knee to 

elbow. 

              

            (a) Lifting from floor to knee                      (b) Lifting from floor to elbow 

 

 

(c) Lifting from knee to elbow 
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Figure A2: Positions of IMU sensors on subjects. 

 

     : IMU at the back 

     : IMU at the front 
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Appendix B 

Table B1: Inter-subject CVs and intra-subject CVs of peak angular velocities during the lifting 

phase. 

 

CV (%) Height
Weight

(kg)

Abduction Peak 

Angular Velocity 

of Shoulder

External 

Rotation Peak 

Angular Velocity 

of Shoulder

Flextion Peak 

Angular Velocity 

of Shoulder

Flextion Peak 

Angular Velocity 

of Elbow

0.5 14.14                 14.38                 12.54                 8.75                   
2.3 14.24                 13.96                 11.54                 9.85                   
4.5 12.99                 12.57                 11.87                 9.86                   
6.8 11.09                 10.71                 11.99                 11.08                 
9.1 12.19                 13.15                 12.52                 10.67                 

11.3 12.29                 11.26                 12.58                 12.99                 
13.6 12.49                 12.59                 14.37                 13.05                 
0.5 12.36                 12.59                 9.40                   11.44                 
2.3 16.65                 16.12                 12.97                 16.23                 
4.5 15.92                 15.61                 13.91                 15.24                 
6.8 13.31                 13.20                 11.50                 12.03                 
9.1 15.21                 15.56                 11.09                 12.58                 

11.3 11.72                 14.03                 12.89                 12.23                 
13.6 12.04                 12.65                 12.42                 11.57                 
0.5 13.90                 16.99                 11.56                 9.28                   
2.3 12.37                 14.61                 12.03                 5.42                   
4.5 12.40                 10.79                 11.76                 8.12                   
6.8 11.74                 11.69                 12.44                 8.93                   
9.1 12.07                 10.14                 10.32                 9.08                   

11.3 13.38                 12.04                 14.54                 10.44                 
13.6 13.45                 12.36                 12.28                 12.28                 
0.5 6.93                   6.23                   9.16                   7.57                   
2.3 5.93                   6.11                   8.72                   6.69                   
4.5 6.21                   6.31                   7.59                   7.24                   
6.8 6.90                   6.27                   8.21                   6.76                   
9.1 5.32                   4.19                   7.45                   6.59                   

11.3 6.67                   7.00                   7.80                   7.98                   
13.6 6.65                   7.29                   6.84                   6.32                   
0.5 10.41                 9.08                   10.30                 11.11                 
2.3 7.47                   6.92                   8.55                   8.30                   
4.5 7.73                   7.41                   8.89                   6.45                   
6.8 6.42                   5.98                   8.38                   6.82                   
9.1 7.37                   6.52                   7.13                   7.55                   

11.3 7.62                   8.51                   9.86                   7.49                   
13.6 9.48                   8.79                   10.87                 6.30                   
0.5 9.28                   7.49                   7.62                   6.21                   
2.3 6.60                   8.43                   9.14                   6.27                   
4.5 5.29                   6.78                   7.69                   6.65                   
6.8 8.59                   7.29                   7.49                   7.96                   
9.1 6.02                   7.14                   7.40                   7.73                   

11.3 9.77                   7.48                   7.80                   8.22                   
13.6 8.77                   7.34                   9.73                   7.41                   

Inter

Intra

Floor-Elbow

Floor-Knee

Knee-Elbow

Floor-Elbow

Floor-Knee

Knee-Elbow
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Table B2: Inter-subject CVs and intra-subject CVs of peak angular velocities during the 

placement phase. 

 

CV (%) Height
Weight

(kg)

Adduction Peak 

Angular Velocity 

of Shoulder

Internal 

Rotation Peak 

Angular Velocity 

of Shoulder

Extension Peak 

Angular Velocity 

of Shoulder

Extension Peak 

Angular Velocity 

of Elbow

0.5 14.52                 14.07                 12.16                 9.64                   
2.3 12.41                 12.75                 12.99                 5.14                   
4.5 15.68                 14.47                 11.44                 6.93                   
6.8 17.09                 14.53                 14.87                 7.39                   
9.1 14.08                 15.56                 12.67                 7.51                   

11.3 12.14                 11.60                 11.73                 9.21                   
13.6 25.35                 23.54                 19.86                 10.78                 
0.5 12.01                 11.40                 9.68                   10.93                 
2.3 9.48                   11.66                 9.09                   10.69                 
4.5 11.73                 10.97                 10.47                 10.23                 
6.8 10.04                 10.22                 8.38                   8.36                   
9.1 13.86                 14.35                 13.75                 8.02                   

11.3 16.23                 17.79                 15.39                 11.40                 
13.6 14.23                 15.82                 13.95                 11.06                 
0.5 12.15                 11.65                 11.85                 7.69                   
2.3 10.70                 10.90                 9.86                   6.38                   
4.5 12.44                 11.53                 9.64                   7.64                   
6.8 11.93                 13.07                 10.90                 9.91                   
9.1 11.32                 9.37                   9.69                   8.39                   

11.3 12.48                 10.74                 11.67                 9.09                   
13.6 13.06                 13.39                 14.37                 12.98                 
0.5 8.87                   9.10                   10.17                 8.93                   
2.3 5.71                   6.23                   7.09                   6.21                   
4.5 5.10                   6.22                   7.18                   8.24                   
6.8 7.59                   6.07                   7.66                   7.18                   
9.1 7.55                   6.39                   8.93                   6.41                   

11.3 8.39                   7.73                   8.21                   7.15                   
13.6 9.52                   10.26                 10.13                 8.87                   
0.5 7.43                   7.98                   8.53                   9.01                   
2.3 7.73                   6.85                   7.90                   6.18                   
4.5 7.02                   7.42                   5.86                   6.88                   
6.8 6.17                   6.61                   7.35                   6.83                   
9.1 5.12                   4.54                   4.48                   6.76                   

11.3 7.31                   7.36                   8.37                   6.55                   
13.6 8.82                   8.51                   8.80                   7.32                   
0.5 7.06                   8.47                   10.25                 5.71                   
2.3 6.02                   6.55                   8.01                   6.62                   
4.5 5.64                   4.74                   6.31                   5.90                   
6.8 5.39                   6.45                   5.47                   6.65                   
9.1 6.78                   5.85                   7.21                   6.83                   

11.3 7.66                   8.49                   9.82                   6.58                   
13.6 6.97                   6.65                   8.87                   6.89                   

Inter

Floor-Elbow

Floor-Knee

Knee-Elbow

Intra

Floor-Elbow

Floor-Knee

Knee-Elbow
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Table B3: Inter-subject CVs and intra-subject CVs of average angular velocities during the lift 

phase. 

 

CV (%) Height
Weight

(kg)

Abduction 

Average Angular 

Velocity of 

Shoulder

External 

Rotation 

Average Angular 

Velocity of 

Flextion Average 

Angular Velocity 

of Shoulder

Flextion Average 

Angular Velocity 

of Elbow

0.5 38.94                 14.47                 11.51                 8.58                   
2.3 27.69                 12.62                 12.27                 8.30                   
4.5 26.13                 14.47                 14.86                 8.08                   
6.8 30.67                 13.80                 14.40                 9.62                   
9.1 28.61                 15.47                 15.99                 10.58                 

11.3 24.59                 13.12                 14.48                 9.19                   
13.6 32.63                 13.86                 15.89                 10.41                 
0.5 43.24                 12.35                 11.45                 12.56                 
2.3 75.35                 17.09                 15.06                 19.34                 
4.5 50.28                 18.37                 15.16                 18.76                 
6.8 31.42                 18.37                 15.29                 16.92                 
9.1 37.30                 20.85                 18.72                 17.48                 

11.3 29.03                 20.88                 17.62                 17.29                 
13.6 26.89                 20.71                 20.52                 16.15                 
0.5 32.65                 17.75                 11.58                 10.40                 
2.3 28.91                 14.19                 11.81                 9.34                   
4.5 33.70                 16.33                 13.00                 11.64                 
6.8 28.11                 15.79                 12.83                 10.58                 
9.1 31.97                 15.69                 13.75                 10.53                 

11.3 32.06                 17.03                 13.38                 10.73                 
13.6 33.38                 15.31                 14.34                 11.38                 
0.5 15.75                 7.14                   8.05                   8.13                   
2.3 11.03                 5.20                   5.80                   6.05                   
4.5 7.40                   6.05                   6.81                   6.44                   
6.8 8.71                   6.10                   5.97                   5.36                   
9.1 11.63                 5.43                   6.04                   5.96                   

11.3 11.25                 6.93                   7.49                   6.71                   
13.6 10.51                 7.47                   6.86                   6.10                   
0.5 20.68                 11.20                 11.45                 13.93                 
2.3 11.44                 8.14                   7.15                   9.60                   
4.5 10.87                 9.40                   8.68                   9.28                   
6.8 12.18                 7.71                   7.03                   8.85                   
9.1 13.51                 8.09                   7.29                   7.59                   

11.3 13.64                 7.22                   8.16                   8.72                   
13.6 15.36                 11.55                 12.17                 8.66                   
0.5 17.52                 7.40                   7.42                   6.89                   
2.3 12.83                 6.75                   6.64                   7.14                   
4.5 16.90                 5.73                   5.18                   5.23                   
6.8 15.37                 7.76                   7.51                   7.38                   
9.1 16.47                 7.39                   6.52                   6.72                   

11.3 18.70                 8.03                   8.46                   7.13                   
13.6 23.01                 9.44                   8.19                   8.80                   

Inter

Floor-Elbow

Floor-Knee

Knee-Elbow

Intra

Floor-Elbow

Floor-Knee

Knee-Elbow
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Table B4: Inter-subject CVs and intra-subject CVs of average angular velocities during the 

placement phase. 

 

CV (%) Height
Weight

(kg)

Adduction 

Average Angular 

Velocity of 

Shoulder

Internal 

Rotation 

Average Angular 

Velocity of 

Extension 

Average Angular 

Velocity of 

Shoulder

Extension 

Average Angular 

Velocity of 

Elbow
0.5 35.58                 14.36                 10.55                 13.40                 
2.3 24.25                 11.31                 7.02                   9.77                   
4.5 25.65                 12.42                 9.43                   11.24                 
6.8 28.92                 14.11                 11.29                 11.20                 
9.1 21.33                 14.04                 9.55                   9.13                   

11.3 21.47                 13.52                 11.70                 10.49                 
13.6 25.91                 17.62                 15.54                 14.19                 
0.5 29.85                 12.98                 11.62                 13.49                 
2.3 54.25                 14.09                 10.38                 20.91                 
4.5 39.87                 13.05                 8.94                   18.64                 
6.8 26.05                 14.16                 11.45                 16.49                 
9.1 35.91                 15.28                 12.81                 17.19                 

11.3 34.37                 15.65                 9.33                   16.52                 
13.6 34.72                 14.33                 10.36                 16.59                 
0.5 26.24                 11.99                 6.66                   12.53                 
2.3 22.37                 11.80                 10.71                 10.91                 
4.5 25.86                 13.51                 10.02                 10.57                 
6.8 25.17                 14.61                 12.34                 12.47                 
9.1 25.17                 12.03                 11.01                 10.29                 

11.3 26.78                 19.58                 15.56                 12.53                 
13.6 30.42                 15.74                 13.16                 13.64                 
0.5 14.76                 10.31                 10.22                 9.48                   
2.3 14.64                 7.86                   8.14                   9.46                   
4.5 14.30                 7.81                   7.45                   7.17                   
6.8 11.43                 7.02                   6.84                   6.99                   
9.1 17.75                 6.27                   6.28                   6.80                   

11.3 12.29                 8.57                   8.27                   7.80                   
13.6 13.40                 8.09                   7.80                   9.00                   
0.5 21.83                 10.79                 11.80                 13.36                 
2.3 32.44                 9.35                   9.26                   11.55                 
4.5 28.77                 7.82                   8.54                   9.10                   
6.8 15.05                 6.70                   6.53                   9.28                   
9.1 19.01                 6.77                   8.08                   7.85                   

11.3 29.54                 7.66                   7.87                   9.37                   
13.6 20.51                 10.24                 9.91                   9.32                   
0.5 12.17                 9.99                   9.45                   9.15                   
2.3 14.78                 7.77                   7.82                   7.07                   
4.5 12.92                 6.57                   6.32                   6.57                   
6.8 13.18                 6.51                   6.02                   6.92                   
9.1 10.47                 6.79                   7.49                   7.05                   

11.3 9.63                   7.87                   9.24                   8.80                   
13.6 14.10                 6.11                   5.91                   6.25                   

Inter

Floor-Elbow

Floor-Knee

Knee-Elbow

Intra

Floor-Elbow

Floor-Knee

Knee-Elbow


