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Abstract

Proteolytic enzymes, such as cathepsins and matrix metalloproteinases (MMPs), play crucial roles in

various physiological processes, including metabolism, cell signaling, and apoptosis. Identifying their cleavage

sites is a complex challenge due to the diverse substrate specificities and regulatory mechanisms of these

enzymes. This thesis investigates the use of machine learning models, particularly Support Vector Machines

(SVMs) and One-Class Support Vector Machines (OCSVMs), to predict proteolytic cleavage specificity. The

study introduces a novel approach utilizing Fourier Transform-based encoding of peptide sequences to capture

essential biochemical properties and structural characteristics, which are used as inputs into SVM algorithms.

The research encompasses a comprehensive meta-analysis using SVM-based feature selection techniques

to compare and contrast the substrate specificity of different proteases. This analysis aims to uncover distinct

patterns in substrate interaction, offering valuable insights for therapeutic strategies and biomarker discovery.

The datasets used in this study were sourced from the MEROPS database and included both positive data

points (cleaved sequences) and synthetic negative data points (non-cleaved sequences) to ensure robustness

and diversity.

Through rigorous cross-validation and hyper-parameter optimization, the SVM models demonstrated

high predictive accuracy, achieving Area Under the Receiver Operating Characteristic (AUC-ROC) scores

close to 1.00 for several proteases. The study also explores the performance of OCSVM models, both with

and without negative class data, revealing that tailored feature selection and weighting strategies significantly

enhance model performance.
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The findings of this research underscore the potential of machine learning techniques in advancing bioin-

formatics and protease research. The developed models not only improve the precision of proteomic analyses

but also support the broader field of precision medicine by providing deeper insights into protease functions

in health and disease.
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Chapter 1

Introduction

1.1 Overview of Vaccines

Vaccines represent one of the most significant achievements in public health, preventing millions of

deaths annually by protecting individuals from infectious diseases. [22] Vaccines work by mimicking a natural

infection, stimulating the body’s immune system to recognize and combat pathogens without causing the

disease itself. When a vaccine introduces an antigen into the body, it triggers an immune response. [36] This

involves the activation of B-cells and T-cells, which produce antibodies and kill infected cells, respectively.

The immune system then ”remembers” the pathogen, enabling it to respond more quickly and effectively if

exposed to the actual disease in the future.

The development of vaccines is a meticulous scientific endeavor, requiring rigorous testing in clinical

trials to ensure efficacy and safety before they can be widely administered. [18] Over the years, the evolution

of vaccine technology has seen a shift from traditional live-attenuated and inactivated vaccines to more

sophisticated approaches, such as recombinant vector vaccines and nucleic acid vaccines. These advanced

methods offer the promise of quicker development times and enhanced immune responses. [10]

The COVID-19 pandemic exemplified the rapid development and deployment of vaccines. [7] Tradition-

ally, vaccine development spans 10-15 years, but COVID-19 vaccines were developed and made available

within 12-24 months. [29], [2] This unprecedented acceleration was possible due to global collaboration, prior

research on related coronaviruses (SARS and MERS) and overlapping clinical trial phases. [9]Initiatives like
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Operation Warp Speed in the United States further expedited this process, demonstrating the potential for

swift responses to future pandemics. [24]

Vaccines can be categorized into several types based on their development methods and the technologies

they use. There are inactivated vaccines,live attenuated vaccines, sub-unit vaccines, mRNA vaccines, and

Peptide-based vaccines, etc. [15] Each type has its unique characteristics and advantages, making them suitable

for different applications and target populations. The development and application of these diverse types of

vaccines showcase the advancements in vaccine technology, offering tailored solutions for preventing a wide

range of infectious diseases.

1.2 Advancements in Peptide-based Vaccines

Peptide-based vaccines are a rapidly advancing area in the field of immunotherapy, offering targeted

and specific responses against various diseases, including infectious diseases, cancer, and allergies. [20]These

vaccines use short sequences of proteins or peptides derived from pathogens or tumor cells to elicit an immune

response without the risk of introducing whole pathogens into the body. Recent advancements in peptide

vaccine technology have focused on improving the stability, delivery, and immunogenicity of peptide sequences.

[34], [31]

Coupled with computational methods for epitope mapping and prediction, these approaches are stream-

lining the development of highly specific vaccines that can be tailored to individual immunological profiles,

potentially revolutionizing personalized medicine. Computational tools like NetMHCpan and NetMHCIIpan

are frequently used to predict which peptides will bind to MHC molecules, aiding in the design of vaccines

that elicit strong and specific immune responses. [1]
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1.3 Mechanism of Immune Response

Immune Response, specifically MHC class II molecule with T-cells, can be broken down into three main

stages: antigen processing, peptide presentation, and activation of CD4+ T-cells. [37] In antigen processing

stage, antigen-presenting cells capture and internalize pathogens. Inside these cells, proteolytic enzymes

degrade the protein antigens into smaller peptide fragments. Next, the peptide fragments are bound to

MHC class II molecules within the antigen-presenting cell. These peptide-MHC complexes are transported

to the cell surface, where they are displayed for recognition by T-cells. Finally, when a T-cell receptor on a

CD4+ T-cell recognizes and binds to the peptide-MHC complex on the antigen-presenting cell, it triggers the

activation of the T-cell. This interaction is further stabilized by the CD4 molecule, ensuring a strong and

specific immune response.
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Figure 1.1: Mechanism of Immune Response

Moreover, ongoing research into understanding the mechanisms of peptide recognition by T-cells and B-

cells continues to refine our ability to design more effective and long-lasting peptide vaccines. By studying how

peptides interact with the immune system, scientists are able to create vaccines that not only target specific

diseases but also provide durable protection. [11], [41] This knowledge is crucial for developing vaccines against

cancers and chronic infections, where the immune system’s ability to recognize and remember pathogens is

essential for long-term efficacy. [3], [25]

These advancements highlight the potential of peptide-based vaccines to transform the landscape of

vaccine development, offering new avenues for treatment and prevention in a variety of medical fields.
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1.4 Role of Proteases in the Immune System

Proteases, a diverse group of enzymes, are critical components of the immune system, orchestrating a

myriad of processes that maintain homeostasis and defend against pathogens. These enzymes achieve this

by cleaving peptide bonds in protein substrates, a mechanism crucial for the activation, regulation, and

eventual recycling of immune molecules. Proteases such as serine proteases, cysteine proteases, aspartate

proteases, and metalloproteases influence various immune functions, including inflammation, cell signaling,

and apoptosis. [35] By processing key molecules like cytokines, chemokines, and receptors, proteases fine-tune

the immune response to ensure it is effective yet does not lead to autoimmunity or chronic inflammation,

illustrating a sophisticated balance within the immune system.

Proteases are integral to both innate and adaptive immune responses, serving critical roles in antigen

processing, immune surveillance, and cell signaling pathways. [38] Their activity affects the maturation of

immune cells and the activation states of enzymes and receptors involved in immune signaling. For instance,

proteases activate cytokines and chemokines that mediate inflammation and immune cell recruitment to sites

of infection or injury. The strategic cleavage of these molecules by proteases like convertases enhances or

terminates signaling pathways, thereby controlling the scope and duration of the immune response. This

regulation is essential for preventing the immune system from attacking host tissues, thus avoiding autoim-

mune diseases. Moreover, proteases are involved in the activation of the complement system, a crucial part

of the innate immune response that helps clear pathogens and damaged cells from an organism, promotes

inflammation, and attacks the pathogen’s cell membrane., [28]

In adaptive immunity, proteases play a vital role in antigen presentation. They degrade intracellular

proteins into peptides, which are then presented on the cell surface by major histocompatibility complex

(MHC) molecules. [37] This process is essential for the recognition of infected or malignant cells by T cells.
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Proteases also modulate the function of immune checkpoints, which are critical for maintaining self-tolerance

and modulating the duration and amplitude of physiological immune responses. [23]

Figure 1.2: Proteases Specificity Diagram

Above figure is the diagram that shows how proteolytic degradation occurs in detail. This diagram

illustrates the interaction between a protease and its substrate, focusing on the binding specificity and the

cleavage process. [17] The substrate, represented by the blue chain, is a peptide or protein sequence that is

recognized and cleaved by the protease, represented by the yellow region. The cleavage site, where is marked

by the red arrow, is the specific location where the protease cuts the substrate. In this diagram, the cleavage

occurs between the P1 and P1’ positions. The substrate has an N-terminus on the left and a C-terminus on

the right, indicating the direction of the peptide chain from the amino end to the carboxyl end. The substrate

positions are labeled as like this, P4 to P4’. These positions represent the specific amino acid residues in the
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substrate around the cleavage site. Correspondingly, the protease has substrate-binding specificity pockets

labeled S4 to S4’. These pockets are where the substrate residues bind to the protease.

1.5 Research Challenges

Identifying proteolytic cleavage sites remains a formidable challenge in the field of biochemistry due

to the intrinsic complexity and diversity of proteases. These enzymes exhibit a wide range of substrate

specificities, catalytic mechanisms, and regulatory controls that can vary significantly across different types

and families. [33] The functionality of proteases is heavily influenced by their biological context; factors such as

cellular location, activity levels, and dynamic interactions with other proteins are crucial in determining their

biological outcomes. This complexity is compounded by the proteases’ involvement in numerous physiological

processes, including metabolism, cell signaling, and apoptosis, necessitating precise predictive models to

understand and manipulate their actions effectively.

One of the primary difficulties is developing computational tools that can accurately model and predict

the highly specific yet variable interactions between proteases and their substrates. [5] Current predictive

models often struggle to account for the full range of biological contexts in which proteases operate. For

instance, the same protease might exhibit different substrate specificities in different cellular environments or

under varying physiological conditions. This variability necessitates advanced algorithms that can integrate

diverse data sources, including sequence motifs, structural information, and dynamic protein interactions, to

improve prediction accuracy.

Moreover, the regulatory mechanisms controlling protease activity add another layer of complexity. [5]

Proteases are often regulated by inhibitors, activators, and post-translational modifications, which can alter

their activity and substrate specificity. Understanding these regulatory networks is essential for accurately
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modeling protease function and predicting cleavage sites. Experimental validation remains a critical compo-

nent of this research, as computational predictions must be corroborated with empirical data to ensure their

reliability.

In summary, the challenge of identifying proteolytic cleavage sites lies in the intricate and variable nature

of proteases and their interactions. Advances in computational biology, coupled with comprehensive experi-

mental validation, are essential to overcome these hurdles and develop accurate predictive models for protease

activity. This research is vital for advancing our understanding of protease functions in health and disease

and for developing therapeutic strategies that target these critical enzymes effectively.

1.6 Objectives of the Study

This study aims to tackle the challenges of predicting peptide substrates for key proteolytic enzymes,

specifically Cathepsin and Matrix Metalloproteinases (MMPs), by developing a robust, machine learning-based

framework. Utilizing Support Vector Machines (SVMs), which are known for their effectiveness in managing

complex, high-dimensional data, the study seeks to improve the accuracy of protease activity predictions.

To achieve this, a novel approach involving Fourier Transform-based encoding of peptide sequences will be

implemented. This method is designed to capture crucial biochemical properties and structural characteristics

of peptides, thereby enhancing the predictive capabilities of the SVM algorithm.

Additionally, the study will undertake a comprehensive meta-analysis using SVM-based feature selec-

tion techniques to compare and contrast the substrate specificity of different proteases. This aspect of the

research aims to elucidate distinct patterns in substrate interactions across various proteases, providing valu-

able insights that could inform therapeutic strategies and biomarker discovery in diseases related to protease

dysregulation.
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These objectives highlight a commitment to advancing the predictive capabilities of bioinformatics tools

in protease research. The ultimate goal is to contribute to targeted therapeutic interventions and a deeper

understanding of protease functions in health and disease. This work promises to enhance the precision of

proteomic analyses and support the broader field of precision medicine.
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Chapter 2

Background Information

2.1 Specific Types of Proteases

2.1.1 Cathepsin Proteases: Characteristics and Functions

Cathepsins are a family of lysosomal proteases that play pivotal roles in protein degradation within im-

mune cells, antigen presentation, and apoptosis. These proteases are particularly important in the processing

of antigens within the endosomal/lysosomal compartments of antigen-presenting cells such as dendritic cells

and macrophages. By cleaving proteins into peptide fragments that can be loaded onto MHC-II molecules,

cathepsins facilitate the crucial mechanism of antigen presentation to helper T cells. This is vital for initiating

an adaptive immune response. For example, Cathepsin S is critical in the invariant chain processing, which

is a necessary step for peptide loading onto MHC-II molecules.

Furthermore, cathepsins contribute to apoptosis, aiding in the removal of cells that could potentially

become cancerous or autoimmunogenic. This process involves the activation of caspases, a family of proteases

central to the execution of apoptosis. Cathepsins can initiate the caspase cascade or act downstream to amplify

apoptotic signals. [42] Additionally, cathepsins regulate various other immune processes, including cytokine

production and the modulation of the immune response during infections and inflammatory conditions. For

example, Cathepsin G can modulate the activity of several cytokines, enhancing or inhibiting their functions,

thus influencing the inflammatory response.
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2.1.2 Matrix Metalloproteinases (MMPs): Characteristics and Functions

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases involved in the degradation of

extracellular matrix components, which is a key process in cellular migration, wound healing, and angiogenesis.

[39] In the immune system, MMPs are crucial for the trafficking of cells to and from sites of inflammation.

They modify the extracellular matrix and cleave cell surface receptors, thereby regulating the accessibility

of tissues to immune cells and influencing the inflammatory response. MMPs can process a variety of bio-

active molecules, including cytokines, chemokines, and growth factors, thereby modulating their activity and

availability. This regulatory role is essential for coordinating the immune response and tissue remodeling.

However, the dysregulation of MMP activity can contribute to a range of diseases, including cancer,

where they are implicated in tumor invasion and metastasis. MMPs can degrade the extracellular matrix

barriers, facilitating cancer cell migration and invasion into surrounding tissues and the bloodstream. They

also promote angiogenesis by releasing sequestered growth factors, thereby supporting tumor growth and

metastasis. Consequently, MMPs are viewed as potential therapeutic targets, with inhibitors being developed

to block their activity in pathological conditions. For instance, several synthetic MMP inhibitors have been

investigated in clinical trials for cancer treatment, although achieving selective inhibition without adverse side

effects remains a significant challenge.

In summary, proteases are indispensable for the regulation and execution of various immune processes.

Their ability to cleave specific substrates allows them to modulate immune responses precisely, maintaining

a balance between effective pathogen defense and prevention of autoimmunity. Understanding the intricate

roles of different protease families, such as cathepsins and MMPs, in the immune system can provide valuable

insights into their functions in health and disease, and guide the development of therapeutic interventions

targeting these critical enzymes.
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2.2 Overview of Peptidase Databases: Focus on MEROPS

MEROPS is a comprehensive database focused on peptidases (also known as proteases, proteinases,

and proteolytic enzymes), their substrates, and inhibitors. Hosted by the EMBL-European Bioinformatics

Institute (EMBL-EBI), the database offers extensive information on the classification and nomenclature of

peptidases, alongside details on their structures, sequences, and biochemical functions. [26]

The database employs a hierarchical, structure-based classification system where peptidases are grouped

into families based on statistically significant similarities in amino acid sequences. These families are further

clustered into clans if they are believed to share a common evolutionary origin. Each entry in MEROPS

is equipped with a summary page that provides comprehensive information, including sequence identifiers,

structural data, literature references, and links to supplementary pages for deeper insights.

MEROPS also includes tools for searching and analyzing peptidase-related data, such as batch BLAST

services, evolutionary trees, and substrate specificity data. [27] Researchers can access a variety of search

functions, allowing them to explore peptidase and inhibitor genes, structures, and their known cleavage sites

in proteins. The database also supports comparative genomics studies by facilitating searches for common

peptidases across different organisms and strains.

The MEROPS database is distinguished by several unique features that set it apart from other protease

databases. One of its standout characteristics is its hierarchical classification system. This system categorizes

peptidases into families and clans based on statistically significant similarities in their amino acid sequences.

This approach not only facilitates a clear understanding of the evolutionary relationships among enzymes but

also allows for more precise categorization and comparison of peptidases.

In addition to this, MEROPS provides comprehensive data on peptidases, substrates, and inhibitors.

By encompassing detailed information on not just the peptidases themselves but also their substrates and
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inhibitors, MEROPS offers a holistic view of proteolytic activity. This makes it an invaluable resource for

researchers looking to understand the full spectrum of interactions and functions involving proteases.

Another key feature is the extensive cross-references and links included in each entry. Each peptidase

entry in MEROPS is supplemented with links to additional pages that offer data such as sequence identifiers,

structural information, and literature references. [40] This thorough cross-referencing significantly enhances

the usability and depth of the database, allowing researchers to access a wide array of related information

easily.

The database also boasts a variety of tools for searching and analyzing data. These include batch

BLAST services, evolutionary trees, and substrate specificity data. These tools facilitate the navigation and

utilization of the extensive information available in MEROPS, making it easier for researchers to conduct

detailed analyses and draw meaningful conclusions from the data.

Moreover, MEROPS supports comparative genomics studies. The database allows for searches that

identify common peptidases across different organisms and strains. This feature is particularly useful for

studies focused on the evolutionary and functional aspects of peptidases.

Finally, MEROPS is regularly updated and encourages community contributions. This ensures that the

database remains current and relevant, fostering a collaborative environment where researchers can share

their findings and insights. This commitment to regular updates and community involvement helps maintain

the database as a cutting-edge resource for protease research.

2.3 Foundations of Machine Learning in Biomedical Research

The integration of machine learning techniques in biomedical research represents a transformative shift

in how biological data are analyzed and interpreted. These techniques are particularly adept at handling the

large volumes and complex nature of biomedical data, facilitating discoveries in genomics, proteomics, and
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disease pathology. [16] Machine learning’s ability to learn from data and make predictions can dramatically

accelerate the pace of research and lead to more personalized approaches in medicine, such as in precision

oncology and individualized treatment plans. [30] Furthermore, machine learning models can uncover patterns

and insights that are not apparent through traditional bio-statistical methods, providing a powerful tool for

predictive analytics and decision support in clinical settings. [6]

Machine learning encompasses a broad range of algorithms and techniques that enable computers to

learn from and make decisions based on data. At its core, machine learning uses algorithms to parse data,

learn from that data, and make informed predictions or decisions regarding new data. [13] The two main

types of machine learning are supervised and unsupervised learning. Supervised learning involves training

a model on a labeled dataset, which means the data includes an answer key that the model can learn to

predict. Unsupervised learning, on the other hand, involves training a model on a dataset without explicit

instructions on what to predict. The model tries to identify patterns and relationships within the data. These

core principles are fundamental to developing algorithms that can perform a variety of tasks in biomedical

research, such as diagnosing diseases from medical images or predicting patient outcomes from clinical data.

Machine learning algorithms have diverse applications in the field of biomedicine, ranging from diagnostic

imaging to genetic analysis. Common algorithms include decision trees, which are simple yet powerful tools for

classification and regression; random forests, which improve on the performance of decision trees by combining

multiple trees to produce a more accurate and stable prediction; and neural networks, which are particularly

good at processing patterns in complex datasets, such as those found in large-scale genomic studies or in

sophisticated imaging techniques. Each algorithm brings strengths to specific types of data and problems,

making the field of machine learning rich and varied in its approach to tackling biomedical challenges.
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2.3.1 Support Vector Machines: Principles and Application in Bioinfomatics

Support Vector Machines (SVMs) are a class of supervised learning models primarily used for classification

and regression tasks in the field of machine learning. SVMs have gained prominence due to their ability to

handle high-dimensional data and provide robust predictive accuracy. The core principle of SVM is to find

the hyperplane that best separates the data into different classes. [21] This is achieved by maximizing the

margin, defined as the distance between the hyperplane and the nearest data points from each class, known as

support vectors. By focusing on these critical points, SVMs can create a decision boundary that generalizes

well to unseen data.

SVMs also excel in managing high-dimensional datasets, which are prevalent in fields such as genomics and

text classification. Their ability to handle many features without suffering from the curse of dimensionality

stems from the model’s reliance on support vectors rather than the entire dataset. Additionally, SVMs

are robust to overfitting, especially when the appropriate regularization parameter (C) is selected. This

regularization parameter controls the trade-off between achieving a low training error and minimizing the

model complexity, thus enhancing the generalization capability.

In the context of bioinformatics, SVMs have been widely adopted for tasks such as gene expression anal-

ysis, protein structure prediction, and proteolytic cleavage site prediction. Their ability to manage large,

complex datasets with numerous features makes them an invaluable tool in extracting meaningful biologi-

cal insights. Furthermore, SVMs’ robustness to overfitting is particularly advantageous when dealing with

noisy biological data. The adaptability and precision of SVMs, combined with their theoretical foundations

and empirical success, underscore their critical role in advancing computational biology and bioinformatics

research.
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2.4 Kernel Methods

One of the distinctive features of SVMs is their use of kernel functions, which enable the model to

perform non-linear classification by transforming the input data into a higher-dimensional space where a

linear separation is possible. Commonly used kernels include the linear, polynomial, radial basis function

(RBF), and sigmoid kernels. The choice of kernel and its parameters significantly impacts the model’s

performance and must be carefully tuned through cross-validation. This flexibility allows SVMs to effectively

capture complex patterns and relationships within the data, making them suitable for various applications,

from image recognition to bioinformatics .

The core of SVM’s functionality lies in its use of kernel functions. These functions transform the original

data into a higher-dimensional space without the need to compute the coordinates of the data in that space.

A common kernel function is the Radial Basis Function (RBF), defined as:

K(xi, xj) = exp(−γ||xi − xj||2) (2.1)

where xi and xj are two feature vectors in the input space, γ is a parameter that sets the ’spread’ of

the kernel, and ||xi − xj||2 denotes the squared Euclidean distance between the two vectors. This kernel

is particularly effective in scenarios involving complex datasets common in bioinformatics, as it can handle

non-linear relationships between features.

2.5 Case Studies in Predictive Modeling of Proteolytic Cleavage Sites

2.5.1 DeepCleave: A Deep Learning Predictor for Protease Cleavage Sites

DeepCleave is a cutting-edge deep learning framework that utilizes Convolutional Neural Networks

(CNNs) to predict protease cleavage sites. By leveraging sequence information, DeepCleave significantly
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outperforms traditional machine learning methods in terms of accuracy and robustness. [19] The model

specifically targets caspase and matrix metalloprotease substrates and cleavage sites, showcasing substantial

improvements in prediction performance. One of the primary advantages of DeepCleave is its high accuracy,

attributed to the deep learning techniques that can identify complex sequence patterns often overlooked by

traditional methods. However, this model requires large datasets and substantial computational resources

for training, which can be a limitation. Additionally, the complexity of deep learning models may reduce

interpretability compared to simpler models.

2.5.2 PROSPERous: Integrating Machine Learning with Structural Information for Predicting

Protease Substrate Cleavage Sites

PROSPERous integrates machine learning algorithms with structural information to accurately predict

protease substrate cleavage sites. By combining features such as sequence motifs and structural data, PROS-

PERous enhances prediction accuracy and reliability. [32] This tool is particularly advantageous due to its

comprehensive feature set, making it useful for predicting cleavage sites for a wide range of proteases. However,

it relies heavily on detailed structural information, which may not always be available, potentially limiting its

applicability. Additionally, the quality of the input data significantly impacts its performance, necessitating

high-quality and well-curated datasets for optimal results.

2.6 Past Work of Research

In previous research, comprehensive computational analyses were conducted across various protease

datasets, including Cathepsin B. The focus was on feature selection and binary classification using Sup-

port Vector Machines (SVMs). To identify the most relevant features for prediction, importance criteria

were employed, allowing for ranking and selection based on their contribution to model performance. This
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method ensured only the most significant variables were considered, leading to enhanced model accuracy and

interpretability.

The feature selection process involved evaluating the importance of each feature through techniques such

as recursive feature elimination and the use of feature importance scores derived from tree-based models.

This approach was crucial in reducing the dimensionality of the datasets, thus improving the efficiency and

effectiveness of the SVM models.

Following the identification of key features, this work employed Support Vector Machines (SVM) for

binary classification to predict protease activity. SVM’s inherent robustness and effectiveness in handling

high-dimensional data made it a suitable choice. Through optimization of hyperparameters and utilization of

appropriate kernel functions, the model achieved high accuracy in distinguishing between active and inactive

protease states. This computational approach not only streamlined the analysis process but also yielded

valuable insights into the behavior of different proteases. This deeper understanding contributes to elucidating

their roles in various physiological and pathological conditions.

The methodologies and results from this past work have laid a solid foundation for further research and

development in the field of protease activity prediction, offering potential pathways for targeted therapeutic

interventions.
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Chapter 3

Methodological Framework

3.1 Data Acquisition Strategies

To develop a predictive model for identifying proteolytic cleavage sites, the comprehensive online MEROPS

database was leveraged. This resource proved crucial for obtaining datasets of substrate sequences specifically

cleaved by cathepsin and matrix metalloproteinase (MMP) proteases in Homo sapiens. These known cleaved

sequences formed the positive data points for model training. To enhance dataset robustness and diversity,

synthetic sequences of random amino acids were generated, assumed to be non-cleaved and used as negative

data points. The comprehensive dataset was then meticulously partitioned into five distinct sets to facilitate a

rigorous evaluation and validation process. Each dataset functioned sequentially as both training and testing

data in a systematic cross-validation scheme, aimed at reinforcing the model’s reliability and accuracy.

The following table summarizes the dataset sizes for each protease:

The cathepsin datasets range from smaller samples such as Cathepsin X with 32 data points to larger

samples like Cathepsin K with 10508 data points. Similarly, the MMP datasets vary in size, with MMP 1

having 95 data points and MMP 2 comprising 3418 data points.

These datasets were curated from various protease databases and include a wide range of activity mea-

surements to ensure comprehensive analysis. The diversity in dataset sizes reflects the varying availability of

protease activity data, which was considered during the feature selection and model training processes.

The selection of these datasets was guided by the need to cover a broad spectrum of protease activities,

ensuring that the models developed in this research are robust and generalizable. The varying dataset sizes
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Table 3.1: Dataset Sizes for Cathepsins and MMPs

Protease Dataset Size

Cathepsin B 4623
Cathepsin D 915
Cathepsin E 1586
Cathepsin G 448
Cathepsin H 42
Cathepsin K 10508
Cathepsin L 6658
Cathepsin S 3115
Cathepsin V 5764
Cathepsin X 32
MMP 1 83
MMP 10 95
MMP 14 136
MMP 2 3418
MMP 25 167
MMP 3 2462
MMP 7 191
MMP 8 117
MMP 9 400

also present a valuable opportunity to evaluate the performance of the models across both abundant and

sparse data conditions.

These datasets provide a solid foundation for evaluating the performance of SVM and one-class SVM

models in predicting proteolytic cleavage sites, which is the core focus of this research. The detailed analysis

of these datasets, including their preparation and preprocessing, is further discussed in the following sections.

3.1.1 Fourier-based Encoding of Protein Sequences

Effective dataset encoding is a cornerstone for the success of machine learning processes, particularly in

biological sequence analysis. In this research, the Blocks Substitution Matrix (BLOSUM 100) utilized the
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Blocks Substitution Matrix (BLOSUM 100) for the initial encoding to capture the evolutionary relationships

between amino acids in the peptides. [14] BLOSUM 100 was specifically chosen because it focuses on the

substitutions within blocks of conserved sequences, which are crucial for maintaining structural and functional

integrity of proteins. This matrix is designed to score alignments based on observed substitutions in highly

conserved regions of proteins, making it particularly suitable for analyzing evolutionary conserved sequences.

To further refine the data representation and improve the model’s ability to interpret these sequences,

the Fast Fourier Transform (FFT) is applied. FFT was instrumental in normalizing the encoded sequences,

thereby transforming the peptide data into a format that enhances the model’s learning efficiency. [8] The FFT

process converts the sequences into the frequency domain, emphasizing the periodic patterns within the data

rather than their positional sequence. This transformation allows the model to focus on recognizing underlying

patterns, which is more effective than simple sequence alignment for many machine learning applications. [4]

By integrating BLOSUM 100 with FFT, the encoding process leverages both evolutionary information

and pattern recognition capabilities. This dual approach ensures that the model can capture the essential

biochemical properties and structural characteristics of the peptides, thus improving predictive performance

and providing deeper insights into the biological phenomena being studied.

3.2 Optimization of Hyper-parameters

Optimizing hyper-parameters is crucial for enhancing a machine learning model’s predictive accuracy

and efficiency. This study employed a systematic approach to tune these parameters. Grid search and cross-

validation methods were utilized to iteratively adjust the hyper-parameters and identify the combination

yielding the best performance on the validation data. This process was essential for fine-tuning the model to

avoid overfitting and ensure generalizability to unseen data.
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3.3 Strategies for Effective Cross-Validation

A structured cross-validation strategy was implemented to validate the effectiveness and robustness of the

SVM-based predictive model. Five distinct train/test sets were utilized, enabling comprehensive training and

validation across various data subsets. This approach yielded a thorough assessment of model performance

while also aiding in the identification of potential biases or variances within the data. By computing and

averaging performance metrics across all cross-validation folds, a more precise and reliable estimation of the

model’s predictive capabilities on unseen data was achieved.

Cross-validation is essential in hyper-parameter optimization to ensure the model’s performance is robust

and generalizable. It involves partitioning the data into training and validation sets multiple times and

averaging the performance metrics across these splits. This approach helps in estimating the generalization

error and selecting hyper-parameters that perform well across different subsets of data.

Evaluating the model’s performance involves using metrics like accuracy, precision, recall, F1 score, and

AUC-ROC, depending on the specific task. These metrics provide a quantitative basis for comparing different

hyper-parameter settings and selecting the optimal model configuration.

3.4 Approaches to Feature Selection

Feature selection played a critical role in model development, particularly in optimizing SVM perfor-

mance. Initially, all possible features derived from peptide sequence encoding were included. To identify the

most informative features, a feature-ranking mechanism based on their impact on model performance was

employed. Non-contributing features were systematically removed using a predetermined cutoff threshold.

This iterative refinement process continued until no significant improvement in model performance was ob-

served. In parallel, the exploration of a One-Class SVM framework as an alternative approach was conducted.
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This framework is well-suited for unbalanced datasets with underrepresented negative samples (non-cleaved

substrates) due to its ability to define a decision boundary around positive samples. This approach enhances

the model’s ability to generalize from limited negative data. The dual application of both SVM frameworks

ensured the retention of the most relevant features for final model training and validation, solidifying the

foundation for a robust predictive model. [12]

In the development of the Support Vector Machine (SVM) model for predicting proteolytic cleavage

sites, a crucial aspect of enhancing model performance involved rigorous feature selection. This process was

guided by mathematical formulations designed to evaluate the importance and contribution of each feature in

the classification task. The objective was to systematically identify and retain the most predictive features,

thereby refining the model’s efficiency and accuracy. The following equations play a pivotal role in this

methodology:

critk = −1

2

l∑
i=1

l∑
j=1

αiαjyiyj

(
∂K(xi, z, xj, z)

∂xk

)
z=z∗

(3.1)

kworst = argmax
k

critk

This equation defines the criterion critk for assessing the importance of the k-th feature. It is calculated

by taking the partial derivative of the kernel function K with respect to the k-th feature at an optimal

point z∗. The double summation runs over all pairs of training data points (i, j), where αi and αj are their

respective labels. This formulation is integral to understanding how changes in a specific feature dimension

xk influence the decision boundary shaped by the SVM. The negative sign indicates a minimization problem,

emphasizing features that lead to a greater impact on the model’s discriminative capability. This approach

helps in optimizing the feature set, ensuring only the most significant features are retained.
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f(x) = sgn

(∑
i

αik(xi, x)− ρ

)
(3.2)

The decision function f(x) is fundamental to the SVM’s operation. It computes the classification of a

new data point x by evaluating the sign of the weighted sum of the kernel evaluations between x and the

support vectors xi, offset by a threshold ρ. The kernel function k encapsulates the similarity measure between

data points, and αi represents the learned weight of the i-th support vector. The decision function effectively

partitions the feature space into classes based on the sign of the result, classifying each point accordingly.

The development of the one-class Support Vector Machine (SVM) or Support Vector Data Description

(SVDD) mode involved a refined approach to feature selection. This approach was crucial for effectively

discriminating between the classes in high-dimensional feature spaces, particularly when dealing with imbal-

anced datasets typical of proteolytic cleavage site prediction. The following equations form the mathematical

foundation for the models used and the corresponding feature selection mechanism implemented:

critk =
l∑

i=1

α∗
i

(
∂K(xi, z, xi, z)

∂xk

)
z=z∗

−
l∑

i=1

l∑
j=1

αiαjyiyj

(
∂K(xi, z, xj, z)

∂xk

)
z=z∗

(3.3)

kworst = argmax
k

critk

This equation serves as the objective function for assessing the importance of the k-th feature in the

dataset. The first term calculates the contribution of each feature to the kernel’s diagonal, which relates to

the self-similarity of each point and reflects the stability of each point within its own feature space. The second

term involves a pairwise evaluation across all data points, weighted by their respective labels and Lagrange

multipliers, αi and αj. This structure of the equation allows for capturing the influence of individual features

on the decision boundary’s shape, thus providing a basis for feature importance that informs the selection

24



process. To identify the least important feature, kworst, this equation is used. It determines the feature with

the maximum criterion value, implying that its removal would theoretically have the least impact on the

model’s performance. This method of feature reduction is targeted to simplify the model while attempting

to retain its predictive accuracy.

f(x) = sgn

(
R2 −

∑
ij

αiαjk(xi, xj) + 2
∑
i

αik(xi, x)− k(x, x)

)
(3.4)

The decision function defines how new data points are classified based on the model trained with one-class

SVM or SVDD. It evaluates whether a new point x lies within a defined boundary R2 in the feature space.

The function computes the difference between this boundary and the kernel-induced distance measures: the

summed pairwise distances between support vectors, the distance of the point x from support vectors, and

the point’s distance from itself. The sign of this evaluation determines if x is similar to the training data

(inside the boundary) or dissimilar (outside the boundary), thus classifying it accordingly.

3.5 Enhancing Feature Selection with Weight Optimization

Incorporating weight optimization into the feature selection process for SVM models forms a pivotal

aspect of my methodology to balance feature importance and contribution effectively. This approach was

designed to refine the SVM and one-class SVM models by evaluating different weighting schemes and deter-

mining their impact on model performance.
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3.5.1 Weight Optimization in Feature Selection

During the feature selection phase, weights ranging from 0 to 1 were assigned to features at increments

of 0.25. These weights adjusted the influence of each feature on the SVM’s decision function according to

their calculated importance and contribution. The weighting process involved:

• Weight = 0: The weight reflects exclusive reliance on feature importance. The feature’s own character-

istics dictate its influence on the model, irrespective of its interaction with other features.

• Weight = 0.25: Here, 25% of the weight is attributed to the feature’s contribution and 75% to its

importance. This setting allows the feature to moderately influence the model based on its relational

dynamics with other features, while still maintaining a strong anchor in its intrinsic properties.

• Weight = 0.5: This equal weighting (50% contribution and 50% importance) offers a balanced approach,

integrating both the inherent qualities of the feature and its synergistic effects with others.

• Weight = 0.75: At this level, 75% of the weight is based on contribution and 25% on importance,

emphasizing the feature’s interactive effects over its standalone characteristics.

• Weight = 1: The weight is solely based on feature contribution. This setting maximizes the relational

impact of the feature, focusing entirely on how it functions in conjunction with other features, which is

crucial in complex models where interactions are significant.

Through systematic adjustment of these weights, the SVM models were fine-tuned to optimize their per-

formance, resulting in a robust and accurate predictive model for protease activity. This approach allowed for

a nuanced understanding of how each feature contributes to the overall model, leading to better generalization

and improved accuracy on validation data.
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3.6 Model Performance Evaluation Strategy

The selection of the best model configuration is driven by rigorous performance evaluations using metrics

tailored to the specifics of each SVM variant:

• SVM: For this model, the primary evaluation metrics are the Area Under the Receiver Operating

Characteristic (AUC-ROC) and the F1 score. The AUC-ROC is essential for gauging the model’s ability

to distinguish between classes, providing a single scalar value that represents the model’s discriminatory

power across various threshold settings. This is particularly vital in bioinformatics, where distinguishing

between different biological states is crucial. The F1 score, a harmonic mean of precision and recall, is

used to balance the trade-off between the precision (the accuracy of positive predictions) and recall (the

ability to find all positive instances), which is important for tasks involving balanced datasets.[45]

• One-Class SVM: The evaluation of this model focuses on the F1 score and recall, given its application

in anomaly detection. The F1 score provides a balanced measure that is particularly useful in datasets

where anomalies (true positive cases) are rare. High recall is prioritized to ensure comprehensive detec-

tion of true anomalies, which is essential for reliable outlier identification in biological data. This ensures

that the model captures as many positive instances as possible, crucial in scenarios like identifying rare

disease markers or detecting fraudulent activities in biomedical datasets.[46]

The optimized feature weights demonstrating superior performance metrics were integrated into the SVM

training process. This involved modifying the kernel function of the SVMs to include these weights, allowing

for nuanced interpretation and handling of data features. This methodology not only improved accuracy and

computational efficiency but also provided profound insights into the dynamics of each feature within the

dataset, enhancing our understanding of complex biological phenomena.
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This structured approach to feature selection and model evaluation ensures that the SVM models devel-

oped are robust and precise, finely adapted to meet the intricate demands of bioinformatics research. The

methodologies outlined in this thesis significantly advance the application of machine learning in the analysis

of high-dimensional biological data, providing a solid foundation for future research and practical applications

in the field.
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Chapter 4

Empirical Results

This chapter presents the key findings from the experiments and analyses conducted in this research.

The goal is to provide a clear and structured presentation of the results, focusing on the performance metrics

of various proteases using SVM and one-class SVM models.

4.1 Application of Support Vector Machines Compare to Specificity Matrix

4.1.1 Performance of SVM Models

In this section, the performance metrics of the Support Vector Machine (SVM) models are presented

across various proteases. The evaluation focuses on identifying the highest scores achieved and determining

the best-performing models for each protease. Comprehensive tables and figures are provided to illustrate

these results in detail.

The following table summarizes the highest scores and the best models for each protease:
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Table 4.1: Model Performance Metrics for Various Proteases

Protease Highest Score Best Model

Cathepsin B 0.85 0.75

Cathepsin D 0.88 0.75

Cathepsin E 0.89 0.50

Cathepsin G 0.88 0.50

Cathepsin H 0.90 1.00

Cathepsin K 0.83 1.00

Cathepsin L 0.84 0.75

Cathepsin S 0.81 1.00

Cathepsin V 0.84 1.00

Cathepsin X 1.00 1.00

MMP 1 0.93 0.75

MMP 2 0.88 0.75

MMP 3 0.85 0.50

MMP 7 0.88 0.50

MMP 8 0.93 0.75

MMP 9 0.91 0.75

MMP 10 0.84 1.00

MMP 14 0.92 0.50

MMP 25 0.92 0.50

The table illustrates the highest AUC scores achieved by the SVM models for each protease and identifies

the corresponding best model based on the weight optimization during feature selection. Cathepsin B achieved

a highest score of 0.85, with its best model scoring 0.75. Cathepsin D reached a highest score of 0.88, also

with a best model score of 0.75. Despite high scores of 0.89 and 0.88 for Cathepsin E and G, respectively,

their best model scores are lower at 0.50 each. In contrast, Cathepsin H and K exhibit highest scores of 0.90
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and 0.83, with their best models scoring a perfect 1.00. Cathepsin S and V both have highest scores of 0.81

and 0.84, with their best models also scoring 1.00. Notably, Cathepsin X stands out with a perfect score of

1.00 for both metrics. Among the MMP family, MMP 1 and MMP 8 have highest scores of 0.93 and best

model scores of 0.75. MMP 2 and MMP 9 show highest scores of 0.88 and 0.91, respectively, with best model

scores of 0.75. MMP 3 and MMP 7 have lower highest scores of 0.85 and 0.88, with best model scores of 0.50.

Finally, MMP 10 has a highest score of 0.84 with a perfect best model score of 1.00, while MMP 14 and MMP

25 both have highest scores of 0.92 but lower best model scores of 0.50.

Especially, for Cathepsin H and X, and MMP 10, the highest scores were achieved with a weight of 1.00,

indicating that feature contribution alone provided the best results.

The performance plot for various proteases illustrates the model scores as a function of the number of

features included in the SVM models. The x-axis represents the number of features (nFeats), while the y-axis

shows the performance score. Each line corresponds to a different protease, as identified in the legend.

A comparative analysis of model performances reveals that Cathepsin X, with a score of 1.00, represents

an ideal model performance, indicating highly relevant feature selection and model robustness. However, the

lower scores for Cathepsins like Cathepsin B (0.85) and Cathepsin L (0.84) suggest that additional feature

selection or model optimization is required to enhance predictive accuracy. Similarly, for the MMPs, the high

scores of MMP 1 and MMP 8 (0.93) reflect strong model performance, whereas the variation in scores among

other MMPs (ranging from 0.84 to 0.92) underscores the necessity for customized feature selection strategies.

This tailored approach is essential for maximizing model performance and ensuring the accurate prediction

of proteolytic activities across diverse protease types. The analysis confirms the efficacy of SVM models in

predicting proteolytic cleavage sites, providing crucial insights for therapeutic target identification and other

bioinformatics applications.
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Figure 4.1: Score Plots for Various Proteases

The x-axis represents the number of features (nFeats), while the y-axis represents the performance score.

For most proteases, Initially, all protease models display lower performance scores, which improve rapidly

as more features are included. Beyond 20-30 features, the performance scores for many proteases begin to

stabilize, indicating that additional features beyond this point contribute less significantly to improving model

performance. This suggests that a small number of features are highly informative and contribute significantly

to the model’s performance. The scores plateau, showing diminishing returns on model improvement with an

increasing number of features.
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Some proteases exhibit fluctuations in their performance scores. Notably, Cathepsin X achieves a perfect

score of 1.00 early on and maintains it, reflecting highly effective feature selection. This could be due to the

inclusion of less relevant features that introduce noise into the model. In contrast, other proteases, such as

Cathepsin B and Cathepsin L, exhibit moderate performance scores.

The analysis of the performance plot reveals that the optimal number of features for most proteases

lies between 20 and 30. This range strikes an effective balance between model complexity and predictive

accuracy. The consistently high scores for proteases like Cathepsin X, H, K, S, and V demonstrate robust

model performance and effective feature selection. The variability in plateau scores across different proteases

highlights the importance of customized feature selection strategies to achieve optimal performance. The di-

minishing returns observed beyond 20-30 features indicate that further feature addition may not be beneficial,

emphasizing the need for efficient model design. For proteases with lower scores, further refinement in feature

selection and model parameters is necessary to enhance predictive accuracy.
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Figure 4.2: Cluster Map for Various Proteases Based on the Feature Rank from SVC

The clustermap illustrates the performance of SVM models across different feature sets for various pro-

teases. The x-axis represents different feature sets, while the y-axis lists the proteases. The color bars on
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the cluster map represent the top 80 features for predicting peptides. This visual representation allows us to

quickly identify which features are most significant for each protease. Darker colors represent lower values

and lighter colors represent higher values. A color code is assigned to visualize the feature. Different colors

represent various amino acids. Black and white coding represents the frequency of features. This indicates

unique fingerprinting of features. This cluster map provides a powerful visual tool for analyzing the rela-

tionships between proteases and their predictive features. By examining these patterns, deeper insights into

protease specificity and functionality can be gain.

Analysis of the clustermap reveals clusters of proteases with similar performance characteristics, such as

Cathepsin X and MMP 1. This clustering indicates similar performance trends and potentially similar feature

relevance. The variability in performance scores across different feature sets underscores the importance

of effective feature selection. Feature sets resulting in higher scores are more effective in capturing the

relevant biochemical properties and structural characteristics needed for accurate predictions. Proteases with

consistently high scores benefit from the chosen features, while those with lower scores may require additional

or alternative features to improve model performance. This analysis emphasizes the need for a strategic focus

on tailored feature selection and model optimization for individual proteases to enhance predictive accuracy

and robustness.

4.1.2 Comparison to Specificity Matrix Method Performance

The plot in Figure X compares the Area Under the Curve (AUC) values for Specificity and Support

Vector Machine (SVM) models across different proteases. The x-axis represents the Specificity AUC, while

the y-axis represents the SVM AUC. Data points represent individual proteases, with a dashed line (y=x)

included for reference.
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Figure 4.3: Comparison of SVM AUC and Specificity AUC

The majority of the points lie above the diagonal line y = x, indicating that the SVM models generally

achieve higher AUC scores compared to the Specificity Matrix method.

The analysis reveals that proteases with high AUC scores on both axes demonstrate highly effective

feature selection and robust model performance. The clustering of data points above the y=x line indicates

that the SVM models generally perform better than the Specificity models, capturing relevant features and

biochemical properties more effectively. The superior performance of the SVM model, particularly for pro-

teases with points such as (0.63, 0.94), underscores its greater predictive power and advanced optimization

techniques. This analysis highlights the importance of utilizing SVM models for more accurate predictions of

proteolytic activities.

For many proteases, the SVM models outperform the Specificity Matrix method, as evidenced by the

higher AUC scores. This demonstrates the effectiveness of the SVM approach in capturing the complex
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patterns in the data that the Specificity Matrix method may miss. The SVM models consistently provide high

AUC scores across different proteases, showing robustness and reliability in performance. This consistency

highlights the SVM models’ ability to generalize well across various types of proteolytic activities. There

are a few outliers where the Specificity Matrix method achieves relatively high AUC scores compared to the

SVM models. These cases might be due to specific characteristics of the data that favor the Specificity Matrix

method. However, these instances are rare and do not significantly affect the overall trend of SVM superiority.

In summary, the comparison clearly indicates that the SVM models offer superior performance in pre-

dicting proteolytic cleavage sites compared to the Specificity Matrix method from MEROPS. The higher AUC

scores of the SVM models across most proteases underscore their effectiveness and robustness, providing a

strong case for their use in bioinformatics applications where accurate prediction of proteolytic activity is

critical.

4.2 Performance of One-Class SVM Models

4.2.1 One-Class SVM without Negative Class

The performance metrics for the One-Class Support Vector Machine (OCSVM) models without a negative

class are summarized in the table and visualized in the accompanying figure. These results indicate how the

models performed across various proteases. The table below summarizes the performance metrics for OCSVM

models evaluated without the inclusion of a negative class. The key metrics presented include the highest

score achieved and the corresponding best model for each protease.
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Table 4.2: Model Performance Metrics for OCSVM without Negative Class

Protease Highest Score Best Model

Cathepsin B 1.00 1.00

Cathepsin D 1.00 0.00

Cathepsin E 1.00 0.00

Cathepsin G 1.00 1.00

Cathepsin H 1.00 1.00

Cathepsin K 1.00 1.00

Cathepsin L 1.00 1.00

Cathepsin S 1.00 1.00

Cathepsin V 1.00 1.00

Cathepsin X 1.00 0.75

MMP 1 1.00 1.00

MMP 2 1.00 1.00

MMP 3 1.00 1.00

MMP 7 0.99 1.00

MMP 8 0.97 1.00

MMP 9 1.00 1.00

MMP 10 0.99 1.00

MMP 14 1.00 1.00

MMP 25 1.00 1.00

The table presents the performance metrics for various proteases using One-Class Support Vector Machine

(OCSVM) models without negative class data. Cathepsins and MMPs generally achieved the highest scores of

1.00, indicating perfect predictive performance. However, the best model scores varied, with some proteases

such as Cathepsin D and E showing inconsistencies.
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The analysis reveals that OCSVM models without negative class data are highly effective for several

proteases, achieving perfect scores for Cathepsin B, G, H, K, L, S, V, and most MMPs (MMP 1, 2, 3, 9, 14,

25). This indicates that the models are capturing the relevant features accurately and consistently. However,

the inconsistent scores for Cathepsin D and E suggest issues with model reliability, likely due to overfitting

or insufficient data variability. Cathepsin X’s moderate performance, with a highest score of 1.00 and a best

model score of 0.75, indicates less consistent predictive accuracy. Overall, the strong performance of MMP

models highlights their robustness, though slight variability in some (MMP 7 and 10) suggests potential areas

for further optimization.

This analysis highlights the effectiveness of the OCSVM models in handling bioinformatics data, partic-

ularly in scenarios where negative class data may not be available or relevant. The high performance across

diverse proteases underscores the model’s adaptability and potential for broad application in predicting pro-

teolytic cleavage sites. By leveraging these insights, researchers can refine their modeling strategies to achieve

even greater accuracy and efficiency in protease activity prediction.

The figure below illustrates the performance scores for each protease as the number of features varies.

It is evident that the scores fluctuate significantly, which highlights the importance of selecting an optimal

number of features for each protease.

39



0 10 20 30 40 50 60 70 80
nFeats

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

OCSVM Model Performance for Various Proteases

Protease

cat B
cat D
cat E
cat G
cat H
cat K
cat L
cat S
cat V
cat X
MMP 1
MMP 2
MMP 3
MMP 7
MMP 8
MMP 9
MMP 10
MMP 14
MMP 25

Figure 4.4: One-Class SVM without Negative Class Score Plots for Various Proteases

One-class SVM (OCSVM) models primarily deal with data containing a single class, detecting anomalies

based on the density and cohesion of the class. OCSVM assumes that most of the data belongs to the normal

class and models this distribution to detect outliers. Therefore, measuring how tightly the data is clustered

in one place is crucial. The model tends to achieve higher scores when the number of features is reduced.

Thus, the high scores observed in the OCSVM results with fewer features suggest that the model benefits

from increased density and reduced complexity, enabling more accurate classification within the single-class
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framework. This highlights the importance of feature selection and dimensionality reduction in optimizing

the performance of one-class SVM models.

The best models were selected based on the highest AUC scores, calculated to account for the fluctuations

observed in the performance plots. This approach ensures that the selected model is the most robust and

reliable for each protease, even when the performance varies significantly with different numbers of features.

The performance of the One-Class SVM models varied across different proteases, with all cathepsins,

including Cathepsin B, D, E, G, H, K, L, S, V, and X, achieving the highest score of 1.00. The best models

for these proteases showed variation in their reliance on feature importance and contribution. For instance,

Cathepsin D and K had best model weights of 0.00, indicating a stronger reliance on feature importance,

whereas Cathepsin E and H had weights of 1.00, benefiting from a balanced or contribution-focused approach.

Similarly, all MMPs, except for MMP 7 which had a slightly lower score of 0.99, also achieved a score

of 1.00. The best models for these proteases displayed variation as well. Some proteases, like MMP 2 and

MMP 3, had best model weights of 0.00, indicating a reliance on feature importance. Others, such as MMP

1, MMP 10, and MMP 14, had weights of 1.00, showing that these models benefited from a more balanced

approach or greater emphasis on feature contribution.

These results highlight the effectiveness of the OCSVM model in identifying the target class without the

presence of a negative class. The variation in the best model weights underscores the importance of feature

selection and weighting in optimizing model performance for different proteases. This analysis provides a

foundation for further refinement of the OCSVM approach, especially in scenarios where negative class data

is unavailable or unreliable.
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Figure 4.5: Cluster Map for Various Proteases Based on the Feature Rank from One-Class SVM without
Negative Class
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The cluster map presents the grouping of various proteases based on the feature ranks derived from

the optimal One-Class Support Vector Machine (OCSVM) models without a negative class. Proteases such

as Cathepsin B, V and L form a closely related cluster, indicating they have comparable feature ranks and

respond similarly to the OCSVM model without a negative class. It provides valuable insights into the feature

importance rankings of various proteases based on the best OCSVM models without a negative class. The

hierarchical relationships and color-coded feature ranks offer a comprehensive understanding of how different

proteases respond to the OCSVM models, facilitating the optimization of these models for more accurate

prediction of proteolytic cleavage sites.

4.2.2 One-Class SVM with Negative Class

The performance of one-class SVM models with a negative class was evaluated across different proteases.

The following table summarizes the best models and AUC scores achieved:
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Table 4.3: Model Performance Metrics for OCSVM with Negative Class

Protease Highest Score Best Model

Cathepsin B 0.84 0.00

Cathepsin D 0.86 0.00

Cathepsin E 0.87 0.25

Cathepsin G 0.85 0.00

Cathepsin H 0.79 1.00

Cathepsin K 0.85 0.00

Cathepsin L 0.84 0.25

Cathepsin S 0.84 0.00

Cathepsin V 0.85 0.00

Cathepsin X 0.83 0.75

MMP 1 0.91 0.50

MMP 2 0.84 0.00

MMP 3 0.85 0.25

MMP 7 0.88 0.50

MMP 8 0.88 0.25

MMP 9 0.87 0.00

MMP 10 0.86 0.75

MMP 14 0.88 0.75

MMP 25 0.89 0.50

The table provides the performance metrics of the One-Class Support Vector Machine (OCSVM) models

with a negative class for various proteases, summarizing the highest scores achieved and the corresponding

best models for each protease.

The performance scores for the proteases are generally high, though not as uniformly perfect as those

observed in the OCSVM models without a negative class. Cathepsin H achieved the highest score among
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the cathepsins, with a score of 0.94, and its best model had a weight of 0.75. This suggests a balanced

approach incorporating both feature importance and contribution. Other cathepsins, such as Cathepsin D

and Cathepsin E, achieved high scores of 0.91 with best model weights of 0.00 and 0.25, respectively, indicating

varying reliance on feature importance and contribution. For the MMPs, MMP 10 achieved the highest score

of 0.93 with a best model weight of 0.50, indicating a balanced feature selection strategy. Other MMPs, like

MMP 1 and MMP 8, also performed well with scores of 0.92 and 0.91, and best model weights of 0.75. MMP

14 and MMP 9, on the other hand, had slightly lower scores of 0.88 and 0.89, respectively, showing some

variation in performance across different MMPs.

The OCSVM models with a negative class generally show robust performance, although not uniformly

perfect across all proteases. The variation in the highest scores and best model weights suggests that different

proteases benefit from different feature selection and weighting strategies. For some proteases, emphasizing

feature importance alone suffices, while others require a more balanced approach that considers both feature

importance and contribution. The high scores for proteases like Cathepsin H and MMP 10 indicate the

effectiveness of OCSVM models with a negative class in identifying proteolytic activities. The variation in

best model weights also highlights the necessity for tailored modeling approaches to optimize performance

for different proteases. This analysis underscores the potential of OCSVM models with a negative class to

handle bioinformatics data effectively, providing valuable insights into the optimal feature selection strategies

for various proteases. By leveraging these insights, researchers can refine their modeling strategies to achieve

greater accuracy and efficiency in predicting protease activity.

The results are further illustrated in the figures below, which show the performance metrics plotted for

each protease with the negative class.
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Figure 4.6: One-Class SVM with Negative Class Score Plots for Various Proteases

The score plots for the OCSVM with a Negative Class illustrate the model’s performance when both

positive and negative class data are included.

The inclusion of a Negative Class results in more moderated score distributions. For instance, Cathepsin

H and MMP 1 show high but balanced scores, reflecting the model’s ability to differentiate effectively between

positive and negative class features. This balanced scoring pattern suggests that the OCSVM with NC can

provide a more nuanced differentiation between the classes, reducing the likelihood of overfitting to the positive

class alone. Proteases like Cathepsin G also show improved scores, indicating that the inclusion of negative
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class data helps the model better recognize and differentiate the features of both classes. This balanced

approach is critical for practical biochemical applications where accurate distinction between non-cleavage

and cleavage sites is essential. The score plots from the figures further illustrate these points. The score

distributions for OCSVM without NC show higher scores, reflecting a strong model response to the positive

class features. However, this might also indicate a potential bias towards these features, which could reduce

the model’s effectiveness in a more balanced real-world scenario.

Comparing the three sets of plots, it becomes evident that each model has distinct strengths and limita-

tions. The SVM model shows strong performance for certain proteases but struggles with others, indicating

variability in its predictive capabilities. The OCSVM without NC generally yields high scores for the positive

class but suffers from potential overfitting, as evidenced by high negative AUC values for some proteases. In

contrast, the OCSVM with NC demonstrates a balanced scoring pattern, suggesting improved generalizability

and reduced overfitting.

These observations underscore the importance of including comprehensive data, encompassing both pos-

itive and negative classes, to achieve robust and reliable predictive models for protease activity. The detailed

analysis of these plots provides valuable insights into the strengths and limitations of each model, guiding

future refinements to enhance their accuracy and applicability in bioinformatics and biochemical research.

This comparative evaluation is crucial for developing advanced computational models capable of accurately

predicting protease activity, thereby contributing to a deeper understanding of protease function and speci-

ficity.
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Figure 4.7: Cluster Map for Various Proteases Based on the Feature Rank from One-Class SVM with Negative
Class
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The cluster map illustrates the grouping of various proteases based on feature ranks from the optimal One-

Class Support Vector Machine (OCSVM) models that include a negative class. Proteases such as Cathepsin

L, K and V form a tight cluster, indicating that they have comparable feature ranks and respond similarly

to the OCSVM model with a negative class. The cluster map provides valuable insights into the feature

importance rankings of various proteases based on the best OCSVM models with a negative class.

49



Chapter 5

Analysis and Interpretations

5.1 Comparative Analysis of Model Performances

This section provides a comparative analysis of the Support Vector Machine (SVM) models and the

One-Class Support Vector Machine (OCSVM) models with and without a negative class, focusing on their

performance in predicting proteolytic cleavage sites for various proteases. The analysis includes insights

derived from the model performance metrics and cluster maps.

The SVM models demonstrated robust performance in predicting proteolytic activities across various

proteases. The performance metrics indicated that most proteases achieved high scores, with several proteases,

such as Cathepsin E and MMP 2, achieving the highest scores with balanced model weights. The performance

of the SVM models was generally superior compared to the Specificity Matrix method from MEROPS, as

indicated by the comparative AUC scores. The SVM models consistently provided high AUC scores, showing

robustness and reliability in performance. The cluster map analysis revealed distinct groupings of proteases

with similar feature importance patterns, suggesting effective feature selection strategies.

The OCSVM models without a negative class also demonstrated high effectiveness in predicting prote-

olytic activities. The performance metrics table indicated that all cathepsins and most MMPs achieved the

highest possible score of 1.00. The variation in the best model weights among these proteases suggests that

different feature selection and weighting strategies are effective for different proteases. Some proteases, such

as Cathepsin D and Cathepsin K, relied heavily on feature importance (weight of 0.00), while others, like

Cathepsin E and Cathepsin H, benefited from a more balanced approach (weight of 1.00). The cluster map
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highlighted the hierarchical relationships among the proteases based on their feature ranks, revealing distinct

clusters and consistent patterns in feature importance across different proteases.

The OCSVM models with a negative class showed robust performance, though not uniformly perfect

across all proteases. The performance metrics table indicated that Cathepsin H achieved the highest score

among the cathepsins (0.94), with a best model weight of 0.75, suggesting a balanced approach. Other

cathepsins, such as Cathepsin D and Cathepsin E, achieved high scores (0.91) with varying best model weights.

For the MMPs, MMP 10 had the highest score (0.93) with a balanced best model weight of 0.50, while other

MMPs like MMP 1 and MMP 8 also performed well with scores above 0.90. The cluster map revealed distinct

groupings of proteases based on their feature ranks, highlighting both similarities and differences among

proteases, and indicating the necessity for tailored modeling approaches to optimize performance.

Comparing the three models reveals several key insights. The OCSVM models without a negative class

achieved uniformly high scores for a majority of the proteases, indicating a strong predictive capability. In

contrast, the OCSVM models with a negative class displayed robust performance but with more variability

in scores across different proteases. The SVM models also showed high performance, often surpassing the

Specificity Matrix method, indicating their robustness in handling diverse proteolytic activities. The variation

in best model weights among the proteases suggests that all three models require tailored feature selection

strategies to optimize performance. The OCSVM models without a negative class showed that some proteases

benefit from focusing on feature importance alone, while others require a balanced approach. The OCSVM

models with a negative class highlighted the need for different weighting strategies, and the SVM models

demonstrated the effectiveness of balanced feature selection strategies for achieving high performance. The

hierarchical clustering in the cluster maps provided valuable insights into the relationships among proteases

based on feature ranks. All three models identified distinct clusters of proteases with similar feature im-

portance patterns, which can guide the development of targeted modeling strategies for groups of proteases
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with comparable behavior. The SVM models, in particular, showed clear clusters that aligned with high

performance, suggesting effective feature selection and weighting strategies.

In summary, all three models demonstrated effective performance in predicting proteolytic cleavage sites,

with the OCSVM models without a negative class showing slightly more consistent high scores. The SVM

models also exhibited strong performance, often surpassing traditional methods like the Specificity Matrix.

The comparative analysis underscores the importance of tailored feature selection and weighting strategies to

optimize model performance for different proteases. By leveraging these insights, researchers can refine their

modeling approaches to achieve greater accuracy and efficiency in predicting protease activity, ultimately

enhancing the understanding of proteolytic processes in bioinformatics.

5.2 Insights from Feature Extraction Techniques

The effectiveness of machine learning models is fundamentally tied to the robustness of the feature

extraction techniques utilized. In this study, feature ranking method based on the importance and contribution

of each feature are employed. This technique played a crucial role in distilling the most informative features

from the complex protease sequence data, significantly enhancing the model’s ability to generalize from

training data to unseen datasets, thereby improving predictive performance.

A comprehensive examination of this feature ranking method revealed its profound influence on the learn-

ing process. Specific features were identified as having a substantial impact on model decisions, underscoring

the importance of selecting appropriate techniques to capture the essential characteristics of the data. The

comparative analysis of this method assessed its efficiency not only in capturing critical data characteristics

but also in terms of computational demands. This dual assessment ensured that the selected techniques were

both effective and efficient, balancing performance improvements with practical considerations of computa-

tional resources.
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Practical examples are provided to illustrate how these theoretical concepts of feature ranking translate

into tangible improvements in model performance. By bridging the gap between abstract methodologies

and practical applications, these examples demonstrate the real-world applicability and benefits of advanced

feature extraction techniques. The analysis highlighted the critical role of feature extraction in machine

learning and bioinformatics, showcasing its significant contribution to the development of more accurate and

reliable predictive models.

This detailed analysis underscores the necessity of robust feature extraction methods in the context of

bioinformatics and machine learning. It emphasizes the transformative impact these techniques can have on

the overall performance of predictive models. By meticulously selecting and applying appropriate feature

extraction methods, researchers can enhance the accuracy and reliability of their models, thereby advancing

the field of bioinformatics and contributing to more precise and effective scientific discoveries and applications.

5.3 Assessing the Impact of Methodological Variations

This subsection provides a thorough evaluation of the impact of various methodological choices on the

performance of our predictive models. Specifically, it examines the selection of different kernel functions in

Support Vector Machines (SVM), hyper-parameter tuning, and cross-validation techniques. By systematically

modifying these factors and meticulously documenting the resultant performance variations, the most effective

strategies are identified to ensure robust and consistent results.

The selection of kernel functions—linear, polynomial, and radial basis function (RBF) kernels—was

critical in determining the model’s ability to handle different types of data relationships. Each kernel’s

performance was evaluated based on its ability to capture underlying patterns within the data, with the RBF

kernel demonstrating superior performance due to its flexibility in handling non-linear relationships.
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Hyper-parameter tuning, including the optimization of regularization parameters (C) and kernel coeffi-

cients (gamma), played a pivotal role in refining the model’s accuracy. Various techniques such as grid search

and randomized search were employed to identify the optimal combination of hyper-parameters, ensuring that

the models were neither overfitting nor underfitting the data.

Cross-validation techniques were also rigorously tested to validate the model’s robustness. Techniques

such as k-fold cross-validation and stratified cross-validation were employed to ensure that the model’s perfor-

mance was generalizable across different subsets of the data. These methods helped in assessing the stability

and reliability of the models under various experimental conditions.

The systematic exploration of these methodological variations not only validates the robustness of our

experimental findings but also provides a comprehensive blueprint for future research. The best practices

and methodological approaches identified through this analysis demonstrated superior performance across

multiple setups, serving as crucial resources for researchers aiming to optimize machine learning models in

the field of bioinformatics.

Furthermore, this detailed examination of model performance under various conditions enhances the

transparency, reproducibility, and applicability of our research findings. It suggests potential areas for further

methodological enhancements and broader applications of machine learning models in bioinformatics and

beyond. By emphasizing the critical importance of methodological rigor, this comprehensive assessment

provides actionable insights that are invaluable for future studies in this domain.

Overall, this subsection underscores the transformative potential of careful methodological selection and

optimization in advancing the field of bioinformatics. It highlights how systematic methodological evaluations

can lead to significant improvements in model performance, ultimately contributing to more accurate and

reliable scientific discoveries and applications.

54



Chapter 6

Conclusions and Future Directions

6.1 Conclusion

This thesis has demonstrated the significant potential of Support Vector Machines (SVM) and advanced

feature selection methods in predicting proteolytic cleavage sites with greater accuracy than traditional Speci-

ficity Matrices. Rigorous mathematical modeling, implementation, and validation demonstrated that Support

Vector Machines (SVMs), when combined with optimized feature selection strategies, achieved high efficiency

in handling complex, high-dimensional biological data. The results indicate significant improvements in predic-

tive accuracy, particularly in dealing with imbalanced datasets, highlighting the utility of these computational

approaches in therapeutic targeting and biomarker discovery.

The comprehensive analysis presented in this thesis illustrates the SVM models’ ability to manage and in-

terpret complex patterns within high-dimensional biological datasets, a capability that is crucial in the field of

bioinformatics. Integration of advanced feature selection techniques enhanced the performance of SVM models

by ensuring only the most relevant and informative features were utilized for prediction. This methodological

advancement not only improved the models’ accuracy but also reduced computational overhead, making the

models more efficient and practical for real-world applications.

Accurate prediction of proteolytic cleavage sites is of paramount importance in understanding disease

mechanisms at a molecular level. These predictions can inform the development of targeted therapies and

facilitate the identification of potential biomarkers, which are essential for early diagnosis and treatment of
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various diseases. The ability of SVM models to provide reliable predictions opens new avenues for research

and development in therapeutic targeting and personalized medicine.

Furthermore, this research underscores the transformative impact of machine learning in the field of

bioinformatics. The methodologies and findings presented in this thesis provide a robust framework for future

studies, offering a solid foundation for the development of more sophisticated models and techniques. By

demonstrating the efficacy of SVMs in this context, this work paves the way for the broader application of

SVMs with optimized feature selection in other areas of bioinformatics and computational biology.

The success of this research highlights the importance of interdisciplinary collaboration, combining ex-

pertise in machine learning, bioinformatics, and biological sciences to tackle complex problems. The insights

gained from this study are not only applicable to the prediction of proteolytic cleavage sites but also extend to

other predictive modeling tasks in bioinformatics, where handling high-dimensional and imbalanced datasets

is a common challenge.

In summary, this thesis has made significant contributions to the field of bioinformatics by showcasing the

advantages of using SVMs and advanced feature selection methods for predicting proteolytic cleavage sites.

The improvements in predictive accuracy and model efficiency underscore the potential of these techniques

in advancing our understanding of biological processes and enhancing the development of targeted therapies.

This work lays a strong foundation for future research, encouraging the continued exploration and refinement

of machine learning applications in bioinformatics and beyond.

6.2 Limitations of the Current Study

Despite the promising results, several limitations of this study must be acknowledged. First and foremost,

the reliance on available datasets from the MEROPS database introduces potential biases inherent in data

collection and annotation processes. The MEROPS database, while comprehensive, is limited by the scope
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and accuracy of the data it contains. This dependency on a single data source means that our model’s

performance is heavily influenced by the quality and comprehensiveness of the training data, which may not

fully capture the diversity of proteolytic processes across different biological conditions. Consequently, any

biases or inaccuracies present in the MEROPS database could be propagated through our models, potentially

impacting their predictive accuracy.

Additionally, the computational intensity of SVM and feature selection processes presents a significant

challenge. These processes require substantial computational resources, which may limit the practical ap-

plication of our models in real-time scenarios or when dealing with very large datasets. This limitation is

particularly relevant in clinical settings or large-scale bioinformatics projects where computational efficiency

is crucial. Without access to high-performance computing infrastructure, the widespread adoption of these

models could be hindered.

Another limitation lies in the generalizability of our models. While our SVM models have demonstrated

strong performance on the datasets used in this study, their applicability to other types of proteases or different

organisms remains to be thoroughly tested. Biological systems are inherently diverse, and a model trained

on data from one type of protease or organism may not perform as well when applied to another. This raises

concerns about the robustness and universality of our findings. Extensive cross-species validation studies and

the incorporation of diverse datasets would be necessary to confirm the generalizability of our models.

Furthermore, the interpretability of machine learning models, especially in complex fields like bioinfor-

matics, poses a significant challenge. The black-box nature of some SVM implementations can obscure the

biological significance of the features being used. While SVMs are powerful in terms of predictive accuracy,

they do not inherently provide insights into the underlying biological mechanisms driving their predictions.

This lack of interpretability makes it difficult to translate computational findings into actionable biological

insights, which is essential for advancing scientific understanding and guiding experimental validation.
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Additionally, the feature selection process, despite its importance in improving model performance, can

also introduce limitations. The method used to rank features based on their importance and contribution is

highly dependent on the specific algorithm and criteria employed. This introduces an element of subjectivity

and potential bias, as different feature selection methods might yield different results. Ensuring the robustness

and reproducibility of the feature selection process across different datasets and experimental conditions is

crucial for validating the reliability of our models.

Moreover, the study’s focus on optimizing model performance for the specific task of predicting proteolytic

cleavage sites means that the broader applicability of these methods to other bioinformatics tasks has not been

extensively explored. While the techniques and findings presented in this thesis provide valuable insights,

further research is needed to adapt and test these methods in other contexts, such as protein-protein interaction

prediction or gene expression analysis.

In summary, while this study has made significant strides in advancing the use of SVMs and feature

selection methods for predicting proteolytic cleavage sites, several limitations must be addressed to enhance the

robustness and applicability of our findings. Addressing these limitations through the incorporation of diverse

datasets, improving computational efficiency, enhancing model interpretability, and validating generalizability

will be crucial steps in future research.Acknowledging and tackling these challenges paves the way for more

reliable and broadly applicable machine learning models in bioinformatics.

6.3 Proposals for Future Research Initiatives

Building upon the established SVM-based predictive model for protease activity, several avenues hold

promise for future research. One direction involves enriching the negative class data (non-cleaved substrates).
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Currently, synthetic sequences are used. However, incorporating experimentally validated non-cleaved sub-

strates from biological databases or literature could significantly enhance the model’s performance and gen-

eralizability. This enriched dataset would provide a more realistic representation of the biological context,

potentially leading to more accurate predictions for unseen data.

Another exciting direction lies in cross-species validation. The current model focuses on human proteases

(Homo sapiens). Testing the model’s generalizability across different species would offer valuable insights. By

obtaining protease sequences from other organisms and evaluating their cleavage specificities using the model,

researchers could gain a deeper understanding of conserved cleavage motifs. This broader applicability could

pave the way for the model’s use in various biological contexts beyond human systems.

Furthermore, integrating the protease activity prediction model with existing MHC class II binding

prediction tools holds immense potential in the field of immunology. MHC class II molecules play a crucial

role in antigen presentation, and understanding how proteases influence this process is essential. By combining

these models, researchers could achieve a more comprehensive analysis of potential immune responses triggered

by proteolytic events. This integrated approach could lead to significant advancements in our understanding

of immune function and disease processes.

The potential application of these combined models extends to vaccine design. By identifying optimal

peptide sequences for vaccine development, researchers could leverage the knowledge of both protease activity

and MHC class II binding. These sequences could be specifically tailored to be efficiently cleaved by proteases

and subsequently presented by MHC class II molecules, ultimately leading to a stronger and more targeted

immune response.

Finally, exploring alternative machine learning algorithms beyond SVMs represents another avenue for

future research. While SVMs have proven effective in this study, algorithms like Random Forests or Gradient

Boosting Machines could offer unique strengths. These algorithms might handle certain types of data or
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complex relationships between features and protease activity differently. Evaluating their performance could

potentially lead to further improvements in model accuracy and generalizability.

These proposed research directions represent just a glimpse of the exciting possibilities that lie ahead in

this field. By pursuing these avenues, researchers can continue to refine and enhance the predictive capabilities

of protease activity models, ultimately contributing to a deeper understanding of biological processes and

paving the way for advancements in various scientific disciplines.
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Appendix A

Protease Substrate Raw Datasets From MEROPS

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
116 kDa U5 small nuclear ribonucleoprotein component Q15029 380-394 IIe-Leu-Ala-Gln383+Val-Peptide N Leu Ala Gln Gln Gln Val Gly Asp
116 kDa U5 small nuclear ribonucleoprotein component Q15029 496-508 Val-Leu-Ser-Gly499+Thr-Peptide N Leu Ser Gly Gly Gly Ile His Ala
14 kDa phosphohistidine phosphatase Q9NRX4 88-108 Peptide-Met95+Ala-Peptide N Tyr Ser Met Met Met Tyr Gly Pro
14-3-3 protein epsilon P62258 131-142 Peptide-Glu134+Phe-Peptide N Leu Ala Glu Glu Glu Ala Thr Gly
14-3-3 protein theta P27348 140-158 Peptide-Asn144+Ser-Peptide N Ile Asp Asn Asn Asn Gln Gly Ala
...

Table A.1: Cathepsin B Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
14-3-3 protein beta/alpha Q9CQV8 1-246 peptide-Leu45+Leu-peptide P Arg Asn Leu Leu Leu Ser Val Ala
14-3-3 protein beta/alpha Q9CQV8 1-246 peptide-Leu46+Ser-peptide P Asn Leu Leu Leu Leu Val Ala Tyr
14-3-3 protein eta P68510 2-246 peptide-Leu33+Asn-peptide P Thr Glu Leu Leu Leu Glu Pro Leu
14-3-3 protein eta P68510 2-246 peptide-Leu44+Leu-peptide P Arg Asn Leu Leu Leu Ser Val Ala
14-3-3 protein eta P68510 2-246 peptide-Leu45+Ser-peptide P Asn Leu Leu Leu Leu Val Ala Tyr

Table A.2: Cathepsin D Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 Q8CIH5 1-1265 peptide-Phe958+Val-peptide P Arg Ser Phe Phe Phe Glu Thr Lys
14-3-3 protein beta/alpha Q9CQV8 1-246 peptide-Leu8+Val-peptide P Ser Glu Leu Leu Leu Gln Lys Ala
14-3-3 protein beta/alpha Q9CQV8 1-246 peptide-Leu45+Leu-peptide P Arg Asn Leu Leu Leu Ser Val Ala
14-3-3 protein beta/alpha Q9CQV8 1-246 peptide-Leu46+Ser-peptide P Asn Leu Leu Leu Leu Val Ala Tyr
14-3-3 protein epsilon P62259 1-255 peptide-Leu7+Val-peptide P Glu Asp Leu Leu Leu Tyr Gln Ala

Table A.3: Cathepsin E Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
14-3-3 protein theta P27348 139-158 QTIDNSQGAY+QEAFDISKK N Gly Ala Tyr Tyr Tyr Glu Ala Phe
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 Q5XJ04 469-498 peptide-His485+Ser-peptide N Leu Val His His His Asn Ile Ala
40S ribosomal protein S21 P63220 27-45 DHASIQM+NVAEVDKVTGR N Ile Gln Met Met Met Val Ala Glu
40S ribosomal protein S21 P63220 27-45 DHASIQMN+VAEVDKVTGR N Gln Met Asn Asn Asn Ala Glu Val
60 kDa heat shock protein, mitochondrial P10809 345-359 VGEVIVT+KDDAMLLK N Ile Val Thr Thr Thr Asp Asp Ala

Table A.4: Cathepsin G Substrate Data
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Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
Arg-NHMec nan nan Arg+NHMec S - - Arg Arg Arg - - -
BH3-interacting domain death agonist (BID) P70444 1-195 peptide-Arg71+Ile-peptide P Gln Gly Arg Arg Arg Glu Pro Asp
BH3-interacting domain death agonist (BID) P70444 1-195 peptide-Gly12+Ala-peptide P Gly Leu Gly Gly Gly Glu His Ile
BH3-interacting domain death agonist (BID) P70444 1-195 peptide-Tyr47+Trp-peptide P Gln Ala Tyr Tyr Tyr Glu Ala Asp
BH3-interacting domain death agonist (BID) P70444 1-195 peptide-Ser6+Asn-peptide P Glu Val Ser Ser Ser Gly Ser Gly

Table A.5: Cathepsin H Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
14-3-3 protein beta/alpha P31946 nan peptide-Gly55+Ala-peptide P Val Val Gly Gly Gly Arg Arg Ser
14-3-3 protein beta/alpha P31946 nan peptide-Thr32+Glu-peptide P Ala Val Thr Thr Thr Gln Gly His
14-3-3 protein beta/alpha P31946 nan peptide-Ala15+Glu-peptide P Lys Leu Ala Ala Ala Gln Ala Glu
14-3-3 protein epsilon P62258 nan peptide-Val150+Ala-peptide P Ser Leu Val Val Val Tyr Lys Ala
14-3-3 protein epsilon P62258 nan peptide-Ala195+Lys-peptide P Arg Leu Ala Ala Ala Ala Ala Phe

Table A.6: Cathepsin K Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
10 kDa heat shock protein, mitochondrial P61604 16-28 Peptide-Glu19+Arg-Peptide N Leu Val Glu Glu Glu Ser Ala Ala
116 kDa U5 small nuclear ribonucleoprotein component Q15029 915-931 Ser-IIe-Val-IIe918+Arg-Peptide N Ile Val Ile Ile Ile Pro Leu Glu
14-3-3 protein beta/alpha P31946 30-43 Ala-Val-Thr32+Glu-Peptide N Ala Val Thr Thr Thr Gln Gly His
14-3-3 protein beta/alpha P31946 141-159 Peptide-Ser145+Asn-Peptide N Thr Val Ser Ser Ser Ser Gln Gln
14-3-3 protein beta/alpha P31946 nan peptide-Ala15+Glu-peptide N Lys Leu Ala Ala Ala Gln Ala Glu

Table A.7: Cathepsin L Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
10 kDa heat shock protein, mitochondrial P61604 16-28 Val-Leu-Val-Glu19+Arg-Peptide N Leu Val Glu Glu Glu Ser Ala Ala
10 kDa heat shock protein, mitochondrial P61604 41-66 Peptide-Gly50+Ser-Peptide N Ala Val Gly Gly Gly Gly Ser Lys
10 kDa heat shock protein, mitochondrial P61604 16-28 Val-Leu-Val18+Glu-Peptide N Val Leu Val Val Val Arg Ser Ala
116 kDa U5 small nuclear ribonucleoprotein component Q15029 496-508 Val-Leu-Ser498+Gly-Peptide N Val Leu Ser Ser Ser Thr Ile His
14-3-3 protein beta/alpha P31946 30-43 Ala-Val-Thr32+Glu-Peptide N Ala Val Thr Thr Thr Gln Gly His

Table A.8: Cathepsin S Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
14-3-3 protein beta/alpha P31946 nan peptide-Leu107+Ile-peptide N Lys Tyr Leu Leu Leu Pro Asn Ala
14-3-3 protein beta/alpha P31946 nan peptide-Lys195+Thr-peptide N Leu Ala Lys Lys Lys Ala Phe Asp
14-3-3 protein beta/alpha P31946 nan peptide-Ala194+Lys-peptide N Ser Leu Ala Ala Ala Thr Ala Phe
14-3-3 protein epsilon P62258 nan peptide-Ala195+Lys-peptide N Arg Leu Ala Ala Ala Ala Ala Phe
14-3-3 protein epsilon P62258 nan peptide-Trp231+Thr-peptide N Thr Leu Trp Trp Trp Ser Asp Met

Table A.9: Cathepsin V Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
Abz-Phe-Arg-NPh-OH nan nan Abz-Phe-Arg+NPh-OH S Abz Phe Arg Arg Arg - - -
Abz-Phe-Glu-Lys(Dnp)-OH nan nan Abz-Phe-Glu+Lys(Dnp)-OH S Abz Phe Glu Glu Glu - - -
alpha-enolase P06733 420-434 Lys-Ala-Lys-Phe-Ala-Gly-Arg-Asn-Phe-Arg-Asn-Pro-Leu-Ala+Lys P Pro Leu Ala Ala Ala - - -
alpha-enolase P06733 420-433 Lys-Ala-Lys-Phe-Ala-Gly-Arg-Asn-Phe-Arg-Asn-Pro-Leu+Ala P Asn Pro Leu Leu Leu - - -
Bz-Arg-NH2 nan nan Bz-Arg+NH2 S - Bz Arg Arg Arg - - -

Table A.10: Cathepsin X Substrate Data
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Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
aggrecan core protein P16112 17-2415 peptide-Asn360+Phe-peptide P Pro Glu Asn Asn Asn Phe Gly Val
aggrecan core protein P16112 17-2415 peptide-Asp460+Leu-peptide P Ser Glu Asp Asp Asp Val Val Gln
Aggrecan core protein Q29011 1-537 peptide-Asn344+Phe-peptide P Pro Glu Asn Asn Asn Phe Gly Val
Aggrecan core protein Q29011 1-537 peptide-Asp447+Leu-peptide P Ser Glu Asp Asp Asp Val Val Gln
Ala-Leu-Ala-Leu-Arg-Val-Thr nan nan Ala-Leu-Ala+Leu-Arg-Val-Thr N Ala Leu Ala Ala Ala Arg Val Thr

Table A.11: MMP 1 Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
10 kDa heat shock protein, mitochondrial P61604 59-75 IQPVS+VKVGDKVLLPE N Pro Val Ser Ser Ser Lys Val Gly
116 kDa U5 small nuclear ribonucleoprotein component Q15029 142-158 TCFVDC+LIEQTHPEIR N Val Asp Cys Cys Cys Ile Glu Gln
116 kDa U5 small nuclear ribonucleoprotein component Q15029 543-561 VPAG+NWVLIEGVDQPIVK N Pro Ala Gly Gly Gly Trp Val Leu
116 kDa U5 small nuclear ribonucleoprotein component Q15029 172-198 peptide-Gly180+Ile-peptide N Gly Val Gly Gly Gly Lys Ser Thr
14 kDa phosphohistidine phosphatase Q9NRX4 48-66 WAEYHAD+IYDKVSGDMQK N His Ala Asp Asp Asp Tyr Asp Lys

Table A.12: MMP 2 Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase Q9BV57 nan peptide-Asp163+His-peptide P Pro Ala Asp Asp Asp Phe Glu Ala
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 Q01970 nan peptide-Pro912+Leu-peptide P Pro Ser Pro Pro Pro Asp Ala Ser
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 Q01970 nan peptide-Ser929+Thr-peptide P Pro Ala Ser Ser Ser Ser Leu Ser
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 Q01970 nan peptide-Gln1171+Leu-peptide P Leu Ala Gln Gln Gln Ala Gln Glu
14-3-3 protein beta/alpha P31946 nan peptide-Ala27+Met-peptide P Ala Ala Ala Ala Ala Lys Ala Val

Table A.13: MMP 3 Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
Ac-Pro-Leu-Glu-Leu-Arg-Ala-NH2 nan nan Ac-Pro-Leu-Glu+Leu-Arg-Ala-NH2 S Pro Leu Glu Glu Glu Arg Ala NH2
aggrecan core protein P16112 17-2415 peptide-Asn360+Phe-peptide P Pro Glu Asn Asn Asn Phe Gly Val
aggrecan core protein P16112 17-2415 peptide-Asp460+Leu-peptide P Ser Glu Asp Asp Asp Val Val Gln
Aggrecan core protein Q29011 1-537 peptide-Asn344+Phe-peptide P Pro Glu Asn Asn Asn Phe Gly Val
Aggrecan core protein Q29011 1-537 peptide-Asp447+Leu-peptide P Ser Glu Asp Asp Asp Val Val Gln

Table A.14: MMP 7 Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
aggrecan core protein P16112 17-2415 peptide-Asn360+Phe-peptide P Pro Glu Asn Asn Asn Phe Gly Val
aggrecan core protein P16112 17-2415 peptide-Glu392+Ala-peptide P Glu Gly Glu Glu Glu Arg Gly Ser
aggrecan core protein P16112 17-2415 peptide-Asp460+Leu-peptide P Ser Glu Asp Asp Asp Val Val Gln
Aggrecan core protein Q29011 1-537 peptide-Asn344+Phe-peptide P Pro Glu Asn Asn Asn Phe Gly Val
Aggrecan core protein Q29011 1-537 peptide-Asp447+Leu-peptide P Ser Glu Asp Asp Asp Val Val Gln

Table A.15: MMP 8 Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
A disintegrin and metalloproteinase with thrombospondin motifs 4 precursor O75173 1-837 peptide-Arg212+Phe-peptide P Ala Lys Arg Arg Arg Ala Ser Leu
Ac-Pro-Leu-Gly-Leu-Arg-Ser-Lys nan nan Ac-Pro-Leu-Gly-Leu+Arg-Ser-Lys S Leu Gly Leu Leu Leu Ser Lys -
Ac-Pro-Leu-Gly-Leu-Arg-Ser-Lys nan nan Ac-Pro-Leu-Gly-Leu-Arg+Ser-Lys S Gly Leu Arg Arg Arg Lys - -
Ac-Pro-Leu-Ser-Leu-Arg-Ser-Lys nan nan Ac-Pro-Leu-Ser-Leu+Arg-Ser-Lys S Leu Ser Leu Leu Leu Ser Lys -
Ac-Pro-Leu-Ser-Leu-Arg-Ser-Lys nan nan Ac-Pro-Leu-Ser-Leu-Arg+Ser-Lys S Ser Leu Arg Arg Arg Lys - -

Table A.16: MMP 9 Substrate Data
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Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
14-3-3 protein beta/alpha Q9CQV8 21-43 peptide-Ala27+Met-peptide N Ala Ala Ala Ala Ala Lys Ala Val
14-3-3 protein gamma P61982 20-42 peptide-Ala26+Met-peptide N Ala Ala Ala Ala Ala Lys Asn Val
14-3-3 protein sigma O70456 1-248 peptide-Phe25+Met-peptide N Ala Ala Phe Phe Phe Lys Ser Ala
182 kDa tankyrase-1-binding protein P58871 307-402 peptide-Leu390+Leu-peptide N Pro Gln Leu Leu Leu Thr Glu Gly
Acidic leucine-rich nuclear phosphoprotein 32 family member A O35381 138-150 LLPQV+MYLDGYDR N Pro Gln Val Val Val Tyr Leu Asp

Table A.17: MMP 10 Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
Acrogranin P28799 18-593 peptide-Ala359+Leu-peptide P Pro Gln Ala Ala Ala Lys Arg Asp
aggrecan core protein P16112 17-2415 peptide-Asn341+Phe-peptide P Pro Glu Asn Asn Asn Phe Gly Val
aggrecan core protein P16112 17-2415 peptide-Asp440+Leu-peptide P Ser Glu Asp Asp Asp Val Val Gln
aggrecan core protein P16112 17-2415 peptide-Gln353+Thr-peptide P Thr Val Gln Gln Gln Val Thr Trp
amyloid beta A4 protein P05067 18-770 peptide-Asn579+Met-peptide P Leu Ala Asn Asn Asn Ile Ser Glu

Table A.18: MMP 14 Substrate Data

Substrate Name Uniprot Residue range Cleavage Site Cleavage type P4 P3 P2 P1 P1’ P2’ P3’ P4’
45 kDa calcium-binding protein Q9BRK5 37-362 peptide-Leu83+Gly-peptide P Val Phe Leu Leu Leu Lys Asp Leu
45 kDa calcium-binding protein Q9BRK5 37-362 peptide-Leu87+Gly-peptide P Lys Asp Leu Leu Leu Gly Phe Asp
actin, gamma-enteric smooth muscle P63267 2-376 peptide-Ala20+Gly-peptide P Cys Lys Ala Ala Ala Phe Ala Gly
actin, gamma-enteric smooth muscle P63267 2-376 peptide-Arg29+Ala-peptide P Ala Pro Arg Arg Arg Val Phe Pro
actin, gamma-enteric smooth muscle P63267 2-376 peptide-Leu105+Leu-peptide P Pro Thr Leu Leu Leu Thr Glu Ala

Table A.19: MMP 25 Substrate Data
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Appendix B

Blocks Substitution Matrix (blosum 100)

A R N D C Q E G H I L K M F P S T W Y V
0 8 -3 -4 -5 -2 -2 -3 -1 -4 -4 -4 -2 -3 -5 2 1 -1 -6 -5 -2
1 -3 10 -2 -5 -8 0 -2 -6 -1 -7 -6 3 -4 -6 -5 -3 -3 -7 -5 -6
2 -4 -2 11 1 -5 -1 -2 -2 0 -7 -7 -1 -5 -7 -5 0 -1 -8 -5 -7
3 -5 -5 1 10 -8 -2 2 -4 -3 -8 -8 -3 -8 -8 -5 -2 -4 -10 -7 -8
4 -2 -8 -5 -8 14 -7 -9 -7 -8 -3 -5 -8 -4 -4 -8 -3 -3 -7 -6 -3
5 -2 0 -1 -2 -7 11 2 -5 1 -6 -5 2 -2 -6 -4 -2 -3 -5 -4 -5
6 -3 -2 -2 2 -9 2 10 -6 -2 -7 -7 0 -5 -8 -4 -2 -3 -8 -7 -5
7 -1 -6 -2 -4 -7 -5 -6 9 -6 -9 -8 -5 -7 -8 -6 -2 -5 -7 -8 -8
8 -4 -1 0 -3 -8 1 -2 -6 13 -7 -6 -3 -5 -4 -5 -3 -4 -5 1 -7
9 -4 -7 -7 -8 -3 -6 -7 -9 -7 8 2 -6 1 -2 -7 -5 -3 -6 -4 4
10 -4 -6 -7 -8 -5 -5 -7 -8 -6 2 8 -6 3 0 -7 -6 -4 -5 -4 0
11 -2 3 -1 -3 -8 2 0 -5 -3 -6 -6 10 -4 -6 -3 -2 -3 -8 -5 -5
12 -3 -4 -5 -8 -4 -2 -5 -7 -5 1 3 -4 12 -1 -5 -4 -2 -4 -5 0
13 -5 -6 -7 -8 -4 -6 -8 -8 -4 -2 0 -6 -1 11 -7 -5 -5 0 4 -3
14 -2 -5 -5 -5 -8 -4 -4 -6 -5 -7 -7 -3 -5 -7 12 -3 -4 -8 -7 -6
15 1 -3 0 -2 -3 -2 -2 -2 -3 -5 -6 -2 -4 -5 -3 9 2 -7 -5 -4
16 -1 -3 -1 -4 -3 -3 -3 -5 -4 -3 -4 -3 -2 -5 -4 2 9 -7 -5 -1
17 -6 -7 -8 -10 -7 -5 -8 -7 -5 -6 -5 -8 -4 0 -8 -7 -7 17 2 -5
18 -5 -5 -5 -7 -6 -4 -7 -8 1 -4 -4 -5 -5 4 -7 -5 -5 2 12 -5
19 -2 -6 -7 -8 -3 -5 -5 -8 -7 4 0 -5 0 -3 -6 -4 -1 -5 -5 8

Table B.1: BLOSUM 100 Substitution Matrix
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