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Abstract

This manuscript is divided into three parts, each associated with three of the main projects

I undertook throughout my doctoral journey. In particular, this dissertation focuses on the

topics of anomaly resilience, detection, and reaction in astrodynamics problems, which are

crucial aspects to consider for ensuring mission success, especially when dealing with the harsh

space environment. In this manuscript, resilience, detection and reaction are investigated in

two selected domains: trajectory design in cislunar regime and satellite constellations, both

susceptible to the possibility of unexpected events. Therefore, effective identification capabilities

and swift reaction to unforeseen phenomena become vital to support mission integrity.

Resilience to off-nominal behaviors is investigated for the trajectory design problem in

the first part of this manuscript. In particular, we explore the convergence and dynamical

structure of the trajectory design space associated with lunar landing and ascent abort scenarios

for a crewed module departing from and returning to the Deep Space Gateway. Numerical

methods for the identification of abort trajectory solutions are employed within a two-step

optimization pipeline, through which we discover the existence of regions of stiff convergence

where traditional pipelines may fail. Hence, we present an extensive analysis of problem

parameters, demonstrating how the presence of such regions can be traced to the formulation

of employed correction algorithms, problem dynamics sensitivity, and transfers geometry. To

reduce the computational cost, we introduce a three-step optimization pipeline relying on

surrogate models trained via adaptive sampling for the fast generation of initial guesses, which

are then corrected for the recovery of abort trajectories within the defined scenario. Results

obtained from the application of the optimization pipeline on the two scenarios underscore the

complexity of the solution space, while providing useful information to inform the trajectory

design process.

Anomaly detection and reaction in the context of Proliferated Low Earth Orbit (P-LEO) satellite

constellations are then explored in the remaining two parts of this manuscript, with a focus
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on anomalous behaviors originating from adversarial actions against a constellation. For the

detection problem, we present a transformer neural network- based pipeline for the identification

of anomalous connections between satellites, modeling a P-LEO as a dynamic graph, which

is capable of capturing spatial-temporal correlations characterizing a temporal network. Our

analyses demonstrate how temporal and spatial signals alone are insufficient for effectively

discriminating anomalous connections, requiring additional features to enrich the information

extracted from the network dynamics. Notably, we discover how the introduction of edge-

frequency information positively impacts our algorithm performance, reaching up to 95% in

AUC score, here used as quality metric. Additionally, extensive analyses on variations of

problem parameters demonstrate the robustness of the method over a wide range of scenarios,

and highlight the existence of interesting couplings between satellite dynamics, spatial ground

node distribution, and algorithm performance.

For the reaction component, a combination of competitive coevolutionary algorithms and

genetic programming is employed to evolve reactive strategies to respond to adversarial actions

against a constellation system. In particular, genetic programming trees are employed for

the representation of reactive policies to respond to presented and different, unseen scenarios.

The analysis demonstrates how the utilized approach provides effective solutions, beating

both minimally complex strategies and human-developed ones, and showing adaptability to

the introduction of multiple constraints. In both the detection and reaction problems, the

proposed methodologies display the potential to reduce the cognitive load on operators of large

constellation systems, and to possibly enable resolution of critical situations in a timely manner.
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Chapter 1

Introduction

1.1 Motivation

Anomaly resilience, detection, and reaction are essential components in the design and manage-

ment of space missions due to the unpredictability of the harsh space environment. The ability

to rapidly identify and react to abnormal behavior in space systems has several benefits, such as

ensuring the correct functionality of a space asset, the reduction of overall risks and costs, and

maximizing the probability of mission success. Unfortunately, there exist a variety of events

that may endanger a space asset, including natural phenomena (solar flares, debris collision,

magnetic storms, etc.) or sudden system failure. As such, identifying an anomaly and its causes,

as well as quickly selecting countermeasures, become complex tasks. The ability to respond to

unforeseen events is even more crucial in the context of manned missions, where guaranteeing

the safety of astronauts is the primary objective.

Over the past years, multiple nations have renewed their interest in the Moon, announcing

programs with the ambitious goal of returning mankind to the lunar surface within the next

decade. One such program is the National Aeronautics and Space Administration’s (NASA’s)

Artemis mission, which aims to establish a human outpost on the Moon. The lunar surface base

will be a proving ground to test new technologies for future deep-space exploration and a field

laboratory to conduct lunar science. However, different mission segments may be susceptible

to multiple risks. One such risk is constituted by a potential anomaly during the landing or

ascent phases, which necessitates the design of abort trajectories. Unfortunately, trajectory

design in chaotic environments such as the cislunar one possesses many sources of uncertainty,
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requiring large, complex, time-demanding simulations that span over the entirety of the solution

space. As in a time-constrained environment conducting such analyses may be unfeasible,

novel approaches to reduce the computational complexity of the problem are required. In this

work, surrogate modeling is explored as a potential solution to enable acceleration of large scale

trajectory design simulations. Surrogate models are indeed fast and computationally-light to

train, and may provide a good approximation (which can be refined in a second moment) in

substitution to an exact, expensive-to-obtain solution. However, appropriate selection of the

surrogate model requires a sense of the surface to be approximated. Hence, an extensive investi-

gation of key problem modeling parameters is conducted, aiming to generate a cartography of

the abort transfers landscape.

Detecting and reacting to anomalous events becomes even more challenging when the

number of space assets to manage exponentially increases. One notable example is constituted

by the most recent proliferated LEO constellations. These are systems composed of hundreds or

thousands of satellites dedicated to providing ubiquitous services (telecommunication, Earth

observation and navigation - to name a few), with military, commercial and scientific applica-

tions. However, the size of such infrastructures poses challenges for the constant monitoring of

the space segment. The increasing number of units makes continuous monitoring of individual

elements impractical for human operators. Moreover, intrinsic system dynamics introduce a

temporal factor which may hinder effective detection of abnormal behaviors, especially when

system elements are not monitored individually. Finally, the large variety of possible anomalies

further complicates the decision-making process when evaluation of an event is needed. A

particularly concerning aspect is then introduced by the possibility of adversarial actions against

these large systems. In fact, such constellations being a critical component for modern society,

they constitute valuable targets for cyber and physical attacks, which may disrupt, or even

disable, the entire constellation.

Within the realm of anomaly detection on satellite systems, current approaches exploit a

combination of human expertise and automatic anomaly identification through algorithms often
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designed for a specific mission. However, the variety of threats renders the task of identifying iso-

lated events even more challenging; additionally, traditional methods do not consider the system

as an aggregate, thus potentially missing anomalous behaviors extending to multiple units. To

overcome these challenges, we propose the application of deep learning - specifically, employing

a transformer neural network - for the detection of anomalies on P-LEO constellations. In

particular, considering the problem of adversarial actions acting on satellite links, we tackle the

challenge of anomalous edge detection. The large satellite system is modeled as a graph, which

enables capturing network information both locally and globally. The hypothesis here is that the

transformer network can extrapolate meaningful features from its input, thus becoming capable

of understanding the underlying network dynamical behavior, hence recognizing anomalies

more effectively.

Once the attack on the satellite constellation is identified, a prompt reaction is crucial

to mitigate damage and restore nominal operations. In fact, P-LEO constellations provide

services to support multiple industries, including finance, transportation and communication,

and an attack that disrupts satellite services can result in a significant economic loss. To model

this problem, an adversarial ground station transit time game is introduced and investigated as

a proxy to study the ability to rapidly respond to satellite attacks. Competitive coevolution is

employed to evolve two populations: one attacker, representative of a malevolent actor aiming

to degrade a constellation service, and one defender, whose goal is to re-establish nominal oper-

ations. Genetic programming trees are exploited to encode reactive strategies for the defender,

which is then capable of dynamically responding to present and newly faced situations.

1.2 Research Objectives

To tackle the anomaly resilience, detection, and reaction tasks, we employ different techniques

depending on the specific case. Regarding the trajectory design domain, surrogate modeling is

employed to accelerate the trajectory design process in the context of lunar descent and ascent

scenarios, exploiting adaptive sampling for the rapid exploration of the design space. For what

concerns the investigation related to the satellite constellation domain, we consider the problem
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divided into two segments, that are 1) detection and 2) reaction, with both segments sharing the

assumption of an adversarial attack against a P-LEO system. For the detection segment, we

propose the application of a neural network-based architecture as a more general methodology

to identify anomalous connections on a satellite network represented as a dynamic graph. For

the reaction segment, competitive coevolution and genetic programming are combined to evolve

efficient strategies to counter an adversarial action against a satellite network.

Objective-1. Assessment of the convergence and dynamical structures of the Near Rec-

tilinear Halo Orbit-to-Low Lunar Orbit abort trajectory design space. The purpose of

this objective is to generate a cartography for the trajectory abort design space in the context

of humans’ lunar exploration. To this aim, two representative scenarios - descent and ascent -

are introduced and investigated. For each case, the convergence structure is analyzed through

the implementation of a two-step optimization pipeline. To reduce the computational cost,

surrogate modeling in combination of adaptive sampling techniques is explored as a way to

rapidly generate initial guesses to be corrected by traditional schemes for the generation of

desired trajectory solutions. Further analyses are conducted to assess how the problem geometry

influences the dynamics and the quality of the obtained trajectory solutions.

Objective-2. Establishment of a framework for detecting temporal-topological anomalies

on satellite P-LEO constellation networks. The purpose of this objective is to define a

framework for efficiently detecting anomalous connections over P-LEO networks, with the goal

of creating an automatic tool that can aid ground operators to monitor large satellite systems. To

this aim, the P-LEO constellation is first represented as a dynamic graph, which offers a flexible

way to represent large dynamic networks, providing both spatial and temporal rich information.

Next, graph features are extracted and processed by a transformer-encoder network. Graph and

constellation parameters are investigated to determine their effect on network performance.

Objective-3. Establishment of a framework for the investigation of reactive strategies

to counter threats against satellite P-LEO constellations. The goal of this objective is to

characterize a framework for the exploration of effective reactive strategies to counter adversarial
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attacks against a satellite system. To achieve this objective, the threat-to-satellites problem is

framed as an adversarial ground station transit time game, which is developed and character-

ized. The proposed formulation, while simplifying real-world scenarios, offers flexibility and

constitutes a launch pad to investigate more complex dynamics. A solution is explored through

employment of competitive coevolution to evolve two populations representing a hypothetical

attacker aiming to disrupt communication services, and a defender whose goal is to re-establish

nominal operations. In this regard, both competitive coevolution and genetic programming trees

are employed to identify effective strategies for both the attacker and the defender as a solution

to the problem.

1.3 Manuscript Organization

As mentioned in the previous section, three problems are investigated in this dissertation: 1)

trajectory design in cislunar space, 2) anomaly detection in satellite P-LEO constellations, and

3) identification of reactive strategies within a P-LEO constellation adversarial setting. Due to

the diverse nature of these challenges, each of these problems is discussed separately. Hence,

the structure of this work is organized as follows:

• Chapter 2 is dedicated to the anomaly resilience challenge, and partially contains the

findings of our work “Structure of the NRHO-to-LLO Abort Trajectory Design Space” [4].

At first, the problem and its relevance are discussed in the context of the Artemis program.

Next, the dynamical modeling and algorithmic methodologies are presented. Finally, the

descent and ascent scenarios are presented and key findings are thoroughly discussed.

• Chapter 3 discusses the anomaly detection problem and presents a modified version of

our journal publication “Transformer-based anomaly detection in P-LEO constellations:

A dynamic graph approach”[5]. At first, the problem is framed in the context of security

of satellite constellations. Next, theoretical background on graphs and deep learning

is provided, followed by a description of the employed methodology. Finally, multiple

scenarios are considered, demonstrating and discussing the robustness of the method with

the variation of problem parameters.
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• Chapter 4 deals with the anomaly reaction task and presents a modified version of our

journal publication “Coevolving Defender Strategies Within Adversarial Ground Station

Transit Time Games via Competitive Coevolution” [6]. At first, the problem is again

framed in the context of space assets security. Next, a background on the methodology is

provided, followed by details on our particular implementation. Finally, a wide pool of

scenarios is presented and the associated results are analyzed.

• Chapter 5 concludes the manuscript and presents future potential avenues of research for

each topic.
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Chapter 2

Investigating Trajectory Abort Scenarios for Mission Resilience Enhancement

2.1 Introduction

As highlighted in the Global Exploration Roadmap [7], over the past decade multiple nations

have expressed a renewed interest in returning to the Moon, announcing programs targeting

the return of mankind to the lunar surface by the end of this decade. One such program is the

NASA’s Artemis mission, which reached its first major milestone in December 2022 with the

successful completion of Artemis I. One of the primary objectives of the program involves the

establishment of a human outpost on the lunar surface, which will be exploited as a proving

ground for the testing of new technologies and demonstration of reliability of human long-

duration habitats for future deep-space exploration (such as future missions to Mars), and a field

laboratory to conduct lunar science.

Toward these objectives, part of the mission includes the realization of the Deep Space Gateway

(DSG), an orbiting space station with both operational and scientific purposes. The DSG will in

fact provide essential support for lunar surface missions, an environment to conduct science,

and it will constitute a staging point for further deep space missions. Due to its pivotal role, a

convenient operational orbit must be carefully identified. Among several options, a 9:2 resonant

(∼ 6.5 days) Near Rectilinear Halo Orbit (NRHO) [8] has been selected. Such an orbit belongs to

the NRHO family, a class of orbits identifiable within a three-body dynamical system and defined

by orbits extending close to the smaller body, almost perpendicularly to the line connecting the

primary bodies. Several operational advantages are offered by the selected NRHO, including

the possibility of continuous communication with the Earth, simpler shadow avoidance, lower

station-keeping costs, and facilitated accessibility to the lunar surface and deep space [9, 10, 11].
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Starting from Artemis III, the lunar gateway will serve as a staging point for crewed missions to

the lunar surface, enabling access to multiple regions of the Moon. According to the Human

Landing System (HLS) mission conops [12], operations for crewed missions will exploit a

circular Low Lunar Orbit (LLO) as intermediate step in the descent/ascent phases. Leveraging a

LLO offers several advantages, including flexibility for Lunar Orbit Insertion (LOI), reduced-

cost options (in terms of ∆v) for lunar descents, and in general, a convenient intermediate break

point for landing and ascent operations [13]. A schematic representation for a three-elements

mission concept is provided in Fig. 2.1.

Figure 2.1: Schematic representation of the structure of a roundtrip NRHO-lunar surface for a
three-elements mission concept. LOI: lunar orbit injection, DOI: descent orbit initiation, LOD:
lunar orbit departure.

While nominal mission trade studies provide meaningful information to define system

performance requirements, one must consider the possibility of failures throughout the mission

operational lifetime. This aspect becomes even more relevant when considering crewed missions.

As such, positive abort capabilities must be considered. Of note, these off-nominal scenarios

do not necessarily impede successful completion of the mission, but they may lead to partial

fulfilment of the missions objectives. Therefore, integration of abort modes into the design

process may still lead to a successful mission, though with sub-optimal performance, ultimately

enhancing overall design resilience. Unfortunately, the uncertainty on the mission schedule

(initial plans promised a manned mission by the end of 2024, now pushed beyond 2026) requires

the analysis of a large number of abort trajectories, potentially necessitating the scanning of all
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combinations of the problem search space parameters. However, conducting this operation is

often unfeasible, especially in a time-constrained environment. Therefore, more effective ways

to identify feasible solutions must be considered. Traditionally, two approaches are employed

in the trajectory design process: 1) direct search, which relies on the utilization of numerical

methods for the exploration of the search space and the identification of trajectories, and 2)

flow-informed search, which leverages knowledge of the dynamical environment to reveal

potential solutions and gain further understanding of the solution space.

Traditional direct search methods adopt brute-force grid search strategies, such as full-

factorial Monte Carlo analyses, to explore the design space. While direct search methods can

cover large regions of the solution space, their computational cost grows exponentially with

the number of design variables, such as trajectory segment epochs, corrections, abort modes,

etc. Additionally, existing optimization pipelines typically rely on a set of initial guesses whose

quality is directly correlated to the convergence robustness of the corresponding pipeline. The

identification of such initial guesses is a non-trivial task, especially when dealing with a complex

dynamical environment. Furthermore, black-box searches do not directly provide an understand-

ing of the underlying dynamical structures, which are generally important to gain confidence

in operating within highly non-linear dynamical environments, such as the cislunar space. As

direct search methods may have limitations when dealing with complex, large search spaces,

alternative methodologies are necessary.

Flow-informed search techniques often complement direct search methods. Notably, such

techniques are agnostic to model fidelity, and can thus become applicable where traditional

approaches lose their effectiveness. Within the context of spacecraft trajectory design, previous

studies have highlighted the advantages introduced by flow-informed methodologies [14, 15],

as they can provide an additional geometrical understanding of the motion of a spacecraft

under complex dynamics fields. Among these techniques, Finite-Time Lyapunov Exponents

(FTLEs) have emerged as an effective tool to describe the dynamical structure of complex

spaces [16]. In fact, FTLEs are informative of stretching directions in the dynamical flow. As
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such, trajectory designers are aided in the characterization of useful directions of motion, and

in the parametrization of regions of the design space associated with a common trajectory pattern.

In this chapter, we explore the structures of the NRHO-to-LLO abort trajectory design

space on two scenarios.

1. Descent. The first scenario considers the trajectory segment that goes from the NRHO to

a selected LLO, and it assumes a failure occurs along the trajectory, such that the module

is commanded to rendezvous with the Gateway.

2. Ascent. The second scenario considers the full ascent from the lunar surface to the NRHO,

and it assumes the surface stay is aborted such that the crew has to return to the DSG before

the nominal mission duration. In conformity with the mission conops, an intermediate

LLO is selected as break point between the lunar surface and the NRHO.

We employ direct and flow-informed search approaches to characterize the solution space,

presenting different levels of analysis for the specific scenario.

For the descent problem, we first capture a snapshot of the convergence structure for a selected

case study. Through this initial investigation, we highlight the existence of regions of stiff

convergence for different variations of the trajectory correction pipeline. In an attempt to gain

additional insight into the obtained results, we consider the same abort scenario while exploring

the utilization of FTLEs maps [17], which provide qualitative and quantitative information

regarding the types of motion associated with the identified trajectories. By leveraging this tool,

classes of trajectories associated with particular types of motion can be identified, thus providing

a first characterization of the problem’s dynamical structure. Finally, we demonstrate an initial

guess generator based on surrogate models trained via adaptive sampling techniques, which

enable smart sampling of the parameter space, reducing the overall number of points required to

train an effective metamodel. While the training of the surrogate model adds extra operations,

our preliminary results on the net acceleration of the trajectory sweep process indicate a positive

improvement. By providing the downstream optimization with a better guess, we reduce the
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number of high-fidelity model evaluations required for convergence, reducing the total compu-

tational cost. The enhancement is also reflected in the diminished areas of stiff convergence

within the solution space’s structure.

Similar studies are conducted for the ascent problem, which also displays regions of stiff

convergence based on variations of the pipeline. In particular, our analysis reveals how the

solution surface is much more complex than the one identified in the descent problem, hindering

the efficacy of a surrogate model. Hence, an in-depth analysis is conducted to determine the

key factors behind the underlying structure behavior. Specifically, we investigate the most

sensitive cases from a numerical and dynamical perspective, and we conduct further analysis by

considering additional problem parameters. The outcome of this study is then summarized in a

series of key considerations which become instrumental for the trajectory design problem.

The remainder of this chapter is organized as follows. Sec. 2.2 presents a description of the

dynamical model and introduces the reference frames utilized throughout the work. Sec. 2.3

provides an overview of numerical integration techniques. Sec. 2.4 presents the set up of the

two abort scenarios. Sec. 2.5 contains an overview of the different methodologies utilized in the

investigation. Sec. 2.6 presents the analyses and discussion associated with the descent problem.

A similar structure then follows in Sec. 2.7 for the ascent scenario.
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2.2 Dynamical Models

The Circular Restricted Three-Body Problem (CR3BP) is adopted to describe the dynamical

environment. The CR3BP constitutes a simplification of the more general three body problem,

which assume three gravitationally attractive bodies, namely two primaries and the spacecraft,

each influencing the motion of the others. In the case of the CR3BP, the mass of the third

body (the spacecraft) is negligible. For the case of the Earth-Moon system, the mass ratio

between the primaries is larger with respect to the one in many other systems. This makes the

CR3BP framework particularly suitable to gain sufficient insight into the dynamical behavior

of a spacecraft in cislunar regime without the burden of the computational cost required by

higher-fidelity models [18].

Let P1, P2 and P3 be the three primary bodies, with associated masses m1, m2 and m3. Then,

the main assumptions of the CR3BP can be formalized as:

• The spacecraft, P3 has a negligible mass, that is, m3 ≪ m1,m2, such that the motion of

P1 and P2 is not influenced by P3.

• P1, P2 and P3 are all considered point masses solely capable of translational motion.

• P1 and P2, with m1 > m2, revolve on a circular Keplerian orbit with respect to a common

barycenter. The circularity assumption constitutes a further simplification to the three

body problem, which would otherwise consider elliptical orbits, resulting in the slightly

more general Elliptical Restricted Three Body Problem (ER3BP).

Despite the simplification, the resulting framework remains sufficiently accurate as a first

representation of the motion of a spacecraft in cislunar regime, and leads to an autonomous

model when formulated in a rotating, or synodic, frame.

2.2.1 Equations of Motion

To derive the equations of motions (EOMs) in the synodic frame, let us start by defining an

inertial reference frame X̂-Ŷ -Ẑ, centered at the barycenter of the primaries P1 and P2. As
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mentioned, the primaries revolve on Keplerian circular orbits, with their motion lying on the

X̂-Ŷ plane. In such a way, the Ẑ axis results to be normal to the primaries orbital plane, and

parallel to the angular momentum vector. Conversely, P3 is free to move in all spatial dimensions.

Newton’s Second Law can then be applied to describe the motion of P3 as influenced by the

gravitational pull of the primaries [19]:

r̈3 = −Gm1

r313
r13 −

Gm2

r323
r23 (2.1)

with G being the universal gravity constant, and rij (such that rij = ri - rj) expressing the

position of the body Pi with respect to the body Pj . Next, to express Eq. (2.1) in the synodic

frame, an appropriate rotating coordinate frame must be introduced. To this aim, the CR3BP

assumes such frame defined as follows: the x̂ axis is defined along the P1-P2 direction, with the

ẑ axis oriented parallel to the primary angular momentum vector. The ŷ axis completes then the

orthogonal triad. The rotation of the x̂-ŷ-ẑ frame is described by an angle, θ, such that θ = Nt,

considering θ0 = Nt0 = 0. In the previous expression, N represents the mean motion associated

with the primary bodies, while t is the dimensional time elapsed since the initial time t0. Of note,

the expression of constant angle rate holds due to the circularity assumption. A representation

of the frames is reported in Fig. 2.2.

Figure 2.2: Definitions of barycentric synodic and inertial frames: rotating frame (x̂, ŷ) oriented
with angle θ relative to the inertial frame (X̂, Ŷ ).

As no closed-form analytical solution exists for the CR3BP, numerical integration must be

performed. To this aim, a common step involves non-dimensionalization of the EOMs, which
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makes the results more general and improves numerical conditioning for integration. Hence, a

few characteristic quantities are introduced for mass (Eq. (2.2)), distance (Eq. (2.3)) and time

(Eq. (2.4)):

m∗ = m1 +m2 (2.2)

l∗ = r1 + r2 (2.3)

t∗ =

√
l∗3

Gm∗ (2.4)

Notably, the characteristic time, which derives from Kepler’s third law, is such that the non-

dimensional mean motion, from now on denoted with “n”, is equal to 1. A summary for the

value of the characteristic quantities in the Earth-Moon system is reported in Tab. 2.1.

Parameter Value
m∗ [kg] 6.0458×1024

l∗ [km] 384400
t∗ [s] 375200

Table 2.1: Transfer trajectory characteristics.

Introduction of these characteristic quantities allows to express Eq. (2.1) in its non-

dimensional form. Defining:

ρ =
r3
l∗

= xx̂+ yŷ + zẑ (2.5)

r =
r23
l∗

= (x− 1 + µ)x̂+ yŷ + zẑ (2.6)

d =
r13
l∗

= (x+ µ)x̂+ yŷ + zẑ (2.7)

where µ = m2

m1+m2
denotes the system mass ratio, Eq. (2.1) becomes:

ρ̈ = −(1− µ)

d3
d− µ

r3
r (2.8)
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Please note that Eq. (2.8) represents the dynamics of P3 as seen from an inertial observer,

expressed in the rotating frame. Representation of the same dynamics from the perspective of a

rotating observer can then be obtained by applying the transport theorem. Given ρ, and denoting

the synodic frame through the letter “S ”, the expression for the velocity and acceleration reads:

ρ̇ = I d

dt
(ρ) = S d

dt
(ρ) + ωS/I × ρ (2.9)

ρ̈ = I d
2

dt2
(ρ) = S d

dt
(ρ̇)+ωS/I × ρ̇ = S d2

dt2
(ρ)+2ωS/I × S d

dt
(ρ)+ωS/I ×ωS/I ×ρ (2.10)

where ωS/I represents the angular velocity vector of the synodic frame S relative to the

inertial frame I. Recalling the assumption of the model, this corresponds to a vector of constant

magnitude and direction, and it is expressed as ωS/I = nẑ. Finally, substituting Eq. (2.5)

into Eq. (2.10) and considering its individual components, the non-dimensional EOMs for the

CR3BP expressed in the rotating frame become:

ẍ− 2nẏ − n2x = − (1−µ)(x+µ)
d3

− µ(x−1+µ)
r3

,

ÿ + 2nẋ− n2y = − (1−µ)y
d3

− µy
r3
,

z̈ = − (1−µ)z
d3

− µz
r3
,

(2.11)

where n, here equal to 1, can be omitted. As concluding remark, this set of equations can

be expressed in a more compact form with the introduction of the pseudo-potential function:

U∗ = U +
1

2
n2(x2 + y2) =

1− µ

d
+

µ

r
+

1

2
n2(x2 + y2) (2.12)

Following the introduction of this quantity, the re-written EOMs become:

ẍ− 2nẏ = ∂U∗

∂x

ÿ + 2nẋ = ∂U∗

∂y

z̈ = ∂U∗

∂z

(2.13)
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2.2.2 Jacobi Constant

The Jacobi constant is the only integral of motion in the CR3BP problem, and it can be interpreted

as an energy-like term, which remains constant within the restricted three body formulation. To

derive the expression of such a constant, one can simply take the dot product of Eq. (2.13) with

the velocity expressed in rotating frame, thus obtaining:

ẋẍ+ ẏÿ + żz̈ =
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.14)

As the pseudo-potential U∗ is a function of the position alone, the right hand side can be

expressed as its time total derivative, dU∗

dt
, thus allowing to re-write the previous equation as:

ẋẍ+ ẏÿ + żz̈ =
dU∗

dt
(2.15)

Time integration of Eq. (2.15) let then introduce an integration constant, C, as:

1

2
(ẋ2 + ẏ2 + ż2) = U∗ +

C

2
(2.16)

Finally, rearranging the terms in this last equation and recognizing the left hand side to be

the square of the velocity expressed in rotating frame, the Jacobi constant assumes the form:

C = 2U∗ − V 2 (2.17)

This quantity is directly related to the energy of the system. In particular, an increase of

the energy corresponds to a decrease of the Jacobi constant (and the other way around.) The

Jacobi constant serves multiple functions within the CR3BP problem, including monitoring the

numerical stability of integration, identification of the necessary energy variation required by

maneuvers, and identification of boundaries for the motion of a particle.
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2.2.3 Frame conversion

Rotating Frame. Often times, as it will be later discussed in this chapter, it is necessary to

convert quantities from the rotating frame to the inertial frame (and the other way around).

Figure 2.3: Relative orientation of inertial and rotating frames at two representative times.

With reference to Fig. 2.3, and considering the previously introduced notation with capital

letters for the inertial frame and lowercase for the rotating frame, the transformation from

rotating to inertial coordinates is given as [20]:


X

Y

Z

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



x

y

z

 = RS/Iρ (2.18)

To compute the vector time derivative, one can consider each component individually,

where the time information is contained within the rotation angle through the relation θ = ωS/It,

resulting into the following expressions:

Ẋ = ẋ cos θ − ẏ sin θ − (x sin θ + y cos θ) (2.19)

Ẏ = ẋ sin θ + ẏ cos θ + (x cos θ − y sin θ) (2.20)

Ż = ż (2.21)

Hence, the rotation of a full state, here intended as a combination of position and velocity,

can be expressed through:
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

X

Y

Z

Ẋ

Ẏ

Ż


=


RS/I 03×3

ṘS/I RS/I





x

y

z

ẋ

ẏ

ż


(2.22)

where the derivative of the rotation matrix ṘS/I is given by:

ṘS/I =


− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

 (2.23)

To transform from inertial to rotating frame, the inverse of the total rotation matrix can

be taken. It is worth mentioning that the above procedure, though general, is here meant to be

applied between the inertial frame centered at the system barycenter and the synodic frame.

Depending on the task, or by the necessity to gain additional insight, one may desire to center

the origin of the system at other basepoints, such as of one of the primaries. In such a case, the

coordinates can be first translated to the desired basepoints, and the transformation matrix is

then applied to the translated vector. This procedure will be used throughout the next sections to

convert from rotating to arbitrarily centered inertial frames.

Other Frames. Sometimes it is convenient to express quantities with respect to a different

reference frame, as it may provide a better understanding of the problem. One such frame is the

R̂-Ŝ-Ŵ coordinate system, that is a local frame co-moving with the spacecraft [21]. The system

is defined as follows: the R̂ axis indicates the radial direction pointing out from the spacecraft

along the planetocentric radius vector, the Ŝ axis is normal to the radial direction and points

toward the direction of motion (along-track direction), and the Ŵ is normal to the orbital plane

(cross-track direction). A representation of the coordinate system is depicted in Fig. 2.4.
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Figure 2.4: Representation of the R̂-Ŝ-Ŵ frame with respect to a generic inertial frame Î-Ĵ-K̂.

To convert from the inertial frame to the local frame (and the other way around) we first

define the direction of the R̂-Ŝ-Ŵ axes as follows:

R̂ =
r

|r|
(2.24)

Ŵ =
r× v

|r× v|
(2.25)

Ŝ = Ŵ × R̂ (2.26)

where r and v represent the position and velocity vector expressed in the inertial frame.

Next, the conversion from inertial to local frame reads:

rRSW = [R̂ Ŝ Ŵ ]T rIJK (2.27)
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2.3 Numerical schemes

With solely one integral of motion, that is, the Jacobi constant (see Sec. 2.2.2), the CR3BP

does not present a closed-form solution. As such, numerical integration is required to propagate

trajectories. However, due to the chaotic nature of the system, it is not possible to identify a

priori a set of initial conditions that yield a desired behavior. As such, differential correction

schemes are typically introduced. In the following, the techniques adopted within this work are

briefly described.

2.3.1 State Transition Matrix

Before describing the most prominent differential correction schemes, it is first relevant to

introduce the concept of State Transition Matrix (STM). In fact, the definition of these schemes

relies on the concept of sensitivity, thus requiring to measure how variations to an initial state

relate to deviations in a downstream state. Consider at first the nonlinear system of differential

equations expressed in its first-order form as:

ẋ = f(x, t) (2.28)

with x⊤ = [x, y, z, ẋ, ẏ, ż]. Next, consider some set of initial conditions generating a

reference path x∗(t). Then, a trajectory originating from the variation of such a path can be

expressed as:

x(t) = x∗(t) + δx(t) (2.29)

where δx(t) denotes the deviation with respect to the nominal path through time. Plugging

the last equation in Eq. (2.28) and taking the Taylor series expansion about the reference

trajectory provides the linear approximation (higher order terms are neglected) for the time

evolution of the deviation:

ẋ = ẋ∗ + δẋ = f(x∗ + δx) ≈ f(x∗) +
∂f

∂x

∣∣∣∣
x∗
δx (2.30)
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Cancelling out the terms related to the reference trajectory, the above equation reduces to:

δẋ ≈ ∂f

∂x

∣∣∣∣
x∗
δx = Aδx (2.31)

where A ia a matrix denoting the Jacobian of f with respect to x evaluated along the

reference. Such matrix has an analytical expression given as:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗
xx U∗

xy U∗
xz 0 2 0

U∗
yx U∗

yy U∗
yz −2 0 0

U∗
zx U∗

zy U∗
zz 0 0 0


(2.32)

with the notation U∗
ij expressing the second order partial derivatives of the pseudo-potential

function (Eq. (2.12)).

The solution to Eq. (2.31) can be expressed in a form that maps the variations in the initial state

to variations in a downstream state at some time t, according to:

δx(t) =

(
∂x(t)

∂x(t0)

)
δx(t0) (2.33)

where the matrix
(

∂x(t)
∂x(t0)

)
provides the linear mapping, and it represents the STM, denoted

as Φ(t, t0). To determine the STM, one can take its time derivative:

d

dt

(
∂x(t)

∂x(t0)

)
=

d

dx(t0)
ẋ(t) =

∂f(x, t)

∂x(t)

∂x(t)

∂x(t0)
= A

∂x(t)

∂x(t0)
(2.34)

In conclusion, the evolution of the STM can be obtained as the solution of the first-order

differential equation:

Φ̇(t, t0) = AΦ(t, t0) (2.35)
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To propagate Eq. (2.35), the initial conditions for the STM are given as Φ(t, t0) = I6×6.

Then, the elements in the STM can be determined from the A matrix, and integrated according

to Eq. (2.35) along with the equations of motion.

2.3.2 Differential Corrections Algorithms

In the context of trajectory design, differential correction algorithms are a class of algorithms

which aim to identify solutions such that a given trajectory satisfies a set of constraints. These

methods are extremely popular in the CR3BP framework, where initial conditions can sometime

be guessed from a linear approximation, which rarely leads to the desired behavior in non-linear

regime. In particular, a constraint/free variable Newton method is traditionally employed to

solve two-point boundary value problems, where the free variables correspond to the set of

variables allowed to be adjusted during the optimization process. Common free variables include

state-related quantities (position and/or velocity components), time of flight and epochs. To

begin with, let X be the free variable vector with n free variables, that is:

X =



X1

X2

...

Xn


(2.36)

The components of X have then to be adjusted to meet some constraints, which are enclosed

into a constraint vector F(X), defined as:

F(X) =



F1(X)

F2(X)

...

Fm(X)


= 0 (2.37)

with m being the number of constraints. Similarly to the free variable vector, constraints

are generally applied to position, velocity, or time of flight, though many other can be imposed

based on the specific problem. Given these two quantities, the goal is to identify a design vector
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X∗ such that F(X∗) = 0. To this aim, let X0 be the initial guess for such a vector. Then, the

constraint vector can be approximated with its first-order Taylor expansion about the initial

guess:

F(X) = F(X0) +
∂F(X0)

∂X0
(X−X0) (2.38)

where ∂F(X0)
∂X0 is the m × n Jacobian of the constraint vector, from here on denoted as

DF(X0). Hence, recalling the objective is to identify X such that F(X) = 0, Eq. (2.38) can be

written in an iterative update form, that is:

F(Xj) +DF(Xj)(Xj+1 −Xj) = 0 (2.39)

where Xj and Xj+1 represent the free variable vector at the current and next iteration

respectively. As the variable vector and the constraint vector are both available at the j-th

iteration, the Jacobian can be computed, thus allowing to rearrange Eq. (2.39) to define the

update equation for the design variable vector:

Xj+1 = Xj −DF(Xj)−1F(Xj) (2.40)

The iterative process is continued till the norm of the constraint vector decreases below an

arbitrarily small tolerance ϵ, that is, until ||F(Xj+1)|| < ϵ.

A few conclusive notes must be done in regard of the existence of a solution. In particular, if

n > m, infinite many solutions exist. In such a case, a minimum norm approach can be taken,

which involves considering the update equation as:

Xj+1 = Xj −DF(Xj)T [DF(Xj)DF(Xj)T ]F(Xj) (2.41)

Instead, if n < m, the system is over-constrained and no solution exists. For a square

system, exactly one solution can instead be obtained.
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2.3.3 Single Shooting

The single shooting (SS) method is a popular differential correction algorithm in the context

of trajectory design. With reference to Fig. 2.5, consider a trajectory whose initial conditions

are given as x⊤
0 = [x0, y0, z0, ẋ0, ẏ0, ż0] at some initial time t0. The trajectory is then propagated

for a time t = t0 + T , such that x(t) = x(t0 + T ). Furthermore, consider a target position is

desired, that is, the trajectory is desired to terminate at some state r∗ = [x∗, y∗, z∗] by modifying

the initial velocity and the time of flight.

Figure 2.5: Single shooting targeting scheme representation.

In such a case, the design variable and the constraint vectors can be respectively defined as:

X =



ẋ0

ẏ0

ż0

T


(2.42)

F(X) =


x(t0 + T )− x∗

y(t0 + T )− y∗

z(t0 + T )− z∗

 (2.43)

As n > m, the minimum norm approach (Eq. (2.41)) must be adopted. The Jacobian of the

constraints can be written as:
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DF(X) =


∂(x(t0+T )−x∗)

∂ẋ0

∂(x(t0+T )−x∗)
∂ẏ0

∂(x(t0+T )−x∗)
∂ż0

∂(x(t0+T )−x∗)
∂T

∂(y(t0+T )−y∗)
∂ẋ0

∂(y(t0+T )−y∗)
∂ẏ0

∂(y(t0+T )−y∗)
∂ż0

∂(y(t0+T )−y∗)
∂T

∂(z(t0+T )−z∗)
∂ẋ0

∂(z(t0+T )−z∗)
∂ẏ0

∂(z(t0+T )−z∗)
∂ż0

∂(z(t0+T )−z∗)
∂T

 (2.44)

Next, noticing that the desired state is independent of the free variables, and recognizing

the remaining terms to be partial derivatives of the current state with respect to an initial state,

the Jacobian of the constraint vector can be expressed in terms of elements of the STM:

DF(X) =


∂x(t)
∂ẋ0

∂x(t)
∂ẏ0

∂x(t)
∂ż0

∂x(t)
∂T

∂y(t)
∂ẋ0

∂y(t)
∂ẏ0

∂y(t)
∂ż0

∂y(t)
∂T

∂z(t)
∂ẋ0

∂z(t)
∂ẏ0

∂z(t)
∂ż0

∂z(t)
∂T

 =


Φ14 Φ15 Φ16 ẋ(t)

Φ24 Φ25 Φ26 ẏ(t)

Φ34 Φ35 Φ36 ż(t)

 (2.45)

2.3.4 Multiple Shooting

For cases involving more complex trajectories, a multi-segment approach is typically leveraged.

Differently from the single shooting, the multiple shooting (MS) scheme solves simultaneously

several two-point boundary value problems, aiming to satisfy some desired constraints. To

formulate the multiple shooting routine, a trajectory is segmented into n− 1 arcs connecting n

patch points (Fig. 2.6).

Figure 2.6: Multiple shooting targeting scheme representation.

For the sake of generality, let us assume each arc to have a different propagation time.

Hence, each state of an i-th patch point, xi = [x(ti), y(ti), z(ti), ẋ(ti), ẏ(ti), ż(ti)]
⊤, is propa-

gated for a time Ti, reaching a terminal state xi+1.
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Given these preliminaries, the design variable vector can be defined as:

X =



x1

x2

...

xn

T1

T2

...

Tn−1



(2.46)

As the arcs have to be continuous in position and velocity to achieve a smooth trajectory,

the constraint vector can be formulated as follows1:

F(X) =



xt
2(x1)− x2

xt
3(x2)− x3

...

xt
n(xn−1)− xn


= 0 (2.47)

Therefore, the Jacobian of the constraint vector assumes the following form:


Φ1 −I6×6 ẋt

2

. . . . . . . . .

Φn−1 −I6×6 ẋt
n

 (2.48)

where the notation Φj refers to the STM along the j-th trajectory segment.

As a final note, the formulation here presented assumes each arc with different duration, which is

referred to as “variable-time multiple-shooting” method. An analogous formulation exists with

fixed arc time, which would result into the design variable vector not having the time-related

terms.
1while this is is the traditional approach, one may also introduce slack variables in the design and constraint

vector to enforce the time-related terms to remain positive.
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2.4 Problem formulation

Direct and flow-informed techniques are employed to characterize the convergence and dynami-

cal structures of the cislunar space within two selected HLS abort scenarios.

Descent. In according with the mission conops, the descent problem formulation assumes

a nominal NRHO-to-LLO transfer. Previous studies have considered multiple options for the

departure point, finding NRHO-to-LLO transfers requiring about half a day [22] as the most

convenient solutions in terms of total ∆v budget and satisfaction of constraints of the mission.

As our primary focus is narrowed solely to the NRHO-to-LLO transfer, we select the NRHO

apolune as the departure point, which grants a larger time horizon for potential abort maneuvers,

hence providing richer information regarding the design space. As a representative problem, we

arbitrarily target a mean longitude L = 90◦ on a 100 km circular LLO. Under these settings, we

assume an abort maneuver is performed along the transfer from the NRHO to the LLO. As a

result, the HLS is commanded to rendezvous with the Gateway on the NRHO. As a proof of

concept for our analysis, we consider a minimal scenario involving a two-dimensional search

space, utilizing the time of flight (TOF) over the two trajectory segments (i.e., from the departure

point to the abort point and from the abort point to the rendezvous point), from now on referred

to as TOF1 and TOF2, as problem parameters. A schematic of the approach is shown in Fig. 2.7.

Figure 2.7: Schematic representation for the descent scenario.
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Ascent. The ascent scenario presents a similar structure to the previous one. In this case,

we assume the abort to be associated with the duration of the crew stay on the lunar surface,

such that astronauts must return to the Gateway ahead of the nominal time. Also in this case,

the mission conops consider an intermediate LLO as intermediate point. In this analysis, a

representative polar LLO with an altitude of 150 km is selected. Analogously to the descent

scenario, the time of flight associated with two trajectory phases is selected. The first segment

combines the ascent from the lunar surface to the LLO and a loitering period on the LLO. The

second segment is instead associated with the LLO-to-NRHO transfer. A representation of the

scenario set up is depicted in Fig. 2.8.

Figure 2.8: Schematic representation for the ascent scenario.

For what concern the ascent trajectory, the ascent module is assumed to depart from the

lunar south-pole, with a motion governed by the following dynamics [23]:

dv

dt
=

T

m
− g sin γ (2.49)

dγ

dt
= −1

v

(
g − v2

RM + h

)
cos γ (2.50)

dh

dt
= v sin γ (2.51)

dx

dt
=

RM

RM + h
v cos γ (2.52)
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dm

dt
= − T

Ispg0
(2.53)

where v is the velocity, T is the thrust, g is the Moon gravitational acceleration, γ is the

pitch angle, RM is the Moon radius, h is the altitude, x is the downrange, m is the mass, Isp is

the specific impulse and g0 is the gravitational constant at sea level. This set of equation is then

propagated until the selected orbit altitude is reached, allowing to derive the true anomaly at

the insertion point. Of note, for a selected right ascension of the LLO, it is assumed the launch

occurs in a direction prograde with the orbital motion.
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2.5 Methodology

This section provides the general background for the different methods utilized in our investiga-

tion. First, a direct-search technique is discussed in the context of the two selected scenarios.

Next, surrogate modeling aided by adaptive sampling is introduced as a strategy aimed to im-

prove the computational cost of the employed direct search method, followed by the description

of a surrogate-aided optimization pipeline. Finally, a flow-informed method aimed at gaining

additional insight into generated trajectory solutions from a dynamical standpoint is presented.

2.5.1 Direct Search

We employ a traditional grid search method for the scanning of the defined two-dimensional

(TOF1-TOF2) design space. Abort trajectory solutions are then identified via a conventional two-

step design approach. At first, an initial trajectory estimate is derived using a lower-fidelity orbit

dynamics model, which is based on Keplerian dynamics for our preliminary proof-of-concept.

Within the Keplerian model, the abort transfer is solved as a Lambert problem [23]. For the

descent scenario, the Lambert problem is solved between the abort point and the rendezvous

point. For the ascent scenario, the terminal state again coincides with the state of the Gateway on

the NRHO, while the starting point corresponds to the state on the LLO after TOF1 has elapsed.

Next, the trajectory identified as solution of the Lambert is refined within a higher-fidelity

dynamics model (here, the CR3BP) by employing numerical correction techniques [24]. In order

to gain more comprehensive observations, transfer trajectories are corrected using both single-

shooting and multiple-shooting algorithms, with the latter formulated as a fixed-time shooting

scheme. Both correction algorithms solely target a final position vector without constraints on

the arrival ∆v. Please note that while we acknowledge the transfer itself may be associated

with an elevated total cost in terms of ∆v, our primary interest is the definition of a reference

trajectory. As such, an optimal (i.e., minimum-∆v) transfer is out of our scope. Notably, the

fidelity of both models and the correction approach can vary in complexity. For instance, the
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lower-fidelity model could utilize CR3BP, while the higher-fidelity one can leverage NAIF

ephemeris 2. A schematic representation of the described approach is provided in Fig. 2.9.

Figure 2.9: Two-step, initial-guess-based optimization pipeline. Descent trajectory scenario
utilized as an example on the right side of the figure.

2.5.2 Surrogate Modeling and Adaptive Sampling

The systematic exploration of a large search space rapidly becomes computationally expensive

as the number of problem parameters increases. Additionally, any automatic exploration of

the design space is further compromised by ill-conditioned initial guesses, which may affect

the quality and the convergence robustness of an optimization algorithm. A promising strategy

for reducing intensive computational costs is provided by surrogate models, also referred to as

metamodels. Surrogate models are mathematical models that can be utilized to approximate

various input/output relations describing the behavior of complex systems. In this sense, they

can be interpreted as a data-driven abstraction of an original system (Fig. 2.10).

A plethora of methods exist for the construction of a metamodel, including support vector

machines (SVMs) [25], radial basis function networks (RBFNs) [26], polynomial regression

2https://naif.jpl.nasa.gov/naif/data_generic.html
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Figure 2.10: Schematic outlining the steps for generating surrogate models.

[27] and Kriging [28, 29]. In this investigation, we employ a class of the Kriging methodologies

known as ordinary Kriging (OK) [30] as a metamodeling technique.

Ordinary Kriging. OK aims to approximate an exact mapping, M : X → Y , between an

input, x ∈ X ⊂ Rn, and a univariate output, y ∈ Y ⊂ R, as the mean of a stochastic process

[31]:

Y (x) = µ+ Z(x) (2.54)

where µ here represents a global mean contribution, while Z(x) is a stationary Gaussian

process. The latter, can be further expanded as:

Z(x) = W (x) + η(x) + ϵ(x) (2.55)

with W (x) and η(x) accounting for small-scale and micro-scale variations respectively,

while ϵ(x) represents a noise term. The idea of OK is then to obtain a metamodel, M̂, that

represents the most accurate approximation of an exact model, M, for any point x0 ∈ X , as the

mean of the realization of the stochastic process defined in Eq. (2.54) at x0, i.e.:

M(x0) ≈ M̂(x0) = µŶ (x0) = µ̂+ rT0R
−1(y − 1µ̂) (2.56)

In Eq. (2.56), µ̂ represents the a priori estimate of the global mean (which can be obtained

via a least-square estimate), r0 and R are the cross-correlation and autocorrelation vector and

matrix respectively, y is a vector of true observations and 1 is a vector of ones. In particular, r0
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and R are dependent on a n-dimensional parameter vector, θ, with n being the dimensionality

of the input space, whose components are obtained via the solution of an optimization problem

[32] based on the Maximum Likelihood Estimation (MLE):

Ψ =
1

2

{
m ln

[
1

m
(y − 1µ̂)T R−1 (y − 1µ̂)

]
+ ln (|R|)

}
(2.57)

with m being the current number of samples. In other words, the correlation parameters are

optimized such they maximize the likelihood that the process described by the model produced

the data that were actually observed. Notably, OK provides information about the variance of

the model, σ2
Ŷ (x0)

, which can be exploited to assess the quality of the model during the training

process, here intended as the model’s parameters adjustments as new points are sampled.

Adaptive Sampling. Prediction quality of surrogate models strongly depends on the size and

distribution of the training points. In particular, an effective metamodel should be obtained from

a reduced number of newly sampled points, which are added to an initially established set of

evaluation points. In fact, as noted in the previous paragraph, the generation of a surrogate

model necessitates a vector of true observations, meaning that the exact model must be evaluated.

Hence, exploitation of surrogate models becomes appealing solely when the cost of generating

the surrogate model itself positively impact the total simulation cost. Typically, exact knowledge

of the input/output mapping of a given system may be unavailable; therefore, the identification

of the distribution of the new sample points becomes a challenging task. A simple heuristic is

provided by one-shot sampling techniques, which rely on sampling at once the points over the

parameter space with an even distribution, aiming to capture the general behavior of the output

surface. However, such a technique may miss relevant design surface information, making

the filling technique inefficient. To mitigate this issue, a smart methodology is required to

rapidly identify points of interest in the design space. One such methodology is provided by

adaptive sampling techniques [33], belonging to the broader class of sampling strategies known

as sequential sampling, which aim at identifying points of interest in an iterative manner based

on previous predictions (i.e., on the current quality of the surrogate model). In such a way, the

number of sampled points remains contained, while ensuring a sufficiently proficient metamodel.
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Several adaptive sampling algorithms exist, each featuring either a local exploitation or a global

exploration component, or a combination thereof. Examples of such techniques include [33]

Monte Carlo-Intersite-proj-th (MIPT), Accumulative Error (ACE), Expected Improvement (EI)

and Expected Improvement for Global Fit (EIGF).

Figure 2.11: Schematic illustration of the training process of a metamodel leveraging an adaptive
sampling technique.

Fig. 2.11 depicts the general procedure to train a surrogate model via adaptive sampling

techniques. To begin with, the metamodel must be initialized. Toward this aim, for a given

design space X and an exact model M, an initial set of m-sample points X = {x1, ...,xm} is

selected. As a general rule of thumb, as suggested in [34], the number of initial samples can

be derived as m = 10n. Hence, the exact model is evaluated and its response is recorded, thus

originating the initial training set D = {X,Y}. The OK model is then initialized by fitting over

such a training set. Next, a new point xm+1 is identified via an adaptive sampling technique,

which selects a new point as the result of the optimization process:

xm+1 = arg max
x∗∈X

RC(x∗) (2.58)

where RC represents a “refinement criterion” reflecting the quality of the model. The

training set D is then augmented with xm+1, and the process iterates until a user-defined stopping

criterion is reached. Traditional choices include stopping when reaching a maximum number of

adaptive points, criteria based on time constraints, or accuracy requirements.
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2.5.3 Three-Step, Surrogate-Based Optimization Pipeline

While a surrogate model has a lower computational footprint, it cannot completely substitute an

exact model due to accuracy limitations when used to predict technical measures of performance.

This becomes especially true for systems characterized by a complex dynamic structure, where

even small numerical variations can lead to large solution differences. Nonetheless, as the

Kriging algorithm is trained over the higher-fidelity dynamics, it can be utilized as an educated

and self-tuning guess generator for any downstream optimization. Initially, the downstream

corrector or optimizer would rely on a hard-coded, lower-fidelity guess generator (like the

Lambert solver employed in this work). Meanwhile, the surrogate model trains on the high-

fidelity trajectory solutions generated by the pipeline. When a user-defined condition is met

(either number of adaptive points or error on prediction), the surrogate model replaces the

lower-fidelity guess generator, providing input for the subsequent correction or optimization

process. When the surrogate model replaces the lower-fidelity guess generator, we expect an

overall decrease in the number of iterations required to converge a solution within the high-

fidelity model. Hence, the grid search is accelerated. Additionally, the surrogate model may be

re-trained every M-steps to ensure acceleration performance remains consistent and the model

auto-refines near catastrophic collapse conditions. Figure 2.12 provides a high-level flowchart of

the proposed three-step, surrogate-based optimization pipeline. It is worth noting that the base

version of the algorithm works for univariate predictions, whereas in our case multiple outputs

are required. To achieve this goal, multiple surrogate models are trained in parallel.

2.5.4 Informed Search: Finite-Time Lyapunov Exponents

Additional insight into the underlying dynamics of a trajectory solution can be gained by leverag-

ing flow-informed techniques. These techniques are traditionally popular in fluid dynamics, but

an analogy can be constructed when considering an initial state under the influence of a complex

gravitational field on a particle following the natural flow of a system. In particular, our flow-

informed approach leverages a flow-based technique based on FTLEs, which offer a quantitative

criterion to characterize the type of motion for a trajectory propagated over a finite time horizon
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Figure 2.12: Grid search enhancement via surrogate modeling.

[35, 36]. In practice, their numerical value represents the sensitivity of trajectories originating

from small perturbations applied to neighboring initial conditions. Projection of multiple FTLEs

over a design section generates what are usually referred to as FTLE maps, which can be used

to identify the existence of Lagrangian Coherent Structures (LCSs) [37]. LCSs define barriers in

the dynamical flow, and can be exploited to qualitatively assess boundaries separating different

types of motion. Knowledge of these dynamical structures can be instrumental for the trajectory

design process, as they offer the opportunity to identify fuel- and/or time-efficient solutions.

Specifically, FTLE maps typically display ridges separating regions characterized by different

behaviors; such ridges represent larger deviations downstream a flow, thus possibly constituting

favorable conditions for the placement of maneuvers. Computation of the FTLE values requires

the derivation of the Cauchy-Green Strain Tensor (CGST), which is given by:

CGST = Φ(tf , t0)
TΦ(tf , t0), (2.59)
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with Φ(tf , t0) denoting the STM. Next, the FTLE can be directly computed as:

FTLE =
1

|tf − t0|
ln
√

λmax(CGST), (2.60)

where λmax denotes the maximum eigenvalue of the CGST, which is associated with the

direction of maximum dynamical stretching, while the term tf−t0 indicates the time horizon and

serves as a normalization factor. An example of FTLE map and associated classes of trajectories

with a one day time horizon is provided in Fig. 2.13.

Figure 2.13: Examples of trajectory behaviors from different regions of the FTLE map.

Alternatively, the FTLE value can be computed as the ratio between the maximum singular

value obtained through singular value decomposition (SVD) of the STM and the time horizon

[35]. In fact, the STM can be decomposed through SVD as:

Φ(tf , t0) = UΣVT (2.61)

where U and V are two mutually orthogonal matrices, with the column of U expressing

the direction of the stretching at tf , while Σ is a diagonal matrix containing the eigenvalues

representing the magnitude of the stretching in different direction in descending order:
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Σ =



λ1 0 · · · 0

0 λ2 · · · 0

... . . . . . . ...

0 0 · · · λn


(2.62)

where λ1 > λ2 > ... > λn. A graphical representation is provided in Fig. 2.14.

Figure 2.14: Visual representation of the stretching associated with principal eigenvalues.

Finally, as λ1 = λmax, the FTLE is obtained as:

FTLE =
λ1

|tf − t0|
(2.63)
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2.6 Case Study I: Descent

In this section, the results associated with the descent abort scenario are presented and discussed.

As described in Sec. 2.4, an abort maneuver is performed along a nominal trajectory departing

from the apolune of the NRHO and targeting a 100 km altitude LLO, such that the HLS is

commanded to rendezvous with the Gateway. The representative nominal NRHO-to-LLO

transfer is depicted in Fig. 2.15, whereas the initial conditions for the transfer are reported in

Tab. 2.2.

Figure 2.15: Representative NRHO-to-LLO transfer trajectory. Convergence tolerance set to
1e-10.

x [-] y [-] z [-] ẋ [-] ẏ [-] ż [-] TOF [-]
1.0221 0 -0.1821 -0.0017 -0.0356 0.0455 0.6496

Table 2.2: Transfer trajectory initial conditions.

At first, the performance of a two-step initial-guess-based optimization pipeline is assessed,

and the convergence structure of the abort scenario is analyzed. Next, we introduce a surrogate-

based optimization pipeline to demonstrate computational cost reduction via a metamodel initial

guess generator. Finally, the dynamical structure of the problem is investigated by leveraging

FTLEs maps.

39



2.6.1 Convergence Structure

We employ a two-step optimization pipeline (Sec. 2.5) to identify a baseline computational cost

structure within the direct search approach. Specifically, we define the computational structure as

the number of iterations required by the implemented SS and MS targeting algorithms to correct

the transfer guess provided by the lower-fidelity (Lambert) solver for different combinations of

the search space parameters. Due to our grid search set up, the TOF2 design variable corresponds

to the transfer time from to abort point to the rendezvous point. As such, both SS and MS

are formulated through a fixed time formulation. Specifically, the single shooting algorithm

targets the rendezvous state in position by operating on the initial velocity at the abort state. The

multiple shooting is formulated in a similar fashion, though continuity on both position and

velocity is enforced on the intermediate patch points.

(a) (b)

Figure 2.16: (a) Single shooting and (b) multiple shooting comparison. Grid resolution 15×15.

Figs. 2.16 and 2.17 show the number of iterations required for the SS and MS to converge

to a solution starting from an initial guess provided by the Lambert solver at two different

resolutions of the grid search (15×15 and 25×25). For both cases, the maximum number

of iterations is set to 15, which is deemed to be a sufficiently high threshold to allow the

differential correction schemes to converge to a solution. For the cases where the maximum

number of iterations is reached without a feasible solution, we tested that the SS algorithm fails

to converge even with 500 iterations, while the MS provides a solution within 50 iterations.

Note how the convergence structure, which is rendered by the number of iterations as a function
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(a) (b)

Figure 2.17: (a) Single shooting and (b) multiple shooting comparison. Grid resolution 25×25.

of TOF1-TOF2 combinations, includes highly nonlinear regions. In the proximity of certain

combinations of search space parameters, there exists a sudden and catastrophic collapse of the

trajectory design pipeline, where the pipeline fails to converge to a solution, or the computational

cost exponentially increases with respect to neighbouring cases. These regions of collapse are

likely correlated to an ill-conditioned initial guess, physical problem geometry, and numerical

sensitivity of the optimization algorithm. An example is provided in Fig. 2.18, where the iterative

steps associated with a non-converging solution are displayed. In particular, one can observe

how the algorithm fails to reduce the error below the imposed threshold, oscillating around a

constant value beyond 10 iterations.

Figure 2.18: Non-converging solution insight.
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The manual inspection of failure regions is challenging in a resource- and time-constrained

design environment, and represents a barrier to the full automation of large-scale trajectory

analysis pipelines. In fact, ad-hoc solution could be implemented to resolve some of the most

sensitive cases, though their difference in nature would not allow for an adequate and unique

comprehensive solution. Furthermore, as evident in Figs. 2.16 and 2.17, despite the global trend

is generally maintained, catastrophic collapse regions shift and deform as a function of the

downstream correction algorithms and grid resolution, rendering heuristic solutions brittle to

small changes in the pipeline.

2.6.2 Surrogate-based Optimization Pipeline

We preliminarily test the three-step pipeline under simplified conditions as a proof of concept.

In our descent abort scenario example, the initial guess to the correction algorithms is provided

by the solution of a Lambert problem; however, as such a solution is available in two-body

dynamics, it can be ill-conditioned, especially when the dynamics become more sensitive. In

particular, we seek to utilize the surrogate model to generate an initial guess for the correction

schemes in substitution to the Lambert’s guess. Instead of directly building the framework

depicted in Fig. 2.12, we first train a surrogate model offline. Next, we run a grid search analysis

similar to those represented in Fig. 2.16, this time using the guess generated by the surrogate

model in substitution to the Lambert solver.

Figure 2.19: Offline pipeline testing scheme.

In this example, our goal is to predict the ∆v vector components at the abort point. As

discussed in Sec. 2.5, the OK methodology applies to cases with univariate output, that is,

a single quantity is predicted. However, in this study multiple quantities corresponding to
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the components of the ∆v vector are required. To bridge the difference with the standard

implementation, we explore three options, each assuming a common initial set of sample points:

1. Independent training: each model predicts a new point of interest, and it is added to its

own sample points set. This is equivalent to simply running multiple metamodel training

sessions in parallel.

2. Semi-independent training: each model predicts a new point, but all the predicted points

are added to each model initial sample set.

3. Shared training: this case follows a more traditional [38] implementation of a multiple-

output Kriging metamodel. Each model is trained using k-adaptive sampling criterion,

with each model generating k-points. Next, the “Technique for Order of Preference by

Similarity to Ideal Solution” (TOPSIS) is utilized to select the set of points to be added

to all the models. Following the implementation in [38], “Maximum and Minimum over

the Expected Improvement” and “Mean Square Error” are adopted as adaptive sampling

strategies.

Each model is initialized with 40 points for all the options, and a total of 60 points is added.

Option Grid Size Lambert guess Surrogate guess % improvement
1 899.6 +3.48
2 861.1 +7.61
3

15x15 932
892.3 +4.26

1 2461.7 +4.47
2 2435.9 +5.48
3

25x25 2577
2446.6 +5.06

1 4851.6 +4.46
2 4763.2 +6.20
3

35x35 5078
4789.2 +5.69

1 9914.1 +4.32
2 9792.1 +5.50
3

50x50 10362
9788.5 +5.53

Table 2.3: Total number of iterations required for the SS to converge.

Tab. 2.3 summarizes the results for our preliminary test, using the total number of iterations

in the entire grid search as global metric. As the training of the models includes a stochastic com-

ponent, ten runs are conducted for each case, taking the average number of iterations achieved
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within each run to quantify the performance. Interestingly, for all the cases, the surrogate models

perform better than the Lambert-based guess generator at different granularity of the search

space. This could indicate that a model can be ideally trained with the addition of tens of sample

points while remaining proficient on a much larger scale.

(a) (b)

Figure 2.20: Number of iterations required for the SS to converge, utilizing the surrogate model
(a) and the Lambert solver (b) for generating the initial guess. Grid resolution 15×15.

(a) (b)

Figure 2.21: Number of iterations required for the SS to converge, utilizing the surrogate model
(a) and the Lambert solver (b) for generating the initial guess. Grid resolution 25×25.

Figs. 2.20 and 2.21 report an example of the number of iterations required for the SS to

converge to a solution starting from an initial guess provided by the surrogate models (left)

and by the Lambert solver (right), for two different grid resolutions. The surrogate model
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performs substantially better than the Lambert solver as an initial guess generator, providing

initial conditions almost always leading to a converged solution within the iterations boundary.

In this particular case, the total iteration count associated with the surrogate model case amounts

to 778 and 2220, respectively. Notably, an ideal case would have a total count corresponding to

the number of cells in the grid (here being 225 and 625). As such, there exists further room for

improvement, potentially achievable via an increment of adaptive points or a refinement of the

method.

2.6.3 Dynamical Structure Analysis: FTLE Maps

Due to the complexity of the convergence structure of the problem (Sec. 2.6.1), a direct search

approach is not always guaranteed to provide a feasible solution (within the problem and

constraints formulation). Furthermore, we highlighted how this approach provides little to no

insight regarding the nature of converged/non-converged trajectories. To mitigate these issues,

an understanding of the environment’s natural dynamics may offer multiple benefits. To this

purpose, inspired by previous studies [39, 17], we employ a flow-informed search approach

based on the exploitation of FTLE maps to explore the dynamical structure of the environment.

In fact, FTLE maps can be informative of the type of motion characterizing trajectories in

complex dynamics, thus aiding the trajectory design process.

FTLE maps are generated here for the HLS abort descent scenario defined in Sec. 2.4. Four

separate segments are considered:

1. On the first segment, the HLS travels along the descent trajectory till an abort state.

2. On the second segment, a maneuver is performed to initiate the rendezvous with the DSG.

3. On the third segment, a second maneuver is performed to inject the module on a transfer

trajectory toward the NRHO.

4. One last maneuver is performed for the injection on the terminal orbit (rendezvous point).

The time of flight after the abort (TOF2), the ∆v magnitude for the abort maneuver, and

the direction of the ∆v are used as design variables to generate the FTLE maps. Regarding the
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second and third segments, we propagate the dynamics from the abort point forward in time

and from the rendezvous point backward in time for a time horizon of TOF2/2. A schematic

representation of this four-step process is shown in Fig. 2.22.

Figure 2.22: Schematic approach representation for the generation of FTLE maps.

As the goal is to characterize the terminal conditions obtained through the forward and

backward propagation in terms of the FTLE values, such conditions are propagated for an

arbitrarily long time horizon, here set to two weeks. In such a way, we can evaluate the

sensitivity to small perturbations when applied to the terminal states obtained after the TOF2/2

forward and backward propagation. While this procedure slightly differs from the set-up of

the direct search approach (which assumes a direct abort-point-to-NRHO transfer without

intermediate maneuvers), it allows us to gather meaningful information on the general dynamics,

potentially including (or not) the trajectories identified through our representative direct search

approach.

Figs. 2.23 to 2.25 show the trajectory propagated from the same abort point for three

different ∆v values, with central and right plots showing the terminal points of such trajectories.

For this case, a TOF1-TOF2 combination corresponding to a condition of non-convergence on

the SS 15 × 15 grid is considered (see Fig. 2.16). One can observe how, as expected, higher

∆v magnitudes generate a larger deviation downstream of the propagated trajectories, with the
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Figure 2.23: Dynamics propagation example. ∆v = 10 m/s.

Figure 2.24: Dynamics propagation example. ∆v = 50 m/s.

Figure 2.25: Dynamics propagation example. ∆v = 100 m/s.

emergence of regions of recovery trajectories at the intersection of the forward and backward

flows. These terminal regions can then be characterized through the associated FTLE values.
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Figure 2.26: FTLE values to trajectory mapping. ∆v = 70 m/s, 2 weeks propagation. Dots
in the right picture represent the terminal condition of individual trajectory after propagation.
Section of the zero velocity surface with Jacobi constant level C = −3.16.

Fig. 2.26 reports the FTLE forward map coloring of the terminal surface associated with a

case assuming a ∆v = 70 m/s is applied at the abort point while considering the same TOF1-

TOF2 combination. Distinct dynamical behaviors can be identified considering different regions

of the map. For this particular example, we considered trajectories originating from states char-

acterized by the highest FTLE values (left picture, black dots), lowest FTLE values (left picture,

green dots), and randomly picked intermediate values (left picture, red dots). Propagation of

such conditions reveals how higher FTLE values are associated with trajectories persisting in

the proximity of the Moon (within the considered two-week limit), while those associated with

lower FTLE values (right picture, green cluster) are escaping.

A similar behavior is observed in multiple cases. For example, Fig. 2.27 reports a case

assuming a ∆v = 50 m/s is applied at the abort point while the forward propagation is extended

to four weeks. Similarly to the previous case, trajectories associated with minimum and

maximum FTLE values are associated with similar behaviors, with trajectories corresponding to

lower values rapidly moving away from the system, while those corresponding to higher values
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persist (though with more dispersion, as expected due to the extended propagation time) in the

proximity of the Moon.

Figure 2.27: FTLE values to trajectory mapping. ∆v = 50 m/s, 4 weeks propagation. Dots
in the right picture represent the terminal condition of individual trajectory after propagation.
Section of the zero velocity surface with Jacobi constant level C = −3.16.

Analogous considerations seem to apply when considering a different TOF1-TOF2 combi-

nation, this time selected in correspondence to a convergence condition. In particular, Figs. 2.28

and 2.29 report the FTLE forward map coloring when a ∆v of 30 m/s and 60 m/s is applied,

with a propagation time of four and two weeks, respectively. As for the previous examples,

trajectories associated with the highest FTLE values remain close to the Moon, while those

corresponding to intermediate and lowest values display much more dispersion, moving far from

the Moon. Knowledge of this information may then become instrumental for trajectory planning.

We speculate that performing a maneuver associated with states corresponding to higher FTLE

values may demand a lower propellant consumption while ensuring the spacecraft remains in

the proximity of the NRHO, while a maneuver placed in correspondence with lower values may

necessitate a higher change of energy to keep the spacecraft closer to the DSG.
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Figure 2.28: FTLE values to trajectory mapping. ∆v = 30 m/s, 4 weeks propagation. Dots
in the right picture represent the terminal condition of individual trajectory after propagation.
Section of the zero velocity surface with Jacobi constant level C = −3.16.

Figure 2.29: FTLE values to trajectory mapping. ∆v = 60 m/s, 2 weeks propagation. Dots
in the right picture represent the terminal condition of individual trajectory after propagation.
Section of the zero velocity surface with Jacobi constant level C = −3.16.
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2.7 Case Study II: Ascent

In this section, the results associated with the ascent abort scenario are thoroughly described and

analyzed. As mentioned in Sec. 2.4, it is assumed the ascent module must return to the Gateway

ahead of the nominal mission duration. A circular LLO of 150 km of altitude is considered in

this scenario as intermediate orbit for the Moon-to-Gateway transfer. To begin with, the results

concerning our two-step optimization pipeline are presented, followed by a discussion on the

performance of the surrogate-based model. Next, an in-depth analysis of the design landscape is

presented, providing additional insight to the dynamics of the problem and culminating into a

series of considerations and recommendation to aid the trajectory design process.

2.7.1 Convergence Structure

Analogously to the descent case study, a two-step optimization pipeline is employed to gain an

understanding of the convergence structure of the problem. Throughout the analysis, a lower

and upper bound of 1 day and 3 days respectively is considered for both TOF1 and TOF2, thus

providing a broader view of the resulting surface. Again, the maximum number of iterations is

set to 15, with termination conditions on runtime and minimum altitude throughout the path.

(a) (b)

Figure 2.30: (a) Single shooting and (b) multiple shooting convergence comparison on a 15×15
grid resolution, employing a prograde Lambert setting. LLO RAAN fixed to 0◦.

Figs. 2.30 and 2.31 display the iterations required by the SS and the MS to correct the

guess provided by the Lambert solver on a 15×15 grid resolution, assuming the LLO to have
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(a) (b)

Figure 2.31: (a) Single shooting and (b) multiple shooting convergence comparison on a 15×15
grid resolution, employing a retrograde Lambert setting. LLO RAAN fixed to 0◦.

a right ascension of 0◦. Similarly to what observed in the descent case study, regions of stiff

convergence appear on the grid, shifting and mutating based on the simulation settings and

downstream correction scheme. Furthermore, acknowledging the multiple shooting to be able

to resolve a few more cases with respect to the single shooting scheme, one can notice how

prograde and retrograde convergence structure are (almost) complementary, indicating how

particular combinations of time of flight can provide a solution solely for certain settings. This

can be visualized in Fig. 2.32, which portrays the iterations map obtained via both prograde and

retrograde transfer types. Of note, if both typologies provide a converged solution, the cheapest

one in terms of departure ∆v is retained.

(a) (b)

Figure 2.32: (a) Single shooting and (b) multiple shooting convergence comparison on a 15×15
grid resolution, employing a mixed Lambert setting. LLO RAAN fixed to 0◦.
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Figure 2.33: Non-converging solution insight.

Fig. 2.33 reports an example associated with a non-converging solution. In this case,

numerical instability occurs during the correction process, determining an unbounded oscillation

of the error. As previously discussed, ad-hoc mitigation may be introduced. For example, the

correction algorithm assumes a full step is taken in the update equation, which may lead to

instability if highly sensitive cases are considered. One possibility may be to introduce an

adaptive step, or to reduce the step size. However, this may increase the number of iterations

required to converge within the imposed tolerance, thus determining a reduction in computational

speed (or, equivalently, an increment in total computational cost).

2.7.2 Surrogate-based Optimization Pipeline: Surface Complexity

Similarly to the previous case, we here test the offline three-step optimization pipeline, employing

ordinary Kriging to generate an initial guess, here in terms of components of the ∆v required to

initialize the transfer from the LLO to the NRHO. To allow a comparison with the previous case,

we again initialize each model with 40 points, sampled via Latin hypercube, adding a total of 60
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adaptive points. Concurrently, as inclusion of bad guesses in the training process may hinder the

surrogate performance, the simulation is conducted employing both Lambert settings, such that

the chance of non-converging examples is minimized.

Figure 2.34: Iterations required to correct the guess provided by the surrogate models employing
single shooting as correction scheme.

Fig. 2.34 reports the number of iterations required by a single shooting scheme to correct

the guess generated by a surrogate model. As can be observed, the model performs extremely

poorly if compared with the descent case study, leading to non-converging solutions for almost

the entirety of the 10 × 10 grid here employed as test case. The causes of this behavior can

be traced to the complexity of the surface to be approximated, which is directly related to the

capabilities of the chosen metamodel.

Fig. 2.35 displays the surfaces that each surrogate model must approximate. As can be

observed, each surface is characterized by steep variations, with sudden changes in either TOF1

and TOF2 directions. However, OK assumes that the spatial variability of the phenomenon being

modeled is smooth and continuous, which does not hold for the case here considered. We believe

the observed behavior to derive from the geometry and the dynamics of the problem. In fact, the

two variables TOF1 and TOF2 correlates departure positions on the LLO to arrival conditions

on the NRHO. Notably, the two orbits are characterized by substantially different dynamics,

with a faster one associated with the LLO, and an overall slower one related to the NRHO.
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Figure 2.35: ∆v components magnitude as a function of TOF1 and TOF2. LLO RAAN = 0◦.

As such, conditions that are somewhat close in the TOF1-TOF2 space, may be relating highly

diverse pairs of departure and arrival conditions from the geometric perspective. Concurrently,

the surface is generated including guesses obtained correcting prograde and retrograde types

of transfer, which is necessary to cover the solution space. Hence, the components of the ∆v

vector result to significantly variate in directions, thus determining the observed rapid changes.

One natural solution may involve discretization of the [1,3] day-range for TOF1 and TOF2 into

smaller grids, while training multiple surrogate models on each grid. Nonetheless, this requires

identifying the spatial scale at which the surface approaches the characteristics required by OK.

Unfortunately, a quick analysis reveals how this assumption generally holds for small time scale.

Fig. 2.36 depicts the departure ∆v components when considering a small region of the

parameter space. One can observe how the surface is significantly smoother with respect to what

displayed in Fig. 2.35, hence making OK suitable for the task. The result is reported in Fig. 2.37,
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Figure 2.36: ∆v components magnitude as a function of TOF1 and TOF2. TOF1 ∈ [1,1.1] hrs
and TOF2 ∈ [2,2.2] days.

where a surrogate model initialized with 20 points and improved through 15 total adaptive points

is shown to outperform the Lambert guess generator on a 10 × 10 grid.

(a) (b)

Figure 2.37: Iterations required to correct the guess provided by (a) the surrogate model and (b)
the Lambert solver. TOF1 ∈ [1,1.1] hrs and TOF2 ∈ [2,2.2] days.
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2.7.3 Dynamical Structure Investigation

In the previous section we discussed how the ∆v surface is highly complex, allowing for appli-

cability of an OK-based pipeline solely within special conditions. Another possible alternative

would involve a change of surrogate model; nonetheless, this operation still necessitates a

thorough understanding of the expected surface. Hence, we conducted an in-depth analysis

aimed at identifying salient characteristics of the surface structure which resulted in a series

of key considerations and the revelation of interesting dynamical behaviors. Of note, as no

substantial difference has been observed, all analyses and discussions that follow will be based

on results obtained employing solely the single shooting correction scheme.

Resolving Sensitive Cases. The analysis discussed in Sec. 2.7.1 highlighted how regions of

stiff convergence appear throughout the parameter space. Interestingly, such results suggest

these regions to be generally related to the passage of the Gateway across the perilune region,

that is, to conditions where the Gateway has a higher speed on the NRHO, while being at its

closest approach to the Moon (and hence, to the LLO). We substantiated this observation through

further analyses, imposing different LLO orientations.

(a) (b)

Figure 2.38: Stiff convergence region assuming a (a) RAAN = 150◦ and (b) RAAN = 300◦ .

An example is provided in Fig. 2.38, where results associated with two additional cases,

RAAN = 150◦ and RAAN = 300◦, are reported. Particularly, one can observe how non-

converging cases are typically related to conditions for which the total time, given by the sum
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of TOF1 and TOF2, is about 80 hours. Considering all our simulations assume t0 marking the

passage of the Gateway at the aposelene, such a time is close to half of the NRHO period (∼78

hours), that is, to the time the DSG crosses the perilune. The observed trend is indicative that

good initial guesses for relatively close departure and arrival points necessitate either smaller

orbital paths or a shorter time of flight (observing Fig. 2.38 one can notice how solutions on the

80 hours diagonal converge when TOF2 goes below a certain threshold). As the imposed time

of flight must be respected, the former implies utilization of multi-revolution transfers.

(a) (b)

Figure 2.39: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 150◦.

(a) (b)

Figure 2.40: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 300◦.

The solution is depicted in Figs. 2.39 and 2.40, where Nrevmax, that is, the maximum

number of revolutions, is set 8. As can be observed , half of the non-converging cases are
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resolved via multi-revolution-like transfers. A visualization of the trajectories associated with

the RAAN = 150◦ case is reported in Fig. 2.41.

Figure 2.41: Corrected trajectories (top and side views), Nrevmax = 8. LLO represented at the
two different departure times.

As mentioned, an alternative consists of considering a shorter transfer duration. An example

for the RAAN = 300◦ case is reported in Fig. 2.42.

(a) (b)

Figure 2.42: Reducing the transfer time: (a) iteration map, and (b) sample of trajectories.

In this particular case, we considered a loitering time (∼TOF1) sufficiently long to allow

the DSG to reach and surpass the perilune, while bounding the transfer time (TOF2) within a
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few hours. As can be observed, all guesses in the grid generated by the Lambert solver converge

to a feasible solution in CR3BP model within a few iterations.

Surface Smoothing. As discussed in Sec. 2.7.2, the driver of the low performance achieved

by the surrogate model can be identified into the complexity of the surface to be approximated.

While a change of function approximator may offer a solution, an alternative may consist of

regularizing (or smoothing) the surface of interest. In fact, as hinted in the previous section,

the articulation of the surface is a derivative of the grid search formulation, which 1) employs

two time of flight variables as design parameter, thus resulting agnostic to the geometrical

characteristics of the problem, and 2) considers only feasible solutions, which may exist solely

for either a prograde or retrograde settings, thus determining steep changes in the direction

of the ∆v vector. Therefore, benefits may derive from a change of variables, substituting the

dependence of the ∆v surface on the TOF1-TOF2 parameters with a dependence on angular

quantities, which embed geometrical properties of the transfers. Due to the nature of the problem,

we here preliminarily select the true anomaly (for the LLO) and ∼mean anomaly (for the NRHO)

as angular measures to obtain a representation based on departure and terminal positions. Such

quantities can be directly related to time through the following relations:

θLLO = θinj + nτ1 (2.64)

MNRHO =
τ2
T
2π (2.65)

where θLLO is the true anomaly on the LLO at the departure time, θinj is the true anomaly

at the injection after the ascent from the lunar surface, n is LLO mean motion, τ1 corresponds to

TOF1 (reduced of the ascent time), MNRHO represents the mean anomaly-like angular position

of the rendezvous point on the NRHO, τ2 is the total time from t0, which is equivalent to TOF1

+ TOF2, and T is the NRHO orbital period. Of note, the general definition for the mean anomaly

would consider t0 at perilune, while here we assume it to be at the passage of the DSG at the

apolune.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.43: Components of the ∆v vector as a function of θLLO and MNRHO: (a,c,e) continuous
θLLO range and (b,d,f) wrapped range.

Fig. 2.43 displays the ∆v vector components in terms of the angles θLLO and MNRHO. All

the images on the left can be seen as a direct analogous of the grid search in time, with the linear

trend due to the law presented in Eq. (2.64). However, differently from the time-dependent
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representation, the angular representation allows for a re-organization of the surface through

bounding the true anomaly in the canonical [0,2π] range. In particular, one can observe how

similar regions which are distant in the continuous range representation (which directly mirrors

the continuous time direction), get closer to each other in the wrapped case, suggesting that a

representation of the surface in terms of more explicit geometrical quantities may be beneficial

toward a smoother surface, and ultimately, may facilitate the training of a surrogate model.

RAAN Influence on the ∆v Surface. Throughout the previous paragraphs, we emphasized

how the geometry of the problem strongly influences the convergence structure and the ∆v

surface structure, either when considering particular transfers directions (such as the effect of

prograde and retrograde guesses combined with orbit orientation), and the relative position of

departure and target states. To conclude the analysis and gain a global understanding of the

trajectory solution landscape, we here present the results associated with the execution of a grid

search over the entire RAAN range. Specifically, the simulation considers a 20 × 20 grid size

for each RAAN, spacing the range with a 10◦ step. Below, the key observations garnered from

this search are reported.

• ∆v cost. Based on our two-step optimization pipeline, we discover that within the CR3BP

formulation transfers as cheap as ∼0.8 km/s in terms of total cost – here intended a

summation of ∆v at departure and rendezvous points - can be achieved. Specifically,

as displayed in Fig. 2.44, any orientation of the LLO grants the possibility to identify

relatively cheap transfers, which would result feasible according to current ascent module

capability. Furthermore, we also observe how given orientations of the LLO may provide

more favorable transfers overall, thus leaving higher flexibility in terms of segment

duration once the LLO RAAN is fixed. The advantageousness of certain RAAN range

can also be interpreted from a geometrical perspective in terms of relative LLO-NRHO

orientation, coupled with the direction of the motion. In fact, as shown in Fig. 2.45, the

cheapest solutions are associated with conditions where the LLO orientation in the rotating

frame is somewhat aligned with the NRHO, while concurrently having the same direction

of the motion.
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(a) (b)

Figure 2.44: Total ∆v cost for each 20 × 20 grid: (a) minimum cost and (b) average cost.

Figure 2.45: Example of relative LLO-NRHO orientation (top view) in the rotating frame.
Black arrows indicating the motion direction, while the different colors represent an LLO with
RAAN = 320◦ at different times (see legend, with days as unit).

• ∆v direction feasibility. Further insight can be gained by considering the direction of the

impulses, specifically for what concerns the velocity variation at the departure point from

the LLO. Despite the components (and their corresponding signs) of the vector are directly

available, they provide a less intuitive representation, especially in a three-dimensional

space. Hence, we analyze the direction through a more convenient representation, mapping

the ∆v vector to an R̂-Ŝ-Ŵ frame (see Sec. 2.2.3), which enable to represent a vector in

terms of its magnitude and two reference angles, here denoted as α and β, with α defined

as the angle between the ∆v vector projection on the R̂-Ŝ plane and the R̂ axis, while β

is the angle between the ∆v vector and its projection on the R̂-Ŝ plane3.

3In other words, α and β define the in-plane and out-of-plane directions of the impulse.
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(a) (b)

Figure 2.46: β angle values expressed in degrees for two sampled right ascensions: (a) RAAN
= 0◦ and (b) RAAN = 200◦.

Fig. 2.46 reports the grid values for the β angle at two randomly selected RAANs. One

can notice how, on average, the out-of-plane ∆v component assumes low values, with the

exception of some ∼uniformly distributed cases. Analysis of such cases reveals how such

conditions correspond to cases where θLLO is close to π/2, while the rendezvous point is

beyond the NRHO perilune. An example is reported in the figure below.

Figure 2.47: Sample trajectories for high β values.

It is worth mentioning that while the highlighted solutions in Fig. 2.47 converge numeri-

cally, they may result unfeasible from the practical perspective, thus potentially reducing

the number of available solutions.
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Chapter 3

A Framework for Anomalous Links Detection within P-LEO Satellite Networks

3.1 Introduction

P-LEO satellite constellations promise to offer seamless services for a variety of applications,

including omnipresent connectivity. However, continuous monitoring challenges arise due to

potential malfunctions and the vast size of these systems. Additionally, the growing reliance

on P-LEO constellations makes them ideal targets for malicious actors [40, 41, 42], expanding

the cyber-threat landscape to include space-based systems. Knowledge of satellites’ location

and network structure is generally of public domain [43]. Moreover, the low latency targeted

by these networks reduces path diversity and route uncertainty, easing a malevolent actor’s

need to identify crucial network connections. These characteristics make space networks more

vulnerable to certain network-oriented attacks like Denial of Service (DoS) and Distributed

Denial of Service (DDoS) [44]. One such attack in the context of satellite constellations is

ICARUS [45]. In this scenario, a malicious actor in control of a botnet is virtually capable

of disrupting communications between two regions of the world by flooding a few selected

connections. As P-LEO constellations underpin critical society’s infrastructure, rapidly detecting

these attacks becomes crucial to prevent catastrophic consequences. Unfortunately, discovery of

such anomalous behaviors is hindered by the subtlety of these attacks, as malicious actors may

hide their action by exploiting natural surges of network activity. Therefore, there is an urgency

to identify effective methods capable of capturing the underlying complexities of these large

systems.

Many algorithms have been developed to aid human operators in the identification and

assessment of anomalous events, with traditional methods often relying on rule-based/threshold
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approaches [46]. For example, Jiang et al. [47] propose a method to analyze large volumes of

telemetry data by conducting a pseudo-periodic analysis relying on a data compression technique

based on symbolization, and on a similarity principle of eigenvectors obtained via a phase-plane

analysis of the data stream. Instead, Li et al. [48] develop a method to detect electrical faults on

satellites based on principal component analysis to extract salient data features, followed by a

fuzzy c-means offline clustering algorithm and an approximate weighted proximal support vector

machine (WPSVM) for online classification. To overcome the limitations faced by conventional

techniques, more recent works explore the application of machine learning and deep learning,

relying on their potential to capture intricate behaviors. Promising results have been obtained by

methods based on recurrent neural networks such as Long Short-Term Memory (LSTM) [49, 50]

and Gated Recurrent Unit (GRU) [51] networks, although such methods may be limited by

computational resources and by the lack of extensively labeled datasets. Regardless of the

approach, most of these methods have been developed for the detection of abnormal behaviors

originating from natural causes, with little to no attention given to cybersecurity threats. Addi-

tionally, their application has commonly been limited to individual satellites rather than to an

entire constellation.

Recent works demonstrate the potential of representing satellite systems as dynamic net-

works, which can capture the intricate connections and relations among objects in time-evolving

systems. Particularly, graph-based methodologies are naturally available for dealing with prob-

lems related to dynamic networks, showing extraordinary promise when combined with the

anomaly detection task. The literature teems of research devoted to the detection of unusual

events in graph-represented systems – in particular, dynamic systems - with popular applications

in fields such as computer security, e-commerce, and social media [52]. Traditional techniques

rely on temporal behavior analysis and connectivity models. For example, the Commute-time

based Anomaly detection in Dynamic graphs (CAD) [53] method targets the detection of anoma-

lous edges by tracking variations in graph structures and changes in edge weights. GOutlier [54]

builds over a structural connectivity model, handling network sparsity through dynamic partition,

and designing a reservoir sampling to maintain structural summaries of the network. StreamSpot
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[55] exploits a centroid-based clustering approach to model the behavior of graphs streams.

As these methods struggle in capturing non-linear properties [56], more advanced techniques

leveraging deep learning have been introduced. Some methods, such as NetWalk [57], employ

a graph embedding approach to learn a dynamic representation of a graph, though often the

embedding strategy is typically not aimed at detecting anomalies. Conversely, H-VGRAE [58]

proposes a stochastic neural network specifically for detecting anomalies in dynamic networks

through learning of a robust node representation in the form of random variables. More recently,

the authors of TADDY [3] proposed a novel temporal-structural node encoding to encapsulate

complex spatial dynamic correlations which are captured via a transformer attention mechanism,

leading to superior performance.

While these approaches have gained an extraordinary popularity for conducting anomaly

detection in interconnected systems, the literature presents few examples concerning their ap-

plicability to satellite networks’- especially for security applications. For instance, Zhang et

al. [59] exploit a space-time graph model to represent a satellite constellation over which they

simulate a DDoS attack; however, the authors establish a priori target satellites and focus on

the security performance of the attack rather than on the detection of the attack itself. Instead,

Guo et al. [60] introduce a blockchain-based distributed collaborative entrance defense (DCED)

framework to detect a DDoS attack at the entrance of the satellite network; however, in this

case graphs are not used to represent the system, and the orbital mechanics of the constellation

network is largely ignored.

If research is in its infancy in regard to the detection of distributed attacks against space sys-

tems, the investigation of techniques applied to terrestrial networks is an active and mature field.

Traditional methods involve traffic analysis and flow monitoring principles and are mostly based

on signature and behavior-based methods [61]. Liu et al. [62] propose an isolation forests-based

detection algorithm, testing its effectiveness on standard network intrusion datasets. Kiss et al.

[63] develop a clustering algorithm based on a Gaussian mixture model specifically tailored

for DoS detection. More recently, machine learning and deep learning techniques have rapidly
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gained popularity. Sabeel et al. [64] develop a Long Short-Term Memory -based architecture

for the identification of unknown DoS/DDoS attacks. A similar approach is taken by Gogoi

et al. [65], who focus on the detection of low and slow DoS attacks. Despite the popularity

of these methods within terrestrial systems, limitations and challenges arise when it comes

to space networks. In fact, common detection techniques often rely on powerful and costly

hardware infrastructure, with similar considerations applying to mitigation techniques [45]

such as in-network filtering [66]. Furthermore, these methods are generally tested on data

collected from terrestrial networks, which are governed by their own dynamics. Conversely,

space networks display unique spatial-temporal features regulating connections between nodes

that differ from the behavior of terrestrial networks. This intrinsic topology dictated by the

laws of orbital mechanics can then be leveraged for the development of ad-hoc, novel detection

schemes.

In this chapter, we explore topological changes in the dynamic network structure represent-

ing a P-LEO constellation equipped with interlink technology to detect DDoS attacks. DDoS

attacks may force the system to search alternative paths between communications origin and

destination points or apply load balancing in routing schemes that would distribute the traffic

load to avoid highly congested paths. Both changes may create topological variations in the

network, such as the creation of new edges or a change of coloring. In this initial step, we

assume coloring is fixed and only investigate the variation of new edges. As a starting point, this

approach assumes centralized knowledge; that is, the network can leverage information about the

whole graph. Drawing from the success demonstrated over several dynamic network problems,

we select the TADDY [3] framework as a state-of-the-art baseline method for the detection of

anomalous edges within an abstracted version of the ICARUS attack. However, as the framework

is developed for significantly different systems, the performance of the algorithm is expected to

decrease. Therefore, we modified the framework to adapt it to our physical P-LEO constellation

system, thoroughly discussing how such changes affect the algorithm detection capability. The

contributions of our work are 1) the introduction of a framework for anomalous connections

detection in large satellite systems, exploiting a combination of graph-based representation
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and deep learning; 2) the identification of couplings between satellite dynamics and spatial

ground node distribution, and the discovery of key features providing notable performance

enhancements of the TADDY model on our physical system; 3) the collection of empirical

evidence of algorithm generalization capability, with qualitative and quantitative analyses on

systems parameters and their effect on performance.

Figure 3.1: Schematic problem representation. Constellation image generated from a modified
version of [1].

The remainder of this chapter is organized as follows. Sec. 3.2 provides background

regarding the application of deep learning for anomaly detection on graphs. Sec. 3.3 briefly

presents graph-related key concepts and deep learning theoretical background. Sec. 3.4 describes

the problem formulation and modeling. Sec. 3.5 presents the methodology and the validation of

the algorithm. Sec. 3.6 reports and discusses the results.
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3.2 Related Work

3.2.1 Graph System Representation

System representation plays a key role in the successful identification of anomalies. Thanks

to their capability of highlighting structural information, graphs constitute a suitable tool for

representing large complex systems, where elements may exhibit inter-dependencies. Addition-

ally, the nature of the anomalies themselves may hide dependencies, further underlining the

usefulness of a graph-like representation.

Traditionally, graphs are applied to a variety of fields, such as e-commerce, social networks,

and biology [67]. Thanks to their versatility, graphs have also been exploited in space-related

research. For example, graphs can be utilized to represent individual spacecraft [68]: while

nodes are representative of single subsystems (or components within a given subsystem), edges

are representative of the relations among them. More intuitively, graphs are employed to rep-

resent connected systems of satellites, such as swarms or constellations. In [69], the authors

conduct an observability analysis for satellite constellations, representing satellites as nodes

and edges as measurements among spacecraft. Similarly, in [70], the authors utilize graphs for

representing small constellations within the problem of multiple-satellite orbital control. In

[71], the authors leverage a graph theoretical approach for maneuver planning in the context

of satellite constellations, with edges representing maneuver options, and nodes correspond

to a flayover of a target. More recently, graphs have been extensively employed to represent

time-varying satellite networks [72, 73, 74, 75] for the investigation of routing performance of

the emerging large satellite constellations.

3.2.2 Graph Anomaly Detection

Combination of the representation through graphs with the anomaly detection task generates the

increasingly investigated field of graph anomaly detection. Different types of anomalies can be

investigated [76], stemming from the structural components of the graph itself.

• Node anomaly. Anomalous nodes are typically individual vertices whose behavior differs

from the one of the others. Such nodes may be either isolated, that is, they display no (or
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very few) connections with other elements in the graph, or hubs, that is, they display a

high number of connections to other elements in the graph. As an example, in a social

network context an anomalous node may be represented by a user sending thousands of

messages to other users.

• Edge anomaly. Anomalous edges represent irregular links connecting nodes. For example,

in a bank transaction network, anomalous edges may be representative of suspicious

transactions between different accounts.

• Sub-graph anomaly. Anomalous sub-graphs are a group of nodes and/or edges that

display a different behavior with respect to the remaining graph. In such a case, while

individual nodes and/or edges may have a regular behavior, they become suspicious in

an aggregate. For example, in an online review system a sub-graph anomaly may be

represented by a set of users posting negative or misleading reviews simultaneously.

• Graph anomaly. An anomalous graph is defined by a graph whose structure significantly

differs from the one of a given set of graphs. For example, borrowing from a biology

context, an anomalous graph may be represented by a molecule whose atomic bonds are

different from those displayed by molecules of the same group.

Figure 3.2: Schematic representation of graph anomalies.

71



Further connotation of the problem is introduced by the nature of the represented system,

which might be stationary or time-variant. This attribute differentiates between the problems of

static graphs and dynamic graphs anomaly detection. Identifying outliers on dynamic graphs

is the most challenging between these two problems. In fact, dynamic graphs display struc-

tural/spatial characteristics and include temporal signals. As such, additional challenges in

representing spatial and temporal information in complex evolving systems makes the anomaly

detection task more daunting. Of note, the provided definitions for types of anomalies remains

valid also for the case of dynamic graphs, with the nuance that for each case the anomalous

behavior must be captured throughout the evolution of the graph (Fig. 3.3).

Figure 3.3: Example of anomalous edges in the context of dynamic graphs: anomalous connec-
tions appears between group of nodes without previous relations. Ti notation utilized to denote
different time instants.

Static Graphs Anomaly Detection. Many algorithms have been developed to detect anomalies

in graphs, often devoted to the identification of a single anomaly instance. In the realm of

static graphs, traditional methods often relies on the extraction of graph statistical features.

For example, the authors of oddball [77] propose to identify anomalous nodes by extracting

meaningful statistical information associated with the neighbouring node set of a given node,

while defining a set of laws to characterize regular behaviors. Instead, the authors of [78] propose

SCAN, an algorithm aimed at the identification of anomalous nodes as outliers highlighted after

the application of a graph clustering algorithm. However, many of these traditional methods

are often limited in that extracted features and identification criteria are established by human

expert knowledge, which may fail to capture meaningful hidden information. To overcome

72



these limitations, more recently many machine learning algorithms have been developed. Fore

example, the authors of DONE [79] present an unsupervised method for outlier nodes detection

based on a network embedding approach which leverages deep autoencoders for generating

a lower dimensional vector representation of the graph. To tackle the problem of anomalous

sub-graph detection, the authors of [80] present DeepFD, a deep learning algorithm for fraud

detection which models the users of a network in a latent space and classifies them based on the

obtained latent space distribution.

Dynamics Graphs Anomaly Detection. For what concerns the task of anomaly detection on

dynamic graphs, many recent techniques rely on the adoption of machine learning and deep

learning algorithms [81]. Two main challenges are commonly addressed: 1) the lack of attributes

and labeled anomalies in many available dynamic graphs datasets, which typically results in

unbalanced data, and 2) the necessity of capturing both spatial and temporal information, as

they both play a crucial role for detecting anomalies in dynamic systems. For example, in [57]

the authors present NetWalk, where the anomaly detection task on a graph stream is carried

out through an architecture exploiting a clique embedding for the graph representation, an

autoencoder for obtaining the reconstruction error, and the application of k-mean clustering

algorithm [82] to group nodes sharing the same timestamp. To address the issue of labeled

anomalies, Zheng et al. introduce AddGraph [83], where a selective negative sampling technique

is employed to generate anomalies artificially. In [84], the authors present a two-pronged

approach based on the definition of two metrics to evaluate nodes’ importance, aiming to identify

sudden structural and attribute changes in graphs streams. A three sub-modules structure is

instead adopted in the StrGNN [85] algorithm, where a h-hop substructure sampling is adopted

to extract the sub-graph around an edge to be evaluated, followed by a node labeling function

to determine the node role in the sub-graph; the extracted data are then passed through a

Graph Convolutional Network (GCN) aimed to extract sub-graph features, followed by Gated

Recurrent Units layers to capture temporal information. However, many of these techniques

often decouple structural and temporal information processing, potentially missing relevant

correlations. To mitigate this issue, Liu et al. introduce TADDY [3], an architecture featuring
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a novel structural-temporal node encoding and exploiting a transformer encoder network to

accomplish the anomaly detection task. In this manuscript, the TADDY framework is employed

to tackle the challenge of anomaly detection on P-LEO constellations. However, we introduce a

series of necessary modifications so that the architecture can adapt to the different and faster

satellite constellation dynamics.
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3.3 Theoretical Background

In this section, the theoretical background for the key topics discussed in this chapter - graphs

and neural networks - are presented. At first, theoretical background on graphs is provided,

together with some notation that will be employed throughout the reminder of this chapter. Next,

a brief overview on neural networks is presented, followed by a more in depth description of the

transformer neural network, here utilized as backbone architecture for the anomaly detection

task.

3.3.1 Graph Theoretical Background

Definition 1. A graph is defined as a finite, non-empty set of entities called vertices (or nodes),

which are gathered in a set denoted as V (G), and a collection of nodes pairs - the edges - which

belong to an edge set denoted as E(G) [86]. Following this notation, the cardinality of the

two sets is identified as |V (G)| and |E(G)|, respectively. Given the definitions of nodes and

edges sets, a pair of nodes v1 and v2 is considered adjacent if the pair { v1,v2 } ∈ E(G). In this

way, a graph can be conveniently represented via an adjacency matrix, denoted as A. Defining

the total number of nodes as N , the adjacency matrix is a square matrix ∈ RN×N . For a plain

(or unattributed) graph, the adjacency matrix contains ones and zeros depending whether a

connection exists between a pair of nodes. For the case of attributed graph - with attribute

intended as a feature denoting some characteristic of the graph components - the ones in the

adjacency matrix are typically replaced with the values of such attributes. An example for these

concepts is provided in Fig. 3.4.

Definition 2. A graph is said to be dynamic (or temporal) if its nodes, edges, or attributes

change over time. Given a finite time horizon, T , a dynamic graph can be represented as a

sequence of static graphs, that is, G = {Gt} ∀t = 1, .., T . Accordingly, the nodes and edges

sets can be identified as V t and Et, such that a graph at each time step can be defined as

Gt = (V t, Et). It follows that, for each time stamp, an associated adjacency matrix, At, must

be defined.
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Figure 3.4: Unattributed (A) and attributed (Aa) adjacency matrix example. N = |V (G)| = 6
and |E(G)| = 5.

3.3.2 Neural Networks Overview

Neural networks (NNs) can be categorized as a subset of machine learning (ML) techniques that

are capable to learn and generalize patterns from some input data. A generic neural network

consists of single processing units whose structure is designed to store experiential information

from the input data in a latent manner [87]. They consists of a large number of interconnected

units, referred to as neurons, that pass information among one another aiming to approximate the

mapping existing between their input and the desired output. Neurons are organized in layers,

with the number of the neurons constituting such layers commonly referred to as layer width. A

basic network structure can then be represented as a sequence of input, hidden, and output layers.

The number of hidden layers defines the depth of a network. As a rule-of-thumb, a network with

more than three hidden layers is called deep neural network. Usage of deep networks defines the

ML branch known as deep learning.

The mathematical foundation of neural networks’ working principle is defined by the

universal approximation theory [88]. According to such theory, any continuous function

f : [0, 1]n → [0, 1] can be approximated sufficiently well by a neural network, with at least

a single hidden layer containing a finite number of weights and biases. These are learnable

parameters of the network, and their value is optimized during the training process. As a

consequence, the complexity of the function to be approximated strongly influences the design

of the network itself.

Qualities such as the possibility to model non-linear relations and their generalization

capability, with the latter being a necessary capability to perform inference on unseen or latent
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data, make neural networks ideal for carrying out complex tasks, finding applications in a wide

variety of fields. Typical applications of neural networks include medical diagnosis via image

processing, autonomous-driving, fraud-detection, visual recognition and language translation

(though many other exist). In the following, a brief description of the most traditional networks

classes and their applications is provided.

1. Feed-forward Neural Networks. Feed-forward neural networks (FFNNs) are the simplest

type of network. Their name derives from the fact that information are passed through

the layers in a forward manner, that is, they flow from input to output without any cycle.

Typical architectures falling under the umbrella of FFNNs include:

• Multi-layer Perceptron (MLP): Designed to provide an approximation of a given

function, this is the simplest network architecture. When information is passed

between layers, an activation function is applied to each neuron to introduce a non-

linear transformation and enable to capture more complex information. Classical

choices for such activation functions include the Sigmoid, the Hyperbolic Tangent,

the Rectified Linear Unit (ReLU), and Softmax.

• Radial Basis Function (RBF) NN: This is a shallow network whose neurons use

the Gaussian function as their activation function. Unlike the MLP, the input to the

layer is not the original input, but a transformation of the input through a Gaussian

function. RBFNNs find similar applications to those of the MLPs architecture,

though for some selected applications (such as the approximations of complex,

non-linear functions with localized patterns) they tend to perform better than MLPs.

• Convolutional NNs (CNNs): A more advanced architecture which includes con-

volutional layers (required to capture local patterns), an activation layer, pooling

layers (used for downsampling of the data), and a fully-connected layer (utilized for

prediction), this type of network becomes convenient when the dimensionality of

the input data increases. In this type of network, each neuron is connected solely

to the neighboring ones in the successive layers - with the number of connections,
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commonly referred to as receptive field, defined by the filter/kernel size - thus pre-

venting the number of parameters of the network to explode when highly dimensional

data are provided. A typical example of such high dimensional data is an image,

whose resolution strongly influences the total parameters of the network. Because of

their natural predisposition to handle images, CNNs find most of their applications

in computer vision tasks, such as image classification, object detection, semantic

segmentation and pose estimation.

2. Recurrent Neural Networks. Unlike FFNNs, recurrent neural networks (RNNs) involve

cycles or feed-back loops. Additionally, the internal connections of a RNN allow the

network to process inputs with variable lengths. Once the input is passed to the network,

the RNN generates an output and a so-called hidden state. At each time step, the hidden

state is generated as a function of the current input and the hidden state from the previous

time step. This hidden state is then passed as input to the next time step, allowing the

network to maintain a “memory” of the past inputs. Thanks to this property, recurrent

networks are commonly employed to handle sequential data. Traditional applications

include time series prediction, image captioning, natural language processing (NLP) and

video analysis. The most common RNNs architectures include:

• Long Short-Term Memory NNs: This type of network is designed to resolve the

vanishing gradient phenomenon that affects basic RNN architectures, which is

accomplished by controlling the flow of information through a gating mechanism.

Such mechanism includes an input gate, which determines which input values should

be stored in the memory cell, a forget gate, which defines which values from the

cell should be forgotten, and an output gate, which determines the next hidden state

based on the updated cell state.

• Gated Recurrent Units: Still making use of the gating mechanism for information

processing, this is a simpler version of the LSTM architecture. Unlike the LSTM,

GRUs only contain the update and reset gates, and do not feature a memory cell.

Because of their simpler structure, GRUs are computationally less expensive than

78



LSTMs, hence faster to train. In comparison to the LSTMs, they generally perform

better on tasks where long term memory is not strictly necessary.

3.3.3 Transformer Architecture

Since its introduction in 2017 with the seminal paper “Attention Is All You Need” by Vaswani

et al. [2], the transformer neural network has gained high popularity in many fields, reaching

and beating state of the art performance in a plethora of tasks, from NLP (text classification,

generation, summarization and segmentation, question answering, translation etc.) [89, 90] to

computer vision [91, 92] and time series forecasting [93]. The transformer architecture origins

can be traced to inherent limitations of established models - namely, recurrent neural networks of

different flavors - to tackle sequence-to-sequence modeling tasks. In fact, the sequential nature

of such architectures prevents parallelization within training examples, which is essential when

dealing with batching across example of long sequences when working under memory con-

straints. The success of the transformer model derives from the fact that recurrence is discarded

in favor of the so called attention mechanism, which can efficiently capture the meaning of the

input context, enabling to learn global dependencies between different elements, independently

from their distance in the sequence.

The general transformer architecture (Fig. 3.5) is composed by encoder and decoder stacks.

In this context, the encoder maps the symbol representations of the input sequence to continuous

representations, which are then taken by the decoders block to generate the output. The model

works in an auto-regressive manner, that is, at each step the output is concatenated to the input to

generate the next one. In the next sections, a detailed description of the transformer architecture

is provided, following the flow direction of information through the model.

Input Embedding. While the transformer network demonstrates to be very powerful on a

plethora of tasks, performance would be poor if raw data were to be directly passed to the model.

As such, the first step of processing data through the transformer is to create embeddings of the

input. Embeddings can be described as a lower-dimensional, continuous representation of the
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Figure 3.5: Transformer architecture. Original illustration from [2].

data, which encode semantic information. One of the main benefits of such a transformation

stands into the additional generalization capability. In fact, embeddings capture semantic

similarity, producing similar representations for similar inputs. In such a way, the model can

generalize on unseen input, which may have a similar projection in the embedding space. Of

note, the embeddings parameters are learnable, i.e., they are learned throughout the network

training.

Positional Encoding. As the transformer model does not rely on recurrence, information

about the sequence order must be injected. To this aim, positional encodings are added to the

input embedding, allowing the model to have a knowledge about the input order. There are two

main categories of positional encoding: fixed and learnable. In the original formulation of the

transformer model, sine and cosine functions are utilized to inject the position information:
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PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(3.1)

where pos is the position, i is the dimension and dmodel is the size of the input embedding.

Encoder. The main purpose of the encoder is to process and encode input sequences to

extract meaningful information, enabling the model to effectively capture complex patterns and

dependencies in the data. In the original formulation, the transformer encoder is composed

by a stack of six identical blocks, allowing the model to learn hierarchical representations of

the input. Furthermore, by having a stack of consecutive blocks, representations are refined,

granting the possibility to capture more abstract and high-level features. Each of these blocks

comprises two sub-layers:

1. Multi-head attention. It constitutes the core learning step in the transformer architecture,

and it is based on the fundamental concept of attention. In fact, thanks to the attention

mechanism the transformer network is capable of learning dependencies within input

sequences, independently from their distance in the sequence. Furthermore, it allows

the model to focus solely on the most relevant parts of the input sequences, discarding

irrelevant information. The multi-head attention is built upon the combination of multiple

self-attentions, a mechanism based on the definition of three matrices: Q (the queries), K

(the keys) and V (the values). Such matrices are constituted by learnable parameters, and

are defined as:

Q = Xembed ∗WQ K = Xembed ∗WK V = Xembed ∗WV (3.2)

with WQ,WK and WV being learnable weights matrices, and Xembed being the input

embedding matrix. In particular, the transformer presented in [2] utilizes the so called

“scaled dot-product attention”, which can be expressed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.3)
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where the softmax function is utilized to prevent singularities while constraining the

dot product to assume values between 0 and 1, and dk is the dimension of queries and

keys (while V has a different dimension, dv, though often times it is set equal to dk).

In Eq. (3.3), the multiplication between Q and K defines a linear transformation that

improves the embedding representation to enhance the attention process. In particular,

their combination is optimized to identify similarities between elements in the input

sequence, as they define embeddings which still have knowledge of input features. Next,

recalling the original language task of the transformer model, a new linear mapping is

introduced via the matrix V , which generates a new projection of the embeddings toward

a space more favorable to the prediction of the next token in a text sequence. This is due

to the fact that this new embedding space better captures the input sequence context, thus

knowing when two elements in the same sequence are more likely to appear together

and be correlated. Of note, the formula presents a normalization by the queries/keys

dimension, which is required to prevent large values, especially for very long sequences.

Despite application of Eq. (3.3) alone would provide good results, the authors of [2]

found that performance are improved if instead of utilizing a dmodel dimensional queries,

keys and values, such quantities are linearly projected h times, with dimensions dk, dk

and dv. Following this intuition, the multi-head attention can be formalized as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(3.4)

In Eq. (3.4), WQ
i ,WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO

i ∈ Rhdv×dmodel are learn-

able parameters matrices.

2. Position-wise Feed-Forward Networks. The multi-head attention sub-layers is followed

by position-wise feed forward layers, which mainly serve to introduce non-linearity in

the model and to reduce the dimensionality of the attention layer output. Unlike the

multi-head attention layer, where each position in the sequence is attended simultaneously,

this sub-layer applies separate linear transformations, operating independently on each
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Figure 3.6: Scaled Dot-Product and Multi-Head Attention schematic representation. Image
inspired from [2].

position. In such a way, the model processes different representations separately, thus

capturing local patterns. The output of the feed-forward layer is then regularized to prevent

overfitting. Formally, the feed-forward layer block can be described as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.5)

where x are the processed information, the max operator defines the ReLU activation

function and W1, b1,W2, b2 are weights and biases of the layers.

As a conclusive remark, residual connections [94] are applied throughout each encoder

block to address the vanishing gradient problem, thus allowing the possibility to define deeper

architecture, and to preserve the original information as they flow through the network.

Decoder. The decoder has a structure similar to the encoder, and it consists of N identical

blocks (six in the original formulation). Each decoder block presents two key differences with

respect to the encoder ones. The first difference appears (Fig. 3.5) in the multi-head attention

layer, which is here dubbed “masked”. The reason is that the input presents a masking such that

the attention does not attend positions further ahead in the sequence. By applying the masking,

the softmax function assigns zero probability to the tokens in future positions, thus effectively

preventing the network from looking ahead in the sequence. The second key difference is

constituted by the presence of an additional multi-head attention layer, commonly referred to
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as “cross-attention” layer, which allows to share information with the encoder. Specifically, the

input queries and keys in this layer originate from the encoder, while the values derive from

the output of the previous multi-head attention layer in the decoder. Similarly to the encoder,

regularization and skip connections are applied throughout the decoder blocks. Of note, the

decoder displays a different behavior between training and inference in that during the prediction

phase it works in auto-regressive fashion.
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3.4 Problem Formulation and Modeling

In this work, we consider a simplified formulation of the ICARUS attack presented in [45].

Specifically, we assume the DDoS attack happens, but we do not model the attack itself, nor we

specify the location of the botnet nodes. Rather, we model the effect of the attack, and we aim

to identify anomalous satellite links resulting from re-routing of signals over paths connecting

two arbitrary regions of the world targeted by the attack. Leveraging the connected nature of the

problem, we model a large satellite constellation as a dynamic graph [95], assigning a direction

to each edge belonging to a path connecting the two regions, here for simplicity, represented

as two unique nodes. We employ a traditional “+ grid” structure, with each satellite linked

to the preceding and successive ones on the same orbit, and with the two closest satellites in

the adjacent right and left orbit planes [96]. Under these settings, following the methodology

described in [1], each satellite of the constellation can be assigned a unique ID that will remain

the same throughout the entire simulation. In order to maintain a simple node numbering,

satellite vertices in the constellation are identified by first setting a reference orbit plane (for us,

the one associated with the RAAN closest to zero as measured in a counterclockwise direction);

next, we define a reference satellite (which, in our case, is the one closest to the equator with

positive anomaly) and we start numbering the satellites on the reference plane following the

direction of the orbital motion. Once the satellites on the reference plane are assigned their

unique ID, those in the adjacent planes are numbered following the same procedure, starting

from the last ID in the previous plane. The described procedure is summarized in Fig. 3.7.

Defining as n the number of satellites in a single orbital plane, once the spacecraft in

the reference plane are identified, the reference satellites in the adjacent planes (taken in a

counterclockwise direction) will be numbered as m ∗ n+1, with m=1,..,M -1, being M the

number of planes in the constellation. The same procedure followed in the first reference plane

is then applied to all the satellites in the remaining ones. Defining as N the total number of

satellites in the constellation, the ground nodes will have ID N + 1 and N + 2. According to

this notation, edges belonging to the paths identified between the two ground nodes will be, in

general, defined as { vi,vj }, with i being the tail node and j the head node defined following the
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Figure 3.7: Definition for the initial constellation graph, with the two red square representing
two ground locations.

chosen “+ grid” linking strategy. An exception is constituted by the two ground nodes, which

will be the nodes vi and vj for the first and last edge in each path.

To generate the stream of graphs that will be processed by the neural network, we then

employ the following procedure:

1. We select two ground nodes (representative of the two regions) that have to be linked

following a satellite interlink path

2. We run the satellite dynamics, computing at each time step the top k-shortest paths using

Dijkstra’s algorithm [97], where the higher the value of k, the greater the path diversity is

Figure 3.8: Schematic representation of multiple paths connecting a source and a target node.
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3. We reduce the dataset by removing repeated edges throughout the dataset. This is equiva-

lent to considering the graph in Fig. 3.8 without parallel edges between the same pairs of

nodes

4. We aggregate graphs belonging to multiple time steps in a unique graph, thus creating a

synthesis of the graph over a time span. Such a graph is referred to as snapshot

5. We group multiple snapshots into sequences of equal number of snapshots

Differently from the procedure followed in [3], anomalies are artificially created in the

graph by connecting nodes solely within the snapshot under investigation; that is, the anomalous

edges are created using the node set constituting the examined snapshot. In this way, we avoid

the creation of anomalous edges that would violate the mechanics of the problem (i.e., we do

not have edges between nodes that belong to the entire graph but not to the sampled sub-graph).

As such, the new edge mimics a more plausible connection within the snapshot.
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3.5 Methodology

The TADDY architecture can be applied to the problem of anomalous link detection on non-

terrestrial networks, provided that key modifications are applied. In the following, we first

describe the algorithm’s core ideas; next, we briefly present the architecture validation over

common benchmark datasets. Then, as the constellation problem displays significant underlying

differences with respect to usually evaluated non-space scenarios, we discuss how the method

can be adapted for our specific use case. Finally, we will show the application of the modified

algorithm on the two ground points connection scenario, with extensive considerations on the

main problem parameters.

3.5.1 Transformer-based Anomaly Detector

We perform the anomaly detection task by leveraging a transformer-based [2] neural network

architecture inspired by the work of Liu et al. [3]. To represent the dynamic nature of the

graph, a sequence of snapshots is passed to the neural network, with the goal of evaluating the

legitimacy of edges in the last snapshot of the sequence based on past observations. Following

the methodology described in [3], the anomaly detection process is divided into four consecutive

steps: 1) an edge-based substructure sampling; 2) a novel spatial-temporal encoding; 3) a pass

through the dynamic graph transformer; 4) a pass through a discriminative anomaly detector

(Fig. 3.9). In the next paragraphs, salient aspects for each of these steps are summarized; for

more details, the reader is invited to refer to the original work [3].

Edge-based Substructure Sampling. The behavior of an edge in a graph can be, at minimum,

characterized by the structural relations with its surroundings. This statement is corroborated by

existing works [85], which suggests anomalies are likely to appear in local graph sub-structures.

For this reason, the first step in the algorithm pipeline is to extract a fixed-size, importance-aware

contextual nodes set in the neighborhood of the edge to be evaluated, from now on referred

to as “target edge” and denoted as etgt (while we will refer to the nodes defining such edge

as “target nodes”). One traditional method to extract such sub-structure is the so-called h-hop
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Figure 3.9: Schematic representation of the methodology for a snapshot sequence of length
equal to three. The letter e in the first step denotes a generic edge at a given time step to be
evaluated.

sampling, where h defines the “hopping distance1” between the target nodes and the surrounding

nodes. However, despite such technique typically convenient, it is limited in that it assumes a

fixed value for h, but it remains agnostic to the degree of each node and the role that each node

assumes in the sub-structure, with the risk of introducing noisy data in the sampled structure,

especially for graphs with high disparity in nodes degree. To overcome these limitations, this

algorithm exploits a graph-diffusion technique derived from Personalized PageRank (PPR) [98],

where a graph-diffusion matrix is computed according to:

SPPR = α(I− (1− α)D− 1
2AD− 1

2 )−1 (3.6)

In Eq. (3.6), I is the identity matrix, A is the adjacency matrix, D is the graph degree

matrix (diagonal), and α ∈ (0, 1] is the teleport (or restart) probability, where α is the probability

of jumping to a uniformly random vertex of a graph, while 1-α is the probability to follow

a random edge out of the currently considered node. Given the SPPR matrix, each i-th row

is representative of the degree of connectivity between the i-th node in the graph and every

other node, thus capturing the connectivity of the nodes at the global level. Following this

1the hopping distance is quantified as the number of edges separating two nodes, that is, the length of the path
between two nodes assuming an unweighted graph (or, equivalently, a weighted graph with each edge assigned a
weight of 1).
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consideration, the connectivity vector of the target edge can be computed by summation of the

rows associated with the corresponding target nodes. Formally, considering etgt = {v1, v2}, the

connectivity vector associated to the target edge is expressed as:

setgt = sv1 + sv2 (3.7)

Finally, the contextual nodes set entering the sampled substructure is obtained by sorting

and extracting the highest values from the connectivity vector. Of note, the target nodes are

excluded from the ranking2. For a stream of graphs, given a target edge, this procedure is applied

to all the graphs within a pre-determined temporal window, also referred to as “look-back

horizon”. Next, the node set for a target edge at a given time stamp is given by the union of all

the nodes set within the look-back horizon window.

Spatial-temporal Encoding. In order to provide an informative representation of the dynamic

graph, both spatial and temporal information must be encoded. To this aim, the TADDY

architecture exploits a novel spatial-temporal encoding that is capable of capturing both local

and global spatial information, as well as the temporal signal originating from the system (that

is, three encoding terms are introduced). In particular, such encoding is generated through

learnable parameters, which are found to be easier to train and more flexible in highlighting

spatial-temporal correlations.

For the local information, a distance-based encoding is used. Specifically, as a local feature,

the distance between each node vij ∈ V i
set(etgt), i.e., each j-th node at the i-th time step belonging

to the vertex set of the target edge at the i-th time step, and the target nodes is computed,

retaining the minimum value. If no connection exists, the distance value is automatically set

to an arbitrarily high value. Hence, the distance-based spatial encoding for the node vij can be

expressed as:

xdistance(v
i
j) = linear(min(dist(vij, v1), dist(v

i
j, v2))) ∈ Rdenc (3.8)

2At code level, this can be obtained by simply assigning an arbitrarily low value to the target nodes.
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with linear,min and dist being the learnable linear mapping, the minimum value extraction

function and the distance computing function respectively. Through this mapping, the local

information is projected to an encoding space of dimension denc.

To extract global spatial information, the graph diffusion matrix can be exploited. In

particular, only the values in the SPPR associated with the nodes vij ∈ V i
set(etgt) are used.

However, instead of directly using the diffusion values as a source of the encoding (whose values

might be too close to each other to provide meaningful information of the structural role of each

node), the TADDY algorithm exploits a rank-based encoding, that is, the rank position of each

node in V i
set(etgt) is used to represent the nodes relations in the substructure. The diffusion-based

encoding can be then formally expressed as:

xdiffusion(v
i
j) = linear(rank(setgt [idx(v

i
j)])) ∈ Rdenc (3.9)

with rank and idx being the the ranking operation and the index-inquiring function respec-

tively.

Finally, to encode the temporal information, the relative time between the time step t to

which the target edge belongs and the i-th time step in the considered snapshots sequence3 is

used, that is, t − i is used as source value to be encoded. The formal expression is provided

below.

xtemporal(v
i
j) = linear(||t− i||) ∈ Rdenc (3.10)

Once all three encodings are generated, the spatial-temporal encoding for each node

vij ∈ V i
set(etgt) is computed as the summation of the three encoding vectors, that is:

x(vij) = xdistance(v
i
j) + xdiffusion(v

i
j) + xtemporal(v

i
j) ∈ Rdenc (3.11)

Finally, the target edge encoding matrix X(ettgt) is computed by concatenating the encoding

vectors of all the nodes in the substructures of each time step in the considered graph stream.
3For example, the relative time distance between edges belonging to the same snapshot is 0; hence, the value 0

is encoded. For two consecutive snapshots, the relative distance is 1; therefore, the number 1 is encoded (and so
on).
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Transformer Module. While many works adopt stacking of spatial and temporal feature

extractor and processing (such as discussed for the StrGNN [85] architecture), the TADDY algo-

rithm exploits a transformer network using solely the encoder block, with the aim of projecting

the encoding into a new feature space. The choice of adopting a transformer is here driven by the

presence of the attention mechanism, which is leveraged to capture spatial-temporal correlations

within the encoding. In this work, the PyTorch4 library transformer encoder module is used,

which is based on the original implementation proposed in [2]. As input to the encoder, the

target edge encoding matrix, X(ettgt), is used, and no positional encoding is applied. The output

of the transformer module is a new matrix, Z(ettgt), which is the embedding matrix of the target

edge, with dimensions equivalent to those of the encoding matrix.

As head of the transformer, a pooling (or readout) layer is attached to obtain a dense

vector representation of the edge embedding. While there exist more complex techniques

such as DiffPool[99], we follow the original algorithm implementation by using a simpler

MeanPooling[100, 101], which has the advantage of not introducing additional learnable param-

eters. The MeanPool layer is expressed as:

z(ettgt) = MeanPool(Z(ettgt)) =

Ni∑
j=1

Z(etgt)j
Ni

(3.12)

where Z(ettgt) is the j-th row of the embedding matrix Z(ettgt) and Ni is the size of the

encoded substructure. Defining as τ the length of the look-back horizon, Ni corresponds to

τ(k + 2), being k the number of contextual nodes, with the “2” accounting for the target nodes.

Anomaly Detector. The last step in the algorithm pipeline is to produce an anomaly score,

here generically denoted as f(e), for each processed edge. To this aim, a linear layer taking as

input the edge embedding vector is used; next, a sigmoid function is applied to constrain the

output between 0 and 1: the closer the score is to 1, the higher the probability the processed

edge is anomalous, while values closer to 0 more likely represent a regular edge. The whole

network is then trained in a contrastive fashion [102]. This methodology is commonly used

for training machine learning models when such models must be able to identify inputs that

4https://pytorch.org/

92

https://pytorch.org/


are similar/dissimilar from each other. Within our problem, the algorithm takes both positive

and negative examples, which are both projected by the architecture onto the embedding space.

From this perspective, positive edges will have projections into the embedding space which

are closer to each other, and far from the representation of negative edges (and vice versa).

The contrastive learning aspect is then conveyed through the binary cross-entropy (BCE) loss

function, which has two “contrastive” terms: one term accounting for positive edges prediction

and one for negative sample prediction. The expression for the loss function is given as:

L = −
mt∑
i=1

log(1− f(epos,i)) + log(f(eneg,i)) (3.13)

where mt is the number of edges at timestep t. Given an input edge, the desired output will

then be the one that minimizes both terms. Please note that, at the implementation level, the

binary cross-entropy with logits loss function is used instead of applying a sigmoid followed by

BCE for numerical stability purpose5.

3.5.2 Algorithm Performance

Network performances are evaluated via the Area under the ROC6 curve (AUC), which represents

the probability that an anomalous edge will be recognized as such against the examination of

a normal edge. Quantitatively, the AUC score is computed as the area subtended to the ROC

curve, which is obtained by plotting the True Positive Rate (TPR) against the False Positive Rate

(FPR), for all possible thresholds, computed as it follows:

TPR =
TP

TP + FN
(3.14)

FPR =
FP

TN + FP
(3.15)

where TP means True Positive (that is, the number of predictions correctly labelled as positive),

TN means True Negative (that is, the number of predictions correctly recognized as negative),

5https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.
html

6Receiver Operating Characteristic
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FP is False Positive (that is, the predictions labelled as positive but that belong to the negative

class) and FN is False Negative (opposite of false positive). As a reference, a perfect AUC score

has a value of 1, meaning that, given two classes (here corresponding to regular and anomalous

edges), the network is capable of perfectly distinguishing between the two; instead, a value of

0.5 would mean that the network has no discriminative capability, thus being akin to a random

classifier. An example of receiver operating curve is provided in Fig. 3.10.

Figure 3.10: Example of ROC (orange, solid line). Dashed blue line representing a random
classifier.

3.5.3 Algorithm Preliminary Evaluation

Before moving to the satellite constellation problem, it is crucial to validate our implementation

over commonly adopted benchmark datasets against the performance declared in the original

paper. To this purpose, we select two datasets: UCI messages7 and Bitcoin-Alpha8. The first is a

social network dataset gathered at the University of California, Irvine. Each node represents a

student, while each edge is a message between two students. The second is a network of bitcoin

users trading on an online platform; in this case, nodes are users, while an edge is created when

a user rates another one. The choice of these two specific datasets was determined by the fact

7http://konect.cc/networks/opsahl-ucsocial
8http://snap.stanford.edu/data/soc-sign-bitcoin-alpha
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that the size of the graph is comparable to the one of a large satellite network ( |V (GUCI)| =

1899 and |E(GUCI)| = 59835, while |V (GBTCAlpha)| = 3783 and|E(GBTCAlpha)| = 24186). For

both datasets, we consider two lengths for the look-back horizon, τ = 2 and τ = 3, and we train

ten separate networks, each with random initialization of parameters and distribution for the

anomaly generation. Next, we evaluate the highest-performing model on the same dataset and

compare the performance in terms of AUC score.

(a) (b)

Figure 3.11: (a) Bitcoin-Alpha test results and (b) UCI messages test results. 10% of anomalous
edges injected in each test set. Diamond shape representing outliers.

Fig. 3.11 displays the obtained result. In both cases, the performance aligns with those

reported in [3], where, for analogous simulation settings, the AUC score for UCI messages

is reported to be 0.8370, while for Bitcoin Alpha, it is 0.9423. Additionally, according to the

findings in the paper, the Bitcoin Alpha dataset benefits from larger time horizons, while for the

UCI messages, a longer look-back is detrimental as the dataset is characterized by short-term

spatial-temporal dependencies. Both qualitative trends can be observed in our results, though

with more emphasis in the UCI case. Given the obtained results, we believe that the observed

differences in exact values have to be attributed to implementation aspects, such as the batch

size utilized during the training and the transformer encoder architecture details.
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3.5.4 Graph Anomalies Generation

Before presenting and discussing the results for our specific case study, it is crucial to clarify

how anomalies are treated during training and testing (both in the above validation and our

problem). At training time, the technique known as negative sampling is exploited. In this

technique, the randomly sampled edges are processed by the network, but they do not belong to

the graph itself. This can be formalized as it follows: given a regular graph, which we can denote

as G+ = (V,E), random connections are generated among nodes ∈ V , creating a negative edge

set, E , with |E |=|E|; next, a negative graph is defined as G = (V,E ). This method is used

to ease the training while allowing the neural network to learn salient features representing an

anomaly. However, a different, more realistic technique known as anomaly injection is applied

during testing. In this case, randomly sampled edges are generated and injected into the raw data,

that is, in the original dataset, before any pre-processing is applied. Referring to the previous

formalism, this corresponds to creating a graph G = (V,E ∪ E ), here with |E | ≪ |E|. The

relevance of this latter concept is twofold: firstly, while the goal of the algorithm is to classify

edges belonging to the last snapshot in a sequence, anomalies may be present in the previous

graphs of the sequence, hindering the detection task; secondly, the identification of irregular

edges is more challenging, as the injected edges become part of the original dataset, that is, if the

dataset do not provide sufficient spatial-temporal information, anomalous injected edges may go

undetected. By employing negative sampling and anomaly injection, a network can be trained to

identify hidden features characterizing anomalies, thus becoming capable of detecting irregular

edges in the graph stream. These two concepts are schematically represented in Fig. 3.12. As a

conclusive remark, it is important to re-iterate that both negative sampling and anomaly injection

are performed in a slightly different manner with respect to the procedure utilized in [3]. In fact,

while in the original work anomalous connections consider the entire graph node set (which is

possible due to the nature of the utilized dataset such as UCI messages, where a link is simply

a contact between two users), this operation is not directly applicable to our case due to the

necessity to respect the constellation configuration, where a connection can be created, at best,
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with satellites in sight. As such, both anomaly generation procedures in our problem solely

involve the nodes present at the considered time step.

Figure 3.12: (left) negative sampling representation: a negative graph, G−, is created from
a regular graph, G+, by randomly connecting nodes in the positive graph; (right) anomaly
injection representation: anomalies become part of the positive graph.

97



3.6 Results and Discussion

In this section, we present and examine the outcomes garnered for the generated constellation

dataset. Our study includes an analysis of the impact of simulation settings on performance

and an investigation of the effect of the constellation configuration, specifically the number of

satellites and ground nodes. While presenting the results, we additionally highlight inherent

differences with respect to the datasets used for the validation, and we discuss how we bridge

the gap through changes within the algorithm.

Figure 3.13: Results section graphical roadmap.

To test how simulation parameters affect performance, we freeze the constellation config-

uration, that is, the dynamic evolution of the constellation architecture parameters, such as a

change of number of satellites, are omitted. In this study, we simulate a constellation with 40

orbital planes, 40 satellites per plane, and two ground nodes (whose location is arbitrarily fixed

to correspond to the cities of Auburn (AL, USA) and Anchorage (AK, USA)), for a total of 1602

nodes in the entire graph. Each orbit is circular, with an orbit altitude set to 700 km and an orbit

inclination fixed to 65◦. We run the simulation for 24 hours, which is a time sufficiently long for

all the nodes to be at least once part of one of the k-th paths, which turns out to be useful at the

implementation level. We set the time step to 2 minutes (with each time step generating a graph),

thus promoting diversity in successive snapshots while still allowing temporal information to be

passed through graph sequences. In fact, such cadence allows edges to persist across multiple

snapshots, thus granting the possibility to capture their behavior over a given time horizon.

The choice of time step size is problem-dependent and an essential factor in the determination

of the algorithm’s behavior. For a time step size tending to zero, there would be little to no
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difference in consecutive snapshots; as such, for a sequence of graphs not sufficiently long, a

graph may appear static. Conversely, a time step size significantly larger than the characteristic

time of the underlying dynamics would lead to extreme differences in consecutive snapshots,

thus missing relevant dynamical relations and preventing the network from learning meaningful

edges’ behavior.

All simulations are conducted using the same network architecture configuration. For

the results that follow, the encoding dimension, denc, is set to 32; informal testing has been

conducted with a dimension of 64 across multiple cases, which displayed little difference with

respect to the other condition, and not sufficient to justify a larger network size (which would

have required longer training time). This setting holds for both the encoding layer and the

transformer network input dimension. Differently from the original work [2], the transformer

is an encoder-only network (no decoder) with two encoder sub-blocks; two heads are used for

the multi-head attention mechanism. For each case, the architecture is trained for 100 episodes,

using Adam optimizer, with a learning rate of 1e-3 without decay. Training and testing have

been conducted in parallel on two separate machines: 1) desktop Alienware Aurora R8 with 9th

Generation Intel Core processor (8 cores), and 2) a laptop Dell Inspiron 13 7380 equipped with

an 8th Generation Intel Core processor (4 cores).

3.6.1 Aggregation Window Analysis

The first parameter we investigate is the snapshot size. The definition of this parameter assumes

particular relevance in a system with a fast dynamics as the one here considered, since it directly

influences how spatial-temporal information are correlated across time steps. It is here crucial to

emphasize how the definition of this parameter substantially differs from what is done in [3], due

to the diverse nature of the dataset. In fact, in [3], the authors fix a snapshot size for the datasets

(1000 and 2000 are chosen for the six datasets tested in the paper) without considering the true

time stamp of each edge. However, this operation is not possible for a satellite constellation

scenario, as edges sharing the same time stamp must be grouped to preserve the system, hence

the graph, physical structure. Rather than defining a fixed snapshot size, we introduce an
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aggregation window (AGW): we first split the edge set into single time step snapshots; next,

we gather multiple snapshots to create a temporal synthesis of the graph over a pre-determined

time window. Given a sequence of these snapshots with length τ , anomalies are injected by

considering the node set constituted solely by the nodes appearing in the last graph of the

sequence. In this way, we avoid the unrealistic injection of connection between satellites not

belonging (at minimum) to the same time window.

Figure 3.14: Aggregation window sensitivity. Look-back horizon fixed to τ = 2.

Fig. 3.14 reports the results obtained on the aggregation window parameter investigation.

Analogously to what was discussed in Sec. 3.5.3, ten separate networks are trained for each

of the selected aggregation window values. Next, the best model obtained from each training

is compared against the other models belonging to the same AGW over the same evaluation

edge set. Observation of Fig. 3.14 reveals how performance improves with increasing value of

aggregation window; this could be interpreted as an indicator of the fact that longer temporal

horizons may be beneficial for detecting anomalies. Please note how, in this case, the temporal

horizon is influenced by two factors, that are, the aggregation window and the look-back horizon,

here fixed to τ = 2 for all the simulations. In other words, the temporal window observed by the

network can be interpreted as τ×AGW.
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A closer look at the results shows how the performance is consistently degraded with respect

to those obtained during our preliminary implementation evaluation, with the top-performing

model reaching an AUC∼0.66, against the AUC>0.80 in all the validation cases. We believe

that the cause for such a gap is to be found in the dataset and, more specifically, in the structure

of the resulting graphs. By the nature of our problem, each graph representing the constel-

lation system is connected9, meaning that it is a 1-component graph; conversely, the graph

associated with the results in Fig. 3.11 is intrinsically disconnected, that is, there are multiple

components. This factor assumes extraordinary importance when considering 1) the anomaly

injection procedure in general, 2) the way spatial information is extracted from the graph, and

3) the injection of anomalies using solely the node set of the examined snapshot. In fact, since

the graph is connected, we speculate that the additional edge will more likely be blended with

regular edges, reducing the expressive power of the spatial encoding. This leaves the temporal

encoding the burden to inform the network that the added edge constitutes an anomaly. However,

as demonstrated by the ablation study conducted in [3], the temporal information plays a minor

role in comparison to the structural encoding; consequently, since the spatial information is

consistently weakened, the algorithm achieves lower performance for the constellation case.

(a) (b)

Figure 3.15: (a) single component graph, 1 time step snapshot and (b) multi-component graph,
1 time step snapshot. Red nodes representative of the 2 ground points.

Fig. 3.15 portrays two graph snapshots considering a single time step, AGW = 1, while

following the data processing exploited in [3]. While the claim of the graph being connected is

9this statement is true with an unprocessed dataset. The current processing technique may still lead to some
graphs being disconnected, despite this is mitigated by the aggregation of multiple time stamps in a unique snapshot.
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true in general, the edge processing procedure involves the elimination of double edges. As a

consequence, when eliminating repeated edges throughout the whole edge set before grouping

time steps through aggregation windows, there exists a chance that some single time step

snapshot will result in a multi-component graph (such as in the graph on the right in Fig. 3.15).

Intuitively, when grouping multiple time steps within a given time horizon, the likelihood of

having disconnected graphs strongly reduces, and all the graphs processed by the network will

be connected. An example is reported in Fig. 3.16, where snapshots for an aggregation window

of 5 and 10 are reported.

(a) (b)

Figure 3.16: (a) snapshot for an aggregation window of 5 (10 minutes) and (b) 10 (20 minutes).
Red nodes are representative of the two ground points.

Observation of Fig. 3.16 reveals that gathering multiple time steps into a single snapshot

generates a “polarized” graph, with the two ground nodes displaying a high degree (that is,

the number of edges incident to a vertex), while the nodes in between have typically a lower

degree. We believe this apparent characteristic to be a byproduct of the combination of the

constellation dynamics and the data reduction process: while intermediate links may persist

across multiple time steps (which will result in keeping solely one of the repeated links according

to the data reduction procedure), connections to the ground nodes are highly dynamic. As such,

when aggregating multiple time steps, the two ground nodes will show a higher degree due to

the numerous unique links. This strongly affects the values in the diffusion matrix [98] and,

consequently, the set of nodes entering the sub-graph utilized to extract local graph spatial

information, which oftentimes includes one of the target nodes. In particular, this influences the
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distance (spatial) information that is encoded by the network, thus having a direct impact on the

algorithm’s performance.

3.6.2 New Data Processing

As highlighted in the previous section, the direct elimination of repeated links before applying

the aggregation window may negatively affect the structure of the processed graphs, which may

result in being disconnected. However, as this contradicts the nature of the system, we believe

the performance of the algorithm to be significantly affected. For this reason, to maintain the

connected characteristic of the system, we modify the data processing procedure by switching

the operations: at first, we separate edges according to their unique time step; next, for each time

step, we remove the repeated edges; finally, we apply the aggregation window.

Figure 3.17: Aggregation window sensitivity: alternative data processing. Look-back horizon
fixed to τ = 2.

Fig. 3.17 displays the results for the experiments conducted through the alternative data

processing strategy. One can observe how performance is significantly degraded with respect

to those reported in Fig. 3.14, with the network performing on par with a random classifier

for three out of four cases. Additionally, there appears to be an inverted trend, with better

performance obtained using a shorter time horizon. Inspection of the results reveals how

this is a consequence of the nature of the graph itself and the anomaly injection technique.

In fact, the alternative processing technique strengthens the connectivity of the graph. This

103



increased connectivity negatively couples with higher values of aggregation window, where the

possibility of connections among nodes belonging to originally different time steps increases.

As a consequence, the original constellation-graph physical nature is lost. Furthermore, with a

more densely connected graph, anomalies are blended with regular edges with a higher degree,

thus making the discrimination between regular and irregular edges even more challenging.

Conversely, for AGW = 1, both the original temporal signal and the structure of the system are

preserved, facilitating the detection task. Nonetheless, the coupling between injected anomalies

and graph connectivity persists, thus leading to overall lower performance than those presented

in the previous section.

3.6.3 Edge Frequency Introduction

The two previous sections demonstrate that purely structural (intended as graph topology)

and temporal (here referred to the actual time step to which edges belong) information are

insufficient to conduct the anomaly detection task on the constellation problem successfully.

Consequently, additional information must be injected to enrich the encoded data. For example,

we generated graph-constellation snapshots by computing k-shortest paths, which are not

necessarily disjointed, meaning that the same link between two satellites can appear multiple

times. Therefore, we re-introduce this information by using the frequency with which an edge

appears as an additional feature to be encoded and processed by the network. While this can

be directly done for regular edges, a “pseudo-frequency” is introduced for the anomalous ones,

with the encoded value for anomalies randomly sampled between 1 and the maximum frequency

in the same snapshot. This is applied both for the negative sampling, where the frequency

is sampled in the range derived from the positive snapshot, and the anomaly injection, with

the sampled value belonging to the range of frequency in the snapshot where the anomalies

are injected. We tested the effect of edge frequency information injection both on the dataset

processed following the procedure described in [3] and the modified procedure discussed in

Sec. 3.6.2 (further insights regarding the effect of the frequency introduction can be found in

Appendix B.1).
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(a) (b)

Figure 3.18: Frequency information injected: data processed as described (a) in the TADDY
methodology [3] and (b) in Sec. 3.6.2.

Fig. 3.18 shows the result associated with the conducted analysis. To allow for a direct

comparison with the results discussed in the previous sections, the look-back horizon τ is

maintained to two while the same ranges of AGWs are investigated. Comparison of Fig. 3.18(a)

with Fig. 3.14 reveals how there is no significant general improvement, with the AUC score

being similar on average for all AGW values. However, when monitoring the AUC score

improvement over training, we observed how typically the trend corresponding to the results

reported in Fig. 3.14 displayed a flattening toward the end of the training; conversely, for the

case with frequency injected, the AUC score displayed a positive trend, potentially indicating

the possibility to achieve higher performances for longer training (see Fig. 3.19). A significant

improvement with respect to both the results reported in Fig. 3.14, Fig. 3.17 can instead be

observed in Fig. 3.18(b), with AUC score reaching up to ∼0.95 for AGW = 15.

3.6.4 Constellation Configuration Investigation

Having proven the effectiveness of the algorithm, we want to investigate how the constellation

configuration influences the algorithm’s performance. In particular, we are interested in observ-

ing the effect of the constellation size and of the variation of the ground nodes, as they both

impact the encoded information. For example, the number of satellites influences the number

of times each satellite appears in multiple time steps, thus affecting the temporal information;
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(a) (b)

Figure 3.19: AUC score improvement along training: (a) without and (b) with frequency
injection. Solid blue line representing the average curve across 10 networks training.

similarly, a variation of source and target nodes modifies the graph structure, hence affecting the

spatial information.

Constellation Size Variation. Two additional constellation sizes are used in this study: 900,

with 30 orbital planes and 30 satellites per plane, and 1200, with 30 planes and 40 satellites

per plane. In order to allow a more direct comparison with the network performance over the

original scenarios, the target nodes are here selected to be Auburn and Anchorage; additionally,

orbit altitude and inclination are left unchanged. Similar to the previous section, we test the pre-

trained network over these two new graphs to understand whether the networks have specialized

over the constellation configuration or have learned to recognize some underlying graph features

which are not specialized on a specific graph.

Figs. 3.20 and 3.21 display the results for the new constellation sizes for both data pro-

cessing approaches. Direct comparison with Fig. 3.18 shows that, while the single distributions

themselves are different (as expected), the AUC scores reached are somewhat aligned. In

particular, Fig. 3.20(a) denotes worse performance than those in Fig. 3.20(b). We believe this

to be given by a higher difference of temporal signal derived from the satellite dynamics with

respect to the nominal case (1600 satellites). In fact, the different satellite distributions influence

the time horizon over which a given satellite is 1) in sight of one of the two ground points and 2)
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(a) (b)

Figure 3.20: Frequency information injected: (a) 900 satellites and (b) 1200 satellites compari-
son. Data pre-processed as described in the TADDY methodology [3].

(a) (b)

Figure 3.21: Frequency information injected: (a) 900 satellites and (b) 1200 satellites compari-
son. Data processed as described in Sec. 3.6.2.

belonging to paths across multiple time steps. Consequently, for the case with 900 satellites, the

data processing corrupts the spatial information, while the temporal information is significantly

different from the nominal case. It follows that one can expect performance to be degraded to

some extent. In opposition to this, the case with 1200 satellites appears, on average, to be more

aligned with the original performance and more consistent among the different aggregation

windows. Conversely, the AUC scores reached are qualitatively unaltered for both cases in

Fig. 3.21.
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Target Nodes Variation. The analyses presented in the previous sections were all conducted

considering the same pair of source and target nodes. Consequently, as an analysis confined

to the same conditions may result myopic and unable to generalize to unseen scenarios, we

here investigate the performance of the network when the two target nodes change. Specifically,

we consider a case where one of the two is changed and where both are changed. For this

verification, no new training is conducted; that is, the same networks used for the previous cases

are tested on newly generated datasets. Hence, our goal is to verify whether a model trained

over specific conditions is merely specializing on them, without potentially being transferable

to a different scenario. As previously mentioned, in the discussed scenarios source and target

nodes were arbitrarily chosen to correspond to the geographic location of the cities of Auburn

(AL, USA) and Anchorage (AK, USA). For the case involving the change of a single node, the

city of Auburn has been replaced with Milan (Italy), while for the case of both nodes changed,

the source and target nodes have been assumed to correspond to Tokyo (Japan) and New Delhi

(India) respectively. While the locations themselves have been ∼ randomly chosen, we selected

them with the intent to obtain a different graph topology.

Figure 3.22: Graph representation for the three cases; randomly selected snapshot using AGW
= 1. Data processing from Sec. 3.6.2. (AN:Anchorage, AU: Auburn, MI: Milan, TO: Tokyo,
ND: New Delhi).
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Fig. 3.22 displays a snapshot of a graph for each of the three tested cases, obtained using

AGW = 1 applied to the dataset processed as discussed in Sec. 3.6.2. While the shape itself of

the graph does not mirror the node distribution in the actual constellation (NetworkX library

plot tool adopting “spring layout” with automatic settings used), one can observe how structural

differences exist for the three cases. In particular, for the Tokyo to New Delhi connection, paths

appear to be more disjointed than in the other two cases. We believe that this difference, in

addition to the fact that data undergoes some processing, is a consequence of a coupling between

the constellation configuration and the geographic location of the two target nodes.

(a) (b)

Figure 3.23: Frequency information injected: (a) Milan to Anchorage (b) Tokyo to New Delhi.
Dataset pre-processed as described in the TADDY methodology [3].

(a) (b)

Figure 3.24: Frequency information injected: (a) Milan to Anchorage and (b) Tokyo to New
Delhi. Data processed as described in Sec. 3.6.2.
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Figs. 3.23 and 3.24 show our test results for the Milan to Anchorage and Tokyo to New

Delhi scenarios. Please note that solely the networks trained with the frequency information

injected have been used. Overall, one can observe how performance has decreased in both cases,

with a stronger degradation in Fig. 3.23. Upon inspection of the results, different motivations

can be identified. To begin with, the data processing has a strong impact on the structure of the

graphs and may lead to a loss of original graph properties (such as connectivity). It follows

that, for cases where the already modified graph over which the network was trained is further

changed, the network loses its ability to discern anomalies, behaving almost like a random

classifier. Conversely, for the other case, the original characteristics of the corresponding graphs

are unaltered despite the graph structure being somewhat different (Fig. 3.22). As such, the

network is still effective in the anomaly identification task. On top of this, one can notice

how the performance in Fig. 3.24(b) is better than those in Fig. 3.24(a). We argue that the

reason is to be found in the typical structure of the graph for this specific case. As previously

highlighted, the graphs for the Tokyo to New Delhi scenario frequently display disjoint paths.

This aspect, combined with the anomaly injection procedure, makes anomaly identification

easier. In fact, as we discussed in Sec. 3.5.4, the anomaly injection is performed by randomly

sampling connections in the node set of the associated snapshot. Therefore, having disjointed

paths, there exists a chance that connections are created between nodes belonging to such

independent paths. This affects the structural encoded information, resulting into an ease of

the detection task. Nonetheless, the performance still remains worse than those obtained on the

nominal case, which is expected considering that these new graphs differ from those over which

the networks have been trained.
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3.6.5 Monte Carlo Validation

To further corroborate the validity of the method and its capability to generalize on unseen

scenarios, we conducted an extensive analysis by testing the networks over a wide set of node

pairs. To sample such pairs, we considered the most populated cities in the world according to

the “World Cities Database” (https://simplemaps.com/data/world-cities). As

such a database includes about 41000 cities, we first reduced the data by sampling the top 100

cities; however, this operation resulted in unbalanced distribution and variety of connections,

as most of such cities are cluttered in the southern-east Asia region. For this reason, instead

of directly sampling the top 100 cities in the database, we considered the top 100 with the

constraint of having a single city per country (Fig. 3.25).

(a)

(b)

Figure 3.25: Top 100 most populated cities sampling: (a) original data and (b) country unique-
ness constraint applied.

Next, to better categorize the connections, we divided the world map into four asymmetric

quadrants, each containing 25 cities. Finally, for each quadrant, we randomly sampled a subset

of 10 cities, which are ultimately used to create the connections (Fig. 3.26).
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Figure 3.26: Final set of cities utilized to generate the analysis dataset. Different colors identify
nodes belonging to different quadrants.

To introduce variety and classify the connections, we considered multiple possibilities,

including links between node pairs within the same quadrant or with adjacent ones. Additionally,

in order to assess whether the direction of the connections influences the performance, we

considered connections in opposite directions (e.g., west-to-east and vice versa, or north-to-

south and vice versa). This procedure identifies ten different classes for a total of 960 node pairs.

A schematic representation of the directions for creating the node pairs dataset is depicted in

Fig. 3.27.

Figure 3.27: Schematic representation of the connection groups. Ten separate classes were
considered (looping arrows representing connections within the same quadrant).

Each node pair is then used to generate the dataset to be analyzed by the neural network.

We maintain the simulation settings analogous to those described at the beginning of the section,

fixing the constellation size to 1600 satellites. After a dataset is generated, we process the edges

following the procedure described in Sec. 3.6.2. Finally, we conduct again an analysis on the

aggregation window, testing for each case the ten best network models used in the previous

sections.
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Figure 3.28: Monte Carlo analysis results for the selected 960 ground node pairs.

Fig. 3.28 displays the results of our analysis. The average AUC score obtained by the ten

networks on each aggregation window is shown for each dataset. Differently from the previous

cases, where the distribution over different trained models was displayed, the image represents

the distribution of the average performance over all the considered node pairs. One can observe

a similar trend to the one in Fig. 3.24, though the distribution shows a much higher dispersion.

To assess what factors are the most impactful on performance, for each aggregation window,

we isolated the node pairs associated with the top whisker for the highest performing cases and

with the bottom outliers for the worse performance (in the absence of outliers, for AGW = 1 the

lower and upper whiskers are considered).

(a) (b)

Figure 3.29: Examples of ground nodes pairs connection: (a) AGW = 5, group 7, and (b) AGW
= 5, group 10. Best performance typically feature nodes pairs with larger variability in latitude
and longitude.

113



Visual inspection of the node pairs locations (Fig. 3.29) associated with whiskers/outliers

reveals how the geographic position of the target nodes in each pair plays a crucial role. Specifi-

cally, for each node pair, we consider the difference between the latitudes and longitudes of the

nodes, as well as the slope of a virtual line connecting each node (assuming a 2D view of the

world map). For each of these quantities, Tabs. 3.1 to 3.3 report the average values for worst

and best scenarios for all the aggregation windows values. Overall, one can observe a common

trend, with best performance associated with higher values and worst performance associated

with lower ones, with an exception constituted solely by the case AGW = 1 in Tab. 3.2.

Table 3.1: Average latitude difference for worst and best performing cases for each AGW.

AGW 1 5 10 15
Worst performance 14.7435◦ 2.1421◦ 3.8790◦ 2.6925◦

Best performance 36.7379◦ 38.9620◦ 34.2670◦ 32.8848 ◦

Table 3.2: Average longitude difference for worst- and best-performing cases for each AGW.

AGW 1 5 10 15
Worst performance 82.0297◦ 10.4081◦ 12.0533◦ 36.1152◦

Best performance 60.4272◦ 97.5383◦ 95.5841◦ 91.5470 ◦

Table 3.3: Average slope of a virtual line on a 2D map connecting node pairs for worst- and
best-performing cases for each AGW.

AGW 1 5 10 15
Worst performance 11.6302◦ 11.2431◦ 22.5622◦ 13.3775◦

Best performance 46.4224◦ 30.6881◦ 27.3098◦ 27.9639 ◦

Based on the observations made in the previous sections and the results from this analysis,

we believe the cause of the behavior reported in the tables is a combination of satellite dynamics,

temporal resolution of the snapshots, and anomaly injection technique. As mentioned in the

description of the simulation setup, a resolution of two minutes is used to capture constellation

graphs. However, considering the inclination of the orbits, such a frequency may be too low

for cases where the difference between latitudes or longitudes between connected pairs is

lower, as subsequent snapshots would display higher satellite-nodes variability. Consequently,

similarly to injected anomalous edges, nominal edges will have a lower temporal footprint,
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thus hindering the detection capability of the neural network. Conversely, for cases where the

difference in latitude or longitude is higher, it is more likely that the same edge will appear in

multiple subsequent snapshots, thus easing the discrimination between it and spurious anomalous

connections. Similar considerations apply when considering the slope of a line connecting the

nodes in each pair; qualitatively, as the slope of the virtual line connecting any ground nodes

pair gets closer to the orbit inclination value (65◦ set for all simulations), the performance is

expected, on average, to improve. This consideration derives from the fact that a slope closer to

the orbit inclination will more likely ensure a stronger temporal footprint of regular edges, thus

again increasing the network discriminative capability.

3.6.6 Toward Higher Fidelity: +grid Interlink Model

As a final analysis for this work, we investigate the architecture behavior when we increase the

similarity between regular and anomalous links. Specifically, in the previous analysis, irregular

links were created between a node and any other node in the associated snapshot node set; this

is closer to the original formulation of the TADDY framework, but it does introduce a deviation

from the +grid interlink model. Hence, we here explore cases where the second node of a new

connection is sampled within the surrounding substructure of the origin node. First, we consider

diagonal connections, then nominal +grid connections.

(a) (b)

Figure 3.30: (a) Graphical representation of possible negative connections and (b) modified
framework performance.
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(a) (b)

Figure 3.31: (a) Graphical representation of possible negative connections and (b) modified
framework performance.

Fig. 3.30, 3.31 display the results of this analysis. In both cases, we can observe how

pre-trained models display high performance even under unseen conditions. Note that the results

reported in Fig. 3.31 are generated by modifying the data processing. Throughout the previous

sections, when merging multiple graphs based on a given aggregation window, each snapshot

was generated by shifting the node set by a number of time steps equivalent to the aggregation

window itself. Conversely, merged graphs are generated in this case by shifting the node set

of a single time step. In such a way we preserve the full nature of the original dataset while

completely respecting the problem dynamics. A visual representation of such a difference is

reported in Fig. 3.32.

Figure 3.32: On the left, consecutive merged graphs are generated by shifting the node set by
a number of time steps equivalent to AGW. On the right, the merged graphs are generated by
shifting each node set by a single time step.
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Chapter 4

Evolving Strategies for Reaction to Adversarial Attacks Against P-LEO Constellations

4.1 Introduction

Throughout the last decade, the increasing demand for high-quality ubiquitous services has

driven the development of Proliferated Low Earth Orbit constellations. One of the leaders in the

sector, Starlink, is currently operating more than 5,000 satellites, with about 12,000 approved by

the Federal Communication Commission (FCC), and the ambitious goal of an extension up to

42,000. However, while modern society benefits from the countless services enabled by these

large space systems – which find application in fields such as public safety, civil and military

communications, weather forecasting and Earth observation to name a few – challenges arise

in the management of such a wide infrastructure. In particular, the increased satellite network

capacity and the necessity of monitoring the status of many space assets demand an efficient

link to the ground. To this end, an optimal ground segment distribution, which enables frequent

contact with the satellites, thus allowing on-board data offloading and constant monitoring

while minimizing costly redundancy, becomes crucial. In this context, a fundamental aspect

often neglected in the open literature is the security of such a large space infrastructure. In fact,

historically satellite developers and operators have relied on the principle of security by obscu-

rity [103], assuming the whole constellation infrastructure inaccessible to external unauthorized

entities. However, thanks to technological advancements and the possibility of flaws in satellite

constellation chain management, capable malicious actors may now be able to target all the

levels of the constellation infrastructure with a variety of attacks, including command intrusion,

payload control, malware, denial of service, and hacking [40] (Fig. 4.1).
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Figure 4.1: General overview of a satellite constellation infrastructure (ground, space, user and
link segments) in association with potential threats.

As an example, in February 2022 a cyber-attack was launched against Viasat’s KA-SAT net-

work [41], causing partial interruption of satellite broadband service in Ukraine, with spillover

effects registered in other European regions. In cases such as these, the attack signal was

disseminated by the space segment, though the point of access was the ground segment. The

concern about cyber-attacks against satellite systems gains particular importance when consider-

ing P-LEO constellations, as they constitute an enlarged surface of attack potentially susceptible

to actions of malevolent actors, such as criminal organizations, terrorist organizations, and

adversarial nation-states (threat tier III-VII, as identified in the Space Attack Research and Tactic

Analysis (SPARTA)1 threat model by the Aerospace Corporation [104]). Following the Viasat

event, in March 2022 Russia attempted again to disrupt Ukrainian communications through

jamming SpaceX’s Starlink terminals [42]; while the attack was unsuccessful, such events

demonstrate how the increasingly important P-LEO constellations may become an ideal target

during critical situations, emphasizing the necessity to introduce effective countermeasures.

Within this framework, strategic placement of terrestrial stations and contact times become of

paramount relevance for both satellite operators and potential malicious actors. Considering the

possibility of undesired actions on their assets, satellite operators may distribute their ground

segment not only to conduct routine operations, but also to provide timely counter for adversarial

1https://sparta.aerospace.org/

118

https://sparta.aerospace.org/


attacks. Similarly, a malevolent actor may look at strategic locations to threaten the satellite

constellation, while reducing its detectability.

The problem of optimal ground stations distribution is an active field of research and can

be tackled from different angles. One possibility consists of directly optimizing the ground

stations’ locations through the definition of objective functions dependent on the specific case

study. For example, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is used by del

Portillo et al. [105] for finding the trade-off surface for minimizing the number of ground

stations while maximizing the performance in terms of data rate and coverage. Christos and

Panagopoulos [106] introduce site diversity as a technique to improve satellite communication

availability, handling in two steps the optimization problem aimed at minimizing the number

of required ground stations while subject to the given constraints. First, they formulate the

problem as a binary-integer-linear-programming (BILP) problem, which is proven to be NP-hard.

Then, they propose a solution via the design of a branch-and-bound algorithm, which achieves

global optimality, based on linear-programming (LP) relaxation and on the development of a

greedy method. Alternatively, ground station placement can be approached as a scheduling

problem [107], where the goal is typically to maximize the total amount of downloaded data,

while dealing with constraints on energy, data requirements, and line of sight availability. Tradi-

tional solution methods for this problem involve the definition of a single weighted objective

function or the formulation of a multi-objective optimization problem, minimized through evo-

lutionary algorithms (such as genetic algorithms, GAs) or other optimization techniques [108].

For example, Petelin et al. [107] discuss and test multiple methods to solve a multi-objective

ground station scheduling problem for optimizing contacts with satellites, including algorithms

such as NSGA-II, NSGA-III, the Strength Pareto Evolutionary Algorithm (SPEA2) and the

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D). Their work

demonstrates that multi-objective optimization typically performs as well as, if not better than,

single objective problems solved via GA, with MOEA/D outperforming all the other methods in

most of the tested problem settings. However, all these methods assume nominal operations,
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without considering possible adversarial actions capable of compromising ground nodes (or

satellites).

To include the possibility of hostile actions against a satellite constellation within the context

of optimal ground station distribution, we investigate the problem of strategic node placement

for an attacker-defender transit time game [109]. Inspired by the game theoretic model called

FlipIt [110] where two adversaries iteratively take control of a resource, balancing certainty

of control and cost of taking control, we assume a simple threat model which considers two

opponents competing for disrupting/maintaining a satellite constellation. The two opponents are

deemed to be capable of directly influencing the operational status of orbiting satellites. If this

hypothesis is reasonable for the defender, we acknowledge it constitutes a strong assumption for

the attacker. However, in reality there exist multiple ways through which a malicious actor may

accomplish such goal, including kinetic-physical attacks, non-kinetic physical attacks, electronic

attacks and cyber-attacks. Depending on the type of attack, the consequences may be either

temporary or permanent. In this work, we assume the attacker to possess all the capabilities

to deliver a non-kinetic attack that induces satellites into entering safe mode, which is a state

recoverable by the defender upon contact with the impaired satellites. To trigger satellites into

entering safe mode, an attacker may use a combination of actions, such as GPS spoofing and

communication interference, or it may exploit vulnerabilities in the satellite’s onboard software

or command processing system. Given this assumption, our focus is shifted from the problem of

preventing an attack, to the problem of reacting to one, should a malevolent actor be successful

in its intents. Unlike the simpler FlipIt framework, we elevate the realism of our model by

introducing satellite constellation dynamics and real-world geography. As these elements are

introduced, the complexity of the problem increases, and leads to a higher dimensionality of

the solution space. The two opponents have to act with only partial information regarding each

other, while having to deal with the dynamics introduced by the satellite motion, which demands

precise action timing. Because of this, while the consequences of even a single action become

hard to predict, the agents must also plan how to deal with a variety of opponent strategies. As a

result, the problem becomes significantly more challenging to solve.
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In this work, we examine the use of competitive coevolutionary algorithms [111] with

genetic programming (GP) [112] as a generative hyper-heuristic [113] for developing reactive

ground station placement strategies for the adversarial ground station transit time game. Unlike

similar work in ground station placement problems, rather than directly searching for a solution

of ground station placements, our search method finds a policy for placing ground stations

based on the observed situation, able to respond to a variety of attacks. Once evolved, these

reactive strategies can immediately provide solutions to unknown threats without running a new

search, an important component in the future development of complex, real-time agents. In

addition, our method of operating on geospatial observation data with GP serves as a useful

framework more broadly applicable to problems on satellite networks. We prove our solution to

be: (1) nontrivial, beating both random behavior and a minimal, deterministic reactive strategy,

here used as baselines; (2) versatile, adapting to different conditions and outperforming static

solutions found with previous evolutionary methods; (3) robust, maintaining good performance

over a wide pool of scenarios with varying level of complexity; and (4) better than heuristic

human-expert solutions.

In contrast to previous work [109], the solution to the problem involves a reactive defender,

that is, a defender aware of the effects of the adversary actions on the satellite constellation

performance. We explore reactive agents with both partial and complete knowledge of the

attacker’s effects. Additionally, we expand the orbital model to allow simulations of inclined

orbit, and we introduce geographic constraints to prevent unrealistic solutions. Finally, we

examine a human hand-crafted strategy, compare it with the solution found via competitive

coevolution, and discuss its limitations for increasing problem complexity.

This chapter is organized as follows. Sec. 4.2 provides information regarding the orbital

mechanics behind our orbital model and the theoretical background concerning competitive

coevolution and genetic programming. Sec. 4.3 presents the description of our ground station

transit time game. Sec. 4.4 describes the methodology utilized to compute satellite performance

and provides details on the specific implementation of the algorithm employed to solve the
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transit time game. Sec. 4.5 presents adversarial scenarios with increasing level of complexity

and analyzes the results. Finally, Sec. 4.6 discusses observed algorithm performance.
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4.2 Preliminaries

In this section, the theoretical background for the main topics and methodologies discussed

in this chapter are presented. At first, a brief description for the orbital mechanical model

is presented. Next, the two key tools utilized to identify a solution to the explored problem

- competitive coevolution and genetic programming - are introduced, focusing on the main

concepts relevant for the comprehension of the work.

4.2.1 Elements of Constellation Design

Orbital Model. For the sake of simplicity, this work considers satellites revolving on circular

orbits, following an ideal (i.e., non perturbed) dynamical model. In such a way, each satellite

orbit can be uniquely characterized through a set of parameters, commonly referred to as classical

(or Keplerian) orbital elements. There are six parameters, each describing a particular feature of

the orbit: a, e, i, Ω, ω, θ. In the following, an explanation for each of them is provided.

• Semi-major axis (a). This first element offers information about the size of an orbit, and it

is mathematically defined as half the sum of the periapsis and apoapsis radii. Considering

a generic elliptical orbit, the semi-major axis represents the line that goes from the center

of the ellipse to one of its extreme points along the major dimension.

• Eccentricity (e). This parameter defines the shape of an orbit, quantifying how much such

orbit is elongated with respect to a circular one. For a closed orbit, 0 ≤ e < 1 (while

it assumes values equal or higher than 1 respectively for parabolas and hyperbolas). It

can be seen as the norm of the eccentricity vector, which is a vector pointing toward the

periapsis, defined as:

e =
v × h

µ
− r

|r|
(4.1)

where h is the angular momentum vector given by h = r × v, µ is the primary body

gravitational parameter, r is the position vector, and v is the velocity vector.
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• Inclination (i). It determines the tilting of an orbit with respect to a reference plane. It

is formally measured between the K̂ unit vector direction (normal to the reference plane

in an
{
Î , Ĵ , K̂

}
tern) and the angular momentum h vector direction, which instead is

normal to the orbit plane. It goes from 0◦ to 180◦ and can be computed from:

cos i =
K̂ · h
|K̂||h|

(4.2)

• Right Ascension of the Ascending Node (RAAN, Ω). Given a reference plane, this parameter

represents the angle spanning from the reference plane vernal axis direction, that is, a

reference direction, and the direction pointing toward the ascending node (where a node

here is the point where the orbit crosses the reference plane). Following this definition,

a generic ellipse features two nodes, with the ascending one corresponding to the point

where a satellite crosses the reference plane from south to north. It goes from 0◦ to 360◦

and is measured through:


Ω = arccos

(
Î·n
|Î||n|

)
Ω = 2π − Ω if nJ < 0

(4.3)

being n the normal to the orbital plane.

• Argument of the periapsis (ω). Also known as periapsis anomaly, it is the angle, measured

on the orbit plane, between the ascending node direction and the periapsis line direction.

It goes from 0◦ to 360◦ and is measured as:


ω = arccos

(
n·e
|n||e|

)
ω = 2π − ω if eK < 0

(4.4)

where e is the eccentricity vector.
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• True anomaly (θ). This parameter defines the position of a satellite on an orbit and it

represents the angle spanning between the position of a satellite and the pericenter line.

Also in this case, the range is between 0◦ and 360◦ and the computation reads:


θ = arccos

(
e·r
|e||r|

)
θ = 2π − θ if r · v < 0

(4.5)

By leveraging these definitions, assuming an ideal spherical model the components of

position vector of a satellite at each time can be conveniently expressed as:


x(t) = RE(cosΩ cos(θ(t))− sinΩ sin(θ(t)) cos i)

y(t) = RE(sinΩ cos(θ(t)) + cosΩ sin(θ(t)) cos i)

z(t) = RE sin(θ(t)) sin i

. (4.6)

with RE being the radius of the Earth. Of note, expressing the position of a satellite in this

form becomes extremely convenient at implementation level, as it allows for vectorization of

the operations, allowing to compute the position of all the satellites, over all the orbital planes,

for all time steps of a given simulation at once. In such a way, large scale simulations can be

enabled.

Coverage Analysis Fundamentals. A common problem in space mission geometry is to

determine whether and when a satellite will have contact opportunities (either for communication,

data downlink, or observation purposes) with a point on the ground. To this aim, one can consider

a geometric approach which relies on the relative position of the spacecraft and the point of

interest. From the satellite perspective, a vector originating from the satellite which is tangent to

the Earth surface defines the true (or geometric) horizon. Given this definition, the surface within

the horizon is referred to as access area, that is, the entire area with which a satellite has contact

opportunity at any time. Assuming then a spherical Earth model, the angular radius spanned

by the small circle defining the geometric horizon is referred to as maximum central angle,

typically denoted as λmax, when measured from the center of the planet, while it is referred
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to as angular radius of the Earth, ρ, when measured from the satellite. For a given target, one

can then define two additional angles, namely the nadir angle, η, which is the angle spanning

from the subsatellite point and the target location (measured from the satellite perspective),

and the elevation angle, ϵ, which is the angle between the spacecraft and the local horizon. A

representation for these concepts is depicted in Fig. 4.2.

Figure 4.2: Schematic representation of the angular relationships between satellite and target
positions.

Constellation Architectures. When it comes to the design of the constellation configuration,

two main approaches are commonly utilized.

• Streets of coverage constellation. This constellation architecture is based on the concept

of “streets of coverage”, which involves n satellites distributed over m∼polar orbit planes

with the goal of providing continuous global coverage. In this type of constellation, the

number of satellites in each orbital plane is such that the area covered by to adjacent

satellites overlaps. However, as the covered area can be represented as a circle, there exist

blind regions, referred to as “dip” areas. Consequently, in order to ensure continuous

coverage, satellites in adjacent orbit planes needs to be distributed such that these regions

are covered. Introducing λstreet as the angle given at the intersection of the covered areas

of two consecutive satellites on the same orbit plane, continuous coverage is guaranteed if

the following condition is satisfied:

(m+ 1)λstreet + (m− 1)λmax ≥ 180◦ (4.7)
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• Walker constellation. This second architecture provides a symmetric constellation config-

uration. In this architecture, satellites are distributed over multiple orbit planes, all with

the same inclination. Commonly, the architecture can be uniquely identified through the

notation i:T /P /F , where i is the common inclination, T is the total number of satellites,

P is the number of planes and F is a value between 0 and P -1 identifying the phase

difference between two satellites in adjacent planes at the crossing of the ascending node.

Based on the spacing in RAAN of the planes, there exist two different configurations,

namely Walker Delta, which considers planes spacing between 0 and 2π, and Walker Star,

which instead considers spacing between 0 and π.

4.2.2 Evolutionary Algorithms

Evolutionary algorithms are a type of search algorithm inspired by natural evolution. In this

class of algorithms, a population of candidate solutions to a problem undergoes an iterative

stochastic process where the evaluated quality of a solution (its “fitness”) affects the probability

that it will be chosen to reproduce (creating new, modified copies of itself in the population) or

to survive to the next iteration. This evolutionary pressure, where stronger solutions reproduce

and weaker solutions are removed, a phenomenon commonly referred to as “survival of the

fittest”, results in a gradual improvement in the population’s solution quality over time.

Fundamentals. Two main concepts drive the evolutionary cycle: 1) variation operators

(recombination and mutation), which promote diversity within a population, thus fostering

novelty, and 2) selection, which pushes towards the increment of the mean quality of solutions

in the population. The combination of these two concepts can then be seen as the evolutionary

cycle optimising the fitness function, approaching the optimal value throughout iterations. When

dealing with evolutionary algorithms, many aspects must be considered [114]. In the following,

details for the key components and concepts is provided.

• Representation. This can be intended as the first step to take when solving a problem

via an evolutionary algorithm. This operations defines the mapping between the object

representing the solution of a problem, called the “phenotype”, and its encoding, that is,
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its representation within the algorithm, referred to as “genotype”. As an example, suppose

the problem to be solved involves the optimization of a constellation configuration in terms

of parameters such as number of planes, satellite per planes, orbit inclination and orbit

altitude. In this case, the admissible values for these quantities, which for simplicity may

all be considered as integers, constitute the phenotype, whereas they may be represented

as binaries (the genotype) for their manipulation within the algorithm.

• Fitness function. Also referred to as evaluation function, it represents the criterion for

selection, defining what the improvement is in the context of a given problem. Technically,

this function assigns a quality metric to the genotype; however, typically this function

is designed from an inverse representation, with a quality metric evaluated in phenotype

space. Continuing the previous example, the goal of the optimization may be to maximize

the coverage of the constellation over a certain region of the planet. In such a case, the

fitness may coincide with such desired metric, which can be more easily correlated to the

original problem parameters (i.e., the phenotype).

• Population. It is defined by the representations of all possible solutions, and it can be

seen as a multiset of genotypes, that is, a set which also allows multiple copies of the

same element. The population is composed of individuals, whose number determines

the size of the population. During an evolutionary process, individuals alone are static

entities, while the population as a whole is the one that changes and adapts. Typically, the

population size is constant throughout evolution, thus promoting competition between

individuals. An additional relevant concept related to the population is its diversity, which

can be defined as the number of different solutions.

• Parent selection mechanism. This operation refers to the selection of individuals to become

parents for the next generation. Selection of individuals is typically performed based on

their quality, with the goal of improving the solution throughout iterations. Note that this

process is probabilistic, with higher performing individuals being selected with a high

probability, while a small probability is left to low-quality individuals. This prevents the

optimisation to become too greedy and potentially converge to a local optimum.

128



• Variation operators. After parents are selected, variation operators are applied for the

generation of new offspring. In general, variation operators are classified based on their

arity, that is, the number of inputs provided to the operator. For a single input, that is,

arity = 1, the operator is referred to as “mutation”. This is a stochastic operator, whose

outcome derives from a series of random choices. It applies at genotype level, where to

each allele (the building unit of a genotype) is associated a non-zero probability to assume

a different value. If the variation operator is binary, that is, arity = 2, it is referred to as

“recombination” or “crossover”. In this case, genes from two parents are combined to

generate an offspring, with the idea that desirable qualities form both parents may enter

the genetic pool and passed to the next generations. Similarly to mutation, recombination

is a stochastic operator, and the traits from both parents to be combined are randomly

selected. A representative example is provided in Fig. 4.3.

Figure 4.3: Schematic representation of mutation (left) and recombination (right) operations.

Please notice that different types of random changes may be applied, such as randomly

switching or replacing different/multiple segments of the genome.

• Replacement. Also referred to as survivor selection mechanism, it aims to assess individu-

als based on their quality, after the generation of the offspring. Differently from previous

steps, this process is typically deterministic, aiming to identify and promoting individuals

with the best traits to remain part of the genetic pool. As the population size is typically

constant at the end of each iteration, the selection keeps or replaces previous individuals

on a quality metric base.
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Competitive Coevolution. In many adversarial problems, such as the game studied in this

work, the quality of a solution is dependent on its interaction with other solutions. Competitive

coevolutionary algorithms accommodate this by evaluating each solution against a sample

of others, to estimate overall fitness [115]. Often, when the roles of solutions in a problem

are not symmetric, multiple separate populations of candidate solutions are used. Competitive

coevolution operates by encouraging a “coevolutionary arms race” in which solutions continually

evolve under selection pressure to exploit weaknesses in their opponents, providing an adaptive

evolutionary pressure towards strong, robust solutions that can function against a wide variety of

adversaries. However, it is necessary to ensure that the solutions produced constitute a genuine

improvement in quality, rather than a narrow focus on defeating the current opponents without

improving global performance. Demonstrating this requires comparing solutions against new

opponents that were not involved in their evolution, to function as a validation set [116].

4.2.3 Genetic Programming

Genetic programming is a broad technique used in the field of evolutionary computation which

allows computers to evolve dynamically-structured solutions to problems, sometimes described

as “programs”, though the form of these solutions can range anywhere from symbolic equations,

to electrical circuits, to literal computer programs [117]. These solutions are most commonly

structured as trees, such as a syntax tree or decision tree, but many other representations exist. In

this work, we use tree-based GP to evolve syntax trees representing the strategy for a defender

agent (the details of our implementation are provided in Section 4.4.2).

Trees in GP are composed of a variety of different node types, called “primitives”, each

performing a certain function. When representing syntax trees in GP, each node in the tree

takes inputs from its children, and outputs a new value to its parent, with the value at the root

node being the output of the whole tree. Terminal nodes of the tree serve as input variables,

sensor values, or constants, while the internal nodes are functions or operators that modify these

values. For example, a tree representing an arithmetic function on the variables x might have the

operators +, −, ×, and ÷ as internal primitives, with x and integer constant nodes as terminals.

An example of a tree representation of a program is reported in Fig. 4.4 .
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Figure 4.4: GP tree representation for the program min(x+x,x*(4+y)).

Trees are initialized at the start of evolution by randomly selecting primitives to build a

tree of a given depth, that is, the levels of a tree, choosing a uniform distribution of depths

to form the population. Similarly to what discussed in Sec. 4.2.2, trees evolutionary process

involves the generation of new, modified trees through the mutation and recombination operators,

where mutation modifies a single parent, and recombination combines the genes of multiple

parents. Typically, for tree-based GP, mutation is performed by copying the parent’s tree, and

then randomizing a randomly-chosen subtree to create a local change. Recombination is similar,

combining two parents by copying the first parent’s tree, then replacing a randomly chosen

subtree with a random subtree from the second parent. This allows the spread of potentially

meaningful subunits of a program across the population.

In this work, we use a variant of tree-based GP called strongly-typed GP [118], in which

every primitive has a specific type (such as integer, point, or matrix) associated with its output

and each of its inputs. A constraint is applied such that the output type of a child node must match

the corresponding input type of the parent. This constraint means that during recombination, the

donated subtree must have the same output type as the one that is being replaced. Typing allows

GP to more easily represent complex environments where multiple types of data matter, and

simplifies the use of primitive functions that need parameters of different types, such as scaling

a matrix by a scalar. Trees in GP are commonly initialized using a method called “Ramped

Half-and-Half”, which tries to ensure diverse initial trees by using a mix of two algorithms,
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“Grow” and “Full”. In both cases, individuals are initialized such that their depth is bounded

by a user-defined maximum. The distinction between the two methods stand in the fact that,

while in the Grow approach trees can be initialized with various sizes and shapes, in the Full

approach all leaves are at the same depth. When conducting the experiments, we have observed

that the restrictions of strongly-typed GP particularly bias the Full algorithm due to competing

constraints on tree structure. As such, in the results later discussed solely the Grow method is

utilized.
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4.3 The Ground Station Transit Time Game

In an adversarial setting, the impact of an attack may be correlated to its detection time. This is

one of the key lessons learned during the Hack-a-Sat2 competition promoted by the Air Force

Research Lab (AFRL). Throughout the first two years of the competition, now in its third year,

the challenges faced by the participants highlighted how timing constitutes a crucial aspect for

success, especially when it comes to attacking and defending satellites that allow for a brief

time window for action. This underlying idea constitutes the foundations of what we called an

adversarial ground station transit time game [109], with transit time here intended as the time

that passes during the transit of a satellite between a hostile ground station and one controlled

by the constellation operator. Our general modeling is comprised of a constellation operated by

a single agent, which we label as defender, while a competing agent, here referred to as attacker,

attempts to disrupt the constellation service (Fig. 4.5).

Figure 4.5: Transit time concept schematic representation.

In this work, the constellation service is defined as the coverage provided by the satellites,

which is guaranteed when the constellation is fully operational under the control of the defender.

Within this framework, we assume the attacker to be able to compromise one or more individual

satellites when line of sight (LoS) exists between them and the attacker’s ground node; the

defender is capable of re-establishing nominal satellite operations when LoS exists between a

2https://hackasat.com
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compromised satellite and one of its own stations, partially or entirely recovering the original

service level. We assume the defender checks the status of its satellites as soon as one of

its stations enters the access area of a satellite, that is, the surface of the Earth visible by a

spacecraft. Similarly, we assume the attacker compromises the satellites as soon as one of its

stations enters the access area. To compute the condition of visibility, we follow a classic unit

vector formulation [119], which involves the determination of the angle between the position

vector of a station and a satellite. As discussed in Sec. 4.2.1, in our modeling we assume the

Earth to be a perfect sphere and the satellites orbits to be circular. Following the previously

introduced notation, the unit position vectors, expressed as a function of time, of a satellite and

a generic ground station (GS) can be conveniently expressed as:

r̂SAT (t) =


cosΩ cos(θ(t))− sinΩ sin(θ(t)) cos i

sinΩ cos(θ(t)) + cosΩ sin(θ(t)) cos i

sin(θ(t)) sin i

 (4.8)

r̂GS(t) =


cos(lonGS + ωEt) cos (latGS)

sin(lonGS + ωEt) cos (latGS)

sin (latGS)

 (4.9)

where Ω is the right ascension of the ascending node (here assumed to have the same range as

the longitude) of a generic orbital plane, θ(t) represents the time evolution of the true anomaly,

i is the orbit inclination, ωE is the Earth angular velocity, and lonGS and latGS represent the

longitude and the latitude of a ground station. Defining then the maximum central angle, λmax,

we consider the LoS to exist when the condition cos(λ) ≥ cos(λmax) is met, with λ being the

angle between a spacecraft and ground station position vectors.

Given these abstracted attack and defense actions, the objective of the attacker is to identify

positions on the globe where deploying ground nodes such that the degrading effect on the

constellation is maximized. Once deployed, the attacker’s stations are considered to be fixed for

the entire duration of the simulation, throughout this work limited to two days. On the other

hand, the defender aims to identify the best location(s) to position an additional ground node
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such that the effect of the malevolent actor’s actions are maximally reduced. In our current

formulation, we let the defender’s node deployment to happen after one day, a time window

deemed to be long enough for the defender to perform such action, while collecting sufficient

observational information about the effects of the attacker’s action (we investigate varying this

reaction time in section 4.5.9).

As an indicator of the constellation status, we consider the cumulative satellite up-time,

defined as the total time during which each satellite is operative under the defender’s control;

from this perspective, the goal of the attacker is then to maximize the satellite downtime (opposite

of the up-time), which is then reflected on the coverage provided by the constellation. To quantify

the up-time, assuming N as the number of time steps and M as the total number of satellites

in the constellation, we define the Boolean variable onm (with n ∈ [1, N ] and m ∈ [1,M ]),

representative of the operational status of the m-th satellite at the n-th time step as follows:

onm =

1 if satellite m under defender′s control

0 otherwise

Consequently, the goal of the attacker is to minimize the following objective function, while the

goal of the defender is to maximize it:

f =
∑
n

∑
m

onm

For a given simulation duration, we split its length in two equal parts: at the beginning of

the first half, the attacker is granted the possibility to deploy its stations, while at the beginning

of the second half the defender adds its nodes. We will refer to the additional defender nodes

that are deployed at the beginning of the second episode half as mobile ground stations. The

quality of the defender behavior is then measured as the relative improvement in up-time at the

end of the simulation with respect to up-time measured after the first half. As a final remark, it

is relevant to emphasize that our formulation ultimately involves two distinct classes of actions:

1) satellite disabling/re-enabling, which happens under satisfaction of the line-of-sight condition

previously described, and 2) node deployment, which is the output of our solution method
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(Sec. 4.4). Therefore, while the action of deploying nodes is conducted at the beginning of the

first half (for the attacker) and second half (for the defender), throughout the entire simulation, at

each step, both deployed attacker nodes and defender’s initial fixed ground nodes are constantly

acting on the satellites.
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4.4 Methodology

Previous work on adversarial ground station transit time games [109] determined that competitive

coevolutionary algorithms [111, 115] are well-suited to the problem of adversarial ground station

placement. Population-based stochastic search algorithms such as evolutionary algorithms stand

out for their effectiveness in complicated, high-dimensional solution spaces, such as those

present when numerous ground stations and satellites are interacting. In addition, the solution

representation of genetic programming [112, 117] is available as a natural method of encoding

and evolving complex, dynamic behaviors for agents when using an evolutionary algorithm.

Because of these benefits, in this work we employ a competitive coevolutionary algorithm

for the generation of attacker and defender agents, using GP trees to represent the defender’s

reactive strategy. If we were only searching for solutions to a single problem instance, alternative

techniques like simulated annealing, Monte Carlo methods, or direct evolution of solutions might

be substantially faster than a coevolutionary search. However, competitive coevolution with GP

results in the creation of more broadly-applicable policies which themselves run quickly, and is

a technique which can be more effectively extended to more complex scenarios. Alternative

methods of policy search such as reinforcement learning on neural networks may also be

applicable to this problem, although we have not yet investigated this in detail. In the remainder

of this section, details of our implementation and experiment methodology are provided.

4.4.1 Competitive Coevolutionary Algorithms

We employ competitive coevolution with two populations, one representing attacker positions

and one representing defender strategies. In our model the attacker acts first, and it is not

reactive; hence, attackers are evolved as a simple list of coordinates as in existing work on this

problem [109]. The defender strategies are evolved as GP trees, which represent a computer

program as a parse tree of functions (for details about our GP tree implementation, please refer

to 4.4.2). The evolutionary parameters used for competitive coevolution are listed in Table 4.1.

Due to the high computational cost of performing experiments, only minimal hand tuning of

parameters was performed. Of note is that our coevolutionary experiments are configured to
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be somewhat smaller in population size than is ideal for GP [120] in order to facilitate a large

number of runs of the algorithm for statistical purposes. Runs with these parameters typically

last up to two hours on our highly-parallelized hardware, with 30 runs per experiment performed

(where one “experiment” corresponds to a single configuration of scenario and parameters).

Informal testing found that runs configured with larger population sizes or evaluation limits

produced somewhat increased complexity of agents and fitness scores, but insufficient to justify

the significantly longer runtime for our experiments, as runtime of evolution is proportional to

the number of evaluations. In experiments where the number of evaluations was increased to

∼1,000,000 from our default ∼100,000 (and with a correspondingly larger population), a single

evolutionary run was observed to last up to a day. A schematic of the coevolutionary cycle for

this work is presented in Figure 4.6.

Table 4.1: Parameters used in evolution. The total number of evaluations (runs of the simulation)
needed is proportional to the number of individuals per generation (µ + λ), the number of
opponents sampled per individual, and the number of generations.

Evaluations 98,500
Generations 50
Population size (µ) 50
Number of children (λ) 150
Mutation/recombination ratio 50%
GP tree initialization Ramped Grow, depth ≤ 7
Fixed position initialization Uniform random
Parent selection (k=2)-tournament
Survival selection Truncation
Opponents sampled per individual 10

4.4.2 GP: Defender Strategy Trees

The action performed by the defender agent is to select a location to place an additional ground

station, once half of the simulation time has passed. As small changes in the positioning of the

attacker ground stations can have large effects on which satellites are compromised and when,

the defender needs to be able to choose this location dynamically based on observations of the

current state of the constellation.
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Figure 4.6: Diagram of the competitive coevolutionary cycle and its interaction with the
constellation simulation. The defender receives a map of the coverage calculated after 50% of
the simulation time.

Our defender agents are strongly-typed GP trees which primarily operate on two-dimensional

arrays described as “heatmaps”. These heatmaps divide the world into latitude-longitude grid

cells with a given resolution, and store a real number value for each cell. In order to select a

location to place a ground station, a tree outputs a heatmap based on its sensor inputs describing

which locations it considers more or less desirable to place its mobile ground station, placing

it at the coordinates corresponding to the lowest-valued grid cell (with ties broken randomly).

Figure 4.7, top-right, gives an example of such an output map. Optionally, a mask can be applied

at this step, such that the defender instead uses the lowest-valued grid cell excluding the masked

region, for example, prohibiting the placement of ground stations on water. These heatmaps are

used as the primary data type because they provide an intuitive spatial representation of data

over the surface of the planet, and can be recombined arithmetically or manipulated in complex

ways while preserving the geographic correlation of the data. The grid resolution is a parameter

which can be varied independently from a given strategy; a low resolution can be used during

the expensive evolutionary process to decrease computation time (we use a 2° resolution), and
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then increased during application of a finalized agent to give more precise results, though we

don’t use this in our analysis.

Figure 4.7: Visualizations of a game between an attacker and a defender agent. Top left: Map
of relative coverage before defender action. “Relative coverage” refers to the mean service
coverage at a given location during an attack, as a fraction of mean service coverage in a situation
without an attacker. Bottom left: Map of relative coverage after defender action. Top right:
Policy map showing regions the defender values as a site to place a ground station (lower is
better). Bottom right: Normalized difference between defender policy and the coverage map,
highlighting nonlinear complexities in its behavior.

As the primary input to the defender, we provide a heatmap of satellite up-time which we

refer to as the “coverage map”. This coverage map serves to inform the agent of the degree

to which each location on the planet has observed fewer working satellites than normal. The

coverage map is determined through the following procedure: for each latitude-longitude cell

of the heatmap, at each time step from the start of the simulation to the present, we determine

whether any satellites have sight of that cell, and whether any are defender-controlled (that is,

not attacker-controlled). We define the relative coverage value of that cell to be the number of

timesteps in which a defender-controlled satellite is visible, divided by the number of timesteps

where any satellite is visible. In cells where no satellites at all are visible, such as near the

poles, the value is treated as 100%. The process is summarized in Figure 4.8, and an example

coverage map is shown in Figure 4.7, top-left. If an area on the coverage map reports low

coverage, that indicates that an attacker is able to compromise satellites “upstream” of that area
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Figure 4.8: Coverage map computation steps. Color scale is representative of the temporally
averaged coverage over the corresponding grid cell based on actual satellite operational status.

without a defender ground station being able to respond. These low-coverage regions can then

be suggestive of good locations to place the defender’s additional ground station. The defender

is also given a heatmap with the “base coverage” at each cell, which gives the percentage

of timesteps where any satellite was visible. Since a defender knows the location of its own

ground stations, we also provide a heatmap giving the distance to the nearest defender station at

each cell (the defender has no information about attacker station locations except what can be

ascertained from the coverage map). This map can be useful to the agent in avoiding the selection

of locations that are already well-covered, or in more complex behaviors such as identifying

regions that should be well-covered but are not, which might indicate the location of an attacker.

Finally, a set of fixed gradient heatmaps are given for use as constants during computation. The

fact that some of these inputs suggest simple strategies on their own is advantageous in the

design of this GP representation, because it means that simple trees developed early in evolution

can still achieve minor success. This is a helpful property in evolutionary algorithms, as it allows

the algorithm to discover a better search gradient early on.
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In addition to the heatmap data type, defender GP trees operate on latitude-longitude pairs

(the “point” data type), as well as real-valued “scalar” and “angular” values, with the latter

between -180 and 180 degrees. Points can be created by selecting the maximum- or minimum-

valued point from an input heatmap. Scalar values are simply constant parameters, and angular

values are either constants or a sensor value that gives the inclination of the constellation’s

orbits. The full set of primitive nodes used to construct a defender strategy tree is given in

Table 4.2. Most of the primitive functions provided to the defender exist for manipulating and

combining heatmaps. These are primarily arithmetic functions, such as adding two heatmaps

together elementwise, or multiplying each element of the heatmap by a scalar. We also provide

a set of functions for “rotating” a heatmap, by mapping the heatmap’s grid to points on a

sphere, performing a rotation transformation on the grid points based on the input parameters,

and then resampling the transformed points in the original coordinate system to create a new

output heatmap. This resampling sets the value of each heatmap cell to the average value of the

transformed heatmap at each of the cell’s corners. These rotation functions exist primarily so

that the agents can make decisions based on the orbital paths of satellites, such as positioning

a ground station “upstream” of a low-coverage region. A more detailed explanation of this

rotation operation is provided in Appendix C.1.

A graphical example of a GP tree is given in Figure 4.9, demonstrating how heatmaps can

be combined into a policy. This tree gives priority to regions 90◦ east from a region of low

coverage (left branch), and far from existing defender stations (right branch). Figure 4.10 shows

a different, more complex GP tree for a defender strategy created through evolution. This tree

notably makes use of several different sensor heatmaps as inputs, utilizing the rotation functions

and arithmetic operations in order to combine these sources. The primitive set chosen for this

implementation is intended to enable a wide variety of ways to combine and manipulate input

data, allowing for complex and unexpected strategies to emerge.
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Table 4.2: Primitives used by the GP trees of the reactive defender agents. The types used are:
Angular (A), Scalar (S), Point (P), and Heatmap (H).

Name Type Inputs Description
angle literal A None A specific angle, initialized at uniform random
scalar literal S None A specific scalar between -10 and 10, initialized at

uniform random
coverage H None The coverage map resulting from the attack after one

day
base coverage H None The coverage map when no attackers are present
latitude gradient H None A gradient from -1 to 1, from south to north pole
longitude gradient H None A gradient from -1 to 1, 0◦ to 180◦ longitude
defender stations H None The distance to the nearest defender station, normal-

ized between 0 and 1
inclination A None The inclination of the constellation
add H H, H Adds two heatmaps
subtract H H, H Subtracts one heatmap from another
multiply H H, H Multiplies two heatmaps
negate H H Negates the values of a heatmap
normalize H H, H Normalizes a heatmap between -1 and 1
add scalar H H, S Adds a value to all cells in a heatmap
multiply scalar H H, S Multiplies all cells in a heatmap by a value
mask greater than H H, S Create a binary heatmap with 1 where the original

exceeded a value and 0 elsewhere
mask less than H H, S Create a binary heatmap with 1 where the original

was less than a value and 0 elsewhere
rotate horizontal H H, A Rotate a heatmap around the north pole by an angle
rotate azimuth H H,P,A,A Rotate a heatmap in 3D space such that a given point

moves along a given compass direction
rotate inclination H H,P,A,A Rotate a heatmap in 3D space such that a given point

moves along an orbital plane with given inclination
maximum point P H Get the maximum-valued point from a heatmap
minimum point P H Get the minimum-valued point from a heatmap

4.4.3 Experiment Procedure

To compare the quality of individual defender agents against each other, we measure the degree

to which constellation up-time has increased in the second half of the simulation (after the

defender has placed its additional ground station), compared to the first half of the simulation.

A score of 50%, for example, would indicate that placing the mobile ground station increased

the global service up-time by 50% compared to service up-time during the first half of the

simulation.

143
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Rotate Horizontal
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Multiply Scalar

Defender Stations

Figure 4.9: Graphical toy example of a GP tree showing how heatmaps are operated on within a
tree, referencing primitives defined in Table 4.2. This tree returns the policy heatmap returned
by the “subtract” node at the root, which takes its left and right child nodes as operands, and so
on throughout the tree. Numbers represent literal values. Brighter yellow colors are prioritized
by the policy for placing the mobile node, with the preferred location marked with a blue star.

subtract
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add
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point
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240.76◦ inclination
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rotate
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base
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add scalar
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gradient 9.09

Figure 4.10: Example GP syntax tree from an evolved defender agent referencing primitives
defined in Table 4.2, with parameters passed from left to right.
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In order to compare the defenders produced by the two different methodologies, we perform

30 evolutionary runs of both methodologies, and take the defender agent which scored the highest

against its coevolutionary opponents in the final generation of each run as a representative. We

then produce a test set of attacker agents in the same way, from 30 separate evolutionary runs,

to ensure that none of the defenders or attackers have directly adapted to one another during

evolution. This results in two sets of 30 defenders, and a test set of 30 attackers. Each defender

is evaluated against this common test set to obtain an average improvement in constellation

up-time per defender. We then perform a Student’s t-test to determine if the defenders generated

by one methodology produced significantly different performance scores to those from the other;

a significance level α = 0.05 is used in this study. We also report the best, mean, and worst

scores from that set of 30 defenders.

The parameters used to construct and simulate the constellation are given in Table 4.3.

Throughout this work, we consider a 2π-constellation, with orbital planes equally spaced in

RAAN between 0◦ and 360◦. The computational cost of the simulation is proportional to the

total number of satellites, the temporal resolution, and the square of the coverage map resolution.

Note that decreasing the coverage map resolution will decrease the precision with which the

reactive defender agent can act, while decreasing the temporal resolution increases the chance

of a fast-moving satellite skipping over a ground station in between time steps. Temporal

resolutions of at most four minutes were observed to be accurate to within a small margin of

error for these parameters.

Table 4.3: Parameters of the constellation simulation.

Number of orbital planes 10
Satellites per orbital plane 10
Inclination 70◦

Altitude 1000 km
Central angle 10◦

Min. elevation angle 34.7◦

Coverage map resolution 2◦

Temporal resolution 2 minutes
Simulation duration 48 hours
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4.4.4 Visualizing Results

While statistical tests can measure the numerical performance of these evolved strategies, it

does not provide much insight into the underlying behavior of the attacker and defender agents.

Furthermore, although one can study an individual agent and its behavior in detail, it is often

difficult for humans to interpret the logic driving an AI agent (see, for example, Fig. 4.10), and

this gives little information about the general characteristics of agents produced by evolution in

a given scenario. In order to make qualitative comparisons of agents’ behavior in aggregate, we

can visualize the set of geographic points chosen by all attacker or defender agents for a given

scenario against a variety of opponents. To this end, we use Kernel Density Estimation (KDE)3

as a visualization technique. KDE is a method which takes a discrete collection of points, and

estimates a smooth probability density function for the random variable producing those points.

The resulting function allows for a visualization of agent actions that displays density more

clearly than simply plotting those points. From these visualizations, one can see locations which

highly-evolved attackers and defenders tend to choose frequently or more rarely, giving a sense

of the dynamics of the game. It is also easier to compare visualizations between different cases

or configurations to see how those dynamics change as a result of that difference. An example

of this visualization technique is provided in Fig. 4.11.

Figure 4.11: An example KDE (green regions) generated from a set of random points (black
dots).

3Using the spherical kde Python library by William James Handley, https://github.com/
williamjameshandley/spherical_kde
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4.5 Experiments and Results

To evaluate the quality of the evolved attacker locations and defender strategies, we conducted

an extended test campaign over a variety of scenarios. Throughout this section, capabilities are

shown incrementally, first demonstrating the performance of the algorithm over simpler cases,

then moving toward more realistic conditions.

Figure 4.12: Results section graphical roadmap.

Fig. 4.12 summarizes the general organization of the section, with the arrow direction

mirroring the increasing complexity of the simulated cases. In the following, complexity

encompasses the increasing number of ground nodes (for both the attacker and the defender) and

the introduction of constraints. We consider both fictitious scenarios where the fixed defender

ground station placement is arbitrarily assigned, regardless of the corresponding location on the

real-world map, as well as scenarios including an existing ground station distribution. For the

latter, the KSAT Global Ground Station Network4 is selected. To clearly identify the scenarios,

we label them as follows: “Simple2” — two fixed defender stations and two attacker stations;

“Simple4” — four fixed defender stations and four attacker stations; “KSat5” — five attacker

stations and 25 defender stations belonging to the KSAT ground network; “KSat10” — ten

attacker stations and, again, 25 defender stations belonging to the KSAT network. Please note

that when geographic constraints are introduced, only the “KSat5” and “KSat10” are considered.

4https://www.ksat.no/ground-network-services/ (our modeled network does not include
some recently added ground stations)
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With the exception of the “multiple node deployment” case, in all the cases the defender is

allowed to deploy one single node.

4.5.1 Case 1: minimal strategy comparison

Two simple strategies are implemented and compared against the policy evolved through our new

method: the first one, labelled as “Reference”, involves placing the additional defender station

in the location with lowest relative coverage, thus defining a minimally complex, reasonable

strategy; the second one, labelled as “Random”, simply places the additional node at a random

location, providing a baseline performance level.

Table 4.4: Performance of 30 evolved defenders against a simple reference agent, and a random
agent. Best, average, and worst scores among those 30 are given. Percentages representing the
relative improvement in up-time during the second half with respect to the first half, following
the deployment of the defender’s mobile node

.

Scenario Best Avg. Worst Reference Random
Simple2 119.89% 85.57% 48.44% 26.42% 23.05%
Simple4 108.36% 70.32% 29.07% 27.35% 19.75%
KSat5 17.64% 13.40% 8.29% 4.01% 1.41%
KSat10 15.37% 11.70% 5.45% 4.30% 1.68%

Table 4.4 presents, for the four scenarios described above, the performance of the repre-

sentative defender agents from 30 evolutionary runs and the two simple strategies against a test

set of 30 evolved attackers. Every one of the evolved defender strategies is able to outperform

the simple reference strategy, oftentimes by a substantial margin. The comparatively weak

performance of the random agent confirms the effectiveness of both the evolved agents and the

simple reference strategy, particularly on the more complex scenarios.

4.5.2 Case 2: human hand-crafted strategy comparison

To preliminarily evaluate the quality of our solution method, we developed a simple hand-crafted

strategy to be compared with the policy evolved by the defender. In fact, knowledge of the

problem modeling, availability of the coverage map, and human intuition may lead to significant

improvements with respect to the “Random” (completely agnostic with respect to the coverage

map) and “Reference” (which simply selects the locations with lowest coverage for the additional
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defender station) strategies. To develop such a heuristic strategy, the following approach has

been adopted: 1) we generated several coverage maps associated with different distributions of

fixed defender locations and attackers to gain insight in the relation between node placement

and coverage maps; 2) we observed how the addition of a defender node in each of those maps

affected the coverage, mimicking the process followed by the algorithm described so far; 3) we

encoded our observations into a decision tree. The strategy encoded in the tree was carried out

by a human in order to evaluate its performance, providing them with the same information

given to our defender agents. We evaluated the hand-crafted strategy against the same attackers

used to evaluate the evolved strategies, and compared the resulting scores against the same “Best”

and “Median” agents used for the defender robustness experiments (shown in Fig. 4.15).

Figure 4.13: Heuristic strategy diagram. LONG and LAT abbreviation for longitude and latitude
respectively.

Figure 4.13 shows the developed strategy: the blue triangles in the decision-making process

are representative of analogous shape, down-coverage area features frequently appearing in the

coverage map after 50% of the simulation time has passed. Such features turn out to play a key

role in the decision process: characteristics such as their location and extension are recognized

as the major factors contributing to the final decision for the additional node positioning.
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Table 4.5: Performance of the hand-crafted strategy (“Human”) against the best and median
evolved strategies for each scenario. Underlined results performed statistically significantly
better than the hand-crafted strategy.

Scenario Best Median Human
Simple2 119.89% 83.84% 107.56%
Simple4 108.36% 69.04% 74.45%
KSat5 17.64% 13.84% 11.61%
KSat10 15.37% 11.50% 12.83%

Table 4.5 reports the results obtained over four of the previously presented scenarios for the

unconstrained case, compared against the best and median evolved strategies for each scenario.

The simple logic depicted in Figure 4.13 is comparable in performance to the median evolved

strategy, but is significantly less effective than the best evolved strategies for all but the simplest

scenario. In addition, the hand-crafted strategy took much more time and human labor to create

and evaluate than the evolved strategies, and required subjective human decision-making to

operate, so the ability for evolution to typically produce strategies of a similar or greater quality

is a promising result.

4.5.3 Case 3: non-reactive defender comparison

An initial approach to this problem [109] involved the direct evolution of coordinates for the

defender’s mobile ground station. While this methodology allows for fine-tuning of a defender’s

action against a single attack, it is much less effective against a wide variety of attackers, since

such a defender does not represent a general-purpose strategy. This work hypothesizes that a

reactive defender strategy which responds to observations resulting from its current opponent

will be able to select actions which are more effective against individual attackers, in a wider

variety of situations. To test this hypothesis, we coevolve fixed attacker and defender locations

using the methodology from a first implementation of this work [109], for each of the previously

mentioned four scenarios. We then evaluate the performance of the evolved defender locations

against a test set of high-performing attackers that they did not evolve against, and compare the

resulting scores with the performance of the previously-evolved reactive defender strategies on

those attackers. The attacker agents used here are the best attackers from each of 30 separate

evolutionary runs against evolving defender positions.
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Table 4.6: Comparison of the performance of 30 evolved defender positions (Best, Avg., Worst)
against 30 evolved reactive defender strategies (R. Best, R. Avg., R. Worst). Underlined results
indicate statistically significant improvements for the reactive defender over the fixed defender.

Scenario Best Avg. Worst R. Best R. Avg. R. Worst
Simple2 67.63% 29.59% 7.24% 119.89% 85.57% 48.44%
Simple4 53.15% 31.22% 15.36% 108.36% 70.32% 29.07%
KSat5 18.05% 11.18% 0.11% 17.64% 13.40% 8.29%
KSat10 17.59% 10.30% 0.63% 15.37% 11.70% 5.45%

Our results in Table 4.6 demonstrate that, for the simpler scenarios, the reactive defender

strategies are substantially more versatile than fixed defender locations at responding to a variety

of attacks. In these scenarios, no fixed defender location is able to outperform the average

defender strategy. For the more complex KSAT scenarios, however, the evolved defender

positions perform unexpectedly well, and are comparable to the reactive defender strategies in

average performance, though they are much less robust in terms of worst-case performance. For

the Simple2, Simple4, and KSat5 scenarios, statistical testing finds the improvement significant,

while the result for the KSat10 scenario is inconclusive.
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Figure 4.14: Distributions of the ground station placements of evolved attackers and position-
evolving defenders in the KSat10 scenario estimated by KDE. Fixed defender ground stations
are shown as blue dots.

Upon examining the actual solutions proposed, the reason for the unusually strong perfor-

mance of evolved defender positions on KSAT scenarios turns out to be the geography of the

KSAT network, based on real Earth geography. Since no real-world geographic constraints are

being applied at this stage to the placement of attacker or defender stations, a dominant strategy

emerges (Fig. 4.14) in which attackers place nearly all of their ground stations in the ocean,

where the land-bound KSAT network has limited reach (similar considerations apply also to
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stations located in Siberia and northern Canada). As a result, there is little meaningful variety

in behavior between different attackers, resulting in a very narrow set of dominant defender

positions that counter this single strategy. Because of this, a non-reactive defender which cannot

adapt to different attacks is not strongly disadvantaged. In Section 4.5.5, we address these

dynamics by constraining agents to land-based ground stations.

4.5.4 Defender strategy robustness

The effectiveness of an evolved defense strategy is measured by its robustness against a variety

of attacks. To investigate this aspect, we examine the quality of several specific defenders, i.e.,

the evolved defenders with the best and median average performance against opponents for each

scenario, against the best attacker positions evolved over 30 runs on the corresponding scenario.
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Figure 4.15: Unconstrained case: box plots showing distribution of defender strategy perfor-
mance over 30 attackers. Reference and Random agent performance are shown as horizontal
lines.

Figure 4.15 portrays the distribution of fitness scores received by eight selected agents over

a case without geographic constraints. While all agents show variability in performance against

different attack situations, they generally remain effective compared to the simple reference

strategy and random agent.

4.5.5 Case 4: Earth geography introduction

In the cases described so far, ground node placement for both attacker and defender agents

was allowed for every grid point of the Earth map, regardless of the real-world geographical

boundaries. In lower-fidelity representations, dominant, less realistic solutions (such as the
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ocean-based strategies we observed) are possible, and evolution tends to identify and converge

to them. However, these dominant solutions may disappear when complex, real-word constraints

are introduced in the game dynamics. In order to bridge the gap with reality, we add an additional

layer of complexity to the problem by introducing land and water attributes to the node coordi-

nates, imposing that only land-based sites are admissible for node positioning. Note that our

methodology is agnostic to the fidelity of the simulated game, provided that the GP tree function

nodes are updated accordingly, and sufficient computational resources are spent on tree evolution.

To enforce land-based coordinates for attackers and defenders, we apply a repair function:

in the event the evolved coordinates are water-based, this function “repairs” them to be the

nearest land-based location. Throughout this process, we do not modify the stored values

(the genotype), but solely the ground station locations interpreted from them (the phenotype).

Allowing the genotype to retain coordinates located in the ocean makes it easier for mutation to

cross oceans. We here need to specify that this operation has a stronger effect on the attacker. In

fact, since the reactive defender strategy generates a priority value for each grid-cell, we can

simply enforce the constraint by selecting the land-based coordinate featuring the highest score.

Table 4.7: Comparison of the performance of 30 evolved defender positions (Best, Avg., Worst)
against 30 evolved reactive defender strategies (R. Best, R. Avg., R. Worst), all constrained to
land on Earth. Underlined results indicate statistically significant improvements for the reactive
defender over the fixed defender.

Scenario Best Avg. Worst R. Best R. Avg. R. Worst
KSat5 12.35% 1.06% -0.89% 17.60% 13.96% 10.26%
KSat10 10.27% 0.83% -0.70% 16.83% 13.38% 9.99%

Table 4.7 displays the results associated with this case, comparing 30 evolved defender

positions against 30 evolved defender strategies. We use a set of 30 high-performing attackers

evolved with this land constraint which these defenders did not encounter during evolution,

analogous to those in Section 4.5.3. Constraining the agents to locations on land eliminated

the consistent strategy available to fixed defender locations, reducing the average performance

of these agents against attackers they did not evolve against; in fact, we can observe how the

performance is consistently degraded even when compared to the simple reference strategy,
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being more comparable to a random agent. To the contrary, the reactive defender strategy is

not significantly affected by the application of the constraint, and performs comparably to the

unconstrained case.

In all of the following cases, we keep the land constraint in place to prevent the emergence

of these dominant and unrealistic strategies. As these cases do not change anything for the

attacker, the same attacker set used for the land constraint experiments is reused, making fitness

values directly comparable.

4.5.6 Case 5: partial knowledge case

Throughout the cases presented so far, we have always assumed the defender to have full

knowledge about the coverage state, here intended as information about actual satellite service.

This was possible thanks to the coverage map provided at evaluation time, which contained

coverage information for all latitude-longitude grid cells, including all water-based positions.

However, while the constellation coverage information, in its orbital mechanics meaning, can be

always computed, information about satellite service would depend on the actual constellation

operational status; as such, in reality knowledge about degraded constellation performance

would likely originate primarily from populated areas. To model such a condition, we consider

a simplified model where the defender has access to coverage information for all land-based

locations (with the simplified assumption that these correspond to inhabited areas), but it has no

information about ocean-based cells. To this purpose, the coverage map provided at halftime

gives accurate information for land-based coordinates; however, the value reported for ocean

cells is just the average coverage of all the land-based cells. We use an average here to ensure

that the agents do not interpret these cells as having particularly high or low coverage.

Table 4.8: Comparison of the performance of 30 evolved reactive defender strategies with full
information of ocean coverage (F. Best, F. Avg., F. Worst) against 30 evolved reactive defender
strategies with partial information (P. Best, P. Avg., P. Worst), all constrained to land on Earth.
Results showed no statistically significant difference.

Scenario F. Best F. Avg. F. Worst P. Best P. Avg. P. Worst
KSat5 17.60% 13.96% 10.26% 19.67% 15.46% 7.15%
KSat10 16.83% 13.38% 9.99% 18.08% 13.53% 7.78%
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Table 4.8 summarizes the performance of 30 reactive defenders evolved over the full

information case (from Section 4.5.5) against the performance of 30 strategies evolved with

partial information. Analysis of the results reveals that no statistically significant difference

exists between the performance of strategies evolved with the two simulation settings, meaning

that the defenders are able to evolve successful strategies even when incomplete information

is provided. However, comparing the locations chosen by defenders between these two cases

(Figure 4.16(b) and Figure 4.16(c)) shows that the evolved defenders behave very differently

under these constraints, placing fewer ground stations in North America and Europe, and more in

Australia and the Antarctic Peninsula. This indicates that while under these conditions limiting

the defender’s information did not decrease performance, it forces the defender to find alternative

strategies, which might not always be of identical quality in different situations.

4.5.7 Case 6: multiple node deployment

One of the main assumptions in the previously discussed cases is that the defender has the

capability to deploy only a single auxiliary node. While this hypothesis may be reasonable for

the most trivial cases like Simple2 and Simple4 (as an excessively unbalanced node deployment

between defender and attacker may negatively impact coevolution and simultaneously hinder

interpretability of the strategies), when moving to more realistic models it is reasonable to

assume a more capable defender. Within our framework, such enhanced capability naturally

translates into granting the defender the possibility to deploy multiple auxiliary nodes at once. To

enable the defender strategies to represent taking multiple actions, each defender’s GP tree is run

iteratively, adding a ground station in the location chosen during each iteration, and augmenting

the input with data about the ground stations added in previous iterations. These placements

occur simultaneously in the simulation. The defender has a “defender stations” terminal node

which reports the distance of each cell to the nearest defender station; therefore, by using this

node in its tree, the defender can avoid placing its nodes in the same place as previous iterations.

Table 4.9 reports the performance of a reactive defender allowed to deploy three additional

nodes. Any number of nodes could be used here, but we can not allow the defender agent itself

to choose a number without requiring the addition of a cost minimization objective, which is
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Table 4.9: Performance of 30 evolved reactive defender strategies allowed to deploy three
additional ground stations (Best, Avg., Worst).

Scenario Best Avg. Worst
KSat5 32.67% 24.96% 14.44%
KSat10 35.29% 30.64% 19.95%

outside of the scope of this experiment. Since these defenders have an inherent advantage in

being able to place multiple additional ground stations, they can not be directly compared to

the previous agents. However, the fact that we observe a substantial improvement with respect

to the corresponding single-node deployment cases indicates that these defenders are correctly

utilizing this advantage.

4.5.8 Strategy visualization and comparison

As discussed in Section 4.4.4, while the statistical analysis provides information about the

quality of the results, it does not provide an intuitive understanding of the logic behind the

attacker nodes placement and the defender evolved strategies. To overcome this limitation, a

KDE-based technique is here employed to visualize for different scenarios what areas are more

frequently (or rarely) selected as good regions for nodes distribution. An example of this for

several of the KSat10 scenarios is shown in Figure 4.16. In all cases, the evolved attackers and

defenders tended to choose locations far from existing defender stations, showing a particular

preference for high latitude (both positive and negative) regions. Such a general trend is coherent

with 1) the constellation orbital configuration, as the inclination of the orbits leads to a higher

satellite density in the proximity of those regions and 2) the absence of cost modeling or other

types of restriction within the simulation settings. Thanks to this visualization approach, we can

observe that the partial information and multiple deployment cases result in the development

of substantially different defender strategies to the baseline (land constraints) case, adapted

to the specific characteristics of their environment. In particular, this visualization method

highlights that the defender agents in the multiple deployment case are correctly evolving

the capability to spread out their ground stations, leading to wider diversity of locations being

covered. This allows them to exert control of regions that the attacker would otherwise dominate.
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Figure 4.16: Distributions of the ground station placements of evolved attackers and defenders
on the KSat10 scenario, estimated by KDE. Fixed defender ground stations are shown as blue
dots. The set of attackers displayed in Figure 4.16(a) is used as the opponent for all three sets of
defenders.

As a conclusive remark, it is relevant to emphasize that while the general trend of deploying

nodes at higher latitudes is interpretable, the particular solutions themselves remain nontrivial.

As an example, Fig. 4.17 displays the improvement in relative up-time for the same distribution

of fixed defender’s ground segment and attacker’s nodes, and two distinct locations for the

additional defender’s mobile node. In such a case, the solution involving the higher up-time

improvement (bottom right) is not the one at higher latitude (top right). Concurrently, as

observed during the development of the hand-crafted strategy, there exists a strong variability in

up-time increment when choosing different longitudes at higher latitudes, thus corroborating the

complexity of the solution space.

4.5.9 Examination of defender response time

For all the experiments presented in this work, we applied a 24-hour delay between the beginning

of the attack and the defender’s deployment action. This was done primarily to ensure that the

simulation has had time to converge to stable “before” and “after” coverage states, allowing
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Figure 4.17: Up-time improvement example for two different defender’s mobile node coordi-
nates. Attacker and defender’s fixed nodes randomly distributed.

us to best characterize the impact of the defender’s ground station placement. However, in

a hypothetical real-world deployment of such an agent, this large lead time is not necessary.

To evaluate the effects of varying the defender’s reaction time, we reuse the evolved defender

agents from Section 4.5.6 for the KSat10 scenario, and we repeatedly re-run the simulation

while varying the response time between 5 minutes and 24 hours. For shortened lead times, it

is no longer accurate to measure fitness by comparing the coverage values before and after the

defender action, as the attack may not fully propagate until after the defender acts, resulting

in artificially low measured improvements. Instead, we compare the coverage that would have

occurred after 24 hours with no defender action to the coverage at the end of the simulation.

Plotting the resulting fitness values in Figure 4.18 shows that these agents are able to find

good ground station locations almost immediately, reaching their maximum performance after

approximately 6 hours of observing the attack. With an orbital period of around 1 hour and 45

minutes, this means that only a few orbits are needed to collect enough data for the defender to

deploy its mobile ground station. Fewer than that, the global impact of the attack is less evident

on the coverage heatmap. Notably, we do not evolve new agents to utilize these shorter response

times; defender agents evolved for 24-hour times are robust enough to usually succeed in these
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substantially different conditions. It is likely that defender strategies specifically evolved to act

with shorter response times could better handle such incomplete observation data.
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lead times before the defender is allowed to place its mobile node
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4.6 General Considerations

The experiments presented here demonstrate that the combination of a competitive coevolu-

tionary algorithm with reactive, genetic programming-based defender strategies solves the

adversarial ground station transit time game effectively compared to previous work. In particular,

the technique of combining spatial heatmaps in the GP tree is a novel approach that provides

a convenient representation for this problem, enabling the evolution of strategies that apply

high-level information originating from the dynamics of the constellation. The individually-

meaningful building blocks provided by this representation facilitate early steps in evolution;

simultaneously, they also encourage the development of advanced strategies which combine

data in complex ways. We observed the emergence of such complex strategies in practice, which

corroborates our assessment of the complexity of this problem and the solutions required for it,

emphasizing how successful strategies are not intuitive and demand the proper combination of

signals originating from different sources. These experiments show that our GP design is robust

to the specifics of the problem, and can produce strong, distinct results under many different

scenarios and constraints. These evolved strategies are themselves robust to a wide variety of

attacks, which was not generally possible in previous methodologies.
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Chapter 5

Conclusions

In this work we discussed the problems of anomaly resilience, detection, and reaction in various

astrodynamics problems, with a focus on trajectory design in cislunar regime and P-LEO satellite

constellations. In the following, key contributions and findings for each individual problem are

summarized, and future avenues of work are discussed.

5.1 Resilience Problem

The resilience problem has been discussed in the context of trajectory design in cislunar space

through the exploration of two case studies: descent trajectory abort, which assumed the

occurrence of an anomaly along the descent trajectory from the Gateway to a Low Lunar Orbit,

and surface-stay abort, which assumed the ascent module had to return to the Gateway in

advance with respect to the nominal mission duration. Hence, we characterized the convergence

and dynamical structures of the NRHO-to-LLO abort trajectory design space associated with

these two scenarios, employing direct and flow-informed approaches.

We first discussed the descent problem from a numerical perspective, leveraging a traditional two-

step pipeline at first, and then introducing a three-step optimization routine relying on surrogate

modeling. Our analyses conducted via the two-step pipeline revealed the complexity of the

convergence structure, which is found to be characterized by sparse regions of catastrophic

collapse where the pipeline fails to provide a converged solution. The conducted analysis

revealed how the presence of such regions can be directly correlated to a plethora of factors,

including the inherent formulation of the correction algorithms, the dynamics of the problem

itself, and geometrical properties, overall underscoring the susceptibility of any optimization

pipeline to the existence of these “singular” conditions. In the attempt to reduce computational
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cost and improve the convergence landscape, we then applied a surrogate-based optimization

pipeline. The obtained results demonstrated our approach to be promising, suggesting how

surrogate modeling may constitute a viable solution to accelerate large-scale simulations. Finally,

we gained insight into the dynamical structure of the problem by leveraging a flow-informed

method based on FTLE maps. Our analysis revealed how families of trajectories can be identified,

with lower FTLE values associated with states rapidly escaping the system, and higher FTLE

values corresponding to a motion persisting in the proximity of the Moon (within the considered

time horizon). Knowledge of such dynamical features may then be leveraged for maneuver

planning, thus resulting informative for the potential identification of cheap trajectory solutions.

We then explored the ascent problem through a similar analysis, first employing a two-step

optimization pipeline, then applying the surrogate-based method. For the former analysis, we

highlighted how again regions of stiff convergence appear throughout the considered design

space, shifting and morphing based on the settings of the optimization pipeline. Then, we

observed how the surrogate-based pipeline performed significantly worse with respect to the first

case study, providing a converged solution solely within a handful of conditions. This prompted

an extensive investigation, which resulted in the following conclusions:

• The geometry of the problem strongly influences the shape of the surface to be approxi-

mated, here corresponding to the components of the ∆v at the departure point on the LLO

as a function of the time of flight. In fact, the difference in dynamics between the LLO and

the NRHO determines sampling of departure-rendezvous pairs which are highly variable

from a geometrical perspective, thus resulting in steep changes in the ∆v direction, even

for points which are close in the time domain.

• While the time of flight is generally convenient to utilize as a variable to explore the

solution space, a representation that more directly relates to the geometry of the problem

may result in a smoother surface. In particular, direct mapping from time to angles

demonstrates how to improve the regularity of the surface, showing how spatially similar

sample points which are distant in the time domain get closer in angular space.
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• The most challenging condition is determined by transfers from the LLO to positions in

the perilunar region. In such cases, we discovered how convergence can be accomplished

through either temporally short transfers, or through longer trajectories (both in space and

time) in the form of multi-revolution transfers.

• Specific orientations of the LLO provide, on average, a lower total ∆v cost. Hence, if

such orientations are selected, multiple low-cost transfers can be available for different

trajectory profiles, thus promoting flexibility of operations. In particular, the most conve-

nient conditions are associated with cases when the LLO and the NRHO are ∼coplanar,

while concurrently having the same direction of motion.

• Particular relative geometries (such as those involving departure from the LLO with a true

anomaly close to π/2) coupled with long time of flight may require infeasible maneuvers

from a practical perspective.

5.1.1 Application

While we acknowledge potential limits of our study (see Sec. 5.1.2), it is here relevant to

emphasize how our discoveries find immediate applications at different levels of the mission

and trajectory design process. To begin with, the investigation on the convergence structure

may inform designers in the development of an optimization pipeline, specifically in terms

of flexibility of correction schemes and options for initial guess generation. Furthermore,

the presented research suggests two paths for accelerating large-scale simulations. The first

one (more direct) relies on the introduction of approximate algorithms within a traditional

optimization architecture, as they may accurately provide initial guesses in substitution of

heavier exact models, thus lowering the overall computational burden. The second one (more

indirect) derives from the findings of the investigation, which can be leveraged either by pruning

in advance regions of the search space where an optimizer will struggle to converge/will provide

an impractical solution, and/or to inform of more manageable and interpretable design space

representations.
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5.1.2 Future Directions

The investigation conducted on the resilience problem in the context of trajectory design

opens several research avenues, either to mitigate the highlighted limitations, to improve upon

observed performance, and expand the line of work. In the following, a few potential directions

are suggested.

• For what concerns the direct search via the offline three-step pipeline, a relevant aspect is

defined by the distribution of the initial set of sample points. In this study, Latin hypercube

has been adopted to generate the initial set, resulting in a near-random distribution of

points. While this is a valid approach, especially for cases where the input/output mapping

is unknown, our analyses demonstrated the complexity of the convergence structure of the

problem, which may have solely a few sparse and isolated regions where an optimizer may

struggle if poor initial conditions are provided. As such, despite the adoption of adaptive

sampling techniques that rely on a combination of exploitation and exploration criteria, an

ill-sampled initial set may result in a poorly-initialized surrogate model. Therefore, future

work can focus on exploring methodologies to sample the initial set of points smartly.

• The analyses conducted in the second case study highlighted how the complexity of the

surface strongly limits the performance of the selected metamodel, opening to either

exploration of different surrogate models or to regularize the surface. In this work,

steps have been taken toward smoothing of the surface, underscoring how an angular

representation which better captures the geometrical features of the problem may be

beneficial. Hence, future work may either explore different types of representation, or

investigate alternative function approximators. In particular, other Kriging methods, such

as Universal Kriging, are available. Furthermore, neural networks may offer additional

flexibility, though one should be conscious of their inherently larger number of parameters

and the longer training time required with respect to a simpler model.

• To generate initial guesses, a Lambert solver has been utilized throughout our investigation.

Though this provides a fast guess generator which often time can lead to a converged
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solution in higher fidelity (provided that the pipeline is robust enough and flexible in

terms of optimizer settings), it may limit the type of available transfers. Specifically,

it can be observed how the obtained converged solutions are strongly influenced by a

two-body-like type of transfer, which hardly leverages the dynamics of the environment.

As such, a more robust initial guess generator may be investigated directly in CR3BP,

potentially leading to alternative and more convenient transfers. Additionally, it is worth

emphasizing that we limited our investigation to two-impulse maneuvers, which granted

a low-cost pipeline from a computational stand point. Future works may consider the

introduction of intermediate maneuvers, which may be beneficial in terms of both ∆v

cost and convergence structure improvement. Finally, modifications can be introduced

in the correction algorithm formulation. Specifically, we kept the formulation simple

by imposing constraints exclusively on the terminal position. In this regard, additional

constraints may be introduced based on mission requirements (total ∆v, impulse direction,

flight path angle, etc.), which would introduce an a priori pruning of solutions which are

feasible in a simplified model, but that would likely violate feasibility in higher fidelity.

5.2 Detection Problem

The detection problem has been discussed within the context of P-LEO satellite constellations.

Thanks to their development, the size of the space infrastructure is rapidly increasing; however,

challenges are expected for the successful and effective management of such a large space

system. The elevated number of satellites makes the constant monitoring of individual units a

complex task for the limited human personnel; additionally, existing algorithms dedicated to

the detection of anomalous events typically focus on individual satellites and pay little to no

attention to potential cyber-threats. Toward improving management of large space networks,

in this work we developed an anomaly detection framework to effectively and automatically

identify irregular behaviors on P-LEO systems.

To begin with, we modeled a satellite constellation as a dynamic graph, with nodes rep-

resenting satellites and ground points, and edges representing connections among them. Next,

we employed the TADDY deep learning architecture for the classification of edges belonging
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to graphs generated from multiple shortest paths connecting two arbitrary ground nodes that

abstractly represent two regions of the world. To investigate the performance of the framework,

we initially considered different time horizons (throughout the analyses referred to as aggre-

gation windows) in the range of minutes to tens of minutes to assess how the extension of the

observation window influences the capability of the model to capture the temporal behavior

of the network. Our initial analysis revealed how direct application of the original method-

ology struggles to reach satisfactory performances, reaching AUC scores lower than 0.7 for

all considered cases. In particular, we identified graph structure (connectivity), constellation

dynamics, and anomaly injection technique to be the key parameters affecting the classification

task. Furthermore, we observed how the traditional data pre-processing technique employed in

the original work was detrimental for the constellation study, thus requiring a different approach.

After introducing a variation in data processing, we presented an extensive investigation which

emphasized how topological and temporal information alone are insufficient to capture the

nature of the constellation graph, thus needing to be enriched to enhance the algorithm’s perfor-

mance. Notably, we discovered the transformative impact of injecting frequency information

on the baseline TADDY framework performance. Finally, we conducted a large variety of tests

over modified constellation configurations, varied sets of terminal nodes and different negative

sampling connection strategies which showcased the ability of the network to potentially learn

underlying graph structures, being capable of maintaining good performance even over unseen

scenarios.

5.2.1 Application

Despite that the implemented framework has to be considered as only a first step toward the

development of a comprehensive tool for monitoring a space network, the lessons learned

throughout our investigation may be immediately applied by satellite operators. In particular,

the identified coupling between satellite dynamics and spatial ground node distribution (and

the corresponding algorithm performance) can be directly leveraged by human developers to

inject expert knowledge in the design of future detection algorithms, and by current operators to

evaluate situations requiring attention.
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5.2.2 Future Directions

While the obtained results are encouraging, it is also relevant to highlight potential limitations

of the method. In particular, thanks to the Monte Carlo analysis, we emphasized how the

physical nature of the system strongly couples with the algorithm parameters, possibly negatively

impacting the performance. Furthermore, the method is based on the main assumption that the

constellation architecture is static, that is, the number of nodes in the constellation (particularly

satellite nodes) remains constant. As such, any dynamic evolution of the constellation, such as

decommissioned/replaced satellites, is disregarded. To mitigate these shortcomings and bring

further improvements in model performance, multiple opportunities exist.

• Firstly, immediate steps can be taken to increase the model fidelity, which may provide

sufficiently rich information to capture the complexity of the problem, boosting the

algorithm’s performance.

• Secondly, the significant improvement introduced by injecting the frequency attribute may

indicate the potential to incorporate other sources of information to boost the detection ca-

pability. Such additional features may be related to attributes of the physical constellation,

as well as to properties of the graph itself.

• Thirdly, the Monte Carlo analysis revealed how the configuration and dynamics of the

constellation coupled with the relative distribution of the ground points constitute a key

factor in determining the performance of the model. Hence, future work may look at

ways to specialize the algorithm parameters toward improving performance for specific

application cases.

• Next, the model can be extended to handle non-static constellations by introducing a

methodology to dynamically handle constellation changes.

• Finally, it is worth remarking that the developed framework considers a centralized view,

that is, it assumes that global information on the network is available. However, in reality

such a perspective may not be immediately feasible, thus delaying reactions should an
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anomaly occur. As such, the framework could be repurposed to conduct the anomaly

detection task directly on the edge, that is, to operate directly at node/satellite level, which

may be a more beneficial perspective to promptly react to irregular events.

5.3 Reaction Problem

The reaction problem has also been discussed in the context of satellite P-LEO constellations,

with a higher focus on the security of such systems. In fact, as P-LEOs provide support to

critical infrastructures, they also constitute a broader surface of attack for malevolent actors, who

may see individual satellites as a potential point of access for malicious intents. As a proxy to

study large-scale attacks against P-LEO satellite networks, we first introduced what we defined

as an adversarial ground station transit time game, which features an attacker and a defender

competing against each other to disrupt or maintain the constellation service, in this work

quantified through the satellite up-time. Next, we employed competitive coevolution and genetic

programming as solution methods to the problem. Specifically, we granted the adversaries the

capability to deploy ground nodes, with the defender initially capable of deploying a single

node in addition to an existing ground segment, and we employed these methods to evolve

locations for the attacker where to deploy rogue nodes from where to launch its attack, while

reactive strategies encoded through genetic programming trees were evolved for the defender.

To evaluate the validity of the method, we tested our approach over a wide range of scenarios

with incremental complexity. Our initial evaluation considered an unconstrained environment,

where both players were allowed to deploy their nodes in any region of the world. Within

this formulation, we tested the approach against minimally complex strategies, smart strategies

expressed as static solutions, and a human-crafted policy. Results obtained over these scenarios

demonstrated the superiority of our novel approach, and emphasized the complexity of the

solution space, which caused the hand-crafted strategy to rapidly decrease in effectiveness as

the complexity of the scenarios increased. Next, we refined the model via the introduction of

geographic constraints, bounding the deployment of nodes to be land-based-only. Furthermore,

we considered scenarios which included partial information and the possibility of deploying

multiple nodes for the defender. Again, the novel approach demonstrated to be superior against
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alternative methods, with evolved reactive policies showcasing robustness against a variety

of unseen opponents. Finally, we also analyzed the effect of the response time on up-time

improvement, observing how defender policies evolved through previously discussed scenarios

(that is, over a 24-hour horizon) demonstrate to be robust even at different time scales.

5.3.1 Application

While the presented research aims to develop reactive strategies against adversarial actions,

the proposed methodology can more immediately be leveraged from a resilience perspective.

In particular, our approach can be utilized for the design of the ground segment, as it enables

identification of a ground node distribution which is resilient to adversarial attacks. In fact,

though we acknowledge this approach to necessitate a trade-off in the design as it implies to

sacrifice optimality for nominal operations, the resulting ground node distribution may allow to

maintain sub-optimal behavior even in the case of unforeseen, adversarial events.

5.3.2 Future Directions

The results of this work suggest that our methods can be extended to a wider variety of scenarios,

as well as to higher-fidelity environments and agents. In particular, our attacker aims to degrade

the constellation service on a global scale; we observed how this typically results in placing

their nodes at high-latitudes, as these locations grant frequent contacts with satellites. Many

real-world actors might also desire to disrupt service over populated areas, or over a specific

region. Such localized objectives might dramatically change the observed behaviors. The

introduction of a cost objective would further impact the dynamics of the game, forcing agents

to consider a trade-off between cost and effectiveness when selecting locations. A cost objective

has serious game-theoretic consequences over the outcome of a scenario; for example, an agent

which can not achieve dominance over an opponent’s strategy could still make that strategy

prohibitively expensive to execute.

Strategies can also be improved by refining our GP tree formulation. In particular, we

observed how the geographic nature of the selected primitives (Table 4.2) allowed the defender

to identify meaningful robust strategies even when the complexity of the environment increases.

169



However, as the quality of the solution derives in part from the selected primitives, one may

be interested in exploring different primitive choices. For example, evolution of a reactive

strategy may benefit from providing primitives that inform the agent about temporal dynamics

of the system. In such a way, the defender agent may be able make inference about potential

locations of the attacker, thus selecting more strategic positions for its mobile nodes’ placement.

Nonetheless, it must be noted that, in general, adding more primitives may render evolutionary

search inefficient. To prevent this, it could be helpful to investigate the primitive set statistically

to identify functions which evolution is failing to effectively exploit. Additionally, it may be

worth exploring more flexible representations for agent strategies like neural networks, either as

a component to the tree or as complete replacement.

A complementary factor to consider when evaluating complex strategies is their inter-

pretability. Through our results, we showed how KDE was helpful to interpret the aggregate

behavior observed in our experiments. However, while the visualization of placed ground sta-

tions between two agents allows one to view differences in behavior, it does not explain the cause

of those differences. While GP constructs trees out of primitive functions with known behavior,

the resulting strategies combine these functions in ways that are difficult to understand despite

being effective. As our GP tree formulation primarily relies on heatmaps, one possibility may

include viewing the intermediate stages of these heatmaps during tree execution, in case certain

subtrees have evolved with a meaningful granular function. This can be then combined with

techniques like frequent subtree mining of evolved trees, which would allow one to extrapolate

which factors appear to be determinants for the development of a successful strategy.

Finally, any speedup in evaluation would allow for either faster evolution of strategies, or

enable the use of larger populations and longer evolution to produce higher-quality strategies.

One promising idea is to modify the fidelity of the simulation over time, since the resolution

has an extreme impact on runtime. As the reactive defender’s strategy is agnostic to the spatial-

temporal granularity of the simulation, a strategy could be rapidly evolved at a low resolution for

most of an evolutionary run, only increasing towards the end to ensure that the evolved strategies

are effective in a more realistic environment. Additionally, the attacker and defender could be

evolved independently of each other at the start of evolution, allowing them to first learn how to
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respond to the orbital dynamics of the simulation at a much faster rate without the high cost of

coevolution, before later facing intelligent opponents. Improvements in the methods used by

coevolution to select opponent pairs could also greatly reduce the number of evaluations needed

overall, with similar benefits to increasing evaluation speed [121].
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[18] A. Fossà, G. Bucchioni, E. Blazquez, E. Canalias, S. Lizy-Destrez, R. Bertrand, A. Lamy,

and J.-F. Goester, “Two and three impulses phasing strategy with a spacecraft orbiting

on an Earth–Moon NRHO,” Acta Astronautica, vol. 198, pp. 669–679, 2022. DOI: 10.

1016/j.actaastro.2022.06.042.

[19] E. M. Zimovan, “Characteristics and Design Strategies for Near Rectilinear Halo Orbits

within the Earth-Moon System,” Master’s thesis, Purdue University, 2017.

[20] T. A. Pavlak, “Mission Design Applications in the Earth-Moon System: Transfer Trajec-

tories and Stationkeeping,” Master’s thesis, Purdue University, 2010.

[21] D. A. Vallado, Fundamentals of Astrodynamics and Applications. Hawthorne (CA, USA):

Microcosm Press, 4 ed., 2013.

[22] R. J. Whitley, D. C. Davis, L. M. Burke, B. P. McCarthy, R. J. Power, M. L. McGuire,

and K. C. Howell, “Earth-Moon near Rectilinear Halo and Butterfly Orbits for Lunar

Surface Exploration,” 2018 AAS/AIAA Astrodynamics Specialist Conference, Snowbird

(UT, USA), August 2018.

174

https://dx.doi.org/10.1007/s10569-015-9617-4
https://dx.doi.org/10.1007/s10569-015-9617-4
https://dx.doi.org/10.1007/s10569-008-9180-3
https://dx.doi.org/10.1007/s10569-008-9180-3
https://dx.doi.org/10.1016/j.actaastro.2022.06.042
https://dx.doi.org/10.1016/j.actaastro.2022.06.042


[23] C. Howard D., Orbital Mechanics for Engineering Students. Boston (MA, USA):

Butterworth-Heinemann, 3 ed., 2014.

[24] C. Thangavelu, “Transfers between Near Rectilinear Halo Orbits and Low Lunar Orbits,”

Master’s thesis, University of Colorado, 2018.

[25] S. M. Clarke, J. H. Griebsh, and T. W. Simpson, “Analysis of Support Vector Regression

for Approximation of Complex Engineering Analyses,” Journal of Mechanical Design,

vol. 127, pp. 1077–1087, November 2005. DOI: 10.1115/1.1897403.

[26] J. Park and I. Sandberg, “Universal Approximation Using Radial-Basis-Function Net-

works,” Neural Computation, vol. 3, pp. 246–257, June 1991. DOI: 10.1162/neco.

1991.3.2.246.

[27] J. P. C. Kleijnen, “Regression and Kriging metamodels with their experimental designs in

simulation: A review,” European Journal of Operational Research, vol. 256, pp. 1–16,

January 2017. DOI: 10.1016/j.ejor.2016.06.041.

[28] D. G. Krige, “A statistical approach to some basic mine valuation problems on the

Witwatersrand,” Journal of The South African Institute of Mining and Metallurgy, vol. 52,

pp. 201–203, 1951.

[29] J. P. C. Kleijnen, “Kriging metamodeling in simulation: A review,” European Journal

of Operational Research, vol. 192, pp. 707–716, February 2009. DOI: 10.1016/j.

ejor.2007.10.013.

[30] H. Wackernagel, Ordinary Kriging, pp. 74–81. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1995. DOI: 10.1007/978-3-662-03098-1_11.

[31] J. N. Fuhg, “Adaptive surrogate models for parametric studies,” Master’s thesis, Leibniz

University of Hannover, 2019.

[32] F. Bachoc, “Cross Validation and Maximum Likelihood estimations of hyper-parameters

of Gaussian processes with model misspecification,” Computational Statistics & Data

175

https://dx.doi.org/10.1115/1.1897403
https://dx.doi.org/10.1162/neco.1991.3.2.246
https://dx.doi.org/10.1162/neco.1991.3.2.246
https://dx.doi.org/10.1016/j.ejor.2016.06.041
https://dx.doi.org/10.1016/j.ejor.2007.10.013
https://dx.doi.org/10.1016/j.ejor.2007.10.013
https://dx.doi.org/10.1007/978-3-662-03098-1_11


Analysis, vol. 66, pp. 55–69, October 2013. DOI: 10.1016/j.csda.2013.03.

016.

[33] J. N. Fuhg, A. Fau, and U. Nackenhorst, “State-of-the-Art and Comparative Re-

view of Adaptive Sampling Methods for Kriging,” Archives of Computational Meth-

ods in Engineering, vol. 28, pp. 2689–2747, June 2021. DOI: 10.1007/

s11831-020-09474-6.

[34] J. L. Loeppky, J. Sacks, and W. J. Welch, “Choosing the Sample Size of a Computer

Experiment: A Practical Guide,” Technometrics, vol. 51, pp. 366–376, November 2009.

DOI: 10.1198/TECH.2009.08040.

[35] D. Canales and K. C. Howell, “Leveraging Finite-Time Lyapunov Exponent Maps to

Design Tours Incorporating Three Moons,” ASCEND 2021 (virtual), Las Vegas (NV, USA),

November 2021.

[36] D. Guzzetti and H. Baoyin, “Time-Varying Shadows of Quasi-Periodic Motion Across

Sections of the Flow Within Nearly Time-Periodic Three-Body Dynamics,” The Journal

of the Astronautical Sciences, vol. 68, pp. 855–890, September 2021. DOI: 10.1007/

s40295-021-00284-x.

[37] C. R. Short and K. C. Howell, “Lagrangian coherent structures in various map represen-

tations for application to multi-body gravitational regimes,” Acta Astronautica, vol. 94,

pp. 592–607, February 2014. DOI: 10.1016/j.actaastro.2013.08.020.

[38] Z. Zhangming, L. Haiyang, and W. Xugang, “An adaptive sampling method for Kriging

surrogate model with multiple outputs,” Engineering with Computers, vol. 38, pp. 277–

295, April 2022. DOI: 10.1007/s00366-020-01145-1.

[39] C. R. Short, “Flow-informed Strategies for Trajectory Design and Analysis,” Master’s

thesis, Purdue University, 2016.

[40] “Competing in Space,” tech. rep., NASIC Public Affairs Office, December 2018.

176

https://dx.doi.org/10.1016/j.csda.2013.03.016
https://dx.doi.org/10.1016/j.csda.2013.03.016
https://dx.doi.org/10.1007/s11831-020-09474-6
https://dx.doi.org/10.1007/s11831-020-09474-6
https://dx.doi.org/10.1198/TECH.2009.08040
https://dx.doi.org/10.1007/s40295-021-00284-x
https://dx.doi.org/10.1007/s40295-021-00284-x
https://dx.doi.org/10.1016/j.actaastro.2013.08.020
https://dx.doi.org/10.1007/s00366-020-01145-1


[41] N. Boschetti, N. G. Gordon, and G. Falco, “Space Cybersecurity Lessons Learned from

The ViaSat Cyberattack,” Ascend 2022, Las Vegas (NV, USA), October 2022.

[42] “Space Threat Assessment 2023,” tech. rep., Center for Strategic & International Studies,

April 2023.

[43] P. T. J. Kon, D. Barradas, and A. Chen, “Stargaze: A LEO Constellation Emulator for

Security Experimentation,” CCS ’22: 2022 ACM SIGSAC Conference on Computer and

Communications Security, Los Angeles (CA, USA), November 2022.

[44] M. Jia, Y. Shu, Q. Guo, Z. Gao, and S. Xie, “DDoS Attack Detection Method for Space-

Based Network Based on SDN Architecture,” ZTE Communications, vol. 18, pp. 18–25,

December 2020. DOI: 10.12142/ZTECOM.202004004.

[45] G. Giuliari, T. Ciussani, A. Perrig, and A. Singla, “ICARUS: Attacking low Earth orbit

satellite networks,” USENIX Annual Technical Conference (virtual), July 2021.

[46] Y. Gao, T. Yang, M. Xu, and N. Xing, “An Unsupervised Anomaly Detection Approach for

Spacecraft Based on Normal Behavior Clustering,” 2012 Fifth International Conference

on Intelligent Computation Technology and Automation, Zhangjiajie, Hunan (China),

January 2012.

[47] H. Jiang, K. Zhang, J. Wang, X. Wang, and P. Huang, “Anomaly Detection and Identifi-

cation in Satellite Telemetry Data Based on Pseudo-Period,” Applied Sciences, vol. 10,

pp. 103–108, December 2020. DOI: 10.3390/app10010103.

[48] K. Li, Y. Wu, S. Song, Y. Sun, J. Wang, and Y. Li, “A novel method for spacecraft

electrical fault detection based on FCM clustering and WPSVM classification with PCA

feature extraction,” Proceedings of the Institution of Mechanical Engineers, Part G:

Journal of Aerospace Engineering, vol. 231, pp. 98–108, January 2017. DOI: 10.

1177/0954410016638874.

[49] Y. Wang, J. Gong, J. Zhang, X. Han, and P. Castaldi, “A Deep Learning Anomaly

Detection Framework for Satellite Telemetry with Fake Anomalies,” International Journal

177

https://dx.doi.org/10.12142/ZTECOM.202004004
https://dx.doi.org/10.3390/app10010103
https://dx.doi.org/10.1177/0954410016638874
https://dx.doi.org/10.1177/0954410016638874


of Aerospace Engineering, vol. 2022, pp. 1–9, January 2022. DOI: 10.1155/2022/

1676933.

[50] M. A. M. Sadr, Y. Zhu, and P. Hu, “An Anomaly Detection Method for Satellites Using

Monte Carlo Dropout,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59,

pp. 2044 – 2052, April 2023. DOI: 10.1109/TAES.2022.3206257.

[51] G. Xiang and R. Lin, “Robust Anomaly Detection for Multivariate Data of Spacecraft

Through Recurrent Neural Networks and Extreme Value Theory,” IEEE Access, vol. 9,

pp. 167447–167457, December 2021. DOI: 10.1109/ACCESS.2021.3136505.

[52] Z. Zhang, P. Cui, and W. Zhu, “Deep Learning on Graphs: A Survey,” IEEE Transactions

on Knowledge and Data Engineering, vol. 34, pp. 249–270, January 2022. DOI: 10.

1109/TKDE.2020.2981333.

[53] K. Sricharan and K. Das, “Localizing anomalous changes in time-evolving graphs,”

Proceedings of the 2014 ACM SIGMOD International Conference on Management of

Data, Snowbird (UT, USA), June 2014.

[54] C. C. Aggrawal, Y. Zhao, and P. S. Yu, “Outlier detection in graph streams,” IEEE 27th

International Conference on Data Engineering, Hannover (Germany), April 2011.

[55] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast Memory-efficient Anomaly Detection

in Streaming Heterogeneous Graphs,” KDD ’16: The 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco (CA, USA), August

2016.

[56] Z. Yuan, M. Shao, and Q. Yan, “Motif-Level Anomaly Detection in Dynamic Graphs,”

IEEE Transactions on Information Forensics and Security, vol. 18, pp. 2870–2882, May

2023. DOI: 10.1109/TIFS.2023.3272731.

[57] W. Yu, W. Cheng, C. Aggarwal, K. Zhang, H. Chen, and W. Wang, “NetWalk: A Flexible

Deep Embedding Approach for Anomaly Detection in Dynamic Networks,” KDD ’18:

178

https://dx.doi.org/10.1155/2022/1676933
https://dx.doi.org/10.1155/2022/1676933
https://dx.doi.org/10.1109/TAES.2022.3206257
https://dx.doi.org/10.1109/ACCESS.2021.3136505
https://dx.doi.org/10.1109/TKDE.2020.2981333
https://dx.doi.org/10.1109/TKDE.2020.2981333
https://dx.doi.org/10.1109/TIFS.2023.3272731


The 24th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, London (UK), August 2018.

[58] C. Yang, L. Zhou, H. Wen, Z. Zhou, and Y. Wu, “H-VGRAE: A Hierarchical Stochas-

tic Spatial-Temporal Embedding Method for Robust Anomaly Detection in Dynamic

Networks,” 2020.

[59] Y. Zhang, Y. Wang, Y. Hu, Z. Lin, Y. Zhai, L. Wang, Q. Zhao, K. Wen, and L. Kang,

“Security Performance Analysis of LEO Satellite Constellation Networks under DDoS

Attack,” Sensors, vol. 22, pp. 1–10, September 2022. DOI: 10.3390/s22197286.

[60] W. Guo, J. Xu, Y. Pei, L. Yin, C. Jiang, and N. Ge, “A Distributed Collaborative Entrance

Defense Framework Against DDoS Attacks on Satellite Internet,” IEEE Internet of Things

Journal, vol. 9, pp. 15497–15510, September 2022. DOI: 10.1109/JIOT.2022.

3176121.

[61] H.-Y. Kwon, T. Kim, and M.-K. Lee, “Advanced Intrusion Detection Combining

Signature-Based and Behavior-Based Detection Methods,” Electronics, vol. 11, pp. 867–

886, March 2022. DOI: 10.3390/electronics11060867.

[62] F. T. Liu, K. M. Ting, and Z.-H. Zhouu, “Isolation Forest,” ICDM ’08: Proceedings of

the 2008 Eighth IEEE International Conference on Data Mining, Pisa (Italy), December

2008.

[63] I. Kiss, P. Haller, and A. Beres, “Denial of Service Attack Detection in Case of Tennessee

Eastman Challenge Process,” Procedia Technology, vol. 19, pp. 835–841, December 2015.

DOI: 10.1016/j.protcy.2015.02.120.

[64] U. Sabeel, S. S. Heydari, H. Mohanka, Y. Bendhaou, K. Elgazzar, and K. El-Khatib,

“Evaluation of Deep Learning in Detecting Unknown Network Attacks,” 2019 Interna-

tional Conference on Smart Applications, Communications and Networking (SmartNets),

Sharm El Sheikh (Egypt), December 2019.

179

https://dx.doi.org/10.3390/s22197286
https://dx.doi.org/10.1109/JIOT.2022.3176121
https://dx.doi.org/10.1109/JIOT.2022.3176121
https://dx.doi.org/10.3390/electronics11060867
https://dx.doi.org/10.1016/j.protcy.2015.02.120


[65] B. Gogoi and T. Ahmed, “HTTP Low and Slow DoS Attack Detection using LSTM based

deep learning,” 2022 IEEE 19th India Council International Conference (INDICON),

Kochi (India), November 2022.

[66] D. Gong, M. Tran, S. Shinde, H. Jin, V. Sekar, P. Saxena, and M. S. Kang, “Practical Veri-

fiable In-network Filtering for DDoS Defense,” 2019 IEEE 39th International Conference

on Distributed Computing Systems (ICDCS), Dallas (TX, USA), July 2019.

[67] Z. Ming, L. Liu, S. Zhou, and Z. Tian, “Survey on security issues of routing and anomaly

detection for space information networks,” Scientific Reports, vol. 11, pp. 1–18, December

2021. DOI: 10.1038/s41598-021-01638-z.

[68] R. Boumghar, R. N. N. Madeira, A. Donati, I. Angelis, J. F. M. D. Silva, J. A. M. Heras,

and J. Schulster, Enhanced Awareness in Space Operations Using Web-Based Interactive

Multipurpose Dynamic Network Analysis, pp. 795–810. Cham: Springer International

Publishing, 2019. DOI: 10.1007/978-3-030-11536-4_31.

[69] Y. Hu, I. Sharf, and L. Chen, “Distributed orbit determination and observability analysis

for satellite constellations with angles-only measurements,” Automatica, vol. 129, pp. 1–

11, July 2021. DOI: 10.1016/j.automatica.2021.109626.

[70] H. Zhang and P. Gurfil, “Cooperative Orbital Control of Multiple Satellites via Consensus,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 54, pp. 2171–2188, October

2018. DOI: 10.1109/TAES.2018.2808118.

[71] C. N. McGrath, R. A. Clark, and M. Macdonald, “Novel concept of satellite manoeuvre

planning using graph theoretical techniques,” Advances in Space Research, vol. 67,

pp. 3775–3784, June 2021. DOI: 10.1016/j.asr.2020.06.008.

[72] F. Tang, “Dynamically Adaptive Cooperation Transmission among Satellite-Ground

Integrated Networks,” 2020 - IEEE Conference on Computer Communications (virtual),

July 2020.

180

https://dx.doi.org/10.1038/s41598-021-01638-z
https://dx.doi.org/10.1007/978-3-030-11536-4_31
https://dx.doi.org/10.1016/j.automatica.2021.109626
https://dx.doi.org/10.1109/TAES.2018.2808118
https://dx.doi.org/10.1016/j.asr.2020.06.008


[73] Y. Zhang, Q. Wu, Z. Lai, and H. Li, “Enabling Low-latency-capable Satellite-Ground

Topology for Emerging LEO Satellite Networks,” 2022 - IEEE Conference on Computer

Communications, London (UK), May 2022.

[74] X. Xu, Z. Gao, and A. Liu, “Robustness of satellite constellation networks,” Computer

Communications, vol. 210, pp. 130–137, October 2023. DOI: 10.1016/j.comcom.

2023.07.036.

[75] F. Jiang, Q. Zhang, Z. Yang, and P. Yuan, “A Space–Time Graph Based Multipath

Routing in Disruption-Tolerant Earth-Observing Satellite Networks,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 55, pp. 2592–2603, October 2019. DOI: 10.

1109/TAES.2019.2938447.

[76] M. X, W. Jia, S. Xue, J. Yang, C. Zhou, Q. Sheng, H. Xiong, and L. Akoglu, “A

Comprehensive Survey on Graph Anomaly Detection with Deep Learning,” IEEE

Transactions on Knowledge and Data Engineering, vol. 34, pp. 1–32, October 2021.

DOI: 10.1109/TKDE.2021.3118815.

[77] L. Akoglu, M. McGlohon, and C. Faloutsos, “oddball: Spotting Anomalies in Weighted

Graphs,” Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hyderabad

(India), June 2010.

[78] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, “SCAN: a structural clustering

algorithm for networks,” Proceedings of the 13th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, San Jose, (CA, USA), p. 824–833, August

2007.

[79] S. Bandyopadhyay, L. N, S. V. Vivek, and M. N. Murty, “Outlier Resistant Unsupervised

Deep Architectures for Attributed Network Embedding,” Proceedings of the 13th Inter-

national Conference on Web Search and Data Mining, huston (TX, USA), pp. 25––33,

January 2020.

181

https://dx.doi.org/10.1016/j.comcom.2023.07.036
https://dx.doi.org/10.1016/j.comcom.2023.07.036
https://dx.doi.org/10.1109/TAES.2019.2938447
https://dx.doi.org/10.1109/TAES.2019.2938447
https://dx.doi.org/10.1109/TKDE.2021.3118815


[80] H. Wang, C. Zhou, J. Wu, W. Dang, X. Zhu, and J. Wang, “Deep Structure Learning

for Fraud Detection,” 2018 IEEE International Conference on Data Mining (ICDM),

Singapore (Singapore), November 2018.

[81] H. M. Al-Ammal, “A Review of Machine Learning Techniques for Anomaly Detection in

Static Graphs:,” in Advances in Computational Intelligence and Robotics (Y. A. Albastaki

and W. Awad, eds.), pp. 146–162, IGI Global, 2020.

[82] N. Ailon, R. Jaiswal, and C. Monteleoni, “Streaming k-means approximation,” Proceed-

ings of the 22nd International Conference on Neural Information Processing Systems,

Vancouver (Canada), pp. 10—-18, December 2009.

[83] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “AddGraph: Anomaly Detection in Dynamic

Graph Using Attention-based Temporal GCN,” Proceedings of the Twenty-Eighth Inter-

national Joint Conference on Artificial Intelligence, Macao (China), August 2019.

[84] M. Yoon, B. Hooi, K. Shin, and C. Faloutsos, “Fast and Accurate Anomaly Detection

in Dynamic Graphs with a Two-Pronged Approach,” 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, Anchorage (AK, USA), August

2019.

[85] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen, “Structural Temporal Graph

Neural Networks for Anomaly Detection in Dynamic Graphs,” Proceedings of the 30th

ACM International Conference on Information & Knowledge Management (virtual),

October 2021.

[86] J. McDonald, “Lecture Notes: Graph Theory,” Auburn University, Auburn (AL, USA),

2018.

[87] S. Haykin, Neural Networks and Learning Machines. Upper Saddle River, New Jersey

07458: Pearson, Third Edition, 2009.

[88] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of

Control, Signals, and Systems (MCSS), vol. 2, pp. 303–314, December 1989.

182



[89] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,

and L. Zettlemoyer, “BART: Denoising Sequence-to-Sequence Pre-training for Natural

Language Generation, Translation, and Comprehension,” in Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics (D. Jurafsky, J. Chai,

N. Schluter, and J. Tetreault, eds.), (Online), pp. 7871–7880, Association for Computa-

tional Linguistics, July 2020. DOI: 10.18653/v1/2020.acl-main.703.

[90] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirec-

tional Transformers for Language Understanding,” in Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers) (J. Burstein, C. Doran, and

T. Solorio, eds.), (Minneapolis, Minnesota), pp. 4171–4186, Association for Computa-

tional Linguistics, June 2019. DOI: 10.18653/v1/N19-1423.

[91] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. Uszkoreit, L. Beyer,

M. Minderer, M. Dehghani, N. Houlsby, S. Gelly, T. Unterthiner, and X. Zhai, “An Image

is Worth 16x16 Words: Transformers for Image Recognition at Scale,” International

Conference on Learning Representations (virtual), 2021.

[92] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin Transformer:

Hierarchical Vision Transformer using Shifted Windows,” 2021 IEEE/CVF International

Conference on Computer Vision (ICCV), (virtual), March 2021.

[93] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond

Efficient Transformer for Long Sequence Time-Series Forecasting,” Proceedings of The

Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, (virtual), vol. 35,

no. 12, pp. 11106–11115, 2021.

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas

(NV, USA), June 2016.

183

https://dx.doi.org/10.18653/v1/2020.acl-main.703
https://dx.doi.org/10.18653/v1/N19-1423


[95] M. Indaco and D. Guzzetti, “Transformer-based Anomaly Detection on Dynamic Graphs:

Application to Satellite Constellations,” 33rd AAS/AIAA Space Flight Mechanics Meeting,

Austin (TX, USA), January 2023.

[96] Q. Chen, L. Yang, D. Guo, B. Ren, J. Guo, and X. Chen, “LEO Satellite Networks: When

Do All Shortest Distance Paths Belong to Minimum Hop Path Set?,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 58, pp. 3730–3734, August 2022. DOI: 10.

1109/TAES.2022.3143090.

[97] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathe-

matik, vol. 1, no. 1, pp. 269–271, 1959.
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December 2018.

[100] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representation learning

on graphs,” ICML’20: Proceedings of the 37th International Conference on Machine

Learning (virtual), July 2020.

[101] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly Detection on

Attributed Networks via Contrastive Self-Supervised Learning,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 33, pp. 2378–2392, June 2022. DOI: 10.

1109/TNNLS.2021.3068344.

[102] P. H. Le-Khac, G. Healey, and A. F. Smeaton, “Contrastive Representation Learning:

A Framework and Review,” IEEE Access, vol. 8, pp. 193907–193934, October 2020.

DOI: 10.1109/ACCESS.2020.3031549.

184

https://dx.doi.org/10.1109/TAES.2022.3143090
https://dx.doi.org/10.1109/TAES.2022.3143090
https://dx.doi.org/10.1109/TNNLS.2021.3068344
https://dx.doi.org/10.1109/TNNLS.2021.3068344
https://dx.doi.org/10.1109/ACCESS.2020.3031549
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Appendix A

Resilience

A.1 RAAN Scan Supplementary Results

(a) (b)

Figure A.1: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 10◦.

(a) (b)

Figure A.2: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 40◦.
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(a) (b)

Figure A.3: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 70◦.

(a) (b)

Figure A.4: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 100◦.

(a) (b)

Figure A.5: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 130◦.
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(a) (b)

Figure A.6: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 160◦.

(a) (b)

Figure A.7: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 190◦.

(a) (b)

Figure A.8: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 220◦.
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(a) (b)

Figure A.9: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 250◦.

(a) (b)

Figure A.10: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 280◦.

(a) (b)

Figure A.11: Multi-revolution Lambert guess exploitation: (a) iteration map, and (b) total ∆v
associated with each transfer. NaN cells refers to non-converged solutions. RAAN = 310◦.

192



Appendix B

Detection

B.1 Edge Frequency Impact Explanation

In Sec. 3.6.3 we discussed the impact of edge frequency, showcasing how enriching with it

structural and temporal information significantly improves the network discriminative capability.

We believe that the observed behavior is the consequence of two factors:

1. graph diversity: the baseline algorithm relies on detecting anomalies on pure spatial

and temporal information. While the graphs themselves are highly dynamic due to the

satellite motion, which ensures a change of nodes and paths in subsequent snapshots,

the actual structure of individual snapshots may appear somewhat similar in multiple

sequences. Hence, it is possible that the dataset does not include a sufficiently high

number of examples to tune the network parameters properly. However, introducing the

frequency attribute provides an additional dimension to the graph, such that even if two

graphs have an identical structure, they will remain different objects due to the presence

of the frequency information.

2. frequency distribution: despite the Earth’s rotation, with the two ground nodes fixed, the

dynamics of the graphs are mostly dominated by the satellite motion. While it is true that

this determines changes in the graph (trivially, the node set changes in time), as previously

mentioned, the structure is not expected to change significantly. As such, having a fixed

number of paths, while the frequency of individual edges changes, the overall distribution

is expected to follow a certain behavior. However, anomalies present a random behavior,

which may move away from the regularity of nominal conditions. Therefore, even if the

network does not have knowledge of the concept of “paths”, it can leverage the frequency
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information combined with structural and temporal signals to infer the regularity (or not)

of the edges.

(a) (b)

Figure B.1: Regular edge frequency distribution for the case AU to AN: (a) training set and (b)
test set. Colors associated with different snapshots.

Fig. B.1 displays the edge frequency count for training and test sets for the scenario the

Auburn to Anchorage scenario, for a constellation of 1600 satellites. Despite the two images

display distinct frequency counts for different snapshots (as expected), the overall distribution

presents a similar trend, with a skew toward lower frequency. This is reasonable, as many paths

are expected to share similar edges, while having a few edges less utilized.

(a) (b)

Figure B.2: Edge frequency distribution for the case AU to AN for two percentages of injected
anomalies: (a) 10% o and (b) 80%. Colors associated with different snapshots.
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However, when injecting anomalies, one can notice a variation of this behavior (Fig. B.2).

While for the case of a 10% injection ratio, the effect is less evident (which is expected

considering the few anomalies are distributed in many snapshots), the extreme case with an

injection rate of 80% displays a visible change.
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Appendix C

Reaction

C.1 Heatmap Rotation

The set of GP primitives for the defender includes several functions to “rotate” a heatmap and

produce a new one. This can be conceptualized as rotating a spherical globe with the heatmap’s

data on its surface, while fixing the grid of the heatmap in place without rotation. The output

maps each cell of the heatmap to the new data in that location after the rotation. Points on the

heatmap are mapped to latitude, longitude coordinates, so these rotations can be performed by

converting to Cartesian coordinates and multiplying by an appropriate rotation matrix. However,

heatmaps are made up of discrete data cells, which generally won’t line up after a rotation, so

these need to be resampled from the original heatmap.

For this to work, the heatmap must be accessible by a continuous function on the sphere.

Let Hcell(i, j) be the accessor function for the heatmap array at row i and column j. When

mapped to the sphere, for a given grid resolution res, the centers of these grid cells are located

at −π
2
+ i · res latitude and −π+ j · res longitude. We will define Hmap(lat, lon) as a function

mapping a latitude, longitude point to a heatmap value, which gives the value of the heatmap

cell with the nearest center to that point:

Hmap(lat, lon) = Hcell(round

(
lat+ π/2

res

)
, round

(
(lon+ π)mod 2π

res

)
)

where round rounds to the nearest integer, and mod is the Euclidean modulo operator.

Let Rot(lat, lon) be the rotation of a point (lat, lon) following a given transformation,

with Rot−1(lat, lon) as the inverse transformation. Then the value of the rotated heatmap at

(lat, lon) is Hmap(Rot(lat, lon)). In order to define the cells of the rotated heatmap, we take
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this value at the four corners of each cell, and average them to get the value of that cell. The

inner boundaries of the cell have the coordinates:

top = min(lat+
res

2
− ϵ,

π

2
)

bottom = max(lat− res

2
+ ϵ,−π

2
)

right = lon+
res

2
− ϵ

left = lon− res

2
+ ϵ

where ϵ is a value much smaller than the resolution to ensure that the ties are broken in the

direction of the current cell, so that the identity rotation does not modify the heatmap. From

these, the values of the rotated heatmap are:

Hmaprot(lat, lon) = (Hmap(Rot−1(top, right))

+Hmap(Rot−1(top, left))

+Hmap(Rot−1(bottom, right))

+Hmap(Rot−1(bottom, left)))/4

Hcellrot(i, j) = Hmaprot(−
π

2
+ i · res,−π + j · res)
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