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Abstract

Perovskite oxides are a well studied family of materials that possess a wide range

of useful properties and novel properties. SrHfO3 (SHO) is a perovskite oxide with an

orthorhombic Pnma structure and large band gap of 6.1 eV. Its large band gap and in-

sulating behavior have made it a candidate for next-generation gate dielectrics in MOS-

FET devices. Previous studies utilizing density functional theory modeling have sug-

gested that a ferroelectric P4mm phase of SHO may be possible to synthesize under

strained conditions. A ferroelectric phase of SHO would be an ideal candidate for a

gate dielectric in ferroelectric random access memory (FRAM) devices. In order to in-

vestigate the possibility of a ferroelectric SHO phase, SHO thin film samples were syn-

thesized on GdScO3 (GSO), TbScO3 (TSO), and SrTiO3 (STO) using hybrid molecular

beam epitaxy (hMBE). Due to the refractory nature of Hf metal, it is highly difficult

to synthesize thin films containing Hf using the effusion cells in traditional molecu-

lar beam epitaxy (MBE). hMBE has emerged as a leading alternative that blends the

highly tunable precision of MBE with the ability of atomic layer deposition (ALD), to

easily synthesize refractory metals by introducing Hf through the metal organic precur-

sor tetrakis(ethylmethylamino)hafnium(IV) (TEMAH).

In perovskite oxides heterostructures and devices, samples must be highly crys-

talline with sharp interfaces in order to exhibit the desired electrical properties and

function correctly. Successfully synthesizing perovskite oxide samples usually requires

significant numbers of growth attempts and detailed film characterization on each sam-

ple to find the optimal growth window of a material. The most common real time in-situ

diagnostic technique available during MBE synthesis is reflection high energy electron

diffraction (RHEED). Conventional use of RHEED allows a highly experienced opera-

tor to make some qualitative observations during growth, such as recognizing the sam-

ple has become amorphous or recognizing the large islands have formed on the surface.

However, due to a lack of theoretical understanding of the diffraction patterns, finer,

more precise levels of observations are challenging. To address these limitations, new
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programs were created that utilize the modern data science techniques including com-

ponent analysis (PCA) and k-means clustering to analyze the recordings of the RHEED

patterns taken during growth.

Although hMBE growth allows for highly tunable control of film synthesis, the

down side is that there is a very large parameter space that needs to be explored to

find the optimal growth conditions. Common variables include the oxygen pressure,

substrate temperature, substrate material, effusion cell temperatures, and metal organic

precursor pressures. As a consequence of having this many variables and the limitation

of growing only a few samples a day, fully searching the parameter space is not feasi-

ble. As a result, growths need to be carefully monitored and adjusted during synthesis

to obtain the desired results. However, the only real time feedback that is available is

RHEED; thus successfully finding the optimal conditions in a reasonable amount of

time and growths requires the operator to possess significant expertise in film growth.

Convolutional neural networks (CNNs) have been demonstrated to be capable of iden-

tifying patterns in data at a level that human operators are unable to. To investigate

the ability of CNNs to make useful predictions that can provide more advanced and

detailed information than traditional monitoring systems, a CNN was trained to pre-

dict film stoichiometry by learning from X-ray photoelectron spectroscopy (XPS) and

RHEED data.
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Chapter 1

Introduction

1.1 Introduction to Perovskite Oxides

Oxides are one of the most common materials in existence and form when oxygen

bonds with any other element or elements. The majority of minerals in the earth’s

crust are oxides and they are integral to many industrial applications and to electronic

device manufacturing. Polycrystalline SiO2 is widely used as construction materials,

as a dielectric in capacitors, and as a gate dielectric in transistors. Since computer

manufactures discovered the power wall in 2007, HfO2 has also become a common

oxide used in the electronics industry and has been a key piece in the creation of high-κ

gate dielectrics for computer chip semiconductors [1]. Perovskite oxides are a subclass

of oxides that possess a high symmetry crystal structure and follow the formula ABO3.

The A-site atom is most commonly an Alkaline metal, Alkaline earth metal, rare earth

metal, or lanthanide while the B-site is most commonly a transition metal. Figure 1.1

shows the cubic perovskite structure where the A-site atoms sit on the vertices of the

cube and the B-site atoms are centered in the oxygen octahedra [2, 3]. The structure

takes its name from the naturally occurring CaTiO3 mineral. Given the wide array

of elements that are possible constituents of perovskite oxide compounds, there is a

wide range of material properties that perovskite oxides can possess. This breadth of

behavior has made the perovskite oxide family a significant focus of researchers for

decades. Some of the interesting phenomena are found at interfaces, such as 2DEGs at

LaAlO3/SrTiO3 interfaces [4] and superconductivity at LaAlO3/KTaO3 interfaces [5].

Perovskite oxides, such as STO and BTO, possess ferroelectric phases and have been

investigated as possible materials for ferroelectric field effect transistors (FeFET) and

ferroelectric random access memory (FRAM) devices [6, 7].
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Figure 1.1: Cubic Perovskite Oxide Unit Cell.

1.1.1 Thin Films

In bulk materials, defects and boundary conditions play different roles compared to at

the nano scale. The physical behavior of thin films is driven to a large extend by defects

and boundary conditions. Thin films are often < 50 nm thick and the applications

of these materials are primarily pseudo 2D. As a result, small scale deformities, such

as point defects and grain boundaries, can strongly affect the crystal structure. For

example, defects in the structure of the layered perovskite Sr2RuO4 were found to result

in the material not being superconducting [8]. The most common types of defects

in thin film perovskite oxides are point defects, grain boundaries, and stacking faults.

Point defects occur at a single point in the crystal and are the most common type of

defect. An example are atomic vacancies, which occur where either a cation or anion is

missing from the crystal structure. Impurities are another type of point defect in which

an atomic species that should not be present in a material takes the place of species that
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should be present at lattice site [9]. Impurities of small atomic species can also result

in interstitial defects where the dopant atom does not rest on a lattice site and does

not replace a constituent species. An anti-site defect occurs when a constituent atom

occupies the lattice site of another constituent species. In thin film materials, multiple

domains with different orientations and the grain boundaries can significantly increase

electrical resistance and result in other issues [10]. Another issue that can occur is

stacking faults, which is when, during epitaxial growth, there is a vertical mismatch in

the layering of the material [11]. Misfit defects are a type of defect that are well studied

in thin films and occur when a film is growing under strained conditions and the lattice

forces a misfit dislocation to relax the strain.

Termination of the surface generally has little effect in bulk samples. However,

in thin film materials, surface termination can have a profound effect on a film’s char-

acteristics. The surface of a thin film, the top 2-3 unit cells, strongly correlates to the

electrical properties of some films [12]. For example, when a perovskite oxide surface

is terminated in the (100) direction, the surface will terminate on either an AO or BO2

half unit cell step. By changing the axis of termination to the (111) direction, the film

now terminates in either an AO3 or B layer. While this difference may seem trivial,

the change from synthesizing BaTiO3 on (110) SrTiO3 (STO) and (001) STO resulted

in an increase of the ferroelectric curie temperature from 550 ◦C to 770 ◦C [13]. 2-

dimensinoal superconductivity was only found in LaAlO3/KTaO3 samples grown on

(111) oriented KTaO3 [5]. These studies demonstrate the profound effect crystal orien-

tation and surface termination have on the electrical properties of thin films.

1.1.2 Heterostructures

The LaAlO3/KTaO3 [5] and BaTiO3/STO [13] films are examples of thin film het-

erostructures, which are thin films that have been synthesized to contain sharp interfaces

between materials. These interfaces have been the focus of much research due to their
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ability to possess interesting phenomena and characteristics, such as 2D electron gases

(2DEGs) [14] and superconductivity, that are not present in either individual material.

Metal-oxide-semiconductor field-effect transistors (MOSFETs) are the most com-

mon example of thin film heterostructures used in industry [15]. MOSFETs utilize

multiple layers of semiconductors and insulators to create a transistor where the amount

of current passed through the semiconductor-oxide interface is controlled by an exter-

nal voltage applied to the oxide. Although the physics of MOSFETs is well known,

there are many more interesting phenomena that occur at interfaces that are have not

been fully explained. Thus, developing a better understanding of the links between

the structural properties of the films and the electrical and optical characteristics of the

heterostructures has been a major focus for researchers [16, 17].

Epitaxy is a type of crystal growth where the deposited materials are well ordered

and their orientations are influenced primarily by crystal structure and orientation of the

substrate [18]. Depending on the materials used, epitaxial growth is characterized as ei-

ther homoepitaxy or heteroepitaxy. Homoepitaxy involves the growth of a material on

a substrate or seed of the same material. This is commonly used in the semiconductor

industry to grow Si wafers [19]. Heteroepitaxy occurs when the deposited material and

seed material are different, such as when GaAs is synthesized on single crystal Si [20].

There are many different methods for epitaxy; however, they can be categorized by the

phase of matter used. Vapor phase epitaxy methods utilize gaseous materials and in-

cludes methods such as MBE [21], PLD [22], CVD [23], and ALD [24]. Liquid phase

epitaxy utilizes liquid materials and includes the Czochralski method, which utilizes

molten metal and is commonly used to create single crystal Si ingots by the semicon-

ductor industry [25]. Solid phase epitaxy is performed by depositing amorphous layers

of materials on a crystal substrate and then annealing the layers until they form a single

crystal [26].

In addition to the plethora of interesting phenomena that occur at the interfaces

of heterostructures, there are those that occur within the material layers themselves.
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While some of these phenomena occur as a result of the thin vertical dimension of the

films, many occur as the result of stress and strain applied to the epitaxial films from the

substrates they are synthesised on [7]. In bulk samples, the majority of the material is far

from the nearest boundary with another material and thus strain is not being applied to

majority of the sample and the crystal is in a fully relaxed state. However, as the samples

are synthesized thinner and approach the thickness of thin films, the effects of stress and

strain from the substrate begin to play a significant role in the materials structure. When

films are grown epitaxially under strain, the crystal structure is distorted from the bulk

phase to match the in-plane lattice parameters of the substrate [27]. Under compressive

strain a lattice parameter along the axis of strain will shrink, while under tensile strain

it will increase. This effect can be used to break or modify the symmetry of the film.

The in-plane strain experienced by the film will result in a change in unit cell energy.

Naturally, the crystal structure will react to minimize this energy in the presence of the

new structural constraints. When a film is grown with compressive in-plane strain, the

out of plane lattice constant will usually increase such that the new unit cell volume is

nearly the same as the bulk, in a phenomenon called volume conservation [28].

In more complex crystal structures, such as perovskite oxides, there are additional

structural changes that can take place. Perovskites possess oxygen octahedra at the cen-

ter of the unit cell that is aligned with all three axis. Under compressive or tensile strain

these octahedra will tilt, resulting in a change of symmetry [29]. STO is a cubic per-

ovskite oxide that possesses octahedra with no tilts in the bulk. But when STO is synthe-

sized on (110) DyScO3, with tensile strain, and on (100) (LaAlO3)0.29(SrAl0.5Ta0.503)0.71

(LSAT), with compressive strain, the crystal structure changes from cubic to tetragonal

phases [30]. The result of applying tensile vs. compressive strain to STO is that each of

these samples also results in the STO phases being ferroelectric, but with the polariza-

tions in different directions depending on the type of strain [30].
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The amount of strain on an epitaxial film is derived from the lattice mismatch

between the film and the substrate on which it was synthesized. The formula for lattice

mismatch is [31]:

f =
2(af − as)

af + as
≈ af − as

af
. (1.1)

When the lattice mismatch is < 0.1, it is possible for a film to be synthesized epitaxially

and strained to the substrate. If the mismatch is > 0.1, then it is unlikely that a strained

film can be synthesized. Although a sufficiently small lattice mismatch may allow for a

film to begin growing epitaxially and strained, the film may not stay strained as growth

continues. The strain energy of the film is dependent on both the lattice mismatch

and the thickness of the film [32]. As the film thickness continues to increase, the

strain energy will grow beyond a level sustainable by the lattice and eventually misfit

dislocations will begin to form. These misfit dislocations allow the film to relax from

the strain. The thickness at which these defects begin to occur is called the critical

thickness and depends heavily on the materials of the film and substrate as well as the

lattice mismatch between them [33]. Beyond the critical thickness, more and more

misfit dislocations will occur until the film is fully relaxed [34].

1.1.3 Surface Oxidation

As shown previously, many additional interactions need to be considered when dealing

with thin films as compared to bulk materials. Surface oxidation is another important

behavior that needs to be considered to fully explain the measured characteristics of a

film [35]. The oxidation state of an atom is a representation of the charge on an atom

in an ionically bonded material. For the purpose of determining the oxidation state,

every bond is assumed to be ionic. Cations possess positive charges while anions are

the oxidizing agents which possess negative charge. Oxygen is the cation of interest and

typically possess a -2 charge [36]. Due to the number of elements that can fill the A and

B sites of a perovskite oxide, there is a large range in oxidation states. The A site can
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range from +1 to +3 while the B site can range from +3 to +5. The oxidation state of

an atom plays an important role in the material’s electrical and optical properties [37].

Oxidation state can also have strong effect on crystal structure. The cobalt atoms in

SrCoO3 (SCO) are particularly difficult to fully oxidize to its 4+ state and many works

have looked for ways to increase the oxidation state [38]. If the 4+ oxidation state is

not reached then the Sr2Co2O5 phase becomes energetically favorable and samples are

likely to end up with both phases in the sample [39].

For materials that are not as difficult to oxidize, oxidation of the sample does not

just happen during synthesis. Most thin film perovskite oxides are synthesized under

vacuum at high temperatures to prevent impurities and create highly crystalline samples.

However, the majority of characterization techniques are not performed under vacuum.

Once samples begin to cool down and are exposed to atmosphere many materials that

were metastable in vacuum will begin to oxidize. This begins with oxygen adsorbing

onto the surface and bonding to the atoms in the top couple of unit cells, which are

exposed. But as these layers begin to oxidize, the more oxygen will begin to diffuse

into the sample. This oxidation of the surface and film can result in a deterioration of

the samples [40]. Surface oxidation will also affect any electrical measurements that

utilize contacts or wires bonded to the surface of the material. There are several ways to

tell if a material has suffered surface over oxidation, including the use of angle resolved

x-ray photoelectron spectroscopy [41]. XPS extracts valence information from atomic

species near the surface and may allow for the oxidation state to be determined [42]. In

many cases, surface over oxidation will structurally deform the surface allowing for it

to be diagnosed using atomic force microscopy. There are several methods for prevent-

ing surface over oxidation; however, the effectiveness of these techniques depends on

materials propensity for over oxidation. For materials that can exist for some amount

of time in atmosphere, keeping the samples in a nitrogen purged glove box should pro-

tect them. For materials that are highly reactive in atmosphere or begin to over oxidize
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when cooled in vacuum, depositing a capping layer of a more stable material may pro-

tect them [37].

1.1.4 Superconductivity

Superconductivity is the phenomenon where a material’s electrical resistivity drops to

0 Ω·m [43]. This effect occurs only at low temperatures and was first observed in

solid mercury at ≈ 4 K [44]. In addition to no electrical resistance, superconducting

materials also experience the Meissner effect, which expels all magnetic fields from the

material [45]. This behavior has led to many interesting results including the ability

to make objects supported by magnets levitate. Traditionally, superconductors have

been separated into two types. Type 1 are superconductors that have a temperature

transition directly from a non superconducting state to a superconducting state, while

type 2 materials, also called hard superconductors, are ones where an intermediate state

exists [46]. This intermediate states does not fully expel the magnetic field, resulting in

magnetic vortexes forming within the material.

Classically, every material’s electric resistance decreases as the material approaches

0 K. However, classically, it is never possible to reduce it 0 Ω [43]. Superconductivity is

a quantum phenomenon that occurs as the result of coupling between phonon and elec-

trons. In this system 2 electrons of opposite spin form a pair, called a cooper pair [47],

which exchange phonons and result in the pair having energy lower than the Fermi level.

This type of superconductivity was first described by Bardeen, Cooper, and Schrieffer in

1957 and thus materials of this type are referred to as BCS superconductors [48]. BCS

superconductors are also referred to as conventional superconductors and are primarily

pure metals with the highest known transition temperature being 39 K [49].

Unconventional superconductors are essentially all superconductors where the phonon

exchange is not the mechanism utilized in electron pairing [50]. All of the materi-

als referred to as ”high temperature” superconductors are of this type. The cuprate

family falls into the category of unconventional super conductors and is the group
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of superconductors that currently have the highest transition temperatures under stan-

dard pressure [51]. These high temperature cuprates are made of layers of perovskite

oxides alternated with Ruddlesden-Popper layers of alkali earth metals and layers of

CuO2 [52]. The number and order of layers varies between materials. Examples of

superconducting cuprates include Sr1−XLaXCuO2 [53], YBa2CuO3, PbBaSrYCu3O8,

and Bi4Sr4CaCu3O14+X [52]. While much research has focused on oxides that pos-

sess superconductivity in the bulk phase [54], recently superconductivity has also been

found in perovskite oxide interfaces [5], opening up interesting new paths for device

and materials research. The exact mechanisms that precipitates high temperature super-

conductivity in perovskite oxides are still not fully understood and remain the focus of

significant research.

1.1.5 Ferroelectricity

Dielectric behavior is another interesting and useful trait found in perovskite oxides [55].

When exposed to electric fields, dielectric materials will develop a polarization propor-

tional to the strength of the electric field, as shown in Figure 1.2(a). Dielectric materials

are insulators, so no charge flows through them under most conditions. By applying an

electric field, such as in the charging of a capacitor, the electric moments of the dielec-

tric will align with the electric field [56]. This effect allows capacitors with stronger

dielectric materials to store more electrical energy.

Rather than a linear response to electric fields indicative of dielectrics, paraelectric

materials show a strong response to weak electric fields and then above some field

strength, show a linear response [57]. This behavior can be seen in Figure 1.2(b). The

strong response occurs when the material begins to exhibit a polarization in response

to the electric field, and the linear response occurs once that polarization medium has

reached saturation. Several perovskite oxides are paraelectric, including STO which is

an example of a high-κ dielectric [58]. When the external electric field is removed from

the material, the polarization induced returns to zero.
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Figure 1.2: Polarization responses to external electric fields in dielectric, paraelectric,
and ferreoelectric materials.

Ferroelectric materials exhibit similar behavior to the paraelectric materials when

first exposed to an electric field. Like paraelectric materials, the external electric field

induces a polarization in the ferroelectric material [59]. However, unlike paraelectric

materials, ferroelectric materials will not return to an unpolarized state when the electric

field is removed. Instead, these materials will maintain a spontaneous polarization at

zero external field [60], as seen in Figure 1.2(c).

This spontaneous polarization can be forced to switch directions by a sufficiently

large magnetic field in the opposite direction. This switchable nature and the presence

of a spontaneous polarization are very similar in behavior to that of ferromagnetic ma-

terials. This switchable polarization has resulted in ferroelectrics being integrated into

many types of devices. Radio frequency identification (RFID) chips use ferroelectric

materials to power the antennas [61]. Ferroelectric oxides have also been investigated

for possible use as gate dielectrics in MOSFETs [62, 63]. Traditional MOSFETs require

a constant voltage to be applied for current to flow, and is thus the reason traditional ran-

dom access memory (RAM) is volatile. If the gate oxide was a ferroelectric, an electric

field would only need to be activated for a moment to switch the polarization of the
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ferroelectric, thus requiring less energy during operation. Additionally, since the polar-

ization is spontaneous, the memory is no longer volatile [64]. This new type of RAM

is called ferroelectric RAM (FRAM).

1.1.6 Density Functional Theory

Density functional theory (DFT) is a highly useful method for predicting crystal struc-

tures in physics and materials science. In mathematics, a functional is a function that

maps from one space to the real numbers or complex numbers [65, 66]. In computer

science, this concept is simplified to a function that takes other functions as inputs.

These concepts are used to solve the total electronic state of the crystal structure by

approximating the exchange-correlations [67]. Exchange-correlations are approxima-

tions of the electron-electron effects that cannot be determined by the Hartree-Frock

approximations.

There are several versions of these exchange correlations, with the local density

approximation being among the most common. Several software packages, including

Vasp [68–70] and Quantum Espresso [71–73], are open source and well maintained,

resulting in the wide spread used of DFT. DFT allows researchers to model materials,

predicting the material’s structure and characteristics before synthesizing. This has re-

sulted in a streamlined process, when searching for materials with specific qualities.

With DFT, many material candidates can be ruled out quickly, resulting in quicker de-

velopment and research. Although DFT is often useful, there are several situations

where the results are not reliable. In many oxide semiconductors, DFT struggles with

making accurate predictions of the band gap [74]. This has led to several specialized

correlation functionals that attempt to correct this issue.

1.2 Introduction to Data Science, Artificial Intelligence, and Machine Learning

Traditional sciences seek to control nearly all variables to create a stable environment

and test specific hypotheses. However, this approach is not always feasible due to high
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Figure 1.3: Euler diagram showing the relationships between data science, artificial
intelligence, and machine learning.

numbers of degrees of freedom that cannot be directly manipulated. It is in these cases

that data science has emerged as the predominant way of conducting research. Data sci-

ence takes concepts from computer science, statistics, mathematics, physics, and other

fields and combines them to identify trends and patterns in complex datasets [75]. As

data science draws from a wide variety of other fields, it possesses an equally wide

variety of techniques and algorithms. Regression analysis, dimensionality reduction,

classification, and clustering are just some of the most common uses [76]. Within data

science there are many distinctions that can be made to classify the many techniques.

Figure 1.3 is an Euler diagram that shows the relationship between data science, artifi-

cial intelligence (AI), and machine learning (ML).

Artificial intelligence is a broad field covering any and all algorithms and programs

where a computer is able to perform complex tasks that humans can perform [77]. The

distinguishing characteristic between artificial intelligence and data science as a whole

is the focus on constructing systems that approach or exceed the complexity of tasks of

which humans are capable. Artificial intelligence algorithms are typically broken down

into three major categories: supervised learning, unsupervised learning, and reinforce-

ment learning. Supervised learning focuses on problems where there is an abundance

12



of labeled training data used to make predictions. Common examples include support

vector machines and decision trees. Unsupervised learning uses unlabeled data and

focuses on creating relationships or observing patterns in that data. Common exam-

ples include k-means clustering [78], principal component analysis [79], and Gaussian

mixture models [80]. Reinforcement learning creates a system and allows it to train

by taking actions and then adjusting it’s future behavior based on the results. Most re-

inforcement learning models are based on Markov decision processes [81]. Artificial

intelligence programs are already commercially implemented and are responsible for

defect detection in manufacturing, traffic management in city planning, and warehouse

optimization in supply chain logistics, among other things.

Machine learning (ML) is a subclass of artificial intelligence that encompasses any

algorithm that is trained on data to complete a task without being explicitly programmed

to do so [77]. As a subclass of AI, ML also focuses on completing complex tasks that

traditionally require human intelligence; however, ML algorithms distinguishes them-

selves from AI by being more abstract and adaptable than other AI solutions. Machine

learning algorithms are also often broken up into the same three categories as artificial

intelligence algorithms: supervised learning, unsupervised learning, and reinforcement

learning. The most widely used ML algorithms and the source of the ML explosion

of the 2020s are neural networks [82]. Neural networks have many sub classes includ-

ing convolutional neural networks (CNNs), recurrent neural networks, feed forward

neural networks, physics informed neural networks, and others. Neural networks can

be used for either regression or classification problems, and are able to be used in ei-

ther supervised or unsupervised formats. For instance, feed forward neural networks

are commonly used in commercial applications for facial recognition, computer vision,

and natural language processing.
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1.3 Overview of Thesis

This dissertation seeks to investigate the existence and characteristics of the P4mm

phase of SHO and to develop improved characterization techniques using data science

and machine learning algorithms that aid in materials characterization. Chapter 2 intro-

duces perovskite oxide thin films and molecular beam epitaxy, a common and highly

precicse technique to synthesize epitaxial thin films, and the method used in this work.

Chapter 3 explores the thin film characterization methods used in this work to investi-

gate the SHO films while chapter 4 delves into data science, artificial intelligence, and

machine learning, along with the techniques from them that will be used to character-

ize thin films. Chapter 5 demonstrates the use of the big data processes of principal

component analysis and k-means clustering to enhance understanding of RHEED data

and evolution of sample surfaces during growth. Chapter 6 analyzes the structural, opti-

cal, and electrical characteristics of thin film SHO samples synthesized epitaxially with

in-plane strain. Chapter 7 studies the ability of the random forest and neural network

machine learning techniques to generate useful predictions in real time from RHEED

patters. Finally, chapter 8 summarizes the results of this dissertation and highlights

routes for possible future work.
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Chapter 2

Thin Film Synthesis

2.1 Thin Films

Many previous studies of oxides have focused on polycrystalline samples, which are

easy to grow using sputtering and chemical vapor deposition. As a result of this cheap

and reliable synthesis, materials like SiO2 and ZnO are wide spread in the electronics in-

dustry [83]. However, the effects of impurities, grain boundaries, and mixed orientation

in polycrystalline materials often result in diminished effectiveness of the synthesized

materials. Single crystalline samples do not have these issues and also allow for more

detailed investigations of the materials properties.

Thin films crystals are samples whose thickness ranges from a couple of unit cells

to a few hundred nanometers. The synthesis techniques for epitaxial thin film samples

result in higher purity, larger crystal domains, lower amounts of defects, and single

crystalline samples [84]. These higher quality samples allow for more accurate and

precise measurements of structural, optical, electric, and magnetic properties. Thin film

samples often have sharper interfaces, allowing for deposition of heterostructures and

the study of 2D phenomena, such as 2D electron gases at LaAlO3/SrTiO3 interfaces [4]

and 2D superconductivity at LaAlO3/KTaO3 interfaces [5]. Devices such as MOSFETS

can also be synthesised in single crystal thin film form [85].

2.2 Molecular Beam Epitaxy

2.2.1 History

Molecular beam epitaxy (MBE) is a thin film synthesis technique that is able to achieve

highly crystalline epitaxial growth of single crystal samples. MBE systems use cylin-

drical crucibles called effusion cells to evaporate pure elements. Due to the cylindrical

shape of the effusion cell, the evaporated material escapes the cell in beam shape that
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Figure 2.1: Schematic of hybrid molecular beam epitaxy chamber in the Films, Inter-
faces, and Nanostructures of Oxides (FINO) Lab. Adapted from [88].

is aligned with the sample stage of the chamber [86], as seen in Figure 2.1. In order

to reduce the rate of collision between the metal atoms and ensure consistent growth,

MBE chambers are kept at pressures in the range of 1.0× 10−8 to 1.0× 10−10 Torr. In

this ultra high vacuum (UHV), the mean free paths of the metal atoms are over 5 m [87]

while the distance from the effusion cells to the sample stage is around 20-40 cm. This

ensures that the metal atoms do not react or bond to any atmospheric elements and are

able to deposit on the substrate.

MBE was first used to study the nucleation of Si in 1968 [89]. In 1969 the in-

situ characterization methods of Auger electron spectroscopy and low energy electron

diffraction (LEED) were added [90]. Shortly after several groups began to utilize MBE

to synthesize GaAs and other III-V materials [91]. In 1970 the first works were pub-

lished that showed RHEED can be used to obtain real time feedback on sample qual-

ity [92, 93]. As a result, RHEED became the primary system used for in-situ film
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characterization in MBE chambers. This setup has remained as the core design be-

hind contemporary MBE chambers. This setup for MBE chambers was a significant

advancement over previous synthesis methods; however, it provided no system to syn-

thesize oxides, the most common materials in the world [91]. The first results of oxide

MBE were published in 1979 on the synthesis of Al2O3 on GaAs substrates [94]. The

aluminum metal was introduced by an effusion cell while oxygen was introduced by

molecular O2 gas.

2.2.2 Oxide Molecular Beam Epitaxy

Initially, oxygen gas was supplied in it’s molecular form [95]; however, this required

samples to be grown at temperatures high enough to react the O2 with the sample.

This greatly restricted the growth of materials that require low temperatures deposition.

However, by passing O2 through a radio frequency plasma generator, an oxygen plasma

is created that is far more reactive than molecular oxygen [96]. This setup can be seen in

Figure 2.1. Alternatively, oxygen can be introduced in the form of ozone, O3, which is

also more reactive than molecular oxygen. This change not only allowed for increased

range of growth conditions, but it was also found that atomic oxygen, O− served to clean

carbonaceous material from the chamber and the surface of substrates [97]. Reducing

sample surface contamination is critical for the growth of oxide heterostructures as

the interfaces of these heterostructures is where much of the interesting physics takes

place [4, 5].

In order to achieve the desired material, careful calculations are used to determine

the appropriate effusion cell temperature for each growth. A quartz crystal microbal-

ance (QCM) can be mounted inside the vacuum chamber and used to measure the de-

position rate of the metal oxides [98]. The QCM crystal is placed directly in front of

the sample stage while an effusion cell. The depositing material changes the mass of

the crystal resonator resulting in a change in frequency that is measured and used to

calculate the deposition rate of the metal.
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Despite the advantages of using oxygen plasma, there are several downsides. The

radio frequency (RF) generator used to create an oxygen plasma can give off radio

signals that cause signal interference for other instruments, including thermocouples

that are not RF shielded. The highly reactive oxygen that is critical to the successful

oxidation of some materials is also rather effective at oxidizing equipment as well.

Unfortunately, everything in the chamber is subjected to the same reactive oxygen. If

anything in the chamber begins to oxidize, then it can become a source of contamination

in the chamber. Additionally, any equipment that oxidizes will wear out quicker and

need to be replaced more frequently. Any piece of equipment that is heated during

growth, such as the sample heater, sample stage, and effusion cells, needs to be made

of materials that will not oxidize easily or needs to have sufficient cooling systems that

reduce its reactivity. Tantalum is stable at high temperatures making it a common choice

for sample holders and stages [99].

Unfortunately, the materials in the effusion cells are also exposed to oxygen con-

sistently, causing them to oxidize. For some materials, this is not much of an issue

as the thin layer of oxide that forms can be blasted off the surface before calibration.

However, for materials that are highly reactive like Sr, constant oxygen exposure would

result in the majority of the source being oxidized and rendered useless. One solution to

this is to have a valve that can be closed to separate the highly reactive sources from the

main chamber when not in use [100]. But the materials still need to be under constant

vacuum, so an additional valve that is connected directly to a differential pump must be

present. This setup, seen in the bottom right of Figure 2.1, is highly effective but is also

costly, so it is reserved only for the most reactive metals. Despite these issues, oxide

MBE has been used to synthesize several of the most important materials discovered in

the last 50 years and is still one of the best options for synthesizing single crystal thin

films.
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2.2.3 Hybrid Molecular Beam Epitaxy

Traditional oxide MBE uses effusion cells capable of operating at up to ≈1600 ◦C,

while selected high temperature cells are able to operate at up to 2500 ◦C, but are not

in common use. While this setup is effective for supplying a wide variety of metals

for synthesis, there are several metals for which this does not work. V, Zr, Ti, Nb, Hf,

Ir, and Ta are all refractory metals which have extremely low vapor pressures even at

high temperatures [101]. As a result, deposition of these refractory metals via tradi-

tional MBE ranges from challenging to impossible. Atomic layer deposition (ALD)

is another common synthesis method. ALD solved the problem of depositing refrac-

tory metals by introducing them via metal organic precursors [24]. The exact chemical

structures of the precursors vary; however, they are all similar to the ones shown in

Figure 2.2. The precursors consist of a refractory metal atom bonded to several ligands,

some of which contain oxygen. These precursors allow for refractory metals to be evap-

orated and deposited at much higher and more consistent rates than if high temperature

effusion cells were used. The precursors are stable enough to be evaporated at low

temperatures, 100 ◦C, but reactive enough that when exposed to reactive oxygen and

higher temperature substrates, > 400 ◦C, they will break down, depositing the metal

atom.

Gases as sources in MBE were first used in 1980 when arsine was used to grow

GaAs and when phosphine was used to grow InP [102], but these precursors left much to

be desired since they are both toxic. In 1981 and 1982, the first metal organic precursors

were used [103, 104], though it wasn’t until 1986 that a metal organic precursor was

used in conjunction with an effusion cell for the first time [105]. In 2009 a renewed

interest was given to hMBE and the first growths of a perovskite oxide, STO, using

hMBE were performed with highly reactive oxygen [106, 107]. In this study, the metal

organic titanium tetraisopropoxide (TTIP) was used to supply Ti atoms. Since then,

hMBE has need been adopted by many groups as a way to supply refractory metals

in MBE [108]. Figure 2.1 shows a version of the metal organic injection system used
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Figure 2.2: (Left) Molecular structure of the metal organic precursor Titanium(IV)
isopropoxide (TTIP).(Right) Molecular structure of the metal organic precursor
tetrakis(ethylmethylamino)hafnium(IV) (TEMAH).

in hMBE. In this setup, the metal organic precursor used was contained in a stainless

steel bubbler that was heated to evaporate the precursor. The gaseous precursor is then

sent through a gas injector, which is heated to prevent the precursor from recondensing.

When the precursor is at low pressures, < 100 mTorr, the gas injection system functions

much like an effusion cell, supplying the metal organic directly to the sample in a beam

shape.

Due to the additional source of gas being used during growth, the chamber pres-

sure will increase. Additionally, the metal organic molecules will not necessarily stick

to the first surface they find as the metal atoms would. Instead, those molecules that do

not collide with something that has sufficient thermal energy to cause the molecule to

react will scatter. For this reason, covering the walls of the chamber in Figure 2.1 is a

low temperature shroud that is constantly being cooled by syltherm [109] pumped from

a low temperature chiller. The syltherm and shroud are chilled to -60 ◦C, resulting in

the scattered metal organic molecules getting stuck to it. This improves purity of the

chamber, where the effusion cell sources will still operate as expected, and prevents

contamination of the chamber [100]. Some precursors may contain oxygen that may

add to the oxygen environment of the growth. If the materials being synthesized tend

to over oxidize or requires a low oxygen environment to grow, then a precursor without
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oxygen should be used. When selecting a precursor, another thing that must be con-

sidered is the substrates surface chemistry [110]. As mentioned, there are often several

commercially available precursors for a single metal and each of these precursors will

have different vapor pressures and decomposition temperatures. Thus, careful consid-

eration is required to ensure a precursor will fit the growth window for the sample being

synthesized.

2.3 Thin Film Growth Modes

Epitaxial thin film synthesis can be divided into two categories depending on the ma-

terials being grown. If the thin film is grown on a substrate of the same material, the

synthesis is called homoepitaxy [19]. If the film material is different than the substrate it

is called heteroepitaxy. Heteroepitaxy is more common as many of the interesting phe-

nomena in oxides occur in heterostructures [20]. Within epitaxial growth there are sev-

eral possible growth modes by which films are deposited. The growth mode describes

the behavior of the deposited atoms on the surface of the sample and is highly depen-

dent on surface structure, chemistry, and kinetics. In layer by layer growth, the adsorbed

atoms fill an entire layer of the crystal before starting to form the next layer [111], illus-

trated in Figure 2.3. Layer by layer growth is the preferred growth mode for samples in

MBE as it results in uniform surfaces and interfaces. Additionally, since the film com-

pletes an entire layer before continuing, it allows for precise control of film thickness

and termination, both of which are important for obtaining the properties desired in het-

erostructures. Samples synthesized with layer by layer growth will also have very low

roughness, meaning characterization techniques that require smooth surfaces will work

well. In order to achieve layer by layer growth, the lattice mismatch between the film

and the substrate must be quite small, otherwise the strain energy will cause defects that

prevent such growth. Complex oxide films must also be near stoichiometric for layer by

layer growth to occur. If the film has an overabundance of one element, the layers will

not be able to fully form before excess material begins to form the next layer. Layer
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Figure 2.3: Diagram of growth modes common in molecular beam epitaxy.

by layer growth also requires a high substrate temperature. This temperature range will

provide the adsorbed atoms enough mobility to move along the surface and slot into

place.

Step flow growth is another growth mode possible in MBE thin film synthesis. In

step flow growth, the adsorbed atoms will continue to move across the surface of the

film until they become bound to a step edge [112], as depicted in Figure 2.3. This mode

of growth requires even higher temperatures than layer by layer growth to allow for the

adsorbed atoms to remain mobile until they encounter a step edge. This process utilizes

the few degree miss-cut of the substrate that results in step edges. If the surface of the

substrate does not have a smooth surface and fairly sharp step edges, then this growth

mode will not be achieved. Like layer by layer growth, step flow growth also requires

an very low lattice mismatch and near stoichiometric film deposition. Step flow growth
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is able to achieve very low defect rates like layer by layer; however, the deposition rates

possible are lower than those possible with layer by layer growth.

Island growth is non-ideal growth mode that results in islands of atoms forming

rather than smooth layers [113], as seen in the last line of Figure 2.3. Island growth is

usually the result when layer by layer or step flow growth are not achieved. This mode

can result from the substrate temperature being too low, thus resulting in adsorbed atoms

not being able to move across the surface. It can also occur when the lattice mismatch

between a film and substrate is too high or a surface is too rough. When films are grown

in an island growth mode, strain effects will likely not be present in the film. Instead

the layers will relax causing defects in the sample. As a result, most films synthesized

with an island growth mode will not be single crystalline and will have a very rough

surface. This will make growing additional layers of a heterostructure difficult and

will negatively effect the results of characterization techniques that rely on smooth film

surfaces. Once island growth begins, the size of the islands will continue to increase as

deposition continues. It is also possible to obtain film to begin growing in a step flow

or layer by layer mode and then switch to island growth once the film has reached the

critical thickness [114].
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Chapter 3

Thin Film Characterization Methods

In order to determine the underlying structure and properties of thin films synthesized

using MBE, several different characterization techniques are used. During film growth,

in-situ reflection high energy electron diffraction patterns are obtained in order to mon-

itor the evolution of the sample. X-ray photoelectron spectroscopy is performed in-

vacuo on samples post growth to determine the stoichiometry, film surface termination,

and valance band features. Ex-situ X-ray diffraction, X-ray absorption spectroscopy,

scanning transmission electron microscopy, and second harmonic generation are em-

ployed to further characterize the structure and properties of films.

3.1 Reflection High Energy Electron Diffraction

Reflection high energy electron diffraction (RHEED) is a common characterization

technique used in pulsed laser deposition and MBE [115]. In most systems, due to

the geometry of the chambers and the temperature and pressure conditions, RHEED is

the only in-situ characterization technique possible. Being in-situ, RHEED is able to

provide information about a sample in real time rather than post growth [116]. This

provides opportunities for the operator to adjust growth conditions during growth to

obtain a better sample. RHEED patterns result when a focused high energy electron

beam hits a crystalline sample at a very shallow angle, < 1◦. Figure 3.1 shows the ge-

ometry of electron diffraction. The electrons that diffract off of the crystalline sample

then fly through the vacuum chamber until they hit a phosphorous screen. As a result

of the electron bombardment, the phosphorescent screen emits light proportional to the

number of electrons hitting the screen.

The diffraction patterns are governed by Bragg’s law, nλ = 2d sin(θ), where d

is the spacing between crystal planes and the wavelength is the de Broglie wavelength

of the electron [115]. In reciprocal space, the crystal structure forms rods; and when
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Figure 3.1: Schematic of reflection high energy electron diffraction. Reproduced
from [117] under CC BY 4.0 [118].

these rods align with the Ewald sphere the Laue condition is satisfied and a maxima

is observed. Under ideal circumstances, the intersection of the Ewald sphere and the

reciprocal lattice rods yield perfect points. However, due to the nonidealities in the crys-

tal structure and experimental setup, the spots are sometimes observed as streaks [119].

This becomes the case when the average length of the domains in the crystal become

shorter than the coherence length of the electron beam [120]. Since n in Bragg’s law can

be any positive integer, there are infinitely many Laue rings that result from RHEED.

However, in many practical conditions only the 0th order and 1st order rings are usually

observable. Each Laue ring will also have several spots corresponding to different rods

25

https://creativecommons.org/licenses/by/4.0/


in the reciprocal lattice. RHEED can be collected along several crystallographic axes,

but it is common for (001) oriented perovskites that the axis chosen is either the (100) or

the (110) axis. The intensity of RHEED spots also depends on the atomic number of the

atoms causing the diffraction. Heavier atoms result in brighter spots and streaks than

lighter atoms. Although RHEED is much less sensitive to the lighter elements such

as carbon and nitrogen, significant surface contamination will still result in a drastic

decrease in pattern intensity [115].

A standard RHEED system consists of several important pieces. The electrons are

generated when a voltage of 10 − 20 kV is applied across a tungsten filament anode

and a cathode. The voltage results in the electron being pulled toward the anode and

thus the voltage controls both the amount and velocity of electrons [115]. The voltage

is usually kept at the lowest sustainable level to avoid burning out the filament. The

resulting electrons then pass through a series of electron optics that focus the beam. The

electron beam is focused onto the phosphorous screen rather than the sample in order

to maximize the resolution of the diffraction pattern. The electron beam then exists

the electron gun, where the filament and optics are housed. The electron optics are

controlled by the power supply and a small control box that sit on the power rack. The

pattern that results on the phosphor screen from the electron bombardment is recorded

and transmitted to a computer from a camera placed just behind the screen in a blacked

out enclosure. Another way to improve the lifetime of a RHEED gun is to connect

a differential pump to the gun, see Figure 2.1. This lowers the pressure of the gun,

resulting in less buildup of material and preventing the electrons from being absorbed

prematurely. A RHEED system from STAIB instruments, visualization software from

KSA, and screen recording software from Flashback Express were used in this work.

Due to the propensity of electrons to be absorbed or scattered easily, RHEED is

a surface sensitive characterization that probes only the top one to two unit cells of a

sample [115]. From RHEED we are able to observe changes in the surface sample in

real time and some important changes in the sample can be observed. The simplest
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Figure 3.2: (a) RHEED image of an STaO film that has both the SrTaO3 and Sr2Ta2O7

phases present. (b) A RHEED image from an SHO film grown on GSO showing a high
quality film with domains smaller than the decoherence length of the electron beam.

change to observe through RHEED is a change of the diffraction pattern. If the pattern

remains sharp but changes pattern, the sample is likely undergoing a phase change or

possibly developing a second phase. This can be seen in Figure 3.2(a), where a SrTaO3

film is developing a Sr2Ta2O7 phase over part of the surface [121]. Since the screen

shows a mixing of the diffraction pattern expected for the 113 phase and the diffraction

pattern for the 227 phase, it can be determined that both phases are present on the

surface of the sample. Figure 3.2(b) shows a RHEED image from a high quality SHO-

GSO sample which shows no signs of other phase or islands present.

Since the Bragg condition is dependent on the spacing of the crystal lattice, changes

in the spacing between RHEED spots indicate a change of the in-plane lattice constants

of the film [115]. In heteroepitaxy, the film will have the same lattice spacing of the sub-

strate if the film remains fully strained. As a result, the spacing between the RHEED

spots of the film should line up exactly with the RHEED spots of the substrate. Thus

by comparing the current RHEED pattern to an image take of the substrate RHEED

pattern prior to growth makes it possible to identify if the film has significantly relaxed.

The diagram of RHEED in Figure 3.1 assumes an atomically flat crystal surface, which

is most often not the case. When the surface begins to become multilayered or covered

in islands, the electrons will be subjected to additional scattering effects. This results in

the RHEED pattern becoming diffused at first, and eventually becoming an array of in-

creasingly large spots. So long as the surface is still crystalline, some diffraction pattern
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should be observed. However, if the sample was becoming amorphous, no diffraction

pattern would be observed at all.

In addition to monitoring the RHEED pattern of the film, there is information that

can be gained by monitoring the intensity of RHEED spots themselves. It is common

to use a program to sum the intensity within a certain region, a single spot, and plot this

over time [115], resulting in a graph like the one in Figure 3.3. From this monitoring,

it becomes possible to easily observe the change in the film quality over time. If the

film is starting to become rough, amorphous, or covered in islands, the intensity will

begin decreasing. If a change to the growth conditions is made, then the surface may

begin to recover and an increase in intensity will result. If the intensity remains constant

over time, then it can be inferred that the sample is maintaining quality. In Figure 3.3,

oscillations can be observed in the intensity of specular spot, with these oscillations

resulting from the sample undergoing layer by layer growth [115, 122]. Starting with

a complete layer, the intensity is at a maximum; and, as the surface begins to have

adsorbed atoms partially cover the surface, the intensity begins to decline. At the point

when the layer is beyond 50% filled, the pattern begins to increase and reaches another

maximum when full. Since this cycle corresponds to the deposition of a single unit

cell, it is possible to precisely tune a growth to be a desired thickness or even end in a

particular termination.

Although RHEED is highly useful during film synthesis, there are several down-

sides and limitations. The results extracted from the RHEED patterns are limited to

primarily qualitative observations rather than quantitative ones. Thus the first and fore-

most limitation is that it requires a well trained expert to comprehend and interpret the

patterns. Without sufficient experience, recognizing the patterns and the subtle changes

during growth renders the technique much less useful. This experience takes many

growths over several years to acquire. Significant experience is needed to analyze

RHEED images because there are few advanced analytical tools that can be used to

analyze the images. The theory is able to successfully explain the location of the Laue
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Figure 3.3: Plot of the average specular spot intensity over the duration of the growth
of an LFO by MBE. Reproduced from [122].

rings and RHEED spots [123]; however, this is limited to ideal circumstances and ig-

nores the other effects present in real samples. In some cases it is not possible to use

RHEED at all due to the properties of the materials being synthesized. In CoMn2O4,

the cobalt is difficult to fully oxidize and tends to reduce. When the RHEED beam is

incident on a portion of the sample during growth, a discoloration is observable, which

is the result of that section of the sample being reduced [124].

3.2 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is a well studied surface sensitive technique

for characterizing the atomic composition of thin film samples. XPS spectra can be used

to investigate a plethora of film characteristics, including the atomic species present in

samples, identify different bonding environments, and inform on the oxidation state.

XPS is based on the photoelectric effect, where high energy photons incident on a sam-

ple cause electrons to be ejected [125]. In a monochromatic XPS system, X-rays are
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Figure 3.4: (a) The energy band diagram of a thin film sample in XPS. (b) Schematic
of an XPS system. Reproduced from [41].

generated by an elemental source, such Mg Kα X-ray (1253.6 eV) or Al Kα X-ray

(1486.6 eV) [41]. Before reaching the sample, incident X-rays are passed through a

Rowland circle monochromator to ensure only one wavelength of X-rays is present.

The electrons ejected by these X-rays are referred to as photoelectrons and emitted in

every direction. Since electrons are easily absorbed or scattered, XPS measurements

take place in UHV at pressures below 5× 10−9 Torr. Figure 3.4(b) shows a diagram of

an XPS system.

Some of the photoelectrons coming off the sample will happen to be aligned with

and pass through the collection lens. Behind this lens are a set of electron optics that

retard the electron’s speed. These electrons are then sent through a hemispherical elec-

tron analyzer that selects for specific electron velocities. Finally, all of the electrons

with the selected velocity encounter an electron detector and are counted [41]. In newer

XPS systems, it is possible to count electrons over a small range of energies simulta-

neously, significantly decreasing data collection time [126–128]. In the XPS chamber

a sample sits on a metal conducting stage that is electrically grounded. This grounding

allows conducting samples to constantly replace the vacancies created by the emitted
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photoelectrons. However, if the sample is semiconducting or insulating, the surface of

the sample will become depleted of electrons and positively charged. This results in an

effective electric field that affects the exit velocity of the remaining electrons [41]. In

order to replace the electrons and fill the vacancies, an electron neutralizer, or flood gun,

is used. This subsystem showers the sample in a constant ray of low energy electrons.

These electrons are captured by the sample and fill the missing core levels, neutralizing

the electric field created by the vacancies.

Figure 3.4(a) shows the band diagram of a sample undergoing XPS. From the

diagram, the energy of a photoelectron is given by:

Ephoton = hν = EB + ΦS + Ek′ , (3.1)

where the binding energy, EB, is the energy needed to bring the electron to the Fermi

level, the material’s work function, ΦS , is the energy needed to free an electron at the

Fermi level from the sample and into vacuum, and the vacuum kinetic energy is Ek′ .

This kinetic energy is not the same kinetic energy selected by the XPS analyzer. The

observed kinetic energy, Ek, depends on the work function of the XPS, ΦA, and is

related to the vacuum kinetic energy by:

Ek′ = Ek + ΦA − ΦS. (3.2)

Substituting equation 3.2 into equation 3.1 for Ek′ results in:

EB = hν − Ek + ΦA. (3.3)

The photon energy, hν, is determined by the X-ray source used. In this work, an Al

Kα X-ray source was used, which has an energy of 1486.6 eV. The XPS work function,

ΦA, can be determined experimentally, and is fixed for a given system. Thus the ki-

netic energy observed by the XPS can be used to directly calculate the binding energy
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of the core levels from which the photoelectrons originated. The energies of the va-

lence electrons in the core levels are effectively unique. Thus by consulting a reference

catalog that comes with the XPS system, the particular valence shell and element the

photoelectrons were ejected from can be determined.

While the X-rays incident on the sample will fully penetrate the sample and excite

electrons from the film and substrate, the photoelectrons observed by the analyzer will

be from the top ≈ 10 nm of the sample. This can be understood by examining the

inelastic mean free path of the electrons, which is calculated by [129]:

λ(nm) =
143

E2
k′(eV2)

+ 0.054
√
Ek′(eV). (3.4)

For an Al Kα source, the mean free path will range from ≈ 1 − 2 nm, and more than

50% of the signal observed will be from the top 2 nm [41]. As a consequence, XPS

is inherently a surface sensitive characterization technique. It is possible to make the

results even more surface sensitive. The estimate that 50% of the signal coming from

the top 2 nm is under the assumption that the analyzer is situated normal to the surface

of the sample, where the photoelectrons reaching the analyzer took the shortest path out

of the sample. However, by tilting the stage at some angle, the path the photoelectrons

take through the sample becomes longer. This results in a decrease of the average depth

at which observed photoelectrons originate. At an angle of 70◦, the majority of the

signal will come from the top two unit cells [41]. However, tilting the stage in this way

will result in longer collection times need to observe the signal over the background

noise.

Figure 3.5 shows an example of the Hf 4d peak from an SHO-GSO sample. This

type of high resolution narrow binding energy scan is called a multiplex or core level

scan. A low pass energy of 35.5 eV is used and the energy range is scanned dozens

of times. The data is aggregated and used to compile plots like that in Figure 3.5.

The shape of these peaks is most accurately described by a Voigt function, which is a

convolution of a Gaussian and Lorentzian and is given by:
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Figure 3.5: XPS multiplex spectra of the Hf 4d transition of an SHO-GSO sample.

V (x′, y) =
y

π

∫ +∞

−∞

e−t2

(x′ − t)2 + y2
dt (3.5)

x′ = 2
√
ln 2 x−x0

gfwmh
y =

√
ln 2

lfwhm

gfwmh

where gfwmh and lfwhm are the full width at half maximums of the Gaussian and

Lorentzian functions, respectively [130]. The Voigt function has no known analytical

solution, and thus must be solved computationally for each data set. Solving and opti-

mizing the solution possesses a computationally expensive cost and as a result, several

pseudo-Voigt functions are used to approximate the solution [131]. The two most com-

mon approximations are the Gaussian-Lorentzian sum (GLS) and Gaussian-Lorentzian

product (GLP), given by:

GLS(x, F,E,m, h) = h× (1−m)e−4 ln 2
(x−E)2

F2 +
h×m

1 + 4 (x−E)2

F 2

(3.6)
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GLP (x, F,E,m, h) = h× e−4 ln 2(1−m)
(x−E)2

F2 × 1

1 + 4 (x−E)2

F 2

(3.7)

where F is the full width at half max of the XPS peak, E is the energy at which the

peak lies, m is mixing coefficient, for which 0 results in a pure Gaussian and 1 results

in a pure Lorentzian, and h is the height of the XPS peak. In most spectra fitting

software, the mixing coefficient is fixed and defaults to a value of 0.3 [131]. In this

work, the Gaussian-Lorentzian sum approximation was used and the mixing coefficient

was allowed to vary during fitting, in order to minimize the error between the fit and the

observed spectra. Before the data was fit with the Gaussian-Lorentzian sum, a Shirley

background was fit to the spectra. This background is shown in black in Figure 3.5.

In order to compute the binding energy of a photoelectron using Equation 3.1,

the work function of the XPS must be measured. While this is possible, in practice

a different method is used to correctly ensure the correct positioning of the peaks. In

XPS systems where samples have already been exposed to vacuum, there is always

carbonaceous material on the surface. The carbon 1s peak is strong and well known to

occur at 285 eV binding energy. Thus rather than shift the data by the experimentally

determined work function of the XPS system, the spectra can be shifted to align the

carbon peak at 285 eV. In the system used in this work, samples are kept in vacuum

between growth and XPS analysis, so the oxygen 1s peak at 530 eV binding energy is

used to align the spectrum. The software Casa XPS was used to fit the XPS spectra in

this work [132, 133].

In Figure 3.5, two peaks are present that correspond to the Hf 4d core level. This is

due to the effects of spin orbit coupling [41]. For electrons not in the s orbital, the total

angular momentum is not the same for spin-up and spin-down electrons. This difference

in momentum results in an energy shift that goes as L ·S, where L and S are the orbital

and spin angular moment operators, respectively. Thus a splitting in the binding energy

of spin-up and spin-down photoelectrons occurs when electrons are in any orbital where

l ̸= 0. The two peaks correspond to the two possible values of the total angular moment
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Figure 3.6: XPS survey spectra of the of an SHO-GSO sample.

of the photoelectrons, j = l ± s. For a 4d electron, the total angular momentum can

take either a value of j = 2+ 1
2
= 5

2
or j = 2− 1

2
= 3

2
. The effect of this splitting results

in the two peaks in Figure 3.5. The ratio of the areas of these two peaks is not equal,

but instead is 3:2. This is because the relative intensities are determined by the number

of magnetic sub-state configurations, 2j + 1, that correspond to each j value [41].

A quick, high pass energy XPS scan over the full range of binding energies is

called a survey and an example is shown in Figure 3.6. Each peak on the spectra rep-

resents a different core level in the atomic species present in the sample. In Figure 3.6

the binding energy of each peak was compared to the reference catalog for the XPS and

the corresponding core level was identified and annotated. The wide range and speed of

survey spectra make them highly effective for identifying atomic species present in the

surface of a sample. As a result, if an unexpected element were present, it would have

a peak that could be easily identified. In Figure 3.6, the peak labeled O KLL is gen-

erated by a more complex process than the core level peaks. When photoelectrons are
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ejected from the sample, vacancies are left behind. Since these are core level vacancies,

electrons in higher energy shells will drop down to fill them and a photon with energy

equal to the difference in energy of the two shells will be emitted. In the event that this

photon is absorbed by another core level electron and imbues enough energy for the

electron to escape the sample, the result is an Auger electron [134]. Auger electrons

are denoted by the element from which they originate, and a 3 letter set that indicates

the core level of the vacancy left by the photoelectron, the core level of the electron that

transitioned to the vacant core level, and the core level of the Auger electron emitted. In

the case of some elements, these Auger electron peaks are more intense than core level

photoelectron peaks, making them useful for identifying atomic species present.

It is also possible to extract stoichiometry of a film from XPS spectra. Using the

Gaussian-Lorentzian sum fits for a core level peak from each constituent element, the

ratios of the areas can be calculated. These ratios can the be modified by the relative

sensitivity factors found in the XPS reference catalog. The relative sensitivity factors

correct for effects such as the different photoionization cross-sections and different in-

elastic mean free paths for the different core levels. Stoichiometry measurements are

consistent between samples on the same system; however, the precision and accuracy

are limited. Typically XPS stoichiometry measurements are accurate within ≈ 10%

when compared to results on the same sample from Rutherford back scattering (RBS).

Using the same principles, XPS can be used to identify surface termination in stoichio-

metric films. This process requires that two measurements be taken with the sample

stage oriented to the detector at different angles. The first is a steep angle, ideally

< 45◦, which will inform on the stoichiometry in the top 5−8 nm of the film, while the

second is at a shallower angle, ideally > 60◦, which utilizes the short mean free path of

the photoelectrons to obtain information from only the top 2 unit cells. By observing

the change in stoichiometry from the steep angle spectra to shallow angle spectra, it is

possible to determine on which element the film is terminated.
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Oxidation states play an important role in determining the electronic properties of

a material; luckily, XPS is capable of extracting oxidation states information from mul-

tiplex spectra. When atoms possess different oxidation states, there results a splitting

in the XPS spectra, and an additional Gaussian-Lorentzian sum will need to be fitted

to ensure a correct fit [37]. The peak with the lower binding energy will correspond

to a lower oxidation state. By comparing the areas of these two peaks, a ratio or an

average of the oxidation states can be calculated. To investigate if the oxidation state is

uniformly distributed in the film or segregated between the surface and the bulk of the

film, the same method for identifying the surface termination can be used [135]. This

process is unlikely to work in the event that a sample has been exposed to atmosphere

and allowed to oxidize the surface.

3.3 X-ray Diffraction

The high degree of symmetry in a perovskite oxide is one of the signature features of

the family of materials and plays a major role in the properties of thin films. Thus it is

imperative to confirm that the structure of synthesized films are exactly as expected. X-

ray diffraction (XRD) uses x-rays to probe the structure of thin film samples in several

different modes [136]. XRD requires highly crystalline samples, and is applicable to

single crystalline, polycrystalline, bulk, and powder samples. The three processes of

XRD used in this work to characterize thin film samples are x-ray reflectivity, high

resolution XRD, and reciprocal space mappings. A Rigaku SmartLab diffractometer

system with a four-circle goniometer was used in this work. The x-rays were generated

from a Cu Kα source with a wavelength of 1.54 Å. To filter out the Cu Kα2 line, A

two-bounce Ge(220) monochromator was used, resulting in only the Cu Kα1 x-rays

reaching the samples. Figure 3.7 shows the geometry of XRD measurements with a

thin film sample.
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Figure 3.7: Schematic of the geometry in an XRD system. Adapted from [137] under
CC BY 4.0 [118].

3.3.1 X-ray Reflectivity

X-ray reflectivity (XRR) is a quick and accurate way to use XRD to determine the thick-

ness of thin films. XRR is setup in a glancing configuration where the incident angle, ω,

and reflection angle, θ, are equal. A 2θ/ω scan is collected in this configuration, where

the detector and source move while maintaining the condition ω = θ. Instead of the

primary structural peaks, fringes are observed at low values of 2θ, like those seen in

Figure 3.8. These fringes occur when there is a sharp interface between the film and

substrate and diffracted X-rays constructively and destructively interfere [138]. These

fringes are governed by the Fresnel equations and are highly dependent on the thickness

of the film, density of the film, roughness of the film surface, and roughness of the film-

substrate interface. The frequency of the fringes is primarily dependent on thickness of

the film, with thicker films having a higher frequency [138].
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Figure 3.8: XRR spectrum (orange) with a theoretical fit (black) from an SHO-GSO
sample.

From modeling the SHO-STO interface studied in Figure 3.8, a thickness of 12.4 nm

was determined. In order to observe these thickness fringes, the film must usually be at

least 5 nm thick. Since the interference of the X-rays that diffract off the crystal lattice

are what create the fringes, it is necessary for the film to have sharp surfaces. If the

surfaces of the films become too rough or island covered, the thickness fringes will not

occur and XRR will be unable to measure the thickness. Using the measured thickness

of the thin film sample, the deposition rate can also be calculated. This is highly useful

when creating heterostructures or super lattices, where precise thicknesses are needed.

Since XRR is performed after samples have been exposed to atmosphere, it is common

for the top one or two unit cells to over oxidize. If this occurs, it is still possible to obtain

thickness measurements; however, a more complex model is needed that incorporates

multiple alyers with different densities.
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3.3.2 High Resolution X-ray Diffraction

High resolution X-ray diffraction (HRXRD) is an XRD method that is bulk sensitive

and used to analyze out-of-plane structural information of the crystal. HRXRD is setup

similar to XRR, where the angle of the detector and the incident X-ray beam are the

same. In this method, the line bisecting the angle between the detector and source

is always normal to the sample. However, where XRR uses glancing angles, 2θ <

10◦, HRXRD will use larger angles, typically 10◦ < 2θ < 70◦. The locations of the

diffraction peaks in HRXRD are governed by Bragg’s law:

nλ = 2dhkl sin(θ) (3.8)

where λ is the wavelength of the Cu Kα1 X-rays and dhkl is the diffraction grating made

of the crystal planes of the film and substrate [139]. The diffraction grating spacing,

dhkl, is given by:

dhkl =
c√

h2 + k2 + l2
(3.9)

where c is the out of plane lattice parameter of the film or substrate. Unless the film

and sample have the same c lattice parameter, which is the case in homoepitaxy, dhkl

will be different for the substrate and film and result in different 2θ positions of the

peaks. For perovskite oxides, the (001) and (002) peaks are typically the ones measured.

Figure 3.9 shows HRXRD spectra for several SHO-GSO samples and that contain both

the (001) and (002) peaks. Since HRXRD is bulk sensitive, the peaks for both the film

and substrate can be observed. Due to the thickness of the substrate, the substrate peaks

are sharp and the most intense [140]. In Figure 3.9 the GSO substrate peaks are located

at 2θ = 22.5◦ and 2θ = 46◦. Since these films are thin, the (001) and (002) film peaks

are broad. The film peaks are located at lower values of 2θ than the corresponding

peaks for the substrate since the c lattice parameter is greater for the SHO films. In

addition to the primary film peaks that are a result of the Bragg condition, some samples
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Figure 3.9: HRXRD spectra of several SHO-GSO samples ordered from top to bottom
by the ratio of Sr:1 Hf.

possess Kiessig fringes [141]. These are analogous to the thickness fringes observed in

XRR and occur in sufficiently thick, highly crystalline samples. When present, these

fringes can be modeled to calculate the thickness of the sample. In Figure 3.9, it can be

seen that the positions of the SHO (001) and (002) peaks vary slightly from sample to

sample. This is due to the films having different out of plane lattice constants, resulting

in different values of 2θ that satisfy the Bragg condition. This can be used to infer which

samples have relaxed and are no longer strained, and which are still epitaxially strained

to the substrate.

3.3.3 Reciprocal Space Mapping

While HRXRD is only able to provide information about the out-of-plane structure of

the thin film samples, reciprocal space mapping (RSM) is able to provide information

about the in-plane and out-of-plane structure simultaneously [142]. Unlike in HRXRD

and XRR, in RSM a motorized sample stage is needed that can rotate about the surface
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normal, ϕ, and about one of the axes parallel to the surface, Ψ, as shown in Figure 3.7.

These additional degrees of rotation allow for peaks that are not normally in the plane

of the detector to be measured. In perovskite oxides, the cubic (103) peak is tradi-

tionally used and corresponds to the (204) peak in perovskites with an orthorhombic

Pnma structure. In RSM, 2D composite images are constructed by rastering over the

θ and ω [143]. Originally, many 1-dimensional scans were needed to raster this space;

however, the use of a 1-dimensional X-ray detector allows for a range of θ values to

be recorded concurrently and results in a significant decrease in data collection time.

Though the data is collected in θ vs ω space, results are commonly presented in the Qx

2π

vs Qz

2π
space, where the transformations into Qx

2π
and Qz

2π
from θ and ω are given by [143]:

Qx

2π
=

1

λ
(cosω − cos (2θ − ω)) (3.10)

Qz

2π
=

1

λ
(sinω − sin (2θ − ω)). (3.11)

Figure 3.10 shows two RSMs for SHO films, with one grown on GSO and one

grown on STO. The spots corresponding to the substrates are small and sharp due to

their thickness and highly crystalline nature, while the films are thinner resulting in

more broad peaks. The narrow range in Qx

2π
values of the SHO-GSO film spot indicate

the film has a small range of in-plane lattice parameters. For the SHO-STO sample,

the opposite is true and the values are very broad. From the SHO-GSO sample, it can

be observed that the film spot and substrate spot are vertically aligned, possessing a

similar range of Qx

2π
values. This indicates that the film is epitaxially strained to the

substrate in-plane. However, the film spot for the SHO-STO film is diffuse and most of

the Qx

2π
of the film peak are not aligned with the substrate spot in Qz

2π
. Since this is true

of the majority of the film peak, it can be inferred that most of the film is not epitaxially

strained in-plane with the STO substrate. However, there is a small stripe of intense

response that suggests some of the film is strained. Given the large lattice mismatch for
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Figure 3.10: (a) RSM of the 103 peak of an SHO-GSO sample showing the film is
epitaxially strained to the substrate. (b) An RSM of the 103 peak of an SHO-STO
sample showing partial relaxation of the film.

SHO and STO, this most likely corresponds to a couple of unit cells at the interface that

formed epitaxially strained, while the bulk passes through a range of in-plane lattice

values as it relaxes. In this way, RSMs are highly effective at identifying the in-plane

lattice parameters of films and if the film is epitaxially strained to the substrate.

3.4 X-ray Absorption Spectroscopy

X-ray absorption spectroscopy (XAS) is a well known technique for characterizing the

chemical states of materials. XAS is bulk sensitive and can be used to determine the

atomic valence, atomic coordination, and bond lengths in a sample [144]. In XAS

systems, samples are bombard with monochromatic X-rays. The incident X-rays are

absorbed by core level electrons and possess sufficient energy to excite the electrons

into unoccupied states. The core level holes left by this process are filled by electrons
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of higher energy levels dropping down. This transition gives off a photon with energy

equal to the difference in energies between the initial state and core level hole. This type

of photon excitation is called fluorescence and is the signal measured in XAS [144]. In

XAS, a range of incident photon energies are scanned while the fluorescence is mea-

sured. In order to generate the continuous range of high energy X-rays needed in XAS,

a synchrotron at one of the national labs is used.

XAS spectra are broken up into two distinct regions, the XAS near edge (XANES)

and the extended XAS fine structure (EXAFS). The XAS edge is the result of elec-

trons in a core level being excited to an unoccupied state. In Hf, the lowest unoccupied

state is the 5d shell. However, not all electrons can transition into this shell from core

levels. Selection rules require that the angular momentum of an electron change by

1 (∆l = ±1), the spin remain unchained (∆s = 0), and as a result the total angular

moment change by 1 (∆j = ±1) [145]. Thus only an electron initially in a p-orbital or

f-orbital can transition to the 5d shell. Similarly, an electron initially in a p-orbital can

only transition to an s-orbital or d-orbital; however, since Hf has a filled 6s shell, the

lowest possible energy transition is into the 5d shell. Thus by selecting an X-ray energy

corresponding to the energy difference between the Hf 2p 3
2

and Hf 5d 5
2

shells, an elec-

tron from the 2p 3
2

state will be excited into the 5d 5
2

state. Additionally, polarization of

the incoming X-rays in either an in-plane or out-of-plane configuration restricts which

of the 5d orbitals an electron will transition to, with in-plane allowing transitions to the

dxy and dx2−y2 orbitals and out-of-plane allowing transitions to the dxz, dyz, and dz2

orbitals.

Figure 3.11 shows the in-plane and out-of-plane XANES and EXAFS spectra of an

SHO-TSO sample, panels (a) and (b). Panels (b) and (d) show the dichroism between

the in-plane and out-of-plane spectra for the XANES and EXAFS, respectively. The

analysis of XANES data focuses on the initial peak and its features, such as pre-edge

peaks. Pre-edge features can indicate specific properties such as the cation coordina-

tion [146]. In this work the Hf L3-edge is used investigate the electronic density of
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Figure 3.11: (a)XANES and (c) EXAFS spectra collected from an SHO-TSO sam-
ple.(b) and (d) are the residuals of the in-plane and out-of-plane responses in the
XANES and EXAFS, respectively.

states of the Hf 5d orbitals. EXAFS data is located in the energies after the initial peak

has died down and is indicative of the oscillations seen in Figure 3.11(c). Using care-

ful modeling of this region, it is possible to calculate the bond lengths present in the

material. In this work the Hf L3-edge x-ray absorption spectroscopy was carried out at

beamline 20-BM of the Advanced Photon Source at Argonne National Laboratory.

3.5 Second Harmonic Generation

Second harmonic generation (SHG) is an optical characterization technique that utilizes

a nonlinear optical process to determine symmetry in the crystal structure of thin films.

SHG is a second order optical process that occurs when two photons with the same

frequency are combined in a medium into a single photon with half the energy and

twice the wavelength. SHG’s efficiency is dependent on the second order non linear

susceptibility tensor of the film material. Since the only materials for which this tensor

is nonzero are non-centrosymmetric, an SHG response indicates the sample possess no
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centrosymmetry [147]. In this work, an ultrafast light source with 800 nm wavelength,

50 fs pulse duration, and 200 kHz repetition rate was used in conjunction with a sin-

gle photon counting electron multiplying charge coupled device (EMCCD) camera to

record the SHG response of thin film SHO and rule out the presence of possible phases.

3.6 Scanning Transmission Electron Microscopy

Scanning transmission electron microscopy (STEM) is a high resolution imaging tech-

nique used to characterize materials. STEM provides atomic level resolution of cross

sectional samples of thin films and reveals important structural information about the

film. Before STEM images can be collected, a thin slice of the sample, called a lamella,

must be collected. This lamella is created in a process called a lift out, where a focused

ion beam (FIB) is used to mill away material surrounding a cross sectional slice of the

sample [148]. Afterwards, the FIB is used to thin the lamella down until it is < 100 nm

thick, which is needed for the electron beam to penetrate the sample. Once the lamella

is prepared, it is placed in the STEM system such that the electron beam is normal to

the lamella’s surface.

Figure 3.12 illustrates the relative geometry of the STEM system. During mea-

surements, a convergent electron beam is focused onto the lamella, while the stage is

rastered so that data can be collected over a wider area and a composite image can be

created. In STEM, the electrons that pass through the sample are detected using a series

scintillators, photomultipliers, and photodetectors. The results are separated into three

key regions, which are the bright field, annular dark field, and high angle annular dark

field [149]. The primary transmitted cone of electrons are scattered as small angles and

the resulting image is referred to as the bright field image. In this regime, variations in

sample density and structure are easily observed. The annular dark field (ADF) region

forms a ring around the bright field region and is primarily the result of scattered elec-

trons. As a result, ADF images are sensitive to atomic number with atoms of higher

atomic number being brighter than those with low atomic number. High angle annular
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Figure 3.12: Schematic of the data collection process of STEM.

dark field (HAADF) is similar to ADF, but occurs at higher angles due to scattering of

heavier elements [150]. This region forms a ring around the ADF region and is ideal

for imaging heavy species such as Hf. Since STEM generates atomically resolved real

space images, it is highly effective for identifying the crystal structure and observing

lattice defects.

Convergent beam electron diffraction (CBED) replaces the scintillators and pho-

todetectors from traditional STEM with direct electron detectors, which allows angle

resolved information to be obtained. The diffracted electrons form circular disks pat-

terns whose position is governed by Bragg diffracting (Equation 3.8) and the spacing of

the crystallographic planes (Equation 3.9) [151], and whose diameter is determined by:

D =
4π

λ
sinα (3.12)
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where λ is the wavelength of the electrons and α is the convergence semi-angle of the

electron beam[152]. When the convergence angle is sufficiently small, it is possible

to resolve individual disks. By rastering the beam over the sample, a 4D data set is

collected, resulting in the term 4D-STEM. Due to the additional angle resolved data

present in 4D-STEM, it is possible to create strain mappings of thin films, as well as

determine the crystal symmetry and orientation [153].
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Chapter 4

Data Science, Artificial Intelligence, and Machine Learning Methods

4.1 Motivation

RHEED is a highly common form of real time analysis used during material synthesis in

MBE and PLD; yet, due to an inability to theoretically model the many effects present

in RHEED images, traditional RHEED analysis focuses only on the intensity and shape

of diffraction pattern for a few still images taken during and after growth. While this

is insightful, there is a wealth of unused information present in RHEED. Data science

and machine learning are fields that are built on the ideas of extracting and coalescing

complex trends from data into new usable forms to generate additional insight. Thus,

data science and machine learning techniques offer a new way to improve understanding

of and better utilize RHEED data over what has previously been possible.

Machine learning is already a common area of research and has been applied to a

variety of tasks. Handwriting recognition [154] and image to image translation [155]

are some of the most common. In materials research, machine learning techniques

have been applied to a wide array of material characterization and analysis techniques,

including STEM [156, 157], SPC [158], transport measurements [159], surface mor-

phology [160], crystal structure determination [161], and RHEED [78, 79]. Several

studies have also been conducted that focus on utilizing machine learning techniques

such as neural networks and random forests to make predictive models that utilize vari-

ous forms of data, including XANES spectra [162], materials structure databases [163],

and MBE operation data [164], to extrapolate additional information on the structural

and chemical qualities of materials.

In this work, principal component analysis and k-means clustering are used on

recordings of RHEED patterns to provide quantitative feedback that informs on the

evolution of the film surface during growth. The predictive machine learning algorithms
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random forests and convolutional neural networks were used to create a model by which

RHEED data can be transformed into a new data space so that real time analysis can be

performed to identify film stoichiometry.

4.2 Data Preprocessing

Preprocessing of data is one of the most critical steps for any computational project.

Data preprocessing involves filtering or modifying of raw data collected before utiliz-

ing it in any models. Raw data is data collected directly from a source; which for

experimental work, is most often a measurement system or control system. Raw data

can have many issues that would make it unsuitable to be used directly in computa-

tional research. Common issues include excessive noise in the data collected, large

amounts of redundant data, excessive amounts of background signal, or an instrument

bias [165]. Each of these could have profound impacts on the training and results of

the computational models in which they are used. Excessive amounts of background

information will drastically slow the training process and drown out the significant sig-

nals. An instrument bias may cause all of the data to be shifted by some constant or

function resulting in different datasets being out of line from each other and decreasing

the accuracy of any model results.

To address these issues many different types of preprocessing programs and al-

gorithms can be used depending on the problem at hand. One of the simplest forms

is mean subtraction, where the mean of a dataset is calculated and then removed. In

machine learning and with neural networks in particular, datasets are often rescaled to

have a standard deviation of 1 and shifted to have a mean of 0 [166]. This form of

preprocessing is critical for algorithms like neural networks, where feature importance

is directly related to the size of the inputs. A more complex version of data rescaling

involves fitting data to a particular distribution, such as a Gaussian [166]. For data that

is not numerical, models often require that the data be preprocessed by encoding the

categorical labels into integers. While for many projects standard data preprocessing
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tools may be sufficient, there are many instances where existing tools may need to be

modified or custom tools may be needed. Examples of custom tools used in this work

will be described in section 5.1 & section 7.3.2.

4.3 Principal Component Analysis

Principal component analysis (PCA) is a data processing algorithm that is used in a

wide variety of ways. PCA works by taking a dataset and performing multiple matrix

operations in order to construct a set of eigenvectors and eigenvalues that will operate

as a new basis set for the data [167]. This process is done iteratively, and at each

iteration the new eigenvector is chosen to maximize the variance in data along the new

component and such that it is orthogonal to all eigenvectors that have already been

chosen [168]. Figure 4.1 shows a two dimensional example of the PCA process. The

orange ellipse contains a number of randomly chosen points and PC1 and PC2 are the

two new principal components chosen by PCA for those points. PC1 was placed along

the major axis of the ellipse as doing so maximized the variance of the component.

Subsequently, the second component must be orthogonal to the first, and thus the second

component had to be placed along the minor axis of the ellipse. These eigenvectors can

now serve as the new axes and each data point I can now be expressed as:

I = λ1a1(x, y) + λ2a2(x, y) + · · ·+ λnan(x, y)

=
n∑

m=1

λmam(x, y)
(4.1)

Here, λi represents the ith eigenvalue, while ai(x, y) is the ith eigenvector which

is a function of the original x, y space [169]. The number of new eigenvectors is the

number of PCA components specified by the user. This number cannot be larger than

the number of dimensions of the original dataset, i.e. 2 for this 2D case. However,

by choosing a number of PCA components smaller than the original dimensions of

the dataset, a dimensionality reduction is achieved. This reduction in dimensionality

is highly useful in cases where the original dataset has a high number of dimensions,
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Figure 4.1: Diagram of a 2D example of principal component analysis.

but contains many redundant or non-linearly independent dimensions. If all points in

the 2D dataset displayed in Figure 4.1 were given the same third dimension value, for

example the plane of this page, then an additional PC3 could be constructed. However,

since the variance in that dimension is 0, no information is lost by stopping the PCA

process at 2 components. This is a trivial example; however, if there were hundreds

of dimensions in a dataset this process could reduce the total greatly, making other

computational operations on the data more feasible. Furthermore, since the variance of

the data is maximized for each integration, each subsequent component will hold less

information than the components preceding it and greater than those afterward. Thus

truncating the process before the maximum number of components is reached will not

result in significant loss of information.

52



Figure 4.2 shows the 6 component eigenvectors for a recording of RHEED patterns

during an SHO growth. In this case, each of the eigenvectors is an image and the

corresponding eigenvalues are plotted vs time in the (a), (c), and (e) panels. From the

y-axis of the eigenvalue plots, the importance of each subsequent eigenvector is less

than or equal to the preceding eigenvectors. To recreate the original image at any time,

each eigenvector image must be multiplied by the corresponding eigenvalue at that time

and summed together. Part of the PCA process requires that the median range of each

component is zero, thus both the negative most values and positive most values are of

equal though opposite weight [170].

One down side of PCA as a data analysis technique, is that the components con-

structed by PCA are not necessarily easy to interpret and it may not be easy to correlate

each eigenvector to physical property. In Figure 4.2 the Eigenvector1 has extreme pos-

itive values where the specular and 1st order RHEED spots are located. This would

suggest that the first eigenvector represents the overall intensity of the RHEED pattern

and thus can be used as a quality indicator. However, in the same eigenvector there is a

large dark area along the top side of the image. This dark area is due to the beam being

blocked from the RHEED screen during data collection by the sample stage as a result

of the design of the chamber. It is unclear why these two features ended up in the same

eigenvector and thus interpreting its change over time is not trivial. Another limitation

is that PCA works best for linear datasets. If a dataset is non-linear, the effectiveness

of PCA declines, although this can be mitigated with coordinate transformations prior

to PCA [170]. PCA results can also be biased by sampling errors, though this issue is

most common with small numbers of data points [171]. Despite these limitations, PCA

is highly effective at dimensionality reduction and enables additional algorithms to be

utilized that are less effective or infeasible for datasets with larger dimensions.
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Figure 4.2: The principal components and the corresponding eigenvector images of an
LFO film during synthesis by MBE.

4.4 k-means Clustering

k-means clustering is an algorithm that sorts data points into k different clusters. This

process has its origin in signal processing, but can be used in many different applica-

tions. k-means can be defined as iteratively minimizing the loss function:

L =
1

m

m∑
i=1

||xi − µki || (4.2)

where m is the number of data points, and µki is the centroid of the cluster k that the

point i is in [172]. The centroid is the geometric center of a cluster and each cluster

is constructed such that each data point in that cluster is closer to the centroid of that

cluster than the centroid of any other cluster. Initially, k centroids are chosen at random.
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Figure 4.3: Diagram of a 2D example of k-means clustering.

Then the algorithm iterates over the following two steps. First, the algorithm places each

data point into the cluster with the closest centroid. Second, the centroids of each cluster

are recalculated. This process continues until a specified iteration limit is reached or

the clusters cease to change [172]. k-means clustering is useful for classifying data into

groups based on quantitative features rather than qualitative ones. Figure 4.3 shows the

results of a 2D example of k-means clustering. In this example, there are k = 3 clusters

and thus the 2D space has been divided into 3 regions. The red dots are the centroids

and are located in the middle of each cluster of data.

k-means is not without its limitations. The four data points on the border of K1

and K2 highlight one of the limitations of k-means clustering; that is, the algorithm is

not always able to identify the correct number of clusters. In the example in Figure 4.3,

it appears that a 4th cluster should have been added to make the 4 points on the boarder

of K1 and K2 distinct. This is often the case for clusters of points that are substantially
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smaller than the large ones [173]. This can be mitigated by the user specifying k based

on some outside knowledge or by running the clustering for a range of k values and then

having the user select the most informative. The latter solution is feasible due to the low

computational cost of the algorithm. Another shortcoming of k-means is that it uses

euclidean distance as the loss function [173]. Figure 4.3 represents the low dimension

example where this is not an issue; however, with higher numbers of dimensions both

the computational efficiency and the accuracy get worse. However, this issue can be

mitigated by using a process like PCA that reduced the dimensionality of the data to a

lower dimension space.

Figure 4.4 shows the k-means clustering results for the same dataset shown in 4.2.

The graph in Figure 4.4 shows each frame of the RHEED recordings separated into

clusters with the x axis being the timestamp of the frame during the growth. The num-

bering of the clusters is generally arbitrary, but in this case was chosen based off the

order the clusters appear in the RHEED recording. With the exception of cluster 4, the

clusters are nearly continuous with some sections of alternating at the beginning or end

of each cluster. From these periods of alternation it can be determined that the surface of

the sample was undergoing some cyclic change consistent with layer by layer growth.

The 6 RHEED images in Figure 4.4 are the mean images created by averaging every

frame in the respective clusters. Comparing these images reveals useful information

about the evolution of the surface that would normally go unnoticed. Comparing the

k-means results to the RHEED oscillations observed in Figure 3.3, it is clear in both

cases that the surface oscillates between different states. While the traditional interpre-

tation of the RHEED spot oscillations in Figure 3.3 would suggest that the surface was

switching between two states, from the k-means clustering it is clear that the surface is

continuously developing through different surface reconstructions, with the oscillations

being present at the transition between groups and oscillating between 3 states around

the 1200 second mark.
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Figure 4.4: The k-means clustering results and the corresponding mean images of the
PCA analysis of the LFO film growth shown in Figure 4.2.

4.5 Random Forests

Random forests are predictive models that are computationally cheap to build and train,

yet are quite good at classification problems. Random forests are made by creating and

training decision trees on subsets of the data [174]. Decision trees are very simple pre-

dictive models that take an array of data as an input and perform a series of comparisons

to select a result. They are usually illustrated as flow charts for ease of understanding.

These trees are primarily used for classification where data is sorted into a number of
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Figure 4.5: Diagram of a decision tree classifier with with an input array of size 3.

categories specified by the user; however, there are versions that can be used for regres-

sion problems, where the output is a numerical value.

Figure 4.5 shows an example model of a decision tree. In this example, the input

array contains 3 values and there are 6 possible output categories. At each each node in

the tree, one of the inputs is compared to that node’s variable and then the appropriate

path is taken. The node variables are determined by iteratively passing inputs through

the tree and optimizing the variables to improve accuracy and minimize the loss func-

tion. The categorical cross entropy loss is used for classification models and is given

by:

Lcce = − 1

M

K∑
k=1

M∑
m=1

ykmx log(hθ, k), (4.3)

where M is the number of training examples, K is the number of possible classifica-

tions, ykm is the correct label of data point m for class k, x is the input of data point m,
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and hθ are the model weights [175]. For regression models, the mean squared error loss

is most commonly used and is given by:

Lmse = − 1

N

N∑
i=1

(xi − yi)
2, (4.4)

where N is the number of training samples, xi is the result predicted by the model for

sample i, and yi is the true value for sample i [176]. Additionally, some variants of the

variable optimization algorithm force the earlier decision nodes to be the most signifi-

cant, thus providing the user with information on the relative importance of each value

in the input array. Although decision trees have a few benefits, such as being trainable

with minimal data and are easy to use and understand, there are several limitations. The

accuracy decreases rapidly as the dimensions of the input increase. They are unstable,

meaning small changes in the training dataset can cause large changes in the tree struc-

ture and accuracy. And they are less accurate than many other computational models.

However, by utilizing many decision trees in parallel, these issues can be mitigated.

Random forests create a number of decision trees that are each trained indepen-

dently and whose results are averaged to make the final prediction [174]. Figure 4.6

shows a diagram of a random forest model comprised of n trees with the same inputs

and output categories as the decision tree in Figure 4.5. Rather than train each tree on

the complete training dataset, each tree is given a unique randomly chosen subset of

the training dataset. This results in each tree being able to focus on different features

of the dataset and reduces the chance of many trees being identical. By selecting the

most commonly chosen result in the case of classification or the average result in the

case of regression, the random forest results in a substantial increase in accuracy com-

pared to an individual decision tree. Additionally, the decision to train each tree on a

subset improves stability in the model and thus small changes in the training set do not

result in large changes of the output as was the case with the decision tree [174]. This

also allows for more stability at higher dimensions of inputs compared to the decision

tree. Even though many decision trees are trained in a random forest, the computational
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Figure 4.6: Diagram of a random forest classifier model and it’s constituent decision
trees.

costs are still so low that training can still be run on most laptops. And just as the fea-

ture importances can be determined for the individual decision trees, they can also be

calculated for the random forest as a whole. These feature importances can provide a

quantitative measure of significance of the input features and be used to gain additional

insight into what most strongly correlates between the input and output data sets [177].

Despite all these advancements over decision trees, random forests are still unable

to effectively handle image data directly [178]. The input array for a simple 256x256

gray scale image would be 65,536 long, thus a single complete binary decision tree
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would need 2,147,516,416 variables. The work around to this is to utilize dimension-

ality reduction of some kind to reduce the data space to a level random forests can

utilize. PCA is one possible choice; however, it would be computationally expensive

to perform PCA on all the image data needed for training; and as discussed prior, the

components are not inherently interpretable meaning the usefulness of the feature im-

portances would be completely lost. An option that is computationally efficient and

would maintain the usefulness of the feature importances are feature descriptors. Fea-

ture descriptors are the results of fitting some kind of function or functions to the input

data [179]. In 2D this is often done with cubic splines or other polynomial interpola-

tions. In 3D, more complex interpolations are often used; however, the core concept

remains the same. The constants from the data fits are then used as the input array for

the random forest. Since the features passed to the model are not values of individual

pixels, but rather information about the curvature at a point, additional information can

now be extracted from the feature importances [162].

4.6 Neural Networks

The vast majority of computing programs have historically been built on the concept

of the Von Neumaann architecture where information is stored in one location, called

memory, and calculations are performed in another, called the processor. However,

from studies of neurons in the brains of animals, it was observed that this not how ani-

mals think. Neurons form large networks where both the information and calculations

take place; this model is called neuromorphic [180]. Artificial neural networks (ANN),

usually referred to simply as neural networks (NN), were developed on the basis of

creating models that could mimic the behavior of neurological processes. Figure 4.7

shows a basic diagram of a neural network. Each circle of the diagram represents a

node called a neuron. In each neuron there are three steps [181]. (1) Inputs are received

from either an initial input or another neuron and are multiplied by the weights of the
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neuron. (2) The results are summed and added to the bias value of the neuron. (3) The

result is passed to an activation function. The output can be expressed as:

O(z) = I(wTz + b), (4.5)

where z is the array of input values to the neuron, w is the array of weights of the

neuron, b the bias value of the neuron, and I() is the activation function [181]. The

weights are real numbers that are initially random but are modified during training. An

activation function can be any function that takes a single real input and returns the

like. However, most neural networks now use a leaky rectified linear (ReLu) activation

function defined by [182]:

f(x) =


−0.1x if x ≤ 0

x if x > 0

(4.6)

Neurons are organized into layers and in Figure 4.7 there are 5 layers separated

into 3 categories. Neurons in the input layer receive a single value of the input array,

thus the size of the input layer must be the same size as an individual data sample. In the

case of a 256x256 image that would be 65,536 neurons. Neurons in the middle three

layers are regarded as hidden layers since they are not interacted with directly from

the input or output. The number and size of hidden layers is specified by the user and

varies greatly depending on the complexity of the problem and size of the data set. In

this example, each of the hidden layers are fully connected layers, also known as dense

layers, since each neuron provides its output to each neuron in the next layer. The output

layer is always a dense layer and its size is determined by the problem being modeled.

For a classification model, the number of neurons in the output layer is equal to the

number of classification categories. For a regression or predictive model, the number of

neurons will be the dimensionality of the data being predicted. Output layers will also

have a different activation function from the other layers [183]. For binary classification

models the result should either be 0 or 1, so a sigmoid function is used:
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Figure 4.7: Diagram of a fully interconnected neural network with 3 hidden layers.

f(x) =
1

1 + e−x
. (4.7)

Here the closer the result to 0 or 1, the more confident network is in the result. For

categorical classification models, a soft max activation fiction is used:

σ(z)j =
ezj∑K
k=1 e

zk
(4.8)

Here z = (z1, ..., zK) is the input vector and K is the number of categories. The result

is a vector where each entry is the probability that the input belongs to that class. And

for regression models, a linear activation model is used:
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f(x) = x. (4.9)

Before training, the weights and biases of the model are assigned random values

between -1 and 1. This helps prevent models from getting stuck in local minima and

improves diversity in the model outputs. Training a model consists of 3 steps [182]

(1) A data point from the training data set is passed through the network and the result

extracted. (2) The loss associated with the result is calculated. (3) Backpropagation

is performed to adjust the weights and biases to minimize the loss. This process is

performed iteratively for each sample in the training data set. Each complete cycle

using the training data is called an epoch and the number of epochs to train for can

either be user specified or determined by a function of the change in the loss through

each cycle. Backpropagation is the process by which the derivatives of the loss function

are calculated and the weights and biases are updated to minimize the loss. This process

goes layer by layer starting with the last layer and moving toward the first layer of the

network. The most common backpropagation algorithm used in neural networks is

gradient descent, although many variants of this are used in practice depending on the

problem at hand [184].

Rather than perform backpropagation after each sample in the training data set,

steps (1) and (2) are performed for multiple samples and then backpropagation is per-

formed. This prevents individual samples that might be outliers from having undue

influence on the performance of the network and reduces the number of times back-

propagation needs to be performed [185]. If these batches are randomly created each

epoch, then the result is stochastic gradient descent which offers slightly better results

than regular gradient descent. Gradient descent requires that derivatives of the activa-

tion functions exist for it to work efficiently [184]. If the derivatives do not exist or are

0, backpropagation fails and the weights of that neuron will remain unchanged. Origi-

nally, a non-leaky ReLu activation function, where f(x) = 0 for x < 0, was common as

it would ”turn off” the neuron if a negative value was input and ”turn on” for a positive
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Figure 4.8: A diagram of a convolutional neural network that classifies images based
on the animals present [188].

value [186]. However, if the weights of the neuron caused the input to be negative, the

gradient would be 0. Thus leaky Relu is used now instead, as the gradient in the case

where the input is negative will still have a derivative but the ”on” and ”off” nature is

retained. Once the training is complete, the network can be fed new inputs to to test the

accuracy or to obtain new results [186].

The neural network model in Figure 4.7 represents the most basic level of net-

works. For most problems, more complex network architectures are used. If that model

was used to process gray scale images of size 256x256, each neuron in each dense layer

would need 65,536 weights, making it far too computationally expensive to train. Con-

volutional neural networks (CNNs) are networks that are specialized for dealing with

image or 2D data. One of the first successful works on CNNs was used to identify hand-

written digits [187] and highlights the practical uses. Figure 4.8 shows a basic structure

of a CNN.
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This model represents a classifier CNN that is designed to identify the type of

animal in the image. This kind of application of CNNs is very common, with one

commercially available example being the app PictureThis - Plant Identifier, which

identifies plants from photos by utilizing a CNN based on the same principals [189].

The network in Figure 4.8 takes an image, in this case a dog, as input and first passes it

through three sets of convolution and pooling layers. Convolution layers take the input

and pass it through a 2D filter. Each filter is essentially a matrix of weights ranging from

0 to 1. Just as with the weights in the dense layers of the past example, they are ran-

domly initialized before training and are optimized during the backpropagation portion

of training. These filters are most often of size 3x3 pixels. Each filter is rastered across

the image to calculate the resulting matrix called a feature map. Convolution layers

include multiple filters in each layer with the individual feature maps being combined

into a single 3D matrix as an output. The dimensions of the resulting feature map can

be determined by:

L × WF × HF =

[
WI − F

S
+ 1

]
×

[
HI − F

S
+ 1

]
× K (4.10)

where HI and WI are the height and width of the input, the filter has size (F × F ) and

stride S, and K is the number of filters [190]. Each of these feature maps is then passed

to a pooling layer. Local pooling rasters a pooling window, often 3x3 pixels, across each

feature map and performs an operation. Taking the max value in the pooling window is

called max pooling and often used, though average pooling, where the average is calcu-

lated, and other options exist. Pooling is used to reduce the dimensionality of the feature

maps before they undergo additional convolutions. By combing these convolution and

pooling layers, the network is able to extract broader features of the image. After the

last of the feature sampling concludes in the convolution and pooling layers, the data

is flattened and passed to a series of dense layers. Lastly the data arrives at the output

layer whose dimension is the number of output categories of the classifier. Rather than
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use stochastic gradient descent, CNNs are often trained using a variant called adam that

uses unique learning rates for different parameters rather than using a single learning

rate for all parameters [191].

Although CNNs are capable of succeeding with complex tasks such as image iden-

tification, there are many common issues that arise during training. The most common

issues are overfitting and underfitting. Overfitting occurs when the model trains too

well to the training data set and as a result has comparatively poor performance on

samples from outside the training set. This issue plagues many deep CNNs, though

there are ways to prevent it. Weight regularization adds an additional loss function at

each layer that penalizes nodes with values significantly more intense than others. This

works to prevent any one feature from gaining to much importance and dominating the

results [192]. Another solution is to observe when the accuracy of a test set begins to

decline or ceases to improve and stop training then. There is also a learning rate that

affects how aggressively gradient descent modifies weights. Reducing this learning rate

will slow the training but should reduce overfitting.

Underfitting is the opposite of overfitting and is where the model is unable to fit to

the features in the training set, resulting in poor model performance [193]. The solutions

are the opposite of those for overfitting. Increasing the learning rate and training for

more time may solve the issue. If weight regularization is present, its effect on the total

loss should be decreased. If after all of these changes, underfitting is still present, then it

is likely the model design is not complex enough. Adding more layers of convolutions

or more dense layers may be needed for the features of the data set to be fit by the model.

If the model is still unable to learn, then the cause is most likely a lack of training data.

Mode collapse is another common issue, and is when the model’s predictions be-

gin to collapse to a small range of values. For example, if the model in Figure 4.8

always predicted the input image was a cat regardless of input. The primary limitation

of neural networks is that due to their complexity, a larger amount of training data is

needed than for simpler models, such as random forests. Without sufficient amounts

67



of training data, a model will not converge regardless of how or how long it is trained.

But when sufficient data is available, the ability of CNNs to solve new problems is very

useful. Previous studies have utilized CNNs to successfully transform data from one

domain to another [155]. In physics, CNNs have been used to find solutions to scat-

tering problems [194] and predict XANES spectra [162]. A subclass of CNNs called

physics informed neural networks (PINNs) utilize an additional loss function that pe-

nalize non-physical behavior. PINNs have been used to find solutions to fluid flow [195]

and heat transfer problems [196].
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Chapter 5

Principal Component Analysis and k-means Clustering

RHEED has been standard equipment on MBE chambers since the 1980s [91] because

it provides real time, in-situ feedback on the surface evolution of thin film samples

during synthesis. And while many studies have resulted in increased understanding of

RHEED or developed new techniques to utilize RHEED [197], due to the complexity

and effectiveness of these techniques, most film growers still opt for simple, qualita-

tive analysis methods of RHEED. However, there is certainly much more information

that can be extracted from RHEED, and advances in the fields of data science and ma-

chine learning have yielded algorithms and tools that can serve to augment existing data

analysis and provide new paths to unlock deeper understanding of RHEED data. This

dissertation focuses on the synthesis of SHO thin films by MBE and the development

of two machine learning tools that can be used to better understand and control the

synthesis of films.

This chapter focuses on the results of the application of PCA and k-means cluster-

ing on recordings of RHEED patterns collected on a variety of samples as well as the

effects of different preprocessing techniques on the resulting eigenvectors and cluster-

ing. I was responsible for the synthesis of SrTaO3, while the synthesis of the other sam-

ples and their corresponding RHEED recordings were performed by former members

of the Auburn University FINO Lab (AU FINO) Suresh Thapa and Rajendra Paudel,

as well as Eren Suyolcu from Max Planck Institute for Solid State Research. The code

used for PCA and k-means was written by former member of the AU FINO Lab Sydney

Provence and myself, while I am responsible for the results and analysis shown here.
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5.1 Data Preprocessing

Several different methods of preprocessing were used to prepare RHEED videos to be

used in the PCA and k-means algorithms. PCA is a computationally intensive algo-

rithm that scales with the number of samples n and the dimensions of the samples p as

O(n2p+n3) [198]. For a RHEED video with resolution of 1080x1080 pixels, frame rate

of 5 frames per second, and a duration of 25 mins, the time needed for PCA to be com-

pleted on a single node of the Auburn University Easley cluster would be over a week.

Thus, it is important to reduce both the number of frames sampled from a video and the

dimensions of the video used in order to obtain a feasible run time. For the dimension-

ality, this is achieved by cropping the RHEED patterns down to a smaller subset of the

recorded frame. Figures 5.1(a) and (b) show the raw image of a RHEED pattern and

the cropped version used in PCA, respectively. During this process, a balance must be

struck such that a sufficient amount of the pattern is retained and as much background

as possible is excluded. The number of sample frames is reduced uniformly through-

out the video by reducing the frame rate. The specific frame rate used is varied from

growth to growth and is selected based on the growth rate of the material. For materials

synthesised using only metals evaporated out of effusion cells, the deposition rate is

considerably higher than those that utilize hBME. If too low a frame rate is selected,

information such as RHEED spot oscillations can be lost. In practice, it was found that

for faster growths, a frame rate of 1 fps was sufficient while for slower growths, such

as SNO, a frame rate of 0.2 was sufficient. Additionally, blank frames at the beginning

and end of growth were removed, as well as any frames that were partially obstructed

during recording. With these modifications, the execution time for PCA was reduced to

less than 2 hours.

In addition to the changes made to improve execution time, there are several image

preprocessing algorithms that can improve image quality. The quality and sharpness of

RHEED images are determined by not only the quality and structure of the film sur-

face, but also the chamber geometry, chamber pressure, the quality of the phosphorous
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Figure 5.1: (Left) An uncropped RHEED image of SHO. Right The cropped RHEED
image used for PCA and k-means

screen, and the quality of the RHEED camera. These additional effects do not reflect

the quality of the film and can result in RHEED patterns that are not as clear as other

samples, resulting in fainter features being obscured. Since the primary use of RHEED

patterns is to be visually interpreted by a researcher, it is critical that these effects be

mitigated as much as possible. In order to achieve this mitigation, three different inten-

sity transformation functions are investigated.

Figure 5.2 shows the three intensity transform functions and the identity function

for reference. The piecewise intensity function is given by:

Iout =


0 if Iin ≤ T

Iin−T
1−T

if Iin > T

(5.1)

where Iin and Iout are the input and output intensities, respectively, and T is the cutoff

threshold. This piecewise function maps all pixel values below some specified back-

ground value to 0 and rescales the remaining pixel values between 0 and 255. In prac-

tice, the cutoff threshold is determined by calculating the distribution of pixel intensities

for a given RHEED image and then determining a threshold pixel intensity from that

distribution. This results in a large area of the image becoming black while the remain-

ing parts of the image have linearly increased contrast. The power intensity function is

given by:
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Figure 5.2: (Top Left) The intensity transformation functions used on RHEED images.
(Top Right) The first derivatives of the intensity transformation functions. Bottom: An
example LSCO RHEED image and the effects of the identity function and 3 transfor-
mation functions.
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Iout = Iγin (5.2)

where γ is a positive real number. This method uses a power function to rescale the

pixel intensities rather than a linear one, resulting in reduced contrast between low in-

tensity values and greater contrast between high intensity values. This is ideal for when

the RHEED screen is heavily saturated, making it difficult to distinguish bright features

from the background. The inverse power function results in the opposite effect, where

low intensity values are increased in contrast while high intensity spots experience de-

creased contrast. The function is given by:

Iout = |1− (1− Iin)
γ|. (5.3)

This transformation is ideal for when there are weak features like Kikuchi bands and

higher order spots that need to be enhanced to become visible. Figure 5.2 shows an

example RHEED image from an LSCO sample grown at the Max Planck Institute for

Solid State Research and the results of the three transformation functions applied to it.

Due to the geometry of the chamber, it is nearly impossible to align samples the

same way each time. Additionally, due to vibrations, magnetic interference, and me-

chanical noise present during growth, the alignment can shift during the course of a

sample growth, either suddenly due to an instantaneous event such as the opening of a

shutter or gradually due to sample drift on the stage. This causes a translation of the

image during a RHEED recording and poses a problem for PCA and k-means as the

different locations of the pattern on the screen will be interpreted as a feature. In order

to mitigate this, a system for identifying the specular spot of RHEED images and align-

ing them to the center of frame was devised. For a given RHEED image, the image is

mirrored across the vertical axis and the difference between the mirror image and the

original is calculated using a residual sum of squares. The mirror image is then trans-

lated 1 pixel horizontally and the residual sum of squares is calculated again. This is
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repeated for each possible horizontal alignment of the image and its mirror. As can be

seen in Figure 3.1, RHEED patterns exhibit bilateral symmetry across the vertical axis

and thus the difference between an image and its mirror will be minimized when aligned

along the vertical axis of the specular RHEED spot. This method is highly effective at

finding the horizontal center of a RHEED pattern and allows for different patterns to

be aligned horizontally. This method will be referred to as the residual sum of squares

(RSS) alignment.

While RHEED images possess vertical mirror symmetry, RHEED images are not

symmetric about the horizontal axis; however, the individual spots or streaks are sym-

metric about a horizontal axis. Thus in order to align the images vertically, the image

is cropped and only the specular RHEED spot is used. First, an approximate center is

found for the spot using a geometric mean of the pixel intensity. Using this approx-

imated center, the image is cropped to the specular spot. Finally, the RSS alignment

algorithm is used to find the vertical center of the specular spot. In order to prevent

background signal from dominating the RSS calculations, a low intensity filter is used

that sets all values less than 90% of the maximum spot intensity to 0. Thus, only the

high intensity spots are used in the RSS alignment algorithm to determine the symmetry.

Without this filter, the accuracy of this method drops considerably. The preprocessing

algorithms were implemented in Python 3.9.16.

5.2 PCA & k-means Implementation

PCA was implemented in Octave version 1.5.0 using single value decomposition [199].

The number of PCA components is specified by the user, but for this work it is set at

6, which retains > 99.98% of the variance in the raw data. The resulting eigenvalues

and eigenvectors are stored in binary text and binary MATLAB files for post process-

ing. The k-means clustering is performed on the results of the PCA and is also written

in Octave 1.5.0. The clustering is performed from 1 to k where k is specified by the

user and in this work is 10. Once k gets beyond 10, the differences between clusters

74



decreases and several clusters containing only a few frames begin to appear, making it

hard to interpret the results. For each value of k, the clustering is run 100 times with

different random starting configurations, in order to ensure an absolute ground state is

found. Each clustering attempt is limited to 20 iterations, with the results being saved

in binary text and binary MATLAB files for post processing. Graphs of the eigenvec-

tors, eigenvalues, clustering distributions, and centroid images are created during post

processing which is written in Matlab 2020b.

5.3 Results

5.3.1 Intensity Rescaling

Figures 5.3 and 5.4 show the PCA and k-means clustering results, respectively, for an

LCO sample grown by MBE at the Max Planck Institute for Solid State Research. The

top 3 components of Figure 5.3 and the tiles on the left of Figure 5.4 correspond to the

raw video collected during growth, while the bottom 3 components in Figure 5.3 and the

tiles on the right in Figure 5.4 correspond to the same video after it has undergone the

piecewise rescaling described in section 5.1. The eigenvalue plots show no difference

between the raw and transformed videos, with the exception of component 3. However,

this change is not significant, as it can be easily seen the eigenvalues and eigenvectors

are both inverted in the transformed video. Multiplying both the eigenvalues and eigen-

vectors by -1 will result in no change to the video, thus this is not a significant change.

The difference between these two videos is easiest to observe from the centroid images

in Figure 4.4, where we see the contrast of the transformed video is higher and results

in clearer separations between the reconstructions spots. The primary limitation to this

transform is that any information that is present in the darker regions is lost; however,

from the k-means clustering graphs, it can be seen that the results have not been signif-

icantly effected by the transformation and thus this method for artificial contrast can be

used without distorting the understanding of the videos.
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Figure 5.3: Results from the PCA of a sample containing a RHEED recording of an
LCO sample and a copy of the same recording after undergoing a piecewise intensity
transformation. (Top Left) The first three eigenvalues of the original recording plot-
ted over the course of the growth. (Top Right) The corresponding eigenvectors from
the original recording. (Bottom Left) The first three eigenvalues of the transformed
recording plotted over the course of the growth. (Bottom Right) The corresponding
eigenvectors of the transformed recording.

Figures 5.5 and 5.6 show the results of PCA and k-means, respectively, for an LFO

sample grown using MBE in the Auburn University FINO lab. The top 3 components

of Figure 5.5 and the A tiles of Figure 5.6 correspond to the raw video collected dur-

ing growth, while the bottom 3 components in Figure 5.5 and the B tiles in Figure 5.6

correspond to the same video after it has undergone the power rescaling described in

section 5.1 with γ = 2.0. As was the case with the LCO video that underwent piece-

wise rescaling, there is no discernible difference between the original and transformed

eigenvalues and eigenvectors. Due to the power recalling function, the contrast is toned
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Figure 5.4: Results from the PCA of a recording containing the original RHEED record-
ing of an LCO sample and the same recording after undergoing a piecewise intensity
transformation. (A),(B) Graphs of the clusters over the course of the growth for the
original and transformed recordings, respectively. (1a)-(6a) The centroid images for the
clusters plotted in (A). (1b)-(6b) The centroid images for the clusters plotted in (B).

down for lower intensity values and increased for higher intensity. As can be seen in the

HDR LFO centroid clusters, this improves the distinction between the Kikuchi bands,

spots, and background. From the clustering plots we see there is no change in the first

6 clusters, with the exception of the very first frame being swapped between clusters

1 and 2, resulting in the ordering being switched. However, in clusters 7 and 8, there
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Figure 5.5: Results from the PCA of a recording containing the original RHEED record-
ing of an LFO sample and the same recording after undergoing a power intensity trans-
formation. (Left) The eigenvalues plotted over the course of the growth. (Right) The
corresponding eigenvectors.

is an increase in the alternating pattern between the two clusters that matches the fre-

quency of the specular spot oscillations and the frequency observed in the eigenvalues.

In this case, the improved contrast between the background and RHEED pattern fea-

tures results in an improved analysis and demonstrates the positive effects of careful

data preprocessing.

5.3.2 RSS Alignment

One of the common issues encountered during an extended growth is drifting or shift-

ing of the RHEED pattern over time. This can be caused by mechanical vibrations
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Figure 5.6: Results from the PCA of a recording containing the original RHEED record-
ing of an LFO sample and the same recording after undergoing a power intensity trans-
formation. (A),(B) Graphs of the clusters over the course of the growth for the original
and transformed recordings, respectively. (1a)-(6a) The centroid images for the clusters
plotted in (A). (1b)-(6b) The centroid images for the clusters plotted in (B).
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Figure 5.7: Results from PCA and k-menas clustering of a recording containing the
original RHEED recording of an LFO sample and the same recording with an artificial
drift applied. (a) The first four eigenvalues plotted over the course of the growths and
their corresponding eigenvectros. (b) A graph of the clusters over the course of the
recordings. (c),(d) The centroid images of clusters 3 and 5, respectively.

present in the lab or can be the result of charging effects causing minor deflections in

the electron beam. For the purpose of traditional RHEED interpretation, this issue is

easily rectified by adjusting the alignment of the RHEED system; however, for numer-

ical analysis such as specular intensity monitoring, PCA, and k-means, this is not the

case. In PCA and k-means, small translations in the pattern result in different compo-

nents and changes to the clustering that obscure the physical information present. This

is seen clearly in Figure 5.7, which show the PCA and k-means results of an LFO sam-

ple grown using MBE at the Auburn FINO lab. The first half of the graph corresponds
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to the original recording, while the second half of the graph corresponds to the same

video that was translated 25 pixels right and 25 pixels down at a constant rate over the

length of the video. From the clustering in Figure 5.7(a), it is clear that the drifting

of the RHEED pattern causes the corresponding frames of the first and second half to

vary greatly. The eigenvalues of the first 3 components shown in Figure 5.7(b-e) shows

that PCA focuses on this translation and constructs eigenvectors that produce this trans-

lation. The eigenvalues in the drifting recording are periodic while the eigenvectors

display bright and dark spots that correspond to the drift. The eigenvectors also ex-

hibit little to no finer structures indicating the important details are being blurred out as

compared to the primary spot intensity.

In order to correct for drift or sudden shifts in the pattern, the RSS alignment

algorithm described in section 5.1 is used. Figure 5.8 shows the PCA and k-means

results for the same recording in Figure 5.7 after it the RSS alignment was applied.

The clustering graph now shows nearly identical clustering for the original and drift

recordings. The RHEED images in 5.8(f) and (g) show that the centroid images of

clusters 2 and 5 are now aligned with each other. The eigenvalue plots of the first 4

components show that the PCA now yields the same results for both recordings and as

a result the eigenvectors now show features like the Kukuchi bands that correspond to

the sample surface rather than focusing on the translation. From these results it is clear

that the RSS alignment algorithm is able to successfully mitigate the effects of pattern

translation and works to ensure PCA and k-means results are focused on significant

features that inform on the film surface quality.

In addition to correcting drift and sudden shifts in alignment, RSS alignment is

also able to align recordings from different samples with accuracy within a couple of

pixels. This works best for videos that begin with clean substrates that possess high

quality RHEED patterns, as they will have the sharpest features. Figures 5.9 and 5.10

show the PCA and k-means results for the combined recordings of two LFO-Nb:STO

81



Figure 5.8: Results from PCA and k-menas clustering of the same recording in Fig-
ure 5.7 after the RSS alignment algorithm was applied. (a) The first four eigenvalues
plotted over the course of the growths and their corresponding eigenvectros. (b) A graph
of the clusters over the course of the recordings. (c),(d) The centroid images of clusters
3 and 5, respectively.

samples grown in the FINO lab at Auburn University. The samples were grown at iden-

tical conditions on the same day, with the first lasting 1500 s and the second lasting

1900 s. As expected, the eigenvalues are not the same for the two growths, though for

a few components, such as 1, 3, and 5, the beginning of each growth is similar. The

eigenvalues of the first component possess very similar values and follow the same pro-

gression. The corresponding eigenvector appears to represent the primary spot intensity

and a change in the first order spot location. The clustering graph in Figure 5.10 shows

that the growths proceed through the same two clusters initially, but diverge afterwards.
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Figure 5.9: Results from the PCA of a recording containing 2 LFO samples. (Left)
The eigenvalues plotted over the course of the growths. (Right) The corresponding
eigenvectors.

The first cluster is highlighting the pattern of the Nb:STO substrate, which is replaced

after ≈ 100 seconds by the second cluster which shows a fainter pattern with less sharp

Kikuchi bands. LFO 1 then proceeds through clusters 3 and 4 which show clear bands

and distinct spots with minimal streaking. However, LFO 2 remains in cluster 2 for

≈ 800 seconds before transitioning to cluster 5 where the RHEED is softer and no

Kikuchi bands are present. This softening along with less distinct spots suggest that

islands have begun to form or parts of the film have begun to lose their structure and

become amorphous. While in this instance the two growths diverge into different re-

sults, without the RSS alignment, the direct comparison of the development the films
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Figure 5.10: Results from the k-means clustering of a recording containing 2 LFO
samples. (Top) A graph of the clusters over the course of the growths. (Bottom) The
centroid images corresponding to the clusters in the graph.

surface would not be possible, as the PCA and k-means would have split the growths in

the same manner observed in Figure 5.7.

5.3.3 SrNbO3

Figures 5.11 and 5.12 show the PCA and k-means clustering results, respectively, of a

SNO-GSO sample grown by MBE at the Auburn University FINO Lab. The clustering

graph shows a slow progression through the first two clusters, whose centroid images

contain the intermediate reconstruction spots from the GSO substrate. Clusters 3 and 4

show weak Kikuchi bands and dimmer 1st order spots, which is consistent with the first

unit cells of growth. Clusters 5 and 6 show an increasing brightness and sharpening

Kikuchi bands as the growth approaches ≈ 3 nm that indicate the film has achieved a

highly crystalline surface [37]. From the eigenvalue plots, it is clear that no RHEED

oscillations are present. This suggests that the growth mode for this sample was not

layer by layer growth, but possibly step flow growth or a mix of growth modes. In

clusters 1, 3, 5, and 6, there is a sharp change observed that aligns with the end of the

second cluster, and delineates between smooth evolution observed in the first half of
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the growth from the sharper more intense changes observed in the second half. This

indicates that the deposition of the film begins slow and takes ≈1700 seconds to cover

the substrate with the first 1-2 unit cells while the second half of the growth produces

5-7 unit cells in the same time. This may be due to changes in the surface chemistry

between the substrate and film or could be caused by changes in the metal sources or

oxygen environment during growth.

Figure 5.13 shows the k-means clustering results of a SHO-SNO-GSO sample

grown by MBE at the Auburn University FINO Lab. The clustering graph shows the

timings of the SNO and SHO growths, along with the cool down phase. As was the

case for the SNO-GSO growth in Figure 5.12, the first cluster is the largest and the

Figure 5.11: Results from the PCA of an SNO sample. (Left) The eigenvalues plotted
over the course of the growth. (Right) The corresponding eigenvectors.
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Figure 5.12: Results from the k-means of an SNO sample. (Top) A graph of the clusters
over the course of the growth. (Bottom) The centroid images corresponding to the
clusters in the graph.

Figure 5.13: Results from the k-means of an SHO-SNO-GSO sample. (Top) A graph
of the clusters over the course of the growths and cool down. (Bottom) The centroid
images corresponding to the clusters in the graph.
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corresponding centroid image shows reconstruction spots that result from the substrate.

Clusters 2, 3, and 4 show softening of the spots and Kikuchi bands that indicate the

SNO film contain defects or lacks proper ordering. However, the sharp increase in

spot intensity observed in clusters 5, 6, and 7 indicate a recovery by the SHO film and

suggest it is highly crystalline. From the timing of the clusters, it is clear that the SHO

film maintains a high quality surface even once cooling down begins. This stands in

sharp contrast to SNO, which is metastable and tends to over oxidize during cooling.

Clusters 8, 9, and 10 show no major changes to the surface structure, indicating that the

SHO has succeeded as a capping layer and prevented over oxidization of the underlying

film. This was confirmed by XPS, which also showed that the oxidation state of Nb was

lower in films covered with SHO capping layers [37].

5.3.4 SrTaO3

During growth, there is a possibility for unexpected features to appear in a film. Surface

islands and additional phases are prime examples, which both result in changes to the

RHEED pattern. Figures 5.14 and 5.15 show the PCA and k-means clustering results,

respectively, for an STaO sample grown by hMBE in the FINO lab at Auburn Univer-

sity. From the centroid images, it is clear that the film begins growing as expected in the

perovskite phase; however, clusters 5, 6, and 7 show an additional 227 phase appearing

like the one observed in Figure 3.2. This 227 phase is represented by the small faint

spots between and above the primary spots perovskite RHEED spots. With traditional

RHEED interpretation by a user, there is not a quantitative way to denote exactly when

a second phase becomes observable, but since k-means clustering defines boundaries

between clusters based on the principal components, it is possible to conclusively say

that the secondary phase appears in cluster 5, at the ≈ 500 second mark and remains

consistently starting at the ≈ 600 second mark. The 1st and 4th components in Fig-

ure 5.14 show dark spots consistent with the secondary phase pattern and the eigenval-

ues show similar responses during the second half of the growth. Components 4, 5, and
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Figure 5.14: Results from the PCA of an STaO sample. (Left) The eigenvalues plotted
over the course of the growth. (Right) The corresponding eigenvectors.

6 all show signs of oscillations or periodic behavior in the first 1200 seconds consistent

with layer by layer growth. These oscillations are not observed strongly in the specular

spot monitoring or the k-means clustering, since they are of smaller strength than the

other components. Thus in this instance, looking directly at the eigenvalue evaluations

provides the ability to extract a growth rate when normally it would not be possible.

5.3.5 La1.84Sr.16CuO4

Figures 5.16 and 5.17 show the PCA and k-means clustering results, respectively, for an

LSCO sample grown by MBE at the Max Planck Institute for Solid State Research. The

clustering graph and eigenvalue plots have been overlaid with the shuttering times and
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Figure 5.15: Results from the k-means of an STaO sample. (Top) A graph of the clusters
over the course of the growth. (Bottom) The centroid images corresponding to the
clusters in the graph.

oxygen environment to highlight the correlation between the cluster durations, eigen-

value changes, and the growth conditions. Components 4, 5, and 6 show strong re-

sponses to the change in oxygen environment at 170 seconds, while every component

reflects a change when ozone is reintroduced at 300 seconds. All of the components

also show a response when the Cu shutter is closed and the La & Sr shutters are opened

at 40 seconds. In each of the centroid images, there are intermediate streaks resulting

from surface reconstruction. Cluster 1 possesses a 5a reconstruction, which is the result

of the Cu ordering in the CuO layer, while cluster 4 possess a 4a reconstruction, which

is caused by ordering of oxygen vacancies on the surface [200]. The k-means cluster-

ing provides quantitatively significant boundaries for the different clusters, resulting in
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Figure 5.16: Results from the PCA of an LSCO sample. (Left) The eigenvalues plotted
over the course of the growth overlaid with information on the oxygen environment and
shuttering cycle. (Right) The corresponding eigenvectors.

centroid images that are strongly coupled to the shuttering times and allow for clear

understanding of the surface morphology during each phase of growth.

5.4 Conclusion

Traditional RHEED analysis is primarily limited to specular spot intensity monitoring

and qualitative analysis of the RHEED pattern. While this has served film growers

well for decades, there is far more information contained in RHEED that can be teased

out with the right tools. Here we have shown that PCA is able to construct a set of

eigenvector and eigenvalue pairs that provide useful information about the evolution of

the film. By analyzing the change in eigenvalues over the growth, new patterns, such
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Figure 5.17: Results from the k-means of an LSCO sample. (Top) A graph of the
clusters over the course of the growth. (Bottom) The centroid images corresponding to
the clusters in the graph.

as weak spot oscillations, are observed that were previously too weak to recognize. k-

means clustering is able to utilize the eigenvalues to create mathematically significant

clusters that distinguish between segments of the growth. The centroid images that

result from these clusters highlight the changes in the film and provide a film grower

with clear timeline of the evolution of the film’s surface.
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Chapter 6

Epitaxial Strain Effects in SrHfO3 Films Grown by Hybrid Molecular Beam
Epitaxy

This chapter is adapted from my paper bearing the identical name. In this work, I was

responsible for synthesizing the SrHfO3 samples, collecting and analyzing the RHEED,

XPS, XRD, and RSM data, analyzing the XAS data, and creating the Gaussian convolu-

tions of the density of states. The remaining characterization techniques were conducted

by Boris Kiefer of New Mexico State University (DFT), Chunli Tang & Wencan Jin of

Auburn University (SHG), George Sterbinsky of Argonne National Laboratory (XAS),

and Arashdeep Thind & Robert Klie of University of Illinois Chicago (STEM).S

6.1 Introduction

6.1.1 Interest in Perovskite Oxides

Complex metal perovskite oxides possess a wide range of electrical properties that have

made them the focus of many works. They show promise as lead-free piezoelectrics,

thermoelectrics, high κ gate dielectrics in MOSFETs, etc. Some of the interesting phe-

nomena are found at interfaces such as 2DEGs at LaAlO3 (LAO)/SrTiO3 (STO) inter-

faces [4] and superconductivity at LAO/KTaO3 interfaces [5]. Perovskite oxides, such

as STO and BaTiO3, possess ferroelectric phases and have been investigated as possi-

ble materials for ferroelectric field effect transistors (FeFET) and ferroelectric random

access memory (FRAM) devices [6, 7]. Good FeFET gate oxide candidates need to

be ferroelectric, possess large band gaps, and have high dielectric constants. This has

made Hf-based materials such as HfO2 intriguing, due to the unusually weak ferroelec-

tricity observed in the material and the large band gap and dielectric constant that are

well known [201]. A hafnate material with a larger ferroelectric response would be

noteworthy and has generated interest in the study of hafnate perovskite thin films.
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6.1.2 Material Properties and P4mm Phase

SrHfO3 (SHO) is a perovskite oxide, similar to STO, where corner-connected HfO6

octahedra form the building blocks of the three-dimensional framework. The cubocta-

hedral cavities thus formed by these corner-connected HfO6 octahedra are filled by Sr

cations. SHO exhibits polymorphism and has various energetically competing phases.

These phases correspond to space-group symmetries of Pnma, I4/mcm, P4/mbm, P4mm,

Pm3̄m, where Pnma is the ground state structure. SHO is a large band gap (6.1 eV) [202]

perovskite oxide that is orthorhombic (Pmna) [203] in the bulk with a pseudocubic lat-

tice constant of 4.08 Å [202]. Temperature-dependent studies have found that SHO can

also take on Cmcm, I4/mcm, and Pm3̄m phases at higher temperatures [203]. Due to its

high band gap and high dielectric constant (21) [204], SHO has been investigated as a

high-κ gate dielectric for MOSFETs [24, 62]. It has also been considered as a possible

lead-free piezoelectric material [205, 206].

Unlike other phases of SHO P4mm is non-centrosymmetric, which results primar-

ily from the off-centering of Hf atoms with respect to the center of the HfO6 octahedra.

There have been several theoretical works about the possible existence of this polar

P4mm phase, with several predicting it does not exist [207, 208] , while others predict-

ing its stability [205]. If synthesized, these works predict the P4mm phase to be ferro-

electric [207], with a spontaneous polarization of 0.52 C/m2 along the c axis [205]. In

the last few years, there have been attempts to synthesize this P4mm phase with pulsed

laser deposition [206, 209]. One study reported the successful synthesis of ∼35 nm

thick P4mm SHO films on SrTiO3 (STO) substrates using PLD and found evidence of

ferroelectric behavior [206]. However, another study synthesized SHO thin films on

STO by PLD and found them to be cubic Pm3̄m and paraelectric [209]. Most previous

reports have utilized PLD or ALD to synthesize SHO thin films; however, neither of

these works nor those that utilize MBE were able to achieve coherently strained SHO

films on STO, where the lattice mismatch is ∼-3%.
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A key structural characteristic of a perovskite framework is for the BO6 octahedra

to undergo cooperative rotations or tilts. These octahedral tilts are denoted by Glazer’s

notation [210, 211]. Using Glazer’s notation, an octahedral tilt pattern can be described

as axbycz, where a, b, and c correspond to the magnitude of the octahedral tilts along

those respective crystallographic directions for a pseudocubic unit cell. If the magnitude

of the octahedral tilts along two crystallographic directions is equal, then those tilts are

denoted by the same symbol. The superscript (x, y, and z) denotes the type of octahedral

tilts, where (+) denotes in-phases octahedral tilts for the top and bottom neighboring

octahedra, while (-) denotes out-of-phase octahedral tilts. The absence of octahedral

tilts along a specific crystallographic direction is denoted by (0). The Pnma phase of

SHO has an octahedral tilt pattern of a+b-b-, which is the same for the GSO and TSO

substrates as well. The tetragonal phases I4/mcm and P4/mbm have tilt patterns of

a0a0c-and a0a0c+, respectively. The P4mm and the cubic Pm3̄m phases do not exhibit

octahedral tilts (a0a0a0).

6.1.3 SHO as a Capping Layer

In addition to the possibility of possessing a ferroelectric phase, SHO also shows promise

as a capping layer for perovskite oxides. Many perovskite oxides are unstable in the at-

mosphere or meta-stable for short periods of time, with exposure causing oxidation of

the samples and sample degradation [37]. This problem can be eliminated by adding a

capping layer that buries the interfaces; however, this usually involves careful selection

of a material based on its electronic and magnetic properties so that it will not affect

the samples of interest [212, 213]. Density functional theory calculations for SHO have

predicted that SHO’s insulating behavior will prevent it from accepting donor electrons

from any other transition metal perovskite oxide [214]. This makes SHO an excellent

candidate for capping atmospherically unstable and meta-stable perovskite oxides, as

they would preserve the structure of the films while not changing the electrical proper-

ties of the films and interfaces. Theory also predicts that charge transfer through thin
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layers of SHO would still be possible, allowing for modulation doping of samples and

the formation of 2DEGs at heterostructure interfaces [214].

6.1.4 hMBE

The primary reason epitaxial SHO has not been synthesized much using MBE is likely

due to the refractory nature of Hf. Refractory metals, such as Hf and Nb, have low

vapor pressures even at temperatures approaching 2000°C. Thus, it is not practical to

evaporate these elements in an effusion cell and an electron-beam evaporation source

is needed instead. However, over the past few years, hMBE has made significant

progress in repeatably and reliably utilizing such refractory metals to synthesize per-

ovskite oxides [37, 108, 110, 215]. hMBE achieves this by utilizing metal organic

precursors commonly employed in ALD as source material rather than pure metallic

sources. Others have proposed the use of oxide sources in effusion cells that may

evaporate as suboxide metal-oxide molecules and have proposed HfO as one possible

source [216], but this has not yet been demonstrated and would still require evaporation

from sources above 2000°C. Thus, metalorganic precursors high vapor pressures at con-

siderably lower temperatures offer the most promising avenue for consistent and well

controlled deposition of Hf by MBE. Several Hf precursors are commercially available,

but Tetrakis(ethylmethylamino)hafnium(IV) [217] was chosen in this work due to it’s

high vapor pressure, common use in atomic layer deposition, and thermal stability.

6.1.5 This Work

In this work, thin film samples of SHO were grown on STO, TbScO3 (TSO), and

GdScO3 (GSO) using hMBE. In situ RHEED was used to monitor the film surface

during the growth process and in vacuo XPS [218] was used to investigate film com-

position and stoichiometry. HRXRD and RSM maps were used to determine film re-

laxation, while STEM was used to determine the film’s atomic structure. Total energy

calculations using DFT were carried out over a wide range of compressive strain to
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determine the thermodynamic stability of various phases of SHO. The electronic struc-

ture of the film and its dependence on the compressive strain was measured using XAS

and compared with the electronic density of states calculations. The presence of polar

distortions was investigated using SHG.

6.2 First-principles Modeling

To predict phase-stability as a function of epitaxial strain, the thermodynamic ground

state for 5 phases of SHO with with differing octahedral distortions was calculated us-

ing density functional theory (DFT). The computations were performed with the Vienna

ab-initio Simulation Package [219, 220] accounting for electronic exchange and corre-

lations within the Perdew–Burke-Ernzerhof (PBE) parametrization of the Generalized-

Gradient-Approximation (GGA) [221]. Electrons are treated within the projector augmented-

wave framework (PAW) [222, 223]. We followed Material Project recommendations,

and adopted a plane wave energy cutoff of Ecut = 520 eV [3] and a Γ-centered k-point

grid with a k-spacing of 0.3 Å−1. We examined the phases: Pnma, I4/mcm, P4/mbm,

Pm3̄m, and P4mm. The equilibrium structures were subjected to in-plane strain ranging

from -5% to +5% in steps of 0.5% for each phase. The out-of-plane lattice parameter

was calculated using the equation ϵ33 = −ν
1−ν

(ϵ11 + ϵ22). The value of Poisson’s ratio

(ν) of 0.3 for SHO was determined using lattice parameters obtained from XRD mea-

surements of the samples described below. This value is consistent with the computed

Poisson ratio of 0.25 for the Pm3̄m phase. In order to determine the eg and t2g ordering,

we computed the electronic density of states with energy bins of < 15 meV. The site

projected eDOS d-orbital angular momentum channels in the d-orbital manifold were

computed and normalized to arbitrary units (for phases with more than 1 Hf per u.c.),

providing phase resolved t2g (dxy, dxz, and dyz) and eg (dz2 and dx2−y2) ordering.

Figure 6.1 shows the crystal structure and electronic density of states for the Pnma,

P4mm, and I4/mcm phase of SHO with -3% compressive in plane strain. For P4mm
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we find a small lattice distortion of c/a=1.002, and that Hf is located above the equa-

torial plane of the HfO6 octahedron by 0.08 Å, consistent with a ferroelectric phase.

However we find that the P4mm phase is not the ground state. The energies for each

phase as a function of in-plane strain are plotted in Figure 6.2. The strain was cal-

culated using f =
asubstrate−afilm

afilm
, where the pseudo cubic lattice constant and bulk

lattice constant were used for the substrate and film respectively. From this figure we

see that Pnma structured SHO is the thermodynamic ground state, consistent with pre-

vious computations [206] and experiment [203]. Pnma remains the structural ground

state for compressive and tensile strain in the range from -5% to +5%, covering the

range of feasible strain values and experimental values. We find that phase stability

decreases in the order Pnma (0 eV/fu) < I4/mcm (30 meV/fu) < P4/mbm (62 meV/fu)

< P4mm (160 meV/fu) ∼ Pm3̄m (160 meV/fu) at 0% strain, consistent with previous

work [206]. We note, that the P4mm and Pm3̄m equilibrium structures are energetically

degenerate but structurally distinct. At -3% compressive strain we find that phase sta-

bility decreases in the order Pnma (127 meV/fu) < I4/mcm (158 meV/fu) < P4/mbm

(189 meV/fu) < P4mm (303 meV/fu) ∼ Pm3̄m (340 meV/fu).

6.3 Experimental Methods

6.3.1 Hybrid MBE

SHO films were grown in a (001) orientation on (110) oriented GSO and TSO with

pseudocubic lattice parameters of 3.96 Å and 3.95 Å, respectively and on STO with

lattice parameter 3.905 Å. Substrates were obtained from MTI Crystal and sonicated

in acetone and then isopropanol before being dried with nitrogen. GSO and TSO sub-

strates were annealed for 6 hours at 1,100°C in a Lindberg Blue M tube furnace from

Thermo Scientific. A Park Systems Atomic Force Microscope (AFM) was used to con-

firm this treatment resulted in a single termination with step edges ∼200 nm in width.

All samples were grown in a Mantis MBE. The substrates were heated to 1,000°C over
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Figure 6.1: (a), (c), (e), (g), & (i) Show the crystal structure of SHO for -3% in-plane
strain for the Pnma, Pm3̄m, P4mm, I4/mcm, & P4/mbm, respectively. (b), (d), (f), (h),
& (j) Show the eDOS results of our DFT results for the Pnma, Pm3̄m, P4mm, I4/mcm,
& P4/mbm, respectively. The dxz and dyz states are degenerate for all phases but Pnma.
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Figure 6.2: Plot of the change in energy from the ground state for the different SHO
phases as a function of in-plane strain.

1hr in an oxygen plasma with pressure 2 x 10−6 Torr to prevent the surface of the sub-

strate from reducing before growth.

Strontium (99.99%, Sigma-Aldrich, USA) was supplied using a low-temperature

effusion cell and the flux was calibrated with a quartz crystal micro-balance (QCM).

An oxygen environment of 2 x 10−6 Torr was used for calibration. Hf was supplied us-

ing the metal-organic precursor tetrakis(ethylmethylamino)hafnium (TEMAH, 99.99%,

Sigma-Aldrich). TEMAH was stored in a bubbler and connected to the chamber by an

ALD pneumatic valve (Swagelok 316L) and a heated gas injector (E-Science, USA). A

capacitance manometer (Baratron) was attached to the gas line to monitor the Hf partial

pressure. The temperature of the bubbler was maintained by a heating tape controlled

by a PID controller. Hf was calibrated by changing the bubbler temperature and ob-

serving the change in partial pressure. In order to reduce scattering of TEMAH and its

constituent molecules during growth, the chamber shroud was cooled to -60°C using an

SP Scientific RC210 pump and Syltherm XLT as coolant.
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Samples were grown using co-deposition of Sr and Hf at 1,000°C in an oxygen

plasma with chamber pressure 2 x 10−6 Torr. Upon opening the Hf source, the chamber

pressure increases to 7 x 10−6 Torr and remains there for the duration of growth. After

deposition, the samples were cooled from 1,000 to 400°C over 400 seconds in an oxy-

gen plasma of 2 x 10−6 Torr. Once the samples reached 200°C, they were transferred

in vacuo to the XPS.

During growth and cool down, in situ RHEED (Staib Instruments) was used to

monitor the sample surface and growth quality. Videos of the RHEED were collected

using Flashback Express Recorder. After the growth, principal component analysis and

k-means clustering were performed on the RHEED using software previously devel-

oped by our group [79].

6.3.2 Characterization

XPS spectra were collected for each sample using a PHI 5400 XPS with a base pressure

of 8 x 10−10 Torr. Low resolution spectra were taken over from 0 to 1400 Binding

Energy(eV) with a pass energy of 178.95 eV and high resolution spectra were take over

core level peaks with pass energies of 35.75 eV. The ratio of cations can be determined

through XPS by comparing the areas under the fit curves and adjusting by the ratio

of the relative sensitivity factors (RSF). In this way, the stoichiometry of each film

was determined. The x-rays were generated by an Al-kα source and an electron flood

gun was used during data collection to prevent electron depletion since the film is not

conducting. XPS spectra analysis and curve fitting was done using Casa XPS.

A Rigaku Smartlab XRD with a four-circle goniometer was used to collect 2θ-ω

scans over the (002) peak of each sample. This system utilizes the Cu Kα1 line isolated

with a double bounce Ge (220) monochromator. Reciprocal space maps were captured

using a 2D detector and were used to determine film strain.

Hafnium L3-edge X-ray absorption spectroscopy was carried out at beamline 20-

BM of the Advanced Photon Source at Argonne National Laboratory. The incident
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x-ray energy was controlled by a Si(111) double crystal monochromator, and the x-ray

beam was focused by a Pt/alumina bilayer coated toroidal mirror. The Hf Lα partial

fluorescence yield was collected using a seven element Ge solid state detector. All

samples were spun about an axis normal to the film surface during measurement to

mitigate Bragg peaks. Angles of incidence were maintained under ten degrees, and the

x-ray polarization was oriented either in-plane or out-of-plane.

Rotational anisotropy second harmonic generation measurements were performed

using an ultrafast light source with 800 nm wavelength, 50 fs pulse duration, and

200 kHz repetition rate. In the normal incidence geometry, the incident and reflected

light were fixed as p or s polarization, and the reflected SHG intensity is recorded as

a function of the azimuthal angle ϕ between the scattering plane (electric polarization)

and the in-plane crystalline axis. The incident light was focused onto a 50 µm diameter

spot on the sample with a fluence of ∼0.25 mJ/cm2. The second harmonic signal is

collected by a single photon counting EMCCD camera.

6.3.3 Electron Microscopy

The cross-section lift-out samples of SrHfO3/TbScO3 (SHO-TSO) and SrHfO3/GdScO3

(SHO-GSO) films were prepared using a Thermo Fischer Scientific Helios 5 CX focused-

ion beam (FIB)/ scanning electron microscope (SEM) DualBeam system at University

of Illinois Chicago. Samples were prepared such that the SHO-TSO sample would have

a zone axis of [010] for the orthorhombic TSO substrate, while the SHO-GSO sample

had a [101̄] zone axis for the GSO substrate. This allowed for the observation of cation

sublattice and octahedral tilts along both axes to determine the space group of the SHO

films under strain. The SHO-TSO and SHO-GSO thin films were sputter-coated with

a 10 nm thick layer of Pt/Pd to avoid charging during FIB lamellae preparation. To

protect against the ion-beam induced surface damage to the SHO films, a protective

coating of W was deposited. The final lamellae thinning was performed using a 1 kV
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ion beam energy to minimize the amorphization of the lamellae cross-section and to

obtain electron-transparent samples.

Scanning transmission electron microscopy (STEM) experiments were carried out

at University of Illinois Chicago using an aberration-corrected JEOL JEM-ARM200CF

microscope. The microscope is equipped with a cold-field emission gun and a CEOS

aberration corrector, and was operated at 200 kV. The electron energy loss spectroscopy

(EELS) experiments were performed using a dual-range Gatan Continuum spectrom-

eter. A spectrometer entrance aperture of 5 mm was used, resulting in a collection

semi-angle of 53.4 mrad. A dispersion of 0.75 eV per channel was used to acquire the

core-loss edges in the low-loss (Sc L and O K) and high-loss (Tb M, Gd M, Hf M, and

Sr L) energy range with an acquisition time of 0.25 seconds per spectrum. The back-

ground signal before core-loss edges was modeled using a power law. To improve EELS

signal quality, principal component analysis (PCA) was performed to remove random

noise components. An Oxford X-Max 100TLE windowless silicon drift detector was

used to perform energy-dispersive X-ray spectroscopy (EDS).

A probe convergence semi-angle of 30 mrad was used to perform atomic-resolution

high-angle annular dark-field (HAADF), low-angle annular dark-field (LAADF) and

annular bright-field (ABF) imaging. The collection angles used for HAADF, LAADF

and ABF imaging were set to 90 mrad to 370 mrad, 40 mrad to 160 mrad, and 11 mrad

to 23 mrad, respectively. The atomic-resolution images were acquired sequentially (10-

15 frames). The images were subsequently aligned and integrated to improve signal-

to-noise ratio. For bond-distance analysis, the atomic positions in the HAADF images

were initially estimated using relative intensity. Subsequently, these atomic positions

were refined using 2D Gaussian fitting.

Four-dimensional scanning transmission electron microscopy (4D-STEM) experi-

ments were carried out using a Gatan ClearView CMOS detector. The microscope was

operated at 200 kV with a probe convergence semi-angle of 2 mrad. The 4D-STEM

datasets were acquired with a pixel size of 0.8 nm to 1 nm and the diffraction patterns
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were collected using an exposure time of 50 ms to 75 ms. A combination of hardware

and software binning was used to limit the size of each diffraction pattern to 256 × 256

pixels. The 4D-STEM data analysis was performed using the py4DSTEM python pack-

age [224].

6.4 Experimental Results

6.4.1 Film Synthesis and Characterization/ RHEED and k-means

6.4.1.1 RHEED

Figure 6.3(a) shows the high temperature RHEED image of SHO-TSO along the [110]

azimuth immediately following the conclusion of growth, while Figure 6.3(b) shows the

ambient temperature RHEED image. The bright spots and streaks with clear Kikuchi

Figure 6.3: (a) RHEED image of SHO-TSO film after growth at 1000°C. (b) RHEED
image of SHO-TSO film after growth at room temperature. (c) k-means clustering of
SHO-TSO film. The mean RHEED image for each group is vertically aligned with the
group and have the group number inlaid.
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bands indicate a smooth and highly crystalline surface. The intermediate streaks in-

dicate a weak surface reconstruction is present. From the k-means clustering in Fig-

ure 6.3(c), we can see how the surface evolves throughout the 37 minute long growth

of SHO-TSO. Each cluster is constructed by minimizing the difference between each

frame and the mean frame of the cluster. As a result, each frame in the cluster is most

similar to the mean of that cluster than the mean of any other cluster. Cluster 1 en-

compasses the TSO RHEED pattern and shows a decrease in intensity and softening

Kikuchi bands, which is may be attributed to the polar-non-polar interface and disorder

in the early stages of growth. The intensity increases in clusters 2, 3, & 4, with 3 & 4

showing a weak surface reconstruction between the primary spots. This indicates the

surface was improving and was highly crystalline and well ordered. The presence of

Kikuchi bands in Figure 6.3(b) indicate the surface retains its fairly smooth and retains

high crystallinity even after cooling down to ambient temperature.

Figure 6.4: (a) XPS spectra of the Hf 4d peak from SHO-TSO film. (b) XPS spectra of
the valence band of SHO-TSO film.
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6.4.1.2 XPS

Figure 6.4(a) shows the Hf 4d peak convolutions for SHO-TSO and Figure 6.4(b) shows

the valence band spectra collected at the same time. Peak fits for O 1s and Sr 3d can

be found in the appendix. From the Hf 4d and Sr 3d peaks, the cation ratio of the

SHO-TSO sample was calculated to be approximately 1:1, indicating the film is nearly

stoichiometric. Since strontium has a significantly lower atomic mass than terbium,

RBS would not provide accurate stoichiometry.

6.4.1.3 XRD

Figure 6.5(a) shows the HRXRD spectra of SHO films grown on TSO and GSO sub-

strates. In both samples we observe a film peak at lower 2θ values than the TSO and

GSO substrate peaks indicating the films have larger out of plane lattice constants.

There are no peaks indicating other phases are present. Figure 6.5(b) shows the recip-

rocal space map for the 103 pseudo-cubic peak for the SHO-TSO film. The sharpness

of the SHO film peak in the Qx/2π axis indicates the samples possess a very small

Figure 6.5: (a) HRXRD of SHO-TSO and SHO-GSO samples. (b) RSM of SHO-TSO
film showing the SHO film is epitaxially strained with TSO.
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range of in plane lattice constants. Since the SHO film spot and the TSO substrate spot

are aligned at the same value on the Qx/2π axis, we know the film possesses the same

in-plane lattice constant as the substrate and thus has a compressive strain of ∼-3%.

6.4.2 Characterization of Perovskite Phase

6.4.2.1 SHG

Figure 6.6 shows the results of SHG measurements for SHO-TSO and SHO-GSO sam-

ples. The results show no sign of a SHG response indicating that the SHO films are

centrosymmetric. Of the 5 phases expected for SHO, only the P4mm phase is polar and

non-centrosymmetric. Thus, this result is consistent with the Pnma, Pm3̄m, I4/mcm,

and P4/mbm phases of SHO and inconsistent with the emergence of a strain-stabilized

P4mm phase. The lack of SHG response also supports the absence of a ferroelectric

distortion in strained SHO predicted by previous works [205, 207].

The absence of a P4mm phase is consistent with the DFT modeling presented

above which finds that there is a 160 meV/fu difference between the P4mm and ground

state Pnma phases. The absence of a polar phase matches the results found by [209],

Figure 6.6: SHG measurements of SHO-TSO (a) and SHO-GSO(b). The lack of
significant signal shows neither film is centrosymmetric.
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which observed a Pm3̄m phase in SHO films grown on STO by PLD. However, other

work [206] found that 35 nm thick SHO-STO films grown by PLD possessed a P4mm

phase and observed a SHG response. The samples synthesized in these works shown

by RSM appeared to be relaxed, as compared to the films presented here which are

compressively strained to the GSO and TSO substrates.

6.4.2.2 XAS, DFT

Figure 6.7 (a) & (b) depict the Hf L3-edge for an SHO-TSO film and SHO-GSO film re-

spectively. These measurements were performed to probe splitting of the energy levels

for unoccupied Hf 5d states under strain and to the best of our knowledge are the first

reported spectra Hf L3 spectra for perovskite hafnates. The absorption spectra show

clear splitting of the t2g and eg levels in the absorption, which generally has not been

observed in measurements of HfO2 samples previously [225]. The X-ray linear dichro-

ism (XLD)is calculated by XLD= Iab − Ic. In both samples, the t2g peaks are nearly

degenerate between the in-plane and out-of-plane response, with the leading edge of the

out-of-plane ∼100 meV. However, the samples exhibit a significantly larger splitting of

∼700 meV between the the in-plane and out-of-plane spectra at the eg peaks.

As result of crystal field splitting, the Hf unoccupied 5d-orbitals are broken into

the t2g and eg bands where dxz = dyz = dxy < dz2 = dx2−y2 . As observed from

the RSM and XRD, these samples are compressively strained from the substrate and

possess increased c-lattice parameters as compared to the bulk. This causes at elastic

response should induce additional crystal field splitting that breaks the degeneracy of

the t2g and eg bands resulting in dxz = dyz < dxy < dz2 < dx2−y2 . This can be observed

in the SHO samples by the presence of the weak dichroism in the leading edge and t2g

band peak and a more substantial dichroism at the eg peak. This result is consistent

with past study on BTO-DyScO3 (DSO) films, which observed a splitting of ≈1 eV

was observed in the eg band peak, similar to the splitting observed here [146]. While

the SHO films exhibit a slight dichroism in the t2g band, the BTO-DSO films observed
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Figure 6.7: XAS data for SHO-TSO (a) and SHO-GSO (b). Insets show the splitting
between in-plane and out-of-plane signal for the eg band.

a triply degenerate t2g band. This degeneracy in the t2g was attributed to the presence of

polar distortions, which offset the effect of the crystal field splitting in BTO.

To compare our results with theory, we applied a Gaussian convolution to the

eDOS predicted by our DFT calculations to match the XAS instrumental resolution.

The resulting convolutions for all 5 phases at -3% compressive strain can be found in the

appendix, with the Pnma phase shown in Figure 6.8. As can bee seen in Figure A.A.9,

all phases except the P4mm exhibit a dichroism on the L3-edge. This dichroism is also

exhibited by both SHO samples in Figure 6.7. This result is in agreement with the

SHG measurements and effectively rule out the presence of the P4mm phase. As can

be seen in Figure A.A.9, the Pm3̄m phase possesses an additional feature on the high

energy side of the L-edge, not present in the other modeled phases or the SHO XANES

spectra. In Figure 6.8 (b-c) the dichroisms and their derivatives for each phase possess

similar features, with exception of the additional peak on the Pm3̄m phase at 10 eV.

These features along with the significant decrease in phase stability predicted for by

DFT, rule out the presence of the Pm3̄m phase. Determination of the stable octahedral
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Figure 6.8: (a) The Gaussian convolution of the eDOS from DFT results for the Pnma
phase of SHO. (b) & (c) The dichroism and it’s derivative, respectively, for the XAS
data of SHO-TSO, SHO-GSO, and the 5 phases of SHO modeled by DFT with -3%
in-plane strain.

tilt pattern from XAS was not possible due to the very similar XLD predictions for the

Pnma, I4/mcm, and P4/mbm phases.

6.4.2.3 STEM

To investigate the atomic and chemical structure of the SHO-TSO and SHO-GSO films

along with the interfacial strain effects in the samples, we have performed STEM imag-

ing experiments combined with EELS and EDS. Figure 6.9 shows the STEM-EELS re-

sults for the SHO-TSO and SHO-GSO films. Figure 6.9(a) and 6.9(d) show the atomic

resolution HAADF images of the SHO-TSO[010] and SHO-GSO[101̄] films along with

their respective crystallographic orientations. We have performed EELS experiments to

understand the chemical distribution of elements across the cross-section of the SHO-

TSO and SHO-GSO. The Sr L, Hf M, Tb M, Gd M, Sc L, and O K edge maps are

shown in Figures 6.9(b) and 6.9(e) for the SHO-TSO and SHO-GSO thin film samples,
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respectively. We observe the interface to be chemically diffused for both SHO-TSO and

SHO-GSO samples. For instance, on comparing the EELS chemical maps for Tb M and

Hf M edges (SHO-TSO) as well as Gd M and Hf M edges (SHO-GSO), we observe the

interface is not chemically sharp but diffused. There is formation of a chemically inter-

mixed layer, which is about ≈2-4 u.c. thick. To emphasize this point, the extracted EEL

spectra for different regions of the film and substrate of the SHO-TSO and SHO-GSO

samples are shown in Figures 6.9(c) and 6.9(f), respectively. We ascribe this chemi-

cal heterogeneity at the interface to non-uniform morphology and surface terminations

of the TSO and GSO substrates. Moreover, we also observe the SHO-TSO and SHO-

GSO interfaces to be oxygen deficient, as shown in O K edge maps in Figures 6.9(b)

and 6.9(e), respectively. The impact of the chemical heterogeneities at the surface of

TSO and GSO substrates on the atomic structure of the SHO films is discussed later in

the manuscript. Additionally, the EDS chemical maps for Sr Kα, Hf Lα, Tb Lα, Gd Lα,

Sc Kα, and O Kα edges are shown in the supplementary information Figure A.A.14.

Our DFT calculations (see Figure 6.2) show that SHO has various energetically

competing phases for a range of compressive strains. These phases correspond to Pnma,

I4/mcm, P4/mbm, P4mm, Pm3̄m, where Pnma is the calculated ground state for a wide

range of compressive and tensile strain as shown in Figure 6.2. The atomic models of

the SHO with in-plane compressive strain of 3% are shown in Figure A.A.1. Both TSO

and GSO also adopt the same space-group symmetry of Pnma as the calculated ground

state of SHO. The atomic models showing the TSO and GSO substrate orientations used

for SHO film growth are shown in Figure A.A.2.

To understand the experimental epitaxial relationships between SHO-GSO/SHO-

TSO, and evaluate the microstructure of the SHO film, we have performed 4D-STEM

experiments. 4D-STEM provides a unique capability of elucidating the space-group

symmetry of the sample in the reciprocal space with a sufficient real-space resolution

to clearly distinguish between the film and the substrate. Figure 6.10 shows the 4D-

STEM results for SHO-GSO[101̄] and SHO-TSO[010]. Figures 6.10(a) and 6.10(e)
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Figure 6.9: (a) Atomic resolution HAADF image showing the cross-section of the SHO-
TSO film along [010]. (b) ADF image along with EELS chemical maps of Tb M,
Sc L, O K, Sr L, and Hf M edges across the SHO-TSO interface showing the chemical
distribution of elements. (c) Extracted EEL spectra for Tb M, Sc L, O K, Sr L and
Hf M edges. The EEL spectra were extracted from the probe positions marked with
the same color in the ADF image shown in (b). (d) Atomic resolution HAADF image
showing the cross-section of the SHO-GSO film along [101̄]. (e) ADF image along with
EELS chemical maps of Gd M, Sc L, O K, Sr L, and Hf M edges across the SHO-GSO
interface showing the chemical distribution of elements. (f) Extracted EEL spectra for
Gd M, Sc L, O K, Sr L and Hf M edges. The EEL spectra were extracted from the probe
positions marked with the same color in the ADF image shown in (e). Scale bars in (a),
(b), (d) and (e) correspond to 2 nm.

show the ADF images simultaneously acquired during the 4D-STEM dataset collection

for SHO-GSO and SHO-TSO respectively. The extracted convergent-beam electron

diffraction (CBED) patterns for the SHO film and GSO/TSO substrates are shown in

Figures 6.10(b) and 6.10(f). Figures 6.10(c) and 6.10(g) show the simulated CBED

patterns for the SHO-Pnma, SHO-I4mcm, SHO-P4mbm and GSO-Pnma/TSO-Pnma
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phases, along the GSO[101̄] and TSO[010] respectively. By comparing the CBED pat-

terns for the SHO film and the corresponding substrates (GSO and TSO), we can clearly

see that the SHO film does not adopt the expected Pnma phase. For the SHO film,

we find that the simulated CBED patterns for SHO-I4mcm and SHO-P4mbm show a

good match with the experimental CBED patterns along both GSO[101̄] and TSO[010]

crystallographic orientations. Moreover, simulated kinematical diffraction patterns for

a parallel electron beam condition are shown in Figure A.A.16 for all potential SHO

phases along with the GSO and TSO substrates.

The diffraction patterns for the P4mm phase are also within the measurement lim-

its. However, based on the SHG data shown previously, we can rule out the pres-

ence of the non-centrosymmetric P4mm phase. Additionally, we also observe non-

orthogonality in CBED patterns between the in-plane and out-of-plane Bragg vectors

as well as some very weak reflections, which correspond to small domains with Pnma

phase in the SHO films, which may be due to strain relaxation and other structural

defects in the material. This phase impurity is also consistent with atomic-resolution

imaging described later in Figure 6.11.

To better understand the microstructure and epitaxy of the SHO films, we have

further calculated strain for the SHO film using 4D-STEM CMED data. The strain

maps for SHO-GSO[10-1] and TSO [010] are shown in Figures 6.10(d) and 6.10(h)

respectively. The green circles in Figures 6.10(b) and 6.10(f) mark the Bragg disks

selected for in-plane and out-of-plane strain calculation. Given that SHO has a larger

unit cell volume than the GSO and TSO substrates, and the films are grown under a

compressive in-plane strain, ≈-3%, we expect a high out-of-plane tensile strain. This

can be clearly observed in the out-of-plane strain maps for SHO-GSO and SHO-TSO

as shown in Figures 6.10(d) and 6.10(h). The strain maps show non-uniform strain

for the in-plane lattice directions for both SHO-GSO and SHO-TSO samples. For a

perfect epitaxy, the strain along the in-plane direction should be minimal. However,

we find that for both samples, there are regions that correspond to good epitaxy, but

112



Figure 6.10: ADF image simultaneously acquired during 4D-STEM data collection for
(a) SHO-GSO and (e) SHO-TSO samples. The dashed white lines mark the SHO-
GSO/TSO interface. CBED patterns for (b) SHO-GSO and (f) SHO-TSO integrated
over the area of the film and substrate respectively. Simulated CBED patterns for (c)
SHO-GSO and (g) SHO-TSO. The crystallographic orientations corresponding to the
experimental and simulated data are provided in (d) and (h) for SHO-GSO and SHO-
TSO samples respectively. Strain maps for (d) SHO-GSO and (h) SHO-TSO samples,
where strain is calculated with respect to the substrate. Bragg disks used for strain map-
ping are marked as green circles in (b) and (f) for SHO-GSO and SHO-TSO respec-
tively. The CBED patterns have been rotated post acquisition to match the real-space
substrate orientation. Scale bars in (a) and (e) correspond to 10 nm.

a large fraction of the SHO film shows various degrees of tensile strain along the in-

plane direction. The observation of tensile strain along the in-plane direction means
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that some interfacial strain relaxation has occurred due to misfit dislocations, which can

be observed in HAADF measurements as well. This non-uniformity in strain maps can

also be observed in LAADF imaging mode. The LAADF imaging mode is sensitive to

strain contrast, where non-uniform image contrast reveals non-uniform epitaxy and a

high density of defects, as shown in Figure A.A.15. Therefore, the non-uniform strain

in the SHO films can be directly attributed to phase impurities and a high density of

defects arising from the epitaxial mismatch between the film and substrates.

We have further performed atomic-resolution HAADF and ABF imaging to iden-

tify the changes in bond distances (Figure 6.11(a)), BO6 octahedral tilt patterns (Fig-

ure 6.11(b)) and structural defects (Figure 6.11(c)) for the SHO-TSO and SHO-GSO

samples. Figure 6.11(a) shows atomic-resolution HAADF images for the SHO-TSO

(top) and SHO-GSO (bottom) samples. Since, intensity in a HAADF image is approx-

imately proportional to the squared atomic number (Z̃2) of the atomic column [226]

each atomic column in the substrate and the film can be clearly distinguished. For

the HAADF images shown in Figure 6.11(a), we have labeled the B-site cations (Sc

(Z = 21) for TSO/GSO and Hf (Z = 72) for SHO). The HAADF images for the TSO

and GSO substrates match well with the expected Pnma phase for the substrates along

their respective crystallographic orientations. The atomic models for the TSO and GSO

substrates are shown in Figure A.A.2. Consistent with the substrate crystallographic ori-

entation (as marked in Figure 6.11(a)), we have calculated the in-plane and out-plane

B-site cation bond distances (Sc-Sc for TSO/GSO and Hf-Hf for SHO) using the ex-

tracted Sc and Hf atomic positions from the corresponding SHO-TSO and SHO-GSO

HAADF images. For the projections shown in Figure 6.11(a), the expected in-plane

[1̄01] and out-of-plane [101] Sc-Sc bond distance for TSO is 3.95 Å. While for GSO,

the expected in-plane [010] and out-of-plane [101] Sc-Sc bond distance is 3.98 Å. These

expected Sc-Sc bond distances are marked as vertical dashed lines in the bond distance

profiles (Figure 6.11(a)).
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Figure 6.11: (a) Atomic resolution HAADF image showing the cross-section of the
SHO-TSO (top) and SHO-GSO (bottom) with labeled B-site cations and the corre-
sponding in-plane and out-of-plane bond distance profiles. The arrows mark the respec-
tive atomic-planes in the image and the bond-distance plot. The error bars in the bond
distance profiles correspond to the standard deviation. The vertical dashed lines mark
the in-plane and out-of-plane Sc-Sc bond distances for TSO and GSO respectively. The
crystallographic orientations correspond to that of the TSO and GSO substrates. (b)
Atomic-resolution ABF image (left) for an SHO-TSO sample. The higher-resolution
ABF images (right) are extracted from the regions marked in same colors as the borders
on the left ABF image. (c) Atomic-resolution HAADF images showing defects at the
SHO-TSO/GSO interfaces and in the bulk of the SHO films. Scale bars in (a), (b) and
(c) correspond to 1 nm.

For an ideal epitaxial relationship, the in-plane bond distances for the film (Hf-

Hf) should be constrained to that of the substrate (Sc-Sc) for the entirety of the film

thickness, while the out-of-plane bond distance should undergo relaxation (tensile for

SHO) as we move further away from the substrate. As shown in Figure 6.11(a), we
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observe that the calculated in-plane and out-of-plane Sc-Sc bond distances show a good

match for both TSO and GSO. We find that the out-of-plane Hf-Hf bond distance are

larger compared to that of Sc-Sc, which is expected for the SHO film because of the

application of compressive strain by both TSO and GSO substrates. However, for both

SHO-TSO and SHO-GSO, we observe that the Hf-Hf in-plane bond distance is not con-

strained to that of the substrate, i.e. the Sc-Sc in-plane bond distance. This continued

relaxation of the in-plane bond distances as we move away from the substrate results in

the inability to achieve phase control for the SHO film growth. Moreover, the lack of

epitaxial growth constraints results in the growth of SHO films that have a non-uniform

interface with a high density of defects (as shown in Figures 6.11(c) and A.A.15). We

also observe higher error bars in the bond distance profiles close to the interface, which

is caused by chemical diffusion at the interface resulting in the formation of an inter-

mixed layer, as also revealed by STEM-EELS data in Figure 6.9. The diffused interface

along with the high-density of defects results in non-uniform strain accommodation

as shown by atomic-resolution imaging (Figure 6.11(a)) as well as 4D-STEM analysis

(Figure 6.10).

As is the case with most perovskite structures, the BO6 octahedra can exhibit a

variety of tilt patterns, which forms a key basis of polymorphism in SHO. To ascertain

the HfO6 octahedral tilt patterns, we have performed atomic-resolution ABF imaging as

shown in Figure 6.11(b). We observe that for the TSO substrate, ScO6 octahedra show

the expected (+) tilt pattern along [010] consistent with the TSO Pnma phase. How-

ever, for the SHO film, we observe non-uniform octahedral tilt patterns, where some

regions exhibit (+) tilt patterns, as shown in Figure 6.11(b), which corresponds to a

Pnma phase. While some regions don’t show any octahedral tilting, which corresponds

to pseudocubic [100] and [010] orientations of I4/mcm and P4/mbm phases. Consis-

tent with STEM-EELS data as shown Figure 6.9, we are unable to resolve the oxygen

sublattice in the SHO film at the interface, because of a high concentration of oxy-

gen vacancies at the SHO-TSO interface. Moreover, apart from a chemically diffused
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interface, we also observe a high density of structural defects at the SHO-TSO/GSO in-

terface as shown in Figure 6.11(c). These defects include dislocations, stacking faults,

misorientations and polycrystalline domains. Additionally, we also observe amorphous

domains at the interface as well as at the SHO film surface. This confirms that it is un-

feasible for the SHO films to accommodate a high compressive strain beyond a few unit

cells. Figure A.A.15 shows wide field-of-view HAADF and LAADF images, where

non-uniform strain contrast is evident across the cross-section of the SHO-films. This

further illustrates non-uniform epitaxy and a high density of defects in the SHO films.

Overall, using a combination of STEM-EELS, 4D-STEM CBED, and atomic-

resolution imaging, we show that hMBE can yield highly crystalline SHO films on

the TSO and GSO substrates. However, a high compressive strain results in a diffused

interface with a high concentration of oxygen vacancies and structural defects, which

makes phase control of the SHO film challenging.

6.5 Conclusion and Discussion

We have successfully demonstrated the epitaxial growth of SHO films grown on GSO

and TSO substrates using the TEMAH metal organic precursor in hMBE. We have

achieved the first synthesis of SHO with -3% biaxial in-plane strain, as confirmed by

RSM measurements. SHO’s ability to remain stained under compressive strain, along

with its insulating properties, make SHO an ideal material for capping layers of per-

ovskite oxides films and heterostructures. Previous DFT studies predicted that SHO

films would exhibit the polar P4mm phase when synthesized under compressive strain;

however, SHG measurements identified no SHG response, indicating the samples are

not centrosymmetric and ruling out the presence of the P4mm phase. A absence of po-

lar distortions is in agreement with previous first principal studies [207, 227] as well as

a synthesis study [209]. However, this contradicts one previous study that found fully

relaxed SHO-STO films exhibited the P4mm phase [206].
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While DFT modeling showed a small range of structural energies between five

possible phases of SHO, XAS measurements and 4D-STEM mapping of the samples

rule out the presence of the Pnma, Pm3̄m, and P4mm phases. The absence of the

Pnma phase, which SHO, GSO, and TSO take in the bulk, supports previous first prin-

cipal studies that predicted compressive strain could stabilize the octahedral tilting in

SHO [207]. However, the absence of the cubic Pm3̄m phase contrasts with a syn-

thesis study which found SHO-STO films took on a cubic phase [209]. 4D-STEM

measurements showed that the SHO-GSO and SHO-TSO films exhibit either I4/mcm

and P4/mbm phase. Based on the DFT modeling presented, we conclude that the films

most likely take on the I4/mcm structure rather than the P4/mbm due the 31 meV/fu

difference in energy between the two structures.
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Chapter 7

Characterization of RHEED Patterns by Machine Learning Algorithms

As stated previously, one of the key goals of AI and ML is to achieve results that match

or exceed the abilities of humans. If a machine learning solution is not as effective

or as efficient, then an automated process holds little value. Thus, the first step of the

investigation into CNNs is focused on whether or not a trained model can recognize

the differences between different materials. Observing the differences between differ-

ent patterns along different crystal axes or different phases is one of the first things a

researcher will learn while using RHEED, and therefore it is a perfect starting place to

test out CNNs capabilities before evaluating predictive models. The data used for this

model were collected by former member of the AU FINO Lab Sydney Provence. The

implementation of this model written by Sydney Provence and myself.

CNNs require a large amount of training data to be accurate, and even if they are

effective at their task, they do not inherently provide any new understanding of the

underlying physics. Random forests offer a few benefits over CNNs, including lower

training data requirements and feature importance values. These are inherent to the

training of the random forest and provide a quantitative metric of how influential each

input is relative to the others. These importance features, along with the lower data

prerequisites make random forest models good, inexpensive alternatives to CNNs under

the right conditions. The LFO samples used as the data set for the random forest model

were synthesized and characterized by former member of the AU FINO Lab Rajendra

Paudel and the implementation of the model was programmed by me.

Although the large amount of labeled training data needed to construct effective

CNNs can be a problem, when that data is available, the results tend to outperform

random forests. Additionally, where a random forest relies on researcher specified data

descriptors to reduce the dimensionality of the data set, CNNs utilize the full range of

image data and have been shown to be successful at identifying complex and subtle
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patterns in image data. Thus, CNNs are provided with all of the data and are able to

determine which features are significant without the input of researchers. The STO sam-

ples used as the data set for the stoichiometry prediction and classification models were

synthesized by Sumner Harris of the Center for Nanophase Materials Sciences at Oak

Ridge National Lab, while the XPS characterization was performed by Sumner Harris

and myself. I was responsible for the implementation of the stoichiometry classification

model and Sumner Harris was responsible for the implementation of the stoichiometry

prediction model.

7.1 Material Classification

Image classification is a supervised learning process that requires labeled images to

train. This training set used in this work was created by loading samples into the MBE

in the FINO lab and recording videos of the RHEED patterns as the samples were heated

up, cooled down, and slightly rotated. These conditions replicate common changes

during sample growth. The materials used include LAO, LFO, LNO, MAO, MGO,

and STO, which are commercially available oxide samples that are frequently used as

substrates in the MBE synthesis of perovskite oxides. These materials include a few

different crystal structures, including perovskites and spinels, and the RHEED patterns

were recorded along the 110 axis for all samples.

Figure 7.1 shows the architecture created to classify the images. The model con-

sists of 4 convolutional layers with 8, 16, 24, and 32 filters, respectively. After each

convolutional layer, a pooling layer with size 2×2 and a stride of 2 down samples the

results to a fourth of the input size. After the convolution layers, the output is flattened

and fed into 2 dense layers with output sizes 5000 and 2000, respectively. The output

for this network is size 6, since there are 6 categories of materials used. The convolu-

tional layers and dense layers utilize leaky Relu activation functions, while the output

layer utilizes a soft max function. Since this is a classification network, a categorical

120



Figure 7.1: CNN model architecture for the classification of RHEED images into ma-
terial categories.

cross entropy loss function was used to train. The model was programmed in Python

3.9.16 Keras 2.10.0.

Figure 7.2 shows the results of the classification network. The training set is able

to achieve 99% accuracy after 18 epochs, while the validation set reaches an accuracy of

97%. The training and test confusion matrices show a breakdown of how samples were

classified. The Y axis represents the material in the image, while the X axis shows into

which category the image was classified. Elements along the diagonal indicate samples

that were classified correctly, while samples off the diagonal were misclassified. The

training data set and test data set both show remarkable accuracy, with the training

data set only misclassifying 9 images out of over 25,000 images. Interestingly, the

majority of misclassified images were of STO, and LFO. From the test matrix it is clear

that the model struggled the most with differentiating between LFO and STO. This is

likely due to both materials possessing a perovskite structure and having a very small

lattice mismatch, of ≈ 0.6% [122]. Despite being highly similar in crystal structure,

the network was able to successfully classify all but 1% of the LFO and STO images

correctly. This accuracy is certainly sufficient to show that machine learning and AI
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Figure 7.2: Results of the CNN classification model. (Left) Training confusion matrix
at final epoch. (Right) Validation confusion matrix at final epoch. (Bottom) Model
accuracy vs. Epoch.

models can identify and distinguish between the complex features of RHEED patterns.

This result also supports the possibility that machine learning can be used to analyze

RHEED patterns and make predictions about material composition.

7.2 Predictions of LFO Stoichiometry Using Random Forests

7.2.1 Data, Preprocessing, & Implementation

In order to train a random forests model to predict stoichiometry based off RHEED

images, a labeled training data set is needed. RHEED recordings of LFO samples grown

using MBE in the FINO lab were selected for this work. LFO is a perovskite oxide with

space group Pnma that produces highly ordered samples even when grown slightly off
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stoichiometry. Over 30 highly crystalline samples with clear RHEED patterns were

chosen to serve as the data set. In order to minimize any effects of the screen recording

process, each of the RHEED recordings was processed to have the same resolution and

scaling. Similarly, the XPS survey spectra corresponding to each sample were also

preprocessed to align the O 1s peak at 530 eV binding energy and to normalize the

intensity to of the O 1s peak to 1. This will remove some of the variance between scans

caused by the XPS system.

As mentioned prior, unlike CNNs, random forest models are not adept at inter-

preting image data directly. Thus, it is necessary to process the images into descriptors

which describe the features of the images. This reduces the dimensionality of the data

to a level that random forests are able to function well with. Ideally, this would be done

using a theoretical model that is designed to accurately describe the images; however,

as stated prior, RHEED spots are the result of several complex scatterings occurring

simultaneously, and thus no model to precisely describe them currently exists. Thus,

for RHEED images, the specular and 1st order RHEED spots were fit with a Gaussian

oval function described by:

I(x, y) = h+ Ae
− (x−x0)

2

σ2
x

− (y−y0)
2

σ2
y (7.1)

where A is the amplitude, (x0, y0) is the center, σx and σy are the standard deviations,

and h is a constant offset. Due to the limitations of the camera on most RHEED systems,

the specular and 1st order spots can become saturated. As a result, the intensity plateaus

at 255, causing the spots to no longer fit a Gaussian oval. This is solved by clipping the

Gaussian fit above the value A, such that:

I(x, y) =


I(x, y) ifI < A

A ifI ≥ A

(7.2)

The fit parameters, A, (x0, y0), σx, σy, and h, for the specular and 1st order spots spots

serve as the descriptors for the RHEED images. Figure 7.3 shows two RHEED spots
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Figure 7.3: (Top) XPS survey spectra fit with Shirley backgrounds and GLS functions
that were used as descriptors in the random forest prediction model. (Bottom) Two
RHEED spots and three corresponding fits by clipped Gaussian oval used as descriptors
in the random forest prediction model.

and three different fits for each one. These images show that the clipped Gaussian oval

function is able to accurately adjust to the spot radii, intensity, and background; how-

ever, it is also clear that several effects such as the streaks jetting out from the spots are

lost. Unlike the RHEED spots, XPS core level peaks are known to be fit using Voight

functions, which can be approximated using a Gaussian-Lorentzian sum, as defined in

equation 3.6. Each shell core level peak was fit using a single GLS function, while 2

GLS functions were used to fit p and d shell peaks, in order to account for spin orbit

splitting. The E, F , m, and h values for each of the O 1s, La 3d 5/2, La 3d 3/2, Fe 2p

3/2, and Fe 2p 1/2 peaks serve as the descriptors to the XPS spectra. Figure 7.3 shows

the fits and raw data for an O 1s and a La 3d 5/2 peak after a Shirley background had

been subtracted. Both of the peaks are symmetric and thus are fit well by the GLS func-

tions, resulting in little to no loss of information from the spectra. The random forest

models were implemented with Python 3.9.16 using Scikit-learn’s RandomForestRe-

gressor model. Each random forest consisted of 1000 decision trees and were trained

on the descriptors of the LFO RHEED and XPS data.
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7.2.2 Results

The bottom row of Figure 7.4 shows some of the fits resulting from a model trained on

1000 images. The top row of Figure 7.4 shows the results of several random forests

trained on different numbers of RHEED images. As expected, the error decreases as

more data is provided to train the network. There is close alignment between error of

the test and train sets, indicating that the model has not suffered from over fitting. The

La 3d 5/2 and Fe 2p 3/2 results show that the error begins to plateau around 100 to 1000

images, indicating that the models reach peak accuracy rather quickly. However, while

the training curve for La 3d 5/2 plateaus, the test curve becomes sporadic, indicating

that the model has some instability in the peak fitting.

At around 10,000 images, the model results in errors in the range of 5-10%. While

this uncertainty is low, it is still too high to provide a film grower with actionable infor-

mation that could change the course of growth, as once a sample is off stoichiometry

by 10% or more, it is highly unlikely that the structure will be able to recover even if

adjustments are made. One possible explanation for the limitations in accuracy is that

the descriptors are not capturing enough of the important information that is needed to

predict the stoichiometry. It is clear from Figure 7.4, that the Gaussian oval fit does

not capture the finer structure of the RHEED pattern. These fits also completely omit

surface reconstruction spots, secondary phase spots, and Kikuchi bands.

One of the strongest benefits of random forest models and using descriptors to de-

scribe data is that the feature importances can provide valuable information about what

is most influencing the results. However, the feature importance analysis of the model

shows no major outliers among the descriptors. Although, notably, σx and σy were

among the three most important features. This aligns with the idea that RHEED spot

width can be used as an alternative to spot intensity averaging in RHEED monitoring.

Since the model shows no major difference in the relative importance of the features, the

greatest benefit of random forests was not realized, leaving the low amount of training

data required as the only key benefit. Since the classification network was successful,
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Figure 7.4: (Top) The peak area error in % vs the number of RHEED images on which
the random forest was trained. (Bottom) Examples of the original descriptors and the
predicted fits.

and the random forest showed only moderate accuracy, it is likely that the RHEED and

XPS descriptors did not contain enough of the material information and that a CNN

trained to predict stoichiometry may avoid this issue.

7.3 Classification and Prediction of STO Stoichiometry Using CNNs

7.3.1 Data Collection

In order to ensure that the CNN has a sufficient range of data on which to train, ho-

moepitaxial STO samples were grown using PLD at the Center for Nanophase Mate-

rials Sciences (CNMS) at Oak Ridge National Lab (ORNL). Pulsed laser deposition is
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a film synthesis technique similar to MBE. Both operate at UHV to grow high qual-

ity thin film samples, suspend samples on a heated stage, and use RHEED to monitor

growth; however, where MBE uses effusion cells to evaporate metal onto a substrate,

PLD achieves this by vaporizing metals and metal oxides with laser pulses. The metal

targets are positioned ≈ 5 cm below the substrate and are hit by regular laser pulses

during growth. These pulses cause rapid heating of the metal targets and the result is a

plasma of metal ions called a plume. This plume has much higher density than the beam

of metal ions in MBE and results in growth rates that are much higher MBE. Since this

plasma pulse is moving rapidly, the system can sustain higher oxygen pressure without

drastically affecting the growth rate.

For this work, STO films were grown on commercially available STO substrates.

In order to achieve a Ti terminated surface prior to growth, each substrate was sub-

merged in boiling water for 24 hours and then immediately annealed for 3 hours at

800◦C. This recipe produces clear and regular step edges with a Ti terminated sur-

face [228]. PLD systems typically have only one laser and rely on a movable target

wheel to swap the targets during growth. This results in an alternating growth cycle

similar to shuttered growth in MBE. In order to determine an appropriate recipe for

homoepitaxial STO, SrO, and TiO2 calibration samples were grown with a fixed num-

ber of pulses and then analyzed using XRR and XRD to identify film thickness. From

this, it was determined that Sr was deposited at a rate of 0.79 Å/pulse, while TiO2 was

deposited at 0.1865 Å/pulse, which is a ratio of 4.2 Ti:1 Sr. Based off this information,

and following the route of previous works [229, 230], a base recipe for stoichiometric

homoepitaxial STO of 3 Sr pulses to 11 Ti pulses was selected, which should deposit

approximately 1 u.c.. In order to maximize the operational range of the CNN, a set of

training data with a wide range of stoichiometries is needed. To achieve this range, the

number of Sr pulses will remain fixed at 3, while the number of Ti pulses will be given

by the function:
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Figure 7.5: The % Sr of each homoepitaxy STO sample grown using PLD, along with
a curve of the predicted values.

PulsesTi = 11 +N (7.3)

where N can range from -5 to 10. For each value of N , two samples were grown

at 700◦C with molecular O2 flowing at 5 sccm resulting in 20 mTorr of background

pressure.

XPS survey and multiplex spectra were collected for each sample. The multiplex

were taken over the regions of the O 1s, Ti 2p, Sr 3d, and Sr 3p peaks. A valence band

spectra was also collected for each sample. These spectra were collected at the CNMS

at ORNL. Figure 7.5 shows the stoichiometry of the STO samples as a function of N.

The samples range from 70% Sr rich to 65% Ti rich. The black line represents the

stoichiometry predicted by the recipe. Notably, the curve appears fairly accurate in the

extremes; however, the curvature does not seem to match. This discrepancy highlights

the kinds of problems that machine learning predictions may be able to address.
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7.3.2 Network Architecture & Implementation

Two different model architectures were used for the classification and prediction of the

STO film stoichiometries. Figure 7.6 shows the model architecture for the classification

model, which takes as input a RHEED image from a sample and classifies the sample

into a set range of stoichiometries. The model consists of three 2D convolution blocks

each consisting of a 2D convolution layer, batch normalization layer, leaky ReLu layer,

and max pooling layer. The number of convolutional filters doubles with each succes-

sive block, with the first block having 16 filters. Each pooling layer has a pool size of

2×2 and a stride of 2×2, resulting in the x and y dimensions of the image each being

reduced by half during each block. After the three convolution blocks, the data is flat-

tened and passed to a dense layer with a ReLu activation function. At this point the

data has dimensions IX
8
× IY

8
× 256, where IX and IY are the initial width and height

of the image, respectively. The dense layer has output size IX×IY
64

and is passed to a an

output layer utilizing a softmax activation. The output is an array of K probabilities

corresponding to the chance that the input image corresponds to each category. For

this work, a value of K = 7 was chosen so that each bin would contain on average 4+

samples.

This model was programmed in Python 3.9.16 using Keras 2.10.0 and was run on

the Easley cluster at Auburn University. The available samples were broken into train-

ing and test sets with sizes 26 and 5, respectively. For each sample, the last 100 frames,

corresponding to the last 10 s of growth, were used. Prior to training, images were

cropped to 512× 512 in order to remove excess background and were then downscaled

to 256 × 256 pixels. To minimize bias learned from the training set, data points were

repeated as necessary in the training data to ensure each bin possessed the same number

of data points. The model used a categorical cross entropy loss function and an Adam

optimizer with learning rate 0.001.

Figure 7.7 shows the model architecture for the stoichiometry prediction model,

which takes as input a RHEED image from a sample and predicts the stoichiometry.
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Figure 7.6: CNN model architecture for the classification of sample stoichiometry from
RHEED images.

This model consists of a convolution block, four residual blocks, a pooling layer, two

dense layers, and an output layer. The convolution block consists of a 2D convolutional

layer with 16 filters, a batch normalization layer, and a 2D ReLu layer. Each residual

block sends a copy of the output of the previous layer through two different paths. The

residual path consists of two 2D convolutional layers and batch normalization layers

with a ReLU activation layer between them. The shortcut path has a single convolution

and batch normalization layer. The convolutional layers in each path possess the same

number of filters; however, the residual path has a kernel size of 3×3, while the shortcut

has a kernel size of 1 × 1. Thus the shortcut path passes on a direct copy of the output

data from the previous layer. The results from the residual and shortcut paths are then

summed and passed through a ReLu activation. The number of convolutional filters

doubles with each successive residual block, with the first block having 32 filters. The

first convolutional layer in each residual path and each shortcut path has a stride of

2 × 2, resulting in the input being down sampled by a factor of 2 in both the x and y

dimension. The adaptive pooling layer averages the output across the different filters
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Figure 7.7: CNN model architecture for the prediction of sample stoichiometry from
RHEED images.

and outputs data in the shape IX
16

× IY
16

, where IX and IY are the initial width and height

of the image, respectively. The output is then flattened and passed through two dense

layers with ReLu activation functions and output sizes of 64. Finally, the data reaches

the output layer with a linear activation function and size 1.

This model was programmed in Python using PyTorch and was run on cloud com-

puting resources at the Center for Nanophase Materials Sciences (CNMS). The avail-

able samples were broken into training and test sets with sizes 22 and 9, respectively.

For each sample, the last frame of growth was used. Prior to training, images were

down sampled from 540 × 740 to 135 × 185. The model used a root mean squared

error (RMSE) loss function and a stochastic gradient descent optimizer with learning

rate 0.001.

7.3.3 Stoichiometry Classification Results

Figure 7.8 shows the results of the stoichiometry classification model. The bin labels

correspond to the lower bound of the bin, with each bin being 5.3% wide. A width
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of 5.3% is a logical choice since the uncertainty in RHEED stoichiometry is on the

order of 5%. The values of the bin labels represent the percentage Sr of the sample,

where a stoichiometric sample having a 1:1 ratio of Sr to Ti would be represented by

50%. As can be seen from the diagonalized training confusion matrix, the model was

able to fully adapt to the training dataset. From the accuracy vs. epoch graph, we see

that the model achieved 100% accuracy by 10 epochs, indicating the model learned

rapidly. The test data set follows the same trend and also stops improving after 10

epochs. The test confusion matrix shown corresponds to the model weights which

yielded the highest accuracy, 75.6%, during training. The test confusion matrix shows

that the model is able to accurately classify the majority of images; additionally, all

but 19 of the misclassified images were classified in bins adjacent to the correct bin.

Figure 7.8: Results of the stoichiometry classification model. (Left) Training confusion
matrix at final epoch. (Right) Test confusion matrix at final epoch. (Bottom) Accuracy
vs. Epoch.
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Thus, even when the model is incorrect, the mean error is typically within 10%. This

result clearly shows that convolutional neural networks are able to discern the difference

between the stoichiometries of samples using RHEED images; however, the model’s

accuracy is sufficiently high that a film grower would be able to consistently draw useful

conclusions.

7.3.4 Stoichiometry Prediction Results

Figure 7.9 and Figure 7.10 show the results of the stoichiometry prediction model.

Figure 7.9 shows the RMSE vs. epoch and the coefficient of determination (R2) vs.

epoch. The loss reduces rapidly for the first 75 epochs, and then begins to improve

more slowly until plateauing beyond 350 epochs. The R2 value shows a similar trend,

though notably, the R2 curve of the training data diminishes in variance while the RMSE

curve of the training data continues to vary more from epoch to epoch. In both plots

we see that the test data follows the same trends as the training data, but does not

reach the same loss or R2 values. Figure 7.10 shows a plot of the true vs. predicted

stoichiometry values. This data comes from when the model achieves the highest R2

Figure 7.9: Results of the stoichiometry prediction model. (Left) The RMSE loss vs.
Epoch. (Right) The R2 value vs. Epoch.
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Figure 7.10: A plot of the correlation between the true and predicted values resulting
from the stoichiometry prediction model.

for the test dataset. As we can see, the model is able to successfully learn to predict the

stoichiometries of both the training and test datasets, resulting in R2 values of 0.93 and

0.82, respectively. The mean absolute error for the training and test sets were 2.25%

and 2.43%, respectively, while the max errors were 5.71% and 8.28% for the training

and test sets, respectively. It is clear that the model learned better for samples that were

more Ti rich and struggled more with samples that were Sr rich. This is likely due to the

distribution of the sample data which had more Ti rich samples, as seen in Figure 7.5.

As more data points are collected, the model will likely improve in accuracy in the Sr

rich regime.

7.4 Conclusion

Although random forests can offer benefits in understanding what features are signifi-

cant in data correlation, the model’s inability to handle image data and reliance on data

descriptors proved too limiting for the purpose of predicting stoichiometry. However,

CNN models proved highly successful at interpreting RHEED images. The material

classification model was able to achieve an accuracy of 97% when identifying substrate

materials based on their RHEED images. The stoichiometry classification model was
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able to attain 75% accuracy when classifying sample stoichiometry into narrow regimes.

Both of these results proved the concept that CNN models are capable of differentiating

between the fine differences RHEED patterns better than most researchers can. How-

ever, it is the success of the stoichiometry prediction model that is most impactful. The

model was able to achieve an R2 value of 0.82 and a mean error of 2.43%, with a train-

ing set of just 22 samples. This model can serve as the basis for new tools that predict

stoichiometry in real time based off small datasets collected on the same system. This

development will allow for greater and more accurate control of film synthesis and is

a major step towards the effective automation of film synthesis in both research and

industry labs.
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Chapter 8

Conclusion & Future Work

We successfully demonstrated the epitaxial growth of SHO films on GSO and TSO

substrates using the TEMAH metal-organic precursor in (hMBE). We achieved the first

synthesis of SHO with -3% biaxial in-plane strain, as confirmed by RSM and STEM

measurements. The ability of SHO to remain strained under compressive conditions,

along with its insulating properties, highlights its potential as an ideal material for cap-

ping layers in perovskite oxide films and heterostructures. Despite previous DFT pre-

dictions suggesting the polar P4mm phase may be realized under compressive strain,

SHG measurements identified no response, ruling out the P4mm phase and supporting

the absence of polar distortions. This is in agreement with prior first-principles studies

and contrasts with some previous findings that reported the P4mm phase in fully re-

laxed SHO-STO films. Furthermore, XAS spectra and 4D-STEM mappings ruled out

the presence of the Pnma and Pm3̄m phases and, along with DFT modeling, suggest the

phase of the SHO-TSO and SHO-GSO films is I4/mcm.

We have shown that PCA on recordings of RHEED patterns can extract valuable

information about the evolution of the film that is not available through traditional anal-

ysis methods. By analyzing the change in eigenvalues over the growth process, we

identified new patterns such as weak spot oscillations that were previously unrecog-

nized. Additionally, we found that using k-means clustering to analyse the eigenvalues

created by PCA results in quantitatively significant clusters that distinguish between

different segments of the growth, providing a clear timeline of the film’s surface evo-

lution. This advancement offers film growers a more detailed and quantitative tool for

analyzing the evolution of a film’s surface during growth.

We explored the capabilities of various machine learning architectures to analyz-

ing RHEED images and extract significant results. We found that while random forests
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showed limitations in handling image data and were unable to reliably predict stoi-

chiometry, CNN models proved highly successful. The material classification model

achieved 97% accuracy in identifying substrate materials, and the stoichiometry classi-

fication model attained 75% accuracy in classifying sample stoichiometry into narrow

regimes. Most notably, the stoichiometry prediction model was able to achieve a mean

error of 2.43% with a small set of 22 samples. These successes pave the way for more

complex and advanced models to be developed and the creation of tools that can predict

stoichiometry in real time during film synthesis.

While the epitaxial growth of 3% compressively strained SHO did not result in

the predicted P4mm phase, it is possible that compressive strain is a necessary but not

sufficient condition to synthesize this phase. Future work can investigate the effects of

constructing super lattices of alternating layers of STO and SHO, which may result in

the STO stabilizing the P4mm phase in the SHO layers.

The success of the machine learning techniques demonstrated that there are sig-

nificant benefits in augmenting existing data analysis techniques with machine learning

methods. Since it has been shown that RHEED images contain sufficient information to

inform on sample stoichiometry, future work can investigate the links between RHEED

and other data. Since RHEED is surface sensitive and sensitive to changes in the crystal

lattice, possible links between atomic force microscopy images and XRD spectra could

be researched. While automated synthesis is coming closer to fruition, additional work

to create tools that link sample data and system controls is needed. In order to construct

a more robust and detailed model of film growth that is needed for automated synthesis,

future models for predicting stoichiometry or other film qualities should also attempt to

incorporate system data and conditions, such as substrate temperature, oxygen pressure,

and effusion cell temperatures.
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Appendix

In addition to the DFT model described in the main paper, 2 additional models were

investigated. These subsequent models followed the same process and calculations as

the first, with the only difference being how the ϵ33 value was determined. For the first

model, ϵ33 was calculated using ϵ33 = −ν
1−ν

(ϵ11 + ϵ22) where ν is the Poisson’s ratio

calculated from our experimental data. For the second model, ϵ33 was held constant at

0.0 while ϵ11 and ϵ22 varied. For the third model, ϵ33 was calculated such that the unit

cell volume was held constant as ϵ11 and ϵ22 varied.
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Figure A.1: (a) Pnma, (b) Pm3̄m, (c) P4mm, (d) I4/mcm, and (e) P4/mbm crystal struc-
tures with 3% in-plane strain along with the respective crystallographic orientations.
The crystallographic orientations correspond to a pseudocubic unit cell.
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Figure A.2: Atomic models showing the TSO and GSO substrate orientations used for
SHO growth along (a) [010] and (b) [101̄].

Figure A.3: (a-c) XPS data from a SHO-TSO sample for Sr 3d, Hf 4d, and O 1s tran-
sitions. The Sr 3d (a) and O 1s (b) spectra contain additional peaks consistent with
oxidation of the top Sr mono layer. (d) Valence band spectra for the same sample.
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Figure A.4: (a) EMCCD camera image of BaTiO3 SHG pattern. (b) SHG signal for
BaTiO3. (c) EMCCD camera image of SHO-TSO showing no SHG signal. (d) EMCCD
camera of direct beam signal.
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Figure A.5: RSM of an SHO-GSO sample showing the SHO film is not relaxed and has
the same in plane lattice parameter as the GSO substrate.

Figure A.6: Wide view of the XAS data shown in the main paper.
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Figure A.7: The eDOS for the Pnma, Pm3̄m, P4mm, I4/mcm, and P4/mbm phases for
the DFT model where ϵ33 was held constant at 0.0.
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Figure A.8: The eDOS for the Pnma, Pm3̄m, P4mm, I4/mcm, and P4/mbm phases for
the DFT model where the unit cell volume was held constant.
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Figure A.9: (a-e) Gaussian convolutions of the eDOS for the 5 phases of SHO modeled
by DFT where ϵ33 was calculated using Poisson’s ratio. (f),(g) The dichroisms and the
first derivative of the dichroisms, respectively, for the 5 phases modeled with DFT and
the XAS data.
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Figure A.10: (a-e) Gaussian convolutions of the eDOS for the 5 phases of SHO mod-
eled by DFT where ϵ33 was held constant at 0.0. (f),(g) The dichroisms and the first
derivative of the dichroisms, respectively, for the 5 phases modeled with DFT and the
XAS data.
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Figure A.11: (a-e) Gaussian convolutions of the eDOS for the 5 phases of SHO modeled
by DFT where ϵ33 was calculated to hold the volume of the unit cell constant. (f),(g)
The dichroisms and the first derivative of the dichroisms, respectively, for the 5 phases
modeled with DFT and the XAS data.
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Figure A.12: Plot of the change in energy from the ground state for SHO as a function
of in-plane strain for the 5 phases modeled with DFT where ϵ33 was calculated to hold
the volume of the unit cell constant.

Figure A.13: Plot of the change in energy from the ground state for SHO as a function
of in-plane strain for the 5 phases modeled with DFT where ϵ33 was held constant at
0.0.
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Figure A.14: HAADF images and EDS chemical maps showing the chemical distribu-
tion of (a) SHO-TSO and (b) SHO-GSO samples. Scale bars correspond to 20 nm.
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Figure A.15: Wide field-of-view HAADF and LAADF images for (a) SHO-TSO and
(b) SHO-GSO samples. (c) HAADF image along with the FFT pattern for SHO-TSO
sample. The HAADF image and inverse FFT patterns, for the region highlighted as
red box. The spots chosen for generating inverse FFT patterns are highlighted as white
open circles in the FFT pattern.

Figure A.16: Simulated electron diffraction pattern for SHO (black-cross) and
GSO/TSO (blue-dots). The SHO and GSO/TSO comparison is shown for all the po-
tential SHO phases, (a) Pnma, (b) I4/mcm, (c) P4/mbm, (d) P4mm, (e) Pm3̄m. The
top panel corresponds to SHO-GSO [101̄] and the bottom panel corresponds to SHO-
TSO[010].
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