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Abstract

This research rigorously assesses the effectiveness of augmented and mixed reality
(AR/MR) instructional techniques in manufacturing training. By investigating how aug-
mented methods designed to leverage specific affordances impact operator learning, recall,
and retention in an authentic assembly context, it addresses critical gaps in understanding
the relative efficacy of these technologies.

A cohort of 54 participants without prior exposure to similar tasks or AR/MR technology
underwent simulated assembly training at the Tiger Motors Lean Education Lab. This
between-groups study introduced participants to one of four instructional methods: Paper
Work Instructions (PWI), Projected AR (PAR), head-mounted AR, and head-mounted MR.
The same task was used across treatments, with minimal changes to instructional design.
MRwas differentiated fromAR by allowing participants to freelymanipulate the workpiece
while maintaining aligned augmentations.

Performancemetrics including task duration and error rates / typeswere carefully analyzed
to assess learning progression and task proficiency. Measures of instructional reliancewere
also captured during recall, better informing the learning efficacy of each method. Sev-
eral weeks later, retention was assessed on a volunteer subset to compare the durability of
learning by treatment. The NASA Task Load Index and System Usability Scale were also
administered to assess perceived workload and user experience. These data, coupled with
demographics and qualitative feedback from open-ended exit interviews, contributes to a
comprehensive expression of each participant’s experience.

Key findings revealed a nuanced trade-off between speed and accuracy across methods.
Augmented technologies generally led to fewer errors but slower initial performance, while
traditional methods allowed for faster execution but higher error rates. Recall and reten-
tion results weremixed, suggesting complex relationships between instructionmethod and
long-term learning outcomes. Surprisingly, no significant differences in perceived work-
load were found across treatments, despite varying technological complexities.

This study’s implications extend beyondmanufacturing to analogous tasks involving instal-
lation, repair, and safety training. Through its rigorous experimental design, ecological va-
lidity, and systematic operationalization of affordances, this research provides actionable
insights to optimize AR/MR technology implementation and learning outcomes in indus-
trial settings. The affordance-based framework introduced here offers a novel approach for
evaluating and designing AR/MR training systems across various domains.
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1 Introduction

Challenged tomeet the demands of reduced cost, global competition, sustainability, shorter
product life cycles, and product complexity, the manufacturing industry is in the midst of
a digital transformation. Industry 4.0 and the underlying shift from mass production to
mass customization places new demands on the workforce. Today’s manufacturing opera-
tors must manage a wider range of responsibilities and increased information flow amidst
decreasingmargins for error, changingmethods, and new technologies. These trends show
no signs of abatement (Danielsson et al., 2020). Extended Reality (XR) devices, in their
various forms, are expected to aid this problem through operator training and support.

Augmented Reality (AR) systems “combine real and virtual, are interactive in real time,
and are registered in 3-D” (Azuma, 1997). By realistically integrating informative and/or
interactive virtual objects in our view of the world, AR aims to enhance the users’ interac-
tion with and perception of it. Its essential affordance is the direct and natural manipula-
tion of virtual objects in everyday surroundings. Relative to metaphorical digital interfaces,
this is thought to improve the uptake of knowledge by reducing the overall cognitive load
and better distributing it across multiple sensory pathways (Shelton & Hedley, 2003). AR-
assisted learners demonstrate improved perception, performance, and understanding of
spatial concepts, with outcomes correlated to the amount of physical engagement involved
(Chen et al., 2019). As a result, AR is thought to be well-suited for task-related learning.
Using untethered, hands-free devices with optical see-through head-mounted displays, AR
can continuously enhance the user’s actions in the real world (Leonard & Fitzgerald, 2018).
These benefits have broad industrial applications.

In manufacturing, operator support has been a common application of AR research and
development since the early 1990s (Azuma & Bishop, 1994). It is also seen as a source of in-
novative operator training methods required to meet rapidly increasing demand for skilled
labor due to high retirement rates, global expansion, and increasing specialization (Kress,
2020). Manufacturing support, training, and related applications have been identified in
the areas of assembly, maintenance, operations, quality control, safety, design, visualiza-
tion, logistics, and marketing (Oztemel & Gursev, 2020).

Despite great potential, the adoption of AR is slowed by technical, market, and other impor-
tant social and legal obstacles (Azuma, 2019). XR technologies remain relatively immature
and will face new challenges as their development moves from research labs to the shop
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floor. There, priorities shift from building technology to delivering solutions. No longer
“proofs of concept,” these systems will be evaluated on the basis of their return on invest-
ment and other key performance indicators essential to the business case (Masood & Eg-
ger, 2019, 2020). That performance will be assessed in the context of the entire operation,
where technical considerations are balanced by organizational and environmental factors.
The long-term success of XR initiatives ultimately rests on how those results compare with
other investment alternatives.

But AR remains a highly fragmented market, including a diverse selection of screen-based,
projected, and head-mounted technologies (Kress, 2020). Studies show that the efficacy of
these systems varies with the task type, technology used, application design, and other fac-
tors (Kaplan et al., 2021). Research in this area is young but accelerating. Most of it focuses
on efficiency (task time) and accuracy (error count). These are relevant but incompletemea-
sures for assessing training outcomes, where the learning rate and transfer effectiveness
must also be considered (Büttner et al., 2020).

This dissertation addresses critical gaps in understanding the relative effectiveness of dif-
ferent AR/MR technologies for enhancing learning outcomes in manufacturing assembly
training. Specifically, it explores how diverse augmented instructional methods, designed
to leverage specific affordances, impact operator learning, recall, and retention in a simu-
lated manufacturing context. The research employs an innovative affordance-based frame-
work to evaluate and compare these technologies, providing a new theoretical lens for un-
derstanding their effectiveness.

The primary research objectives are to compare the effectiveness of various augmented in-
struction with traditional methods, evaluate the effect of those methods on the quality and
durability of learning, investigate the role of specific affordances in those results, and ex-
plore how perceived workload, usability, and performance are related.

This study employs a rigorous, multi-phase experimental design conducted in the TigerMo-
tors Lean Education Lab, an environment designed to simulate modern automotive manu-
facturing. By combining quantitative performance metrics with qualitative user feedback,
the research provides a comprehensive assessment of each instructional method’s effective-
ness.

The findings of this study contribute to both theory and practice in the field of AR/MR-
assisted training. Theoretically, it advances our understanding of how technological affor-
dances translate into learning outcomes in practical settings. Methodologically, it demon-
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strates the value of a comprehensive, multi-phase assessment approach in capturing the
full impact of these technologies on skill acquisition and retention. Practically, it offers in-
sights to guide the implementation of AR/MR training systems in manufacturing contexts,
helping to optimize both immediate performance and long-term skill development.

The remainder of this dissertation is structured as follows:

• Chapter 2 provides a comprehensive literature review, situating this research within
the broader context of AR/MR applications in manufacturing and relevant learning
theories.

• Chapter 3 articulates the specific problem statement, research questions, and
hypotheses that guide this study.

• Chapter 4 details the experimental methods, including participant recruitment, data
collection procedures, and analytical approaches.

• Chapter 5 presents the results of the study, organized by research question and hy-
pothesis.

• Chapter 6 discusses the implications of these findings, acknowledges limitations, and
suggests directions for future research.

This work aims to advance the understanding of AR/MR technologies in manufacturing
training, ultimately contributing to more effective workforce development in an increas-
ingly complex industrial landscape.
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2 Literature Review

2.1 Review Methodology

This review employs a hybrid approach, combining traditional systematic approaches
(Kitchenham, 2004) with an emerging class of modern tools. Systematic methods were
used to identify interesting references for each search, based on relevance, prominence
(citation count), and debate (supporting and contrasting citations). This phase of the
search primarily leveraged meta-databases including Web of Science,1 Scopus,2 Semantic
Scholar,3 and Google Scholar.4 The specific search parameters and criteria for inclusion
varied with each use.

The resulting set of publications was used to seed a secondary search using a combination
of graph and AI-based tools, including scite_,5 Inciteful,6 ResearchRabbit,7 Connected Pa-
pers,8 and Litmaps.9 At the time of this writing, this category of tools was experiencing
rapid growth and change. No single “best” tool or approach had yet emerged, but their col-
lective benefits provided a valuable complement to the systematic approach. The tools and
methodology described here were influenced by the work of Mushtaq Bilal (2023) and Ilya
Shabanov (2024).

Broadly speaking, these tools link papers based on citation trees, bibliographic coupling,
analysis of the citation statement, and other sophisticated methods. From their original
findings, users can interactively traverse connected papers in graph and/or timeline view,
focus on specific authors or collaborators, and otherwise refine the search. Abstracts and
links to the papers are available throughout the process to guide exploration.

Integrating traditional and modern approaches in this iterative and exploratory fashion
teased out unexpected connections, incorporated a wider range of sources, and facilitated
the author’s understanding of relevant discourse across multiple dimensions, including
time, application context, and research domain. This iterative process was repeated for

1Web of Science: https://www.webofscience.com/
2 Scopus: https://www.scopus.com/
3 Semantic Scholar: https://www.semanticscholar.org/
4 Google Scholar: https://scholar.google.com/
5 scite_: https://scite.ai/
6 Inciteful: https://inciteful.xyz/
7 ResearchRabbit: https://www.researchrabbit.ai/
8 Connected Papers: https://www.connectedpapers.com/
9 Litmaps: https://www.litmaps.com/

4

https://www.webofscience.com/
https://www.scopus.com/
https://www.semanticscholar.org/
https://scholar.google.com/
https://scite.ai/
https://inciteful.xyz/
https://www.researchrabbit.ai/
https://www.connectedpapers.com/
https://www.litmaps.com/


Figure 2.1: Discovering Relevant Sources in Litmaps

each question and topic area. The resulting reference collectionswere imported into Zotero,
which managed the bibliographic data and related PDFs. Notes made while reading these
sources were imported to Obsidian for review and synthesis.

This approach involves several sources and tools, the implementation of which creates tech-
nical challenges that may dissuade many researchers. Over time, as the benefits are bet-
ter understood and more integrated workflows emerge, it seems likely that it will become
widely adopted.

2.2 Chapter Overview

The adoption of augmented and mixed reality (AR/MR) technologies for manufacturing
training has shown promise, yet faces significant barriers that hinder widespread imple-
mentation. This literature review provides a comprehensive examination of this technology
and related research. It begins by describing the challenges faced by the manufacturing in-
dustry in the I4.0 era, highlighting the need for effective and efficient training methods to
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address the growing skills gap. That provides the context andmotivation for this study, and
introduces extended reality devices as essential components of the I4.0 technology stack.

The chapter continues with a thorough review of XR technologies, including their history,
applications, and potential for training and support in the evolving landscape of manufac-
turing. It details the human and technical requirements of XR and the trade-offs required
for its successful adoption in manufacturing settings. This knowledge provides a founda-
tion for assessing the value of XR in manufacturing applications and designing the study
that follows.

The review next covers preliminary results highlighting the potential benefits of AR/MR
in manufacturing, before exploring the theoretical basis for these benefits. This focuses
on differentiating AR from VR and examining relevant theories of learning and cognition.
The review then addresses the barriers to widespread adoption of AR/MR in manufactur-
ing, including technical limitations, market considerations, and social/legal issues. A num-
ber of empirical case studies are reviewed to better understand the quantifiable benefits of
AR/MR in this domain. Finally, existing tools and frameworks for the development and
assessment of AR/MR systems in manufacturing training are examined. The review con-
cludes by summarizing the findings, describing the proposed framework, and enumerating
important considerations for future research.

2.3 Advanced Manufacturing

Ongoing changes in manufacturing are expected to have profound impact on the people,
businesses, and governments of the world. The so-called Fourth Industrial Revolution
(4IR) follows prior revolutions of mechanization, mass production, and digitization, and is
the first to be predicted in advance, not observed after the fact (Drath &Horch, 2014). First
described by German economist and founder of theWorld Economic Forum, Klaus Schwab
(2015), 4IR is driven by today’s rapidly evolving and converging digital technologies. Bryn-
jolfsson andMcAfee (2014) note that these SecondMachine Age advances uniquely exhibit
sustained exponential rates of improvement while being easily combined and efficiently
distributed. The innovative fusion of these cross-disciplinary technologies is transforming
our physical, digital, and biological worlds in unprecedented ways.
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2.3.1 Industry 4.0

Four years before Schwab’s 4IR keynote, European manufacturing leaders had already
imagined the potential benefits of digital convergence. In January of 2011Germany’s BMBF
(the Federal Ministry of Education and Research) announced a new initiative. “Industrie
4.0” (I4.0) was introduced as the digital transformation of manufacturing, a paradigm shift
intended to protect and expand Germany’s influence as a world leader in the sector (Kager-
mann et al., 2011). Since then, I4.0 has become a prominent trend inAdvancedManufactur-
ing. Its adoption is driven by a combination of application-pull (social, economic, and polit-
ical change) and technology-push (automation, digitalization, communication, and minia-
turization) market factors (Lasi et al., 2014).

I4.0 is a data-driven approach to manufacturing, where product specifications direct as-
pects of production. This is accomplished with connected, automated, autonomous com-
ponents that respond in real-time to variable requirements (Negri et al., 2017). I4.0 is
therefore advocated as the means by whichmanufacturing operations canmeet modern or-
ganizational and societal demands for increased decentralization, flexibility, and resilience
(Tao & Zhang, 2017). Time and cost to market and productivity are also expected to im-
prove, along with sustainability measures, including energy cost and emissions. There is
widespread optimism for these outcomes and their positive overall effect on global eco-
nomic growth (Kagermann, 2013).

That optimism has encouraged the adoption of I4.0 methods worldwide. The Industrial
Internet Consortium (IIC), founded by AT&T, Cisco, General Electric, IBM, and Intel, is
the most prominent of several I4.0-related alliances in the United States (Hardy, 2014). As
of 2021, the IIC (nowknownas the Industry IoTConsortium) boastsmore than 150member
companies. Other major initiatives are underway in the UK, Taiwan, Japan, South Korea,
France, Turkey, and more (Oztemel & Gursev, 2020). As of 2015, China was reportedly
investing over $200B / year to related research and development. This bid to move from
imitator to innovator is a clear signal of the returns that China expects from new markets
and efficiencies unlocked by its I4.0 transformation (Woetzel et al., 2015).

Though a crisp definition of I4.0might be expected given the support it has received, the lit-
erature is sorely lacking. It seems that “Industry 4.0” simply emerged as themost popular of
several names given the technology-driven manufacturing renaissance that was commonly
expected to result from its digital transformation (Culot et al., 2020). The integration of
adjacent schools of thought, including “Industrial Internet” (Evans & Annunziata, 2013)
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and “Smart Manufacturing” (Radziwon et al., 2014), partially explains the lack of a stan-
dard definition for I4.0. Rapid divergent development by academics and practitioners and
overzealous marketing have also contributed to the diffusion of this idea.

In fact, the literature suggests that I4.0 is best understood as a general concept, philosophy,
or vision of manufacturing characterized by a group of functionalities, including process
integration, real-time information transparency, virtualization, and autonomy, and their
enabling technologies (Culot et al., 2020).

I4.0 has been linked to over 1200 technological components, from 30 disciplines (Chiarello
et al., 2018). To provide a useful definition of I4.0 in terms of the technologies involved,
some abstraction is essential. In their review of over 100 relevant and credible sources,
Culot, et al. (Culot et al., 2020) identified 13 categories of technology. Each was assessed
along two continua: software-hardware technology and local-global connectivity, as seen
in Figure 2.2.

Figure 2.2: Enabling technology categories of Industry 4.0. Culot et al. (2020)

Four technology quadrants emerge in this figure: (a) physical-digital interfaces, (b) net-
working, (c) data-processing, and (d) physical-digital processes. The sensing, connecting,
and analyzing activities of the first three quadrants are what differentiate I4.0 from ad-
vanced manufacturing.

As described in the next section, the specific technologies and themanner in which they are
integrated and applied define an I4.0 system. The permutation of possible outcomes, each
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a different embodiment of the I4.0 concept, is the ultimate source of definitional ambiguity
in this field.

2.3.2 Cyber-Physical Systems

Cyber-Physical Systems (CPSs) is an emerging cross-disciplinary field engaged in the de-
sign of newmodels and methods for problems at the intersection of physical and digital en-
gineering traditions (E. A. Lee, 2015). It was simply defined in E. Lee’s seminal paper (E. A.
Lee, 2006) as the “integrations of computation with physical processes.” CPS promotes the
novel evolution of classic embedded systems through their interconnection and integration
with computation and controlmechanisms. This enables the real-time autonomous control
of large engineering systems (E. A. Lee, 2006; Pascual et al., 2019). Though commonly as-
sociated with I4.0, CPS is independent of specific applications or implementations, e.g.,
I4.0 and IoT.

CPS enables I4.0 by integrating the previously identified sensing, connecting, and analyzing
capabilities to “monitor and control physical processes, usually with feedback loops where
physical processes affect computations and vice versa” (E. A. Lee, 2006). An I4.0 CPS is
comprised of physical objects, networked data models of those objects, and services based
on that data (Drath & Horch, 2014). Their technical building blocks are summarized below
(Bottani et al., 2017):

• Internet of Things (IOT) - sensored networked devices
• Machine-to-Machine (M2M) - interconnected, interoperable systems
• Digital Twin (DT) - mirroring of physical and virtual objects
• Cloud Computing - distributed computing services
• Big Data - large scale data capture, storage, and analysis
• Modeling - data or physics drivenmethods for descriptive, diagnostic, predictive, and
prescriptive analysis

• Extended Reality (XR) - virtual, augmented, or mixed reality visualization and inter-
action

• Advanced Manufacturing - including additive methods, automation, and robotics

To understand their roles in an I4.0 CPS, J. Lee’s 5C Architecture is instructive (J. Lee et al.,
2015). This popular framework identifies five implementation activities in step-wise fash-
ion: get data from sensors, convert data to information, analyze information, present data,

9



and provide control feedback. These activities correspond to the 5Cs of Connect, Convert,
Cyber, Cognition, and Configuration, as depicted in Figure 2.3, with related attributes.

Figure 2.3: 5C architecture to implement I4.0 CPS. J. Lee et al. (2015), as adapted by Pas-
cual et al. (2019)

In this framework IOT and M2M enable smart Connections between sensored devices. In
the Conversion level Big Data collects and contextualizes the data. Virtual representations
of the physical components are created byDigital Twins in the Cyber step. ExtendedReality
devices aid visualization and Cognition. Various Modeling methods are employed through-
out to support manual and automated decision-making. The Cloud Computing architec-
ture integrates it all and facilitates feedback in Cognition. The resulting closed loop system
drives Advanced Manufacturing processes in real-time.

Ideal I4.0 CPS systems are fully integrated within the enterprise: horizontally, vertically,
and across the system life-cycle. Horizontal integration occurs across the value chain, from
supplier and production to end customer. Vertical integration covers themanufacturing hi-
erarchy, from the shop floor to enterprise planning (Pascual et al., 2019). Fully realized sys-
tems are driven by individual product specifications, maximizing flexibility and resiliency,
along with their attendant social, market, and sustainability benefits. Taken to the limit,
such systems are capable of operating with a batch size of one, the ultimate Lean Manufac-
turing benchmark and the key to unlocking mass personalization and customization (Culot
et al., 2020; Kagermann et al., 2011; Lasi et al., 2014).

In the following section we focus on the heart of Lee’s 5C architecture, the Digital Twin.
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2.4 Digital Twins

The Digital Twin is the mechanism by which I4.0 synchronizes the virtual and physical sys-
tem states. It consists of a virtual replication of the system that is coupled to its physical
counterpart via a bi-directional flow of sensor and control data. DTs enable a data-driven
approach to life-cyclemanagement that can employ optimalmethods and practices for each
environment. The continuous, bi-directional data flow and synchronization of an idealized
DT differentiates it from traditional modeling and simulation methods which typically op-
erate as off-line, asynchronous processes (Jones et al., 2020).

TheDT concept was introduced byMichael Grieves in late 2002, partly inspired by dynamic
CADmodelingmethods that were then emerging. He originally promoted it as a tool for dis-
tributed, collaborative problem solving in product life-cyclemanagement (PLM) (Grieves &
Vickers, 2017). Grieves developed the idea under different names until 2011, when he first
used the phrase Digital Twin to describe it (Grieves, 2011). Therein he credits collaborator
John Vickers of NASA with coining the term, which also appeared in NASA’s draft strategy
for Simulation-Based Systems Engineering in 2010 (Shafto et al., 2012).

Following similar growth in adjacent fields, interest in the DT concept has accelerated
rapidly since 2016. While most research activity remains focused on Industry 4.0 appli-
cations, progress in academia and industry has led to some divergence in both interpreta-
tion and application of the concept (Ante, 2021). A 2017 survey of manufacturing literature
found that no less than 16 unique definitions had been proposed for Digital Twin since 2011
(Negri et al., 2017). Despite the literature offering no common understanding of the term,
the DT concept is recognized as a key enabler for I4.0 (Kritzinger et al., 2018).

2.4.1 The Synchronization Process

Jones described the DT synchronization process, also known as “twinning,” as a cycle of
measuring and reflecting changes in the parameters of interest (Jones et al., 2020). Dur-
ing metrology, changes to one system state are measured. In the realization phase those
changes are reflected in the other system. This process operates bi-directionally between
physical and virtual entities, creating a system that is capable of continuous adaption. See
Figure 2.4.

In Jones’ model the term parameter refers to the values synchronized by the DT. Common
parameters are related to form, functionality, process, and performance. Examples include

11



Figure 2.4: The Digital Twinning Process. Jones et al. (2020)

part tolerance, assembly time, and machine health. Parameters can be measured, com-
puted, observed, or otherwise derived. The overall system state is described by the current
value of all parameters. The fidelity of a DT is ameasure of the number of parameters, their
accuracy, and the level of abstraction involved (Jones et al., 2020).

The DT concept is not entirely new. Elements of it are evident in other fields, including
Computer-Integrated Manufacturing and Virtual Manufacturing Systems, both of which
predate Grieves’ work. Of those, only Model-Based Predictive Control, Advanced Control
Systems, and Building Information Modeling (BIM) share DT’s approach to closed-loop
control (Jones et al., 2020).

2.4.2 Life-cycle Considerations

This method is most valuable for objects that are changing over time, and when measure-
ment data that can be correlated with this change can be captured (Wright & Davidson,
2020). To account for this, Grieves describes two manifestations of the Digital Twin: Pro-
totype (DTP) and Instance (DTI). The DTPmodels a prototypical physical object, providing
an idealized, immutable reference for that thing, including the means to produce physical
instances of it. The DTI is the virtual reflection of a unique, as-built thing in the world. Mul-
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tiple DTIs are maintained, each synchronized with a single instance of the physical object
for the duration of its life-cycle (Grieves & Vickers, 2017).

The DT model is dynamic. In each phase of the system’s lifecycle (creation, production,
operations, disposal) the directionality ofmetrology and reflection changes. Modeling tools
are first used to develop and test the DTP in the creation phase. Physical instances are
derived from the DTP in production, when their as-built specifications are captured and
reflected in corresponding DTIs. During the operations phase the real-virtual link becomes
bi-directional, synchronizing the system states and enabling continuous adaption. Finally,
information about the system is used to properly dispose of it, before being archived for the
benefit of future designs (Grieves & Vickers, 2017).

Data collected throughout this process is used by various modeling methods that support
the Conversion, Cognition, and Configuration levels of Lee’s 5C architecture. The conver-
sion layer primarily relies on descriptive and diagnostic approaches to interrogate and an-
alyze system status. The cognition layer utilizes predictive methods to aid human under-
standing. Prescriptive methods that recommend specific actions are employed in the con-
figuration level to drive continuous adaption through parameter optimization or policy se-
lection (Bottani et al., 2017).

2.4.3 State of the Art

In 2017, Grieves set the lofty goal for models that “fully [describe] a potential or actual
physical manufactured product from themicro atomic level to the macro geometrical level”
(Grieves & Vickers, 2017). His position is representative of a bias towards fidelity that is
commonly expressed in the literature, despite the absence of any example using more than
a subset of the known parameters (Jones et al., 2020). Digital Twins that perfectly repli-
cate the reality of complex systems in real-time may never be practical. Tradeoffs must be
made between fidelity, accuracy, available compute, and update rate. Models need only be
sufficiently physics-based, accurate, and quick to meet the system requirements in a trust-
worthy manner. This depends on properly managing model verification and validation,
uncertainty, model selection, and associated metadata (Wright & Davidson, 2020).

We are still far from the idealized DT described above. Though many perceived bene-
fits have been identified, few papers include quantitative analysis to validate those claims
(Jones et al., 2020). Most research in the area is concept oriented. Of the few published
case studies, most systems are uni-directional, with low fidelity and/or little integration
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(Kritzinger et al., 2018). Implementation relies on connections between physical and digi-
tal systems that are often difficult to implement without human involvement, and current
modeling tools fall well short of understanding and replicating the physical world (Grieves
&Vickers, 2017). Limited collaboration and a lack of technical standards are also commonly
noted (Ante, 2021). Together, these shortcomings hinder development and slow adoption
of the DT concept.

Though the research area remains immature, a number of additional frameworks have re-
cently emerged in response to issues with standards, validation, fidelity, and interoperabil-
ity. Grieves’ Tests of Virtuality (GTV) were proposed as a means to evaluate the fidelity and
validity of a DT. Performance is assessed by comparing the look, behavior, and synchro-
nization of a physical system and its virtual counterpart (Grieves & Vickers, 2017). Tao’s
seminal paper describes the DT of a shop floor in terms of its architecture and technol-
ogy. Architecturally, he identifies four integrated layers: geometry, physics, behaviors, and
rules. The many necessary technologies are grouped into the five areas of interconnection
and interaction, modeling and verification, construction and management, operation and
evolution, and smart production services (Tao & Zhang, 2017).

At least two maturity models have been proposed. Kritzinger’s model is based only on the
level of physical-virtual integration, as expressed by the Digital Model (DM), Shadow (DS),
and Twin (DT) classification scheme. A DM has no connection or uses manual methods of
data exchange. One-way flow of data characterizes the DS, while bi-directional flow is the
hallmark of a DT (Kritzinger et al., 2018). Hyre’s model also considers how capability and
complexity increase with a DT’s level of integration. Her 4Rs (Representation, Replication,
Reality, and Relational) provide a framework for the incremental development of a DT that
incorporates verification and validation of the system (Hyre et al., 2022).

2.4.4 DTs for the Development and Testing of Complex Systems

The physical-virtual synchronization of Digital Twins enables the operational benefits of
an I4.0 CPS, as previously described. That twinning process requires a trustworthy virtual
replication of the system, which offers many additional benefits for the development and
testing of these complex systems.

A complex system is defined as one in which connections between the components are unfa-
miliar, unplanned, unexpected, and/or invisible, making it difficult to predict system states
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(INCOSE, 2015). Such systems are prone to “Normal Accidents,” in which cascading fail-
ures escalate suddenly and often catastrophically. Human inconsistency (following rules,
processes, and procedures) and poor sensemaking (understanding what is perceived) of-
ten play a role in those accidents, especially in high stakes situations when good decision
making is most critical (Perrow, 1999).

Complex systems are the domain of Systems Engineering, where traditional methods rely
on the verification and validation of physical objects. This approach, exemplified by the
commonly used Waterfall, Spiral, and Vee models, is expensive, centralized, and sequen-
tial. As a consequence, it focuses the scope of investigation on areas where undesirable
effects are predicted. The most dangerous category of system behavior, that which leads to
unpredicted and undesirable outcomes, is often first encountered when the system is de-
ployed, creating the risk of catastrophic failure and harm to the users (Grieves & Vickers,
2017).

Digital methods are, by contrast, low cost, composable, and easily distributed (Brynjolf-
sson & McAfee, 2014). Trustworthy virtual systems can be tested more thoroughly than
the physical equivalent, with less risk. Increased test coverage helps identify and mitigate
unpredicted, undesirable outcomes. Reduced risk permits the evaluation of circumstances
that traditional methods would not allow. Thus, DTs can test more broadly, including con-
ditions that are uncommon or hazardous and/or involve interaction with a diversity of per-
sonnel. This directly addresses the leading causes of those “Normal Accidents” that we seek
to avoid, and is a primary intended benefit of the Digital Twin (Grieves & Vickers, 2017).

2.4.5 DTs for Visualization

Though DTs are widely embraced as the synchronizing mechanism in an I4.0 CPS, and for
the development and testing of complex systems, they offer another important benefit. As
previously mentioned, the concept was first promoted as a tool for collaborative problem
solving; a way for stakeholders to understand and visualize the current system state.

A Digital Twin improves problem solving and innovation by aiding the human processes
of conceptualization, comparison, and collaboration. Effective visualization simplifies the
cognitive steps involved in translating symbolic information, facilitating conceptualization.
Overlaying the physical and virtual allows for direct comparison, which is ideal for human
perception and analysis. Collaboration is enabled by digitally replicating and distributing
the experience to an audience of stakeholders (Grieves, 2015).
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Visualization is an essential outcome of the Digital Twin concept. High fidelity interactive
visualizations of virtual systems can be shared globally in real-time using modern technol-
ogy, allowing the direct, side-by-side visual comparison of the physical and virtual product.
Today, the tools and technologies best suited to deliver on this promise are found in the
area of Extended Reality.

2.5 Extended Reality

Extended Reality (XR) is the umbrella term for a range of technologies where human-
machine interactions occur in environments that blend real and simulated stimulus (UL,
2022). XR covers the entire Virtuality Continuum (VC), as famously described by Milgram
and Kishino (1994), and pictured in Figure 2.5.

Figure 2.5: The Virtuality Continuum. Milgram and Kishino (1994)

This continuum spans the complete range of real to synthetic experiences. Though typically
associated with adding or replacing visual stimulus, the VC also includes technologies that
are subtractive in nature and/or affect other senses. For example, noise cancellation head-
phones can be considered a form of “diminished reality” audio AR device (Kress, 2020).

2.5.1 Origins of XR

Many precursors to XR can be identified in the 1800s and early 1900s, culminating in Mor-
ton Heilig’s patented head-mounted display (HMD) in 1960, which boasted 140° field of
view, stereo earphones, and air / scent discharge nozzles (Heilig & States, 1960). As seen
in Figure 2.6, images from the 60 year old filing are surprising in their familiarity. Soon
thereafter, engineers at the Philco Corporation created the first such device that tracked the
wearer’s head motion and updated the display accordingly (Jerald, 2016).
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Figure 2.6: Heilig’s Stereoscopic Television Apparatus. Heilig and States (1960)

In 1965 Ivan Sutherland10 published The Ultimate Display, which described his vision for
a “kinesthetic display” at a time when “the ability to draw simple curves would be useful”
(Sutherland, 1965). In it, he commented:

A display connected to a digital computer gives us a chance to gain familiarity
with concepts not realizable in the physical world. It is a looking glass into a
mathematical wonderland.

Three years later, Sutherland and his students at the University of Utahwere first to demon-
strate aHMD that combined tracking and computer generated imagery. The device, known
as the Sword of Damocles, is the original prototype for all modern VR technology. Its name
was in reference to the story of King Damocles, owing to the precarious position the device
maintained over a user’s head (Kiyokawa, 2015). It took nearly 30 years for its AR equiva-
lent to emerge.

In 1994 Ronald Azuma presented the first AR system capable of accurately maintaining the
spatial registration of real and virtual objects based on changes to the user’s viewpoint. Key

10 Ivan Sutherland is a distinguished computer scientist, known for pioneering work in computer graphics
and interactive computing. During his tenure at the University of Utah, he co-founded real-time graphics
pioneer Evans & Sutherland, and fostered a generation of computer graphics experts. Sutherland is
credited with creating the first graphical user interface and fundamentally changing computer-aided design.
He has received several prestigious awards for his lifelong contributions, including the ACM Turing Award
(1988) and the Kyoto Prize (2012).
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contributions of that open-loop system included custom hardware, calibration, and head
pose prediction methods (Azuma & Bishop, 1994).

Commercial interest in XR has since experienced alternating periods of boom and bust,
fueled by promises that exceeded the technologies of the time. Through it all, research in
the corporate, government, academic, and military sectors continued. Capitalizing on the
runaway success of the smartphone industry following the 2007 iPhone launch, the current
wave of XRbegan to emerge in 2012. This generation of hardware leveraged newly available
components, including displays,11 processors, batteries, cameras, and sensors, along with
the maturing software infrastructure, to offer products that were more sophisticated and
compelling in all sectors (Kress, 2020).

Emblematic of that shift is Field of View To Go (FOV2GO), an experimental, untethered,
DIY HMD developed in the Mixed Reality Lab at the University of Southern California’s
Institute for Creative Technologies, and first shown at the IEEE VR conference in 2012 (Ol-
son et al., 2011-03-19/2011-03-23). Their design utilized two iPhone 4’s as displays with
an off the shelf lens assembly and tracking system, all mounted on a cardboard body. Soft-
ware was powered by the Unity game engine and a Python script. Their conference poster
is pictured in Figure 2.7.

FOV2GO teammembers foundedOculus VR soon thereafter and demonstrated a prototype
of their Rift VR HMD in June of that year. The Rift Kickstarter campaign launched in Au-
gust, meeting its $250,000 funding target in less than four hours and securing over $2.4m
in total. Oculus subsequently raised over $90m in venture capital before being acquired by
Facebook for $2b in March of 2014 (Jerald, 2016).

XR has experienced tremendous growth and development in the last 10 years. Many de-
clinations of XR have been identified, including Virtual, Augmented, Mixed, Blended, and
MergedReality. The literature identifies significant overlap and somedisagreement in their
interpretation. Of those, virtual and augmented reality are the most agreed upon terms.

2.5.2 Virtual and Augmented Reality

Virtual Reality (VR) is a synthetic, multi-sensory experience that imitates real-world inter-
actions. VR is a very concrete concept in which purely synthetic environments are expe-
rienced through opaque HMDs, via interactions that are primarily controller-based. This

11 In this context the term display can apply to devices that present information for any human sense. For
example, a speaker is an audio display, and haptic devices are displays for the senses related to touch.
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Figure 2.7: FOV2GO, IEEE VR Conference 2012 Poster. Olson et al. (2011-03-19/2011-03-
23)
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combination of familiar features has been experienced by many, thanks to the availability
and maturity of consumer devices like the Meta Quest. VR is widely understood as a way
to provide immersive experiences that lead to the sensation of presence.

Immersion is the degree to which an XR experience provides consistent, believable inputs
with corresponding outputs. It is a function of the range and congruence of the sensory
modalities involved, the quality and spatial cohesion of the displays used, and the simu-
lation’s responsiveness to user interaction (Slater & Wilbur, 1997). Vividness and interac-
tivity are often cited as the functional mechanisms underlying the efficacy of XR (Jiang &
Benbasat, 2007; Steuer, 1992). A study by Yim et al. (2017), involving over 800 US college
students found that immersion plays a mediating role in that relationship. That is, vivid-
ness and interactivity promote immersion, which promotes presence.

Yim’s study defined vividness as the ability of the technology to display high fidelity stim-
uli over multiple sensory channels. Interactivity was described as a function of both the
underlying technology, including responsiveness, interface, and overall level of interaction
supported, and the quality of the experience’s design and implementation. Together, tech-
nology and design enable and engender interaction (Yim et al., 2017). The depth of immer-
sion is a characteristic of the hardware and software involved, and its effects are subjective.
The way different users experience immersion is known as presence.

Presence refers to a psychological state that can result from immersion, and is commonly
defined as “a sense of being there” (Cummings & Bailenson, 2016). Presence is associated
with an “illusion of nonmediation,” where users fail to perceive or acknowledge the exis-
tence of the interfacing technology and act as if it were not there (Lombard & Ditton, 1997).
A strong sense of presence leads to experiences that are perceived as real, generating cog-
nitive, psychological, and behavioral effects that are similar and long-lasting (Bailenson,
2018). While presence can also occur in AR, other mechanisms of the medium have a
stronger, more valuable effect.

AugmentedReality (AR) is amore abstract and nuanced concept which has so far refused to
converge on a single implementation. As originally described in Azuma’s highly cited first
survey of the field, Augmented Reality (AR) systems “combine real and virtual, are interac-
tive in real time, and are registered in 3-D” (Azuma, 1997). The value of AR comes from its
ability to enhance a user’s natural interaction with and perception of the real world.

Azuma’s definition demands real-time interaction with a spatially coherent mix of real
and virtual objects. This new interface paradigm is based on concepts that would become
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known as Spatial Computing, which Greenwold defined as “human interaction with a
machine in which themachine retains andmanipulates referents to real objects and spaces”
(Greenwold, 2003). In this way, AR proposes to replace metaphorical input devices like
the keyboard and mouse with sensor-based interfaces that directly measure and interpret
the world and our actions in it.

In a general sense, AR systems can enhance perception by mapping any sensor input to
any mix of displays, allowing users to see, hear, feel, etc. in ways not normally possible.
Sensor inputs can refer to either raw data from a single measurable phenomenon or “fused”
data developed from multiple sources. Interaction also benefits from the user’s improved
understanding (Azuma, 1997).

Traditional AR and VR devices integrate computation, sensors, and displays into a HMD,
which may suggest they offer a similar experience and benefits. Both offer novel forms of
visualization and interaction, but the essential characteristics of each are entirely different.
In the study of interaction design and related fields these characteristics are referred to as
affordances, the quality or property of an object that defines its possible uses ormakes clear
how it can or should be used (Norman, 2013). For example, a button affords pushing and
a handle affords pulling.

VR is a new medium that immerses the senses in a virtual replacement for reality and,
through the psychological phenomena of presence, mimics the effects of as-lived events
(Bailenson, 2018). AR is a newmodel of computing that augments our perception of reality
and, through a natural, spatially connected interface, enhances our understanding of and
interactions with the real world (Azuma, 2019). Where VR is an extension of games and
film, AR is seen as the most likely next step on the path towards ubiquitous computing.

2.5.3 Ubiquitous and Wearable Computing

Ubiquitous computing is the idea, first proposed by Weiser at the Xerox Parc research lab
in 1988, that technology should or will be completely assimilated, disappearing into the
woodwork of our lives (Weiser, 2002). The steady march of miniaturization began with
the invention of the transistor and has continued ever since. Today this trend presses the
limits of human physiology, where human interfaces, not computational considerations,
constrain the size of machines. Ubiquitous computing requires the replacement of physical
interfaces with more natural mechanisms (Greenwold, 2003).
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In the field of wearable computing, the assimilation of technology is the goal. A wearable
computer is any worn or body-borne computer that is designed to provide useful services
while the user is performing other tasks. Their on-the-go use and background operation are
the primary characteristics that distinguish wearables from other computing devices. This
is accomplished through interfaces designed to be unobtrusive and unencumbering, if not
entirely hands-free (Starner, 2015). From the beginning, research in the field has been ego-
centric, i.e., focused on the user and their interaction with the world. Devices that supple-
ment the user’s memory and data retrieval, or augment their view have been demonstrated
since the late 1990s (Billinghurst et al., 2015). Wearables are always-on devices that rely
on sensor-based interactions with and between the user and their environment (Barfield,
2015).

The potential benefits of such a device have been recognized by industry since the 1990s,
when AR R&D was already exploring the areas of medical visualization and training, man-
ufacturing and repair, annotation and visualization, robot path planning, entertainment,
and military aircraft navigation and targeting (Azuma, 1997).

2.5.4 XR Devices

While VR has converged on a singular form, Azuma’s definition of AR is not constrained
to any particular display type or “mix” of real and virtual. As such, XR includes a diverse
range of possible devices, each best suited for different use cases. This is summarized in Fig-
ure 2.8 from Bernard Kress’12 2020 book, Optical Architectures for Augmented-, Virtual-,
andMixed-Reality Headsets (Kress, 2020). Kress divides the range of XR HMDs into four
classes: smart eyewear, VR, AR, and Mixed Reality. In his taxonomy, Mixed Reality refers
to AR devices with the precise world tracking capabilities and other advanced spatial fea-
tures.

From this chart it can be inferred that HMD physical configurations vary by:

• form factor: overall size, shape, and balance
• displays integrated: visual, audio, haptic etc.
• visual display type: opaque or optical / video see-through

12 Dr. Kress was principal optical architect on the Google Glass project before joining Microsoft in a similar
role for their first and second generation HoloLens devices. He has since returned to Google as their
Director for XR Engineering. He serves as Vice President of the International Society for Optics and
Photonics (SPIE). Dr. Kress’ publications are heavily leveraged throughout this section. SPIE Profile:
https://spie.org/profile/Bernard.Kress-16356
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Figure 2.8: Current product offerings by device class and market. Kress (2020)
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• visual display ocularity: monocular, binocular, or stereo
• visual display location: centered or offset in the user’s field of view
• tracking: none, three, or six degrees of freedom
• input modalities: controllers and/or gestures
• tethered or standalone
• integrated vision correction

World-fixed and hand-held alternatives to HMD XRmust also be considered. World-fixed
solutions use projectors or flat panel displays to surround the observer / participantwith im-
agery. This is typified by the Cave Automatic Virtual Environment (CAVE13) invented in the
Chicago Electronic Visualization Lab at the University of Illinois (Cruz-Neira et al., 1992).
Hand-held XR implementations are common on smartphone and tablet devices, where in-
tegrated cameras, displays, and sensors enable screen-based AR that is device-centric (i.e.,
motion and display are relative to the device, not the user’s head and eyes) (Jerald, 2016).

XR devices, particularly AR HMDs, are not “one size fits all.” In addition to their physical
configuration, key specifications strongly dictate the intended purpose of a device and its
suitability for specific tasks. Technology limitations and the diverse requirements found
in different application domains force trade-offs in system design and selection (Kiyokawa,
2015). Subsequent sections will discuss each of those considerations in greater detail.

2.5.5 XR HMD Requirements

All modern XR HMDs are complex devices comprised of display, sensing, compute, and
power management systems. Optical see-through (OST) devices require additional compo-
nents to project and combine the image in the user’s field of view. Figure 2.9 depicts the
major sub-systems of an OST HMD (Kress et al., 2020). The peak complexity of an ideal-
ized OST AR HMD provides a comprehensive case study in the tradeoffs and benefits of
XR. Lessons learned from state of the art requirements and architecture apply, in limited
fashion, to devices with a reduced feature set.

MixedReality (MR) is the label given by Kress to advanced ARdevices with the precise head
tracking, gesture sensing, and depthmapping capabilities required to support spatially syn-
chronized interactions, providing an elevated and differentiated user experience (Kress &
Cummings, 2017). He measures the ultimate quality of that experience in two dimensions:
13 CAVE is a recursive acronym and reference to the allegory of the Cave from Plato’s Republic, in which a
philosopher contemplates perception, reality, and illusion.
en.wikipedia.org/wiki/Cave_automatic_virtual_environment
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Figure 2.9: Functional building blocks of an OST XR HMD. Kress et al. (2020)

comfort, including wearable, vestibular, visual, and social components; and immersion, a
function of all sensory input and output. Given the goals of comfort and immersion, an ex-
tensive list of design requirements can be derived for idealized MR devices. In Figure 2.10,
dark grey shading indicates features that are reliant on fast, accurate, universal eye tracking,
a critical enabling technology for idealized MR HMDs.

Figure 2.10: Comfort and immersion requirements for an ideal MR experience. Kress
(2020)

This summary reflects other findings in the literature which identify requirements related
to precise tracking, form factor, brightness / contrast, field of view, latency, resolution, oc-
clusion, frame rate, depth of field, and visual discontinuity (Azuma, 2017; Fischer, 2015;
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Gay-Bellile et al., 2015; Jerald, 2016; Kiyokawa, 2015; UL, 2022).

Visual comfort is a function of both the display features and the overall speed and accu-
racy of the integrated sensor output. Sensor fusion refers to that integration process and
the hardware / software system that accomplishes it. Figure 2.11 depicts the inputs and
processing flow for a typical system. The demands of sensor fusion have led companies like
Microsoft to design custom processors to provide the best user experience (Kress, 2020).

Figure 2.11: Sensor fusion flow in typical MR systems. Kress (2020)

High-level considerations in the design of HMD systems include tradeoffs between real
world visibility and pictorial consistency, FOV and angular resolution, near and far accom-
modation, and the importance of perceived depth, which is influenced by occlusion and
ocularity (Kiyokawa, 2015). Directly conflicting requirements are common in OST HMD
design, where the tight interdependencies of these sub-systems and ambitious overall re-
quirements necessitate a global optimization approach to design (Kress et al., 2014). Knowl-
edge of the human factors involved can aid the process.
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2.6 Human Factors

A human-centered approach to HMD development allows designers to tailor requirements
to human needs rather than absolute measures of performance, reducing system complex-
ity without impact to the immersiveness or comfort of the experience. The following sec-
tions provide a brief overview of human factors related to vision, balance, and motion. The
senses involved are critical to both immersion and comfort.

2.6.1 The Visual System

Optical components of the eye, including cornea, iris, pupil, and lens, coordinate to focus
an image on the surface of the retina, where photosensitive cone and rod cells translate it
into signals sent to the brain via the optic nerve. Cones are adapted to provide detailed
color vision in high illumination. They are concentrated in the fovea, near the center of the
retina, maximizing the eye’s resolving power around the line of sight. Conversely, rods are
concentrated in the visual periphery. They perform well in low light and are optimized to
detect fast motion or flicker. The resulting signals follow different visual pathways in the
brain, where they are strongly influenced by other sensory systems and cognitive processes,
forming our subjective, conscious perception of the experience.

Visual Acuity

Visual acuity refers to a group of measures for human visual performance, including sep-
aration and recognition acuity. Separation acuity is the ability to resolve fine details at a
distance. Specifically, it is the smallest angular separation that can be resolved between
neighboring black stripes on a white background. One arc minute (1/60th of a degree) is
the lower limit for “normal” separation acuity, corresponding to a gap of just over 1/16”
(1.75mm) when viewed from 20’ (6m). This attribute of human vision is rarely measured
directly. Instead, recognition acuity tests like the Snellen eye chart are designed to assess
separation acuity via the discernment of shapes or symbols. The results are given as a ratio
expressing the acuity of the subject relative to someone with “normal” (20/20) vision. For
example, “20/40” indicates half the normal acuity. Visual acuity is influenced by the entire
optical-neural path, but is primarily a function of the cones and varies with their distribu-
tion in the field of view. These concepts are illustrated in Figure 2.12.
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(a) Code and Cone Cell Density on the Retina (b) Optical Axis and Line of Sight

Figure 2.12: Visual Acuity Varies with Rod and Cone Density in the Field of View

Field of View

Field of view (FOV) is the angular measure of the environment that is visible at any in-
stant. As shown in Figure 2.13, the horizontal FOV is approximately 160 deg for each eye,
and 200-220 deg combined. Vertical FOV is slightly smaller, with a slight downward bias.
Overlapping monocular vision creates a central binocular range of 120 deg with vertical
asymmetries caused by the facial profile.

Figure 2.13: Binocular field of view. Kress (2020)

Though depicted in static terms, the FOV is dynamic due to continuous voluntary and in-
voluntary eye motions that balance our directed attention with general awareness while
accounting for motion of the head, body, and environment.
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Stereopsis and Depth Perception

Due to the separation of binocular vision, a slightly different view of the world is observed
in each eye. In a process called stereopsis, the brain processes these disparities to form a
single percept with a sense of depth and three-dimensional structure. In a related process
called vergence, a variety of depth cues trigger the inward (convergence) or outward (diver-
gence) rotation of the eyes to effectively regulate binocular vision. When vergence occurs,
it triggers the natural focusing reflex known as accommodation.

Other than the binocular disparities described above, the strongest triggers for the vergence-
accommodation reflex are occlusion and motion parallax. Occlusion occurs when nearby
opaque objects naturally obscure more distant objects. Motion parallax is the phenom-
ena where an object in motion appears to move at different rates based on its depth in the
scene.

2.6.2 The Somatosensory System

The somatosensory system is a part of the sensory nervous system responsible for the per-
ception of touch, temperature, body position, balance, and pain. It is a network of sensory
receptors and neurons spread throughout the body and brain. Within this system, propri-
oception and balance, which enable our awareness of the body’s dynamic and kinematic
state, are most relevant to the design and use of HMDs.

Proprioception

Proprioception is the egocentric sense of movement, force, and body position. Through
largely subconscious processes it provides the feedback mechanism necessary for effective
coordination, refinement, and regulation of bodymotions. Specialized neurons distributed
throughout the musculoskeletal system sense joint extension and limb position, velocity,
and resistance. Signals from those proprioceptors are integrated with information from
the visual and vestibular systems to create a sense of the body’s overall state, enabling fast
and unconscious execution of planned and reflexive behaviors. Proprioception is essential
to both voluntary and involuntary motor control activities. It drives the continuous ad-
justment of body posture required to maintain balance and is a critical contributor to the
process of learning and perfecting motor skills.
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Balance

Equilibrioception is the sense of balance and spatial orientation. It is the integrated per-
ception of stimuli from the visual, proprioceptive, and vestibular systems. Two organs of
the inner ear comprise the vestibular system: semicircular canals and otolith organs. Three
semicircular canals located in the labyrinth of each ear sense rotation around their orthogo-
nal axes. Movement of fluid in the canals is sensed as pressure changes, which are signaled
to the brain. In the otolith organs, signals from hair cells are triggered by head motion.
Those signals are interpreted by the brain to distinguish head tilt from body motion and
sense the lateral and vertical components of acceleration.

Rotational and translational stimuli from the vestibular system are used to control posture,
as described above, and eye movement, via the vestibulo-ocular reflex (VOR). VOR helps
stabilize gaze direction as the head moves by directing opposing eye movement to compen-
sate. This limits retinal image slip by maintaining the visual point of interest in the center
of the field of view.

2.7 Enabling Immersion

The immersiveness of an XR experience is limited by the ability of the hardware and soft-
ware systems involved to create an illusion that is cohesive and undistracted. Understand-
ing the human factors involved, as described above, can help achieve that. The following
sections will explore the technical underpinnings of vividness and interactivity, the primary
components of immersion.

2.7.1 Resolution and FOV

Resolution and FOV are key measures of the fidelity for visual display devices. For near-
to-eye (NTE) displays found in HMDs, resolution is typically expressed in dots per degree
(DPD), rather than dots per inch (DPI) or raw pixel counts, as in conventional displays. An
angular resolution of 50 DPD (1.2 arc minute) roughly corresponds to the resolving power
of 20/20 vision (Kiyokawa, 2015).

The FOV of an HMD includes the aided region, where real and virtual images are overlaid;
the peripheral region, outside the aided region; and the occluded region, where vision is
obscured by the device (Kiyokawa, 2015). FOV specification in HMD design must identify
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the angular span, aspect ratio, and location of the aided region within the user view. These
decisions are interrelated and driven by task and market requirements (Kress, 2015). Fig-
ure 2.14 depicts the range of implementations found in state of the art XR HMDs, overlaid
on the binocular FOV and the fixed foveated display region (Kress, 2020).

Figure 2.14: Typical FOVs for SOTA XR HMDs. Kress (2020)

Very high pixel counts are required for ideal resolution in wide FOV devices. For example,
a 16:9 display with 50 DPD angular resolution and 160 deg horizontal FOV per eye, would
require 8,000 x 4,500 pixels. Two such displays (one per eye) would have more than eight
times pixel count of a modern 4k monitor (3,840 x 2,160).

Such devices will not soon be practical. Meanwhile, pixel doubling and other mitigating
techniques can improve perceived resolution. Foveated displays offer an alternative that
exploits the bi-modal nature of human vision. This emerging technique renders a high res-
olution region, positioned either statically, central to the field of view, or dynamically, based
on eye tracking. This image is combined with a lower resolution peripheral display using
digital or optical methods (Kress, 2020). AI-basedmethods also show promise (Kaplanyan
et al., 2019).

2.7.2 Frame Rate and Latency

Frame rate is the number of times the rendered scene is updated per second. It can be dif-
ferent from the system update rate, which is the rate at which the display updates. Both are
typically on the order of 30-120Hz, with most modern XR devices operating at 60-90Hz.
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High frame rates increase the smoothness of motion, approaching the continuous nature
of real world visuals. Update rate is a fixed property of the display hardware, but frame rate
depends on the scene complexity and visual fidelity, along with hardware and software per-
formance. The inverse of frame rate, rendering time, contributes to overall system latency.
Tradeoffs must bemade in the design and implementation of XR experiences to achieve the
desired visual performance and limit system lag (Jerald, 2016).

Latency is the lag between head motion and update of the rendered scene, resulting in
discrepancies between the user’s visual and vestibular senses. In optical see-through sys-
tems this results in registration error, which leads to confusion, disorientation, andmotion
sickness. To compensate, head motion prediction and other methods are used (Kiyokawa,
2015). Specifically, motion-to-photon (MTP) latency of no more than 20ms, and ideally
less than 10ms is recommended in the literature (Albert et al., 2017). Because MTP latency
greater than 20ms is a key factor in motion sickness, this is a foundational requirement of
HMDdesign (UL, 2022). Approaching this goal compels optimization of the entire pipeline,
including custom silicon designs for the sensor fusion process.

2.7.3 Pictorial Consistency and Visual Quality

Visual quality is an assessment of the visible stimuli produced by an XR device. It is a quali-
tative measure of vividness, also described in the literature as realness, realism, or richness
(Yim et al., 2017). Key contributors, including geometric resolution, scene complexity, and
the quality of lighting and shading are limited by the frame rate and latency related consider-
ations previously described. Visual quality is a critical performancemeasure for VR devices.
In OST and VST AR/MR devices it is only one component of pictorial consistency.

Pictorial consistency refers to the degree with which virtual objects match their real world
counterparts in an AR/MR display. Visual discontinuities introduced throughout the imag-
ing pipeline reduce immersion and its attendant benefits in OST devices. The limited vi-
sual quality of virtual objects is further diminished by an incomplete understanding of
scene depth and environmental conditions. When rendered, this creates additional lighting,
shading, and depth related discontinuities in the real-world view (Fischer, 2015). Limita-
tions in display and optical combiner technologies, particularly in their ability to mimic the
brightness, contrast, and dynamic range of the real world compound this problem (Kress,
2020).

32



VST devices trade combiner related discontinuities for those introduced by the image ac-
quisition and processing pipeline. Intrinsic parameters of the camera, including the lens
properties, sensor characteristics, and camera settings (e.g., exposure time, ISO, and white
balance), introduce noise, geometric distortion, motion blur, defocus blur, and color cast.
Virtual objects rendered free of those distortions stand out as relatively crude but synthet-
ically perfect elements of the scene. Methods to emulate camera distortions or stylize the
entire scene can reduce this effect, but may not be suitable for all applications (Fischer,
2015).

2.7.4 Tracking Methods

Combining real and virtual scenes in a spatially coherent fashion is the essence of AR
(Azuma & Bishop, 1994). See Figure 2.15. To maintain accurate “registration” (alignment)
of the virtual and real world scenes in three dimensions, AR devices must determine their
position and orientation in the world, or “pose” (You & Neumann, 2015). This process,
known as tracking, typically uses methods from computer vision to estimate the pose of a
camera based on features identified in its video stream.14 In general, this process involves
three steps: recognition, tracking, and pose estimation (Yang & Cheng, 2015). Once the
camera’s real world pose is aligned with the virtual coordinate system virtual objects can
be rendered in the scene with appropriate scale, orientation, and placement.

Recognition identifies features in the 2D imagery and matches them to corresponding
points in a database of 3D features. Typically, the database consists of image, model, or
area feature types, which are described in greater detail below. Recognition and tracking
are interrelated problems, where the former is used to initialize the latter, or reinitialize it
when tracking performance degrades. Tracking updates the position of recognized features
over time to reduce the computational costs associated with recognition (You & Neumann,
2015).

Camera pose estimation calculates the camera’s transformation matrix based on the
tracked features. It is achieved by solving the perspective-n-point (PnP) problem for
2D-3D pairs based on intrinsic camera parameters (e.g., focal length, aspect ratio, lens
distortion). PnP is a fundamental computer vision problem with many modern applica-
tions. The details of PnP are beyond the scope of this work but the essence of the problem

14 3D registration for navigational purposes is commonly achieved using a combination of GPS related
technologies, but the results are not sufficiently accurate for AR applications.
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Figure 2.15: ARTracking: spatial coherence is achieved by aligning real and virtual cameras
with shared intrinsic properties. Marchand et al. (2016)

is captured in Figure 2.16. For more information, including a survey of implementations,
see Marchand et al. (2016).

Tracking methods are typically characterized by the features used in the registration pro-
cess. This is an active area of research where terminology and implementations vary, but
image, model, and area feature types are common. Image based tracking relies on 2D pixel
data. Model and area based methods use discrete and continuous objects of 3D geometry,
respectively. Hybrid methods are also used.

Image-based methods use either photographic image data, graphic symbols called tem-
plates, or barcode-style marker designs. The feature database is created through an offline
preprocess which identifies critical reference points in the image data and encodes them
as vector representations. During recognition a similar process is used to encode reference
points identified in the live imagery, which are then matched to the feature database us-
ing nearest neighbor methods. This process is resource intensive for arbitrary image and
template data (Yang & Cheng, 2015).

Marker-based AR affords simplifying assumptions for the registration process with stan-
dard fiducial designs optimized for all stages of the tracking process. Black-and-white en-
coding patterns and clearly delineated boundaries aid recognition and tracking. The cor-
ners emphasized by square marker designs provide four coplanar, non-collinear points re-
quired for PnP pose detection (Yang & Cheng, 2015). DensoWave’s Quick Response (QR)
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Figure 2.16: The pose estimation problem. “OpenCV Perspective-n-Point (PnP) Pose Com-
putation” (n.d.)

codes store 2953 bytes of easily-decoded binary data and are widely used for AR applica-
tions (ISO, 2015). The marker-based process is depicted in Figure 2.17.

Figure 2.17: Marker-based tracking pipeline. Yang and Cheng (2015)

Marker-based optical tracking systems use two approaches. The “inside-out” approach
placesmarkers on the target object and camera pose is estimated from images of themarker
in the observer-borne camera. In the “outside-in” case, markers are placed on the observer,
who is localized by a set of static cameras surrounding the scene. The outside-in method,
more commonly used inmotion capture applications, requires an additional pre-calibration
process that establishes the pose of the target object. Both cases require prior instrumenta-
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tion of the scene with markers or cameras, the number and placement of which determines
the trackable volume. This deployment process and the visually obtrusive nature ofmarkers
may be inappropriate in some applications (Gay-Bellile et al., 2015). Additionally, markers
are often impractical in controlled and/or outdoor environments and are sensitive to oc-
clusion (Ventura & Höllerer, 2015; Yang & Cheng, 2015). Together, these shortcomings
compel the use of more sophisticated tracking methods.

Instead of image data, model based tracking relies on a 3Dmodel of the target object for fea-
ture identification. The process is analogous towhat is described above: key points encoded
from the 3D model data are compared with features extracted from the live scene data and
corresponding pairs are used for pose estimation. Live scene data can consist of imagery
or 3D geometry generated from camera data using SFM (structure from motion) (Schon-
berger & Frahm, 2016) or SLAM (simultaneous localization andmapping) (Durrant-Whyte
& Bailey, 2006) related methods (You & Neumann, 2015). Alternatively, active scanning
systems using LiDAR (light detection and ranging) or TOF (time of flight) can be used to
reconstruct scene geometry in real time (Behzadan et al., 2015).

The accuracy of model based tracking methods suffers when geometric or photometric de-
tails are not easily discerned. As a result, it is sensitive to lighting conditions (color, inten-
sity, direction) and visibility (small in FOV, occluded, or outside DOF). Area based tracking
uses SFM / SLAM to address those shortcomings by tracking a 3Dmodel of the entire scene
rather than discrete elements of it. This greatly increases the likelihood of achieving the
confluence of 2D-3D matches required to achieve recognition (Gay-Bellile et al., 2015).

Vision based methods are often supported by incorporating additional sensor data to aug-
ment the tracking process. A complementary source of orientation and translation data
can be derived from GPS data fused with signals from a trio of inertial measurement units
(IMUs): accelerometer, gyroscope, and magnetometer (Ventura & Höllerer, 2015; Yang &
Cheng, 2015).

Proper tracking is the essence of AR/MR devices and a critical element of pictorial consis-
tency in both OST and VST devices. But the accurate placement of virtual objects in the
real scene does not guarantee spatial coherence. Such objects must also appear naturally
occluded.
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2.7.5 3D Occlusion

As discussed in reference to Stereopsis and Depth Perception, occlusion occurs when ob-
jects nearer the viewer naturally obscure background objects. Real world scene depth is
largely informed by our perception of this. Thus, proper occlusion of virtual objects in the
real world is essential to the user’s understanding and acceptance of a mixed reality scene,
as well as their interaction with it.

The graphics pipeline and depth sensors of a modern XR HMD can provide the informa-
tion required to enable per-pixel masking of virtual objects for accurate depth sorting. The
believability of the combined scene is dependent on the resolution, dynamic range, and
opacity of the virtual object. So-called “hard-edged occlusion,” where virtual objects ap-
pear opaque and naturally occluded, with crisp edges, is the ideal. This requires blocking
light from the scene at a pixel level, which is achievable on VST devices using traditional
digital compositing methods (Kiyokawa, 2015).

OST devices rely on optical compositing techniques, with little control over the scene’s nat-
ural dynamic range and displays unable to match its brightness. As a result, virtual objects
on OST AR/MR devices have a ghostly, semi-transparent look. This may be suitable for
overlays and other augmentations, but falls short of enabling a cohesive mix of real and vir-
tual objects. Currently, few optical methods are capable of addressing this problem. Pixel
dimming is often suggested as a compromise in OST HMDs. This method, also known as
soft-edge occlusion, selectively dims areas of the real world to help virtual objects stand out
(Kress, 2020).

Despite significant research and development efforts, occlusion remains an unsolved prob-
lem in OST devices. Few implementations of soft-edge occlusion exist in the market, and
hard-edge solutions remain entirely absent. The details of the challenges involved are be-
yond the scope of this work, but are well summarized by Karl Guttag, a recognized ex-
pert in graphics processors and display systems. Guttag identifies technical and physical
roadblocks for both approaches and declares a general solution to hard-edge occlusion “in-
finitely complex” for current optical architectures (Guttag, 2021).

2.8 Ensuring Comfort

Well-designed hardware and software can exhibit the fidelity, responsiveness, interactivity,
and believability necessary to promote immersion through the user’s overall sensory com-
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fort. The previous section outlinedmany of the key technical considerations in doing so. In
time, many of shortcomings identified will likely be overcome.

Meanwhile, comfort related considerationsmust help guide the necessary tradeoffs. For the
effects of immersion to take hold, the experience must limit distractions due to wearable,
social, vestibular, or visual discomfort.

2.8.1 Wearable Comfort

Wearable comfort refers to general ergonomic traits, including size, weight, and balance, as
well as surface treatments and thermal management features. Overall usability and safety
are also factors. For example, the safety andmobility benefits offered by a direct view of the
environment and cable-free use motivated the HoloLens’ untethered OST design (Kress &
Cummings, 2017).

2.8.2 Social Comfort

Social comfort concerns are primarily related to privacy and acceptable public use. The suit-
ability of a design’s aesthetic and form factor is one consideration (Cook et al., 2019), as is
allowing an unaltered view of the wearer’s eyes. The number and packaging of outward-
facing sensors, and the nature and use of the data they collect, entails a number of pub-
lic privacy concerns that influence social comfort (Kress, 2020). Each of these balance
the wearer’s willingness and right to wear the device with the needs of the public, and are
strongly influenced by the context and manner of intended use. Bass et al. (1997) describe
the ultimate test of social comfort as “whether or not a wearer is able to gamble in a Las
Vegas casino without challenge.”

2.8.3 Vestibular Comfort

Due to the interrelated nature of the human visual and vestibular senses, it is difficult to
clearly separate the relevant comfort issues. Here, vestibular comfort is primarily con-
cerned with motion sickness. However induced, motion sickness is XR’s most common
and significant adverse health effect. In VR and VST AR devices the primary contributors
are movement and visual effects.
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The most widely accepted explanation for sickness caused by real or apparent motion at-
tributes it to a mismatch of sensory inputs. In XR, visual and auditory stimuli are experi-
enced through the HMD while the vestibular and proprioceptive signals are coming from
body motion. When discrepancies occur, motion sickness can follow. Sensory mismatch
in XR is commonly caused by latency or unnatural motion. When MTP latency is exces-
sive, the perception of body motion and corresponding visual stimuli are not synchronized,
leading to visual-vestibular mismatch. Unnatural motion is often implemented with the
intention of improving the experience. For example, head bobbing or strafing motions
commonly used to add dramatic or interactive effect in screen-based experiences can have
unintended effects in XR. The negative health effects of latency partly motivated the push
for high frame rates and sensor fusion optimizations common today. Intended unnatural
motion is a content design issue easily addressed through best practices (Jerald, 2016).

Visually induced motion sickness (VIMS) is “a subcategory of motion sickness that specifi-
cally relates to nausea, oculomotor strain, and disorientation from the perception ofmotion
while remaining still”(UL, 2022). Several characteristics of VR andVSTARHMDdesign di-
rectly contribute to VIMS, including optical design issues, the presence of motion artifacts,
and tracking / sensor fusion issues, all of which contribute to scene instability.

Elevated levels of vergence-accommodation conflict (VAC) are known to cause discomfort
and nausea in OST AR devices. Our visual reflexes naturally work together to look at (ver-
gence) and focus on (accommodation) objects in theFOV.ButmostmodernAR/MRdevices
use fixed focal length displays in which all virtual objects appear in focus at the same dis-
tance from the eye point, typically 2m. Virtual objects that occur at any other depth in the
scene will lead to conflicting signals from the eyes’ vergence and accommodation demands.
When that occurs, depth and focus cannot be reconciled, leading to eye strain and disorien-
tation (Kiyokawa, 2015). For example, mixed reality experiences that rely on arm’s length
interactions are focused on an area 30-70 cm from the user. This is well within the head-
set’s fixed 2m focus, and often leads to VAC-induced discomfort (Kress, 2020). Extended
VAC exposure can lead to visual adaption, temporarily decoupling vergence and accommo-
dation. The reduction of depth perception that results can create a hazardous situation.
As such, UL 8400 recommends that users avoid sensorimotor-demanding activities (e.g.,
taking the stairs, driving, bike riding) for 30 minutes after each session (UL, 2022).
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2.8.4 Visual Comfort

The primary visual comfort related considerations are vision correction, eye box design,
and the limits and parasitic effects of screen-based display technology.

HMDdesigners cannot ignore the fact that a large portion of the population have some form
of vision impairment, yet themethod anddegree of corrective support varies. Depending on
the device type and form factor, interchangeable lenses, adjustable focal length, or custom
corrective lensesmaybe integrated. Correction is particularly important inOSTHMDs, and
many are designed to accommodate the wearer’s prescription glasses. This has an impact
on the eye box design.

Ideal optical system designs provide a clear, consistent, and unobstructed view of the en-
tire FOV. A key contributor to that outcome is the size of the eye box: the volume of “3D
space in which the viewer’s pupil can be positioned to see the entire FOV” without a reduc-
tion in brightness or distortion near the extents (Kress, 2020). Eye box designs vary with
user anthropometry (inter pupillary and temple to eye distances), system design (combiner
thickness, optical architecture, and eye relief), and pupil size. Though mechanical adjust-
ments may allow users to optimize a system’s eye box for their static anthropometry, scene
visibility will still vary with their pupil size. For example, the edges of the display may be-
come blurry when the pupil dilates in bright conditions. The complexity of eye box design
and ambiguities of the “easy viewing” requirement make this a challenging problem (Kress
et al., 2014). Large eye box designs can improve visual and wearable comfort (fit), but at a
cost to perceived brightness (luminance) due to physics based constraints (étendue).

Current hardware continues the trend of exploiting the latest advances in components de-
signed for the screen-based smartphone and tablet markets, sometimes with little effect. In
particular, flat panel display technologies used as immersive near to eye (NTE) displays are
inherently limited by fixed focus, low brightness / contrast, and optical invariants including
étendue. These pixel-based displays are also susceptible to a variety of parasitic effects. The
screen-door effect appears when the optical quality, typically expressed in terms of MTF,15

is high enough to see gaps between the pixels of the display device. Aliasing is the visible
side-effect of representing continuous visual phenomena with discrete pixels. Where alias-
ing is the spatial artifact of sampling, motion blur is its temporal side effect. The Mura
effect describes an unevenness of the display caused by imperfect illumination or screen

15 Modulation transfer function (MTF) is a quantitative measure of the ability of an optical system to
reproduce contrast detail. It is known to correlate with our perception of image quality. MTF is the
magnitude of the optical transfer function. https://en.wikipedia.org/wiki/Optical_transfer_function
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geometry. Each of these effects can be mitigated with hardware and/or software methods
(Kress, 2020).

2.9 Design Tradeoffs

Due to directly conflicting requirements common in XR systems, there is no “one size fits
all” solution. Amidst the hype surrounding this promising but immature technology, it is
important to have an accurate understanding and realistic expectations. Numerous con-
siderations important to the design, selection, and implementation of XR solutions are de-
tailed above. Figure 2.18 assesses the importance of selected optical requirements in HMD
devices across common market segments.

Figure 2.18: Requirements from various HMDmarket segments. Number of ‘+/-’ markers
indicates magnitude of positive/negative criticality. Kress (2015)

Tradeoffs should be informed by requirements specific to the context, manner, and goals
of intended use, prioritizing human factors related to perception. Aligning the desired out-
comeswith the primary affordance of the chosen device is essential. These choices are aided
by an understanding the theoretical underpinnings of those affordances.
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2.10 AR/MR Potential for Industrial Training Applications

While XR has yet to provide consumers with a value proposition that is broadly compelling
and sustainable,16 the industrial, healthcare, and military markets have embraced its po-
tential for cost savings and competitive advantage.

Across industry, preliminary studies have shown that AR’s essential connection to reality
(e.g., guiding a surgeon’s hand) can have a variety of benefits. AR has improved learning
rates, reduced errors, increased yields, improved quality, and enhanced designs. By en-
abling collaborative design, remote expert guidance, and enhanced monitoring, it has also
improved the end-user experience (Azuma, 2019). In industrial settings HMDs are typi-
cally designed to support operators in an unobtrusive fashion, allowing them to focus on
a task in the physical world, e.g., inspection, maintenance, repair, and order picking. In
doing so they can reduce cognitive and/or physical load thru supplemental hands-free dis-
plays (Starner, 2015). Manufacturing, healthcare, and defense are three industries that
have invested heavily in the early development of this technology.

2.10.1 Applications in Manufacturing

In manufacturing, supporting operators and repair technicians with digital work instruc-
tions has been a common application of AR research and development since the early 1990s
(Azuma & Bishop, 1994). AR is a core component of I4.0 that allows intuitive, real-time ac-
cess to contextually appropriate information. It provides the ideal visual interface for col-
laborative problem solving as described in Grieves’ original vision for digital twins (Grieves,
2015). Due to the many benefits described above, a 2020 study documented applications
in operations, maintenance, quality control, safety management, design, visualization, lo-
gistics, andmarketing (Oztemel & Gursev, 2020). XR shows particular promise as a source
of innovative tools and technologies for training workers at a time when finding skilled la-
bor is increasingly difficult due to high retirement rates, global expansion, and increasing
specialization (Kress, 2020).

A compelling case study for the use of AR inmanufacturing comes from the automotive sec-
tor, where its benefits can be leveraged across the entire product life cycle (Gay-Bellile et al.,

16 This claim may well be tested in 2024, with the recent introduction of Apple’s Vision Pro, a state of the art
video pass-through device, and Meta’s Quest 3, which is positioned primarily as a VR device, but also offers
video-pass through.
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2015). During design it reduces the need for and cost of physical mock-ups. AR comple-
ments the traditional design process, enhancing physical prototypes with virtual elements
that can be accurately evaluated in real-world context. Prior to production, AR can re-
duce the impact and cost of factory planning. Operators can evaluate simulated workspace
changes virtually integrated into the real environment without disturbing production or
requiring a complete and accurate 3D model of the existing environment. During produc-
tion AR can benefit tasks related to assembly, picking, and quality control by delivering
instructions naturally, in the ideal context (what, when, where, how needed). AR allows
the operator to remain focused on the work area while augmenting their perception with
relevant data from sensors and/or information systems. Sales efforts benefit fromAR’s abil-
ity to communicate aspects of the vehicle that are not otherwise observable, (e.g., perfor-
mance characteristics), or demonstrate unaccessible features (e.g., options for models not
in inventory). Unlike other methods, the AR based approach retains accurate perception
of dimensions, volumes, and other cues that are subtle but important to human perception.
During the operation phase, AR can enhance the driver experience in many ways by visual-
izing system characteristics, highlighting potential dangers, aiding perception in degraded
conditions, and augmenting instructional materials and support services.

2.10.2 Applications in Healthcare

In healthcare, XR has therapeutic and educational applications ranging from pain man-
agement and the diagnosis of mental disorders to medical decision-making and surgical
support (Aqlan & Hui, 2020). AR in various forms has been adopted by the medical indus-
try to improve patient / procedure outcomes and safety while reducing radiation exposure,
recovery time, and costs. It is a well-suited complement to the trend towards minimally
invasive procedures, where access and vision are limited (Yaniv & Linte, 2015). In those
cases, AR eliminates the need for surgeons to map preoperative data to the patient from
an adjacent monitor. It allows direct cognition of the operator’s movements relative to
patient anatomy. This form of image-guided surgery is achieved by tracking the surgical
instruments and visualizing them over preoperative data registered to the patient. The
challenge, time, and error of these procedures are less than screen-based alternatives that
require filtered cognition (Kersten-Oertel et al., 2015). Medical necessity will likely drive
the adoption of wearable devices that include AR functionality. Conditions like diabetes
andmacular degeneration can bemonitored and/or improved with such devices. Eye worn
sensors are being developed to address both of these medical necessities by improving the
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user’s perception (Barfield, 2015).

2.10.3 Applications in Defense

In the military market, where many of these technologies were first proven, there remains
a strong and growing demand for custom XR hardware solutions. In addition to the tradi-
tional HMD /Heads-Up-Display (HUD) systems common in fixed and rotary wing aircraft,
there are efforts underway to outfit service members with AR devices that support their
mission (Kress, 2020). The US Army’s IVAS (Integrated Visual Augmentation System) is
the most ambitious current example. Originally awarded in March of 2021, IVAS is a $22b
partnership with Microsoft to improve “Soldier sensing, decision making, target acquisi-
tion, and target engagement” (“PEOSoldier PM IVAS”, n.d.). While these customhardware
solutions provide further evidence of XR’s adoption and future, educational applications for
XR in the military are more relevant to this work. The wide range of applications include
training and briefing support for pilots (Alexander et al., 2019), maintainers, leaders (Clay-
ton & Straub, 2020), and officers (Millican, 2017).

2.10.4 Key Benefits for Industrial Training

The reviewed literature underscores the significant potential of AR/MR technologies in in-
dustrial training applications, particularly in manufacturing, healthcare, and defense sec-
tors. Despite the gradual pace of consumer adoption, these industries recognize the po-
tential advantages of leveraging AR/MR to enhance operations, reduce costs, and improve
workforce development.

The key benefits of AR/MR in industrial training contexts stem from its ability to provide
contextually relevant, spatially registered information and instructions integrated with the
real-world environment. This promises to enhance learning, reduce errors, improve task
performance, and ultimately contribute to a more skilled and efficient workforce.

2.11 Theoretical Basis

Before we proceed, it is essential to differentiate AR and MR from VR and establish the
theoretical basis of their advantages for learning and retention.
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2.11.1 Differentiating AR from VR

As we saw in Section 2.5, the XR devices lie along a continuum of user experience. For the
purposes of this discussion, we will consider MR a subset of AR, with the added ability to
manipulate virtual objects within the real-world scene.

AR and VR devices are often confused with one another and/or mistaken as new means
for the consumption of traditional content. Both are head-mounted devices that display
believable sensory stimuli to augment or reproduce real-world interactions. Both do so in
a manner that is contextually cohesive and responsive to a wide range of body-centered
inputs. Despite their commonalities, AR and VR are fundamentally different from one an-
other and other modern media. Where VR is designed to immerse the user in a synthetic
world, AR is intended to strengthen the user’s connections with reality. Failing to recognize
and leverage their unique affordances severely limits the utility of these devices (Leonard
& Fitzgerald, 2018).

VR provides a form of interactive sensorimotor simulation that, when immersive enough to
enable presence, the brain interprets as a lived experience. This enables situated learning
experiences which, if designed to be appropriately challenging and/or visceral, can be en-
hanced by flow and may elicit an emotional response (Kappes & Morewedge, 2016; Kwon,
2018; Millican, 2017). The learning effect of a VR experience is thus largely grounded in
the theoretical requirements and benefits of immersion & presence, experiential learning,
and flow theory.

As an active learning method17, VR is best suited for the development of higher-order cog-
nitive skills. The potential for emotional impact also makes VR a useful tool for affective
learning. Because the experiences are simulated, VR enables training that is otherwise im-
practical or impossible. Finally, the digital nature of VR experiences makes them easy to
repeat, instrument, scale, and distribute. These practical benefits are accurately summa-
rized as offering “experience on demand” in Jeremy Bailenson’s18 popular book of the same
name (Bailenson, 2018).

AR allows augmentation of the real world with virtual objects that are informative and/or
interactive, thus enhancing our understanding of and connection with the world. The es-

17 Active learning and other educational theories mentioned in this section will be detailed in the THEORY
SECTION

18 Jeremy Bailenson is a prominent figure in the field of VR and its applications, particularly in education and
behavioral change. As the founding director of Stanford University’s Virtual Human Interaction Lab, his
work focuses on how VR can affect users’ cognition, behavior, and social interactions.
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sential affordance of AR is direct interaction with virtual objects in which visual and spatial
queries take the form of natural object manipulation in everyday surroundings. Applying
embodied cognition and animate vision theories in the context of learning suggests that, by
retaining proprioception and sensorimotor function, AR experiences aremore aligned with
human cognitive architecture than metaphorical digital interfaces. AR interfaces provide a
combination of procedural and configurational spatial knowledge via haptic and pictorial
sources. Visual, spatial, and sensorimotor feedback provides multiple reference frames
that enhance perception and cognition. By reducing the overall cognitive load or better dis-
tributing it across multiple sensory pathways, AR improves the uptake of sensorial-based
knowledge (Shelton & Hedley, 2003).

AR is also an active learning method best suited for higher-order cognitive development.
Its affordances arewell-suited for task-related learning because of the inherent connections
between visual perceptual activity and physical movement. These effects are enhanced by
untethered, hands-free OSTHMDs which improvemobility and enable unencumbered use.
AR facilitates local collaboration and remote assistance. Where VR excels at delivering dis-
crete packages of simulated experience, AR is best applied to the continuous enhancement
of action in the real world (Leonard & Fitzgerald, 2018).

Neither AR nor VR have proved more effective than traditional classroom methods for the
recall-oriented learning outcomes found low in Bloom’s cognitive domain, including re-
membering, understanding, or applying. However, both demonstrated other benefits in
line with theory. VR users perform better on high-order questions related to analyzing,
evaluating, and creating. It is also known to improve student attitudes, including engage-
ment and self-efficacy (Cook et al., 2019; Kwon, 2018). AR users demonstrate improved
perception, performance, and understanding of spatial concepts, with student outcomes
correlated to physical engagement with the content. The psychological benefits of AR in-
clude reduced test anxiety and increased self-efficacy (Chen et al., 2019; Shelton & Hedley,
2003). These benefits have broad industrial and military applications.

2.11.2 Theories of Learning and Cognition

The perceptual, cognitive, and learning benefits of XR devices are generally attributed to
theories rooted in experiential and constructivist learning, as well as related cognitive the-
ories, all integral to the concept of active learning. These theories collectively emphasize
the importance of direct experience, active engagement, and integrating all human faculties
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in the learning process. By applying these principles, XR devices are posited to optimize
learning outcomes, assuming other factors are conducive. The following section will delve
deeper into these theoretical frameworks, explaining their relevance and application in the
context of XR-enhanced learning.

Active Learning Theories

Active learning theories (ALT), particularly constructivism and experiential learning theory
(ELT), describe the relationship between situated experiences and educational outcomes,
where the self-directed construction of new knowledge occurs through activity in a support-
ive environment (Clayton, 2017). Fundamentally, these ideas have epistemological origins
in empiricism, rationalism, and pragmatism, which consider the role of experience, reason,
and action in knowledge.

The idea of learning by doing is ancient, but the origins of modern ELT are usually at-
tributed to JohnDewey and his 1938work, Experience and Education (Dewey, 1938). Jean
Piaget’s theory of cognitive development later introduced the idea of constructivist learn-
ing theory (CONLT), wherein learners build new understanding through the interaction of
prior knowledge and experience (Piaget, 1928). Russian psychologist Lev Vygotskii’s “Zone
of ProximalDevelopment” (ZPD) emphasized the learner’s need for knowledgeable support,
along with the social aspects of constructivist learning (Vygotskiı̆ & Kozulin, 1986). These
ideas were expanded on by Jerome Bruner’s theory of “instructional scaffolding.” Bruner
claimed that understanding is developed through carefully guided and supported learner
experiences that build on their current knowledge (Bruner, 1960).

In 1984 David A. Kolb, a protégé of Bruner’s, published his cycle of experiential learning,
which identified four stages: concrete experience, reflective evaluation, abstract conceptu-
alization, and adaptive experimentation (Kolb, 1984). Kolb’s conceptual model incorpo-
rated elements from previous theories and is widely used to operationalize ELT concepts
today. Later, Lave and Wegner’s Situated Learning Theory emphasized the contextual as-
pects of ELT. They claimed that an environment relevant to the subject matter helped sit-
uate the learner’s mind, strengthening the experience and thus the learning effect (Lave &
Wenger, 1991).

Active learning theories are grounded in andragogy and its methods, as espoused by Mal-
colm Knowles (Knowles, 1970). Where andragogy emphasizes the self-directed methods
described above, pedagogy is primarily concerned with the delivery of knowledge and skills
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by an instructor. Modern educational systems are commonly designed to maximize the
uptake of content knowledge using the later approach (Leonard & Fitzgerald, 2018). Ped-
agogy is well suited to the developmental and intellectual needs of young learners focused
on the cognitive domain of Bloom’s Taxonomy of Educational Objectives (Bloom, 1956).
The objectives in this domain, as revised in 2001, are: remember, understand, apply, an-
alyze, evaluate, and create. The extended taxonomy also describes the domain of affec-
tive (emotional) development (Simpson, 1966). Where pedagogy excels at delivering con-
tent knowledge, andragogical methods better support “higher order” cognitive and affec-
tive learning. For example, andragogy is commonly employed in the development of 21st
Century Skills, including critical thinking, innovation, collaboration, and problem solving
(Millican, 2017).

Flow Theory

Focused activity can lead to a state of psychological absorption. This intuitive phenomena
is known as ‘flow,’ a term coined by Mihály Csikszentmihályi19 who described it as the “op-
timal experience” (Csikszentmihalyi, 1990). Flow is a cognitive and affective state in which
individual attention and motivation feel in harmony with the situation. This leads to a pe-
riod of absorbed productivity wherein the normal concern for our immediate needs abates.
Most of us recognize this highly gratifying experience, which is colloquially known as being
in the zone or groove. Many previous studies have established flow’s positive influence on
learning effects (Kwon, 2018).

Csikszentmihályi’s work claims that activities leading to flow must have structure and di-
rection, provide clear and immediate feedback, and balance perceived challenges and skills.
These interrelated requirements enhance the sense of competence and self-efficacy, in a
way that is highly engaging without creating anxiety (Csikszentmihalyi et al., 2014). The
so-called “flow channel,” in which challenge and skill are appropriately balanced for the
individual, is similar in concept to Vygotskii’s ZPD, as previously described.

Cognitive Load Theory

Cognitive Load Theory (COGLT) is a framework for instructional design that aims to opti-
mize learning bymanaging the cognitive load placed on learners. It is based on the assump-
19 Mihály Csikszentmihályi was a renowned Hungarian-American psychologist and researcher whose work
has been influential in various fields, including psychology, education, and business. His last name is
pronouncedme-high chick-sent-me-high.
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tion of a limitedworkingmemory and an unlimited long-termmemory (Sweller et al., 1998).
COGLT suggests that effective instructional material should direct cognitive resources to-
wards relevant learning activities (Chandler & Sweller, 1991). It identifies three types of
cognitive load: intrinsic, extraneous, and germane. Intrinsic cognitive load is determined
by the nature of the material, while extraneous cognitive load is caused by poorly designed
instructional materials (Sweller, 1994). Germane cognitive load, on the other hand, is the
cognitive load that contributes to learning by promoting the construction and automation
of schemas20.

Like Flow Theory and the ZPD concept, COGLT can inform both active learning theories
and pedagogical practices to optimize learning experiences. The former both deal with
aligning the challenge level of learning activities with the learner’s abilities to promote en-
gagement and learning. Meanwhile, COGLT deals more directly with how the presentation
of information affects memory and learning processes. Together, these theories provide a
comprehensive framework for designing effective and engaging learning experiences.

Embodied Cognition

Theories related to embodied cognition (EC) are concerned with the role of mind-body re-
lationship in cognitive processes, and how those processes are influenced by interaction
with the environment. EC makes diverse claims, some of which are controversial. Fun-
damentally, it asserts that cognition and sensorimotor processing are deeply intertwined.
“On-line” cognition, which occurs in the context of the real world, involves perception. In
that case, the purpose of the mind is to guide responses in real-time, and interactive exper-
imentation with the environment is often used to aid cognition. But much of human cogni-
tive activity occurs “off-line,” separate from the environment (e.g., planning, analysis). In
those times, cognitive processes are often informed by simulations of sensorimotor activ-
ity, including mental imagery, spatially-oriented mental models, and procedural memory.
Thus, EC ultimately claims that perceptual andmotor systems are not merely peripheral in-
put and output services; they are essential components of an integratedmind-body process
which is highly reliant on real or simulated interaction with the world (Wilson, 2002).

Mental practice is an instructive example of off-line cognition, defined as mentally rehears-
ing or “visualizing” a motor task in the absence of physical movement. These sensorimotor

20 In learning theory, a schema is an organized pattern of thought or behavior that helps in processing,
interpreting, and storing information in long-term memory. Schemas allow learners to categorize and
assimilate new information efficiently by integrating it with existing knowledge.
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simulations typically entail detailed mental representations of a specific real or hypotheti-
cal event. Compared to the corresponding physical experiences, they are shown to engage
similar neural and conceptual systems and have corresponding effects on perception, cog-
nition, motivation, and action. This form of mental simulation is known to be effective in a
range of cognitive and physical skill-based tasks, including golf putting, rock climbing, pi-
ano playing, and surgery. The effects ofmental practice appear to come from improved con-
nections between action planning, movement, and proprioception, demonstrating that the
brain responds similarly to imagined and real experiences (Kappes &Morewedge, 2016).

Spatial Cognition Theory

EC is related to spatial cognition theory (SCT),which describes the forms and sources of spa-
tial concepts. Spatial knowledge, it claims, comes in three forms: procedural, declarative,
and configurational. Procedural knowledge relates to navigating spaces or things. Simple
facts about a space and the entities therein are the basis of declarative knowledge. Config-
urational knowledge concerns the relative positions and orientations between spatial enti-
ties, as well as their relationships. Likewise, three sources of spatial knowledge have been
identified: haptic, pictorial, and transperceptual. Haptic knowledge is formed by touch or
body movement. Visual information is the source of pictorial knowledge. Transperceptual
knowledge is synthesized over time from multiple sources (Shelton & Hedley, 2003).

Animate Vision Theory

Though our language of human vision shares terms and ideas with cameras and pho-
tographs, the relationship is only analogous. A photo may resemble the mental image
of what we perceive, but it is a shallow, incomplete representation of the experience
(Greenwold, 2003). The operation of human vision is less like a camera than it is a
computational imaging system with multiple sensory inputs and a brain-based CPU.

Animate vision theory (AVT) proposes that “vision is not the transformation of light signals
into a representation of the enveloping 3D world, but … a tool used for sensory exploration
of the environment,” in which humans “sample a scene from the world in ways suited to
their immediate needs” (Shelton & Hedley, 2003). Human vision involves physical and
visually-related behaviors that iteratively construct a cognitive map of the environment.
With each cycle, those mental representations guide movements and actions that redirect
perception. New information acquired in each iteration is used to refine the cognitive map.
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In this visuo-motor model, motor movement is essential to vision as it provides valuable
information about the relative location of objects in the environment and the movement of
the perceiver in relation to them (Clark, 1997).

2.11.3 Implicitions to Instructional Design for Augmented Training

This review emphasizes the importance of differentiating AR from VR when considering
their application in learning and training contexts, particularly in manufacturing settings.
While VR excels at delivering self-contained, emotionally engaging simulations, its fully
immersive nature disconnects users from the real world, making it less suitable for sup-
porting manufacturing operators who need to interact with physical tools, machines, and
workpieces.

In contrast, AR’s ability to enhance the user’s connection with the real world aligns well
with the demands of manufacturing tasks. These claims are supported by well-established
theories of experiential and constructivist learning, including embodied, spatial, and visual
cognition. By preserving the user’s connection to the real world and leveraging natural
perception-action couplings, AR is believed to align more closely with human cognitive
architecture in ways that may enhance the acquisition of spatial and procedural knowl-
edge. These affordances make AR particularly well-suited for enhancing real-world task
performance and skill acquisition in manufacturing contexts, where operators need to nav-
igate complex spatial arrangements, manipulate physical objects, and execute precise pro-
cedures.

Cognitive load theory and flow theory offer additional insights about balancing cognitive
load and the level of challenge to enhance engagement and motivation. Ultimately, the
practical and theoretical implications of these theories must be carefully considered during
the instructional design of AR/MR-based training in order to meet the specific learning
objectives and demands of the manufacturing industry.

Together, these theories inform a cohesive approach to instructional design for augmented
training methods. As depicted in Figure 2.19, instructional design should be based on Ac-
tive Learning Theories and informed by Cognitive Load Theory, while applying Educational
Best Practices. Active learning theories are comprised of experiential and constructivist
components, along with related theories of cognition, embodiment, and flow.
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Figure 2.19: Instructional Design for Augmented Training Methods

2.12 Barriers to Adoption in Manufacturing

XR, particularly AR/MR, is still relatively immature. Despite promising results from pilot
studies, widespread industry adoption of AR/MR for training requires clear justification in
terms of return on investment (ROI) and measurable improvements in training outcomes.
A number of other important technical, market, and social / legal obstacles must also be
overcome (Azuma, 2019).

Doolani et al. (2020) conducted a comprehensive review of the current state-of-the-art
in the use of XR technologies for manufacturing training. The review included 52 peer-
reviewed articles published between 2001 and 2020, covering applications of VR, AR,
and MR in various manufacturing training domains, such as maintenance, assembly,
and human-robot collaboration. The authors found that XR technologies are effective in
improving performance, reducing errors, and increasing engagement compared to tradi-
tional training methods. They also identified key benefits of using XR in manufacturing
training, including enhanced safety, cost-efficiency, and scalability. However, the review
highlights current barriers to XR adoption, such as hardware limitations and the need for
further research on the application of AR in later phases of themanufacturing process. The
authors conclude that XR technologies are powerful tools for manufacturing training, with
each technology having unique capabilities and applications. They emphasize the need
for future research to focus on developing interactive training interfaces and addressing
the limitations of current XR systems to facilitate wider adoption in the manufacturing
industry.
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2.12.1 Measurable Improvement of Outcomes

In this section, we specifically focus on quantitative studies that evaluate the effectiveness
of AR in enhancing instructional techniques. Our inclusion criteria are centered on case
studies that require participants to learn and apply new cognitive and/or physical skills in
practical, hands-on tasks within a manufacturing context. Such studies must also involve
AR technologies that enable hands-free interaction. From an initial pool of 44 generally
relevant studies, only 10 were found to align with these stringent criteria.

Upon closer review, two cases were later found less relevant than originally understood.
Gonzalez-Franco et al. (2017) primarily assessed knowledge retention through fact-based
quizzes, and not the acquisition of practical assembly skills. Wang et al. (2021) was de-
signed to compare different instructional designs using the same AR device. Those studies
were retained in the literature review but excluded from further consideration in the inter-
pretations and conclusions that followed.

Tang et al. (2003) explores the comparative effectiveness of AR versus traditional and other
computer-assisted instructional media in an assembly task utilizing LEGO Duplo blocks.
In a carefully designed between-groups experiment involving 75 undergraduate students
with no previous AR experience, participants performed an assembly task under one of
four instructional conditions: traditional printed manual, computer-assisted instruction
(CAI) on an LCD monitor and see-through HMD, and spatially registered AR instructions
through an HMD. The assembly task, involving 56 procedural steps, was chosen for its
generalizability to a wide range of assembly tasks across sectors. Key performance metrics
included task completion time, error rate, and perceivedmental workload, measured by the
TLX. The authors discovered that spatially registered AR instruction significantly reduced
assembly errors and decreased participants’ mental effort compared to other media, high-
lighting AR’s potential to offload cognitive processing. However, while AR outperformed
the printed manual in completion time, it did not significantly outpace the other CAI con-
ditions. The study underscores the risk of attention tunneling in AR, where users might be-
come overly-reliant on its cues and become less aware of their physical surroundings. The
authors suggest that AR systems should be carefully designed to balance those inputs.

Gonzalez-Franco et al. (2017) examines the effectiveness of MR against traditional train-
ing in manufacturing. As seen in Figure 2.20, the study uniquely employed an OST HMD
setup to facilitate a face-to-face training where participants and instructors collaborated
using a virtual model of an aircraft maintenance door. Twenty-four employees of the in-

53



stitution, without prior manufacturing knowledge, were recruited for this between-groups
study. Knowledge retention tests and practical application assessments were used to deter-
mine the effectiveness and knowledge transfer. Analysis unexpectedly revealed that no sig-
nificant differences were found in knowledge retention and interpretation scores between
the MR and traditional methods. Task times did increase for MR training, attributed to
the complexity of and user inexperience with HMDMR. The research highlights a unique
capability of MR as equivalent training tool that can support, not replace some forms of
face-to-face training in the future.

Figure 2.20: Experimental Setup from Gonzalez-Franco et al. (2017)

Chu et al. (2020) investigates the comparative effectiveness of instructional methods for as-
sembling models of traditional Chinese architecture. The between-groups study recruited
48 engineering students to compare traditional paper instructions with a 3D viewer and an
AR-assisted system. Each treatment was designed to include a progression of instructional
affordances, as seen in Figure 2.21, based on validated paper-based instructions. Despite
this, paper methods were associated with the most part-fetching errors, suggesting they
lacked the necessary clarity. The AR system showed a trend towards reducing assembly
errors and improved the accuracy of component placement, albeit at the expense of longer
assembly times. Participants indicated a preference for the interactive features of AR, but a
comparison of TLX responses showed no significant difference in perceived workload. The
authors conclude that while AR has the potential to support complex manual assembly, the
longer assembly times suggest areas for improvement in AR-assisted systems, such as re-
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ducing part confirmation time and addressing user fatigue. They also emphasize the impor-
tance of well-designed instructional content and user interaction methods in AR-assisted
assembly systems, as these factors can significantly impact assembly performance and user
experience.

Figure 2.21: Progression of Instructional Affordances from Chu et al. (2020)

Büttner et al. (2020) investigates the efficacy of projection-based AR systems compared
to personalized training and paper manuals for industrial assembly work training. The
between-groups study simulated assembly tasks using a Fischertechnik construction kit.
Training cycles, training time, error rates after 24 hours and 1 week, and quiz scores were
tracked across 24 participantswithout prior AR experience. Personalized training outpaced
both projection-based AR and traditional paper manuals in immediate learning efficiency.
While AR systems somewhat improved training efficiency by preventing systematic mis-
learning through immediate feedback, they did not significantly outperform othermethods
in terms of training speed or long-term recall precision. The approach emphasized impact
on the learning process—–training efficiency (rate of skill acquisition) and sustainability
(recall and retention)—–over immediate task performance metrics like error rates and task
completion time. The authors conclude that while projection-based AR can prevent mis-
learning, it does not offer significant benefits over paper manuals. They suggest exploring
ways to incorporate aspects of personalized, adaptive training into AR systems to poten-
tially improve training efficiency.
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Hoover et al. (2020) examines the efficacy of using a first generation Microsoft HoloLens
(HL1) for delivering AR guided assembly instructions against traditional and tablet-based
digital instructions. Data for desktop and tabletmodel-based instructions, alongwith tablet
AR conditions were drawn from prior studies. Participants in this between-groups study
completed a mock aircraft wing assembly task in 46 steps. This task, created in partner-
ship with the Boeing Company, was designed to reflect the complexity and variety of oper-
ations required in aircraft construction. The study found that HL1 AR instructions signifi-
cantly improved task completion efficiency and accuracy, though floor effects make those
accuracy findings less definitive. While outperforming non-AR instructions, HL1 AR led to
significantly fewer errors than desktop MBI and tablet MBI but not tablet AR. User satis-
faction measured by Net Promoter Score was lower for HL1 AR than tablet AR, attributed
to comfort issues like the device being heavy and 3D tracking problems identified in quali-
tative feedback. The authors recommend using HL1 AR for complex assemblies withminor
changes like toggling instructions on/off, and employing SUS for more rigorous user expe-
rience evaluation.

Vanneste et al. (2020) examines the comparative efficiency of projected AR, oral, and paper
instructions in enhancing assembly operations, particularly for workers with cognitive or
motor disabilities. In this within-groups study, various outcomes were measured, includ-
ing productivity, quality, and help-seeking behavior. Stress was professionally observed
and a modified version of the TLX was administered post-hoc. The findings reveal that
AR instructions, specifically projection-based ones, significantly improved task quality by
reducing error rates and aided operators in achieving better task comprehension and in-
dependence, as evident from reduced help-seeking behavior compared to oral instructions.
However, AR did not outperform other media in terms of productivity or physical effort.
The authors conclude that while AR has the potential to provide cognitive support by reduc-
ing perceived complexity and stress for novice learners, these advantages seem to diminish
with repeated attempts as operators gain experience.

Havard et al. (2021) assesses the impact of AR against traditional PDF instructions on per-
forming complexmaintenance tasks within industrial settings, focusing on task complexity
and operator competency. The authors claim novelty in their approach of separating out
and measuring consultation duration as distinct from physical execution duration. In this
between-groups study involving a 27-step drillingmodule maintenance task, measures like
maintenance duration, consultation times, error rates, and satisfaction (TLX, SUS, feed-
back) were evaluated. The study found no significant differences in total maintenance du-
ration between AR and PDF tablets for either competency group, regardless of if AR search
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time was included. Like other studies, it found that AR users were less prone to skip steps
due to the direct feedback provided. However, AR was found to provide particular bene-
fits over PDF for operation steps involving parts that are small, hidden or hard to locate, or
easily confused, and steps requiring coordinated gestures. The study shows that AR acquisi-
tion and tracking delays account for a 34% increase in consultation times compared to PDF
instructions, but the mean number of consultations was lower. The same delays impacted
performance, especially for less experienced operators who faced greater usability issues
and gave lower SUS ratings for AR, despite an overall “good” score. It did not find signifi-
cant differences inmental workload betweenARandPDF for either competency group. The
authors conclude that, if tracking delays are overcome, AR exhibits promise for facilitating
complex industrial tasks. In particular, they find it is well suited for frequently repeated
or complex operations (due to accumulated consultation savings) and situations involving
high operator turnover. This is especially true when the benefits previously enumerated
can be leveraged, and operator competency is considering during deployment.

Kolla et al. (2021) explore the efficiency of AR against paper-based instructions. Partici-
pants in this study constructed a planetary gearbox using a variety of operations represen-
tative of a realmanufacturing scenario. Both ARmethods—HoloLens and amobile device—
notably reduced errors and improved system usability over traditional paper instructions,
albeit without significantly affecting task completion times or workload. The authors un-
derscore the critical role of thoughtful application design in AR’s efficacy, highlighting how
leveraging benefits like spatial mapping and speech recognition, while addressing limita-
tions like occlusion and collision, contribute to smoother user interfaces and more positive
task outcomes. The study’s within-groups design with counterbalancing helps control for
individual differences and learning effects. Participant responses to TLX and SUS surveys
further confirmed the superior user experience offered by AR instructions. However, the
authors suggest that further research with a larger sample size is needed to investigate task
completion time andworkloadmore conclusively. They recommend futurework to validate
AR’s effectiveness in real assembly or training tasks within enterprises.

Wang et al. (2021) investigated the effectiveness of user-centered AR instruction in im-
proving assembly performance and reducing cognitive workload compared to traditional
2D paper-based instruction. The study recruited 30 participants with an engineering back-
ground but no prior AR experience. Each were given the task of locating the centroid of
a triangle, which they completed for both treatments. The crossover design of this study
counterbalanced the order of conditions to help control for learning effect. As seen in Fig-
ure 2.22, AR instructions were delivered through a projected display system, while a HL2

57



was used to collect eye-tracking data. Assembly time, error rates, and NASA-TLX scores
were also measured. Results showed significantly faster completion times, fewer errors,
and lower cognitive workload for the AR condition. The authors conclude that augmented
instruction, when designed to meet users’ cognitive needs, enhances spatial understanding
and task performance for novices.

(a) Projected AR System Configuration (b) User’s View of AR Operation

Figure 2.22: Experimental Setup fromWang et al. (2021)

Alves et al. (2022) investigate the efficacy of three AR methods—Mobile, Indirect, and Op-
tical See-Through HMD—in supporting assembly tasks. Specifically, this study aims to
address the lack of research using equivalent task designs to compare multiple AR meth-
ods and their relative advantages. The crossbalanced, within-groups study recruited 30
participants from the university community, each with varying exposure to AR assembly
support. Participants were asked to prioritize accuracy and speed while constructed an 18-
step LEGO Duplo assembly. Uniquely, they were given the choice to to either superimpose
the virtual assembly or view it adjacent to the workpiece. Mobile AR was associated with
significantly higher task completion times than both Indirect AR and HMD AR, while no
significant difference was found between the latter two. Indirect AR, often overlooked, led
to significantly fewer location errors compared to the othermethods, and alongwithMobile
AR, was more prone to shape errors than HMD AR. Notably, the analysis focused heavily
on workload evaluation, with Indirect AR demonstrating significantly lower mental and
physical demand as measured by “raw” (unweighted) TLX scores. The study also found a
significant difference in the error types most common to each treatment and a tendency
of participants not to leverage beneficial affordances. The authors conclude that while all
three methods were adequate, factors like price, comfort, usability, and control would de-
termine the best fit for the application, highlighting the need to understand their relative
advantages for the task and outcomes of interest. Specifically, they identify monitor-based
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Indirect AR implementations as a very promising yet relatively unexplored option. Finally,
despite stipulating that “Spatial AR” has been found to provide the best overall results, a
lack of capable equipment prevented its inclusion in this study.

Summary of Study Results

The results of these studies are summarized in Table 2.1, including columns for Sample Size
(SS) and AR/MR treatment type (AR), along with the primary results: Time, Errors (Err),
Workload (Work), and Usability (Use). Where a study included more than one AR/MR
treatment type, the one that best leverages the available affordances is listed. Cells for each
of the four primary results denote the nature and significance of measured differences be-
tween the identified intervention and control (paper or digital work instructions). This
approach maximizes the theoretical benefits, providing a “best case” interpretation of the
results. For studies that involved two sessions (Büttner, Hoover), the outcome represents
an approximate average of the findings.

The letter P is used to indicate a positive effect, where negative effects are indicated with an
N. Asterisks indicate varying levels of significant effect, where one, two, and three stars cor-
respond to increasing levels of statistical significance (𝑝 < 0.05, 𝑝 < 0.01, and 𝑝 < 0.001).
Indicators without asterisks denote situations where a difference was reported without a
test for significance. Dashes indicate no effect and empty cells were not measured.

Table 2.1: Summary of Results, AR/MR Case Studies

Paper SS AR Time Err Work Use

Tang et al. (2003) 75 HMD P* P* P
Gonzalez-Franco et al.
(2017)

24 HMD N*

Chu et al. (2020) 48 Mobile N** P* —
Büttner et al. (2020) 24 Proj — —
Hoover et al. (2020) 30 HMD P** P*** N
Vanneste et al. (2020) 40 Proj P**
Havard et al. (2021) 42 Mobile — P P*
Kolla et al. (2021) 30 HMD — P* — P*
Wang et al. (2021) 30 Proj P** P*
Alves et al. (2022) 30 HMD P*** N P*
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Most studies found that AR significantly reduced error rates compared to traditional in-
structional methods. However, Chu et al. (2020) noted that only part-fetching errors were
significantly reduced in AR, while Büttner et al. (2020) noted that AR prevented mislearn-
ing, but found no significant improvement in short or medium-term recall. Alves et al.
(2022) reported mixed results.

The impact of AR on task completion time was less consistent across studies. Some studies
reported significant improvements, while others found increased times or no significant
differences. Notably, Havard et al. (2021) found longer consultation times due to tracking
delays but fewer overall consultations with AR, resulting in similar overall task times.

Several studies assessed cognitive workload using the NASA-TLX or modified versions,
with many finding that AR significantly reduced workload compared to traditional meth-
ods. Tang et al. (2003) did not support that finding with pair-wise analysis, while neither
Chu et al. (2020) nor Kolla et al. (2021) found significant differences in perceived work-
load.

Only three studies evaluated usability using standardized instruments, with mostly posi-
tive results. Hoover et al. (2020) found lower user satisfaction with AR compared to tablet-
based instructions due to comfort and tracking issues, but the study did not report signifi-
cance. Havard et al. (2021) and Kolla et al. (2021) reported improved usability with AR.

Havard et al. (2021) suggests that the benefits of ARmay be more pronounced for complex
tasks or in situations involving high operator turnover. However, Vanneste et al. (2020)
found that the advantages of AR may diminish as operators gain experience with repeated
task performance. Alves et al. (2022) noted that “indirect AR,” as pictured in Figure 2.23,
is a particularly promising and generally overlooked option.

This literature review demonstrates broad support for the preliminary findings previously
discussed. These eight case studies, drawn from various domains and with a range of task
types and complexity, provide empirical evidence that aligns with the promised improve-
ments to learning transfer, accuracy, and performance compared to traditional instruc-
tional methods. However, that effectiveness is shown to depend on various factors such
as task complexity, user experience, and application design. We will explore this claim fur-
ther in the following section.
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Figure 2.23: Indirect AR from Alves et al. (2022)

Summary of Study Designs

While the outcomes of these studies provide valuable insights, a comprehensive under-
standing of their collective significance requires a closer examination of their design and fea-
tures, as summarized below. Table 2.2 includes columns for Relevance (Rel), and AR/MR
treatment type (AR), as well as the instruments used for assessing Workload (Work) and
Usability (Use).

Relevance is an overall measure of how closely the study’s task resembles real-world as-
sembly tasks, designed to facilitate the assessment of each study’s ecological validity.21 It
was assigned based on the nature and complexity of the task design, using a standardized
5-point scale. Purely abstract tasks were given scores in the 1-3 range, LEGO assemblies
2-4, and realistic tasks 3-5. The final determination was based on the assigned range and
relative complexity. Two studies were assigned an overall relevance of zero as they did not
meet the criteria for inclusion, as described above.

21 In the context of this review, ecological validity pertains to how well the study’s task design mirrors
authentic manufacturing assembly tasks in terms of complexity, tools, and environment. Studies with
higher ecological validity would, therefore, be considered more relevant and informative for understanding
the effectiveness of AR technologies in real-world industrial settings.
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Table 2.2: Summary of Design, AR/MR Case Studies

Paper Task Rel AR Work Use

Tang et al. (2003) Abstract LEGO
Assembly

3 HMD TLX

Gonzalez-Franco et al.
(2017)

Aircraft Door Assembly 0 HMD

Chu et al. (2020) Architectural Model
Assembly

3 Mobile TLX

Büttner et al. (2020) Industrial Model
Assembly

4 PAR

Hoover et al. (2020) Realistic Aircraft Wing
Assembly

5 HMD NPS

Vanneste et al. (2020) Assembly & Quality
Control Tasks

3 PAR MTLX

Havard et al. (2021) Drill Maintenance
Operation

5 Mobile TLX SUS

Kolla et al. (2021) Realistic Gearbox
Model Assembly

4 HMD TLX SUS

Wang et al. (2021) Abstract Spatial
Procedure

0 PAR TLX

Alves et al. (2022) Simple LEGO
Assemblies

2 HMD RTLX

The reviewed studies employed a wide range of task types, relevance, study designs, and
AR/MR technologies. All studies assessed immediate learning effects, while only Büttner
et al. (2020) assessed recall or retention. Workloadwas commonlymeasured using the TLX
or variations thereof. In all but one case, usabilitywas evaluated using the SUS.Hoover et al.
(2020), after using the Net Promoter Score (NPS), noted plans to switch to SUS for future
studies for improved rigor.

Most studies used paper instructions as the control condition, though two utilized digital
equivalents. Some studies, such as Alves et al. (2022), compared multiple AR methods
using equivalent task designs to assess their relative advantages. All but one (Büttner et al.,
2020) measured task completion times. All studies measured error count, but only Chu
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et al. (2020) and Tang et al. (2003) measured error types. Chu et al. (2020) and Havard
et al. (2021) broke down time by task step.

Several studies incorporated unique design features or methodological approaches. Büt-
tner et al. (2020) focused on training efficiency and sustainability, using quizzes and train-
ing cycles as additional measures of knowledge capture. Havard et al. (2021) and Vanneste
et al. (2020) were the only studies to measure consultation time, providing insights into
help-seeking behavior and AR tracking delays. The latter’s work included participants with
cognitive or motor disabilities.

Kolla et al. (2021) and Chu et al. (2020) designed treatments with affordances in mind,
emphasizing the importance of leveraging AR’s unique capabilities. The latter employed
deliberate instructional design with progressive affordances across treatments. Though it
was otherwise excluded from this summary, Wang et al. (2021) demonstrated the benefits
of instructional design for AR-assisted learning outcomes.

All studies employed either between-groups or within-groups designs. In order to help
control for learning effect, all within-groups studieswere counterbalanced via task ordering.
All but Vanneste et al. (2020), Havard et al. (2021), and Kolla et al. (2021) employed a
toolless task design to control for previous experience.

Finally, it is important to note that neither Chu et al. (2020) nor Hoover et al. (2020) were
entirely hands-free designs. The former required some manipulation of the device and the
latter utilized a wrist-mounted wireless button for input. Hoover et al. (2020) chose this
over voice or gesture control of the HL2, which “are not always feasible in a factory envi-
ronment.”

2.12.2 Other Factors

Technical Considerations

Among technical limitations, general concerns about usability and immaturity are com-
monly noted (Leonard & Fitzgerald, 2018). Usability is primarily concerned with qualities
of the application software, including user interface design, which are outside the scope of
this work but obviously critical to the user experience and thus adoption. Technical imma-
turity relates to display fidelity (e.g., resolution, FOV, brightness, and contrast) and picto-
rial consistency. Of the latter, robust tracking is the most fundamental. AR devices must
provide accurate, stable tracking in a variety of environmental conditions (Azuma, 2016;
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Gay-Bellile et al., 2015). Related to tracking, and of particular concern to OST AR devices,
is occlusion. Accurate compositing and occlusion require an understanding of the struc-
ture and illumination of the real world scene. These so-called scene semantics also allow
for advanced interactions that build meaningful connections with the world (Azuma, 2017;
Fischer, 2015). Finally, VACmitigation techniques are necessary to eliminate it as a source
of user discomfort in fixed focal length displays (Kress, 2020).

Over time, compounded incremental improvements promise to address many of the issues
related to display fidelity and world tracking. Fast, accurate, universal eye tracking is pre-
miering in the latest generation of XR devices, enabling other critical technologies. VAC
mitigation methods that utilize gaze direction to perform discrete or continuous focus tun-
ing should soon follow, along with foveated displays (Kress, 2020). Scene semantics is an
active area of research in the deep learning community, and promising methods are emerg-
ing (Roberts & Paczan, 2021). Hard-edged occlusion in OST AR and multifocal displays
still seem intractable with modern optical designs. Future advancements will likely rely on
innovative methods, including light field and digital holographic displays that allow for lay-
ered or even per-pixel scene depth (Kress, 2020). Until then, tradeoffs guided by human
factors and a deep understanding of customer needs will be required to deliver solutions
with optimal product-market fit.

Market Considerations

Meanwhile, market considerations will limit adoption, even for XR systems that are “good
enough” for today. Key among those are interoperability, standards, validation, metrics,
organizational readiness, and access to content. Interoperability promotes open and/or
standardized interfaces between systems. Commercial XR solutions are frequently built on
stacks of interconnected technology that rely on other systems for data, etc. As such, in-
teroperability is essential to the development of reliable, cost effective systems (Gay-Bellile
et al., 2015). Interoperability depends heavily on the emergence of standards created to
promote and enable it.

Here, standards is a broadly interpreted term. It includes publications from “standards bod-
ies” like UL, ISO, and ANSI; similar publications from professional organizations; written
frameworks that guide organizational processes and decision-making; and software frame-
works, including APIs, libraries, or stacks that facilitate development. Together, these
standards provide informational scaffolding, development support, tools, and even legal
cover that many organizations need to reduce uncertainty and ease adoption. Relevant
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examples include the UL 8400 safety standard (UL, 2022), IEEE 1589 AR Learning Ex-
perience Model (IEEE, 2020), ETSI’s Augmented Reality Framework (“ETSI Augmented
Reality Framework”, n.d.), andMicrosoft’sMixedReality Toolkit (“MicrosoftMixedReality
Toolkit”, n.d.).

Validation and metrics both relate to demonstrating the claimed benefit of these systems.
For industrial applications, adoption depends on quantifying the system value in terms of
ROI and/or other metrics. Domain-specific modeling methods and evaluation metrics are
needed to facilitate direct assessment and comparison of these systems (Kersten-Oertel et
al., 2015). Organizational readiness is an overall assessment of a company’s ability to adopt
an XR solution. It includes considerations that are both cultural (e.g., leadership, attitude,
risk tolerance) and practical (e.g., budget, goals, capacity) in nature (Cook et al., 2019). In
part it is ameasure of howwell equipped the organization is to recognize and leverage the in-
novative benefits of XR, along with their willingness and ability to adapt to them (Leonard
& Fitzgerald, 2018). The final market consideration is access to content. At this stage of
adoption, most industrial XR systems will be custom applications, with few consumer-off-
the-shelf (COTS) solutions. That said, software frameworks are available that enable low /
no-code alternatives for common application types. Also, there is a growing network of spe-
cialized development studios and value-added resellers available for XR development.

Social and Legal Considerations

Important other social and legal barriers to XR adoption exist, most related to social com-
fort. Issues related to privacy and wearer’s rights, censorship / disinformation / propa-
ganda, driving with headsets, medical regulations, and related liabilities is a partial list of
potential impediments (Barfield, 2015). While important to consider in the context of XR
adoption, this category is outside the scope of this work.

In order to address many of the barriers identified above, a number of frameworks have
been proposed to guide the specification, design, and implementation of XR solutions.

2.12.3 Gaps and Opportunities

The adoption of AR/MR for manufacturing support and training faces a number of impor-
tant obstacles. Technical limitations, such as usability issues, display fidelity, tracking ro-
bustness, occlusion handling, and vergence-accommodation conflict mitigation, pose sig-
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nificant challenges. While ongoing research and incremental improvements are expected
to address many of these concerns over time, tradeoffs guided by human factors and a deep
understanding of customer needs will be necessary to deliver optimal solutions in the near
term.

Market considerations, including interoperability, standards, validation, metrics, organiza-
tional readiness, and access to content, also play a crucial role in the adoption of AR/MR
technologies. The development of open and standardized interfaces, along with the emer-
gence of industry standards and frameworks, will be essential to promote cost-effective
and reliable systems. Organizations must also be equipped to quantify the value of AR/MR
solutions in terms of cost-benefit and other relevantmetrics. Organizational and user readi-
ness, encompassing both cultural and practical aspects, will determine a company’s ability
to recognize and leverage the innovative benefits of AR/MR technologies. Finally, impor-
tant social and legal barriers must be addressed.

Fundamental to any industry adoption process is fact-based decision-making. To that end,
the case studies reviewed showedAR/MRassisted instruction can help address the needs of
manufacturing assembly training, but is not a one-size-fits-all technology. Its effectiveness
varies with task complexity, user experience, the specific technology used, and other factors.
The exact nature of those relationships is still not well understood.

Meanwhile, researchers should consider whether AR/MR needs to be “better” than tra-
ditional methods. This may seem counterintuitive in our age of high-tech wonders, but
merely equivalent performance, when combined with other benefits, such as scaleability,
cost-efficiency, repeatability, and safety, could be enough to drive adoption in the short
term (Kaplan et al., 2021).

When examining the specific technologies used in these studies, HMDs stand out as partic-
ularly relevant for manufacturing assembly tasks due to their hands-free interaction meth-
ods, spatial registration, and unrestricted field of view. It is still essential to recognize the
potential benefits of other AR technologies, such as mobile, projected, and indirect AR, as
each has its own unique advantages and limitations. This is especially true as full-featured
AR/MR headsets still suffer from technological limitations.

An important and related insight from these studies is the importance of well-designed
instructions minimize AR’s limitations while leveraging its affordances. Effective instruc-
tional design must consider user needs, abilities, and the context of the task. As discussed
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in Section 2.11.2, when done correctly, this leads to lower cognitive load, improved perfor-
mance, and higher user satisfaction.

Despite the promising findings, there are notable gaps and limitations in the existing re-
search. Most studies focus on immediate learning effects, with minimal coverage of long-
term retention. The lack of industry recruitment in these studies may limit the ecological
validity of their findings, as the tasks and settings may not fully represent real-world man-
ufacturing contexts. Additionally, the highly abstract nature of some tasks (e.g., Tang et al.
(2003)), may have hindered some participants’ ability to form the mental models required
for learning.

Measuring user satisfaction and usability through instruments like theNASA-TLX and SUS
is crucial for assessing the quality of AR/MR implementations and guiding iterative im-
provements in tool development. By considering user feedback and needs, researchers
and developers can create effective, engaging training solutions that address human prob-
lems and fit seamlessly into users’ workflows. Adopting a human-centered design approach
that incorporates user perspectives throughout the development process is essential for suc-
cess.

Upon closer review, the heterogeneity of study designs emerges as a key concern. The wide
variety of tasks, technologies, methodologies, andmeasures employed across these studies,
while representative of the broader field, may hinder our ability to draw generalizable con-
clusions about the effectiveness of AR/MR in manufacturing assembly training. This issue
is not unique to the domain and is identified in related studies.

Kaplan et al. (2021) conducted a meta-analysis comparing XR training’s efficacy with tra-
ditional methods. Specific inclusion criteria were employed to ensure the validity and rel-
evance of the included studies. Twenty-five studies were identified that quantified perfor-
mance among adults after XR training for cognitive, physical, or mixed tasks. The analysis
focused on learning transfer as a critical measure of the direct effect of training on real-
world performance, and used a random-effects model to allow for direct comparison of
results across diverse study designs. The authors concluded that the heterogeneity of study
designs complicates the search for standardized efficacy metrics in XR training. They iden-
tified a need for more empirical studies and called for a unified methodological approach
in those future explorations.

Further evidence of this gap is found in Moro et al.’s (2021) meta-analysis of VR/AR for
anatomy and physiology knowledge acquisition, which found substantial unexplained het-
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erogeneity (𝐼2 = 72%) across eight studies. This suggests that the studies were not mea-
suring the same effect, and makes it difficult to interpret the overall results. The source
of this heterogeneity could not be identified by removing outliers or conducting a post hoc
sensitivity analysis, and authors ultimately noted it as worthy of further exploration. Here
again, it is most likely due to the small number of studies and their diverse designs.

Together, these studies support our interpretation that more uniform and rigorous study
designs are required to identify key factors influencing the success of AR/MR interventions
in real-world industrial contexts.

As a final note, these case studies span over two decades (2003-2022), during which time
AR technology, instructional design, and manufacturing needs have all evolved signifi-
cantly. This evolution may contribute to the improved results observed in more recent
studies and highlights the importance of ongoing research to identify the key factors that
influence the success of AR/MR interventions in real-world manufacturing contexts.

2.13 Tools for Development and Assessment

As shown in the previous section, the successful adoption and implementation of AR/MR
technologies for manufacturing training requires careful consideration of various factors,
including technical feasibility, user acceptance, organizational fit, and economic viability.
Researchers and practitioners have developed a variety of methods, frameworks, and in-
struments to guide this process. These tools ensure that AR/MR solutions are aligned with
the specific needs and requirements of the manufacturing domain, and are designed and
implemented for users in a way that maximizes their effectiveness.

2.13.1 Development Methods

This section will discuss literature related to methods for specifying, designing, and imple-
menting AR/MR systems for industrial training applications.

Specification

Palmarini et al. (2017) proposes a questionnaire based strategic decision making tool to
guide the selection of AR systems for maintenance applications. The authors noted that
these selections are challenging, with many considerations and a fragmented market of
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hardware and software solutions. The authors developed 30 questions, grouped into four
questionnaires, based on the analysis of AR system characteristics described in related pa-
pers. Each questionnaire is designed to address the main hardware, software, and content
choices involved, along with the overall suitability of an AR based solution. The author
notes that the approach is not validated, does not address economic or ergonomic consid-
erations, and does not generalize to other applications. Additionally, the resulting recom-
mendations are general in nature and exclude VR and MR options.

Design

Borsci et al. (2015) describes the importance of alignment between training objectives, con-
tents, method, and expected outcomes, along with the criteria used to evaluate those out-
comes, in program design. This alignment is considered essential in the field of training
assessment but usually overlooked in VR/AR studies. The authors found that experimental
methods ignored important factors, did not employ standardized instruments, and failed
to consider organizational or environmental needs. As a result, most studies are not reli-
able or generalizable. They concluded that a common framework is needed to address these
issues in the design and assessment of XR training systems.

Taylor (2021) proposes a framework for adapting live training events to distance learning
via immersive environments. Flow Driven Learning Experience Design (FLXD) integrates
flow and transactional distance theories into Kolb’s experiential learning model. FLXD
describes how the designer can combine traditional and immersive learning methods in
a way that best meets the unique needs in each of ELT’s four stages. Taylor’s work was
designed to meet the needs of the large, diverse population of learners typical in military
training programs.

Implementation

Longo et al. (2017) details SOPHOS-MS, a methodological framework and reference imple-
mentation for augmented operators in I4.0 based on Lee’s 5C architecture. Their frame-
work adopts a human-centered approach wherein the operator is essential to the optimal
integration of real and virtual assets. By providing real time feedback, support, and access
to the IT knowledge-base, SOPHOS-MSextends operator capabilities. This is accomplished
via a verbal natural language interface using a variety of XR hardware. Their approach is
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suitable for a both on-line and off-line purposes, including training, collaboration, and sup-
port. Tests of this versatile implementation showed that operators trained with it outper-
form traditionally-trained counterparts throughout a two week period of use.

Geng et al. (2020) notes that industrial AR adoption is hindered, in part, by its reliance
on custom software that is rarely reusable or flexible. The authors propose an adaptive no-
code authoring system that allows end users to quickly customize and deploy ARWI (AR
work instructions). The structure of their system enhances its adaptability to user needs,
training environments, work processes, and system configurations. Its data driven design
and form-based authoring tool are flexible, modular, and easily extensible. A collabora-
tive implementation approach ensures that process requirements are accurately portrayed.
Authoring tasks alternate between engineers and operators as each ARWI moves through
four stages of development. Together, these features, and many more described therein,
provide an agile alternative to rigid systems bottlenecked by their reliance on experienced
developers.

Laviola et al. (2021) identified a lack of standards for the design of AR work instructions,
without which choices are based on personal preference. This can lead to unnecessarily
complex visuals that negatively impact cost and performance without improving the user
experience. The authors proposed a standard process for AR work instruction design that
conveys only the information required to accomplish a task, considering real objects in-
volved, end-user needs, and task complexity. Experiments confirmed this “minimal AR”
approach did not degrade any measured variable of user performance for various levels of
task complexity.

2.13.2 Assessment Methods

Here, we review literature related to the assessment of XR systems, including well-known
frameworks and popular instruments.

Frameworks

Kersten-Oertel et al. (2015) described theirDVVTaxonomy for describingAR image-guided
surgical systems, and proposed a framework for their assessment. DVV is an acronym of
the three components identified in the taxonomy: data, visualization processing, and view.
Those components, their classes and subclasses, and the relationships between them are
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considered at each step of the surgical scenario. The framework assesses image-guided
surgical systems based on technical parameters, reliability, surgical performance, patient
outcomes, economics, and social / legal / ethical aspects of use. Each component is eval-
uated in terms of the primary components of the operating room environment - surgeon,
patient, and AR system - and the relationships between them.

Jetter et al. (2018) identified key performance indicators (KPIs) that influence user accep-
tance of AR for industrial applications. From a list of 16 candidate KPIs identified in a
structured literature review and semi-structured expert interviews, the authors identified
reduction of time and errors, spatial representation of contextual information, cognitive
workload, and ease of use as the most predominant and suitable factors to study. Hypothe-
sizing that the perceived usefulness of AR is influenced by those factors, a theoretical frame-
work based on the Technology Acceptance Model (TAM) was developed to evaluate their
effects on user attitudes and intentions. Their qualitative study found that all four KPIs
had a positive role in users’ perceived usefulness of AR, and thus their attitude towards
and intent to use it. Despite that positive outcome, they also found that users are not yet
convinced of AR’s benefits, suggesting the importance of clear and convincing use cases.

Masood and Egger (2019) identify factors that influence the success of industrial AR using
a research model based on the Technology, Organization, and Environment (TOE) for the
adoption and implementation of innovation. Where implementation success (IS) is often
measured in the literature by measures of worker performance improvement, here it refers
to the benefits received by the company and their willingness to make further investments.
Quantitative analysis found technological considerations, including system configuration
along with technology hardware readiness and compatibility, and organizational fit had
the most impact on IS. Their study also included a qualitative survey, which identified im-
portant challenges to IS. Together, these results provide a valuable, cohesive, and holistic
depiction of success factors.

The following year Masood and Egger (2020) extended their prior research with 22 exper-
iments conducted in an industrial setting and designed to identify challenges and success
factors for IAR adoption. Using a combination of quantitative and qualitative analysis, the
authors found that user acceptance, system stability, and organizational fit were the pri-
mary factors for success. Likewise, user rejection, system incompatibilities, technical ma-
turity, and content creation issues were the main challenges. These findings can help guide
strategic planning and requirements development for new IAR initiatives. In addition, the
study gathered diverse industry feedback related to each context of the TOE model. A key
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implication of this study is that the relative importance of technological and organizational
considerations vary, where the latter are more relevant in industry.

Danielsson et al. (2020) developed and applied a framework to assess the state of AR for in-
dustrial assembly applications. Fromamanufacturing engineering perspective, the authors
considered authoring, infrastructure, and validation. Technical maturity concerns focused
on the Technical Readiness Levels (TRLs) of available devices. Key requirements and en-
abling technologies were described. From both perspectives, AR is rapidly improving but
still only suitable for limited usage. The authors identified a need for strategic decision-
making guidelines for the integration of these systems. Such guidelines should need to be
validated and account for economic considerations.

Instruments

Witmer and Singer’s (1998) Presence Questionnaire consists of 32 items and measures the
degree of presence experienced in a virtual environment. The same publication describes
the Immersive Tendencies Questionnaire which measures the tendency of an individual
towards immersion with 29 items. Both instruments use a seven-point scale where the
endpoints are anchored by opposing descriptors (e.g., not compelling / very compelling).

The Flow State Scale by Jackson andMarsh (1996) is a 36 item instrument used tomeasure
nine dimensions of the flow state described by Csikszentmihályi. It uses a 5-point Likert-
type scale anchored with strongly disagree / strongly agree descriptors.

Kennedy et al. (1993) derived the Simulator Sickness Questionnaire from a prior instru-
ment intended to measure real-world motion sickness. Differences in the origin, type, and
severity of simulator sickness symptoms demanded it. Users self-report the presence of
16 symptoms ranging from general discomfort to nausea. Each symptom is measured on
a scale of none, slight, moderate, severe. Three principal factors of this instrument are
interpreted as clusters of oculomotor, disorientation, and nausea symptoms.

Hart’s NASA Task Load Index (TLX, 2006) has been used to estimate workload for almost
40 years. It assesses overall task workload based on the magnitude of mental, physical,
and temporal demands imposed by the task, the operator’s emotional response to those de-
mands (effort, frustration), and their perceived ability to meet them (performance). These
six factors are weighted based on the factors each subject feels best describe the workload
associated with the task under study.
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The System Usability Scale (SUS) was designed by John Brooke (1996) to provide a “quick
and dirty” assessment of usability for industrial systems, where detailed analysis is often
expensive and impractical. The design of SUSwas partly informed by his work on ISO 9241-
11 (International Organization for Standardization, 2018), a standard for the definition and
measurement of usability. It describes usability in terms of effectiveness, efficiency, and sat-
isfaction in the context of use. Because the first two are difficult to compare across systems,
SUS focuses on user satisfaction (Brooke, 2013). The resulting score is only indicative in
nature. The SUS is not diagnostic and can not pinpoint specific usability issues. Despite its
limitations, multiple studies have shown the SUS is a valid and reliable high-level measure
that is applicable to a wide range of technologies (Bangor et al., 2008; Sauro, 2011).

2.13.3 Needs and Recommendations

The reviewed methods, frameworks, and instruments share common themes and goals.
They aim to guide the specification, design, and implementation of AR/MR solutions to
align with the specific needs and requirements of the manufacturing domain, assess the ef-
fectiveness and impact of these systems in terms of user acceptance, performance, and or-
ganizational fit, and provide structured approaches to support informed decision-making
and optimization of AR/MR adoption in manufacturing training.

Several connections can be drawn between themethods discussed. Palmarini et al.’s (2017)
questionnaire-based tool and Danielsson et al.’s (2020) framework both focus on guiding
strategic decision-making for AR/MR adoption in industrial contexts. The emphasis
on alignment between training objectives, contents, methods, and outcomes in Borsci
et al. (2015) is echoed in the design considerations of Taylor’s (2021) FLXD framework
and Laviola et al.’s (2021) “minimal AR” approach. Additionally, the human-centered
approach of Longo et al.’s (2017) SOPHOS-MS framework aligns with the user-centric
focus of both Jetter et al.’s (2018) TAM-based framework and Masood et al.’s (2019, 2020)
TOE-based model. Crucially, three studies [Palmarini et al. (2017); Borsci et al. (2015);
danielsson2020augme] explicitly state the lack of validated tools.

This review highlights the importance of considering user needs, systematic fit, and techni-
cal feasibility when designing and implementing AR/MR systems for manufacturing train-
ing. It demonstrates the potential of structured approaches to guide the development and
assessment of AR/MR solutions, ensuring their alignment with domain-specific require-
ments to maximize their effectiveness.
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Ideally, these frameworks should serve to align all aspects of the system’s design with the
business objectives (Borsci et al., 2015), consider user needs related to usability andbenefits
to deliver a compelling value proposition (Jetter et al., 2018), and address technology and
organizational issues that threaten short and long term success (Masood & Egger, 2019).
Priority should be given to user acceptance, technical integration, organizational fit, and
content creation considerations (Masood & Egger, 2020). However, the need to validate
and refine existing tools and frameworks through empirical research in real-world manu-
facturing contexts is evident (Danielsson et al., 2020).

2.14 Next Steps

This section provides a high-level recap of findings before describing a novel affordance-
based approach to study design for AR/MR assisted learning assessment. Finally, it will
enumerate the key gaps and limitations identified in the literature, which will provide the
basis for the problem statement and study design.

2.14.1 Summary

Turnover in the manufacturing workforce and the lack of skilled labor necessitates scal-
able, efficient training methods. Furthermore, the shift frommass production to mass cus-
tomization forces operators to contendwith wide variance in the assembly steps required at
eachworkstation. Together, these trends demand innovativemethods for operator training
and support.

Preliminary studies suggest that emerging AR/MR technologies may provide a solution to
address these challenges. These systems offer real-time, contextually relevant instruction,
the educational benefits of which are grounded in well-established learning and cognitive
theories. However, despite their proclaimed advantages, the manufacturing industry has
been slow to embrace augmented training systems. That adoption has beenhindered by var-
ious factors, including technical limitations, market considerations, and business require-
ments.

Researchers and practitioners have developed various tools, frameworks, and instruments
to help overcome those obstacles. These tools aim to guide the specification, design, imple-
mentation, and assessment of AR/MR systems, ensuring their alignment with the unique
requirements of the manufacturing industry.
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Various case studies have also been conducted within the context of manufacturing. Unfor-
tunately, their results do not yet provide a clear picture of the value proposition of AR/MR
in manufacturing training. The research landscape is characterized by a limited number of
empirical studies, heterogeneity in study designs, and insufficient validation in real-world
manufacturing contexts. These factors make it challenging to draw definitive conclusions
about the effectiveness and generalizability of AR/MR interventions in the domain.

2.14.2 An Affordance-Based Approach

To address some of the identified limitations and provide a more comprehensive under-
standing of the factors influencing the effectiveness of AR/MR in manufacturing training,
this research proposes an affordance-based framework. The framework conceptualizes
AR/MR technologies as bundles of affordances that, when appropriately leveraged and
implemented using best instructional design practices, can lead to improved learning out-
comes and performance. The development of this framework is grounded in the theoretical
bases and informed by the insights gained from the literature review.

Parsons and MacCallum (2021) emphasizes the benefits of this approach over a feature-
based perspective. They claim affordances are more generalizable than specific implemen-
tations and enable comparison across contexts, while still being highly contextualized to
the domain of interest. Their systematic review of 21 empirical studies found that “studies
that did not address any of the key affordances identified as relevant … showed relatively
poor learning outcomes” (2021, pp. 89-90). This suggests paying close attention to relevant
affordances when designing AR systems may lead to better results.

Through their review, the authors synthesized five key affordances of AR/MR that can en-
hance learning in medical education: (1) reducing negative impacts like risk and cost, (2)
visualizing the invisible, (3) developing practical skills in a spatial context, (4) enabling de-
vice portability across locations, and (5) facilitating situated learning grounded in the pro-
fessional context. By highlighting the rationale for an affordance-based approach and the
specific affordances identified as relevant for training in this hands-on domain, the authors
provide a strong framework for adopting a similar approach.

While Parsons andMacCallum (2021) affordances captured high-level organizational goals
like risk reduction and operational flexibility, our approach focuses on identifying specific
benefits that can directly optimize learning processes and outcomes in AR/MR manufac-
turing training environments. Rather than focusing on broad potential benefits, our af-
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fordances directly apply established learning theories and instructional principles that pro-
mote hands-onpractice, reducing cognitive load, improving spatial awareness, and creating
an intuitive user experiencewithin themanufacturing training context. The ten affordances
are summarized in Table 2.3.

Table 2.3: Proposed Affordances for AR/MRManufacturing Training

# Affordance Description

1 Task Instructions A description of how to complete the task.
2 Hands-On Engagement The learning method involves physical interaction

with the subject matter.
3 Direct View of Work The work area is viewed directly, without requiring

a shift of focus from the workspace to a separate
display.

4 Freedom of Movement The device does not hinder the user’s movement
with a bulky or tethered design.

5 Step-Wise Guidance Instructions are presented sequentially, adapting
to user needs and pace.

6 Feedback Mechanisms The system provides real-time feedback on user
actions.

7 Workspace Integration Instructional materials are integrated with the
workspace.

8 Sensor-Based Interaction The system is controlled with sensor-based input
devices, eliminating the need for physical
controllers.

9 User-Centric Display Instructions are displayed in the user’s view,
rendered from their perspective.

10 Freeform Interaction The system allows for natural manipulation of the
workpiece.

These affordances were identified based on their direct applicability to the learning tasks
within an AR/MR environment, their alignment with a carefully chosen set of instructional
treatments, and their foundation in educational theories known to influence learning out-
comes positively. Each affordance serves to operationalize these theories within the context
of the experimental design, with the expectation that their integration into the instructional
treatments will lead to measurable improvements in learning and performance.
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As discussed in Section 2.11.2, the theoretical benefits underpinning these affordances are
rooted in educational theories that are particularly relevant to AR/MR learning environ-
ments. Active learning theories, including experiential learning theory support the idea
that learning is enhanced through direct experience and reflection, which is fundamental to
several of the identified affordances, including “Hands-On Engagement,” “Step-Wise Guid-
ance,” and “Feedback Mechanisms.”

Flow theory emphasizes the importance of a state of heightened focus and immersion for
optimal learning, which is fostered by affordances that engage users in a compelling and
intuitive way, such as “Egocentric Display” that ensures the instructional content is seam-
lessly integrated into the user’s field of view.

The theory of embodied cognition posits that cognitive processes are deeply intertwined
with the physical actions of the body. In an AR/MR setting, affordances that align with
this theory, such as “Freeform Interaction,” allow for a more natural and intuitive learning
process by leveraging the body’s movement and spatial orientation. Other constructivist
theories, including animate vision and spatial cognition theory are similarly represented
by “User-Centric Display,” and “Workspace Integration.”

Cognitive load theory provides a framework for understanding how information is pro-
cessed and suggests that well-designed instructional materials can reduce unnecessary cog-
nitive load, making learningmore efficient. This directly relates to affordances like “Sensor-
Based Interaction” which simplifies the user interface, and “Workspace Integration,” which
eliminates context switching associated with referencing instructions away from the work
surface.

Lastly, the affordances have been selected with educational best practices in mind, ensur-
ing that they not only align with theoretical perspectives but also adhere to the principles
of effective instruction design, such as clarity, engagement, and scaffolding.

This design links the chosen affordances with the framework for instructional design
with AR/MR augmentation for industrial training applications that was proposed in
Section 2.11.3 and illustrated by Figure 2.19.

2.14.3 Advancing the Research

The findings of this literature review underscore the need for further research to address
the gaps and limitations in the current understanding of AR/MR technologies in manufac-
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turing training. To advance the field, future studies should prioritize the following nine
considerations, listed in no particular order:

1. Address Ecological Validity: Conducting research in real-world industrial set-
tings, with suitable tasks and participants to help ensure that the findings are directly
applicable and relevant to the unique challenges and requirements of manufacturing
training.

2. Incorporate Instructional Design Best Practices: Firmly grounding study de-
signs in learning and cognitive theories will optimize the effectiveness of AR/MR
training solutions. By leveraging these principles, researchers can provide amodel for
future implementations and contribute to the development of evidence-based guide-
lines for designing AR/MR training programs.

3. Employ Rigorous Methodologies: Using well-controlled experimental designs,
reliable and valid measurement instruments, and appropriate statistical analyses to
establish the reliability and generalizability of the findings.

4. CompareMultiple AR/MR Technologies: Comparing Mobile, HMD, Projected,
and Indirect methods to provide insights into their relative effectiveness and suitabil-
ity for different manufacturing training scenarios.

5. Study Learning Outcomes Hollistically: Providing a more comprehensive un-
derstanding of the impact of these technologies on skill acquisition and maintenance
over time by assessing training outcomes not just in terms of immediate learning ef-
fects but also longer term recall and retention

6. Collect User Feedback: Including data and analysis on user satisfaction, usability,
and workload to inform iterative improvement and user-centered design, and help
ensure that the resulting systems are effective, engaging, and intuitive for the target
audience.

7. Use an Affordance-Based Approach: Designing treatments and interpreting
their effects not in terms of transient hardware capabilities, but as a bundle of
affordances each with corresponding theoretical benefits.

8. Apply a Standard Methodology: Reducing the heterogeneity of study designs
will facilitate the direct comparison of results and synthesis of findings, improve their
collective generalizability, and provide a common language for researchers and prac-
titioners alike.
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9. Provide Practical Recommendations: Framing research and findings in a way
that supports the successful design and implementation of these systems, and trans-
lating those into fact-baseddecision andplanning frameworkswill accelerate industry
adoption.

This proposed affordances framework serves as a foundation for the current study, which,
in part, aims to empirically validate its application in a real-world manufacturing training
context. This work will apply the affordance framework to the design of the treatments, al-
lowing us to interpret effects based on the underlying benefits, which are ephemeral, rather
than any transient technologies. We trust this will provide valuable new insights into the
most influential factors in the value of augmented instruction for learning, recall, and re-
tention, thereby contributing to the development of best practices for their implementation
in real-world industrial settings.

2.14.4 Closing

This literature review has provided a comprehensive examination of the current state of
research in the domain, critically analyzing empirical studies that assessed the efficacy
of AR/MR interventions while also identifying persistent gaps, limitations, and adoption
challenges. Moreover, the review introduces a novel affordance-based framework as a
theoretically-grounded approach to guide the design and evaluation of AR/MR training
solutions. The following chapter will articulate the specific problem statement, research
questions, and hypotheses that guide this endeavor.
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3 Problem Statement

This chapter identifies the research gap and frames our study’s objectives. It begins by sum-
marizing the problem context and need detailed in the preceding chapters. It then briefly
outlines the problem, bounded by gaps and limitations of the current literature. The pri-
mary research question and supporting questions are identified. Finally, the work’s pri-
mary contributions are identified.

3.1 Problem Identification

Despite a demonstrated need for operator assistance, the emergence of promising technol-
ogy, a theoretical basis for performance enhancement, a “solution” that connects it all, and
frameworks to support its development and assessment, XR adoption remains slow inman-
ufacturing. Until a compelling business case can bemade for the substantial investment re-
quired, it is unlikely that industry will move beyond isolated proof of concept studies. With
continued delays to adoption comes the risk that hardware providers lose their appetite
for the massive ongoing R&D budgets these systems demand and reduce or end their com-
mitment in the sector. Therefore, there is a pressing need to assess the business benefits
of augmented instruction, which may come in the form of improved operator performance,
learning outcomes, long-term retention, user comfort, quality, or othermeasurable returns
on the investment.

As enumerated in Section 2.14.3, our review of the literature has highlighted a number of
gaps. This list includes few direct comparisons of AR/MR technologies, a focus on immedi-
ate performance measures, a lack of ecological validity, and heterogeneous designs. More
specifically, too many studies focus on comparing a single AR/MR intervention to tradi-
tional training methods, leaving unanswered questions about how various AR/MR tech-
nologies stack up against each other, and which are most suitable for specific training con-
texts and desired learning outcomes. The prevailing emphasis on immediate performance
measures, such as task completion time and error rates, provides a limited view of training
success and knowledge transfer. Furthermore, a significant portion of existing research
on AR/MR in manufacturing training relies on simplistic tasks, irrelevant environments,
or novice participants. While these controlled studies provide valuable insights into the
potential of AR/MR technologies, they may not accurately reflect the complexity and chal-
lenges of real-world industrial settings. Finally, the literature includes a wide variation in
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research designs, technologies, training content, and outcome measures employed across
studies. While this diversity reflects the breadth and complexity of the field, it also poses
significant challenges for comparing results, synthesizing findings, and drawing conclusive
insights about the effectiveness of AR/MR interventions.

Collectively, these limitations hinder our ability to draw definitive conclusions about the ef-
fectiveness of AR/MR technologies in manufacturing training, leaving organizations with-
out clear guidance on how to leverage these tools for optimal learning outcomes and return
on investment. In short, additional data and more comprehensive results are needed to
provide an accurate assessment of AR/MR efficacy across the diverse problem and solu-
tion space.

To address these shortcomings, this research proposes an affordance-based framework
that conceptualizes AR/MR not as transient technologies, but as bundles of theoretically-
grounded affordances designed to optimize learning processes. By systematically opera-
tionalizing these affordances through carefully designed instructional treatments, we aim
to provide empirical insights into the factors that most influence the efficacy of AR/MR-
augmented training. Grounded in the literature and tailored to real-world manufacturing
contexts, the proposed study will yield actionable recommendations to accelerate the adop-
tion of these innovative technologies where their benefits can be maximized.

3.2 Research Questions

This gives rise to the central research question of this work:

How do different AR/MR instructional methods, designed to leverage specific
affordances, impact operator learning, recall, and retention in a real-world
manufacturing assembly training context?

Several supporting questions are also identified:

A. What are the relative effects of various AR/MR technologies on immediate learning out-
comes, such as task completion time and error rates, compared to traditional paper-based
instructions?

B. How do these AR/MR technologies influence long-term recall and retention of assem-
bly skills, as measured by performance on the same task after a designated period without
further training?
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C. To what extent do the specific affordances of each AR/MR technology, such as hands-
free interaction, spatial registration, and user-centric displays, contribute to the observed
learning, recall, and retention outcomes?

D. How do operator characteristics, such as related experience or demographics, influence
the effectiveness of each instructional method?

E. What are the perceived workload, usability, and user satisfaction associated with each
AR/MR technology, and how do these factors relate to learning, recall, and retention out-
comes?

3.3 Key Contributions

By addressing key gaps in the existing literature, this research will contribute to the de-
velopment of evidence-based guidelines and best practices, ultimately advancing the field
and informing future efforts to optimize AR/MR-assisted training programs for improved
learning outcomes and return on investment. Three key contributions of this work are:

1. An innovative, affordance-based study design for comparing the impact of multiple
AR/MR technologies on learning, recall, and retention in a real-world manufacturing
training context. A pilot study is incorporated to assess the ability of this design to
address limitations identified in the literature while also incorporating its best prac-
tices.

2. A comprehensive analysis of the immediate learning effects of different AR/MR tech-
nologies, considering multiple performance metrics, cognitive load, usability, quali-
tative feedback, and the role of specific affordances.

3. An examination of the factors influencing the long-term effectiveness of AR/MR train-
ing, including the relationships between initial learning outcomes, recall and reten-
tion, user experience, and individual differences.

To address these research questions and deliver the outlined contributions, a comprehen-
sive methodology is outlined in the following chapter. It details the the selection of AR/MR
technologies, development of instructional treatments, and themethods for data collection
and analysis.
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4 Methods

This study addresses the identified gaps by comparing three AR/MR technologies against
each other and a paper-based control in a real-world manufacturing assembly training con-
text. The approach is unique in its use of an affordance-based framework and comprehen-
sive assessment strategy that examines immediate learning outcomes, recall, and retention,
alongwithworkload, usability, and qualitative feedback. Authentic assembly processes and
validated training methods help ensure ecological validity.

The experimental design, data collection procedures, and analysis strategies are detailed
herein. This chapter beginswith an overview of the key components of the researchmethod-
ology, followed by a comprehensive description of the measures and variables used to as-
sess learning, recall, and retention outcomes. The experimental procedures are then out-
lined, including participant recruitment, random assignment to treatment conditions, and
the conduct of the training sessions. Considerations for compliance with ethical guidelines
and the steps taken to ensure participant safety and confidentiality throughout the conduct
of trials are also discussed. Finally, data extraction and analysis procedures are described
in detail, highlighting the use of both quantitative and qualitative methods to gain a holis-
tic understanding of the impact of different IMTs on operator performance and learning
outcomes.

The insights gained from this research have the potential to advance our theoretical un-
derstanding of how AR/MR technologies support learning and skill acquisition, while also
informing the practical application of these tools in manufacturing training contexts.

4.1 Experimental Design Overview

To assess the effect of augmented instruction on operator performance, human subjects
were asked to learn and repeat a simulated manufacturing assembly task. A convenience
sample of adult participants without relevant experience were recruited from the Auburn
University community and randomly assigned to one of four instructional treatments, each
with a different level of augmentation. This between-groups approachwas adopted to allow
for direct comparisonbetweendifferent levels of the treatment and tominimize the learning
effect that would otherwise occur over repeated trainings.
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The experiment included two phases, where learning and recall were tested for the assigned
treatment level while performance measures were recorded. After each phase, validated
instruments were used to assess the participant’s perceived workload and their impression
of the treatment’s usability. Several weeks after the initial intervention, participants were
invited back to an event where retention was also tested.

Data related to the timing, errors, and ultimate outcome for each task was recorded, allow-
ing for a detailed performance assessment at the task and participant level. Subsequent
analysis of all performance data quantified the treatment effect. The addition of retention
data allows the study to also compare the long-term effectiveness of each treatment. De-
mographics, perceived workload, and usability data were then used to identify other con-
tributing factors and better understand the results.

These experiments were conducted in the Tiger Motors Lean Education Center1 (aka the
Lean Lab). Designed to simulate modern automotive manufacturing and teach best prac-
tices in a real-world setting using LEGO® vehicle assembly, this award-winning facility pro-
vided an ideal setting for the study. Pictured in Figure 4.1a, Tiger Motors is an integral re-
search and education component of the Industrial and Systems Engineering Department in
the Samuel Ginn College of Engineering at Auburn University. The facility and simulation
design were primarily the work of graduate students (Moyo, 2013).

Participants acted as operators learning part of the Model T (SUV) assembly process. A
completed SUVmodel is pictured in Figure 4.1b. This process has been repeated thousands
of times in lean education courses without significant incident.

(a) Conveyor and final assembly workstations (b) Completed SUV model

Figure 4.1: Tiger Motors Lean Education Center and SUV Model

1 Located in the basement of the Shelby Center for Engineering Technology, room 0317. Address: 345 W
Magnolia Ave, Auburn, AL 36849.

84



Each participant completes the same task sequence with one of four different Instructional
Media Treatments (IMTs). Each IMT offers a different level of augmented instruction,
ranging from traditional paper instructions with no augmentation to a mixed reality head-
mounted display where interactive instructions are superimposed on their field of view.

Instructional design for all augmented IMTs was based on the paper work instructions,
adapted only as needed to leverage the specific affordances of each technology. This helped
ensure that any differences observed in the study were due to the augmentation level of
each IMT, not variations in instructional content.

The remainder of this chapter will describe in detail all aspects of the study’s methodol-
ogy, including participant recruitment, human subjects considerations, experimental de-
sign, data collection, and analysis. The chapter will conclude by considering the limitations
of this study.

4.2 Study Design

In this section, we will provide a detailed description of the study design. We will begin
by discussing the task and the authentic manufacturing environment in which the exper-
iments are situated. Next, each of the four treatment levels are described. Finally, the
affordance-based nature of this design will be detailed, wherein the underlying affordances
are identified for each treatment and inherent tradeoffs are described.

4.2.1 Task and Context

The Lean Lab assembly line consists of twomanufacturing cells followed by a conveyor with
five additional stations. Each manufacturing cell consists of five workstations arranged in
a U-shape. Each participant is tasked with the operation of one of 15 workstations involved
in the SUV assembly.

The experiment is run at ST-8, which is located in the middle of the second manufacturing
cell, flanked on either side by workstations six through ten. This arrangement is pictured
in Figure 4.2.

All workstations in both cells are similarly equipped with work surface and trays for parts
bins. Work instructions for both car models normally produced on the line are displayed
above the bins. The bins are removable to facilitate part resupply, but their arrangement at
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Figure 4.2: Tiger Motors Assembly Line

each station is standardized and specified on the work instructions. Figure 4.3 shows ST-8
and its bin layout.

(a) ST-8 (b) Bin Layout

Figure 4.3: Workstation Eight

The green and red trays pictured on the right of the work surface are for finished goods and
rework, respectively. The central fixture provides for standard placement and secure reten-
tion of the workpiece. All of these are removable to allow the lab to operate with varying
levels of Lean practice in effect.
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4.2.2 Treatment Levels

As described in Section 4.6.4, each participant in this between-groups design is randomly
assigned to a single level of the Instructional Media Type (IMT) treatment. There are four
levels of this treatment, eachwith increasingly augmentedwork instructions: (1) traditional
paper work instructions, (2) projected augmented reality, (3) head-mounted optical see-
through augmented reality, and (4) head-mounted optical see-through mixed reality. All
are detailed in the sections that follow.

Paper Work Instructions

Paper work instructions (PWI) are printed instructions traditionally used inmanufacturing
assembly processes. Unlike all other IMTs in this study, PWIs are inherently static and do
not adapt to the operator in any fashion.

The process at workstation eight (ST-8) is a three step sequence in which 16 pieces, consist-
ing of eight different part types, are affixed to the workpiece. The PWIs for this process are
pictured in Figure 4.4.

Figure 4.4: SUV assembly instructions for ST-8.

The instructions consist of one top-down view of the workpiece for each step, plus an iso-
metric view of the ST-8 assembly. In each step, the car’s prior state is shown in grey and new
parts have the correct color. A sequence of parts is shown for each step, with the unique
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part number and quantity required. It is up to the operator to discern the correct place-
ment of those parts from the diagram. Additional detail views are incorporated to each
PWI where more clarity or detail are required. At the bottom center of each PWI a map of
the workstation’s parts bins depicts which are used in the task.

Manufacturing simulations in the LeanLab are expected to run at a takt time2 of oneminute.
Therefore, the instructions for each of the 15 workstations have been carefully designed to
include one minute of work content.

While it may seem trivial to complete the work at ST-8 correctly in oneminute or less, expe-
rience shows that is not the case. The LeanManufacturing Systems class at Auburn Univer-
sity (INSY 5800/6800), has validated these instructions through countless lab sessions in
the administration of that course. They served as the basis for the design of all other IMTs,
and as the control for this study.

Projected AR

Projected AR (PAR) systems integrate work and instruction by projecting the latter onto
the work surface. Work steps are displayed sequentially, either under operator control or
automatically triggered.

ST-8 is equipped with a PAR system by LightGuide3 (LG), a Michigan-based company fo-
cused on innovative, AR-based manufacturing solutions. As shown in Figure 4.5, Their
system uses a Windows PC, industrial-grade projector, and 2D or 3D vision system, along
with other optional input devices and tools. All components are commercially available
and integrated by the LG software, where digital work instructions are both authored and
played back.

Note that the Lean Lab’s LightGuide system predates this study. Its specification, instal-
lation, setup, and configuration, along with the design and implementation of the instruc-
tional materials it uses at ST-8, were conducted by prior teams.

The system at ST-8 uses a video projector and depth-sensing camera mounted above the
paper work instructions. The output of a PC runningWindows 10 and LightGuide software

2 Takt time is a critical measure of the overall efficiency and performance of manufacturing systems. It sets
the pace of production to align with customer demand, thus dictating the maximum time allowed at each
workstation. By balancing the production line in this way, waste due to overproduction or delays is reduced
(Ali & Deif, 2014). Takt time is integral to the Toyota Production System (TPS) developed by Taiichi Ohno
(1988).

3 Lightguide: https://www.lightguidesys.com/
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Figure 4.5: LG System Architecture. Source: LightGuide website

is displayed on a monitor conveniently situated to the right of the bin trays. All equipment,
except the PC itself, is mounted on a robust structure of extruded aluminum components
from80/204 to ensure operator safety, consistent alignment, and stability. A foot-operated
switch provides an alternative to gesture-based control of the system, but it was not used
in our study. The complete installation is shown in Figure 4.6, with each component la-
beled.

To create a consistent user interface across all XR treatments, this study leveraged the LG’s
vision-based system for operator control. In this mode, an infrared time-of-flight camera
provides a real-time depthmap of the work area. This 2D video signal encodes the distance
of objects from the camera as a color value at each pixel. That output, commonly known as
a depth map, is processed using computer vision techniques to detect motion and identify
any obstructions in the workspace. Figure 4.7 demonstrates the output of this system in a
simulated operator interaction.

With this information the LG can, for example, recognize the operator’s hand placement
and trigger system actions, warnings, or data logging events. In the ST-8 implementation,
some applications of this method include triggering a green or red overlay when the oper-
ator reached into the right or wrong part bin, advancing to the next assembly step when

4 80/20: https://8020.net/
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Figure 4.6: ST-8 LG Installation

(a) Demonstrating LG Vision (b) LG Vision Input

Figure 4.7: LightGuide Vision System
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the operator swipes over the virtual NEXT button, and automatically advancing when it ap-
peared that the operator had installed a piece.

The images below were grabbed from PAR trial recordings. Figure 4.8a shows a side view
of the workspace and Figure 4.8b shows the samemoment from the operator’s perspective.
Both images are cropped to focus on the work surface, but the operator view maintained
the original aspect ratio with minimal cropping.

(a) PAR Side View (b) PAR Operator View

Figure 4.8: PAR in Operation

The PAR instructions were designed and implemented by students and graduate assistants
in the Lean Manufacturing class. They were adapted from the same PWIs used as the con-
trol in this experiment. Like the PWIs, the PAR system has been validated through exten-
sive use in the lab.

Head-Mounted AR

Like PAR, head-mounted AR (HMDAR) systems integrate dynamic instructions into the
work area. Whereas PAR relies on traditional projectors and classical computer vision tech-
niques, HMDAR employs sophisticated displays and fused sensor data to superimpose in-
structions and virtual controls directly into the operator’s field of view, properly aligned
with the work area.

As detailed in the subsequent section on System Development, Microsoft’s HoloLens25

(HL2) was used for this treatment. The HL2’s area-based tracking capabilities were used to
align the virtual and physical coordinate systems, enabling the proper in-view placement
of UI objects, independent of the position and orientation of the operator’s head. As with
the PAR treatment, user motion was the only input modality, implemented via the HL2’s

5 HoloLens2: https://www.microsoft.com/en-us/hololens
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more sophisticated hand tracking and gesture recognition systems. Figure 4.9 shows the
side and operator view of this treatment at the same moment.

(a) HMDAR Side View (b) HMDAR Operator View

Figure 4.9: HMDAR in Operation

The instructional content for this treatment was intentionally designed tomirror that of the
PAR system. By controlling for variables such as instructional content and task complexity,
the study design allows for a direct comparison based on the distinct affordances of each
technology—namely, the nature of their display and interface. This approach ensures that
differences in operator experience and performance can be attributed most directly to the
technological medium.

Figure 4.10: HMDAR at Pick Part 67

For comparison purposes, Figure 4.10 shows the HMDAR operator’s view of the same in-
structions pictured in Figure 4.8 for the PAR treatment. The two differ only in that the
digital work instruction is placed on the operator’s left in the HMDAR version to prevent
overlap.
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Head Mounted MR

Head-mounted MR (HMDMR) extends the capabilities of the HMDAR treatment with a
more sophisticated trackingmethod that allows formore natural interactionswith thework-
piece. For all other treatments, the workpiece remains in a fixture, forcing the operator to
align themselves, both physically and mentally, to its placement.

HMDMR eliminates the need for a fixture and allows the operator to rotate and/or lift the
work off the surface if it seemed natural to them to do so. It achieves this by incorporating
model-based tracking to align instructions with the workpiece itself. The added flexibil-
ity was expected to make the process more intuitive and ergonomic, enhancing operator
performance.

Using model-based tracking, part placement indicators remain properly aligned with the
workpiece, regardless of its position and orientation in space. This is demonstrated in Fig-
ure 4.11, where participant #1040has rotated theworkpiece approximately 45 degrees from
its normal orientation to facilitate the installation of parts at the rear of themodel. Note that
the green part proxies and white placement arrows, all virtual, remain properly oriented.

Figure 4.11: HMDMR Tracks Model Orientation

Figure 4.12 provides a side and operator view of this treatment, and illustrates the lack of
a fixture. Otherwise, the HMDMR treatment was unchanged from the HMDAR, allowing
for direct comparisons of all treatments based only on the affordances of interest.

4.2.3 Affordances and Theoretical Benefits
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(a) HMDMR Side View (b) HMDMR Operator View

Figure 4.12: HMDMR in Operation

Table 4.1: Summary of Affordances by Treatment

Affordance PWI PAR HMDAR HMDMR

Task Instructions Y Y Y Y
Hands-On Engagement Y Y Y Y
Direct View of Work Y Y Y Y
Freedom of Movement Y Y Y Y
Step-Wise Guidance Y Y Y
Feedback Mechanisms Y Y Y
Workspace Integration Y Y Y
Sensor-Based Interaction Y Y Y
User-Centric Display Y Y
Freeform Interaction Y

Table 4.1 maps each treatment to its set of affordances. It demonstrates a progression of
complexity and sophistication. “Task Instructions,” “Hands-On Engagement,” and “Direct
View of Work” provide the baseline capabilities for all treatments. Additional affordances
add layers of instructional complexity and interactivity.

While it may be tempting to make a-priori claims about the most influential affordances or
theories in this context, the relationships are not so clear-cut. Each identified affordance
can claim some benefit frommost identified theories; all are interrelated and contribute to
the overall learning experience.

Instead, this work hypothesizes that treatments leveraging more affordances will result in
better learning outcomes. But the success of these treatments also depends on the quality
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of their implementation and the balance between enhanced functionality and added com-
plexity. The latter may have a negative impact on the overall user experience, increasing
cognitive load, breaking flow, and otherwise offsetting the intended gains. Finally, the inter-
play between different affordances — how they complement or interfere with one another
— is also a significant consideration.

4.2.4 Tradeoff

Both HMD treatments were designed to resemble the PAR, and, by extension, PWI ex-
periences as closely as possible. This choice was made to deliberately control for the in-
structional design and focus treatment differences on the benefit of underlying affordances.
While any of the treatments could have been “improved” with additional system-specific
functionality, that would have been detrimental to the experimental design. For example,
obvious shortcomings of the PWI could have been corrected, or participants could have
been given the option to use the PAR’s footswitch. Either would likely have improved the
results for those treatments but led to less relevant comparisons. This methodology ac-
knowledges the potential limits to each treatment’s efficacy, but upholds the integrity and
clarity of the study’s comparative analysis.

4.3 Measures and Variables

In this study, we evaluate the efficacy of different instructional methods in manufactur-
ing assembly training, focusing on key variables that impact learning, recall, and retention.
This section outlines these crucial variables, alongside a comprehensive set of hypotheses
for both primary and secondary outcomes, ensuring a robust and systematic assessment of
each instructional treatment’s effectiveness.

4.3.1 Dependent Variables

The phenomena of interest in this study are learning, recall, and retention. This section
will define each before discussing how they are operationalized through observed and cal-
culated measures.
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Constructs

Learning, recall, and retention are the outcomes of interest in this study. They were chosen
for two reasons: (1) they are commonly used in related studies, and (2) they are supported
by research in cognitive and educational psychology. But learning, recall, and retention
are all psychological constructs; abstract concepts or ideas used to explain a phenomenon
or behavior (Braun et al., 2001). They are fundamental to the research questions, but not
directly observable, and thereforemust be inferred from behaviors, actions, or outcomes.

Learning is the process through which knowledge, skills, behaviors, or values are acquired
or modified (Bloom, 1956). In manufacturing assembly, learning encompasses not just un-
derstanding the theoretical aspects of an assembly process but also acquiring the practical
skills to execute tasks efficiently and accurately.

Recall refers to the ability to access information frommemory without being re-exposed to
it after initial training. Recall is especially relevant in manufacturing settings where oper-
ators often need to perform tasks without step-by-step guidance, relying on their memory
of the training.

Retention is the ability tomaintain information, skills, or knowledge over time. Inmanufac-
turing, where precision and consistency are vital, an operator’s retention can significantly
impact production quality and efficiency.

Each of these constructs are a function of how effectively the instructional process encodes
and stores knowledge and skills in long-term memory. These claims are supported by es-
tablished theories in cognitive psychology, including the Information Processing Theory,
which seeks to explain how humans process, encode, and retrieve information (Atkinson
& Shiffrin, 1968). It is also supported by Ebbinghaus (Ebbinghaus, 2013) and works that
followed. Originally published in 1885, Ebbinghaus first demonstrated that memories de-
cay over time without reinforcement or repetition. Additionally, research in educational
psychology, particularly studies on effective instructional strategies and their impact on
long-term skill acquisition and knowledge retention, provide empirical backing to these
concepts.

The focus on learning is justified as it provides insights into how different instructional
methods (traditional vs. augmented) influence the speed and depthwithwhich participants
master new tasks. This aligns with cognitive load theory, which posits that reducing ex-
traneous cognitive load and optimizing intrinsic and germane loads can enhance learning
efficiency. The emphasis on recall is supported by active learning theories, which suggest
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that engaging, hands-on experiences (as facilitated by augmented reality technologies) can
lead to more durable learning. Retention ties back to the experiential and constructivist
learning theories, which argue that knowledge constructed actively by the learner is more
likely to be retained over time. Furthermore, retention data can inform training protocols,
indicating when refreshers or additional training may be needed to maintain proficiency.

Observed Measures

As constructs, learning, recall, and retention cannot be directly measured. For this study,
they are operationalized through a variety of commonly-used measures. Learning is mea-
sured by how quickly a participant progresses towards the level of proficiency expected of
a qualified operator. Specifically, it is a function of the dependent variables quality (uncor-
rected error count and type) and performance (task completion time). It can also be mea-
sured by the participant’s reliance on PWI consultation (PWI count and duration) during
the second experiment. Recall is assessed by how well participants can perform the task
after the learning phase, without additional instructional support. This can be observed
through the same quality and performance measures as learning. Finally, retention is mea-
sured by re-testing recall some time after the initial training, without further exposure to
the task or instructional materials.

Calculated Measures

Each of the identified constructs can also be assessed using a variety of calculatedmeasures,
including Learning Rate (LR), Transfer Effectiveness Ratio (TER), and Overall Equipment
Effectiveness (OEE). LR is ameasure of the rate of change of learning and can be calculated
in a number of ways. TER quantifies the value of time spent training (Kaplan et al., 2021;
Roscoe, 1971), based on the amount of time required to reach certain training outcomes
with (𝑌𝑐) and without (𝑌𝑥) augmentation, as seen in Equation 4.1.

𝑇 𝐸𝑅 = 𝑌𝑐−𝑌𝑥𝑌𝑐 × 100 (4.1)

OEEhas emerged as a fundamental andwidely acceptedKPI inmanufacturing (NgCorrales
et al., 2020). Introduced by Seiichi Nakajima (1988) as part of Total Productive Mainte-
nance (TPM), OEE evaluates overall manufacturing performance as the product of system
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availability, productivity, and quality, as shown in Equation 4.2. It is instrumental in pin-
pointing areas for improvement in equipment utilization and production processes.

𝑂𝐸𝐸 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (4.2)

These three values are the percentage of measured vs expected speed, yield, and up-time,
respectively. As seen in Equation 4.3, productivity is simply the number of units produced
multiplied by the takt time, divided by the operating time. Completed units includes those
with errors, but not those retired by the operator.

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑×𝑇 𝑎𝑘𝑡𝑇 𝑖𝑚𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇 𝑖𝑚𝑒 (4.3)

Quality is the number of units produced less the number with errors, divided by number
produced. This intuitive calculation is shown in Equation 4.4. Once again, retired units are
not included in these counts.

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑈𝑛𝑖𝑡𝑠𝑈𝑛𝑖𝑡𝑠𝑃𝑟𝑜𝑑𝑐𝑢𝑒𝑑 (4.4)

OEE’s third and final component, availability, is commonly calculated by dividing the
amount of time that the system was operational (aka measured up-time) by the scheduled
time. This is shown in Equation 4.5.

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑈𝑝𝑇 𝑖𝑚𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑𝑇 𝑖𝑚𝑒 (4.5)

In the context of this study, availability is out of the participant’s control, but, as discussed
elsewhere, can manifest in some system related issues that were encountered. Where ap-
propriate, we will calculate availability by deducting time lost to system issues from the
available time.

Integration

Together, these constructs and measures support the comprehensive analysis of the effects
of augmented instruction inmanufacturing assembly training. Togetherwithworkload and
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usability data, and qualitative feedback collected, we aim to provide a more complete pic-
ture of the roles that human factors, instructional design, and system performance have in
achieving optimal results for skill acquisition, knowledge retention, and long-term perfor-
mance.

4.3.2 Independent Variables

The primary independent variable in this study is the treatment level assigned to each par-
ticipant. Of the four treatments, three serve as interventions: PAR,HDMAR, andHMDMR.
The fourth treatment, PWI, is the standard for manufacturing assembly training and there-
fore a natural choice for the control.

Post-hoc analysis is conducted to determine if any of the participant demographics should
be considered secondary independent variables. Those of particular interest include age
and prior experience with LEGO or manufacturing. The results of this analysis may have
implications for the generalizability of the study.

4.3.3 Controlled Factors

To ensure the validity of the outcomes, the study design carefully controlled for various
factors, isolating the impact of the treatments.

1. Participant Sampling: The recruitment strategy aimed for a diverse and representa-
tive sample within the constraints of the study’s target population.

2. RandomTreatment Assignment: This method was utilized to evenly distribute poten-
tial confounding variables across the different treatment groups, thereby minimizing
biases.

3. Uniform Device Usage: All participants wore the HL2 during the learning and recall
experiments to standardize any potential impact of using the device.

4. Screening for Prior Experience: Prospective participants were screened and excluded
if they had prior experience with similar AR/MR devices or Lean Lab assembly tasks.

5. Task Consistency: The content, complexity, and duration of the task were uniform
for all participants, ensuring that any learning differences were attributable to the
treatments rather than task variability.
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6. Standardized Session Conduct: The environment and methodology of conducting
each session were kept consistent, further ensuring that differences in outcomes were
treatment-related.

These controlmeasures were integral tomaintaining the integrity of the study and ensuring
that the results accurately reflect the effects of the instructional treatments.

4.3.4 Primary Outcomes

The primary outcomes of this study are the results of the hypotheses tests for each phase,
as outlined below.

Learning Phase Hypotheses

The first group of hypotheses are designed to test the effect of each treatment on training
outcomes.

H1: Learning

How does each IMT affect performance during the learning phase?

𝐻1𝑎: Average time per car varies with treatment𝐻1𝑏: Learning rates vary with treatment𝐻1𝑐: Average error count per car varies with treatment
To better understand those results, additional analysis considers the treatment effect on
error types, task completion rate, and first-task performance. Finally, treatment groups
are investigated to determine which had the highest percentage of “qualified operators” at
the end of the 10-min session. This is assessed relative to expected performance metrics,
including OEE and takt time.

This approach provides a robust assessment of the instructional treatments’ effectiveness
during the learning phase. It examines key performance metrics—efficiency, accuracy,
and learning progression—to capture a comprehensive understanding of participant
performance. The evaluation against real-world manufacturing standards further ensures
the study’s relevance to practical training contexts. This design allows for a nuanced
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interpretation of how each treatment influences learning outcomes in manufacturing
assembly training.

Recall Phase Hypotheses

The second group of hypotheses aim to evaluate the residual impact of each treatment on
recall — specifically, participants’ ability to correctly replicate the taskwithout further train-
ing.

H2: Recall

How does each IMT affect performance during the recall phase?

𝐻2𝑎: OEE varies with treatment𝐻2𝑏: PWI reliance varies with treatment

In contrast with the RQ1 analyses, which focused on the learning progress, these hypothe-
ses are designed to assess the training effectiveness. OEE was chosen as the primary mea-
sure due to its practical relevance in answering “Did the training work?” It concisely quanti-
fies the participants’ ability to utilize acquired skills under conditions thatmimic real-world
expectations, where both speed and accuracy are crucial. For the purpose of this analysis,
reliance will be measured by the number of times a participant refers to the printed instruc-
tions, and the duration of each.

Subsequent analyses will investigate the primary drivers of OEE (efficiency vs. quality) and
PWI reference duration (frequency and length of references). Additional exploration into
error types, task completion rate, first-task performance, and ongoing learning rate may
also provide additional insight into the nuances of recall performance across treatment
types.

Retention Phase Hypotheses

Phase three of the study is designed to assess the residual impact of each treatment on
retention. This describes the durability of the learning and is measured by testing recall
several weeks post-intervention. No additional training is provided in the meantime.
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H3: Retention

How does each IMT affect performance during the retention phase?

𝐻3𝑎: Change in OEE varies with treatment
TODO: update this hypothesis

Here we look at the change in operator performance since the recall experiment. We expect
performance to degrade for all treatments, but are interested to find if there are significant
differences in the magnitude of change based on the instructional method. Both absolute
and percentage change will be tested, and the primary driver of OEE identified as before.

Given the limited data available from the retention phase (only one replication per volun-
teer participant), and the variable delay between experiments, these results will be treated
as exploratory. While theymay not be conclusive, these findings can help illuminate under-
lying patterns in treatment effects.

4.3.5 Secondary Outcomes

The study design supports several other areas for statistical, exploratory, and qualitative
analysis. A variety of secondary outcomes, each described in the sections that follow, are
incorporated to provide better context for and understanding of the primary outcomes.

Statistical

A variety of additional statistical tests were performed, involving workload, usability, de-
mographics, and performance variability. Specifically, we plan to investigate the following
relationships:

• TLX composite score (workload) and performance across treatments.
• SUS composite score (usability) and performance across treatments.
• Demographics (e.g., age, prior experience) and performance across treatments.
• Within-group performance variance
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Exploratory

In addition to commonly used descriptive statistics and visualization methods, this study
employed a variety of other statistical methods to explore second level effects.

• The TLX components (e.g., mental workload, frustration) with the greatest influence
on performance.

• The relationship between workload, usability, treatment, and their interactions on
performance.

• Factors influencing within-group performance variance during the recall phase.

Qualitative

Qualitative feedback from participants is an essential complement to the other findings.
Through thematic analysis, we aim to systematically identify and interpret patterns in com-
ments gathered during exit interviews and other interactions throughout the study. These
insights are crucial for integrating and enriching our findings beyond what quantitative
data alone can reveal.

4.4 Experiments

This study is organized into two sessions, encompassing three distinct experiments, each
aimed at evaluating one of the three measures of training effectiveness described above.
This section details the methods, variables, and rationale behind the design of each exper-
iment. For a step-by-step description of the conduct of each session, see Section 4.8 and
Section 4.9.

4.4.1 Surveys and Instruments

Two surveys and three instruments were completed during the course of this study, all dur-
ing the first session. Each is described below, and copies are included in the IRB approval
forms.
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Participant Intake Form

The Participant Intake Form (PIF) is a survey designed to gather information, essential to
understanding the participant demographic makeup, assessing the generalizability of the
study, identifying potential confounding factors, and facilitating post-hoc analyses involv-
ing matching or grouping:

1. General demographics, including gender, age, height, race, ethnicity, country of ori-
gin, primary language, education level, and student status.

2. The presence of color blindness.
3. The need for corrective lenses, and whether they will be used during the experiment.
4. Any other condition that might affect their performance during the study.
5. Self-rated experience with LEGO building and background in manufacturing.
6. The method by which they learned about the study.

General Feedback Sheet

This simple form is used to record each participant’s qualitative feedback on their overall
experience. It is administered by the PI in a very open-ended manner. A list of standard
questions is available for participants that aren’t forthcoming or otherwise benefit from
prompting. It is only used at the end of the first session.

NASA Task Load Index

As discussed in Section 2.13.2, theNASA Task Load Index (TLX, Hart, 2006) was designed
to assess the perceived workload of a task. The primary outcome of the TLX is a weighted
average of six factors that contribute to overall workload. Three of those factors are related
to the mental, physical, and temporal demands placed on the participant by a task. The
remaining three measure the participant’s perceived effort, frustration, and performance
during it.

The TLX is comprised of weighting and scoring processes that are repeated by participants
upon task completion. First, to account for the subjective nature of workload, each factor
is weighted by the participant. This Sources of Workload Evaluation is accomplished by
having them indicate which element of each pair made the greatest contribution to their
perceived workload. This is illustrated in Figure 4.13. For example, given the pair “Mental
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Demand or Effort,” a participant would likely indicate effort for a task like lawn work, but
mental demand for a philosophical debate. This is repeated for all fifteen possible combi-
nations of the six factors.

Figure 4.13: Sources of Workload Evaluation

Next, participants complete theWorkload Rating Scales form to assess the magnitude of
each factor for the given task. This uses a Likert-like (Likert, 1932) scale with 20 equal inter-
vals and bipolar descriptors. No numeric values are given and participants are instructed
to mark it freely. The mental demand rating scale shown in Figure 4.14 is representative.

Figure 4.14: Workload Rating Scale, Mental Demand

The results of the TLX are expected to provide insight into the overall user experience for
each treatment, along with how workload varies across treatments and what underlying
factors contribute to both. This will aid in contextualizing the positive or negative influence
that workload might have on learning outcomes.

System Usability Scale (SUS)

As discussed in Section 2.13.2, the System Usability Scale is a widely used instrument de-
signed to quickly and reliably assess the overall usability of a product or service. The SUS
is composed of 10 questions that participants respond to according to their experience with
the system. Each is ranked on a five point scale anchored by “Strongly Agree” and “Strongly
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Disagree” bipolar descriptors. Note that alternating items are reverse-scored to improve va-
lidity. A portion of the form used is shown in Figure 4.15.

Figure 4.15: System Usability Scale, Questions 1-3 of 10

The SUS score is calculated by summing the scores of each question. For odd-numbered
questions, the formula is the response value minus one; for even-numbered questions, it is
five minus the response value. The total is then multiplied by 2.5:

𝑆 = 2.5 × (∑𝑖, odd(𝑅𝑖 − 1) + ∑𝑖, even(5 − 𝑅𝑖)) (4.6)

where 𝑅𝑖 represents the response to each of the ten items. The SUS score, 𝑆, calculated
by Equation 4.6 will range from zero to 100. Values above 68 are generally understood to
represent above-average usability.

Behavioral Control Survey

The final instrument completed during the intake process was the Adult ADHD Self-Report
Scale (ASRSv1.1, Green et al., 2019). Referred to simply as a Behavioral Control Survey
(BCS) to avoid the possibility of biasing participant responses, the data collected are the
focus of a separate study (Ballard et al., 2024), and not further discussed in this work.

4.4.2 First Session - Learning and Recall

The first session of the study tested its primary research questions in two phases, as de-
scribed below.
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Learning Phase

Phase one, Learning, compared the effects of the assigned treatment on the speed and ac-
curacy with which participants performed each repetition of the task. Speed was measured
as task completion time, while the number and type of uncorrected errors were used to rep-
resent accuracy. These measures, tracked for each assembly during the 10-minute session,
were later used to assess both the learning rate and depth of skill acquisition. This approach
offers insights into how efficiently and effectively each treatment imparts necessary skills
and knowledge for the task.

Participants were instructed to focus on three priorities during the first phase: (1) learn
the steps of the assembly process, (2) complete each assembly correctly, and (3) finish as
many assemblies as possible in the time allowed. This approach of prioritizing correct and
efficient work is in line with measures observed and the principles of OEE, which is used in
the second and third phases of this study.

The fixed duration of 10-minutes was deliberately chosen to align with various aspects of
the learning process and the operational context of the task. In addition to the OEE consid-
erations outlined above, using a fixed duration ensured that all participants have the same
opportunity to learn the procedure. A fixed car count approach (e.g., “make 6 cars”) was
rejected due to concerns that the absence of a time constraint could lead to uneven learning
opportunities and extend session lengths beyond practical limits.

A 10-minute timeline was chosen based on prior experience with learning curves for the
task. The Lean Lab is designed around a 60-second takt time, which constrains the work
content for experienced operators at each station. Before training, the time to complete
these tasks varies widely. Our expectation was that participants would typically complete
between three and six cars during their 10-minute session, but any individual participant
might complete only one or as many as ten cars.

Recall Phase

The second phase was designed to assess the residual effects of the instructional treatment
on each participant’s ability to perform the task correctly and efficiently. The assembly task
was repeated four times in the control condition, and the same measures were recorded.

Participants were given three priorities: (1) deliver error-free results, (2) reference thework
instructions only if necessary, and (3) work quickly. This emphasized working from mem-
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ory with expectations appropriate for an operator in training. Although participants were
encouraged to work quickly, no time limit was set to ensure each produced four complete
assemblies.

First Session Data Collection

Manual data collection was limited during the learning and recall experiments. Each as-
sembly was reviewed for correctness and the number and types of uncorrected errors were
recorded on the appropriate data sheet. For incomplete (time expired) or retired (breakage
requiring rework) assemblies, the final part count was also recorded.

The majority of the data was collected from photographs and video recordings. For each
participant, both experiments were recorded on a pair of cameras. One, integrated into
the HL2, provided a clear view of the process from the participant’s perspective. The other
camera was positioned and oriented to record the entire work area from the operator’s left,
as seen in Figure 4.16.

(a) Side Camera Positioning (b) Side Camera Orientation and FOV

Figure 4.16: Side Camera Setup

Photos were also taken to provide a detailed, high-quality record of the results for each
experiment, complementing the video data. This is exemplified by Figure 4.17, which shows
that participant #1053 completed three cars in the learning phase. The 4th car pictured
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here is rotated to indicate that it was incomplete or retired when time expired. Laminated
treatment slates are included in these photos to easily embed essential metadata.

Figure 4.17: Sample Learning Result Photo

Subsequent analyses, as detailed in Section 4.12, confirmed the original results and ex-
tracted additional data related to timing, error type, PWI usage during recall, and more.
While video review was time consuming, this approach allowed us to focus on administer-
ing the experiment correctly and carefully observing the participant without the distraction
of data collection. This ultimately improved the accuracy and traceability of the results.

The TLX and SUS instruments were both administered twice during this session, once after
each experiment. This gave us workload and usability information for all treatment groups
during the learning task and for all participants during recall. The latter could be used as
baseline measurements for the ST-8 work content.

The PIF, BCS, and a trial run of the TLX were also administered during the intake process
of this session. Finally, during the exit interview, general feedback was collected. All of this
is detailed in Section 4.8.
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4.4.3 Second Session - Retention

The second session took place in the Lean Lab several weeks after the learning and recall
experiments, as part of an end of study event. All prior participants were invited to attend.
To address confidentiality concerns that might arise due to the public nature of this event,
attendance was entirely voluntary.

Based on the number of trials in the first session, the maximum anticipated turnout during
this 4-hour event was 40. That suggested a traffic rate of 10 to 15 participants per hour,
implying a conservative maximum duration of 3 minutes per trial. This necessarily limited
the scope and complexity of the experiment.

This experiment was designed to assess longer-term benefits of the original intervention.
Each participant was asked to build a single car from memory, without additional instruc-
tion. They were asked to prioritize (1) completing the assembly correctly and (2) finish
within the station takt time of 60 seconds. Task completion time was collected, but a gen-
erous 3-minute time limit was imposed in the interest of expediency. Compensation was
awarded as described in Section 4.6.2.

The interval between the original intervention and this session varied for each participant.
This variable time gap, which could range from one to seven weeks, will be a consideration
during analysis.

Second Session Data Collection

As in the first session, the emphasis was on minimizing the amount of manual data col-
lection required. Each trial was recorded using only a compact forehead-mounted video
camera. Task completion time and error count, along with any essential observations, were
documented. The completed car was also photographed, ensuring that the timer and notes
were visible in the frame.
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Figure 4.18: Sample Retention Result Photo

This single photo approach streamlined data collection during the event without compro-
mising the integrity of the results. While the photos alone provide sufficient data for our
primary analysis, the video recordings offer additional detail if desired.

4.5 HMD System Development

In this section, we will explore the key aspects of the system development process. We will
discuss the hardware and software considerations and provide an overview of the devel-
opment timeline, strategies, and tactics employed. Finally, we will highlight the various
challenges encountered during the development process, along with the lessons learned
and strategies used to overcome these obstacles.

4.5.1 Hardware

Of the HMDAR systems commercially available in 2021, when the precursor to this study
began, only the HL2 was well-suited for enterprise applications, including manufacturing.
Originally released for that market in 2019, the HL2’s distinguishing features are tabulated
in Table 4.2, below.
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Table 4.2: HoloLens2’s Distinguishing Features6

Feature Description

Natural Field of View The HL2 is an optical-see-through system (OST) where its
display is overlayed on the user’s normal view of the world.
Its optical design provides a wide and minimally obstructed
field of view (FOV), giving a natural and safe user experience.
The HL2 also can be used with glasses and features a unique,
flip-up design that eliminates the device from view.

Hands-free use The HL2 relies entirely on natural inputs - gestures and voice
controls - rather than physical input devices like tablets or
game-style controllers. This leaves operators free to use their
hands for their required tasks.

Untethered The HL2 is a stand alone design with integrated power and
compute. This eliminates the need for power or data
connections that can encumber users, limit their motion, and
introduce tripping hazards.

General Purpose HL2 is a versatile XR device that supports open development
across various industries. Its hardware supports image,
model, and area tracking methods to allow for a wide range of
augmentation. Unlike some devices, the HL2 is not limited to
specific applications or development by authorized partners.

Only the Magic Leap 27 design is similar. However, despite being released nearly three
years later, it has a more limited FOV, requires prescription inserts for vision correction,
offers less extensive developer support, and has achieved less market adoption than the
HL2. Both devices are pictured in Figure 4.19, below.

Because the HL2 represented the state of the art in OST HMD enterprise XR devices when
this study commenced, it was adopted for the HMD AR/MR treatments. At the time of this
writing, nearly four years after its introduction, the HL2 hardware design and the feature
set it enables remain largely unchallenged.

Unlike the LG, the HL2 is entirely self-contained, processing data from an array of sen-

6 HoloLens2 Hardware Details: https://learn.microsoft.com/en-us/hololens/hololens2-hardware
7 MagicLeap: https://www.magicleap.com
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(a) Microsoft HoloLens2. Source: Microsoft (b) Magic Leap 2. Source: Magic Leap

Figure 4.19: HoloLens 2 and Magic Leap 2

sors to enable six degree-of-freedom visual tracking, spatial mapping, gesture recognition,
voice commands, hologram rendering, and optical compositing in real-time. Figure 4.20
provides an exploded view of the HL2 components.

Figure 4.20: HoloLens 2 Exploded View. Source: Microsoft
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4.5.2 Software

Development options for XR systems are limited. For creating custom apps on HL2, Mi-
crosoft supports and endorses Unity8 with theMixed Reality Toolkit9. Ultimately, the need
for model and area based tracking capabilities required further tooling. Each element is de-
scribed below.

Unity

Best known as a “game engine,” Unity is a very capable tool, commonly used for industrial,
commercial, and defense applications. It offers a comprehensive feature set for creating
and animating objects, rendering high-quality visuals, programming systems and interac-
tions, simulating physics-based dynamics, processing music and audio, designing user in-
terfaces, and much more.

Despite its complexity, Unity is relatively easy to learn. High quality training, documen-
tation, and support are widely available, both through official channels and from a large
and enthusiastic development community. Like most tools of its type, Unity is extremely
extensible via plugins, many of which are distributed through the official asset store.

Unity is free for non-commercial and academic applications10. For research applications
like this one, which will not be distributed or otherwise commercialized, its Terms of Ser-
vice11 did not pose major concerns. Crucially, Unity allows users to retain rights to content
they create, and makes no ownership claims over it.

Other options, including Epic’s Unreal and Vuforia Studio, were carefully considered but
ultimately rejected due to a lack of support, functionality, flexibility, or some combination
thereof.

Mixed Reality Toolkit (MRTK)

The MRTK is a software development kit (SDK) designed to simplify and accelerate the de-
velopment for XR hardware, including the HL2. It provides developers access to essential

8 Unity: https://unity.com/
9 Mixed Reality Toolkit (MRTK): https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity
10 Unity Pricing: https://unity.com/pricing#plans-student-and-hobbyist
11 Unity’s Terms of Service and other legal info: https://unity.com/legal
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HL2 capabilities, including spatial mapping, hand and eye tracking, natural input modali-
ties, and more, all from within Unity.

MRTK is a free, open-source project that was initiated byMicrosoft and first released under
the very permissive MIT License (Saltzer, 2020) in 201712.

Vuforia Engine

MRTK’s built-in tracking support is limited to image-based solutions and spatial anchoring
techniques that were insufficient for this project. After exploring available options, it was
determined that the Vuforia Engine13 (VE) by PTC could best address that limitation. This
SDK works with Unity, MRTK, and the HL2 to add robust marker, model, and area based
tracking capabilities that were necessary for this project.

PTC’s Vuforia product line is a commercial product designed for enterprise customers, but
the Basic version of the Engine SDK is available at no cost. With that plan a limited number
of model and area targets can be generated, so long as the resulting app is not published14.
Within the constraints of this work, PTC’s Terms of Use and Developer Licensing Agree-
ment15 posed no significant concerns.

4.5.3 Timeline

The software used for both HL2 treatments was based on work originally done during the
Summer of 2022 by a team of three undergraduate computer science and software engi-
neering students. Led and directed by the author, that team created an augmented in-situ
training prototype for manufacturing operators. The resulting system utilized a HL2 to
align in-context instruction with the workpiece using image based methods — QR codes
attached to the fixture.

In the following semester the same team adapted and extended the underlying codebase
to support this study. This effort primarily consisted of assessing enhanced tracking tools,

12 MRKT Github Repository and Licensing File: https://github.com/microsoft/MixedRealityToolkit-Unity
13 Vuforia Engine SDK: https://www.ptc.com/en/products/vuforia/vuforia-engine/ar-app-development
14 Vuforia Pricing and Licensing: https://developer.vuforia.com/library/faqs/pricing-and-licensing-options
15 Vuforia Terms of Use and Developer Agreement: https://developer.vuforia.com/legal/tos
https://developer.vuforia.com/legal/vuforia-developer-agreement
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integrating the selected SDK, configuring area and model based tracking, and adapting in-
structional content from the PAR treatment. The project timeline is approximately illus-
trated by Figure 4.21.

Data Extraction and Cleaning

Study Conducted

HMDAR/MR Development

HL2 Prototyping

07/22 10/22 01/23 04/23 07/23

Figure 4.21: Approximate Project Timeline

4.5.4 Strategy

Development was iterative with roughly two-week sprints. Except during the summer,
the developers were full-time students and were managed accordingly. Expectations had
to reasonably balance their availability and inexperience with the project goals and time-
line. Flexibility was critical to everyone’s success. Atlassian’s Trello16, a lightweight, web-
based project collaboration tool with kanban style task tracking, was used to manage the
project.

4.5.5 Tactics

The HMDAR andHMDMR apps were developed in Unity version 2022.x withMRTK v2.7x
and VE v10.7x. Development was done entirely on MSI GE76/66 Raider (11UH-053/227)
laptops running the 64-bit version of Windows 10 with the latest updates. Both laptop
models were equipped with an Intel Core i9-11980HK CPU, NVIDIA GeForce RTX3080
GPU, 32 or 64GB, and 2GB of M.2 NVMe storage.

Systems were configured with the Visual Studio 2019 integrated development environment
(VS) as described in the MRTK setup instructions17. Unity Version Control (VCS, formerly

16 Trello: https://trello.com/home
17 MRTK Setup Instructions:
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/install-the-tools
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Plastic) was used to manage all assets and source code, allowing the developers to track
changes and collaborate effectively.

All programming was done in C#, as required by Unity. C# is an object-oriented language
with strong typing and simplified memory management. It has a familiar syntax that is
similar to Java and C++, both of which influenced its design. This enabled the developers,
all new to C#, to adapt with relative ease.

Figure 4.22: Development Workflow

Unity development for HoloLens2 generally proceeds as illustrated in Figure 4.22, and de-
scribed below.

1. Configure a scene in the Unity editor, including the placement, orientation, and prop-
erties of rendered items and UI components, along with cameras, lights, and other
“helper objects” used to manage the experience.

2. Write C# scripts to control scene interactions. These scripts are attached to game
objects and get events, trigger responses, and pass messages to other objects. Unity’s
component-driven architecture offers a variety of predefinedmethods and event func-
tions, which is extended by MRTK.

3. Do initial testing, using the Unity editor to simulate HL2 interactions directly on the
laptop screens. This approach allows for rapid iteration and real-time feedback to
changes made in the editor, facilitating early debugging.

4. Building for the HL2 device is a two step process. First, Unity generates a bundle of
processed data and scripts. The result is then used by VS to compile and package a
UWP (Universal Windows Platform) app for the HL2. In the process all C# scripts
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are converted into C++, and then into a native binary for the HL2’s ARM-based archi-
tecture.

5. Finally, the UWP app is transferred to the HL2 via USB.

The inter-dependencies between Unity, MRTK, and VS, each with their own packaging sys-
tems, dependencies, and versions, made this an intricate process. Our initial understand-
ing was greatly accelerated by Microsoft’s online resources18 and tutorials19, along with
Ferrone’s annually updated Learning C# by Developing Games in Unity (2021).

Figure 4.23: Unity HoloLens2 Simulator

4.5.6 Design

HMDAR Treatment

The HMDAR experience was analogous to that of the PAR treatment. Interactions in both
were controlled by hand placement / motion in the scene, mimicking button inputs. Both
used a fixture to keep the model in the reference position, facilitating the alignment of vir-
tual objects. Essentially, both were projected AR experiences, differentiated primarily by
the manner of projection and input detection.

18 MRTK Unity Documentation:
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2

19 MRTK Tutorials: https://learn.microsoft.com/en-us/training/modules/learn-mrtk-tutorials/
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The PAR system used traditional optics to project virtual instructions onto the work surface
and a depth-sensing camera to detect inputs. “Tracking” in this case was static andmechan-
ically set, where the projector’s orientation, throw angle, and focal length were fixed based
on its location relative to the workpiece.

The HMDAR system used the HL2 to project virtual instructions into the operator’s visual
field via a sophisticated sensing, display, imaging, and optical systems. This user-centric
display is the affordance that differentiates the HMDAR treatment. Tracking was dynamic,
based on the operator’s position and head angle relative to the work surface, and intrinsic
properties of the HL2 system. Input detection utilized the system’s hand tracking capabili-
ties, which rely on fused sensor data and machine learning techniques.

HMDMR Treatment

A consistent approach was taken for the HMDMR treatment design, extending the capa-
bilities of the HMDAR treatment. HMDMR used more sophisticated tracking methods to
enable freeform interaction with the workpiece, as described in Section 4.2.3.

4.5.7 Implementation

The HMDAR treatment was developed first. Using the HMDAR version as a baseline, the
HMDMR version extended it to incorporate model based tracking methods.

HMDAR Implementation

This effort primarily involved: (1) recreating the PAR’s instructional design approach, (2)
setting up the interaction methods, and (3) implementing the tracking system.

The first was relatively straightforward. Assets were modeled in Unity to resemble compo-
nents from the PAR instructions. They were arranged in the scene relative to the workpiece
location, based on an established scale. Finally, scripts were written to control the scenario
logic, changing the scene based on user behavior.

Our interaction implementation relied on HL2 input systems provided by MRTK’s modu-
lar, component-based architecture. In this system, input actions like select or acti-
vate and the events they trigger act as the bridge between the user’s physical actions and
the software’s response. Physical actions are captured via HL2 sensors and interpreted
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by MRTK’s various modalities, including gesture and hand tracking. Different interaction
styles are associated with available pointer types, e.g., ray pointers for distant interactions
and poke pointers for nearby. With this approach a diverse range of interactions can be
design through careful composition of components.

For HMDAR tracking, we relied on VE’s Area Targets20 feature, an implementation of the
area-based tracking methods described in Section 2.7.4. Area-based tracking compares a
pre-generated 3Dmodel of theworkspacewith live 3D data of the user’s surroundings. This
“spatial map” is a polygonal mesh generated in real-time by the HL2, using data from the
depth sensor, visible light cameras, and inertial measurement unit. A sample is shown in
Figure 4.24. From this comparison, the system can determine the current position and
angle of the user’s head.

Figure 4.24: HoloLens Spatial Mapping

Area-based tracking was selected over image or marker-based methods to minimize track-
ing loss. Marker-based tracking will fail if there are no markers within view of the HMD’s
sensors. Area-based tracking provides a continuousmapof registration points for the entire
scene, greatly reducing drop-outs. It also tends to (re)acquire tracking more quickly than
marker-based methods, again due to the number and distribution of features available.

The 3D model is created offline, first by scanning the area with the Vuforia Creator App21.
Pictured in Figure 4.25a, this tool uses a LiDAR equipped iPhone / iPad Pro to capture an
accurate model of the area in E57 format, per ASTM E2807 (ASTM, 2019). The E57 data is

20 Vuforia Area Targets: https://developer.vuforia.com/library/environments/area-targets
21 Vuforia Creator App: https://developer.vuforia.com/library/tools/creator-app
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then processed to generate an Area Target asset package for Unity, which includes all the
required geometry, textures, and metadata.

(a) Vuforia Creator App (b) Area Target in Unity

Figure 4.25: Vuforia Area Target Processing

Once imported into Unity and properly configured22, the 3D model is used to align the
placement of virtual objects in the real world scene. This allows the developer to design the
experience in the context of the real world model, as seen in Figure 4.25b.

Finally, at runtime, key points encoded from the Area Target mesh are compared with the
real-time spatialmap to estimate the operator’s head position and angle relative to thework-
piece, thus establishing a coordinate system for the spatially coherent placement of virtual
objects.

HMDMR Implementation

To support freeform interaction, the system needed a way to properly place instructional
cues on the workpiece, regardless of its position and orientation. This was accomplished
withmodel-based tracking, using theModel Targets23 feature fromVE. Note that this treat-
ment continues to use Area Targets for workspace pose estimation, but addsModel Targets
for those involving the workpiece. Otherwise, the HMDMR implementation is unaltered.

The distinct technical requirements of model and area based tracking necessitate separate
implementations. Where area-based tracking focuses on spatial orientation within a static
environment, the prime challenge for model-based tracking is dynamic object recognition
and pose estimation. While there might be some overlap in the fundamental computer

22 Vuforia Area Targets in Unity:
https://developer.vuforia.com/library/develop-area-targets/area-targets-unity

23 Vuforia Model Targets: https://developer.vuforia.com/library/objects/model-targets
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vision andmachine learning techniques used, the specific algorithms and their optimization
differ significantly, catering to the unique challenges of each tracking type.

Overall, the Model Target implementation process was similar to that for Area Targets.
First, a 3D model of the object was constructed and converted into a Model Target using
VE tools. These steps were completed offline. At runtime, the system again compares live
sensor data with Model Target data to recognize and then track object(s) in the scene.

Model source data was constructed in LeoCAD24, a tool for designing models using LEGO
bricks. LeoCAD uses the comprehensive LDraw25 database of LEGO parts, most of which
are modeled from actual pieces. This standard uses a proprietary unit of measure, the
LDraw Unit (LDU), which is based on the smallest stud-to-stud spacing on a standard
LEGO brick: 1 LDU = 0.4mm.

LeoCAD’s design adheres to LEGO design principles, ensuring that the way parts attach in
the software reflects the real-world equivalent. The combination of LDraw’s precision and
LeoCAD’s tooling ensures that the resulting models are faithful representations of their
physical counterparts.

Figure 4.26a is a screenshot of the LeoCAD interface, highlighting some of its capabilities.
Both LDraw and LeoCAD are unofficial, open source, community run, multi-platform tools
that are free to use.

(a) LeoCAD Interface Screenshot (b) Model Target Constructed in LeoCAD

Figure 4.26: LeoCAD UI and Model Target

Our sourcemodelwas constructed in LeoCADbased on the PWI, using LDrawmodels of the
specified LEGO parts. The result, seen in Figure 4.26b, was exported as a 3DS26 file and im-

24 LeoCAD: https://www.leocad.org/
25 LDraw: https://ldraw.org/
26 3DS File Type: https://en.wikipedia.org/wiki/.3ds
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ported into Unity as a part hierarchy. There, it was scaled from LDUs to conventional units
and exported in the FBX27 interchange format for VE’s Model Target Generator (MTG).

TheMTG supports twoModel Target types. AdvancedModel Targets can be automatically
recognized and tracked from any angle, without themanual alignment and recognition pro-
cess required by Standard Model Targets. The requirement for the HMDMR treatment to
provide freeform interactions in an otherwise equivalent experience mandated the use of
Advanced Model Targets.

The MTG process begins by checking for model suitability. Model targets must be free of
errors and unnecessary internal geometry, with rigid geometry and real-world scale. Ideal
candidates for Advanced tracking also feature optically stable surface features, minimal
symmetry, and accurate surface colors. Highly reflective, transparent, or featureless sur-
faces provide insufficient visual cues and highly symmetric objects make it difficult to de-
termine orientation.

Next, the model geometry is analyzed and a set of Guide Views are automatically generated
for a 360-degree recognition range. This step leverages deep learning methods trained to
generate optimal views from arbitrary angles based on the geometric features and surface
qualities of the model. The output of this process includes the trained recognition model,
along with the associated dataset and guide views. This package is imported into Unity and
used by VE to provide the desired model-tracking functionality.

4.5.8 Development Challenges

Software system development is always challenging and this work was no exception. The
system requirements and complexity, hardware and software issues, and resource con-
straints all contributed to a variety of challenges that the team overcame.

A fundamental consideration in the success of any collaborative development effort is a reli-
able software environment. The integration of Unity, MRTK, and Vuforia, along with their
requisite packages and settings, was intricate and fragile. This made it difficult to ensure
a reliable baseline and consistent results for all developers. Even with version control, too
much time was spent chasing bugs and deployment issues rooted in these issues.

Implementing accurate and robust tracking for the AR/MR applications posed additional
challenges beyond the selection and integration of another third-party framework (Vuforia

27 FBX File Type: https://en.wikipedia.org/wiki/FBX
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Engine). Area-based tracking was mildly sensitive to the surface properties of some mate-
rials and workstation configuration changes, requiring some additional care in setup. In
particular, the exterior of the fixture had to be masked with painter’s tape to limit the re-
flectance of its milled aluminum surfaces. These detractions were more than offset by the
overall robustness of the method, which all but guaranteed nearly instant acquisition of
tracking from the rich set of provided features.

Figure 4.27: Fixture Masked to Reduce Reflectance

The inherent complexity of MR also led to less reliable tracking and increased instability in
that treatment. When tracking is interrupted the system is unable to place virtual objects
in the scene. The user experiences this as a “drop-out,” where everything disappears from
their field of view. Once tracking is reacquired, the virtual objects return. In rare cases
of extreme instability, this cycle could cause the system to crash or require a reset. As de-
scribed in Section 4.11.5, the frequency, duration, and impact of these events varied, and
was accounted for.

Working with expensive, body-worn hardware created additional complications. Final test-
ing could only be done on the HL2, which requires physical access to the device. The time
required to build and deploy an update to the HL2 significantly slows iteration, adding to
the disruptive nature of regularly donning/doffing a shared headset. These factors created
friction that naturally led developers to prefer testing via simulation or emulation, neither
of which provides a complete or accurate view of user experience or system performance.
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Developing AR/MR applications for the HL2 requires careful design and optimization. To
avoid related discomfort concerns, smooth performance and minimal latency must take
priority. Considering the device’s computational constraints and the complexity of the re-
quired tracking and rendering tasks, this may require tradeoffs in the instructional design.
Thankfully, the design of the PWI and “low fidelity” nature of LEGO bricks helped mitigate
these challenges.

Finally, reliance on a student-led development effort demanded a flexible and supportive
management approach from recruitment to completion. None of the primary contributors
had previous experience with the software, hardware, methods, or tools involved. Despite
that, they built a successful instrument from scratch. Beyond hard work, skill, and deter-
mination, their success owes something to a careful management of project requirements,
system capabilities, and resource constraints in the academic context.

A number of other challenges commonly associated with software development projects
were largely avoided through careful process planning, iterative development, and ample
time allocated to training early in the project.

4.6 Participants

This section will outline all participant recruitment, selection, benefits, and assignment
considerations. The onboarding process is also described.

4.6.1 Recruitment and Selection

A convenience sample of participants were recruited from the Auburn University commu-
nity using digital and printed promotions around campus, the graduate school mailing list,
and outreach in various undergraduate engineering classrooms. The latter focused on fresh-
man and sophomore engineering students in Industrial & Systems Engineering, as they are
accessible and most likely to meet all requirements. Figure 4.28 exemplifies the recruiting
materials, approved copies of which are included in Appendix E, IRB Documentation.

Potential participants in the first investigation were screened for exclusion based on their
age (under 19) or a tendency to motion sickness. Additionally, they were screened for ex-
perience with head-mounted or projected AR devices using gesture based controls. This
does not exclude those having experience with VR headsets like META’s Occulus product
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Figure 4.28: Digital recruitment flyer distributed on campus monitors.

line, which is relatively common among the target population, but utilize traditional input
devices.28 Finally, any candidate that had previously participated in a manufacturing sim-
ulation at the Tiger Motors Lean Education Center was excluded. This controlled for prior
experience with the assembly task, as part of INSY 5800/6800 or otherwise.

Due to practical constraints described in Section 4.10.2, the study could accommodatemax-
imum of 100 participants. Realistically, 70-90 were expected based on early response. For
the results to exceed the minimum desired statistical power, at least 60 participants were
required. Based on these considerations, the recruitment goal was 70+ participants.

4.6.2 Benefits and Compensation

Other than the compensation described below, there were no direct benefits for partici-
pants in this study. All were offered an opportunity to interact with projection and/or head-
mounted AR hardware and training methods for the first time. This may have lead them to
a greater appreciation of the benefits and opportunities these technologies offer.

To incentivize sign-ups, some extra credit and the possibility of financial compensation
were offered. In addition, all participants were invited to an event at the end of the study.

28 This distinction had to be explained to several interested participants, which supports the notion that the
differences between AR and VR are not yet well understood. Ultimately, no participants were eliminated by
this requirement.
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Extra Credit

Any instructor promoting these studies to their students was free to provide extra credit
for participation. This was entirely at their discretion. We cautioned all instructors to offer
no more than 1% on the final class average, and encouraged them to provide alternative
bonuses for students unable to participate.

End of Study Event

At the conclusion of the main study, all participants were invited to return to the lab for
an “open house” event. This gave them the opportunity to experience other treatments and
related technologies, and learn more about the experiment and lab. Food and drink were
provided. In exchange, we asked all attendees to participate in a brief retention experiment.
Attendance and participation were voluntary.

Compensation

The possibility of financial compensationwas introduced in the final IRBModification, sub-
mitted April 3, 2023. Following its approval on April 10, we began promoting this retroac-
tive benefit. All participants in the main study were eligible for one of three random draw-
ings. Those that attended the end of study open house qualified for additional awards, as
outlined in Table 4.3.

Table 4.3: Compensation drawings by study and award category.

Study Category Quantity Amount (each) Sub-Total

Main Participation 6 $25 $150
Retention Performance 1 $50 $50
Retention Participation 4 $25 $100

For the performance prize in the retention study, eligibility was limited to those who com-
pleted the experiment in under one minute without errors. A total of $300 was awarded
via email in the form of digital Amazon Gift Cards.

No member of the research team was eligible for any of the financial compensation
described, and all payment processing was handled by appropriate members of the ISE
staff.
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4.6.3 Onboarding

The initial participant onboarding process was conducted manually by the PI. In a phone
call with interested participants the PI would (1) briefly explain the investigation, recapping
and elaborating on the recruiting materials; (2) discuss the exclusion criteria and identify
relevant issues for the candidate; (3) set expectations for participant involvement, including
time commitment and tasks; and (4) answer any questions the candidate had regarding
participation in the investigation.

If the candidate indicated a willingness to proceed, their information was collected using
the Subject Recruitment Data Sheet included in Appendix E. A unique participant ID was
logged on the code list and a date and time for data collection were then assigned. As de-
tailed below, the code list and consent form provided the only link between personally iden-
tifiable information and experimental data. Afterwards, a confirmation email was sent.
A copy of the Informed Consent form was included for their review prior to the appoint-
ment.

This process quickly proved impractical, and a self-service web-based alternative was
offered. By eliminating the reliance on manual, call-based screening, SignUpGenius29

streamlined the entire onboarding and scheduling process. This increased the rate for
converting interested into scheduled participants and allowed the team to focus on running
the experiments.

4.6.4 Random Assignment

Treatment assignment was accomplished through a combination of participant schedul-
ing and treatment ordering. Participants set their own appointments based on availability.
Without knowledge of the underlying treatments or their ordering, this was an inherently
random process. During the intake process, each was assigned the next available treatment
from a randomly ordered list.

Treatment randomization was completed before the onboarding process began. To ensure
that all treatments were tested at the start of the experiment, a random sequence of all four
treatments started the order. Next, a set of eight treatments, including two of each type, was
shuffled to create a randomly ordered batch with an even distribution. This block-wise pro-
cess was repeated as necessary to cover the maximum number of participants. The batches

29 SignUpGenius: https://signupgenius.com
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were combined, in the order generated, to create the final treatment sequence. This ap-
proach ensured random, balanced, and unbiased assignment, regardless of the final num-
ber of participants.

The treatment randomization process was implemented with a simple Python function,
gen_treatment_order(), as seen in Figure 4.29, below. Therandom.shuffle30 func-
tion from the base Python 3.x distribution was used to randomly reorder a group of values.
Though this program was only run once (after validating and verifying its output), no ran-
dom seed was set to ensure that a unique sequence was generated with each use.

def gen_treatment_order(n=2):
'''
generate random treatment order

IMTS is a list of the four treatments
NUM_CYCLES is the number of 4-treat batches
'''

# start with random selection of all treats
trials = []
first_set = IMTS.copy()
random.shuffle(first_set)
trials.extend(first_set)

# shuffle IMTS in groups of 8 (two cycles)
for _ in range(NUM_CYCLES // n):

part_trial = IMTS * n
random.shuffle(part_trial)
trials.extend(part_trial)

return trials

Figure 4.29: Python 3.x Code for Treatment Randomization

4.7 Research Compliance

As with any protocol that involves human participants, this study required Institutional
Review Board (IRB) approval. This section will describe that process, and detail consider-
ations related to consent, privacy, security, and risks / discomforts identified.

30 random.shuffle Documentation: https://docs.python.org/3/library/random.html#random.shuffle
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4.7.1 Institutional Review Board

An initial review of the protocol found that it created minimal risk to participants, did not
involve vulnerable populations, invasivemethods, or sensitive data, and required informed
consent. Furthermore, it involved the “collection of data from voice, video, digital, or im-
age recordings,” which is identified by the University as a category of research eligible for
expedited review.31

The IRB submission and expedited review process began in December of 2022, and final
approval was granted on April 10, 2023. During that time four versions of the IRB were
approved, and only two rejected. The approval dates and changes are summarized in Ta-
ble 4.4.

Table 4.4: IRB Version History

Version Description Approved

1.1 Original submission 1/30/23
1.1a1 Adjusted protocol to add survey instruments 2/13/23
2.1 Incorporated 2nd investigation 2/23/23
3.0 Added compensation 4/10/23

This process was somewhat complicated by the decision to incorporate two separate but
related investigations into a single application. The first investigation (I1) is the focus of
this dissertation. I2 (the second investigation) is a separate work that used similarmethods
to investigate the relationship between I4.0 technologies and LeanManufacturing systems.
There is no connection between I1 and I2 beyond the collaborative relationship between
their research teams.

The development of the IRB was a collaborative effort which I spearheaded as the Principle
Investigator (PI), authoring the majority of the application, and ensuring alignment with
the study’s goals and ethical standards. Contributions from other members of the research
teams, as specified inAppendixA: TeamContributionMatrix, were essential to its thorough
design and timely approval.

31 Per AU IRB Expedited Category Guidance: https:
//cws.auburn.edu/shared/files?id=159&filename=AU%20Expedited%20Categories%20Guidance.doc
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The final approved version, including all supportingmaterials, is incorporated as Appendix
E: Institutional Review Board Approval. All processes described herein are all based on the
approved protocols.

4.7.2 Consent

All participants were provided a copy of the approved informed consent form in advance of
their trial. As part of the intake process they were provided a paper copy for further review
and encouraged to ask any questions or share any concerns they might have. After a verbal
confirmation that the participant had read and is satisfied with the terms of the informed
consent agreement, they were asked to sign and date it. The form was then countersigned
and placed in a locked filebox.

4.7.3 Privacy and Data Security

A variety of data were collected for this study, including video recordings, performancemet-
rics, demographic information, and survey responses. All datawere collected anonymously,
referenced only by the unique ID assigned to each participant. The code list, used solely for
contacting participants during the ongoing protocol, was securely stored alongside the con-
sent forms in a locked box within a restricted-access location. Notably, the consent forms
do not include any reference to the participants’ ID numbers. Both the consent forms and
the code list are maintained exclusively in paper format to facilitate secure storage and sub-
sequent disposal through shredding. Upon the completion of the protocol, the code list
will be destroyed, thus rendering the data completely anonymous. These measures were
diligently enforced to protect the privacy and confidentiality of participant data.

All electronic data pertaining to the study are stored on a secure server. Non-identifiable
data is available to other members of the research group, for the purposes of approved
research, under conditions that ensure continued confidentiality. Access to consent forms
and the code list is limited to the PI and, if required, the research committee.

For reasons detailed in the study design, two angles of each trial were recorded on video;
a view from the participant’s perspective and a side view focused on the work surface. The
side view was carefully framed to limit identification of the participant, and later edited to
crop out identifying features, ensuring participant privacy. Additionally, all participants
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were required to wear the HoloLens2 head-mounted display, which further obscured their
appearance.

4.7.4 Risks and Discomforts

Beyond the privacy and data concerns previously described, other potential risks and dis-
comforts were identified. Prolonged used of HMD VSTs has been reported to cause mild
neck strain, disorientation, and eye strain in some cases. The optical and physical design
of these systems can also result in a limited or obscured field of view and degraded acuity,
which could increase the participant’s risk of trip or impact (UL, 2022).

The HL2’s untethered design with wide, unobstructed field of viewmitigates many of these
concerns, but additional precautions were taken. All participants were screened for a ten-
dency towards motion sickness. The study was intentionally designed to limit each par-
ticipant’s time wearing the HL2, and to ensure that they were generally stationary in an
obstruction-free environment. Finally, the Lean Lab was selected in part because it is a
organized, safe, and well-lit environment with no history of related hazards.

As these experiments were conducted in the Spring of 2023, the risk of COVID-19 expo-
sure remained a lingering concern. Precautions were implemented during data collection
as outlined in the University-provided protocol for studies without high-risk procedures or
participants (Category C). All work surfaces and equipment were wiped down before and af-
ter each participant, and necessary supplies were made available. All research participants
followed theUniversity’s guidance on self-screening. Throughout the administration of this
study, theCDC’s COVID-19 community level for LeeCounty, Alabama remainedLOW, elim-
inating the need for participant screening. The Shelby Center for Engineering Technology,
where this protocol was administered, is assigned the highest level of building readiness
due to increased air turn-over and filtration.

This study did not involve any vulnerable populations. Overall, the likelihood and impact of
any of the risks outlined above were considered low. Nevertheless, all participant activities
were supervised to monitor for likely symptoms or unexpected side-effects. In either event,
the experiment would be suspended and the situation assessed. If escalation was deemed
necessary, an emergency plan and contact list were available to the research team.

During the post-experiment debriefing all participants were asked about injury and discom-
fort, and were observed for lingering or delayed effects. Ultimately, only a fewmild discom-
forts were reported, and no significant side effects, injuries, or need for escalation.
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4.8 Conduct of First Session

This section will describe key operational details for conducting the first session protocol,
including the learning and recall experiments. The conduct of this study was designed to
ensure participants felt comfortable and understood the tasks, while also aiming for valid
results and thorough data collection. The approach balanced a need for clear procedures
and ethical integrity with the flexibility required to adapt to individual participant needs.

4.8.1 Division of Labor

The approach detailed herein was designed for three roles, referred to as the primary, sec-
ondary, and tech. The role of the primary investigator (PI) was always played by the au-
thor.32 The secondary investigator (SI) role was typically filled by his counterparts on col-
laborating studies. Finally, the tech support (TS) rolewas played by amember of the study’s
HL2 development team.

The responsibilities of each role vary throughout the session as described below. All three
roleswere usually filled for each session, allowing for themost comfortable division of labor,
but some trials were run effectively with fewer.

4.8.2 Start and End of Day Procedures

Daily preparation for the study involves careful setup across three roles. The PI ensures
the schedule and trial documents are ready, workstations and PCs are prepared and op-
erational, and camera equipment is correctly configured and tested. The SI handles the
specifics of the trial setup, including treatment slates, car checks, and part inventories,
while coordinating with additional support staff. TS focuses on maintaining the software,
streaming setup, and hardware sanitation. Together, the team ensures a controlled envi-
ronment ready for trials.

The PI is also responsible for returning the lab it its original condition at the end of each
day. Post-session procedures include resetting all cell two workstations, powering down
equipment, cleaning and sanitizing the lab, turning off lights, and securing the premises.
Additionally, batteries andmemory cards are tended to, and consent forms securely stored.

32 Except when he was quarantined for a week with COVID, during which PIs from collaborating studies
generously substituted. The show must go on!
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Figure 4.30: The Battle Wagon

Both setup and tear-down were facilitated by the rolling cart adopted for this study (Fig-
ure 4.30), affectionately known as the “battle wagon.”

4.8.3 Workflow and Roles

Workstations seven through nine are configured for the first session as seen in Figure 4.31.
The numbered positions indicate the flow of work in process (WIP) through the system.
Assemblies begin at (1) and move, sequentially, to ST-8 (2). When a car is completed or
retired (due to breakage considered irreparable by the participant), it is moved to either
the green (3a) or red tray (3b), respectively. WIP at (3a) and (3b) is promptly collected and
moved to (4) for inspection, after which they aremoved to the results tray (not represented).
Video recording andHL2performance aremonitored via the PC and iPad represented. This
figure is not to scale but does effectively convey the approach used.

The flow of WIP is facilitated by the SI, who is responsible for collecting and inspecting
finished assemblies, recording results, and related tasks. The PI is focused on interactions
with the participant and recording observations about their performance. The TS manages
the HL2 system and acts as a secondary observer. In addition to these primary duties, all
team members collaborated effectively to ensure the successful conduct of this study. This
division of labor is summarized in Table 4.5.
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Figure 4.31: Workstation Configuration for Session 1

Table 4.5: Primary Responsibilities, First Session

Responsibility Description Role

Workflow Facilitate the flow of work into and out
of ST-8. Ensure that an inventory is
available on ST-7 and promptly collect
completed or rework items from ST-8.

SI

Data Collection Review all completed, retired, and
incomplete assemblies. Record the
number and type of errors for each,
along with the steps completed if
incomplete.

SI

Documentation Photograph the starting setup and the
final output with the trial card in frame.
Get additional photos were required to
document unexpected results.

SI

Run HL2 Manage operation of the HL2 for
treatments and/or recording. Monitor
the stream and recording. Troubleshoot
as required.

TS
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Responsibility Description Role

Interact Lead all participant interactions. PI
Observe Carefully observe the participant

without disrupting their work.
Intervene if required to correct
unexpected behavior. Record
interesting observations and insights.
Respond to any work-stoppage events.

PI

Recycle Prepare work area for next experiment
or participant. Disassemble ST-8
complete cars to ST-7 state and verify.
Maintain bin inventory, reset recording
devices and HL2.

SI & TS

At the start of each day, ST-7 through 9 are cleared and configured as described above. Ten
pre-built assemblies are positioned to the participant’s left, at position (1). The construction
of all ST-7 inventory is carefully verified against ST-7 standards, as pictured in Figure 4.32,
to ensure an accurate starting point for all ST-8 tasks. A completed ST-8 assembly is also
pictured for comparison.

(a) ST-7 Complete Assembly (b) ST-8 Complete Assembly

Figure 4.32: Start and End Configurations for ST-8 Assemblies

4.8.4 General Policies

Except as otherwise noted, several policies are followed throughout the conduct of each
session. Participants are encouraged to ask questions at any time. At each transition point,
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their understanding and readiness to proceed are confirmed. Discussion is allowed but lim-
ited and questions are answered but not embellished upon. Members of the research team
are not allowed to prompt or otherwise instruct participants, except as specified. Overall,
these policies were established to put participants at ease while maintaining a semi-formal
tone and staying “on-script.”

4.8.5 Session Procedure

Following the initial setup, each session would proceed as follows.

1. Intake: welcome the participant, complete initial paperwork and instruments
2. Orientation: introduce the participant to the Lean Lab and their work area
3. Introduction: describe the general workflow at ST-7
4. Demo: demonstrate the assigned treatment at ST-8
5. HoloLens: introduce the participant to the HL2; don it and adjust fitment
6. Practice: have the participant practice using their assigned treatment
7. Learning Experiment: conduct the first experiment
8. Intermission: complete TLX and SUS for first experiment
9. Reset: prepare ST-8 for the second experiment
10. Recall Experiment: conduct the second experiment
11. Debrief: complete TLX and SUS for the second experiment; gather General Feedback
12. Recycle: prepare ST-8 for the next participant

Intake

Each participant is greeted and welcomed into the conference room, where drinks and
snacks are offered. After they are settled, the participant is talked through the consent doc-
ument, which was previously supplied. Once any questions are answered, they are asked
to acknowledge their understanding and acceptance of it, initial each page, and sign. The
document is countersigned by the primary investigator and placed in a lockbox with other
consent forms before proceeding.

In accordance with the experimental procedure outlined in the NASA TLX instructions, all
participants were familiarized with that instrument during the intake process. The primary
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investigator first introduces the TLX as a tool for workload assessment and briefly summa-
rizes its design. The participant is then asked to read the provided Subject Instructions, af-
ter which their questions are answered. Finally, the participant is asked to complete amock
administration of the TLX for a hypothetical task, including both the Sources of Workload
Evaluation and Workload Rating Scales. For this step they were asked to imagine they
had just run a marathon, a task chosen for the high level of workload likely associated by
all participants, regardless of running experience.

Next, the participant provides a variety of demographic data on the Participant Intake Form
and self-reports behavioral data on the Behavioral Control Survey. Finally, they are briefed
on COVID protocols and emergency procedures.

Orientation

The participant is guided to the secondwork cell while receiving a brief summary of the lab’s
LEGO-based training methodology, which emphasizes real-world practices and efficient,
high quality production. Importantly, they are made aware of the line’s 60-second takt
time and its implications. This description is read froma script to ensure consistent delivery
of the information. Upon arrival at the second work cell, they are introduced to assisting
members of the research team.

Introduction

At the second work cell, workstations seven and eight are identified. Before moving to ST-
8, where the experiment is conducted, participants are introduced to the general assembly
process at ST-7. They are shown how to interpret the paper work instructions and a few
assembly steps are demonstrated. The PWI from ST-7 is used to limit exposure to the ST-8
task details.

Then, a few rules and expectations are set related to dropped parts, correcting errors, break-
age, and rework. It is also explained that the research team will only intervene in the event
of an event that stops work.
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Demonstration

The participant is led to ST-8 where they are informed of the assigned treatment. Interven-
tions are briefly demonstrated to all those assigned, while members of the control group
proceed to the next step. Each intervention is demonstrated in a manner similar to that
used for the PWI at ST-7, with a focus on the treatment’s operational details rather than
the instructional content. Critically, all system controls, UI elements, and feedback mecha-
nisms are explicitly described.

The HMDAR and HMDMR treatments, whose output is invisible to observers, requires a
different approach. One member of the research team performs the demo while another
narrates the process. The HL2’s output is simultaneously streamed to a nearby laptop on
ST-9. This allows participants to observe the HL2 operations as they are described, from
both real and virtual perspectives.

HoloLens

All participants are reminded that, for observation and recording purposes, they are re-
quired to wear the HL2 during the practice session and all subsequent experiments. Addi-
tionally, they are notified of a second camera, positioned to the left of ST-8 and adjusted to
only capture the work area.

Streaming is initiated on the HL2 before the participant is advised to don the device. Assis-
tance is provided as necessary to ensure proper fit, after which the participant is asked to
look at a reference point. If the streamed video centers on that target, it confirms that the
wearer’s line of sight aligns with the HL2’s field of view.

Practice

Participants are instructed to engage in a brief practice session during which they assemble
the first four bricks according to the provided instructions. This task is designed to ensure
their operational understanding of the instructional treatment, while deliberately avoiding
undesirable task training.
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Learning Experiment

The assigned task, timeline, priorities (as outlined in Section 4.4.2), and workflow (as out-
lined in Section 4.8.3) are described. Recording is then initiated onboth cameras andpartic-
ipants are asked to view the treatment slate (see Figure 4.33)while recording and alignment
are re-checked. This also serves to mark the start of both videos with essential details that
might help avoid confusion later. A 10-minute timer in view of the participant and both
cameras is initiated, and they begin building with the aid of their IMT. Data is collected
during the experiment as described in Section 4.4.2.

Figure 4.33: Laminated Treatment Slate

Intermission and Reset

At the conclusion of the first experiment recordings are stopped and the participant is asked
to remove the HL2. Then they are escorted back to the conference room, where they are
asked to complete the TLX and SUS based on their experience.

During this intermission, the research team records the learning results and resets thework-
station for the next experiment. Four pre-built assemblies are put into inventory at ST-7,
and any models built in the previous experiment are recycled to that standard. Photos of
the results tray and reset inventory are taken to document the process and results.
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(a) Results Tray (b) Recall Setup

Figure 4.34: Documenting Results and Setup

Recall Experiment

The second experiment is conducted in the same manner as before. No timer or interven-
tion is used, and the instructions / priorities are altered, per Section 4.4.2. Otherwise, the
procedure is identical. This experiment concludes when four cars are completed.

Debrief

Following the second experiment the participant is led back to the conference room for the
accompanying round of the TLX and SUS. Finally, the PI solicits any additional feedback
the participant is willing to offer. For those that require prompting, the PI can refer to a
list of standard topics. All participants are asked if they experienced injury or discomfort
during the session. Feedback and responses are recorded on the General Feedback Sheet.
Finally, the participant is thanked for their time and escorted to the exit.

Recycle

During the debrief, the research team records the recall results, resets the workstation for
the next participant, and documents both with photographs.

4.9 Conduct of Second Session

This section will describe key operational details for the retention assessment, which was
conducted during the end of study event. As described in Section 4.4.3, the scope and com-
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plexity of these trials was limited by expected traffic at the event. This also necessitated
different signup procedures, lab arrangement, workflow, and staffing, all of which are de-
scribed below.

4.9.1 Signup

The signup process was again managed by SignUpGenius, making it easy for the research
team and invitees alike. The system was configured to help even out the flow of arrivals,
preventing a backlog and keeping the event well attended throughout the day.

Twelve different start times were offered, one every 15-minutes between noon and 3:15pm.
Up to five people could sign up for any start time, allowing for up to 60 total signups.
Though we expected fewer, this ensured some flexibility in start times for those interested
in attending. Start times were set, but all attendees were free to stay as long as they liked.

4.9.2 Setup and Traffic Flow

Prior to the event, the Lean Lab was arranged as depicted in Figure 4.35. Ongoing demon-
strations for attendees would require the LG system at ST-8. Consequently, the retention
experiment was relocated to ST-3, a similarly configured workstation in work cell #1. This
choice ensured that the experience at ST-3 wouldmost closelymimic ST-8, thus controlling
for the effects of the change.

Experiments and demos from the collaborating study were conducted at ST-5 and 10, re-
spectively.

4.9.3 Workflow and Roles

Before entering, attendees would register at (1), where they were given the appropriate data
sheet and welcomed inside. Seating was provided at (3) to handle the queue of attendees
waiting for their trial. Partitions placed at (2) obscured their view of the ongoing experi-
ments and demos. This provided privacy and prevented re-exposure to the instructional
material. As each retention trial concluded participants were led, in order of arrival, to
ST-3. Those finishing were thanked and informed of the food and available educational /
entertainment options.
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Figure 4.35: Lab Arrangement for Second Session

Volunteers from both studies were responsible for directing attendees through registration
process, through the queue to their assigned experiment, and onto the activities that fol-
lowed. The general policies set forth in the first session were again applied.

At the end of the day the lab was cleaned and restored to its normal operating state.

4.9.4 Session Procedure

Participants were asked to complete the ST-8 task for one car, from memory, without ref-
erence (e.g., paper work instructions). Data were efficiently collected with a single video
camera, timer, and photos. With this approach, only a single research associate (RA) was
required to direct and document the trial. An additional volunteer was responsible for re-
cycling the inventory of assemblies.
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4.10 Administration of Protocol

This section will describe the manner in which the study was run, with a focus on adminis-
trative details like the team, scheduling, location, safety measures, quality assurance, and
challenges.

4.10.1 Personnel and Certifications

The IRB that this research was conducted under approved two related but separate stud-
ies. A third study planned to use the data from both for separate analysis. Members of all
teams collaborated in the administration of the separate experiments, helping one another
provide the coverage and support required to perform over 100 trials in a single semester.

As a result, the final IRB listed 13 key personnel, as summarized in Table 4.6.

Table 4.6: Research Team Breakdown

Type Description Count

Study PIs The Principal Investigators for all
collaborating studies.

3

Faculty Members Members of related committees, for
oversight and institutional stewardship.

3

Research Assistants Graduate (3) and undergraduate (1)
student volunteers assisting with the
conduct of experiments.

4

Technical Support Members of the undergraduate research
team that developed the HL2
capabilities and assisted with the
conduct of experiments.

3

All team members were certified by the Collaborative Institutional Training Initiative33

(CITI), in accordance with university policy and the team’s commitment to professional
research. Through this program they received training on the ethical implications and com-
pliance standards of their work.

33 Collaborative Institutional Training Initiative: https://about.citiprogram.org/
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Except for faculty members, members from all groups were directly involved in the vari-
ous aspects of the conduct of this study, as detailed throughout this document. Volunteers
signed up for shifts on SignUpGenius, using a form separate from the participants.

4.10.2 First Session Scheduling

As discussed in Section 4.5.3, the first session experiments were conducted in the Spring
of 2023. Specifically, trials were run for 10 weeks, from February 10th to April 27th. A
routine schedule of weekly trials was established based on the availability of the Lean Lab
and members of the research team.

Between 10 and 12 slots were available each week at a variety of days and times. A total
of approximately 100 available slots were offered. Though we planned to run significantly
fewer, this wouldmake it easier for interested participants to find a day and time that would
work with their schedule. A few Saturday shifts were also offered for the same reason.

Each slot was 75-minutes in duration, which was slightly more than the estimated average
treatment duration (60-minutes). This padding allowed us to accommodate late arrivals,
unusually long trials, and other unexpected events with little knock-on effect.

SignUpGenius was configured to only show available slots in a rolling two-week window.
This was done with the hopes of encouraging signups by creating a sense of scarcity and
urgency, and reducing no-shows by preventing interested but forgetful participants from
signing up too far in advance. At the start of each week the schedule was reviewed to make
adjustments for staff availability (e.g., illness and travel) and notify interested participants
of slots that remained open.

4.10.3 Safety Measures

All team members were aware of the study’s COVID-related precautions and emergency
action plan, and committed to the self-screening and reporting as required by the former.
Both documents were readily available to teammembers, who were trained to reach out to
members of the included contact list or escalate to emergency or non-emergency assistance
as deemed necessary. Current phone numbers were provided for all cases. This documen-
tation is included with the approved IRB forms in Appendix E.

Additionally, team members were trained to observe all participant activities for dizziness,
related vestibular issues, or any other significant but unexpected side-effect. In that event,
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the experiment would be suspended, HL2 removed, and the participant seated for assess-
ment. In the event assistance was required, the emergency plan would be consulted.

General safety procedures included routine sanitation and work area maintenance. All
work surfaces were wiped down before each participant and theHL2was sanitized between
wearers. In keeping with the Lab’s 5S34 plan, all teammembers worked to ensure the work
area remained free of obstructions and trip hazards.

4.10.4 Test Runs

Prior to running the first participant trials, a series of five test runs were conducted to train
the research team on its execution and identify any procedural issues. These sessions uti-
lized volunteer members of the research team that were not qualified to participate in the
study due to their experience in the Lean Lab and/or with the interventions. Accordingly,
no data was collected for subsequent analysis.

Feedback and notes collected during these tests were reviewed by the team and changes
proposed. The outcome was used to refine the procedure, streamline its flow, identify de-
tails previously overlooked in the checklists and data collection forms, and flesh out the
draft script. Though no large scale changes were made, collectively, the improvements had
a meaningful effect on the procedure’s overall quality. They were incorporated into the
second IRB submission as appropriate to ensure it properly reflected the latest protocol.

4.10.5 Quality Assurance

Throughout the design and conduct of this study, every effort was made to ensure its find-
ings were valid and verifiable. Primarily, this was achieved through the deliberate and
meticulous design of the protocol, as documented throughout this chapter.

Quality assurance was operationalized through a carefully documented procedure that in-
tegrated a script and checklists. The script was used by the PI to ensure consistent interac-
tions with each participant. Checklists were used by the entire team to verify that worksta-
tions, assemblies, and equipment were always properly configured.

Standard roles, consistent staffing, and clearly defined responsibilities were all established
to help ensure routine trials by reducing variability in their conduct. Test runs performed

34 5S is a methodology and mindset for maintaining a work space organized for efficiency and effectiveness.
https://en.wikipedia.org/wiki/5S_(methodology)
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before the first participant were used to train the team and collectively identify ways to
refine the plan. Once trials began, feedback from teammembers and participants was rou-
tinely used tomake adjustments that improved the process without impacting the results.

Results recorded by the SI were routinely double-checked by the PI before being pho-
tographed for later review. Most data was extracted and verified outside of the hustle
of data collection, using video and photo evidence to ensure the accuracy of data post-
intervention. Together, these measures helped ensure the quality of the data collected,
thereby elevating the integrity of our findings.

4.11 Data Extraction

This sectionwill describe themethods used to extract the data collected in instruments, data
sheets, photographs, and video. All extraction processes were performed by the author on
a 16” 2019 MacBook Pro (model A2141) with 2.3 GHz 8-Core Intel i9, 32GB of RAM, and
an AMD Radeon Pro 5500M with 8GB, running MacOS 13.x. Before being archived, all
original paper documentation was digitized using a Fujitsu ScanSnap iX1300 scanner and
the included software.

When extracting raw data from PDF sources, the only changes made were to label cate-
gorical values as described in the following sections. Otherwise, except where specifically
noted, no changes were made to the data during transcription. Where no value was pro-
vided, “N/A” was used.

Any data issues encountered were noted and marked for correction during the subsequent
cleaning process. This approach allowed us to explicitly document required corrections in
the code that made them, improving transparency and reproducibility. Finally, anything
more involved than simple labeling, such as more sophisticated encoding (e.g., one-hot
encoding) was left to the analysis phase, where computational methods would be employed
to reduce the chance of error.

4.11.1 Instruments and Data Collection Sheets

The contents of all digitized results were manually transcribed from their PDF into spread-
sheet format. Excel was used at this stage for its human-friendly interface, which facili-
tated data entry and consolidated all results into a single file. As detailed in the subsequent
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section, the XLSX file format is an open standard easily parsed by most programming lan-
guages. Together, these considerations made XLSX an ideal interim format for raw data.

Each instrument was given a separate tab, with each row representing a participant record.
The results from both Data Collection Sheets were combined into a single tab, where each
row recorded the outcome of a single assembly task. This process was straightforward ex-
cept as described below.

Personal Information Form

Fields in the PIF were a mix of numeric (e.g., age, height), nominal and ordinal categorical
(e.g., gender, education level), datetime (e.g., the date and time of scheduled trial), and text
values (e.g., notes). One change wasmade to the raw data for this form. Where participants
that were known to be degree-seeking AU students incorrectly marked “High school degree
or equivalent,” their status was changed to “Some college but no degree”.

NASA TLX

For each of the TLX’s Sources ofWorkload comparisons, the response was labeled 1 or 2 for
top and bottom choice, respectively. Columns were labeled S1 through S15, correspond-
ing to each of the 15 pairs shown in Figure 4.13, numbered left to right and top to bottom.
For example, a value of 2 (bottom choice) for S2 (Temporal Demand vs Frustration), cor-
responds to a user response of Frustration.

Workload Ratings were similarly tabulated in columns R1 through R6. They were scored as
marked on the 100-point scale, with 5-point graduations. Any mark between graduations
was rounded up, per the TLX instructions. The first five participants were incorrectly given
a Likert-style scale with values from 1 to 7 and bipolar descriptors “Very Low” and “Very
High.” These were scored as indicated with a note to correct the values during analysis. The
form was corrected for subsequent participants.

Finally, some participants may have mistakenly scored their Performance Rating. While
other factors employ a scale progressing from left to right, with descriptors ranging from
Very Low to Very High, the Performance scale is labeled with Perfect and Failure at its
endpoints, reflecting the inverse correlation between performance and perceived workload.
Despite the consistency of a rightward increase in perceivedworkload for all factors, partici-
pants might erroneously associate higher ratings with enhanced performance. This issue is
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noted in the TLX instructions and explicitly pointed out to participants, but suspicious val-
ues appeared during the transcription process. We will investigate potential issues during
the data cleaning stage.

System Usability Scale

Numeric responses (1-5) for all ten questions were transcribed as–is in columns Q1 through
Q10. Participant #1058 realized they had scored themselves using a reversed scale during
the first administration of the SUS. This was noted in the data, which was corrected during
transcription.

Data Collection Sheets

Each row of the “Outcomes” tab contained the manually-recorded results for each at-
tempted assembly task, i.e., a unique combination of participant number, experiment
number, and car number. The number of uncorrected errors (UCE) was determined
by inspection of each final assembly, verifying that the brick for each step was correctly
selected, placed, and oriented. The quality of attachment was not considered. For each
UCE encountered, its type was recorded as a combination of selection, position, and
rotation errors. Brief descriptions of the nature of each error, e.g., “front 59 swapped”,
were also included to aid interpretation.

Results recorded by the research team during the experiments were naturally error-prone.
During transcription, all were verified against the corresponding photographs and, if nec-
essary, video recordings. Corrections were made as required. This approach differs from
the handling of self-reported data, where the integrity of participants’ personal perceptions
must be preserved as provided.

A final step transcribes the recorded results into a concise format that encodes a detailed,
contextualized description of each error. For example, F59LRP (2) indicates that, at the
front of the car (F), part 59 attached to the left and right (LR), were incorrectly positioned
(P), accounting for (2) errors. This encoding scheme was developed for the study to de-
scribe error types in a contextually rich manner that may better relate to the corresponding
human error than the discrete elements it comprises. This approach is designed to facilitate
pattern discovery and analysis, support predictive modeling and simulations, and inform
more targeted interventions.
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4.11.2 Qualitative Feedback

In addition to the quantitative data from surveys, observed results, and annotated perfor-
mances, a number of qualitative observations were recorded by the research team during
the conduct of each session and in debriefs that followed. These weremanually transcribed
from various sources, including the Data Collection Sheets, General Feedback Forms, and
the PI’s notes. When transcribing notes from the debriefing, which were often terse, care
was taken to accurately represent the participant’s original feedback.

The results were collected in a separate Markdown35 file (MD) for each participant, e.g.,
(1001.md). Markdown is a lightweight plain-text formatting syntax proposed by JohnGru-
ber in 200436. Originally intended as a tool for HTML generation, Markdown is nowwidely
used to create text documents that have structure and are easily rendered in a variety of
styles.

# 1048

## Script Notes
- Tall, head-looker
- Area tracking drop tally: 3
- Button issues - inconsistent, sometimes first tap, others 5-10

## Participant Feedback
- Next button inconsistent - sometimes didn't work, double-clicked
- Memorized by c2-3 in Learn
- Broke down assembly steps by section of car: front, back, middle
- Going back to previous part (eg 59?) problematic

Figure 4.36: Sample of Collected Feedback, in Markdown Format

Figure 4.36 exemplifies both collected feedback andMarkdown formatting, using data from
participant #1048.

4.11.3 Video

The bulk of collected performance data was extracted from the video recordings, a tedious
and time-consuming process. Given the estimated 12-18 hours of total footage, the need for
efficient, accurate results demanded a strategy that allowed close inspection frommultiple

35 Markdown: https://en.wikipedia.org/wiki/Markdown
36 Original Markdown Project Home: https://daringfireball.net/projects/markdown/
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synchronized views along with rapid tagging and annotation. Careful consideration was
given to the selection of tools used to achieve that.

Tooling

When considering tools for the video annotation workflow, priority was given to robust
and reliable software with modest hardware requirements, user-friendly interfaces,
and affordability. Specifically, the annotation workflow must be capable of exporting
machine-readable outputs. Finally, it was essential to avoid altering the original videos.
A non-destructive editing approach would dismiss any concerns regarding the veracity of
the recordings, by ensuring a reliable and traceable data source.

A search was conducted, and a variety of tools were tested. Some notes from that process
are included in Appendix B. In the end, three complementary tools were selected that best
fit the requirements identified:

1. Filmora37 v12.x was selected to combine the raw video into a split screen presentation
with synced action. This facilitated annotation by providing two angles of the action
and a zoomed view. Filmora is an affordable, non-destructive editor that offers a good
balance of capabilities and ease of use.

2. Handbrake38 v1.7.x was selected to downsize and compress Filmora output, improv-
ing performance during annotation. Handbrake did this much faster and with better
final quality than Filmora. This popular and highly-regarded tool is free and open-
source.

3. Kyno39 v1.8.x was selected to add markers for instantaneous events (e.g., breakage
occurs) and sub-clips for events with duration (e.g., task completion times). Notes
can be added to either as desired. The metadata is exported in eXtensible Markup
Language (XML, World Wide Web Consortium (W3C), 2008), a flexible, text-based
language that is used to structure, store, and transport data. Kyno is specifically de-
signed to accelerate this task in a production environment and is generously priced
for the market.

37 Filmora: https://filmora.wondershare.com/
38 Handbrake: https://handbrake.fr/
39 Kyno: https://lesspain.software/kyno/
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Processing

A general description of video processing follows. For a step-by-step treatment, see Ap-
pendix C for the original instructions.

For each participant, two composite videos are created, one from footage of their learning
experiment and another for recall. Raw video files are first renamed in a standardized for-
mat based on participant number, phase, and camera angle, then organized into specific
project folders.

For each participant experiment, a single three-pane video was created in Filmora, as
demonstrated by Figure 4.37. The two stacked views on the left provide the first-person
view captured by the HL2 (top) and a zoomed-in view from the side camera, centered
on the fixture (bottom). The right-hand pane provides a wider angle version of the same
side camera footage. All three views are manually synchronized by tagging corresponding
events and sliding the clips to align those markers, matching the observed action. Before
exporting the result, the Filmora project is saved.

Figure 4.37: Frame of Composite Video from Learning Trial, PAR Treatment

The output was rendered by Filmora in the MP4 video format with full HD resolution
(1920x1080) at 30 frames per second, using H.264 compression. This was then resized
to 720p (1280x720) by Handbrake. The final file size is reduced to about 20mb / minute
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from multiple gigabytes of source material. This greatly increases the responsiveness the
annotation experience without significantly degrading visual quality.

The compressed 720p video is loaded in Kyno where two types of events were annotated.
Instantaneous events (e.g., car breaks during assembly) are identified by placing a marker
at the moment of occurrence. Events with a duration (e.g., the start and end of each assem-
bly task) are assigned to sub-clips. Both markers and sub-clips are given standard names
that denote the event type, and descriptions where additional detail is called for. The stan-
dard list of names is included in Appendix C, along with other important details about this
process.

Finally, the Kyno project file is saved and annotation data is exported in XML format. A
sample of that output is provided in Figure 4.38, based on participant #1051’s learning
experiment. This is confirmed by line (2), which shows the data is associated with the file
1051-Learn.mp4. Lines (10) and (12) denote the start and end times of the “Car 1” sub-
clip, each given in 1/90,000ths of a second.

<context-info>
<url>file:/Volumes/.../1051-Learn.mp4</url>
<size>173341872</size>
...

</context-info>
<title>1051-Learn</title>
<description>side camera views are...</description>
<marker>
<id>6436e1f6-b9a2-4a58-800a-12a13ed89ab7</id>
<timestamp time-base="1/90000">895175</timestamp>
<type>subclip</type>
<duration time-base="1/90000">17932825</duration>
<title>Car 1</title>
<description>First car duration</description>

</marker>

Figure 4.38: XML Export of Annotation Data from Kyno

4.11.4 XML Processing

A Python (v3.11) script was used to create a CSV comprised of performance data extracted
data from all Kyno XML files. The process is outlined with pseudocode in Figure 4.39.

While the XML data includes annotations for both instantaneous events (e.g., breakage
occurs or defect encountered) and those with duration (e.g., task completion time), only
the latter are included in the resulting CSV. While instant events can provide important
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For each xmlFile:
Extract file metadata (url, size, etc.)

For each marker in xmlFile:
Extract marker details (id, timestamp, type, title, descript.)
If duration element present, add duration to marker
Convert timestamp and duration to seconds
Add marker to markers list

Categorize markers into subclips and other
Add data to xmlData with key (participant, phase)

For each participant, phase pair in xmlData:
Extract subclip markers for the participant and phase
For each subclip marker:

Format data (participant, phase, marker details) as row
Add row to csvData

Write csvData to a CSV file

Figure 4.39: Pseudocode for XML Data Extraction (process_data.py)

context for understanding performance, the focus of our analysis will be on task outcomes,
which involve a duration.

The result includes columns for participant number, experiment number, and the event
name, start time, duration, and description. For example, the data extracted for the first
participant’s learn experiment is summarized in Table 4.7.

Table 4.7: Learning Event Data Extracted for Participant #1001

Part Exp Event Start Dur Description

1001 1 Car 1 6.28 97.933 N/A
1001 1 Car 2 108.367 66.7 N/A
1001 1 Break 3 178.367 76.033 failed attempt to repair
1001 1 Car 4 260.933 68.9 N/A
1001 1 Car 5 333.467 60.9 N/A
1001 1 Car 6 397.333 66.933 N/A
1001 1 Defect 7 467.867 27.333 prebuilt missing piece
1001 1 Car 8 498.4 53.7 corrected
1001 1 Car 9 556.067 47.833 finishes at the buzzer

This shows they attempted nine cars and completed seven. Breakage occurred during the
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third assembly and a repair was attempted, but the car was ultimately retired. Car 7 was
also retired when a defect was noticed in the prebuilt. The last car was completed in only
47.8 seconds, just before the 10-minute time limit.

The output of this script was saved as i1_times.csv and carefully validated against the
XML data, video recordings, and reports described next.

4.11.5 System Availability

Due to challenges associatedwith area andmodel-based tracking, described elsewhere, par-
ticipants using the HL2 would experience system down time that we referred to as “drop-
outs.” This was the result of a loss of tracking that caused the user interface to deactivate.
All drop-outs were marked as subclips during video annotation process so the lost time
could be accounted for.

Each drop-out event was later reviewed to assess how much impact it had on the current
task. In some cases the drop-out occurred between cars or was disregarded by the partici-
pant. In others it caused worked to stop until tracking was reacquired. For each drop-out
a value between 0.0 and 1.0 was assigned, based on the assessed impact.

The resulting times and weights could be used later to scale the drop-out duration accord-
ingly, either for the overall analysis or to compare results with and without drop-out effect.
Alternatively, they could be treated as system availability for OEE calculations.

This process was done manually and based on the PI’s best judgement after all
other annotation work was complete. It was recorded in a separate Excel sheet, ad-
justed_drop_events.xlsx.

4.11.6 Report Generation

To assist with data validation and better understand factors that contribute to individual
performance, a detailed report was generated for each participant. This was done as part
of the same XML extraction Python script described above.

Each report aggregates participant demographics and car outcomes from observed and
self-reported data, qualitative feedback from transcribedMarkdown files, and quantitative
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event data from XML annotations. The result paints a comprehensive picture of the par-
ticipant’s experience in a single Markdown report. This is demonstrated by Figure 4.40, a
screenshot of the recall portion of #1001’s report.

Figure 4.40: Portion of Participant #1001’s Report, Obsidian Screenshot

From the top, this report includes metadata (collapsed for brevity), clickable link to the
video, list of PI’s observations, and summaries of performance (subclip) and event (other)
markers. The instantaneous event markers included here provide valuable added context.
For example, we can see that a breakage was corrected during the third car, likely contribut-
ing to its increased duration.

The formatting seen in this image was rendered by Obsidian40, a powerful tool for making
and organizing Markdown documentation. This approach greatly facilitated the review of
participant outcomes.

40 Obsidian: https://obsidian.md/
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4.11.7 Data and Code Management

Like all academic work, the success of this study hinged on the credibility, transparency,
and reproducibility of the research, data, and results. As such, data management was a
critical consideration in the development of the data extraction and processing workflow.
The plan carefully accounted for data storage, version management, and the file formats
used. Those details aligned with an access plan balancing accessibility and portability with
privacy and security.

Anonymous data was stored locally in three separate locations, all on secure hardware ac-
cessible only to the PI: an internal laptop hard drive, an external RAID5 storage array, and
an external NVMe backup drive. Additionally, GitHub41 and BOX42 cloud services were em-
ployed to provide more redundancy and secure access to select team members. A detailed
account of this plan, including the hardware, software, folder structures, and naming con-
ventions used, are provided in Appendix D.

Key criteria for software selection included multiplatform compatibility, open-source li-
censing, and the ability to generate files using open, preferably text-based, standards. These
characteristics were crucial to ensuring data portability and the reproducibility of results.

Wherever appropriate, working files, including all data analysis in R and Python, and
manuscript development in Quarto43, were placed under version control using Git44,
and synchronized to GitHub. HL2 source code was treated separately, as discussed in
Section 4.5.5.

Isolated virtual environments were used with both Python and R projects to manage pack-
age dependencies. This setup guards against software conflicts and maintains consistent
computational environments that are crucial for reliable and reproducible research out-
comes.

The entire process was designed to ensure traceability, allowing every result to be reliably
linked back to its original source data, bolstering the integrity of our research findings. The
priorities outlined here were carried on throughout the analysis process, described next.

41 GitHub: https://github.com/
42 Box: https://www.box.com/
43 Quarto: https://quarto.org/
44 Git: https://git-scm.com/
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4.11.8 Data Extraction Challenges

Data extraction was a significant effort that required the bulk of the author’s time over the
summer of 2023. A number of challenges were encountered along the way, predominantly
related to the collection of data from recorded videos.

Four videos were recorded for each participant, two each from the learning recall phases.
Each pair of videos were manually synchronized, composited, edited, and compressed, and
annotated into a single output for each participant-phase. This process took approximately
1.5 hours per participant, but ranged between 45minutes and over 4 hours, based on rough
notes of progress. Of this, the video synchronization and annotation processes described
in Section 4.11.3 took the most time.

Manually synchronizing videos was done by offsetting them to match movements and
align the timelines. Tricky in the best of circumstances, occasional HL2 issues, including
dropped video, crashes, and unsteady frame rates significantly elevated the challenge.
Dropped video, a crash, or reset required piece-by-piece reconstruction of the session,
with additional synchronizations. Variable frame rates, on the other hand, resulted in HL2
recordings with dropped frames and slightly non-linear playback. Over time, this leads
to drift in the sync between sources, which cannot be corrected without destructive edits
that would alter the timing data. In most cases the drift was insignificant, but in others it
required a workaround. To address it we adopted the convention of using the side camera
view for all annotations related to the workpiece, and the first-person view for any related
to PWI consultations and HL2 issues. Consistently annotating events in this manner
helped avoid including sync offset in a measured duration.

The time required to annotate each video varied with participant performance and behav-
ior. Uneventful trials mostly involved marking the start and end time for each workpiece.
In most cases occasional additions were made for various other events. In situations where
the HMDMR tracking was problematic, or where PWI consultations were extensive, the
required time and effort increased substantially. One trial included over 100 PWI consul-
tations during the Recall phase, each with manually located start and end points. This took
several hours to do accurately.

Otherwise, data extraction was relatively straightforward, with only two other noteworthy
issues. While we had originally intended to count corrected errors, it proved impractical
to consistently differentiate corrected errors from other participant behaviors. In many
cases this required too much interpretation on the part of the scorer. Finally, we relied on
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handwritten notes taken by the PI for the final debrief and participant feedback. Somewere
terse and difficult to interpret, suggesting that important details may have been lost. In the
future it would be better to record and digitally transcribe these sessions if acceptable.

Overall this process was time consuming but well planned and carefully executed for
the given inputs. Future studies of this sort would greatly benefit from a synchronized
multi-camera recording setup capable of directly rendering the desired screen layout,
saving hours of editing time and eliminating the drift issues.

4.12 Data Cleaning and Analysis

This section will detail the procedures for data preparation, then summarize the intended
analytical approach. Analysis will be implemented and more thoroughly detailed in the
Results chapter to follow.

4.12.1 Tools and Methodology

R was used for all data cleaning and analysis. A mix of R Markdown (RMD) and Quarto
(QMD) notebooks were created in the RStudio integrated development environment (IDE).
The notebook format allows users to intermingle Markdown-formatted text, with code and
output in a way that is very well suited to the exploratory nature of this work. This best
approximates the idea of Literate Programming originally described by Donald Knuth45

as a narrative approach that interleaves code and writing in a way that promotes reader
understanding (Knuth, 1984).

4.12.2 Cleaning and Transformation

The primary outputs of the prior extraction effort were:

1. i1_raw_data.xlsx containing the self-reported data and observed results, manu-
ally transcribed. Each tab contains a different data set.

2. i1_times.csv containing event times extracted from the video annotations. Each
row corresponds to a participant, experiment, car number combination.

45 Donald E. Knuth is an esteemed American computer scientist, best known for “The Art of Computer
Programming,” a multi-volume series widely regarded as one of the most comprehensive texts on
algorithms. He also developed the TeX typesetting system, and made numerous other contributions that
significantly shaped the landscape of computer science.
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3. adjusted_drop_times.xlsx listing all drop out events and the assigned weights.
4. Notes for each participant in MD format, compiled from observations and feedback.

Prior to analysis, additional cleaning and transformation was required. This included iden-
tifying parent-child relationships among events, scoring the TLX and SUS, correcting er-
rors in the data, enforcing standard naming conventions and data types, and collecting the
results into a single XLSX file.

Data was cleaned and transformed by R code found in the notebook forms_data.rmd.
The process was iterative, with each step detailed in the following sections.

First Pass

The initial pass of cleaning and transformation can be summarized as follows:

1. Process Demographics: Combine date and time into a single datetime column, cleans
column names, and converts most columns to factors.

2. Process Car Outcomes: Replace flag values with meaningful categories and assign
sequence numbers.

3. Process Car Times: Clean names, extract event types, assign sequence numbers, and
categorize markers into parent and child events based on event types and times

4. Correct Errors: Implement various changes to correct for previously identified errors
in the data. Each is documented and justified in the code.

5. Join and Save: Add unique IDs (UIDs) for events and outcomes, reorder essential
columns, join table data, and save as CSV.

Second Pass

The first pass output was carefully reviewed, during which an improved categorization
scheme was defined for all events. The new scheme, which simplified and standardized
the ad-hoc labels generated during annotation, is summarized in Table 4.8.

Table 4.8: Event Categorization Scheme

Type Category Description

Parent Car Assembly completed during the time allowed.
Parent Breakage Assembly retired due to breakage.
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Type Category Description

Parent Defect Assembly retired due to defect in prebuild.
Parent Incomplete Assembly incomplete when time expired.
Child Drop Time lost due to HL2 drop-out.
Child PWI Time lost to PWI reference (recall only).
Child Repair Time lost as repairs are made to assembly.
Child System Time lost due to other system related issues.

The second pass of changes started by applying the updated categories. Again, each change
is explicitly stated in the code. Adjusted drop times were then joined with the resulting
data, and two new columns were generated for each type of child event. These totaled the
number of events of each type for each parent, and their durations. Finally, those results
were verified with automated tests and the results were written to CSV.

TLX and SUS Scoring

These instruments were scored as described by their providers. As noted in Section 4.11.1,
TLX responses for the first five participants were corrected by rescaling to the standard
100-point system, rounding up. TLX and SUS results were written to separate CSV files
and reviewed for correctness.

Final Output

Finally, the outputs described abovewere combined and saved ascombined_results.xlsx,
again with one tab for each: demographics, car outcomes, car times, car results, system
usability scores, and tlx scores. For clarity, the car tabs differ as follows:

• Outcomes is the final version of the observed result and errors for each car.
• Times is the final version of the data extracted from video annotations, including
child events, with event type and category.

• Results combines the outcomes and times tables, with one row per assembly and
aggregating all time lost to child events.

Most analysis will focus on the Results tab, but the others are retained for traceability.
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4.12.3 Analysis

Based on the primary and secondary research questions identified herein, several types of
analysis will be required. Essential methods are summarized in the following list.

1. Descriptive Statistics

• Calculatemeans, standard deviations, and other descriptivemeasures for the de-
pendent variables (e.g., task completion time, error rates, OEE) across different
treatment groups.

• Present summary statistics for participant demographics and prior experience.

2. Hypothesis Testing

• One-way ANOVA: Use to compare means of dependent variables (e.g., average
time per car, average error count per car, OEE) across the four instructional
methods (PWI, PAR, HMDAR, HMDMR).

• Repeated measures ANOVA: Calculate to analyze changes in performance over
time (e.g., learning rates, change in OEE) within and between treatment groups.

• Post-hoc tests (e.g., Tukey’s HSD, Bonferroni correction): Apply these to deter-
mine which specific treatment groups differ significantly from each other, if the
ANOVA results are significant.

3. Effect Size Estimation

• Partial eta-squared (η²) or omega-squared (ω²): Calculate these to assess the
magnitude of the treatment effect on the dependent variables.

• Cohen’s d: Used to compare the effect sizes between specific treatment groups,
if post-hoc tests reveal significant differences.

4. Regression Analysis

• Multiple regression: Examine the relationship between operator characteristics
(e.g., prior experience) and performance outcomes, while controlling for other
relevant variables.

5. Correlation Analysis
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• Pearson’s or Spearman’s correlation: Use these to investigate the relationships
between perceived workload, usability, user satisfaction, and performance out-
comes.

6. Qualitative Analysis and Visualization

• Thematic analysis: Apply to the open-ended exit interviews to identify common
themes and patterns in participants’ experiences and perceptions of the different
instructional methods.

• Data visualization: Create graphs, charts, and tables to present the results of the
above analyses effectively, such as bar charts for comparing means, line graphs
for displaying learning curves, and scatterplots for showing correlations.

4.13 Limitations of Study Design

Despite the careful design of this study it has its limitations. Those identified before the first
trial are described below. Except as described therein, we consider each of these unlikely
to influence the results and then only limited in their effect, making them very low risk
overall.

The participant recruitment, sampling, and selection processs had a number of practical
limitations. As is often the case with graduate research, participants were recruited from
the university community and the sample was dominated by undergraduate engineering
students. This “convenience sampling” approach limits our ability to infer from it the ex-
pected performance of manufacturing assembly operators, or the factors that influence it.
That said, the ecological validity of this study is deliberately higher than most similar stud-
ies due to its realistic surroundings and validated task instructions.

Also, this study employs a method for assigning treatments that is as random as possible
given the constraints. Strictly speaking, the method described in Section 4.6.4 may only
be considered pseudo-random by some. In that case, the validity of statistical tests that
assume random assignment may be compromised.

Additionally, the decision to offer the possibility of compensation as described in Sec-
tion 4.6.2 was approved shortly after the trials commenced. The first five trials had been
run and other participants had been recruited without knowledge of these perks. Due to
the timing of this change and a delay between the pilot study and subsequent participants,
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the impact of this change is considered negligible but could potentially change the type
and motivations of participants recruited and their results.

From a task design point of view, we must accept that LEGO cars are not, in fact, real cars.
This does reduce task validity, but is again offset by the surroundings and validated in-
structions. Furthermore, the complexity of the task itself may be insufficient to fully assess
learning, recall, and retention. On the other hand, one could argue that LEGO assembly is,
in fact, more error prone than many automotive manufacturing tasks which are designed
to prevent the possibility of errors. This error-proofing process is known as Poka-Yoke. It
is a key component of Lean Manufacturing principles and considered superior to any error
checking methods, especially those done by humans. Regardless, these limitations are re-
ported in other studies and are likely the most impactful identified. We will use analytical
methods to look for signs of insufficient difficulty in the Results chapter.

As detailed in Section 4.2.2, treatments were carefully designed to control for most rec-
ognized confounders, but some limitations have been identified. First, the HMDAR and
HMDMR treatments are not exact replications of the PAR instructions. Even allowing for
the inherent differences of these treatments, the user experience in each deviates in minor
ways from the PAR implementation. We believe these deviations are small and have no
material difference, but recognize that they may introduce uncontrolled differences.

Learning effect is another source of concern. The study’s between-groups design controls
for it by preventing participants from carrying learning from one treatment to the next.
However, the participant orientation process may create a minor dissimilarities in base-
line task knowledge across treatment groups. It is introduced by an additional training
step given only to the PAR, HMDAR, and HMDMR groups. This training introduces each
participant to the operation of their assigned device so that the learning experiment that
followsmeasures how they learned to perform the task, not how to operate the device. This
is also a tradeoff, seeking to put all participants on equal footing for the first experiment,
without any advantage in either task or treatment understanding. We can look for evidence
of an effect during the analysis to follow.

Finally, this study did not assess the general cognitive or spatial skills of participants and
therefore cannot balance the groups accordingly or use the results as independent variables
during analysis. These measures were deliberately excluded to limit the overall time re-
quired for each trial. The instruments typically used would nearly double the expected du-
ration, which would severely limit data collection. This aspect of the design is left as future
work.
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4.14 Summary

This chapter provided a comprehensive overview of the researchmethodology employed in
this study, which aims to investigate the impact of different AR/MR instructional methods
on operator learning, recall, and retention in a manufacturing assembly training context.
The study’s design is grounded in an innovative, affordance-based framework that system-
atically compares the effects of specific AR/MR features, such as hands-free interaction,
spatial registration, and user-centric displays, on training outcomes.

A key strength of this research lies in its rigorous and ecologically valid approach. The study
is situated within an authentic manufacturing training environment, utilizing validated as-
sembly tasks and instructional materials that closely resemble real-world conditions. This
enhances the generalizability of the findings to industry settings and ensures their relevance
for informing the practical implementation of AR/MR technologies inmanufacturing train-
ing.

The study employs a multi-phase, mixed-methods design that combines quantitative per-
formance measures with qualitative user feedback to provide a comprehensive assessment
of the effectiveness of different instructional media types (IMTs). The inclusion of a tradi-
tional paper-based control group allows for a direct comparison of AR/MR interventions
against standard training methods, while the multiple AR/MR treatment groups enable a
nuanced examination of the relative benefits of specific technological affordances.

Another distinguishing feature of this research is its emphasis on both immediate learning
outcomes and long-term retention. By assessing operator performance at multiple time
points, including a delayed retention test several weeks after the initial training, the study
provides valuable insights into the durability of the learning effects associated with differ-
ent IMTs. This longitudinal perspective is crucial for understanding the practical value of
AR/MR technologies in supporting sustained improvements in operator performance.

The chapter also highlighted the study’s meticulous attention to data collection and analy-
sis procedures. The use of video recordings, photographs, and standardized performance
metrics ensures a rich and reliable dataset for evaluating the impact of different IMTs on
learning, recall, and retention outcomes. The application of appropriate statistical tech-
niques, such as ANOVAs, effect size estimates, and regression analyses, enables a robust
and nuanced examination of the research questions.
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Furthermore, the study’s compliance with ethical guidelines and the steps taken to en-
sure participant safety and confidentiality demonstrate a strong commitment to research
integrity. The transparent reporting of the study’s limitations, such as the convenience
sampling approach and the potential influence of participant compensation, enhances the
trustworthiness of the findings and provides important context for their interpretation.

In conclusion, the methods described in this chapter provide a solid foundation for the
execution of this study and the subsequent presentation and interpretation of its results.
The affordance-based framework, ecological validity, comprehensive assessment strategy,
and rigorous data collection and analysis procedures set this research apart from previous
work in the field. By addressing key gaps in the existing literature and employing a robust
methodological approach, this study is well-positioned to make significant contributions
to our understanding of how AR/MR technologies can be effectively leveraged to enhance
manufacturing assembly training outcomes.
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5 Results

5.1 Study Administration and Participation

This study was administered during the Spring of 2023. Ultimately, 62 eligible participants
were recruited. All completed the Learning and Recall experiments of the first session be-
ginning February 10th. Progress of the conduct of these trials is illustrated by Figure 5.1.
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Figure 5.1: Daily Trial Administration and Completion Percentage

Only eight trials were run before March 16th. That period was treated as a pilot study, dur-
ing which the research team was trained, administration methods were refined, the self-
service onboarding system was deployed, and version 2.1 of our IRB application was ap-
proved. Most significantly, the intake process was adjusted to collect more demographic
data, increase the role of the TLX and SUS instruments, and gather BCS data for a compan-
ion study.

Otherwise, only minor tweaks were made during the pilot to streamline the experiment’s
administration. Although the changes outlined above were not believed to have a material
effect on the results, the data collected during the pilot were omitted from further analy-
sis. Following the pilot, steady progress was made until the completion of the study’s first
session on April 27th. The second session was conducted during the end of study event
on April 29th. Twenty-four of the study’s original participants volunteered to attend and
complete the Retention experiment.

167



5.2 Analysis of Participant Demographics

5.2.1 Univariate Analysis

Numeric Demographic Data

After excluding data from the pilot study, 54 participants (Mean age = 22.6, SD= 6.5, range:
[19, 47], 3.7%missing) were included in this analysis. Other than age, height (Mean height
= 68.6, SD = 4.2, range: [62, 76], 5.6% missing) was the only numeric demographic data
collected. As discussed in Section 5.7, height was first recorded following the pilot study,
when its impact on user behavior and results was first observed. Both numeric characteris-
tics are visualized with a combined box and scatter plot in Figure 5.2. Where present, the
notches of these box plots show the 95% confidence interval around the median.

20 30 40

Age (yr)
64 68 72 76

Height (in)

Age reflects the student−oriented nature of the sample
Numeric Sample Characteristics

Figure 5.2: Distribution of Participant Age and Height

Categorical Demographic Data

Of the sample’s 54 participants, 89% (n=48) reported that they mainly speak English at
home. As shown in Figure 5.3, the gender compositionwas relatively balanced, with slightly
more males (n=27, 50%) than females (n=26, 48%). The racial makeup of the sample
was predominantlyWhite (n=45, 83%) and Asian (n=7, 13%), with smaller representations
from two other groups. Fully 98% of participants (n=52) reported a non-Hispanic or Latino
ethnicity. The majority of participants (n=41, 77%) were from the United States, though
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Table 5.1: Vision Correction Table
Worn During Session
Yes No NA Total

Lenses, n (%)
Glasses 7 (47%) 5 (33%) 3 (20%) 15 (100%)
Contacts 13 (100%) 0 (0%) 0 (0%) 13 (100%)

Total, n (%) 20 (71%) 5 (18%) 3 (11%) 28 (100%)

nine other countries were represented, including S Korea (n=3) and Poland (n=2). Saudi
Arabia, Germany, UK, Indonesia, Australia, India, andChinawere also listed as countries of
origin by one participant each (n=1). All of this aligns with the study’s recruitment focus.
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Figure 5.3: Distribution of Categorical Characteristics

Of the 54 participants, 52% (n=28) reported having a vision prescription. Of those, 13
(100%) were for contact lenses , but 15 (100%) had glasses. Whereas all contact wearers re-
ported they would wear them during the session, among glasses wearers only seven (47%)
planned the same. Five (33%) did not intend to do so, and three (20%) gave no indication.
This breakdown is summarized byTable 5.1. Twoparticipants also reported color-blindness
(n=1) or other vision conditions (n=1). No participants indicated any other condition that
might affect their performance.

Following the primary hypothesis testing, additional analyses may explore the differences
in key outcomes across these demographic subgroups. That effort will aim to provide addi-
tional context and insights into potential underlying factors influencing the findings.
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Ordinal Demographic Data

Unlike the data above, the categories analyzed in this section are inherently ordered. Re-
sponses for each participant’s current Education level (Median = 3.0; Mode = 3, CND; IQR
= 0.0) and their experience with Lego (Median = 2.0; Mode = 2, Some experience; IQR
= 1.8) and Manufacturing (Median = 1.0; Mode = 1, No experience; IQR = 1.0) are visu-
alized in increasing order by Figure 5.4. The results are mostly in line with expectations
based on the recruitment, though it is disappointing to see that 33% of participants (n=18)
claimed to have little to no experience with Lego. The great majority were undergradu-
ate students working towards a degree (n=44, 81%), with no experience in manufacturing
(n=34, 63%).

College

Associate

Bachelor

Master

Doctorate

Current Education Level

Little

Some

Lots

Expert

Lego Experience

None

Training

PartTime
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Figure 5.4: Distribution of Ordinal Characteristics

5.2.2 Multivariate Demographic Analysis

In order to assess the equivalence of treatment groups and validate the random assignment
that is assumed by most statistical analysis, Age, Gender, Lego experience, and Education
were compared across treatment groups. These variables were selected for their meaning-
ful variation and potential relevance to the outcomes of interest. Other notable variables,
including Ethnicity and Country of Origin were considered less critical due to their skewed
distributions and small subgroup sizes.

Table 5.2 shows the result of this analysis. The Kruskal-Wallis rank sum test was utilized
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Table 5.2: Participant Demographics by Treatment Group

Characteristic PWI
N = 14 (26%)

PAR
N = 12 (22%)

AR
N = 14 (26%)

MR
N = 14 (26%) p-val

Age 22 (5) 21 (4) 23 (8) 24 (8) 0.2
Gender 0.4
Female 7 (50%) 7 (58%) 8 (57%) 4 (29%)
Male 6 (43%) 5 (42%) 6 (43%) 10 (71%)
Non-Binary 1 (7.1%) 0 (0%) 0 (0%) 0 (0%)

Lego 0.5
Little 4 (29%) 6 (50%) 5 (36%) 3 (21%)
Some 4 (29%) 4 (33%) 8 (57%) 6 (43%)
Lots 4 (29%) 2 (17%) 1 (7.1%) 3 (21%)
Expert 2 (14%) 0 (0%) 0 (0%) 2 (14%)

Education 0.8
College 10 (71%) 11 (92%) 11 (79%) 12 (86%)
Associate 1 (7.1%) 0 (0%) 1 (7.1%) 0 (0%)
Bachelor 1 (7.1%) 0 (0%) 0 (0%) 0 (0%)
Master 2 (14%) 0 (0%) 1 (7.1%) 2 (14%)
Doctorate 0 (0%) 1 (8.3%) 1 (7.1%) 0 (0%)

for the numeric variable (Age) to compare distributions across groups, while Fisher’s ex-
act test was applied to the categorical and ordinal variables (Gender, Education, and Lego
experience) to assess the independence of distributions from treatment assignments.

The high p-values for Age, p=0.2; Gender, p=0.4; Lego, p=0.5; and Education, p=0.5 indi-
cate that these observed characteristics are not strongly associated with treatment group-
ings. This result validates the group randomization effort, mitigating the influence of con-
founding variables, and reducing bias in the data. It is essential to the validity of most of
the statistical tests employed by this study, which assume sample independence.

5.3 𝐻1: Learning Phase Analysis

The results of the first phase of the experiment are tested with three hypotheses, each of
which explore the affect of instructional method (treatment) on key measures of learning:
average task completion time (TCT), rate of change of TCT, and the average number of un-
corrected errors (UCE). Only completed tasks, the primary result of interest, are considered
in this analysis. While excluding incomplete tasks may limit the generalizability of the find-
ings to scenarios where time constraints are common, it ensures the analysis is based on
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objective, directly observed data and avoids introducing assumptions or biases that could
arise from predicting results for unfinished tasks.

One final step of data preparation was taken to account for drop-outs and other system
events, along with time spent making repairs. This lost time was deducted from measured
task times to give a more accurate record of participant performance. Forty-six of 272 com-
pleted tasks (16.9%) were affected by this adjustment.

5.3.1 Descriptive Statistics for Granular Data

The data contains 272 observations of the following 2 variables:

• Task Completion Time (sec): n = 272, Mean = 97.94, SD = 44.18, Median = 88.10,
MAD = 37.06, range: [36.23, 288.13], Skewness = 1.37, Kurtosis = 2.42, 0% missing

• Uncorrected Error Count: n = 272, Mean = 2.65, SD = 3.64, Median = 0.00, MAD =
0.00, range: [0, 13], Skewness = 1.34, Kurtosis = 0.69, 0% missing

These statistics provide a high-level summary of performance across all tasks and partici-
pants, where each observation corresponds to a single repetition of the Learning task. Both
Task Completion Time (TCT) and Uncorrected Error Count (UCE) show considerable vari-
ance, as depicted in Figure 5.5.
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Task Completion Time (sec)

0 5 10

Number of Uncorrected Errors per Task

Error Count Exhibits Greater Variability than Task Completion Time
Learning Phase − Observed Measures

Figure 5.5: Distribution of Task Completion Time and Error Rates in Learning

Compared to TCT, with a coefficient of variation (CV) of 0.45, UCE shows substantially
greater spread (CV=1.37) and the presence of a floor effect. The latter could potentially
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Table 5.3: Avg. Participant Performance Data Summarized by Treatment Group
Characteristic Overall

n = 54 (100%)
PWI

n = 14 (26%)
PAR

n = 12 (22%)
AR

n = 14 (26%)
MR

n = 14 (26%)

Number of Tasks Completed
Mean (SD) 5.0 (2.1) 7.1 (2.3) 5.9 (1.2) 3.7 (1.0) 3.6 (1.0)
Median (IQR) 5.0 (3.0, 6.0) 7.5 (5.3, 8.0) 6.0 (5.0, 7.0) 3.5 (3.0, 4.8) 3.0 (3.0, 4.0)

Avg TCT per Task (sec)
Mean (SD) 113.2 (42.8) 79.8 (30.1) 89.6 (21.1) 142.0 (37.0) 137.9 (39.4)
Median (IQR) 107.7 (77.3, 140.6) 68.5 (65.0, 99.5) 83.8 (75.4, 104.4) 141.7 (111.8, 153.5) 127.9 (114.4, 156.4)

Avg UCE per Task
Mean (SD) 2.2 (3.1) 6.1 (3.5) 0.8 (1.3) 0.8 (1.3) 0.7 (1.3)
Median (IQR) 0.3 (0.0, 3.5) 4.9 (4.0, 8.8) 0.3 (0.0, 0.8) 0.0 (0.0, 1.1) 0.0 (0.0, 0.5)

suggest limitations in the task’s ability to capture a full range of participant performance.
Further investigation is required to determine if this is due to task complexity or other fac-
tors.

5.3.2 Aggregated Data

Table 5.3 presents participant-levelmetrics, including the number of tasks completed along
with the average TCT and UCE per task. In addition to the overall results, the data is de-
composed by assigned treatment group to allow for comparisons across conditions. Note
that the statistics presented are the overall (aka “grand”) mean and median values. That is,
they are the average or middle values of all individual participant averages. This provides
overall summary statistics for each treatment group that reflect the central tendency and
variability among the average outcomes reported by participants within each group.

See Figure 5.6 for a depiction of the grand means for all variables, with 95% confidence
intervals for each. Observe that the previously noted variability and positive skew are also
present in the grouped data, though both are less pronounced due to averaging effects. It
appears that the PWI treatment group may have prioritized speed over accuracy.

Assess outliers

Given the level of variation and spread seen above, the presence of outliers was analyzed.
Participant-level outliers within treatment groups were the focus, rather than individual
data points across the entire dataset. This method identifies annomolous participant level
contributions to treatment variability.

Four different tests were used to assess each participant as an outlier in their treatment
group: (1) Tukey’s Fences at 1.5 times the IQR, (2) 2.5 times the Z-score, (3) outside the
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Figure 5.6: Aggregated Learning Performance Data by Treatment

5th and 95th percentiles, and (4) using the Mahalanobis distance. TCT and UCE were each
tested separately using the first three methods. The fourth method is a multivariate test
that considers TCT and UCE together. The results are summarized in Table 5.4, for all
participants that were identified by two or more tests.

Table 5.4: Summary of Participants Identified by Two or More Outlier Tests

participant treatment tot_out tot_cars avg_tct_adj avg_uce

1037 MR 4 2 242.2830 3.000000
1063 AR 4 2 236.3440 0.500000
1051 PAR 3 4 139.0902 4.000000
1053 AR 2 3 154.3443 3.666667

Further investigation of these four participants showed that only #1063 experienced sys-
tematic problems that might warrant excluding their performance. The others were just
poor performers, with unusually high overall TCT and/or UCE. Given the limited amount
of data collected per treatment, it was decided to retain all but 1063’s data for hypothesis
testing, where additional outlier detection steps may be taken.
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5.3.3 𝐻1𝑎: Average Time per Car

The first hypothesis of the learning phase:𝐻1𝑎: Average task completion time varies with treatment
was tested by comparing the average TCT of each treatment group to understand the mag-
nitude, direction, and significance of differences.

Applicable Statistical Methods

Methods based on one-way ANOVA, including Fisher’s orWelch’s parametric methods and
their non-parametric equivalent, Kruskal-Wallis’ test by ranks, are commonly used for such
comparisons. All assume observations are independent and treatment effects are additive.
The use of aggregated data reduces each participant to a single observation, addressing
independence. The experimental design generally ensures the treatments themselves are
additive, with independent effects on the response.

Parametric methods also require a normal distribution of data within each treatment
group. As noted in the original assessment of the learning data, the overall TCT dataset ex-
hibits skewness and kurtosis, suggesting deviations from a normal distribution. This must
be revisited with group wise testing of the aggregated data. By averaging the observations
and eliminating an outlier, the grouped data may better resemble a normal distribution.

Check Model Assumptions

A combination of quantitative and qualitative analysis is required to accurately assess nor-
mality of each treatment group. Statistical tests provide a formal but imperfect measure of
the data’s shape. Visual confirmation of the characteristic quantile-quantile (Q-Q) plot pro-
vides further support for the claim. Table 5.5 tabulates the results of the D’Agostino skew-
ness test, Anscombe-Glynn kurtosis test, and the Shapiro-Wilk normality test. In each case,
the null hypothesis (𝐻0) for these tests assumes that the data follows the characteristics of
a normal distribution. Therefore, low p-values indicate evidence against 𝐻0, suggesting
that the data deviates from normality in the tested aspect.
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Table 5.5: Summary of TCT Test Statistics, p-Values for Normality Assessment

Group Skewness Kurtosis Normality

ALL 0.68, 0.037 3.63, 0.201 0.95, 0.044
MR 1.28, 0.021 4.52, 0.052 0.89, 0.084
AR 0.01, 0.978 1.86, 0.294 0.93, 0.382
PWI 1.02, 0.058 2.95, 0.505 0.85, 0.021
PAR 1.01, 0.068 3.45, 0.221 0.9, 0.151

From this we see that only PWI fails the normality test (p=0.021), despite showing
marginally non-significant skewness (p=0.058). Similarly, MR exhibits significant posi-
tive skew (p=0.021) but the Shapiro-Wilk test gives evidence of normality (p=0.084). Both
AR and PAR are consistent in confirming normality, though PAR’s slightly positive skew is
marginally non-significant (p=0.068).

To reconcile these findings for MR and PWI, and confirm those for AR and PAR, the set of
four Q-Q plots in Figure 5.7 were generated. Observations for normal data should fall along
or near the line, within the shaded confidence interval. These plots show that PAR and AR
both meet the expectations of normality. The MR group mostly aligns with the line, except
for a single point in the right tail. This aligns with the skewness and kurtosis test results
and provides insufficient evidence to reject normality. On the other hand, the PWI group di-
verges substantially from the line, with several points leaving the confidence interval. This
supports the statistical evidence that the PWI data is not normally distributed.

Given these deviations from normality, particularly for the PWI group, a non-parametric
approach was adopted. This provides a reliable and straightforward approach for hypothe-
sis testing for data that are non-normal or heteroscedastic (have unequal variances). This
decision also ensures robust statistical results in the scale of the original data, easing inter-
pretation.

Analysis

Figure 5.8 shows the resulting comparison of average TCT within each treatment group. It
combines elements of violin, scatter, and box plots to provide a comprehensive portrayal
of the data. Treatment differences were analyzed using the Kruskal-Wallis test by ranks.
Its test statistic, 𝐻 , approximately follows a 𝜒2𝑘−1 distribution, where 𝑘 is the number of
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Figure 5.7: Q-Q Plots of Learning Times by Treatment

groups. Here, 𝜒2𝐾𝑟𝑢𝑠𝑘𝑎𝑙−𝑊𝑎𝑙𝑙𝑖𝑠(3) = 25.9, with a p-value of less than 0.001. These results
indicate a statistically significant difference between groups. The effect size of this differ-
ence is ̂𝜀2𝑟𝑎𝑛𝑘 = 0.5, with 𝐶𝐼95% [0.4, 1.0], indicating a moderate to large treatment effect
where 50% of the variance in TCT can be explained by the difference in groups. Together,
these results provide strong evidence of overall differences in TCT that are both statistically
and practically significant.

Pairwise comparisons were conducted post-hoc using Dunn’s non-parametric test for
Kruskal-type ranked data. Holm’s adjustment for multiple comparisons was preferred
over the often cited Bonferroni method, which tends to be too conservative. The results
show that PWI and PAR are both significantly faster than AR and MR, with all p-values
less than 0.01.

A post-hoc simulation was run to validate these results by estimating the statistical power.
Power analysis measures the effectiveness of a statistical test in detecting true differences
when they exist. High power (typically 0.8 or above) suggests that the test is appropriate for
the given data and experimental conditions, therefore supporting factual decision-making.
The simulation repeatedly applies the Kruskal-Wallis test to data generated based on the
observed mean and effect size, and resulting power is the proportion of tests that correctly
reject the null hypothesis. The outcome of 1 (100%power), while uncommon, suggests that,
for the conditions of this experiment (n=53, an average of 13.25 samples in each of the four
groups, ̂𝜀2 = 0.5, and 𝛼 = 0.05), the test is extremely effective at detecting the observed
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Figure 5.8: Task Completion Time Differences by Treatment

differences. The combination of a large effect size and a reasonable sample size is largely
attributable to this value, which offers great confidence in the validity of the test results.

𝐻1𝑎 Result

Based on analysis of the data and validation of the methods, it is determined that sufficient
statistical evidence exists to accept𝐻1𝑎: average task completion time varies by treatment.
Specifically, the PWI and PAR instructional methods are both equivalent and faster than
AR and MR, which are also equivalent to one another.

5.3.4 𝐻1𝑏: Learning Rates

The second hypothesis of the learning phase:𝐻1𝑏: Learning rates vary with treatment
will be tested by comparing how TCT changes with each repetition of the task based on
treatment. Decreased TCT is used as a measure of the learning effect, so a change in TCT
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over time is a proxy for learning rate.

Applicable Statistical Methods

It is tempting to assess this using aggregated data as before. For example, the average
change in TCT between consecutive tasks completed might give suitable measure. For clar-
ity, this can be expressed as follows for each participant, 𝑗:

Δ𝑇 𝐶𝑇𝑗 = ∑𝑁−1𝑖=1 (𝑇 𝐶𝑇𝑖+1 − 𝑇 𝐶𝑇𝑖)𝑁 − 1 (5.1)

where 𝑁 is the total number of tasks completed by participant 𝑗, and 𝑖 indexes each of the𝑁 − 1 differences in TCT. This metric can be compared by group using the approach em-
ployed by𝐻1𝑎, as seen in Figure 5.9. The results show that there is a significant difference
in groups (p = 0.002), with small tomoderate effect size ̂𝜀2𝑟𝑎𝑛𝑘 = 0.29. Significant pairwise
differences were identified between PWI and both AR (p=0.027) andMR (p=0.039) as well
as PAR and the same (AR p=0.015, MR p=0.025).
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Figure 5.9: Naive method
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While this method offers initial insights and highlights significant differences in learning
rates across treatment groups, it has crucial limitations. Aggregating data by participant
and within treatments masks both between and within-participant variability, discarding
important nuances in learning rates. By ignoring the repeated measures nature of the data
it fails to capture how learning rate changes over time, and how that differs between in-
dividuals. It also does not account for imbalanced repeated measures, which may lead to
biased estimates. By reducing the number of observations, it may also limit the statistical
power of the test. Finally, this method does not account for the non-linear nature of change
in TCT over time, further limiting the validity of these findings. These simplifying assump-
tions may be reasonable for a gross estimate of overall differences, e.g., average TCT, but
they are not appropriate for an in-depth analysis of the rate and change of learning in the
presence of individual and treatment effects.

For analysis of this sort, particularly where repeatedmeasures are nestedwithin each group
and participant variation is an important consideration, mixed-effects models are often
used. These models provide a thorough and accurate analysis by accounting for individual
differences in learning rates and leveraging all available repeated measures data. This ap-
proach preserves data granularity, explicitly models the dynamic aspect of learning, and is
specifically designed to handle imbalanced data. It increases the statistical power and flex-
ibility to detect effects and interactions in a complex data structure, and it can also account
for non-linear response data. Overall, mixed-effects models provide a robust framework
for examining the interaction between treatment and learning effect over time.

The general form of a suitable linear mixed-effects model that expresses TCT as a function
of task sequence, ignoring treatment effects, is:

𝑇 𝐶𝑇𝑖𝑗 = (𝛽0 + 𝑈0𝑗) + (𝛽1 + 𝑈1𝑗)(𝑆𝐸𝑄𝑖𝑗) + 𝜀𝑖𝑗 (5.2)

where:

• 𝑖 and 𝑗 are the indices for each observation and participant, respectively.
• 𝛽0 is the overall intercept, a baseline value of 𝑇 𝐶𝑇 .
• 𝑈0𝑗 is the participant variation on the intercept.
• 𝛽1 is the overall slope.
• 𝑈1𝑗 is the participant variation on the slope.
• 𝑆𝐸𝑄𝑖𝑗 is the time value associated with each observation 𝑖 of participant 𝑗, i.e., the
task number.
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• 𝜀𝑖𝑗 represents the residuals for each observation—variation not accounted for by the
model.

This formulation allows for random intercepts, (𝛽0 + 𝑈0𝑗), and slopes (𝛽1 + 𝑈1𝑗), each
based on individual differences per participants𝑈𝑗. In the context of this analysis those can
be interpreted as individual starting points (intercept) and learning rates (slope). While
Equation 5.2 makes it easy to understand how participant-level variation contributes to
both slope and intercept, it is more commonly formulated as:

𝑇 𝐶𝑇𝑖𝑗 = (𝛽0 + 𝛽1𝑆𝐸𝑄𝑖𝑗) + (𝑈0𝑗 + 𝑈1𝑗𝑆𝐸𝑄𝑖𝑗) + 𝜀𝑖𝑗 (5.3)

where the terms are rearranged to differentiate fixed and random effects. The first term
corresponds to group-level fixed-effects (𝛽𝑖) while the second captures the random-effects
of between- and within-participant variation (𝑈𝑗). This is visualized in Figure 5.10, where
the completion time for each task iteration is shown in all treatment groups. Black lines
indicate the best fit within each group, the fixed-effect term, and colored lines show the
same for each participant, reflecting the random-effect term.
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Figure 5.10: Random slopes and intercepts model visualized.

Using linear mixed effect models (LMEs) to assess treatment effect is a two-step process.
First, a model using task number as the only predictor is fit to the data, including both
fixed and random effects. Because this model is independent of the predictor of interest
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(treatment), it is referred to as the unconditionedmodel. Once selected and validated, this
acts as a baseline for comparisonwithmore complexmodels that incorporate the treatment
effects. These so-called conditionedmodels are compared with the baseline to see which, if
any, improve the model fit. Finally, the parameters of the model that best explains the data
are interpreted to quantify the relationships between time, treatment, and the response.
The following sections will elaborate on each step of this process.

Unconditional Models of Time

To find an unconditional model that best fits the data, several options of increasing com-
plexity were considered. In the model selection process, it is important to consider that
learning is an inherently non-linear process. Typically, TCT starts high and decreases with
each training iteration, but the rate of decrease is not constant. The pattern often resem-
bles exponential decay, with rapid initial improvement followed by more gradual changes.
When working with an LME, quadratic terms can be used to create a curvilinear approxi-
mation of this effect. This is depicted in Figure 5.11, where each line is fit using a quadratic
term for sequence: 𝑇 𝐶𝑇 ≈ 𝛽0 +𝛽1𝑆𝐸𝑄+𝛽2𝑆𝐸𝑄2. The result appears provide an over-
all improvement to fit at both participant and treatment levels compared to the previous
linear formulation.
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Figure 5.11: Quadratic random slopes and intercepts model visualized.
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Seven models of increasing complexity were fit, as summarized in Table 5.6. This table
adopts themodel formulationnotation used bymanyRmodeling packages, includinglmer,
which is used here. A fixed overall intercept is specified for all models with the first term (1).
Random effects are described within the parentheses of the last term, where terms to the
right of the bar (|) are grouping variables, and those to its left specify the random intercept
and coefficients. Terms between the intercept and random effects, outside the parentheses,
are fixed effects with constant coefficients. For brevity, Sequence and Participant terms
have been abbreviated in this table as s and p, respectively. The “XF” column describes the
non-linear transformation employed (quadratic or log), and “SE” identifies the sequence
effect. SE is “Fixed” where SEQ is included only as a fixed effect, and “Both” where it also
appears in the random effect.

Table 5.6: Model Summary

# Model Formulation in {lmer} Notation XF SE

1 1 + (1 | p) None None
2 1 + s + (1 | p) None Fixed
3 1 + s + (1 + s | p) None Both
4 1 + s + s^2 + (1 + s + s^2 | p) Quad Both
5 1 + log(s + 1) + (1 | p) Log Fixed
6 1 + log(s + 1) + (1 + log(s + 1) | p) Log Both
7 1 + s + log(s + 1) + (1 + s + log(s + 1) | p) Log Both

For example, model 4 has a fixed overall intercept (1) with additional fixed effects for s
and s^2. Its random effects (1 + s + s^2 \| p) can be interpreted as random inter-
cepts and slopes for s and s^2 for each participant. This can be expressed in the previous
mathematical notation as:

𝑇 𝐶𝑇𝑖𝑗 = (𝛽0 + 𝛽1𝑆𝐸𝑄𝑖𝑗 + 𝛽2𝑆𝐸𝑄2𝑖𝑗) (5.4)+ (𝑈0𝑗 + 𝑈1𝑗𝑆𝐸𝑄𝑖𝑗 + 𝑈2𝑗𝑆𝐸𝑄2𝑖𝑗) + 𝜀𝑖𝑗
Prior to fitting, the sequence predictor was transformed from discrete integers to contin-
uous values in the range [0, 1]. This is common practice to prevent numerical issues, aid
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Table 5.7: Observations per Treatment for all recorded task iterations

1 2 3 4 5 6 7 8 9 10 11
PWI 14 14 14 13 12 10 9 7 3 2 1
PAR 12 12 12 12 11 7 4 1 0 0 0
AR 13 13 13 7 4 0 0 0 0 0 0
MR 14 14 13 6 2 1 0 0 0 0 0

model convergence, and to make the results easier to interpret and generalize. Addition-
ally, The treatment variable was converted to an unordered factor to remove any implied
ranking among treatments that could bias the models. Treatment was originally ordered
to ensure the PWI, PAR, AR, MR presentation of results in charts and tables. It has no
predictive implications.

Finally, only a subset of the data is used. As seen in Figure 5.10 and Figure 5.11, the number
of task iterations completed in the allotted time varied substantially by treatment. Numer-
ous attempts to fit the full dataset using various modeling techniques all resulted in signif-
icant overfitting, particularly after the fifth iteration where available observations decline
rapidly and treatments become imbalanced (see Table 5.7). The overfit models produced
poor extrapolations that were not reflected in performance diagnostics, as these measures
only compare observed and predicted values. To address this, it was decided to use data
only from the first five task iterations, where all treatments are still reasonably represented.
This cutoff was chosen as the best trade-off between available data and extrapolation qual-
ity, after considering earlier (four) and later (six) alternatives.

Following those data transformations, the models were fit using maximum likelihood esti-
mation (rather than the default restricted maximum likelihood) to enable valid compar-
isons between models with different fixed effects structures. Fitting was accomplished
using the overloaded version of lme4::lmer from {lmerTest}, which adds p-values
for fixed effects using Satterthwaite’s method. The results were compared using per-
formance from {compare_performance}, the output of which is summarized in Ta-
ble 5.8.

Columns include Akaike (AIC) and Bayesian (BIC) Information Criterion, conditional
and marginal 𝑅2, Interclass Correlation Coefficient (ICC), and Root Mean Squared Error
(RMSE). AIC and BIC are, respectively, frequentist and Bayesian measures of the amount
of information lost by a model when approximating the true data generating process.
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Both account for the number and relevance of predictors, and lower scores are better.𝑅2𝑐𝑜𝑛𝑑 represents the variance explained by both fixed and random effects, while 𝑅2𝑚𝑎𝑟𝑔
only accounts for the fixed effects. ICC measures the proportion of total variance that is
accounted for by the grouping of data. In this context, high ICC values suggest that a larger
portion of the variability in TCT is due to differences between participants, not within
(i.e., across task iterations). Finally, RMSE is a measure of the average magnitude of the
model’s prediction error (residuals).

Table 5.8: Model Performance Results

Name AIC BIC R2 (cond.) R2 (marg.) ICC RMSE

m1 2242.07 2252.32 0.61 0.00 0.61 24.56
m2 2127.64 2141.31 0.75 0.19 0.69 18.17
m3 2060.66 2081.16 0.84 0.30 0.77 14.51
m4 1960.11 1994.27 0.94 0.28 0.91 7.93
m5 2105.54 2119.21 0.78 0.21 0.72 17.00
m6 2027.19 2047.68 0.88 0.32 0.82 12.23
m7 1943.30 1977.47 0.95 0.28 0.93 7.10

The result of this comparison shows that m7 outperforms the other options in most mea-
sures, with the lowest AIC, BIC, and RMSE. Approximately 95% of the variance in TCT can
be explained by this model (𝑅2𝑐𝑜𝑛𝑑), of which only 28% is due to its fixed effects (𝑅2𝑚𝑎𝑟𝑔).
The high ICC (0.93) indicates that a large proportion of the total variance is due to differ-
ences between participants, suggesting that individual variation is a crucial factor in the
model. The resulting predictions are plotted in Figure 5.12.

Even with the subset of data, we see that the log-based model begins to exhibit a slight up-
ward trend after the fourth iteration, which defies learning theory, expectations, and the
limited data from subsequent iterations. Model fits based on exponential and hyperbolic
forms, which better align with theoretical learning curves, led to more promising predic-
tions but were plagued by convergence issues, especially as additional terms were added to
account for treatment and its interactions. This is a limitation of the study that originates
primarily from the imbalanced experimental design employed by the learning phase.

Inspecting the fixed effects parameters for m7, summarized in Table 5.9, shows that all
terms are significant. The intercept of 145.5 seconds establishes the baseline average per-
formance for all participants on the first iteration. Estimated coefficients for the linear and
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Figure 5.12: Learning Curve for Unconditioned Model

log terms of sequence show that these terms compete for dominance, with the linear term
increasing TCT at a rate of 246.5 seconds per unit of seq.fp, the continuous transforma-
tion of task iteration number. This is offset by the log term, which decreases TCT by 431.7
seconds per unit of log (seq.fp + 1). These coefficients represent the change in TCT for a
one-unit change in their respective transformed sequence terms, resulting in a non-linear
learning curve when combined. The strong negative correlation of -0.75 between the log
term and intercept indicates that participants with higher initial TCT experience a stronger
effect from the log term, which drives rapid initial improvement. In learning theory, this
phenomenon is known as the power law of practice. It formalizes the idea that, all other
things constant, the farther a learner starts from expected proficiency, the faster they will
initially improve.

Table 5.9: Fixed Effects

Parameter Coefficient SE 95% CI t(215) p Sig

(Intercept) 145.496 6.776 (132.14, 158.85) 21.472 < .001 ***
seq.fp 246.481 28.833 (189.65, 303.31) 8.549 < .001 ***
log(seq.fp + 1) -431.712 45.465 (-521.33, -342.10) -9.495 < .001 ***

Validation of m7 confirmed that the residuals exhibit equal variance (p = 0.16), but are not
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normally distributed (Shapiro-Wilk test, p = 0.004). Traditional QQ plots of the raw resid-
uals do not properly account for the hierarchical structure and non-independence of mixed
effect models, leading to overly optimistic results. The {DHARMa} package was specifically
designed to address this problem by comparing observed residuals to a large number of
simulations from the fitted model. This technique provides a more robust and accurate
representation of model accuracy. Diagnostics produced by testResiduals indicate de-
viation from the expected distribution of residuals (Kolmogorov-Smirnov test, p = 0.03)
without significant dispersion issues (p = 0.86) or outliers (p = 0.43). Visual inspection of
residual plots confirmed these findings (Figure 5.13).
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Figure 5.13: Residual Plots

Given these minor deviations from model assumptions, the model was refit using a robust
linear mixedmodel designed tomitigate those issues and ensure reliable inference. Robust
LMs (RLMs) use techniques such as M-estimation or MM-estimation to reduce the influ-
ence of high-leverage observations, and weighted estimation to equalize variance. This ap-
proach makes RLMs less sensitive to violations of normality assumptions in both fixed and
random effects, and more resistant to departures from other common assumptions of lin-
ear mixed models. As a result, RLMs typically provide more stable and accurate parameter
estimates when dealing with non-ideal data conditions.

The result from robustlmm::rlmer is compared with the original fit in Table 5.10. Ro-
bust fits for two additional variations of m7 are also included. Both add the initial TCT
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as a predictor, first as a covariate, and then including interactions with the linear and log
terms in the second. This was done to account for the impact of baseline performance on
themodel, as discussed above. As seen in Table 5.10, bothmodels incorporating initial TCT
(m7r_ti and m7r_ta) show much higher 𝑅2𝑚𝑎𝑟𝑔 values, indicating that initial performance
explains a large portion of the fixed effects variance. The version with interactions also
exhibits the best ICC and RMSE scores, suggesting it is the best choice for further develop-
ment.

Table 5.10: Model Performance Results

Name R2 (cond.) R2 (marg.) ICC RMSE

m7 0.95 0.28 0.93 7.10
m7r 0.96 0.29 0.95 6.97
m7r_ta 0.99 0.78 0.96 7.50
m7r_ti 0.99 0.89 0.90 6.16

These results, particularly the decrease in RMSE (6.16), indicate meaningful performance
gains were achieved by the robust fit. However, the real benefit comes from improved
model diagnostics. The robust model reduces heteroscedasticity (p = 0.31) and down-
weights extreme values as seen in Figure 5.14. Fourty-one residuals and six random effects
were affected, addressing potential outliers or overly influential observations. The low
residual error achieved (SD = 4.26) aligns with the high 𝑅2𝑐𝑜𝑛𝑑 previously noted. While
the Shapiro-Wilk test still indicates non-normality of residuals (p < 0.001), this is less
concerning for robust models, which are designed to perform well even when normality
assumptions are violated.

As a finalmodel validation, Figure 5.15 shows the predictions generated by the robustmodel
for the first five participants in each treatment. In this figure, the black circles and lines
represent observed TCT values for each participant, while the colored curves represent the
RLM’s predictions. Each row corresponds to a different treatment group (AR, MR, PAR,
PWI), and each subplot shows data for an individual participant.

This visualization allows for a comparison between observed data and model predictions
across different treatments and participants, and helps confirm that a good fit is obtained
for the specified range of observation counts. The variation in TCT is evident here, with
participants assigned to the PWI and PAR groups completing substantially more task iter-
ations than their AR / MR peers.
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Figure 5.15: Visualizing RLMmodel fit
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Table 5.11: Fixed Effects Parameters for the Unconditioned RLM including initial TCT in-
teractions (m7r_ti)

Table 5.11: Fixed Effects

Parameter Coefficient SE CI t p Sig

(Intercept) 0.189 1.832 (-3.40, 3.78) 0.103 0.918
seq.fp -224.576 60.753 (-343.65,

-105.50)
-3.697 < .001 ***

initial_tct 0.996 0.012 (0.97, 1.02) 83.539 < .001 ***
log(seq.fp + 1) 354.028 85.711 (186.04,

522.02)
4.130 < .001 ***

seq.fp:initial_tct 3.359 0.435 (2.51, 4.21) 7.715 < .001 ***
initial_tct:log(seq.fp +
1)

-5.539 0.599 (-6.71, -4.36) -9.244 < .001 ***

Table 5.11 summarizes the fixed effects parameters for m7r_ti, revealing a complex inter-
play of factors influencing task completion time (TCT). The intercept term is near-zero
(0.189) and not likely significant1 (t = 0.10). This counter-intuitive result is a direct con-
sequence of including initial TCT as an explanatory variable, centering predictions around
each participant’s starting point and calculating deviations from initial performance rather
than absolute TCT values. The initial_tct coefficient (0.996, t = 83.54) is highly significant
and nearly 1, indicating that initial performance is the dominating predictor of subsequent
performance, a role played by the intercept in prior formulations. The linear (seq.fp: -
224.6, t = -3.70) and logarithmic (log(seq.fp + 1): 354.0, t = 4.13) terms for sequence are
both significant and compete for dominance, with signs reversed from the m7 model. This
sign reversal is another consequence of including initial TCT. The larger magnitude of the
logarithmic term suggests a strong non-linear component to learning, aligning with theory,
expectations, and observed values. Significant interactions between initial TCT and both
the linear (3.36, t = 7.72) and logarithmic (-5.54, t = -9.24) terms reveal how baseline per-
formance affects TCT changes over time. These interactions suggest that participants with
higher initial TCT tend to have a slower linear decrease but stronger logarithmic decrease
in TCT over time.

Finally, the model’s random effects structure allows for participant-level variations in both

1 For this interpretation, t values with a magnitude greater than 2.0 are taken as likely significant.
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the intercept and slope for the linear and log terms. Together, this sophisticated design
incorporates the power law of practice in a nuanced, participant-specific manner. The
combination of linear and logarithmic terms, along with their interactions with initial per-
formance, allows it to represent complex, dynamic learning patterns that vary based on
sequence, starting proficiency, and participant idiosyncrasies.

To ease its interpretation, this model can be expressed mathematically as:

TCT𝑖𝑗 = 0.189 + (0.996 × TCT0𝑖) − (224.6 × SC𝑖𝑗) + (354.0 × log(SC𝑖𝑗 + 1)) (5.5)+ (3.36 × SC𝑖𝑗 × TCT0𝑖) − (5.54 × log(SC𝑖𝑗 + 1) × TCT0𝑖)+ RE𝑖𝑗 + 𝜀𝑖𝑗
Where:

• 𝑖 and 𝑗 are indices for participant and task iteration
• 𝑇 𝐶𝑇𝑖𝑗 is the Task Completion Time in seconds
• 𝑇 𝐶𝑇0𝑖 is the initial Task Completion Time
• 𝑆𝐶𝑖𝑗 is the standardized sequence count, SC = (SEQ − 1)/(max(SEQ) − 1)
• 𝑅𝐸𝑖𝑗 represents the random effects
• 𝜀𝑖𝑗 is the residual error term

Note that 𝑅𝐸𝑖𝑗 can be further broken down as:
RE𝑖𝑗 = 𝑈𝐼𝑁𝑇 𝑖 + (𝑈𝐿𝐼𝑁𝑖 × SC𝑖𝑗) + (𝑈𝐿𝑂𝐺𝑖 × log(SC𝑖𝑗 + 1)) (5.6)

Where the participant-specific random effects for intercept, linear, and log terms are:

• 𝑈𝐼𝑁𝑇 𝑖 ∼ 𝒩(0, 𝜎2𝐼𝑁𝑇 ) and 𝜎𝐼𝑁𝑇 = 0.749
• 𝑈𝐿𝐼𝑁𝑖 ∼ 𝒩(0, 𝜎2𝐿𝐼𝑁) and 𝜎𝐿𝐼𝑁 = 108.34
• 𝑈𝐿𝑂𝐺𝑖 ∼ 𝒩(0, 𝜎2𝐿𝑂𝐺) and 𝜎𝐿𝑂𝐺 = 160.37

These terms are participant-specific (as noted by the subscript 𝑖), and have a complex corre-
lation structure. Notably, there is a strong negative correlation (-0.99) between the random
effects for seq.fp and log(seq.fp + 1), indicating these terms strongly counteract each other
at the participant level. The intercept has a moderate negative correlation with seq.fp (-
0.68) and a moderate positive correlation with log(seq.fp + 1) (0.79). Finally, the residual
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error, 𝜀𝑖𝑗 ∼ 𝒩(0, 4.2562). Together, these specifications provide a complete picture of the
model’s structure and variability.

Conditional Models and Hypothesis Testing

To understand the treatment effects and test 𝐻1𝑏, a model conditioned on treatment must
be fit. Using m7r_ti as a base, three models of increasing complexity were again fit. The
first includes treatment as a covariate predictor, the second includes interactions with the
linear term, and the final model adds interactions with the log term. As before, these were
fit with robustlmm::rlmer, and performance of the resulting models is compared in
Table 5.12.

Table 5.12: Comparison of Model Performance

Name R2 (cond.) R2 (marg.) ICC RMSE

m7r 0.96 0.29 0.95 6.97
m7r_ti_c1 0.98 0.83 0.89 7.51
m7r_ti_c2 0.99 0.93 0.86 5.93
m7r_ti_c3 0.99 0.65 0.97 7.07

All models incorporating treatment as a fixed effect show a substantial increase in 𝑅2𝑚𝑎𝑟𝑔,
suggesting it improves the model’s explanatory power. Model m7r_ti_c2, which includes
treatment interactions with the linear term, performs better than the alternatives in every
metric (𝑅2𝑚𝑎𝑟𝑔 = 0.93, ICC = 0.85, RMSE = 5.93) except𝑅2𝑐𝑜𝑛𝑑, where it matches the most
complex model (0.99). Furthermore, where the other models produced singularity warn-
ings during the fit, c2 did not. These warnings did not invalidate the results for c1 or c3,
as robustlmm automatically negotiated to an alternate optimizer. But the added stability
provides additional comfort.

Figure 5.16 plots the predicted learning curves for each treatment based on their mean𝑇 𝐶𝑇0. The black line shows the predictions from the prior model, without treatment ef-
fects. All treatments show a general non-linear decrease in TCT with sequence, demon-
strating learning. PWI and PAR perform better than average, while AR and MR are slower.
This ranking persists through all iterations, despite clear differences in initial performance.
To quantify these trends in statistical terms, Table 5.13 summarizes the parameters for the
model’s fixed effects.
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Figure 5.16: Learning Curves by Treatment

Table 5.13: Fixed Effects

Parameter Coefficient SE CI t p Sig

(Intercept) 0.553 1.903 (-3.18, 4.28) 0.291 0.771
seq.fp -260.217 81.759 (-420.46,

-99.97)
-3.183 0.001 **

initial_tct 0.989 0.013 (0.96, 1.01) 73.906 < .001 ***
treatmentPAR 0.006 1.544 (-3.02, 3.03) 0.004 0.997
treatmentAR 1.842 1.672 (-1.43, 5.12) 1.102 0.271
treatmentMR 1.206 1.665 (-2.06, 4.47) 0.725 0.469
log(seq.fp + 1) 399.331 111.641 (180.52,

618.14)
3.577 < .001 ***

seq.fp:initial_tct 3.529 0.562 (2.43, 4.63) 6.278 < .001 ***
seq.fp:treatmentPAR 12.707 5.396 (2.13, 23.28) 2.355 0.019 *
seq.fp:treatmentAR 21.055 6.513 (8.29, 33.82) 3.233 0.001 **
seq.fp:treatmentMR 29.953 6.529 (17.16, 42.75) 4.588 < .001 ***
initial_tct:log(seq.fp +
1)

-5.897 0.757 (-7.38, -4.41) -7.787 < .001 ***
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These results are similar to those for the unconditioned model (Table 5.11). All terms pre-
viously found significant remain so, including 𝑇 𝐶𝑇0, the linear and log terms, and their
interactions with 𝑇 𝐶𝑇0. The relevant interpretations stand, though the magnitude of the
effects vary slightly. Importantly, all interactions between treatment and seq.fp are identi-
fied as significant. This directly addresses 𝐻1𝑏, confirming that treatment varies TCT over
time, when 𝑇 𝐶𝑇0 varies. To test if these findings hold when all participants begin with
equal proficiency (equalizing the effects of the power law of practice), a second set of pre-
dictions is generated using equal values of 𝑇 𝐶𝑇0 for all treatments. The resulting learning
curves are plotted in Figure 5.17.
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Figure 5.17: Compare Learning Curves with Equal Initial Proficiency

This plot shows that, even when the effects of 𝑇 𝐶𝑇0 are standardized, the instructional
method influences the learning rate. To quantify this effect, emtrends from the emmeans
package is used to calculate the rate of change in the response variable with respect to spec-
ified predictors. In the context of this analysis, it is used to calculate the slope of TCT with
respect to sequence for each treatment while holding 𝑇 𝐶𝑇0 constant. Pairwise compar-
isons of the resulting slopes allow for statistical tests, as seen in Table 5.14. These results
show significant differences between the learning rates for PWI and both AR (p = 0.007)
andMR (p < 0.001) as well as PAR andMR (p = 0.04). The overall ranking of effectiveness
can be expressed as PWI ≈ PAR, PWI > (AR ≈ MR), and PAR > MR.

While Figure 5.17 clearly illustrates the differences in learning curves, and Table 5.14
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Table 5.14: Average Slope of TCT over Task Sequence by Treatment

contrast estimate SE df z.ratio p.value
PWI - PAR -12.71 5.40 Inf -2.355 0.0861
PWI - AR -21.05 6.51 Inf -3.233 0.0067
PWI - MR -29.95 6.53 Inf -4.588 <.0001
PAR - AR -8.35 6.48 Inf -1.289 0.5701
PAR - MR -17.25 6.52 Inf -2.643 0.0409
AR - MR -8.90 6.62 Inf -1.343 0.5351

P value adjustment: tukey method for comparing a family of 4 estimates

provides compelling statistical evidence of these effects, both approaches focus on ab-
solute changes in task completion time. As a complementary perspective, Figure 5.18
expresses progress as cumulative percentage improvements. This approach offers some
advantages:

1. It allows for comparison of relative progress across treatments, which can be infor-
mative when participants start at different performance levels.

2. Percentage improvements can sometimes highlight subtle differences in learning pat-
terns that are less apparent in absolute time measures.

3. It provides a way to visualize learning gains that is independent of the scale of the
original task completion times.

While the result may appear similar to the inverse of earlier plots, it offers a standardized
view of learning progress across treatments that aligns closely with how learning is often
conceptualized in cognitive and educational theories. This representation helps confirm
and clarify the trends observed in our previous analyses, reinforcing our understanding of
how each treatment impacts learning over time.

𝐻1𝑏 Results
Based on comprehensive analysis of learning curves and statisticalmodeling, there is strong
evidence to accept𝐻1𝑏: the rate of improvement in task completion time varies significantly
by treatment. Specifically, PWI demonstrates the steepest learning curve, followed closely
by PAR. Both AR andMR show slower rates of improvement. The relationship can be sum-
marized as: PWI ≈ PAR, PWI > (AR ≈ MR), and PAR > MR. This pattern holds true even
when controlling for initial task completion time, suggesting that the treatment effects on
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Figure 5.18: Cumulative Learning Progress by Treatment

learning rates are robust. The differences in learning rates are most pronounced in the
early stages of task repetition and tend to converge over time, highlighting the importance
of instructionalmethod particularly in the initial phases of skill acquisition. However, these
findings should be interpreted with the described limitations in mind, primarily those re-
lated to the limited extrapolation capabilities resulting from an imbalanced data set and
statistical model formulation. In light of these considerations, great effort was invested to
ensure the robust and reliable findings outlined above.

5.3.5 𝐻1𝑐: Average Error Count per Car
The third and final hypothesis of the learning phase tests the third commonly assessed as-
pect of learning: 𝐻1𝑐: Average error count per car varies with treatment
Here again, we are interested in finding statistically significant differences in the average
error count under different treatment conditions to identify which instructional method
leads to the lowest defect rate. Lower error rates can indicate a higher quality of learn-
ing outcomes. Combined with the previous measures of efficiency (TCT) and learning rate
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Table 5.15: Summary Statistic for Dependent Variables, H1c Quality

Mean SD Min Median Max

Average Uncorrected Errors 2.19 3.15 0.00 0.33 12.00
(change in TCT per task), these provide a balanced and comprehensive view of training
performance.

Descriptive Statistics

As with previous measures, the uncorrected error count (UCE) is neither independent nor
balanced. Additionally, it is a discrete (counted) variable. All of these have implications for
the statistical method used, but where average counts are used, many are addressed. The
standard five number summary for UCE is presented in Table 5.15.

As this data is aggregated by participant, there is only one observation for each (𝑛 = 53).
As is common in this study, variation is high (SD = 3.15) compared to the mean value
(2.19). Many participants made no errors, but one averaged 12 errors per task iteration,
resulting in an overall median value of 0.33. The distribution of UCE is illustrated by Fig-
ure 5.19. As seen before, the overall average error count data exhibits floor effects that
contribute to a strongly positive skew. Obvious non-normality (Shapiro-Wilk, p < 0.001),
skew (D’Agostino, p < 0.001), and kurtosis (Anscombe-Glynn, p = 0.02) are all confirmed
in the overall dataset using the appropriate tests.

Finally, Shapiro-Wilk tests are performed for each treatment group, revealing strong ev-
idence that PAR (p < 0.001), AR (p < 0.001), and MR (p < 0.001) are not normally dis-
tributed, but PWI is (p = 0.61). These findings are supported by the Q–Q plots in Fig-
ure 5.20. Furthermore, it is important to note that this is counted data. Despite the fact
that means / grand means may appear continuous in this aggregated form, the underlying
distribution remains discrete. Traditional parametric tests are not recommended in this
case.

Analysis

The Kruskal-Wallis non-parametric test is used to compare average UCE by treatment,
the results of which are shown in Figure 5.21. Large differences in the overall mean are
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observed, along with some floor effects in the augmented treatments. The test statistic𝜒2𝐾𝑊 (3) = 25.5, with a p-value < 0.001, indicates a statistically significant difference be-
tween groups. The effect is ̂𝜖2𝑟𝑎𝑛𝑘 = 0.49, with a 𝐶𝐼95% [0.32, 1.00], reflecting the data’s
variability. The results of Dunn’s Holm-adjusted pairwise comparisons show statistically
significant differences between PWI and all other treatments (p « 0.01 in all cases), while
PAR, AR, and MR treatments are statistically similar. These results formally quantify the
obvious reduction in error count experienced with any form of augmented instruction.

µmedian = 0.000 µmedian = 0.000

µmedian = 4.900

µmedian = 0.310

pHolm−adj. = 2.025e−04
pHolm−adj. = 5.217e−05

pHolm−adj. = 0.002
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χKruskal−Wallis
2 (3) = 25.505, p = 1.211e−05, εordinal

2 = 0.490, CI95% [0.318, 1.000], nobs = 53
Avg UCE per Task by Treatment: Kruskal−Wallis non−parametric rank sum test

Figure 5.21: Differences in Average Uncorrected Error per Task by Treatment

KW is a robust test that does not assume normality or homogeneity of variances. It can be
sensitive to the presence of outliers, three ofwhichwere detected in theUCEdata based on a
combination of IQR and Z-score. Participants 1016, 1017, and 1056 were all assigned to the
PWI treatment and averaged 12, 10, and 11.3 errors per task, respectively. A secondKruskal-
Wallis test of the data without those outliers showed the difference remained significant (p
< 0.001). This confirms that the outliers did not impacting the outcome of the test.

𝐻1𝑐 Results𝐻1𝑐 is accepted - all augmented instruction methods result in error rates that are drasti-
cally lower in magnitude than PWI, the statistical significance of which is confirmed. Floor
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effectsmay imply that the task complexity was insufficent to capture the full range of partic-
ipant performance. Further analysis using a generalized linear mixed model with poisson
or negative binomial distribution for count data could be used to better account for partic-
ipant variation but that seems unnecessary given the strong observed differences. While
this method was deemed insufficient for capturing the nuances of learning rate analysis, it
is entirely appropriate for comparing average error counts.

5.4 𝐻2: Recall Phase Analysis
As with the learning phase results, only completed tasks are considered for recall analy-
sis. Paper work instructions were available for reference, and participants wore the HL2
only for recording purposes. This almost entirely eliminated system-related interruptions,
though participant 1057 inadvertently triggered the HL2menu twice during their trial. The
time lost to those events was deducted from measured task times as before. 212 observa-
tions were recorded during this phase, as expected for 53 participants, each with four iter-
ations.

5.4.1 𝐻2𝑎: Overall Equipment Effectiveness

The first hypothesis of the recall phase:𝐻2𝑎: OEE varies with treatment
is designed to determine if the instructional method has an impact on overall performance
after the initial training period. As described in Section 4.3.1, OEE is the product of per-
formance (task rate relative to takt time), quality (percentage of units produced without
defects), and availability (percentage of system up time). For the purposes of this analysis,
100% availability is assumed. Takt time is set to 60 seconds in accordance with the line
policy and instructional design.

Descriptive Statistics

The calculated measures are summarized below:
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• Productivity: n = 53, Mean = 0.84, SD = 0.19, Median = 0.82, MAD = 0.18, range:
[0.41, 1.47], Skewness = 0.20, Kurtosis = 1.28

• Quality: n = 53, Mean = 0.56, SD = 0.49, Median = 1.00, MAD = 0.00, range: [0, 1],
Skewness = -0.25, Kurtosis = -1.96

• Overall Equipment Effectiveness: n = 53, Mean = 0.48, SD = 0.43, Median = 0.62,
MAD = 0.58, range: [0, 1.14], Skewness = -0.07, Kurtosis = -1.77

As this is aggregated data, there is one observation for each participant, and nomissing val-
ues. Productivity and quality are slightly skewed right (0.20) and left (-0.25), respectively.
Kurtosis measures suggest that productivity is close to normal (1.28), but quality has a flat-
ter distribution (-1.96). Productivity exhibits relatively low variability and similar mean
(0.84) and median (0.82), suggesting consistency among participants. For quality, the me-
dian (1.00) and its absolute deviation (MAD = 0.00) show that many participants achieved
perfect quality during recall. However, the range (0, 1) and high standard deviation (0.49)
relative to its mean (0.56) indicates considerable variability. In fact, several participants
produced only defective assemblies. Note that quality is essentially a discrete variable, as
it can only take on values of 𝑛/4, where 𝑛 = 0, 1, … , 4, corresponding to each of the four
task iterations.

OEE shows a notably asymmetric distribution with a mean of 0.48 and a higher median of
0.62, indicating a significant number of low values dragging down the mean. A high con-
centration of zeros are observed in the OEE histogram, Figure 5.22, suggesting that many
participants experience zero effectiveness due to high defect rates. The standard deviation
(sd = 0.43) and median absolute deviation (MAD = 0.58) reflect substantial variability in
effectiveness across participants. Despite the approximately symmetric skewness (-0.07),
the range (0 to 1.14) indicates diverse levels of effectiveness, from complete failures to high
performance. These findings highlight the variability in participants’ abilities to achieve
consistent and effective output.

Results from the Shapiro-Wilk test provide further evidence against the normality hypoth-
esis for OEE, both overall (p < 0.001) and by treatment (p < 0.05 in all cases). Q-Q plots in
Figure 5.23 suggest that OEE is close to normally distributed for all augmented treatments,
but PWI is clearly not. No outliers were detected in the OEE data based on the Z-score
test. Finally, Levene’s test indicated no significant heterogeneity of variance between treat-
ment groups (p = 0.43). These findings again dictate a non-parametric approach to testing𝐻2𝑎.
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Analysis

In Figure 5.24, group-wise significant differences are found (p = 0.02), with with small to
moderate effect size ̂𝜖2𝑟𝑎𝑛𝑘 = 0.19 and a broad 𝐶𝐼95% [0.08, 1.0]. Pair-wise tests show
only PWI and PAR are significantly different (also p = 0.02). A post-hoc simulation was
performed to assess the power of the analysis. The result of 85.6% indicates the analysis
had sufficient power to detect significant differences, which lends further support to the
reliability of this outcome.
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Figure 5.24: 𝐻2𝑎 Test - OEE Differences by Treatment
This unexpected result indicates that, despite substantial observed differences, the PWI,
AR, and MR treatments have statistically equivalent OEE. High within-group variability
likely contributes to this finding by obscuring genuine differences in groupmeans. Kruskal-
Wallis test is somewhat vulnerable to this effect due to its rank-based design and underlying
assumptions. The ratio of interquartile range to overall range for PAR (0.55), AR (0.63),
and MR (0.68) show that the central 50% of observations in these treatments is spread
over more than half of its overall range. This wide variation is easily observed in the box
plots of Figure 5.24.

To further investigate the observed variability and validate these unexpected findings, boot-
strap resampling analysis was employed. This flexible technique samples with replacement
to construct robust estimates of the distribution for the statistics of interest (e.g., mean or
median) and their confidence intervals. Bootstrapping relies on the empirical distribution
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of the data to accurately capture variability with few assumptions. Additionally, the repli-
cation process effectively increases the sample size and statistical power of the analysis,
enhancing the accuracy and reliability of its results.

A bootstrap analysis was used to estimate pairwise differences in three measures of cen-
trality for OEE–mean, median, and the Hodges-Lehmann estimator. The latter is a non-
parametric approach to estimate population median shifts that is robust to outliers. It
provides a consistent estimate of the true shift in medians, even when the underlying dis-
tributions are dissimilar, by considering the differences between all possible observation
pairs. This process was replicated five times, each with 10,000 resamples, and the results
were averaged to determine grand means and related statistics. The significant results of
this complementary analysis, where the 95% confidence interval does not include zero, are
tabulated in Table 5.16.

Table 5.16: 𝐻2𝑎 Bootstrap Analysis of Pairwise OEE Differences
Significant OEE Differences in Centrality: Bootstrapped Estimates
Five Replications of 10,000 Resamples for Mean, Median, and the Hodges-Lehmann Estimator

Comparison Stat Mean 95% CI Bias Std Error

PWI - PAR Mean −0.512 [−0.792, −0.204] −0.001 (0.000) 0.149 (0.000)
PWI - AR Mean −0.408 [−0.643, −0.140] −0.001 (0.000) 0.128 (0.000)
PWI - MR Mean −0.448 [−0.700, −0.167] −0.001 (0.000) 0.136 (0.000)
PWI - PAR Median −0.844 [−1.008, −0.243] 0.075 (0.000) 0.194 (0.000)
PWI - AR Median −0.782 [−0.807, −0.255] 0.088 (0.000) 0.167 (0.000)
PWI - PAR HL_Est −0.704 [−0.955, −0.271] 0.047 (0.000) 0.185 (0.000)
PWI - AR HL_Est −0.565 [−0.798, −0.232] 0.022 (0.000) 0.170 (0.000)
PWI - MR HL_Est −0.664 [−0.842, −0.238] 0.065 (0.000) 0.170 (0.000)

Significance indicated by confidence intervals that do not include zero.

Compared to the initial findings, bootstrapping identifies a number of significant pairwise
differences. Even when testing OEE median values, as done with Kruskal-Wallis, this
method finds both PWI-PAR and PWI-AR significant. The mean tests, which are more
sensitive to variance and outliers, also include PWI-MR. Hodges-Lehmann matches the
mean findings, despite its reduced sensitivity.

This result supports the previous findings of significant overall differences in OEE, as well
as between the PWI and PAR conditions for allmeasures of centrality. In addition, the boot-
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strap analysis, with its robust estimation methods, provided strong evidence of significant
differences between PWI and both the AR (for all measures) and MR groups (except for
median). These results show that the OEE of PWI is substantially lower than all other treat-
ments, with average estimated differences of 0.687 (PAR), 0.585 (AR), and 0.307 (MR).
The negligible bias values and low standard error reported across all replicates reinforce
the reliability of these findings.

𝐻2𝑎 Result

As both approaches identified a significant treatment effect on OEE, there is ample evi-
dence to accept 𝐻2𝑎: OEE does vary with instructional method. However, the conflict-
ing pairwise analysis results must be reconciled. While the Kruskal-Wallis test only identi-
fied significant differences between the PWI andPAR treatments, subsequent bootstrapped
analysis revealed additional differences between PWI and the AR and MR treatments us-
ing a variety of measures. Considering the bootstrap method’s advantages when faced with
high between-group variance, limited sample size, and non-normally distributed data, the
consistent differences and robust confidence intervals it produced provide compelling evi-
dence that the observed differences are reliable. Ultimately, it is determined that PAR, AR,
andMR treatments all result in statistically significant and practically meaningful improve-
ments in OEE compared to PWI, which was hampered by a high defect rate.

5.4.2 𝐻2𝑏: Paper Work Instruction References

The second hypothesis of the recall phase assesses an alternative measure of training effec-
tiveness: 𝐻2𝑏: PWI reliance varies with treatment

Reliance is quantified by the number of times each participant refers to the paper work
instructions (PWI count), and the duration of each event (PWI time). PWI count is con-
sidered a measure of the frequency of the participant’s task uncertainty, while PWI time is
associated with the degree of uncertainty experienced.

Descriptive Statistics

Overall statistics for the measures of interest (n = 212) are summarized below:
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• PWI Count per Task: Mean = 1.47, SD = 4.12, Median = 0.00, MAD = 0.00, range:
[0, 30], Skewness = 4.51, Kurtosis = 23.27, 0% missing

• Total PWI Time per Task: Mean = 2.86, SD = 9.43, Median = 0.00, MAD = 0.00,
range: [0, 77.18], Skewness = 5.64, Kurtosis = 36.73, 0% missing

Despite lowmean values for count and total time (1.47 and 2.86, respectively), both exhibit
substantial variability, with standard deviations of 4.12 and 9.43. High skewness (4.51 for
count, 5.64 for time) and kurtosis (23.27, 36.73) confirm their strong right skew and heavy
tails. Together with a median and MAD of zero for both measures, these statistics suggest
that many participants rarely referred to the instructions, but a small number relied on
them heavily.

The statistical similarity between count and time suggests a high correlation, confirmed by
Spearman’s rank correlation test (rho = 0.99, p < 0.001). This is natural and expected for
two dependent measures, but must be accounted for. To create a stable measure of over-
all reliance for each participant, a composite measure was created by averaging the time
per PWI reference across all four tasks. This approach reduces the impact of task-specific
factors and eliminates the correlation between reference count and duration without di-
minishing either aspect of task uncertainty. Using a single, composite measure simplifies
the analysis and interpretation of the results by reducing dimensionality. It also enables a
traditional univariate approach to the comparison, which benefits from reductions to both
within– and between–participant variance due to averaging. The distribution of average
time per PWI reference is visualized in Figure 5.25.
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From the descriptive statistics and visualization, this data does not appear normal. To con-
firm, the Shapiro-Wilk test was administered for the overall data (p < 0.001) and within
each treatment group. The results show that neither PWI (p < 0.001) nor PAR (p < 0.001)
are normally distributed, but AR is (p = 0.16), and MR shows marginal evidence (p = 0.05)
of non-normality. Visual inspection of the Q-Q plots for each treatment, provided in Fig-
ure 5.26, supports these findings. Levene’s test (p = 0.95) confirms equal variance by treat-
ment.

AR MR
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subtitle...
Quantile−Quantile Plots of PWI Treatment Data

Figure 5.26: Q-Q Plots of PWI Reliance by Treatment

Outliers were identified within each treatment group for all measures of task uncertainty.
Data for five participants with Z-scores of 2.5 or higher are summarized in Table 5.17. These
participants were removed from the primary analysis to ensure the data represents typical
participant behavior and to maintain the integrity of the comparative analysis.

Table 5.17: Outliers in Measures of Reliance

|Z-scores| for Reliance Metrics of Participant Outliers
Participants with |Z-score| >= 2.5 in reliance components

Participant Treatment Count Time Reliance

1021 PAR 2.74 1.67 0.51
1028 PAR 0.87 2.50 2.87
1031 PWI 0.89 2.98 3.16
1045 PWI 3.08 1.43 0.28
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1053 AR 3.11 2.86 0.27
Several checks were then repeated to assess the impact of outlier removal. The Shapiro-
Wilk test showed no change in significance for data overall or by treatment group. While
Levene’s test found significant difference in variance between groups (p = 0.01) after the
change, Kruskall-Wallis does not assume otherwise. A Wilcoxon signed-rank test was ap-
plied to compare overall and group means with and without outliers. No significant differ-
ences were found in average PWI time per reference in the the full data set or by treatment
group (p > 0.40 for all cases). It is determined that, despite a reduction in the overall mean
value from 1.08 to 0.87, the character of the underlying data is not significantly changed
by the outlier removal. Given that most treatments are not normally distributed, and vari-
ance differs between groups, a non-parametric approach is chosen for testing 𝐻2𝑏. The
total number of observations (n = 48) and group sizes (12 PWI, 10 PAR, 12 AR, and 14 MR)
remain sufficient for these methods, though statistical power is reduced.

Analysis

Per Figure 5.27, despite a nominal p-value (0.05) the Kruskal-Wallis test fails to identify sig-
nificant between-group differences for the average PWI reference duration. A small effect
size ̂𝜖2𝑟𝑎𝑛𝑘 = 0.17 with broad 𝐶𝐼95% [0.07, 1.0], along with a post-hoc power simulation
(80.3%) all support this result.

Given themarginal p-value and high variance data, bootstrap analysis was again performed
to provide complementary insights. As before, five replications of 10,000 resamples were
conducted for all pairs using mean, median, and the Hodges-Lehmann estimator. Signifi-
cant results are summarized in Table 5.18. As with the Kurskal-Wallis test, no significant
differences were identified using median, but the mean and Hodges-Lehmann estimator
both identified 95% CI based differences in PWI-AR, PWI-MR, and PAR-AR pairs. A sig-
nificant difference in mean was also indicated for PAR-MR.

Table 5.18: 𝐻2𝑏 Bootstrap Analysis of Pairwise PWI Differences

Significant Reliance Differences in Centrality: Bootstrapped Estimates
Five Replications of 10,000 Resamples for Mean, Median, and the Hodges-Lehmann Estimator

Comparison Stat Mean 95% CI Bias Std Error

PWI - AR Mean −0.993 [−1.776, −0.223] 0.000 (0.000) 0.397 (0.000)
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PWI - MR Mean −0.880 [−1.622, −0.196] −0.007 (0.000) 0.362 (0.000)
PAR - AR Mean −0.954 [−1.748, −0.170] −0.002 (0.000) 0.401 (0.000)
PAR - MR Mean −0.841 [−1.577, −0.171] −0.008 (0.000) 0.358 (0.000)
PWI - AR HL_Est −1.064 [−1.933, −0.105] −0.013 (0.000) 0.477 (0.000)
PWI - MR HL_Est −0.956 [−1.816, −0.117] 0.042 (0.000) 0.445 (0.000)
PAR - AR HL_Est −0.847 [−1.933, −0.005] −0.166 (0.000) 0.499 (0.000)

Significance indicated by confidence intervals that do not include zero.

On average, AR andMR reduce reliance by 0.686 and 0.612 seconds per reference, respec-
tively, relative to the PWI instructional method. This finding is statistically and practically
meaningful, given that the overall average reference duration is 0.87 seconds. In summary,
the bootstrap analysis finds AR and MR are equivalent to one another but reduce reliance
more than than PAR and PWI, which are themselves equivalent. The negligible bias values
and low standard error reported across all replicates once again reinforce the reliability of
these findings.

𝐻2𝑏 Result
The marginal p-value returned by the Kruskall-Wallis comparison of median reliance, to-
gether with consistent and robust estimates of the differences provided by bootstrap anal-
ysis give sufficient evidence to accept 𝐻2𝑏: reliance does vary with instructional method.
However, the conflicting results of pairwise comparisons must be interpreted with caution.
Like other results in this study, they suggest that AR/MR are superior to PWI/PAR but
the limited data and high variation make this somewhat inconclusive. Ultimately, it is de-
termined that statistically significant differences in reliance exist between treatments, but
specific pair-wise differences are not clear enough to declare.

5.5 𝐻3: Retention Phase Analysis

The final phase of this study is designed to test the durability of the training received.
Twenty-four participants volunteered to return to the lab on April 29th to complete the
assembly task one last time, without further instruction. All participants were asked to
complete the task correctly, quickly, accurately, and entirely from memory. Though a
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Figure 5.27: 𝐻2𝑏 Test - Average Time per PWI Reference by Treatment

target time of 60 seconds was established, each participant was given the time they needed
to declare their effort complete, with a hard stop at 3 minutes2.

5.5.1 𝐻3: Change in TCT and UCE since Recall

The one hypothesis tested during the retention phase:𝐻3: Learning retention varies with treatment
is designed to determine if the instructional methods have an impact on the durability of
training for up to two months.

When originally planned, this analysis would utilize the change in OEE from recall to reten-
tion. It was later realized that theway inwhichOEE assesses task quality as pass / fail based
on a single defect is problematic. Each participant only performed one replication of the
retention task, where errors are expected. However, minor errors may not indicate a com-
plete lack of retention. The combination of these factors leads to unstable binary outcomes
that make it impractical to draw reliable conclusions about retention when using OEE. In-
stead, retention is assessed by studying the relationships between treatment and gap (the

2 This limit was never reached.
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Table 5.19: Summary Statistics for Dependent Variables, H3 Retention

Mean SD Min Median Max

Task Completion Time (s) 101.88 28.10 55.00 106.50 154.00
Uncorrected Errors (n) 6.38 4.45 0.00 7.50 14.00
Increase in TCT (s) 33.25 27.91 −12.65 30.67 107.22
Increase in UCE (n) 4.60 4.78 0.00 3.75 14.00

number of days since the original training), and the increase in TCT and UCE during that
time. These are treated as 𝐻3𝑎 and 𝐻3𝑏 for the increases in TCT and UCE, respectively.
Descriptive Statistics

Each of the 24 participants completed one task, for which the two measures were observed.
The four treatments were relatively evenly represented (8 PWI, 5 PAR, 6 AR, and 5 MR)
and the gap between recall and retention ranged from 3 to 44 days (mean 21.58, SD 13.06,
median 20.5). Table 5.19 summarizes the descriptive statistics for TCT, UCE, and their
increases.

A variety of measures were considered to establish the baseline of performance during re-
call, including the mean, weighted average, 75th percentile, average of last two tasks, and
last value for TCT and UCE. Ultimately, it was decided that an average of TCT / UCE over
the last two task results was the most suitable measure of “typical” performance. Given
the limited number of replications during recall, this approach balances recency with sta-
bility, reflecting the most recent performance trends while limiting the influence of a single
result.

As seen in Figure 5.28, the median increases in TCT appear similar across all treatments,
with PWI and AR slightly higher than PAR and MR. Considerable variation exists within
each treatment group, with MR exhibiting the most consistent values, while PWI and AR
have greater variability and potential outliers. The increase in UCE is more clearly differ-
entiated by treatment, with median steadily decreasing from AR to PAR, PWI, and MR.
Variance is similar in the PWI-PAR and AR-MR pairs, with PWI and PAR both exhibiting
significantly less than AR and MR. The overlapping IQR of increase in TCT suggests a lack
of significant treatment effect. Overlap is less prominent in UCE increase, giving some ev-
idence of treatment effect. Note that positive increases were consistent for both TCT and
UCE. The lone exception is the increase in UCE for MR, with a median of zero.
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Figure 5.28: Variation of Response Variables by Treatment

Check Model Assumptions

The observed values for the increase in TCT (iTCT) and UCE (iUCE) are all independent.
Each response will be analyzed separately, as a function of treatment and gap. A sim-
ple comparison of means like Kruskal-Wallis is insufficient for two predictors, and model-
based methods are required. When testing continuous variables like iTCT, a linear regres-
sion model (LM) of the form iTCT ~ treatment +/* gap is appropriate. iUCE, on the
other hand, is a discrete variable (error count) with insufficient sample size to approximate
a normal distribution. A generalized linear model (GLM) with similar form and Poisson or
Negative Binomial distribution is commonly used in this situation.

The assumptions of a GLM, including linearity, mean-variance relationship, and zero-
inflation, are assessed after fitting the model. Meanwhile, to confirm the iTCT data meets
the normal requirements of a LM, normality, homoscedasticity, and linearity must be
checked. A Shapiro-Wilk test suggests the data is normal overall (p = 0.30) and within
treatment groups (p >= 0.109 for all). The Q-Q plots of Figure 5.29 fail to provide strong
counter-evidence, validating the normality requirement. Furthermore, the Levene test
finds no evidence of heteroscedasticity (p = 0.77).

To test the linearity assumption, a graph of iTCT vs gap was constructed for each treatment.
The scatter plots in Figure 5.30 show some support for linearity, though the limited data
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Figure 5.29: Q-Q Plots of Increase in TCT by Treatment

makes it difficult to judge. Additional evidence may come from the model residual plots.
Until then, this is sufficient. In summary, the model assumptions are met: iTCT is continu-
ous and linear, with independent observations, and all treatment groups are normal, with
homogeneous variance.

As a final step prior to analysis, both iTCT and iUCE are tested for outliers using a com-
bination of Z-score, IQR, and multivariate (Mahalanobis Distance) methods. None were
detected by any test.

𝐻3𝑎: Increase in TCT vs Gap and Treatment

To begin assessing the effect of instructionalmethod on retention, the relationship between
iUCE and gap, visualized in Figure 5.31, is considered. A pair of linear regression models
(LMs) were fit, both using iTCT as the response, with gap and treatment as predictors. One
specified additive terms and the other included interactions between gap and treatment.

A comparison of model performance statistics are summarized in Table 5.20. Columns for
the model name and type are followed by AIC, BIC, and their corresponding weights, stan-
dard and adjusted R-squared (𝑅2), and the Root Mean Squared Error (RMSE). AIC/BIC
weights represent the relative likelihood of each model being the most accurate of those
considered.
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Table 5.20: Model Performance Results

Name Model AIC (weights) BIC (weights) R2 R2 (adj.) RMSE

m1_tct_add lm 228.3 (0.81) 235.3 (0.96) 0.36 0.22 21.90
m2_tct_int lm 231.2 (0.19) 241.8 (0.04) 0.44 0.19 20.53

In this comparison, both AIC and BIC strongly prefer the additive model. While the 𝑅2
of the model with interactions is higher, the additive model scores a higher 𝑅2𝑎𝑑𝑗., where
complexity is penalized. Despite a slightly higher RMSE, the additive model outperforms
based on the principle of parsimony, which favors the least complex model that effectively
explains the data. Details for the additive model are summarized in Table 5.21. The inter-
cept represents the mean iTCT for the reference treatment (AR), with a gap of zero. The
treatment coefficients (MR, PAR, PWI) indicate the difference in mean iTCT between each
treatment and AR, assuming the same gap value. Since there are no interaction terms in
the model, the effect of gap on iTCT is constant across all treatments.

Table 5.21: Increase in TCT LM

Table 5.21: Fixed Effects

Parameter Est Coef SE 95% CI t(19) p Sig

(Intercept) 6.587 13.059 (-20.75, 33.92) 0.504 0.6198
gap 1.163 0.417 (0.29, 2.04) 2.788 0.0117 *
treatmentMR -4.625 15.059 (-36.14, 26.89) -0.307 0.7621
treatmentPAR 6.692 14.935 (-24.57, 37.95) 0.448 0.6592
treatmentPWI 3.377 13.564 (-25.01, 31.77) 0.249 0.8061

Only the gap predictor is statistically significant, with an estimated coefficient of 1.163 (p
= 0.0117), indicating that iTCT increases with gap at a rate of approximately 1.16 seconds
per day, which is practically significant. The coefficients for the treatment levels are not
statistically significant, which implies that the observed differences in iTCT between the
treatments may not be robust or replicable. This result must be interpreted with care, as
the overall model fit is marginal. Gap and treatment together account for only about 36% of
the variance in iTCT (𝑅2 = 0.358 and adjusted𝑅2 = 0.222). The p-value for the F-statistic
of 2.645 on 4 and 19 degrees of freedom is 0.0656. At the conventional threshold of 0.05,
this fails to reject the null hypothesis that all regression coefficients except the intercept are
zero. Together, these results provide only limited evidence that the predictors collectively
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contribute to explaining the variability in iTCT, with gap making the only significant con-
tribution. Further validation with a larger sample size and additional diagnostics would be
prudent to confirm these findings and ensure robustness.

To validate this model a number of checks were performed. A Shapiro-Wilk test indicates
residuals are normally distributed (p = 0.08). The Q-Q plot of the residuals in Figure 5.32
shows most points are on or near the reference line, despite some deviance in the right tail.
The second plot in the figure shows the residuals are scattered randomly around the axis
without clear curvature or other systematic deviations. This provides good support for the
LM’s linearity assumption within the limits of the available data. The variance inflation val-
ues for gap (1.06) and treatment (1.02) are both near 1, indicating very lowmulticollinearity.
These results confirm the model is valid.
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Figure 5.32: Model validation for H3a

𝐻3𝑏: Gap and Treatment vs Incr UCE

Continuing the analysis of𝐻3, the secondmeasure of learning retention, iUCE, is tested. A
pair of generalized linear models were fit using a Poisson distribution. As before, gap and
treatment were the predictors, and iUCE the response. One model includes only the main
effects of the predictors, while the other also include their interactions. The relationship
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between iUCE and gap is visualized in Figure 5.33, which includes a linear regression with
confidence intervals for the full dataset.
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Figure 5.33: Increase in Uncounted Errors vs Gap by Treatment

Because the Poisson distribution is used to model count data, it requires all non-negative
integer values for the response variable. Since iUCE was measured from the average of the
last two values during recall, some non-integer observations are included. To correct for
this without altering the relative differences between observations, iUCEwas doubled prior
to the model fit. When interpreting the model results, the coefficients and other estimates
will be on the scale of the doubled iUCE and should be halved to interpret them on the
original scale.

Table 5.22: Model Performance Results

Name Model AIC (weights) BIC (weights) Nagelkerke’s R2 RMSE

m1_uce_poisson glm 226.6 (0.21) 232.5 (0.61) 0.99 7.05
m2_uce_poisson glm 223.9 (0.79) 233.3 (0.39) 0.99 6.92

A comparison of model performance statistics are summarized in Table 5.22. The columns
for AIC, BIC, and RMSE are as previously described. The standard and adjusted 𝑅2 terms
are replacedwithNagelkerke’s𝑅2. This is the equivalentmeasure forGLMswith count data
outcomes, and is interpreted in the same manner. The second model includes interactions
of gap and treatment. It performs better on AIC, BIC, and RMSEmetrics, and has the same𝑅2 value, indicating that the additional model complexity provides a substantially better
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fit.

Despite these results, post-hoc validation steps reveal conflicts with themodel assumptions.
Dispersion is measured at 9.04 (p < 0.001), which is both substantially larger than 1.0 and
statistically significant. This indicates overdispersion, a condition where the observed vari-
ance is greater than that predicted by the model. A second test found that zero inflation
is present (p = 0.048), indicating that the count of zero values in the data is greater than
the model expects. Both violate the assumptions of the Poisson-based model, and prompt
the switch to the Negative Binomial (NB) distribution, which accounts for overdispersion.
Based on these findings, Zero-Inflated Negative Binomal (ZINB) equivalents are included
for comparison.

Table 5.23: Model Performance Results

Name Model AIC (weights) BIC (weights) RMSE

m1_uce_nb_add negbin 155.0 (0.03) 162.1 (0.09) 10.06
m2_uce_nb_int negbin 157.7 (8.00e-03) 168.3 (4.00e-03) 19.09
m3_uce_zinb_add zeroinfl 149.6 (0.44) 157.9 (0.75) 7.54
m4_uce_zinb_int zeroinfl 149.3 (0.52) 161.1 (0.15) 16.80

As seen in Table 5.23, both ZINB options (model 3 and 4) strongly outperform the NB alter-
natives in terms of AIC and BIC. While model 4 (with predictor interactions) has a slightly
lower AIC, the main effects version (model 3) shows substantially better BIC and RMSE.
Based on this, the additive ZINBmodel, which provides the best balance of model complex-
ity, fit, and predictive power, is selected.

Table 5.24: ZINB Model Summary

Table 5.24: Fixed Effects

Parameter Est Coef SE 95% CI z p Sig Adj Coef

(Intercept) 6.709 2.875 (2.90, 15.54) 4.441 < 0.001 *** 3.354
gap 1.033 0.014 (1.01, 1.06) 2.414 0.0158 * 0.516
treatmentMR 1.480 0.646 (0.63, 3.48) 0.899 0.3689 0.740
treatmentPAR 0.865 0.309 (0.43, 1.74) -0.404 0.6859 0.433
treatmentPWI 0.394 0.136 (0.20, 0.78) -2.693 0.0071 ** 0.197

Details for the main effects of the ZINB model are summarized in Table 5.24. The param-
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eters for this model must be interpreted differently than in the previous linear model. In
a GLM, the response is log-transformed, resulting in exponentiated coefficients for predic-
tors. As a consequence, the effects are multiplicative rather than additive. The intercept
represents the expected log count of the response variable when all predictors are at their
reference levels. The predictor coefficients then represent the multiplicative effects on the
expected count compared to the baseline.

To ease interpretation, the values for estimated coefficients and standard errors are expo-
nentiated in this table, revering the log transform applied by the NB model fit. This adjust-
ment puts the coefficients in the original 2x scale that was used to ensure integer values for
the response. Additionally, the “Adj Coef” column reverses the 2 x iUCE transform, allow-
ing interpretation in the observed scale. Importantly, these transformations do not alter
the multiplicative nature of GLM results.

Here, the intercept (p < 0.001), gap (p = 0.02), and PWI treatment effect (p = 0.007) are all
statistically significant. The adjusted intercept value indicates that baseline performance
for the reference treatment level (AR) and a gap of zero is 3.354 errors. The adjusted gap
coefficient indicates that the expected error count increases by 0.516 per day for the AR
treatment. The effect of other treatments is multiplicative. This implies that the gap coef-
ficient for PWI is changed by a factor of 0.197. These relationships can be interpreted as
follows:

iUCEAR = 3.354 + (0.516 × gap) (5.7)

iUCEPWI = 3.354 + (0.516 × gap) × 0.197 (5.8)= 3.354 + (0.102 × gap)
PAR andMR are statistically equivalent to AR, despite estimated differences that aremean-
ingful if real. To assess the overall model fit, it is compared with a null (intercept only) ver-
sion of the model using the likelihood-ratio statistic and a 𝜒2 distribution. The result (p =
0.03) confirms that gap and treatment effects have significant explanatory power. Nagelk-
erke’s 𝑅2 suggests that the model explains about 36.67% of iUCE’s observed variance. Ad-
ditionally, themodel output confirms that both dispersion (𝜃, p = 0.003) and zero-inflation
(p = 0.05) were present and properly accounted for, validating the model selection process.
Finally, Figure 5.34 shows that, despite a few notable high points, the residuals lack sequen-
tial patterns, clustering, or other systematic trends. This randomness provides further ev-
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idence that the model is adequately capturing most of the structure in the data. Together,
these findings give confidence in the model results.
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Figure 5.34: Pearson Residuals

5.5.2 𝐻3 Result
No statistically significant evidence was found for the effect of instructional method on the
increase in TCT over the retention interval. Treatment coefficients for the linear model
suggested meaningful differences exist, but that could not be substantiated with the lim-
ited data available. The overall model fit was marginal and was not improved by including
interaction effects for the gap and treatment predictors. Therefore, 𝐻3𝑎 is rejected for a
lack of evidence in support of the claim that learning retention varies with treatment.

A significant treatment effect on the increase in UCE over time was identified using a zero-
inflated negative binomial GLM. Specifically, the PWImethod showed a significantly lower
rate of error increase compared to the reference AR method. As with the TCT analysis,
other treatment coefficients suggest that a meaningful effect may exist, but did not reach
the traditional threshold of 95% confidence. Despite these limited findings, the model was
statistically significant overall. Sufficient evidence does exist to validate𝐻3𝑏’s broad claim
that the change in error rate over time varies by treatment.

Overall, the implications for 𝐻3 are mixed, with the UCE model providing stronger evi-
dence for an effect of instructional method on retention than the TCT model. This dif-
ference suggests that time-based performance improvements may not be as sensitive to
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instructional methods as error rates. While it has little impact on this study, identifying
gap is a significant predictor for both iTCT and iUCE is logical and expected, as retention
naturally declines over time.

Given the limitations of the study (small sample size, single retention test, variable gap),
it would be prudent to interpret these findings as preliminary evidence for the hypothesis,
rather than a definitive confirmation. To strengthen these conclusions, further research
with larger samples and more repeated measures would be valuable to increase the power
to detect treatment effects and estimate them more precisely.

5.6 Workload, Usability, and User Experience

This section explores the relationships between perceived workload, system usability rat-
ings, overall user experience, and the instructional technology assigned. It is accomplished
by a thorough analysis of data collected from the TLX and SUS instruments, along with
a synthesis of qualitative feedback recorded during each session. Together they provide a
rich expression of each participant’s experience.

This analysis focuses on two important aspects of the TLX and SUS data: the results from
the learning phase, where instructional technologieswere actively used, andhow thosemea-
sures differ from the those observed during recall. This approach provides insight into the
perceived workload and usability of each treatment both during use and, by contrast, in its
absence. Changes in workload and usability between phases will be evaluated in the con-
text of the experimental design, which suggests any improvement3 must be attributable to
some combination of the following factors:

1. Shift in the priorities and objectives of the recall phase. Except for participant idiosyn-
crasies, this effect is assumed consistent for all treatments.

2. The elimination of training support during recall, which requires participants to work
from memory with limited access to instructions. This factor may vary if some treat-
ments do more to engender reliance than support learning.

3. Learning outcomes during the first phase. Some treatments may lead to a better com-
bination of proficiency and confidence than others.

3 Care must be taken in evaluating “improvement” for these measures. Where an increase in usability (SUS)
is seen as an improvement, the opposite is true for measures of workload (TLX), where decreases are
desirable.
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Table 5.25: Summary Statistics for TLXWorkload Measures

Phase Measure Mean SD Min Median Max

1 - Learning Source Weight 2.50 1.64 0.00 3.00 5.00
Source Rating 48.87 26.05 0.00 50.00 100.00
Source Workload 144.74 125.86 0.00 120.00 500.00
Task Workload 57.90 13.73 15.67 57.67 87.67

2 - Recall Source Weight 2.50 1.68 0.00 2.50 5.00
Source Rating 35.77 25.17 0.00 30.00 100.00
Source Workload 104.55 112.25 0.00 67.50 500.00
Task Workload 41.82 14.69 11.00 38.50 82.00

The second and third factors both relate to the instructional treatment, though both express
different dimensions of effectiveness. All other known and unknown confounders are con-
trolled for by the study design.

5.6.1 NASA Task Load Index Analysis

All observed and calculated measures from the NASA TLX are summarized by phase in
Table 5.25. As detailed in Section 4.4.1, source weight, rating, and workload refer to the
ranking, value, and weighted score for all workload sources, while task workload is the
composite measure of all contributing sources. These data reveal a consistent reduction in
perceived workload as participants transitioned to the recall phase. This is evidenced by
decreases in overall Task Workload (Learning: M = 57.90, SD = 13.73; Recall: M = 41.82,
SD = 14.69) and individual Source Ratings and Workloads. Notably, the Source Weight re-
mained constant (M = 2.50) across phases, suggesting that while the perceived importance
of workload sources didn’t change, their intensity diminished.

Despite this overall trend, the data exhibits considerable individual variability, as shown
by high standard deviations and wide ranges, particularly in Source Workload (0 to 500
in both phases). The consistently lower median values compared to means indicate posi-
tively skewed distributions, suggesting that while most participants experienced reduced
workload during recall, a subset continued to find certain aspects highly demanding.

These findings provide a basis for understanding how different instructional methods may
have influencedworkload perceptions across the experimental conditions. This sectionwill
explore each of the following aspects of that influence workload during learning:
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• Q1: Which sources are most important to participants’ perception of workload, re-
gardless of treatment?

• Q2: How does the perceived impact of each source differ across treatment groups?
• Q3: For each treatment, which source(s) had the greatest overall influence on per-
ceived workload?

• Q4: Is there a reliable relationship between overall workload and the instructional
treatment?

Together, the answers will provide a comprehensive understanding of relationships be-
tween how participants perceive workload, how they quantify it for each task / treatment,
and factors underlying that association. The results will offer insights into the cognitive,
physical, and emotional demands imposed by different instructional technologies and their
implications for task performance and learning outcomes.

TLX Q1: Participant Ranking of Source Weights

To understand which of the TLX’s six sources are most important to all participants’
perception of workload, a Friedman test of repeated measures was conducted. This
non-parametric test does not assume normality and accounts for the within-participant
variability inherent in the repeated measures of survey data. Using friedman_test from
the coin package confirmed significant (122.1, p < 0.001) differences in source rankings
by participants. The subsequent post-hoc test calculated pairwise differences using a
Wilcoxon signed-rank test and Bonferroni correction for multiple comparisons.

The results of stats::pairwise.wilcox.test, as tabulated in Table 5.26, show signif-
icant differences for most pairs. In particular, Physical Demand (PD), Performance Factor
(PF), and Temporal Demand (TD) are significantly different from all other sources, with the
exception of TD vs PF and FF (Frustration Factor). Pairs with significant differences indi-
cate substantial disagreement among participants about the ranking of the corresponding
sources. Less polarizing pairs have higher p-values, with those over 0.05 of similar impor-
tance to participants. Overall, the number of significant and strongly significant findings
shows that participants rank sources very differently. The distribution of rank by source is
shown in Figure 5.35.

Kendall’s coefficient of concordance, a measure of inter-rater agreement, was used to fur-
ther assess the rankings across the six sources of workload. Results from the kendall
function of the irr package (W = 0.01, p = 1.00) indicated negligible agreement among
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Table 5.26: Pairwise comparisons for TLX Source of Workload Rankings

+--------+---------+---------+---------+---------+------+
| group1 | EF | FF | MD | PD | PF |
+========+=========+=========+=========+=========+======+
| FF | 0.18 | NA | NA | NA | NA |
+--------+---------+---------+---------+---------+------+
| MD | 1.00 | 1.00 | NA | NA | NA |
+--------+---------+---------+---------+---------+------+
| PD | < 0.001 | < 0.001 | < 0.001 | NA | NA |
+--------+---------+---------+---------+---------+------+
| PF | < 0.001 | 0.004 | < 0.001 | < 0.001 | NA |
+--------+---------+---------+---------+---------+------+
| TD | < 0.001 | 0.02 | < 0.001 | < 0.001 | 1.00 |
+--------+---------+---------+---------+---------+------+
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Figure 5.35: Distribution of Factor Scores Across All Treatments
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participants, confirming that workload rankings are highly individualized. Low agreement
in ranking has lead other researchers to question the utility of the TLX’s weighting scheme
(Bustamante and Spain 2008, Byers et al 1989). Regardless, it remains the officially rec-
ommended methodology (Heart 2006).

TLX Q2: Source Ratings by Treatment

Figure 5.36 was created to understand how the sources of perceived workload vary by
treatment group. All combinations of treatment and source of workload are arranged
in a heatmap, where each cell is the mean rating for the corresponding source and
treatment. Temporal Demand consistently rate as the most important workload source
across all treatments, with mean ratings all above 66.1. This suggests that all participants
experienced substantial time pressure. Physical Demand is consistently rated as the least
important source, with all mean ratings below 25.8. This indicates that the assembly task
is not perceived as physically demanding in any group.
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Figure 5.36: Heatmap for Source of Workload Rating by Treatment

There are other subtle but noteworthy differences between treatments. AR has the highest
Temporal Demand rating, perhaps due to the groups’ lack of familiarity with the system.
PAR and PWI have the highest Effort ratings, indicating those participants felt challenged
by their work, or less concerned with other factors. Despite these differences, the overall
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pattern of factor importance remains relatively consistent across treatments, as seen in the
uniform vertical gradient of the heatmap.

To better quantify these differences, significance tests were conducted for the difference in
rating, by treatment, for all sources. TheKruskal-Wallis rank sum test, which is appropriate
for these discrete ordinal values, failed to identify any significant effects, further evidence
that the ratings for each source are consistent across treatment groups. There appears to be
no meaningful relationship between the task-treatment a participant completes and their
perception of the factors most important to their overall workload.

TLX Q3: Treatment Effect on Weighted Source Workloads

Where the previous section explored changes across the treatment axis of fig-tlx-q2-heat
for unweighted source ratings, this section tests the differences across sources for weighted
source workloads. Figure 5.37 illustrates the relative contributions of each source to the
total workload in each treatment. A fairly consistent progression from the highest contrib-
utor, Temporal Demand, to the lowest, Physical Demand is obvious. While there is some
variation in between, those sources act as the high / low points for all treatments.
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Figure 5.37: Weighted Workload Source Scores by Treatment

Friedman tests show theseworkload differences are significant for all treatments (p < 0.001
in each), confirming that the sources perceivedmost influential to overall workload vary by
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treatment. To explore the nature of those differences, Dunn’s test for pairwise multiple
comparisons of ranked data is applied with Bonferroni correction. Of the 60 pairs tested4,
seventeen significant differences were identified (AR: 6, PWI: 4, PAR: 4, and MR: 3), all
involving Temporal Demand, Physical Demand, or both. The four central sources (FF, PF,
MD, and EF) are each involved in 3-4 significant pairs.

In summary, while all treatments show significant differences in how source workloads are
perceived, only Temporal and Physical Demands emerge as reliably different in all cases.
The relative importance of other workload sources varies in magnitude and significance, as
Figure 5.37 implies.

TLX Q4: Task Workload by Treatment

Having examined the individual components of workload, the analysis now focuses on over-
all Task Workload (TWL, the sum of weighted source workloads) and its relationship with
the assigned instructional treatment. Of particular interest is whether any treatments have
a significant positive or negative influence on perceived workload. Such influences could
indicate aspects of user experience that are uncontrolled mediators of task performance.
Once again, the Kruskal-Wallis test is used for comparison and the results are shown in
Figure 5.38.

No significant differences are identified (p = 0.53). Visual inspection shows that median
TWL values are quite similar for all treatments and all IQRs overlap. This result is some-
what surprising, given the added complexity and occasional issues associated with the AR
andMR interfaces. It may suggest that technical complexity has limited effect on perceived
workload, especially in the recruited demographic.

TLX Results

The TLX analysis revealed several important insights into the workload experienced by par-
ticipants across different instructional technologies. Notably, there was a consistent reduc-
tion in perceivedworkload as participants transitioned from the learning to the recall phase,
suggesting that all instructionalmethods led to some degree of task familiarization. Tempo-
ral Demand emerged as the most significant contributor to workload across all treatments,
indicating that time pressure was a universal challenge. Conversely, Physical Demand was

4 Four treatments with six sources each = 4 * (6 * (6 - 1)) / 2 = 4 * 15 = 60
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Figure 5.38: Composite Task Workload by Treatment

consistently rated as the least important factor, implying that the assembly task was not
physically taxing. Interestingly, despite the varying complexities of the different instruc-
tional technologies, no significant differences were found in overall task workload between
treatments. This unexpected result warrants further investigation.

Consistent patterns of source ratings and workload across treatments are evident, but ac-
companied by little statistical significance. Thismay suggest that the inherent nature of the
task, rather than the assigned instructional method, primarily determines which aspects of
workload aremost important to the participants. The high individual variability across TLX
metrics also highlights the importance of considering personal factors in designing and im-
plementing instructional technologies.

5.6.2 System Usability Scale Analysis

The System Usability Score (SUS) provides a complementary view of the participant expe-
rience. Where TLX is focused on perceived workload, SUS is designed to provide a simple,
onenumber assessment of overall usability. Despite its simplicity, the SUS iswell-respected
and often used. Table 5.27 summarizes the raw SUS scores collected during the learning
phase of this study, representing the usability of the instructional technology. Five-number
summaries are provided for each treatment group for both phases.
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Table 5.27: Summary Statistics for Raw System Usability Scores

Treatment Mean SD Min Median Max

AR Score 63.0 15.9 37.5 66.2 90.0
Rank 42.9 31.3 0.7 44.5 96.1

MR Score 62.5 20.8 7.5 61.2 87.5
Rank 43.9 35.5 0.0 29.6 94.1

PAR Score 68.8 14.1 35.0 72.5 85.0
Rank 54.8 30.9 0.4 63.8 91.3

PWI Score 71.8 16.6 37.5 77.5 92.5
Rank 60.4 35.8 0.7 77.2 97.5

The benchmark distribution for these scores is SUS ∼ 𝒩(𝜇 = 68, 𝜎 = 12.5). Despite
being on a 100-point scale, raw SUS scores should not be interpreted as percentages. For
example, a score of 68 is indeed 68% of the maximum, but only represents the 50th per-
centile. To improve the interpretability of the raw scores, it is considered best practice to
convert to percentile rank by normalizing:

SUS𝑟𝑎𝑛𝑘 = Φ (SUS − 𝜇𝜎 ) × 100 (5.9)

whereΦ is the cumulative distribution function (CDF) of the standard normal distribution.
Values transformed in this manner can be interpreted in terms of letter grades on the tradi-
tional 10-point scale. The benchmark parameters𝜇 and 𝜎were primarily developed during
500 studies of commercial, publicly available products. In research and product develop-
ment, where SUS percentile ranks and letter grades may seem harsh or unrealistic, they
are more commonly used to track improvement over time rather than for absolute compar-
ison.

With that in mind, percentile ranks are also included in Table 5.27. The overall median
rank of 56.4%gives these systems a failing grade overall, relative to commercially available
products. Performance by treatment ranges from77.2% for PWI to 29.6% forMR,with PAR
scoring 63.8% and AR 44.5%. While all of these roughly align with observed interactions,
the D letter grade for PAR, a mature commercial product, is noteworthy.

Following best practices, subsequent SUS analysis will utilize the transformed SUS per-
centile ranks. In addition to improved interpretability, this also accounts for the non-linear
nature of the raw scores, enabling more meaningful comparisons. The monotonic nature
of this transformation, which preserves the data’s original order, will have no affect on the
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statistical conclusions for the methods employed. Figure 5.39 compares the distribution of
SUS across treatments.
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Figure 5.39: System Usability Score for Each Instructional Method

No statistically significant overall difference is identified (p = 0.40), likely due to the very
large range of scores found in every treatment. While the effect size is quite small ( ̂𝜀2𝑟𝑎𝑛𝑘
= 0.056), the progression of median values aligns with expectations based on the complex-
ity associated with each treatment: PWI > PAR > AR > MR. This suggests that, while the
technologies differ in complexity, their perceived usability during learning is not drastically
different–an unexpected result.

Those learning scores were compared with SUS during recall to test for significance using
the Wilcoxon signed rank test for paired samples. As seen in Figure 5.40, the difference is
statistically significant (p <0.001) and practicallymeaningful. Themedian value for𝑆𝑈𝑆𝑅
(87.70) is a 31.34 point improvement in usability from the learning phase (𝑆𝑈𝑆𝐿 = 56.36).
The large negative effect size ( ̂𝑟2𝑏𝑖𝑠𝑒𝑟𝑖𝑎𝑙 = -0.644) with relatively narrow 95% confidence
interval [-0.792, -0.424] suggests this finding is robust.

This result implies that usability is increased in recall due to some combination of (1) elim-
inating the instructional technologies as a source of complexity, and (2) learning effects
preparing participants for independent work. To evaluate the relationships between that
difference and the treatments, two more tests were conducted. First, the Wilcoxon test is
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Figure 5.40: System Usability Score for Learning and Recall Phases

again employed to confirm that the change in SUS is significant (i.e., reliably non-zero)
within each treatment. The results of these paired tests are summarized in Table 5.28.

These calculations utilize a normal approximation to address ties (AR) and zero values (PWI
andMR), and p-values are adjusted for multiple comparisons using the Holmmethod. The
results indicate that, despite large effect sizes (𝑟 > 0.50 for all treatments), none of the
observed differences can be conclusively attributed to the treatments (adjusted p-values >
0.08 in all cases) given the sample size and variability. A final test was conducted to deter-
mine if the changes differ by treatment, as shown in Figure 5.41. Once again, no significant
differences were identified (p = 0.479).

Table 5.28: PairedWilcoxon Comparison for SUS Percentiles between Learning and Recall

# A tibble: 4 x 8
treatment n median_diff wilcox_statistic p_value pv_adj sig effsize
<chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>

1 PWI 14 5.41 79 0.0211 0.0844 ns 0.655
2 MR 14 44.9 76 0.0360 0.108 ns 0.537
3 AR 14 31.2 86 0.0382 0.108 ns 0.562
4 PAR 10 23.1 46 0.0665 0.108 ns 0.596
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Figure 5.41: System Usability Score for Learning and Recall Phases

SUS Results

The SUS analysis revealed several key findings. During the learning phase, the overall
usability reported for all instructional technologies was substantially below commercial
benchmarks. This includes both the PAR, a commercial system, and PWI, the experimental
control and standard instructions for the lab. While poor by SUS benchmarks, the relative
scores for each treatment generally alignedwith observed interactions and participant feed-
back. No statistically significant differences in usability were reported for the treatments
used during learning. This unexpected result suggests that, while the technologies differ in
complexity, their perceived usability during learning is not drastically different. Individu-
ally, participants experienced a significant increase in SUS with phase, but there isn’t suf-
ficient evidence to attribute that change to the assigned treatment, despite large observed
differences and effect sizes. Furthermore, the magnitude of usability improvement did not
differ significantly between treatments.

Based on the design of this study, it is likely that the improvement in SUS primarily
originates from some combination of reduced complexity during retention and participant
preparation during learning. However, these results provide no evidence regarding the
balance of those effects. Overall, these results challenge some common assumptions
about the usability of different instructional technologies and highlight the need for a
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more nuanced understanding of how usability impacts learning and performance in
manufacturing assembly tasks.

5.6.3 Qualitative Feedback Analysis

As the final lens through which to view the overall participant experience, all provided feed-
back was analyzed using thematic, sentiment, and comparative analysis techniques. Sev-
eral recurring themes emerged, including device usability, learning experience, physical
comfort, instruction clarity, participant strategy, cognitive aspects, and overall experience.
This analysis was greatly aided by the use of a large language model (Claude 3.5 Sonnet)
to find patterns and synthesize hundreds of lines of feedback. The resulting insights were
grouped into by- and cross-treatment observations, as summarized in the following sec-
tions.

PWI Treatment Group

Generally mixed to slightly negative sentiment.

Key Findings:

• Commonly cited difficulties in distinguishing parts, especially black ones.
• Considered simpler and more flexible than technological alternatives
• Hampered by poor overall quality of the instructions.
• Quick memorization of the process, typically by the 3rd or 4th car.
• Development of personal strategies for part retrieval and assembly order.
• Reliance on spatial memory and mental imagery of the finished car.
• Dissatisfied by the fixture requirement, wanted to be able to rotate the car.

The PWImethod, while familiar and flexible, presents challenges in instruction clarity, par-
ticularly for complex or visually similar parts. Its effectiveness appears to be significantly
influenced by individual characteristics like color perception and prior LEGO experience.
Themethodpromotes the development of personalmemory strategies butmay benefit from
incorporating more detailed visual cues or 3D representations.
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PAR Treatment Group

Initially positive sentiment, shifting towards negative as users became familiar with the
task.

Key Findings:

• Considered helpful for initial learning but often too constraining after task familiarity.
• Inconsistent auto-advance feature was a major source of frustration, affecting agency
and motivation.

• Tendency to work ahead of instructions once familiar with the process.
• Use of bin arrangement as an unexpected memory aid.
• Compared favorably to PWI for learning but considered less suitable for continued
use.

PAR shows promise for initial training but faces challenges in adapting to user progress.
The system’s pace and controlmechanisms significantly impact user experience, sometimes
negatively affecting motivation and sense of agency. Future iterations might benefit from
more adaptive pacing and reliable user control features.

AR Treatment Group

Overall positive sentiment, with enthusiasm for the technology tempered by usability is-
sues.

Key Findings:

• Generally seen as better for training and confidence-building compared to othermeth-
ods.

• Frequently described as “fun” or “cool,” indicating high user engagement.
• Common issues with unreliable button interaction, limited field of view, and neck
strain.

• Holograms sometimes obscured real-world view or lacked precision for small parts.
• Unforeseen ergonomic challenges and perceptual impacts (e.g., dimming effect).

AR demonstrates strong potential for engaging and effective training, particularly for com-
plex tasks or diverse learning styles. However, current hardware limitations and ergonomic
issues present significant challenges. Future developments should focus on improving user
interaction, expanding field of view, and addressing physical comfort concerns.
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MR Treatment Group

Positive overall sentiment, with appreciation for learning benefits despite technical limita-
tions.

Key Findings:

• Valued for combining digital instructions with real-world overlay, particularly for
complex steps.

• Consistent issues with tracking, limited field of view, and occasional misalignment of
virtual objects.

• Development of strategies to work around system limitations.
• Seen as having a steeper learning curve than simpler methods.
• Unanticipated use of digital PWI within theMR system for better part differentiation.

Most feedback echoed that from the AR treatment group, which is expected given the simi-
larities. MR usersmore commonly cited technical issues related tomisalignment and track-
ing issues. Very few took advantage of, and none specifically cited, the added flexibility
offered by MR, allowing users to freely manipulate the workpiece.

Cross-treatment Observations

Many participants noted a change in their preference and performance as they became
more familiar with the task. While users of augmented methods (AR, MR, PAR) often re-
ported thesemethods as helpful for initial learning, severalmentioned they became limiting
once the task had been mastered. Some participants shared how this and related issues af-
fected their motivation and sense of control. Collectively, those comments suggested that
good training methods don’t simply direct the learner’s passive actions. Instead, they pro-
mote active engagement in the learning process.

Participants also noted how their individual characteristics affected the experience. Feed-
back about their height, vision, or learning style influencing method effectiveness was pro-
vided for all treatments. To address these issues, several participants reported developing
their own strategies to work with or around the systems. For example, many used the cor-
respondence between assembly order and left to right bin arrangement to help learn the
task, regardless of the instructional method provided.

235



Environmental factors were more common than expected in participant feedback. Com-
ments about background noise, workspace setup, and lighting conditions were scattered
across different treatment groups. While uncommon, this feedback emphasizes the impor-
tance of considering the suitability of these systems for the environents they are intended
for deployment in.

5.7 Challenges and Unexpected Observations

A variety of challenges and unexpected observations were encountered during the conduct
of the protocol. While some echo participant feedback, the following observations were
recorded by the research team. All are included to provide a complementary viewpoint of
participant experience. Beyond mundane challenges associated with participant schedul-
ing and attendance, and the expected challenges of consistency in data collection (both
documented elsewhere), most of what is described below can be grouped into instructional
design, technical issues, and participant idiosyncracies.

Instructions in the PWI treatment were unexpectedly problematic. An assumption of the
experimental design was that the PWI would provide a well-tested and validated proce-
dure for baseline performance. The research team’s prior experience with the instructions
and untested confidence in their effectiveness led us to overlook these issues, which sig-
nificantly impacted the PWI results. Their limitations quickly became clear, particularly
when it came to discerning the type, placement, and orientation of black parts. Where the
edge outline of other parts are relatively obvious, the edges of black parts are much more
difficult to discern, especially in the top and three-quarter views. To compound this prob-
lem, various arrangements of parts 75, 59, 75, and 67 could achieve the results pictured
in steps one and two. As a result, many participants incorrectly placed these parts, either
due to misreading the instructions or simply deciding to improvise. It should be noted that
the proper placement of these pieces was much more easily interpreted from the second
and third step images, where earlier pieces are shown in grey, with obvious outlines. This
seemingly obvious technique was only identified by one participant, at which time it was a
revelation even to the research team.

Another limitation of the PWIwas an over reliance on top-down imagery. Problems related
to this were less prevalent, but some participants did struggle with the placement of parts 1
and 3 in the final step due to their obscured placement. This limitation was acknowledged,
in part, by the inclusion of a three-quarter view of the completed assembly, but it provided
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Figure 5.42: Low contrast edges for black parts on PWI instuctions.

little assistance for the problematic parts, which are also obscured in that view. This issue
was less prominent it did negatively influence all measures of PWI performance.

The augmented systems were not without issue. Because gesture based systems are not
100% reliable, some participants from all augmented treatments encountered control is-
sues that ranged in frequency and severity. In the PAR treatment, inconsistencies in the
auto-advance detection systems led to false positive (unintended) and false negative (not
recognized) triggers. When either occurred, participants had to recognize the error and
manually correct for it, finding the correct place in sequence with forward / back buttons.
A mix of confusion, frustration, and interrupted flow resulted, though its impact varied.
Similar problems plagued the manual trigger methods used by PAR, AR, and MR. Some
participants usingHoloLens2 based systems also encountered tracking discontinuities, dur-
ing which the interface momentarily goes blank (dropouts). The time lost to these events
was accounted for in the TCT calculations but their indirect effects on participant perfor-
mance are not easily quantified. This was especially common in the MR treatment where
sophisticatedmodel-based trackingmethodswere employed, andwas exacerbated by some
physical characteristics of individual participants.

Participants exhibited a range of tendencies in the way they directed their view. While all
used some a combination of head and eye motion, some were much more reliant on one
than the other. The HL2’s limited field of view exaggerated these differences by requiring
AR andMRusers to adjust movemore to keep their view centered in the display. Taller par-
ticipants that were more reliant on headmotion typically resulted in very top-down view of
thework surface, with too few contrasting features to support robust tracking. This resulted
in more tracking dropouts that occasionally led to other system instabilities. In contrast,
shorter participants experiencedmore robust tracking overall in AR andMR, but may have
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benefited less from its overlays due to the less informative viewing angle. Participants of
average or greater height that reliedmostly on eyemotion were prone to have a line of sight
centered below the HL2’s display when looking at the work surface. This obviously limited
the utility of AR and MR instructions, but that effect was not directly quantifiable. Partic-
ipants that exhibited this particular behavior were labeled “down-lookers” by the research
team, a sign that the problem was unexpected but not uncommon.

Formally, these forms of head-eye coordination are described as “gaze patterns,” and our
so-called down-lookers would be classified as “eye-dominant gazers.” The ramifications
of this were largely overlooked by the research team prior to witnessing it during the trials.
Presumably, we naturally accounted for any issues encountered by adjusting our viewpoint,
HL2 fitment, and/or behavior, without acknowledging the corrections. Unfortunately, the
experimental designminimizedways that participants could compensate. In particular, the
fixed height work surface required for the PAR system prevented us from accommodating
for these individual differences.

The tracking accuracy and display brightness of the HL2 sometimes made it difficult for
participants to discern the proper placement of parts. The small size of Lego parts and
precise layout of their studsmade the tasks sensitive to tracking accuracy. Poor registration
or drift in tracking sometimes made it difficult to interpret the instruction and place bricks
properly. At times this seemed complicated by the presence of the brick hologram itself,
which partially obscured the real-world objects.

Surprisingly few participants assigned to the MR treatment took advantage of its primary
affordance. Despite the absence of a fixture, many completed each task with the workpiece
in its initial orientation. Some rotated it, but very few picked it up to take full advantage of
the manipulation capabilities of this system. Worse yet, the lack of a fixture led to issues
with workpiece stability, causing unwanted translation and/or rotation that sometimes re-
sulted in breakages that might not have otherwise occurred.

AR and MR users encountered a variety of other minor issues related to the system’s track-
ing, battery life, performance, and brightness. Participants with long hair that draped into
view, bulky long sleeves, or unusually long fingernails led to hand tracking issues that were
mostly easily corrected for. The limited battery life of theHL2 required carefulmaintenance
when several trials were conducted back-to-back. The limited capabilities of the the HL2’s
CPU/GPU sometimes led to framerate and/or latency issues that complicated the chore-
ography of MR demonstrations, along with monitoring, recording, and editing videos, but
rarely had any noticeable effect on participant performance.
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Except as/if noted elsewhere, no modifications were made to the protocol to account for
these issues. Most patterns emerged late enough that such changes would have invali-
dated previous results and compromised any findings. Given the practical constraints of
this study, it was decided to carry on with an understanding of the potential limitations
and how they might affect the results. Mixed-effect modeling methods were used to help
isolate the random effect of some of these issues, but that was not always the most suitable
analytical approach. Resulting implications to interpretation and generalization will be de-
tailed in the Conclusions chapter to follow, along with recommendations to improve future
work based on these findings.
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6 Conclusions

This chapter synthesizes the key findings, insights, and implications of this study on aug-
mented technologies in manufacturing assembly training. It begins with a comprehensive
summary of results, addressing the initial research questions and hypotheses. That is fol-
lowed by a discussion of the study’s main conclusions, its contributions to the field, and the
implications for both research methods and theory. An examination of the the limitations
of the work and its generalizability to broader contexts follows. Finally, directions for fu-
ture research are outlined, aiming to build upon this study’s foundations and address its
identified limitations.

6.1 Summary of Results

This study examined the effects of different instructional methods (PWI, PAR, AR, MR)
on learning, recall, and retention of a manufacturing assembly task. The results provide
insights into the effectiveness of these methods across multiple phases and dimensions of
performance.

6.1.1 Hypothesis Testing

This section will briefly summarize the quantitative results in the context of the three ques-
tions originally posed as hypotheses in Section 4.3.4.

𝐻1: How does each treatment affect performance during the learning phase?

Table 6.1 summarizes the outcomes related to 𝐻1. These results suggest that while tradi-
tional paper instructions and projected AR allowed for faster initial performance, the more
immersive AR and MR technologies led to higher quality outcomes, albeit with slower exe-
cution.
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Table 6.1: Summary of Quantitative Results for Learning Claims

Claim Result Key Findings𝐻1𝑎: Average task
completion time varies
with treatment

Accepted PWI and PAR are both significantly faster
than AR and MR. No significant difference
between PWI and PAR or between AR and
MR.𝐻1𝑏: Learning rates vary

with treatment
Accepted PWI demonstrates the steepest learning

curve when controlling for iTCT, followed
closely by PAR. AR and MR show slower
rates of improvement. Relationship: PWI
≈ PAR > (AR ≈ MR)𝐻1𝑐: Average error

count per car varies with
treatment

Accepted All augmented instruction methods (PAR,
AR, MR) result in significantly lower error
rates compared to PWI.

The observed performance differences observed during the learning phase stem from a bal-
ance between the familiarity and simplicity of traditional methods versus the potentially
deeper, more spatially-integrated learning offered by PAR, AR, and MR technologies. Ini-
tial performance in the PWI condition was likely influenced by a combination of partici-
pants’ prior experience with paper-based instructions and the lack of built-in error check-
ing to slow them down. But when combined with limitations in the instructional design,
PWI resulted in the lowest quality by far. In contrast, the relatively high TCTs and low
UCEs observed for augmented methods are the result of unfamiliar interfaces and inte-
grated error-checking through step-by-step guidance and real-time feedback. As predicted
by cognitive learning theory and embodied cognition, the additional time and engagement
likely contributed to the low error counts observed for augmented instruction.

𝐻2: How does each treatment affect performance during the recall phase?

The Recall-related results summarized in Table 6.2 suggest that augmented technologies,
particularly AR and MR, may lead to better retention and more independent task perfor-
mance after initial training.
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Table 6.2: Summary of Quantitative Results for Recall Claims

Claim Result Key Findings𝐻2𝑎: OEE varies with
treatment

Accepted PAR, AR, and MR all result in statistically
significant and practically meaningful
improvements in OEE compared to PWI.𝐻2𝑏: PWI reliance varies

with treatment
Accepted Statistically significant differences in

reliance exist between treatments, but
specific pair-wise differences are not clear
enough to declare. AR and MR tend to
reduce reliance more than PAR and PWI.

The observed differences in recall phase performance likely stem from the nature of learn-
ing facilitated by each instructional method. The significantly lower OEE for PWI can be
attributed to errors that negated its effectiveness. This confirms that the initial speed ad-
vantage of PWI came at the cost of proper skill acquisition and retention. In contrast, higher
OEE scores for AR methods, particularly AR and MR, indicate better retention and more
independent task performance. This aligns with theories of embodied cognition and active
learning, where the spatial integration and hands-on interaction provided by these tech-
nologies likely led to deeper processing and more robust mental models of the assembly
process. The reduced reliance on instructions for AR and MR users further supports this
interpretation. While PAR showed improvements over PWI, its intermediate performance
in both OEE and reliance hints at a balance between the benefits of augmentation and the
limitations of 2D presentation.

𝐻3: How does each treatment affect performance during the retention phase?

Table 6.3 summarizes the findings that relate iTCT and iUCE with treatment. Overall, the
implications for retention are mixed, with the UCE model providing stronger evidence for
an effect of instructional method on retention than the TCT model. This difference sug-
gests that error-related performance improvements may be more sensitive to instructional
methods than completion times.
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Table 6.3: Summary of Quantitative Results for Retention Claims

Claim Result Key Findings𝐻3𝑎: Increase in TCT
over retention interval
varies with treatment

Rejected No statistically significant evidence found
for the effect of instructional method on
the increase in TCT over the retention
interval.𝐻3𝑏: Increase in UCE

over retention interval
varies with treatment

Accepted PWI method showed a significantly lower
rate of error increase compared to the
reference AR method. Other treatments
suggest meaningful effects but did not
reach statistical significance.

The lack of significant differences in iTCT across treatments can likely be taken at face
value–the observed decreases in temporal performance are dominated by the natural pro-
cess of skill decay. While the evidence that PWI users experienced a lower rate of error in-
crease seems to challenge expectations, it can likely be attributed to a ceiling effect on UCE.
Simply put, it was hard for many PWI results to get worse. Another plausible contributor,
that augmented users were too dependent on the provided guidance, seems discredited by
the reliance findings during recall.

6.1.2 Survey Results

The surveys of workload (TLX) and usability (SUS) bring another dimension to the analysis
by quantifying critical symptoms of user experience and possibly suggesting uncontrolled
moderating factors. Table 6.4 summarizes those findings:

Table 6.4: Summary of Quantitative Results for Workload and Usability Claims

Claim Result Key Findings

Workload Analysis
(NASA TLX)

No Significant
Differences

No significant differences in overall task
workload between treatments. Temporal
Demand was consistently the most
significant contributor to workload across
all treatments.
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Claim Result Key Findings

Usability Analysis (SUS) No Significant
Differences

No statistically significant differences in
usability were reported for the treatments
used during learning. Significant increase
in SUS from learning to recall phase for all
treatments, but not attributable to specific
treatments.

The lack of significant differences in TLX scores across treatments suggests that partici-
pants adapted to the challenges of each method, resulting in similar overall workload ex-
periences. The consistency of Temporal Demand as the primary contributor to workload
indicates that the timed nature of the task, rather than the instructional method, domi-
nated workload perception. The unintended emphasis on time pressure likely overshad-
owed other potential differences between treatments.

User adaptation likely accounts, in part, for the absence of significant differences in SUS
scores during learning, despite varying technological complexities and observed perfor-
mance differences. This also suggests that the benefits of interactive features in AR/MR
systems were likely balanced by technical issues and comfort concerns, resulting in simi-
lar overall usability perceptions across treatments. Those perceptions may also reflect fac-
tors that are disconnected from performance metrics. For example, the novelty of AR/MR
technologies might have positively influenced usability ratings despite initial performance
differences. In short, SUSmay not be a valid measure of the efficacy of these trainingmeth-
ods.

The significant increase in SUS scores from learning to recall across all treatments likely re-
flects both reduced interface complexity and increased user confidence. However, the lack
of treatment-specific differences in this improvement indicates that all methods similarly
prepared users for independent task performance, regardless of their initial technological
sophistication.

6.1.3 Qualitative Results

Participant feedback revealed nuanced experiences across treatments. PWI was perceived
as simple and flexible, but hampered by poor instruction quality, particularly between simi-
lar parts. PARwas initially helpful but became constraining as users gained familiarity. The
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inconsistent auto-advance feature significantly impacted user experience, highlighting the
importance of reliable automation and/or direct user control in training systems. AR and
MR were seen as engaging and effective for training, generating enthusiasm despite hard-
ware limitations. Users appreciated the combination of digital instructions with real-world
overlay, particularly for complex steps. However, technical issues like unreliable interac-
tions, limited field of view, and tracking problems presented significant challenges.

Across all treatments, participant preferences and performance evolved with task familiar-
ity. Many developed personalized strategies to overcome various system limitations, and
individual characteristics like height and gaze patterns notably influenced method effec-
tiveness. Environmental factors such as background noise, workspace setup, and light-
ing conditions were also noted by some participants. All of this highlights the importance
of user-centered instructional design, adaptive training methods, flexible process designs,
and environmental considerations in the design and implementation of these systems.

6.1.4 Researcher Observations

Several common themes emerged when observing participant trends and behavior, some
of which are supported by participant feedback from Section 5.6.3 and briefly summarized
above. Most obviously, nearly all participants showed a clear improvement in speed and
confidence as their trial progressed, regardless of treatment. The rate with which they did
so varied, and some seemedmore confident than otherswith the nature anddesign of the ex-
periments. While each treatment had its unique challenges, participants generally adapted
and improved over time. The AR andMR treatments offered helpful visualization but came
with technical challenges, while the PWI treatment allowed for more flexibility but some-
times led to confusion with part identification and orientation.

Among AR and MR participants, the impact of tracking and FOV limitations described in
Section 5.7 varied with individual height and preferred gaze patterns, an outcome that was
neither expected nor accounted for in the study design. For all augmented treatments, the
inconsistency of gesture detection systems was a common cause of frustration. The same
could be said of the shortcomings of PWI instructions, all of which led to adaptation.

Though specifically discouraged, it was not uncommon for participants to develop individ-
ual assembly strategies. Efforts to improve their performance and/or address perceived
limits or shortcomings of the instructional method typically involved skipping, combining,
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or reordering steps. This was most common in the PWI treatment, where no step-wise con-
trols existed. It was also prevalent in the PAR condition, where users that struggled with
the gesture recognition system would sometimes resort to batching steps: working from
memory for a few steps before advancing through all the relevant instructions.

6.1.5 Collective Insights

The quantitative results align with much of the qualitative feedback. For instance, PWI’s
faster TCT but higher error rates corresponds with participant comments about its sim-
plicity and poor instruction quality. Similarly, the improved OEE and reduced reliance on
instructions for AR andMR users during recall aligned with feedback about these methods
being effective for training and confidence-building.

However, several unexpected findings and diverging quantitative / qualitative results also
emerged. While PWI showed poorer performance in terms of error rates during learning, it
unexpectedly demonstrated potential for improving learning durability. The lack of signif-
icant differences in TLX scores between treatments contrasted with the clear preferences
and challenges expressed in qualitative feedback. AR andMR showed slower TCT but lower
error rates quantitatively, yet participants generally provided positive feedback about these
technologies’ effectiveness. Finally, although SUS scores improved across all treatments
from learning to recall, qualitative feedback indicated ongoing usability challenges with
augmented technologies.

These divergences emphasizes the importance of considering both quantitative and quali-
tative data in evaluating instructional methods, as each provides unique insights into user
experience and performance. They may also help to explain the mixed results obtained
during this study.

6.1.6 Key Findings

To complete the summary of results, the ten most significant findings are enumerated be-
low, listed roughly in order of importance:

1. Error Reduction with Augmented Methods: AR and MR technologies led to signifi-
cantly lower error rates compared to traditional methods (PWI) during the learning
phase. While this reduction is notable, it may be partially attributable to limitations
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in PWI instructions and potential floor effects for augmented methods. Further re-
search is needed to fully understand the extent and implications of this error reduc-
tion across various task complexities and over longer periods.

2. Speed-Accuracy Trade-off: While augmented methods reduced errors, they also led
to slower initial execution compared to traditional methods. This trade-off is crucial
for organizations to consider when implementing training systems and warrants fur-
ther investigation, particularly in more complex tasks and real-world manufacturing
environments.

3. Evolution of Learning Effectiveness: The effectiveness of instructional methods var-
ied across learning phases, highlighting the need for longitudinal studies. AR andMR
showed benefits in initial error reduction and recall performance, while PWI unex-
pectedly demonstrated potential for improving error-rate durability in retention. Re-
search exploring longer intervals between tasks could provide valuable insights into
the long-term effectiveness of different methods.

4. Adaptive User Behavior: Participants across all treatments developed personal strate-
gies and preferences as they gained task familiarity. This emphasizes the importance
of flexible training systems that accommodate user adaptation and suggests a need
for research into how instructional methods can best support this natural learning
process.

5. Impact of Individual Differences: Characteristics such as height, gaze patterns, and
learning styles significantly influenced the effectiveness of each method, especially
for AR and MR systems. This underscores the need for adaptable designs in training
technologies and further research into how these individual differences interact with
various instructional methods.

6. Complex Relationship between Perceived and Actual Performance: The discrepancy
between quantitative workload measures (TLX) and qualitative feedback reveals that
user adaptation may result in similar perceived workload despite varying technologi-
cal complexities. This highlights the need for comprehensive evaluation methods in
future research.

7. Affordances and Limitations Balance: While AR/MR affordances like spatial registra-
tion and user-centric displays may contribute to deeper learning, current technical
limitations partially offset these benefits. Further research is needed to quantify the
impact of specific affordances and overcome existing limitations.

8. Dynamic User Experience: User preferences and satisfaction evolved as participants
becamemore familiar with the task, indicating that the effectiveness of trainingmeth-
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ods may vary depending on the stage of learning. This suggests a need for research
into adaptive instructional methods that evolve with user proficiency.

9. Environmental Factors: The unexpected influence of environmental conditions on
method effectiveness emphasizes the importance of considering deployment contexts
in training system design and future research.

10. Long-termUsability Perceptions: SUS scores improved from learning to recall across
all treatments, suggesting that familiarity with the taskmay improve perceived usabil-
ity regardless of the initial technological sophistication. This highlights the need for
longitudinal studies in usability research for training systems.

6.2 Conclusions

Together, these findings reveal complex relationships between instructional methods, vari-
ous performance metrics, and individual traits. The central research question of this work,
per Section 3.2 is:

How do different AR/MR instructional methods, designed to leverage specific
affordances, impact operator learning, recall, and retention in a real-world
manufacturing assembly training context?

Realizing this question is difficult to answer directly in a concise manner, it was broken
down into five supporting questions, each of which are revisited below.

What are the relative effects of various AR/MR technologies on immediate
learning outcomes, such as task completion time and error rates, compared
to traditional paper-based instructions?

These findings reveal a clear trade-off between speed and accuracy in immediate learning
outcomes. While traditional methods facilitated faster initial performance, AR/MR tech-
nologies promoted higher quality outcomes. This suggests that the choice of instructional
method should be guided by whether initial speed or accuracy is prioritized in a given train-
ing context.

How do these AR/MR technologies influence long-term recall and retention of
assembly skills, as measured by performance on the same task after a desig-
nated period without further training?
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The impact of AR/MR on long-term performance appears more nuanced than initially ex-
pected, with differing effects on speed versus accuracy retention. While augmented tech-
nologies generally led to better recall performance, unexpected results in the retention
phase highlight the complexity of long-term skill retention and the need for further inves-
tigation in this area.

To what extent do the specific affordances of each AR/MR technology, such
as hands-free interaction, spatial registration, and user-centric displays, con-
tribute to the observed learning, recall, and retention outcomes?

Affordances such as spatial registration and user-centric displays appear to contribute sig-
nificantly to learning outcomes, albeit with some trade-offs. These features may initially
slow task completion but potentially lead to deeper learning and better long-term reten-
tion. However, current technical limitations partially offset these benefits, underscoring
the need for continued refinement of AR/MR technologies.

How do operator characteristics, such as related experience or demographics,
influence the effectiveness of each instructional method?

This study reveals that individual differences significantly impact the effectiveness of each
instructional method. Factors such as height, gaze patterns, and learning styles interact
with the features of each method, highlighting the need for adaptable designs that can ac-
commodate a range of user characteristics and preferences.

What are the perceived workload, usability, and user satisfaction associated
with each AR/MR technology, and how do these factors relate to learning, re-
call, and retention outcomes?

The relationship between perceived workload, usability, and actual performance is com-
plex. While quantitative measures showed little difference between methods, qualitative
feedback revealed evolving user preferences and adaptation strategies. This suggests that
effective implementation of AR/MR in training contexts requires consideration of both ob-
jective performance metrics and subjective user experiences.

In conclusion, this study reveals that AR/MR instructional methods in manufacturing as-
sembly training offer a nuanced trade-off between immediate performance and long-term
learning outcomes. While these technologies can enhance accuracy and potentially deepen
learning, their effectiveness is moderated by individual user characteristics and evolving
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preferences. The impact of AR/MR methods on learning, recall, and retention is not uni-
form across all aspects of performance, highlighting the need for context-specific imple-
mentation strategies. As these technologies continue to develop, their unique affordances
promise to reshape training approaches, but realizing their full potential requires careful
consideration of both immediate task demands and long-term skill development goals.

6.3 Contributions

This work makes several significant contributions to the field of AR/MR technologies in
manufacturing training, directly addressing the central research question: “How do differ-
ent AR/MR instructional methods, designed to leverage specific affordances, impact oper-
ator learning, recall, and retention in a real-world manufacturing assembly training con-
text?” The primary contributions relate to theoretical, methodological, empirical, practical,
and human factors considerations. Each correspond with one of the supporting research
questions, as detailed below.

6.3.1 Theoretical: Affordance-Based Evaluation Framework

This study develops and applies an affordance-based framework for evaluating AR/MR
technologies in manufacturing training contexts, addressing the research question: “To
what extent do the specific affordances of each AR/MR technology contribute to the ob-
served learning, recall, and retention outcomes?” The framework provides a new theoret-
ical lens through which to understand and assess the effectiveness of these technologies.
By focusing on specific affordances such as spatial registration, user-centric displays, and
hands-free interaction, this framework offers amore structured and theoretically grounded
method of assessing AR/MR technologies in manufacturing training, enabling more pre-
cise comparisons and insights across different systems and contexts. Evidence from the
study suggests that affordances like spatial registration anduser-centric displays contribute
significantly to learning outcomes, albeit with some trade-offs in initial task completion
time.
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6.3.2 Methodological: Comprehensive Multi-Phase Study Design

A comprehensive study that captures learning, recall, and retention outcomeswas designed
and implemented to address the question: “How do these AR/MR technologies influence
long-term recall and retention of assembly skills?” This multi-phase approach allows for
the evaluation of both immediate learning outcomes and longer-term skill retention, offer-
ing insights into how the effectiveness of different instructional methods evolves over time.
The study revealed that while AR andMR showed benefits in initial error reduction and re-
call performance, traditional methods unexpectedly demonstrated potential for improving
error-rate durability in retention.

6.3.3 Empirical: Quantification of Speed-Accuracy Trade-offs

By providing empirical evidence to quantify the speed-accuracy trade-offs between tra-
ditional and AR/MR-based instructional methods in manufacturing assembly tasks, this
study addresses the question: “What are the relative effects of various AR/MR technologies
on immediate learning outcomes?” It reveals that while AR/MR technologies often lead
to slower initial performance, they result in higher quality outcomes with fewer errors.
Specifically, PWI and PAR demonstrated faster initial performance but higher error
rates, while AR and MR showed slower initial execution but significantly lower error
rates during the learning phase. By quantifying this trade-off across different phases of
learning and retention, this study provides valuable insight into important implementation
considerations.

6.3.4 Practical: Insights on the Interplay of Environmental and User

Characteristics

The question: “How do operator characteristics and environmental conditions influence
the effectiveness of each instructional method?” is addressed through relevant practical in-
sights. The research found that factors such as user height, workspace setup, and lighting
conditions had some unexpected effects on the effectiveness of AR and MR systems. For
example, taller participants and thosewith specific gaze behaviors (e.g., “down-lookers”) ex-
perienced more tracking issues with AR and MR systems. Additionally, the study revealed
how environmental factors like background noise and lighting affected the user experience
across different instructional methods. These findings provide valuable guidance for the
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real-world implementation of AR/MR training systems, informing the design of more flex-
ible and effective solutions that can accommodate a diverse range of users and deployment
contexts in manufacturing settings.

6.3.5 Human Factors: User Adaptation and Perceived Workload /

Usability

This study contributes valuable insights into the cognitive and experiential aspects of
AR/MR training systems, addressing the question: “What are the perceived workload,
usability, and user satisfaction associated with each AR/MR technology, and how do these
factors relate to learning outcomes?” By examining the complex relationships between
perceived workload, usability, and actual performance across different phases of learning,
this research reveals important considerations for the design and implementation of
AR/MR training systems. The study’s significant, counter-intuitive findings concerning
the relationships (or lack thereof) between complexity, workload, and usability suggest
that the participants are less sensitive to technical complexity andmore influenced by other
factors (e.g., time pressures) than expected. This contribution underscores the importance
of integrating both objective performance metrics and subjective user experiences in the
evaluation and development of AR/MR training systems for manufacturing contexts.

These contributions collectively advance our understanding ofAR/MR technologies inman-
ufacturing training. Collectively, they shed significant light on the central research question
and offer a variety of insights that can guide future research and implementation in this
rapidly evolving field.

6.4 Implications to Method and Theory

The contributions outlined above have important implications for both research and prac-
tice in augmented-assisted training.

6.4.1 Methodical Implications

1. Research Design: The multi-phase, mixed-methods approach employed in this study
demonstrates the value of comprehensive assessment in capturing the effects of
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AR/MR technologies on learning, recall, and retention. Future studies may consider
adopting similar approaches to fully understand the impact of these technologies.

2. Training SystemDesign: The observed trade-offs between speed and accuracy, aswell
as the impact of individual differences, underscore the need for adaptable AR/MR
training systems. Designers should consider incorporating features that can adjust
to user characteristics and learning progress.

3. Implementation Strategies: The varying effectiveness of different methods across
learning phases suggests that organizations should consider using a combination
of instructional approaches, potentially transitioning between methods as learners
progress from novice to expert.

4. Evaluation Metrics: The discrepancies observed between performance and user ex-
periences highlight the importance of supporting comprehensive quantitative perfor-
mance measures with diverse qualitative metrics when assessing the effectiveness of
AR/MR training systems in the context of participant idiosyncrasies.

5. Technology Development: The identified limitations of current AR/MR systems, par-
ticularly in terms of ergonomics and adaptability, provide clear directions for technol-
ogy developers to improve these systems for manufacturing training applications.

6.4.2 Theoretical Implications

1. Cognitive Load Theory: The findings on speed-accuracy trade-offs and learning ef-
fectiveness across phases enhance our understanding of how different instructional
methods affect cognitive load over time.

2. Embodied Cognition: The benefits observed from spatial registration and user-
centric displays in AR/MR systems provide empirical support for embodied
cognition theories in learning processes.

3. Active Learning Theory: The observation of adaptive user behavior across all treat-
ments supports the importance of active engagement in the learning process, as
posited by active learning theories.

4. Technology Acceptance Model: The complex relationship found between perceived
workload, usability, and actual performance suggests a need to refine how we apply
technology acceptance models to AR/MR training systems.
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5. Affordance Theory: The study’s findings on the balance between AR/MR affordances
and limitations contribute to our understanding of how technological affordances
translate into learning outcomes in practical settings.

Together, these implications highlight the complexity of evaluating AR/MR training sys-
tems and suggest several directions for refining both research methodologies and theoret-
ical frameworks in this field. They emphasize the need for more nuanced, multi-faceted
approaches to studying the effectiveness of these technologies in real-world learning con-
texts.

6.5 Limitations and Generalizability

While this study provides valuable insights into the effectiveness of different instructional
methods for manufacturing assembly tasks, several limitations should be considered when
interpreting the results. All are discussed below, grouped into the categories ecological
generalizability, data measurement and analysis, and technology limitations.

A number of considerations may limit the ecological generalizability of these findings for
real-world industrial tasks, workers, and environments. The convenience sample was rela-
tively small (n=54) and comprised primarily of university students without significantman-
ufacturing experience. The assembly task, while designed to simulate real-world manufac-
turing processes, was relatively simple and short in duration, leading to floor effects in
the observed error rates. Only a single assembly task was simulated, and the controlled
laboratory setting may not fully reflect the conditions of a real manufacturing environ-
ment. Results may differ for experienced participants or different task types, including
those that are more complex or of longer duration, in real world settings. Additionally, the
fixed ergonomics of the workstation couldn’t accommodate diverse user needs, especially
in AR/MR conditions, potentially impacting comfort, system performance, and AR/MR ef-
fectiveness for some participants.

Limitations in data measurement and analysis should also be considered. While compre-
hensive, the measures used (e.g., TCT, UCE, OEE) may not capture all relevant aspects
of performance and learning in manufacturing contexts. The qualitative feedback, while
valuable, may be subject to recall bias or influenced by participants’ preconceptions about
different technologies. Furthermore, the novelty of PAR, AR, and MR technologies to all
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participants may have influenced engagement and performance in ways that might not per-
sist with long-term use. The variable retention period with a single measure (up to 44 days)
may not provide a complete understanding of training durability. The imbalanced repeated
measures due to varying task iterations during the learning phase led to compromises in
analysis, challenging model fitting and reducing the accuracy of extrapolations. Addition-
ally, the analysis did not employ cross-validation or othermethods to prevent bias and limit
overfitting for model-based approaches, potentially leading to underestimated error rates
and overly optimistic model performance estimates.

Finally, the PAR, AR, and MR systems used in the study had various known limitations
in terms of field of view, comfort, reliability, and interaction methods. More advanced
systems or implementations might yield different results, highlighting the need for caution
when comparing these findings with results from other technological setups.

These limitations do not invalidate the findings but provide important context for their
interpretation and application. They also suggest avenues for future research to address
these constraints and further validate the results in diverse settings and with larger, more
representative samples.

6.6 Future Work

Building on the findings and limitations of this study, future work will focus on furthering
the understanding of AR/MR technologies in manufacturing training while increasing the
ecological validity of the research. Several publications are planned from this work, each
focusing on specific contributions of the work. As summarized in Table 6.5, these publi-
cations will extend the current analysis by exploring interactions between affordances, re-
fining performance metrics (e.g., a more nuanced OEE calculation), conducting error type
analysis, and investigating the relationships between workload, usability, and performance
measures.
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Table 6.5: Proposed Publications

Working Title Focus

“An Affordance-Based Framework for Evaluating
AR/MR Training Systems in Manufacturing”

Affordance-based framework,
Theoretical underpinnings,
Application to AR/MR training
systems

“Designing and Implementing AR/MR Technologies
for Manufacturing Assembly Training: A
Comparative Study of Learning Outcomes”

Literature review and theoretical
background, Experimental design
and methodology, Learning phase
results, Immediate impacts on task
completion time and error rates

“Long-term Effectiveness of AR/MR Technologies
in Manufacturing Training: An Analysis of Recall
and Retention”

Recap of experimental design,
Recall phase results, Retention
phase findings, Implications for
long-term skill acquisition

“Beyond Performance Metrics: Assessing Workload,
Usability, and Individual Factors in
AR/MR-Assisted Manufacturing Training”

TLX and SUS results analysis,
Demographic and individual
factors, Interplay between
workload, usability, and
performance, User-centered
design implications

“Modeling Learning Curves in AR/MR-Assisted
Manufacturing Training: Challenges and
Methodological Approaches”

Methodological aspects,
Challenges in modeling learning
curves, Solutions for imbalanced
repeated measures data

“Qualitative Analysis of Error Types in AR/MR
vs. Traditional Manufacturing Training:
Implications for Training Design and Quality
Control”

Error type analysis, Qualitative
insights into error nature, Impact
of instructional methods on errors

These topics are suitable for publication in a range of reputable journals, including IEEE
Transactions on Visualization and Computer Graphics, International Journal of Human-
Computer Studies, Journal of Manufacturing Systems, and Computers in Industry; a list
that reflects the interdisciplinary nature of the research and the value of its contributions.
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Subsequent studies with increasing complexity and ecological validity are intended. Each
will integrate improvements to both the experimental and system design intended to ad-
dress the limitations and implications previously identified. Anticipated system upgrades
include improved application design, variable-height workstation with integrated multi-
camera video capture, and modern VR / VST hardware. This would provide enhanced
user experience, streamlined data capture, more robust tracking, and support user adap-
tation.

Enhancements to the experimental design will prioritize ecological validity, the robustness
of results, and greater insight into underlying learning mechanisms. This can be accom-
plished by refining participant selection, task design, and study duration, implementing
more comprehensive assessmentmethodswith additional qualitative and quantitativemea-
sures, and exploring the impact of instructional design methods on skill acquisition and
retention.

This research trajectory is best suited for a series of industrial experiments, progressing
from controlled lab settings to longitudinal on-site studies with industry partners. Ide-
ally, these studies will feature real-world tasks that vary in type and complexity to help
validate and refine our understanding of AR/MR effectiveness in authentic manufacturing
contexts.

Through this future work, we aim to bridge the gap between theoretical insights and practi-
cal applications, ultimately contributing to the development ofmore effective and adaptable
AR/MR training systems for the manufacturing industry.

6.7 Closing

In closing, this study provides valuable insights into the effectiveness of AR/MR technolo-
gies in manufacturing assembly training, highlighting both their potential benefits and cur-
rent limitations. The research reveals a nuanced interplay between instructional meth-
ods, performance metrics, and individual user characteristics, emphasizing the need for
adaptive and context-sensitive training solutions. While AR/MR technologies demonstrate
promise in reducing errors and potentially fostering deeper learning, their implementation
requires careful consideration of speed-accuracy trade-offs, user adaptation processes, and
environmental factors.
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As the field of AR/MR-assisted training continues to evolve, future research should focus
on addressing the limitations identified in this study and expanding our understanding of
these technologies in diverse manufacturing contexts. By building on the affordance-based
framework and methodological approaches developed here, researchers and practitioners
can work towards creating more effective, user-centered AR/MR training systems that bal-
ance immediate performance needs with long-term skill development goals. Ultimately,
this line of inquiry has the potential to significantly enhance workforce training inmanufac-
turing, contributing to improved productivity, quality, and adaptability in an increasingly
complex industrial landscape.
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B Video Tool Selection

These informal notes were taken during the search for tool(s) to process and annotate video
efficiently and export machine-readable metadata for those annotations.

Looking for tools to build a workflow to: - trim and combine videos (split-screen) - export
a small, high quality version - mark up the combined video with observed events using
markers and sub-clips - export annotations with timecode

Based on the following notes I chose a combination of Filmora, Handbrake, and Kyno.

B.1 Specialty Tools

I identified several candidates but ultimately tried only one from this list:

• Observer XT https://www.noldus.com/observer-xt - seems spendy and probably
more full featured than required

• BORIS https://www.boris.unito.it/pages/features.html - looks pretty good, free and
open-source, actively maintained

• Transana https://www.transana.com - affordable and full featured, may lean more
towards transcripts than we need?

• ChronoViz https://chronoviz.com - free, Mac only
• ELAN https://archive.mpi.nl/tla/elan - free, open source, mult-platform; seems fo-
cused on linguistics

• Anvil http://www.anvil-software.de - not updated since 2017
• VideoTagger http://www.anvil-software.de - not updated since 2017

B.1.1 BORIS

Designed for this kind of thing but clunky and overkill for the needs of this project. Win-
dows only (for now). Supports mult-cam playback but difficult to sync. Workspace not
saved.
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B.2 Traditional Video Editors

B.2.1 Adobe Premiere Pro

Steep learning curve with many unnecessary features.

B.2.2 Camtasia

Easy to set up and synchronize videos. Poor playback controls. Big / slow exports. No
support for sub-clips and limited metadata. No export of markup? Project files include all
video - loads of storage required.

Aside: lots of cool EdTech features - clearly their market.

B.2.3 iMovie

Too limited.

B.2.4 Filmora

Good balance of complexity and capability. Playback controls could be better but ticks the
other boxes:

• easy to set up split screen and sync tracks
• reasonable export size
• fair price (but shady subscription up-charges and bad purchase UX)
• bonus: effective background noise reduction

B.3 Video Preproduction Tools

B.3.1 Adobe Prelude

No longer available.
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B.3.2 Kyno

Designed for prepping clips for production. Streamlined single-track toolset for tagging and
export. A sort of Lightroom for video. Great playback controls and metadata support, in-
cluding a variety of export options (XML flavors, XLS).Metadata is kept in SQLite database,
which complicates sharing, but the program can import XML. Does not touch source files.
Lightweight. More capabilities than I need but very well suited pro tool that is reasonably
priced.

B.3.3 Handbrake

Much more efficient compression than the built-in tools above.
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C Video Processing

Step-by-step instructions for processing video. Starts with individual clips (left side and
HL2) and ends with 3-view synced video and annotation data.

C.1 Combine Videos in Filmora

1. Rename their raw video files using the format part number - phase - camera.

1. Usually, there will be only four files, named as follows.

1. PART#-learn-hl
2. PART#-learn-side
3. PART#-recall-hl
4. PART#-recall-side

2. If the trial had to be restarted due to a crash, etc., additional files may exist. In
that case, append the affected files with -p1, -p2, etc.

2. Move the raw video files to Research Master\raw_videos\PART# on TBM.
3. Use Filmora to build and export a combined video for the learn and recall phases. For

each learn / recall phase repeat the following steps:

1. Project settings: 16:9 widescreen, 1920 x 1080 (Full HD), 30fps, SDR 709
2. Add the relevant raw video files to the project media folder.
3. Drag the clips onto the timeline one at a time to create the following video

tracks:

1. Side camera footage, rot -90deg, ≈140% scale, positioned so that the right
edge of the video snaps to the centerline of the video window, and the fixture
is centered in the lower left quadrant. Crop right edge as necessary. Audio
un-muted with denoise activated (mid).

2. Side camera footage, rot -90deg, scale 90%, snap right edge to center. Crop
as necessary and recheck snap to center. Mute the audio.

3. HoloLens footage, scale 50%, snapped to the top left corner. Audio muted.
4. Check that all panels are properly aligned with expected overlap.

4. Save the Filmora project as part number - Phase, e.g. 1001-Learn, in the par-
ticipant’s videos folder.
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5. Match the action between track 2 and 3 as follows:

1. Find an event in track 3 (HL) that can be used to match action. Something
that will be in view on both recordings, e.g. the last car placed or stopping
the timer.

2. With the HL clip in track 3 selected, add a marker at that moment (M).
3. Find thematchingmoment in track 2 (side) andmark it in the same fashion.
4. Zoom in and slide the HL clip so the markers align.

6. Set the export region as follows:

1. Deselect all clips / tracks.
2. Move to a good starting point for the video. Click the scissors on the play

head to cut all clips at that point.
3. Repeat this process at the end point.
4. Select a continuous track in the middle and Select Clip Range (X).

7. Preview the result before exporting.
8. Save the Filmora project.
9. With the clip range still selected, export the video to working folder (desktop-

export) with the following settings:

1. Preset = Match to Project Settings
2. Format = MP4
3. Quality = Recommend (this will change the Preset to Custom)
4. Frame Rate = 30 fps
5. Enable HW acceleration ON
6. Upload to Cloud and Add to Project Media OFF
7. Check Use last export settings for local option after initial setup and save
these settings as a preset for other projects.

10. Scrub through the resulting video to quickly check the result.

C.2 Recompress Using Handbrake

1. Load the video in Handbrake.
2. Check that the size is 1920 x 1080.
3. Choose the preset Fast 720p30.
4. Append -hb to the output filename. (or change settings for output naming)
5. Compress the file.
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6. Check the result.
7. Rename it and move it to the participant’s videos folder.

C.3 Use Kyno to Annotate Events and Export Data

1. Add a title and general notes about the trial in the Metadata panel.
2. UseMarkers (M) to annotate instant events. PressMonce to place amarker and again

to edit its name and description.
3. Use In (I) and Out (O) points to annotate events with a time duration. Press I to set

the in point and O to set the out point. Then press S to define a sub-clip based on
those points. Press S again to edit its name and description.

4. when annotating video, the two streamsmay not be perfectly synced and/ormay drift
apart due to dropped frames on theHL recording - use side cam for car related logging
and HL cam for PWI / HL UI related logging to limit effect of lag on times recorded

5. Annotations should include:

1. Markers

1. Breakage - car breaks during assembly
2. Defect - something wrong with the pre-built car
3. Bin - wrong part found in bin
4. Correction - participant notices an error and corrects it
5. Removal - participant uses removal tool
6. Slip - car slips on surface (MR - no fixture)
7. System - HL or PAR system issue, e.g. inadvertent HL menu
8. Crash - system not responsive, reset required
9. Stop - stop timer to pause trial
10. Restart - restart timer
11. Drop - UI dropped - area tracking?
12. Tracking - loss of model tracking
13. PWI - for glances at paper work instructions during Recall
14. Lean - participant leans in to get a closer look at PWI
15. Instruction - participant asks for clarification
16. Intervention - observer intervenes on trial

2. Sub-Clips
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1. Car build start (releases car on work surface) and stop (releases car in green
or red tray), with names formatted as Car 1. Include anything of note for
each car in its description.

2. For cars that are not completed, use the following names instead:

1. Breakage - car was placed in the red tray for breakage
2. Defect - car was placed on the red tray for defect in prebuilt
3. Incomplete - ran out of time

3. For the Recall phase, PWI reference start and stop, with names formatted
as PWI 1 and notes as appropriate.

1. Note: do not mark PWIs during defective cars? see 1014

4. For any interruption in video, use Video 1 with details.
5. Mark any extended repair in the format Repair 1 with details
6. Mark time lost to UI drops and Tracking reset as Drop (area) or Tracking

(model)
7. Mark time lost to system issues as System (obstruction) or Crash (reset
required)

8. Use Reset to indicate the segment during which the video documents the
system stop and restart. For clarity only as the timer should be stopped.

6. After annotation is completed, use File > Export > Kyno XML to export it into the
participant’s videos folder.
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D Data Organization

TODO: clean this up and eliminate any sensitive folder names / directory structures, etc.

D.1 File Locations

Data and analysis kept in:

• *RAID array - extracted data for each participant and original raw videos
• Local diss dir - manuscript files
• Local dev dir - local analysis files

– *Local data dir - ingested and processed files, support files, raw notes

• *BOX folder - local sync source for BOX, duplicated from elsewhere, for teammember
access (ensures changes they make don’t affect my own files)

*Detailed below

D.1.1 RAID

On /Volumes/ThunderBay mini...:

.../Research Master
├── data
│ ├── 1001-PWI-2023-02-10-1200
│ │ ├── 1001-Forms.pdf
│ │ ├── 1001-Script.pdf
│ │ ├── images
│ │ │   ├── 2023-02-10T1500-IMG_4829.jpg
│ │ │   └── ...
│ │ └── videos
│ │ ├── 1001-Learn.mp4
│ │ ├── 1001-Learn.wfp
│ │ ├── 1001-Learn.xml
│ │ ├── 1001-Recall.mp4
│ │ ├── 1001-Recall.wfp
│ │ └── 1001-Recall.xml
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│ ├── 1003-PAR-2023-02-17-1330
│ └── ...
└── raw_videos

├── 1001
│ ├── 1001-learn-hl.mp4
│ ├── 1001-learn-side.mov
│ ├── 1001-recall-hl.mp4
│ └── 1001-recall-side.mov
├── 1003
└── ...

• Research Master\data on the TBM RAID has all the data for each participant.
When appropriate, this folder is synced to the local BOX folder using a ChronoSync
action.

– videos subdirectory will hold the finished videos, along with Kyno project
and XML files

• Research Master\raw_videos, also on the TBM RAID has the raw video files,
which are moved here as each participant video directory is processed. In order to
reclaim space on the internal drive, these files are removed from the local BOX folder
during the sync described above.

D.2 Local Development Directory

On /Users/djo/dev/au/dissertation...:

.../data
├── DataDictionary.docx
├── combined_results.xlsx
├── csv
│ ├── i1_times_v1.csv
│ └── i1_times_v2.csv
├── reports
│ ├── 1001-combined.md
│ └── ...
└── source

├── adjusted_drop_events.xlsx
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├── i1_raw_data.xlsx
└── notes

├── 1001.md
└── ...

TODO: consolidate diss folders and rename root above (careful with chronosync jobs)

D.2.1 Box Sync Folder

On /Users/djo/Box Sync/Tiger Motors Research Team Collaboration

Files...:

.../Investigation 1 Data Files
├── analysis (sync of Local dev)
│ └── ...
└── trial-data (sync of RAID / data)

└── ...

• The BOX Sync\...\trial-data tree holds local copies of the data that get synced
from each participant’s videos folder and then mirrored to the cloud, where other
members of the research team can access it.

TODO: GitHub?

D.2.2 Local Data Backup

Incremental hourly external backups with local snapshots. Nightly full external backups
with local snapshots. Carbon Copy Cloner to NVMe

D.3 Synchronization / Backup

Related ChronoSync Jobs

• trial-datamirrors all the participant data to BOX:

– Research Master\data� BOX Sync\...\trial-data

• analysismirrors all the analysis to BOX
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– ...\dissertation\data� BOX Sync\...\analysis
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E Institutional Review Board Approval

The final approved version of the IRB begins on the following page.
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§ C – Data Collection Instruments 

• Added 6 questions to the participation intake sheet 
• Updated the Task Loading Index 

o Additional Changes 
§ None. 

 
Attached: 

1. Modification form 
2. Updated protocol form, consent documents, and appendix, all with changes highlighted 
3. Clean versions of all updated forms that require new IRB stamps. 
4. All current IRB stamped docs 
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AUBURN UNIVERSITY HUMAN RESEARCH PROTECTION PROGRAM (HRPP) 

REQUEST for MODIFICATION 
                  For Information or help completing this form, contact: The Office of Research Compliance (ORC) 
                                                   Phone: 334-844-5966    E-Mail: IRBAdmin@auburn.edu     
 
-    Federal regulations require IRB approval before implementing proposed changes. 
-    Change means any change, in content or form, to the protocol, consent form, or any supportive materials (such as the investigator’s  
     Brochure, questionnaires, surveys, advertisements, etc.). See Item 4 for more examples. 
 

 

2. Principal Investigator (PI) Name: Dan O’Leary 

PI’s Title: Instructor / PhD Candidate Faculty PI (if PI is a 
student): 

Dr. Richard Sesek 

Department: Industrial & Systems Eng Department: Industrial & Systems Eng 

Phone: 407-399-3189 Phone: 334-728-1438 

AU-E-Mail: djo0008@auburn.edu AU E-Mail: rfs0006@auburn.edu 

Contact person who 
should receive copies of 

IRB correspondence 
(Optional): 

Click or tap here to enter text. Department Head Name: Dr. Gregory Harris 

Phone: Click or tap here to enter text. Phone: 334-844-1407 

AU E-Mail: Click or tap here to enter text. AU E-Mail: gah0015@auburn.edu 

 

3. AU IRB Protocol Identification 

         3.a. Protocol Number: 22-538 

           3.b. Protocol Title: The Effects of Augmented Instruction on Manufacturing Assembly Training 

         3. c. Current Status of Protocol – For active studies, check ONE box at left; provide numbers and dates  
                 where applicable 

☐ Study has not yet begun; no data has been entered or collected  

☒ 
☐ 

In progress    If YES, number of data/participants entered: 22 trials in 
the first investigation and 30 on the second, as of 3/27. 
Is this modification request being made in conjunction with/as a 
result of protocol renewal?      ☐ YES      ☒ NO 

Current Approval Dates 
From: 1/30/2023 
 

☐ Adverse events since last review   If YES, describe: Click or tap here to 
enter text. 

To: Click or tap to enter a date. 

☐ Data analysis only 

☐ Funding Agency and Grant Number: Click or tap here to enter text. AU Funding Information: Click or tap 
here to enter text. 

☐ List any other institutions and/ or AU approved studies associated 
with this project: Click or tap here to enter text. 

 

 

 

1. Today’s Date 4/3/2023 

jkk0013
New Stamp
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4. Types of Change 
       Mark all that apply, and describe the changes in item 5 

☐ Change in Key Personnel 
List the name(s) of personnel being added to or removed from the study and attach a copy of the CITI 
documentation for personnel being added to the study.  
 

☐ Additional Sites or Change in Sites, including AU classrooms, etc. 
Attach permission forms for new sites. 
 

☐ Change in methods for data storage/ protection or location of data/ consent documents 
 

☐ Change in project purpose or project questions 
 

☒ Change in population or recruitment 
Attach new or revised recruitment materials as needed; both highlighted version & clean copy for IRB approval 
stamp 
Expanded recruitment for first investigation to include volunteers from local manufacturing companies. Increased 
maximum number of participants for second investigation. Totals for both have increased based on progress and 
appetite to date. 

☒ Change in study procedure(s) 
Attach new or revised consent documents as needed; both highlighted revised copy & clean copy for IRB 
approval stamp 
Added compensation as described in the attached protocol review form. Updated informed consent documents 
accordingly. 

☒ Change in data collection instruments/forms (surveys, data collection forms) 
Attach new forms as needed; both highlighted version & clean copy for IRB approval stamp 
Added questions to the participant intake form and updated the NASA TLX formatting. 

☐ Other 
(BUAs, DUAs, etc.) Indicate the type of change in the space below, and provide details in the Item 5.c. or 5.d. as 
applicable. Include a copy of all affected documents, with revisions highlighted as applicable. 
Click or tap here to enter text. 
 

 

5. Description and Rationale 

5.a. For each item marked in Question #4 describe the requested change(s) to your research protocol, and the   
       rationale for each. 
Boosted participant counts to improve the statistical power of both investigations based on available time, resources, progress, 
and appetite. Expanded recruitment for investigation 1 to compare student and industry results. Added compensation to 
incentivize performance and thank industry volunteers. 
5.b. Briefly list (numbered or bulleted) the activities that have occurred up to this point, particularly those that  
       involved participants. 
Over 50 total trials have been completed as of 3/27. Additional trials are scheduled. All those will continue to utilize the methods 
and forms previously approved. This modification creates no material change in the either investigation, except for compensation, 
which past participants will also qualify for.  
5.c. Does the requested change affect participants, such as procedures, risks, costs, benefits, etc. 

No. 

5.d. Attach a copy of all “IRB stamped” documents currently used. (Information letters, consent forms, flyers,  
       etc.) 
Attached. 

5.e. List all revised documents and attach two copies of the revised documents – one copy which highlights 
the revisions and one clean copy of the revised documents for the IRB approval stamp. 
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Attached. 

 

 

Version Date: 4/3/2023 

6. Signatures 

 
Principal Investigator: __________________________________________________________________________ 
 
Faculty Advisor PI, if applicable: _________________________________________________________________ 



	

Modified	Forms	
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AUBURN UNIVERSITY INSTITUTIONAL REVIEW BOARD for RESEARCH INVOLVING HUMAN SUBJECTS 

PROTOCOL REVIEW FORM 
FULL BOARD or EXPEDITED REVIEW 

 
For assistance, contact: The Office of Research Compliance (ORC) 

Phone: 334-844-5966    E-Mail: IRBAdmin@auburn.edu    Web Address: http://www.auburn.edu/research/vpr/ohs 
Submit completed form and supporting materials as one PDF through the IRB Submission Page 

Handwritten forms are not accepted. Where links are found hold down the control button (Ctrl) then click the link. 

1. Proposed Start Date of Study:1/11/2023    Today’s Date:   April 3, 2023 
   Submission Status (Check One):  ☐  New     ☒  Revisions (to address IRB Review Comments) 
    Proposed Review Category (Check One):   ☐ Full Board (greater than minimal risk)      ☒ Expedited 
   If Expedited, Indicate Category(ies) ((Link to Expedited Category Review Sheet)  6 
 
2. Project Title:  The Effects of Augmented Instruction on Manufacturing Assembly Training 
 
3. Principal Investigator (PI): Dan O’Leary                    Degree(s): BS Mech Eng, MS Eng Mgmt                
    Rank/Title:   Graduate Student                                               Department/School:  Industrial & Systems Engineering 
    Role/responsibilities in this project: Organize and conduct research, perform data collection and analysis 
    Preferred Phone Number: 407-399-3189                        AU Email: djo0008@auburn.edu 

    Faculty Advisor Principal Investigator (if applicable): Richard Sesek 
    Rank/Title: Associate Professor                                           Department/School:  Industrial & Systems Engineering   
    Role/responsibilities in this project: Supervise and advise the design and execution of the experiment  
    Preferred Phone Number: 334-728-1438                         AU Email: rfs0006@auburn.edu 
 
    Department Head: Gregory Harris                   Department/School: Industrial & Systems Engineering 
    Preferred Phone Number: 334-844-1407                                 AU Email: gah0015@auburn.edu 
    Role/responsibilities in this project: Dissertation co-chair and primary project advisor 
 
4. Funding Support: ☒ N/A    ☐ Internal    External Agency: n/a     Pending ☐     Received  ☐ 
    For federal funding, list funding agency and grant number (if available): n/a 
 
5. a) List any contractors, sub-contractors, and other entities associated with this project:      n/a

    b) List any other AU IRB approved protocols associated with this study and describe the association:  n/a 

    c) List any other institutions associated with this study and submit a copy of their IRB approval(s):  n/a 

Protocol Packet Checklist 
Check all applicable boxes.  A completed checklist is required. 
☒      Protocol Review Form (All required signatures included and all sections completed) 
       (Examples of appended documents are found on the website: https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs) 
 
☒      CITI Training Certificates for key personnel 
 
☒      Consent Form or Information Letter and any releases (audio, video or photo) that participants will review and/or sign 
 
☒      Appendix A “Reference List” 
 
☒      Appendix B if e-mails, flyers, advertisements, social media posts, generalized announcements or scripts, etc., will be used to recruit 
          participants. 
 
☒      Appendix C if data collection sheets, surveys, tests, other recording instruments, interview scripts, etc. will be used for data collection. Attach  
          documents in the order they are listed in item 13c.                                                                                                                Continued on Page 2 
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☒      Appendix D if they study will use a debriefing form or will include emergency plans/ procedures and medical referral lists. (A referral list may 
          be attached to the consent document.) 
 
☐     Appendix E if research is being conducted at sites other than Auburn University or in cooperation with other entities. A permission letter from  
         the site/ program director must be included indicating their cooperation or involvement in the project. NOTE: If the proposed research is a multi- 
         site project, involving investigators or participants at other academic institutions, hospitals or private research organizations, a letter of IRB  
         approval from each entity is required prior to initiating the project. 
 
☐      Appendix F Written evidence of approval by the host country, local IRB or institutions if research is conducted outside the United States 

 
6. General Research Project Characteristics 

6A. Research Methodology 
 
Check all descriptions that best apply to the research methodology. 
 
 
Data Source(s):   ☒    New Data     ☐    Existing Data 

 
Will recorded data directly or indirectly identify participants?     
☒   Yes    ☐   No 
 

 
Data collection will involve the use of: 
 
    ☒     Educational Tests (cognitive diagnostic, aptitude, etc.)                                 ☒     Internet / Electronic  
    ☒     Interview                                                                                                         ☒     Audio 
    ☒     Observation                                                                                                    ☒     Video 
    ☐     Locations or Tracking Measures                                                                    ☒     Photos 
    ☐     Physical / Physiological Measures or Specimens                                          ☐     Digital Images 
    ☒     Surveys / Questionnaires                                                                               ☐     Private records or files 
    ☐     Other: Click or tap here to enter text. 
 

6B. Participant Information 6C. Risks to Participants 
 
Check all descriptors that apply to the TARGET population.         
(link to definition of target population) 
 ☐  Males    ☐   Females    ☐   AU students 
 
Vulnerable Populations 
☐  Pregnant Women/Fetuses    ☐   Prisoners     ☐    Institutionalized 
☐  Children and / or Adolescents (under age 18 in AL; if minor 
participants, at least 2 adults must be present during all research 
procedures that include the minors) 
 
Persons with: 
☐     Economic Disadvantages         ☐   Physical Disabilities 
☐     Educational Disadvantages      ☐    Intellectual Disabilities 
 
Will participants be compensated?    ☒  Yes    ☐   No 

 
Identify all risks participants might encounter in this research. 
 
☒     Breach of Confidentiality*            ☐    Coercion 
☐     Deception                                    ☐     Physical 
☐     Psychological                              ☐     Social 
☐     None 
☒     Other (COVID-19, other medical):  
COVID-19 Exposure; Discomfort, including possibility of mild 
nausea, see section 14 
 
*Note that if the investigator is using or accessing confidential or identifiable data, 

reach of confidentiality is always a risk. 

6D. Corresponding Approval/ Oversight 
• Does the study include participant exposure to radiation?   ☐ Yes              ☒ No 

If yes indicate:    ☐ DEXA       ☐ PQCT      ☐ Other 
 

• Is IBC Approval required for this study? 
☐ Yes                        ☒ No 
 
If yes, BUA # Click or tap here to enter text.          Expiration Date   Click or tap to enter a date. 
 

• Is IACUC Approval required for this study? 
☐ Yes                        ☒ No 
 
If yes, PRN # Click or tap here to enter text.          Expiration Date   Click or tap to enter a date. 
 

• Does this study involve the Auburn University MRI Center? 
☐ Yes                        ☒ No                                                                                                                                              
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Which MRI(s) will be used for this project? (Check all that apply) 
☐ 3T                         ☐ 7T 
                                                                                                                                                                                         Continued on Page 3 
Does any portion of this project require review by the MRI Safety Advisory Council? 
☐ Yes                        ☒ No 
 
Signature of one MRI Center Representative:___________________________________________________ 
Required for all projects involving the AU MRI Center 
Appropriate MRI Center Representatives: 
           Dr. Thomas S. Denney, Director AU MRI Center 

                           Dr. Ron Beyers, MR Safety Officer 
 

7. Project Assurances 

7A. Principal Investigator’s Assurances 
1. I certify that all information provided in this application is complete and correct. 
2. I understand that, as Principal Investigator, I have ultimate responsibility for the conduct of this study, the ethical    
    performance this project, the protection of the rights and welfare of human subjects, and strict adherence to any  
    stipulations imposed by the Auburn University IRB. 
3. I certify that all individuals involved with the conduct of this project are qualified to carry out their specified roles and  
    responsibilities and are in compliance with Auburn University policies regarding the collection and analysis of the  
    research data. 
4. I agree to comply with all Auburn policies and procedures, as well as with all applicable federal, state, and local laws 
     regarding the protection of human subjects, including, but not limited to the following: 
 a. Conducting the project by qualified personnel according to the approved protocol 
 b. Implementing no changes in the approved protocol or consent form without prior approval from the Office of  
                 Research Compliance 
 c. Obtaining the legally effective informed consent from each participant or their legally responsible representative  
                 prior to their participation in this project using only the currently approved, stamped consent form 
 d. Promptly reporting significant adverse events and / or effects to the Office of Research Compliance in writing  
                 within 5 working days of the occurrence. 
5. If I will be unavailable to direct this research personally, I will arrange for a co-investigator to assume direct  
    responsibility in my absence. This person has not been named as co-investigator in this application, or I will advise  
    ORC, by letter, in advance of such arrangements. 
6. I agree to conduct this study only during the period approved by the Auburn University IRB. 
7. I will prepare and submit a renewal request and supply all supporting documents to the Office of Research Compliance  
    before the approval period has expired if it is necessary to continue the research project beyond the time period  
    approved by the Auburn University IRB. 
8. I will prepare and submit a final report upon completion of this research project. 

My signature indicates I have read, understand and agree to conduct this research project in accordance with the 
assurances listed above. 

____Dan O’Leary_________________             ______________________________  _2/20/2023_ 
Principal Investigator Name                              Principal Investigator Signature                               Date 

7B. Faculty Advisor / Sponsor’s Assurances 
1. I have read the protocol submitted for this project for content, clarity, and methodology. 
2. By my signature as faculty advisor / sponsor on this research application, I certify that the student or guest investigator  
    is knowledgeable about the regulations and policies governing research with human subjects and has sufficient training  
    and experience to conduct this particular study in accord with the approved protocol. 
3. I agree to meet with the investigator on a regular basis to monitor study progress. Should problems arise during the  
    course of the study, I agree to be available, personally, to supervise the investigator in solving them. 
4. I assure that the investigator will promptly report significant incidents and / or adverse events and / or effects to the  
    ORC in writing within 5 working days of the occurrence. 
5. If I will be unavailable, I will arrange for an alternate faculty sponsor to assume responsibility during my absence, and I  
    will advise the ORC by letter of such arrangements. If the investigator is unable to fulfill requirements for submission of  
    renewals, modifications or the final report, I will assume that responsibility.  
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____Richard Sesek__________________     ________________________________  ________________ 
Faculty Advisor / Sponsor Name                             Faculty Advisor Signature                                   Date 

            Continued on Page 4 

7C. Department Head’s Assurance 
By my signature as department head, I certify that I will cooperate with the administration in the application and 
enforcement of all Auburn University policies and procedures, as well as all applicable federal, state, and local laws 
regarding the protection and ethical treatment of human participants by researchers in my department 
____Gregory Harris_______________     ________________________________  ________________ 
  Department Head Name                                        Department Head Signature                                    Date 

 

8. Project Overview:  

8A. A summary of relevant research findings leading to this research proposal: 
       (Cite source; include a “Reference List” as Appendix A.) 

This experiment incorporates two separate but related investigations that employ similar methods. Each is described 
separately in sections of the proposal, as required. Where no distinction is made, the protocol is identical. 

First Investigation 
Augmented Reality (AR) systems "combine real and virtual, are interactive in real time, and are registered in 3-D" [1]. By 
realistically integrating informative and/or interactive virtual objects in our view of the world, AR aims to enhance the users' 
interaction with and perception of it. Its essential affordance is the direct and natural manipulation of virtual objects in 
everyday surroundings. Relative to metaphorical digital interfaces, this is thought to improve the uptake of knowledge by 
reducing the overall cognitive load and better distributing it across multiple sensory pathways [2]. AR-assisted learners 
demonstrate improved perception, performance, and understanding of spatial concepts, with outcomes correlated to the 
amount of physical engagement involved [3]. As a result, AR is thought to be well-suited for task-related learning. Using 
untethered, hands-free devices with optical see-through head-mounted displays, AR can continuously enhance the user's 
actions in the real world [4]. These benefits have broad industrial applications. 

In manufacturing, operator support has been a common application of AR research and development since the early 
1990s [5]. It is also seen as a source of innovative operator training methods required to meet rapidly increasing demand 
for skilled labor due to high retirement rates, global expansion, and increasing specialization [6]. Manufacturing support, 
training, and related applications have been identified in the areas of assembly, maintenance, operations, quality control, 
safety, design, visualization, logistics, and marketing [7]. 

Despite great potential, the adoption of AR is slowed by technical, market, and other important social and legal obstacles 
[8]. To successfully transition from research projects and proof of concepts and gain widespread adoption in 
manufacturing, AR must demonstrate a worthwhile return on investment [9; 10]. But AR remains a highly fragmented 
market, including a diverse selection of screen-based, projected, and head-mounted technologies [6]. Studies show that 
the efficacy of these systems varies with the task type, technology used, application design, and other factors [11]. Thus, 
the success rate of AR adoption in industry would be improved by frameworks for strategic decision making based on 
quantified benefits in various scenarios [12–14]. Research in this area is young but accelerating. Most of it focuses on 
efficiency (task time) and accuracy (error count). These are relevant but incomplete measures for assessing training 
outcomes, where the learning rate and transfer effectiveness must also be considered [15]. This investigation extends 
prior work [16] to explore the relationship between a variety of AR technologies and their underlying affordances [17] and 
learning outcomes for manufacturing assembly operations. By controlling for the task type and application design we hope 
to better understand the relative value of these systems, filling in important gaps that can lead to a cohesive framework for 
successful adoption. 

Second Investigation 
Cognitive load is challenging to measure but is essential in designing systems for worker safety, reliability, quality, and 
health [1]. Typically, cognitive load assessment is estimated by directly querying subjects using survey instruments such 
as the NASA Task Load Index (TLX) [1]. The NASA-TLX is perhaps the most widely used such instrument, having been 
adapted for use in many fields during its almost 40 years in application [2], [3]. 

4/3/23
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In the National Occupational Research Agenda for Healthy Work Design and Well-Being (January 2020), the first 
objective is: "Identify and examine the impact of worker demographics on employer or organizational practices and worker 
safety, health, and well-being." [4] This is because worker characteristics can adversely affect these areas. I propose to 
include information on the participant's status of disability, particularly ADHD, to gather data on how the presence of this 
disability affects the worker's performance in a manufacturing setting. The goal is to gather data to develop best practices 
for workers with particular needs to increase worker safety, health, and overall well-being. ADHD is an optimal place to 
start with this type of investigation because of its high prevalence in society, an estimated 11% adults have some level of 
ADHD [5]. A study of days lost and safety incidents have also shown that adults with ADHD are twice as likely to have a 
safety mishap in the workplace [6]. This statistic highlights the importance of gathering more information on the mental 
load of persons with ADHD in the manufacturing environment and investigating ways to design the workplace to 
accommodate their specific needs. Reliable assessment of the presence of ADHD symptoms is effectively obtained 
through use of the World Health Organization Adult ADHD Self-Report Scale, which we have incorporated into our exit 
survey in both investigations [7]. 

Since the early 1990s, Lean Production (LP) has been widely used in manufacturing because of its effectiveness and 
efficiency in waste reduction, lead time shortening, and productivity improvement [8]. LP primarily focuses on 
standardizing work, reducing the non-value-added activities, shifting the production systems from capacity to demand-
oriented, and installing a distributed production improvement system with closed loops between workstations [8]–[10]. 
Meanwhile, Industry 4.0 (I-4.0) technologies have also been diffused in manufacturing in the last decade, enabling cyber-
physical systems, the Internet of Things (IoT), Augmented Reality (AR),  Sensor technology, and others [{Citation}].  

As both Lean and I-4.0 paradigms are being used in the manufacturing world simultaneously, a question raised by 
manufacturers: Is there any complementary effect of I-4.0 on the performance improvement of LP systems? We 
conducted a literature review to find the answer to the abovementioned question. In several studies, authors revealed a 
significant co-relationship between Lean & I-4 [5-8]. In a study, the authors mentioned that LP could be integrated with I-
4.0 technologies to meet customers’ changing demand [11].  

In most cases, the complementary effects of Lean and I-4.0 are conceptual. For instance, the authors suggested 
integrating I-4.0 technology in the LP system to overcome some limitations of Lean [12], while they did not specify 
strategies [13]. It is stated that LP can be considered a pre-requisite for the I-4.0 application [14], but it is not 
demonstrated how Lean and I-4.0 co-exist together. Several authors also acknowledge that direction on how Lean and I-
4.0 work together are immature [8], [15], [16].  

The literature review revealed a gap in the current body of knowledge.  The gap is a lack of empirical studies of the 
interaction between Lean and I-4.0. To answer this need, we plan to conduct an experimental investigation of the 
interaction between Lean and I-4.0. 

8B. A brief summary/abstract of the study methodology, including design, population, and variables of interest.  
       (350 word maximum, in language understandable to someone who is not familiar with your area of study. Note this  
       summary/abstract can be used to prepare the concise summary in the consent document.): 
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Figure 1- LEGO Speedster Assembly 

This experiment will be conducted in the Tiger Motors Lean Education Center, which simulates automotive manufacturing 
best practices using LEGO® cars. Participants will act as operators assembling the SUV (Model T) car at stations 8 and 
10. This process has been used thousands of times in INSY 5/6800 without significant incident. 

 
Figure 2 - Work Station 8 

 
Figure 3- Work Station 10 

First Investigation 
A population of 40-60 adults will be recruited from Auburn University. Candidates with experience using head-mounted or 
projected AR or building cars in the Lean Lab will be excluded. Participants in this between-groups design will experience 
a single level of the Instructional Media Type (IMT) treatment, with increasingly augmented work instructions: 

1. Paper Work Instructions (PWI): traditional printed instructions (control) 
2. Projector Augmented Reality (PAR): interactive instructions projected on the work surface via the LightGuide 

system with a stationary model 
3. Head-Mounted Display AR (HMDAR): interactive instructions presented in the user's field of view using the 

HoloLens2 (HL2) HMD with a stationary model 
4. HMD Mixed Reality (HMDMR): extends the third treatment by leveraging advanced capabilities of the HL2, 

allowing for more natural interactions and movement of the model 
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Figure 4 – Paper Work Instructions for Station 8 

 
Figure 5- LightGuide Work Instructions 

Participant groups will be set randomly. We hypothesize that HDMR will outperform other treatments in accuracy-based 
performance measures, as well as learning rate and transfer. In contrast, we expect participants assigned the PWI 
treatment to have the best times. 

 
Figure 6 – HoloLens2 Wireless, See-Through Design 

 
Figure 7- HoloLens2 Work Instructions, 1st Person View 

First, participants will be shown how to interpret paper work instructions and use them to construct a sample LEGO 
assembly. Next, those assigned to an AR treatment level are given a brief introduction to its operation. Questions are 
allowed throughout this process. 

The hypotheses are then tested in two phases. The first compares the effects of instructional media on the speed (task 
completion time) and accuracy (number and type of corrected and uncorrected errors) with which participants perform 
each repetition of the task. These measures are tracked for each assembly completed in the 10-minute session, allowing 
us to assess learning rates. 

During the second phase, participants repeat the task four times in the control condition while the same measures are 
observed. Their results in each phase will be analyzed to compare transfer effectiveness between treatments. 

Second Investigation 
A population of 30-40 adults will be recruited from Auburn University. Participant treatment order will be set randomly. 
Participants in this within-subjects design will experience one of four scenarios in a random order: 

1. Control: Paper Work Instructions (PWI): traditional printed instructions. 
2. Lean Tool: Pre-made finished car provided for quality checks.  
3. I-4.0 Tool: Inspection camera for quality check.  
4. Lean + I-4.0 Tools: Pre-made finished car and inspection camera.  
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Figure 8- Pre-Made Finished Car Provided for Quality Checks 

Before beginning any of the treatments, participants will be shown how to interpret the paper work instructions and use 
them to construct a sample LEGO assembly. Participants will practice the assembly five times. Questions are allowed 
throughout this process. 

We hypothesize that treatment four will outperform other treatments in accuracy-based performance measures. In 
contrast, we expect treatment two to have the best times. 

 
Figure 9 – Paper Work Instructions for Station 10 

 
Figure 10 – Working Station 10 

Retention Experiment 
All participants recruited from the Auburn University community by either investigation will be invited to an open house 
event at the end of the Spring 2023 semester. The purpose of this event is thank our participants, give them the 
opportunity to experience other treatments and demos of the hardware, and to get additional data about how well they 
retained what was learned in the prior trials. Attendees that agree to the retention test will repeat the control treatment 
from one or both prior investigations. The same methods and metrics will apply. 

9. Purpose 

9A. State the purpose of the study and all research questions or aims. (Include a sentence that begins, “The 
purpose of this study is…”) 

First Investigation 
The purpose of this study is to measure the effect of instructional media type (IMT) on learning rates and skills transfer for 
industrial assembly tasks. The first phase will help us understand how each IMT affects the operator’s learning rate (time 
or cycles to learn the process) and ultimate measures of performance (speed and accuracy). The second will help assess 
how learning transfer varies with each treatment. Finally, the exit surveys will help us understand the relationship between 
those results and perceived workload, system usability, and the participant’s self-reported behavioral control. Additionally, 
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the industry recruitment will allow us to compare the results between our initial convenience sample and a more 
representative population to see how well the results generalize. 

Second Investigation 
The purpose of this study is to measure the effect of Lean and I-4.0 Tools on process performance and quality. 

Research questions: 

• Does the interaction between Lean & I-4.0 tools significantly impact the operator Performance?  
• Are there significant differences in the performance, cognitive load, and usability scales for participants with few 

self-reported behavioral control symptoms or many? 

Additionally, as with the first investigation, the exit surveys will help us understand the relationship between these results 
and perceived workload, system usability, and the participant’s self-reported behavioral control. 

Retention Experiment 
The purpose of this phase of the study is to see how much of their prior experience is retained, and how that relates to the 
time elapsed and original methods used. 

9B. Describe how results of this study will be used? (e.g., presentation? publication? thesis? dissertation?) 
The data collected during this project will be used for thesis and dissertations, scholarly publications and presentations, 
and grant proposals. 

10. Key Personnel. Describe responsibilities as specifically as possible. Include information on research training or 
certifications related to this project. To determine key personnel see decision tree at 
https://cws.auburn.edu/OVPR/pm/compliance/irb/training. Submit a copy of CITI training documentation for all 
key personnel. (For additional personnel, add lines as needed). 

To determine Auburn University HIPAA – covered entities click link to HIPAA Policy. 

If any key personnel have a formal association with institutions/entities involved in the study (for example is an employee 
or supervisor at the site research will occur), describe that affiliation.  For all non-AU affiliated key personnel, submit a 
copy of their IRB approval. 

Principal Investigator: Dan O’Leary                                               Rank/Title: Graduate Student     
Email Address: djo0008@auburn.edu                                                           Degree(s): BS ME, MS Eng Mgmt    
Dept / Affiliation:     Industrial & Systems Engineering                                  HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities: Overall responsibility for the project, including design and administration of experiments, 
coordinating recruitment, obtaining consent, and data collection and analysis. 
- AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         8/26/2025 
 

Individual: Richard Sesek                                                                       Rank/Title:  Associate Professor         
Email Address: rfs0006@auburn.edu                                                               Degree(s): BS, MS, MPH, PhD 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Advise, oversee, and assist with experiment design, IRB review process, obtaining consent, 
conducting trials, data collection and analysis. 
- AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  
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- Do you have any known competing financial interests, personal relationships, or other interests that could have  

  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 

- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  

  the revised Exempt Application form.  

- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         4/25/2023 

                                                                                           Choose a course         Expiration Date 

 

Individual: Gregory Harris                                                                       Rank/Title:  Associate Professor         

Email Address: gah0015@auburn.edu                                                               Degree(s): PhD 

Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 

Roles / Responsibilities:  Dissertation co-chair and primary advisor 

 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  

- Do you have any known competing financial interests, personal relationships, or other interests that could have  

  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 

- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  

  the revised Exempt Application form.  

- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         5/12/2024 

                                                                                           Choose a course         Expiration Date 

 

Individual: Gregory Purdy                                                                       Rank/Title:  Assistant Professor         

Email Address: greg.purdy@auburn.edu                                                               Degree(s): PhD 

Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 

Roles / Responsibilities:  primary advisor for second investigation 

 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  

- Do you have any known competing financial interests, personal relationships, or other interests that could have  

  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 

- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  

  the revised Exempt Application form.  

- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         2/1/2026 

                                                                                           Choose a course         Expiration Date 

 

Individual: Victoria Ballard                                                                       Rank/Title:  Graduate Student         

Email Address: vzb0024@auburn.edu                                                               Degree(s): BS CHE, MS CivE 

Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 

Roles / Responsibilities:  Lab manager, design and conduct research 

 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  

- Do you have any known competing financial interests, personal relationships, or other interests that could have  

  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 

- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  

  the revised Exempt Application form.  

- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         2/9/2025 

                                                                                           Choose a course         Expiration Date 
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Individual: Md Monir Hossain                                                                       Rank/Title:  Graduate Student         
Email Address: mzh0116@auburn.edu                                                               Degree(s):BS BE, MS TM, MS ISE 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Lab assistant, design and conduct research 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         8/29/2025 
                                                                                           Choose a course         Expiration Date 
 

Individual: Diego Roberto Caputo Rodriguez                                                           Rank/Title:  Graduate Student 
Email Address: drc0040@auburn.edu                                                                Degree(s):BS IE, MEM 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Lab assistant, assists conducting research 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         10/6/2025 
                                                                                           Choose a course         Expiration Date 
 

Individual: Yuqing “Lucie” Wang                                                           Rank/Title:  Graduate Student 
Email Address: yzw0155@auburn.edu                                                                Degree(s):BS Geo, MS IE 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Lab assistant, assists conducting research 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         11/30/2025 
 

Individual: Yen-Ting Guo                                                           Rank/Title:  Graduate Student 
Email Address: yzg0069@auburn.edu                                                                Degree(s):BS IE, MS IE 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Lab assistant, assists conducting research 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
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- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         9/10/2025 
Individual: Alex Barras                                                                       Rank/Title:  Other (Undergraduate RA) 
Email Address: jab0217@auburn.edu                                                               Degree(s): BS CS/SWE, Spr23  
Dept. / Affiliation: Computer Science & Software Engineering                          HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Assist with administration of protocol 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         1/13/2026 
                                                                                           Choose a course         Expiration Date 
 

Individual: David “Brown” Teague                                                                       Rank/Title:  Other (Undergraduate RA) 
Email Address: dbt0013@auburn.edu                                                               Degree(s): BS CS/SWE, Spr23  
Dept. / Affiliation: Computer Science & Software Engineering                          HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Assist with administration of protocol 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         1/16/2026 
                                                                                           Choose a course         Expiration Date 
 

Individual: Carson Tillery                                                                       Rank/Title:  Other (Undergraduate RA) 
Email Address: cwt0013@auburn.edu                                                               Degree(s): BS CS/SWE, Spr23  
Dept. / Affiliation: Computer Science & Software Engineering                          HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Assist with administration of protocol 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         1/15/2026 
                                                                                           Choose a course         Expiration Date 
 

Individual: Kralyn Thomas                                                           Rank/Title:  Other (Undergraduate RA) 
Email Address: kzt0044@auburn.edu                                                                Degree(s):n/a 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Assist with administration of protocol 
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 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 

- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  AU Basic RCR Training         2/13/2026 
 

11. Location of research.   

11A. List all locations where data collection will occur.  If applicable, attach permission letters as Appendix 
E.  (School systems,  
         organizations, businesses, buildings and room numbers, servers for web surveys, etc.) Be as specific as possible.  
         (See sample letters at https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs) 
Data collection will take place at the Lean Lab in the basement of the Shelby Center for Engineering Technology, room 
0317, located at 345 W Magnolia Ave, Auburn, AL  36849 

11B. Will study data be stored within a HIPAA covered facility? Yes ☐ No ☒ 
         If yes, which facility(ies) (To determine AU HIPPA covered entities, go to VII of the HIPPA Hybrid Entity Policy):       
n/a 

12. Participants (If minor participants, at least 2 adults must be present during all research procedures that include the  
         minors.) 

12A. Describe the targeted/ intended participant population for the study. Include the anticipated number of  
         participants and inclusion and exclusion criteria and the procedures to ensure more than 1 adult is present  
         during all research procedures which include the minor. 

☐ Check here if existing data will be used and describe the population from whom data was collected  
                      including the number of data files. 
 ☐ Check here if permission to access existing data is required and submit a copy of the agreement to  
                      access. 

For both investigations a total of between 90 and 150 subjects will be recruited from the Auburn University community.  
Between 40 and 70 of those will participate in the first investigation, and 50 to 80 in the second. Potential participants in 
the first investigation will be screened for exclusion based on the following: 1. Under 18 years of age 2. Prone to motion 
sickness 3. Prior experience with head-mounted or projected AR systems 4. Prior experience building cars in the Lean 
Lab as part of INSY 5800/6800 or otherwise. Note that third item does not exclude those having experience with Virtual 
Reality headsets like the Occulus Rift, which are much more commonly available than AR devices. For the second 
investigation, any volunteer 18 or older will qualify.  A shared screening form will be used for both investigations, and 
candidates will be assigned to one or both investigation(s) accordingly. Active recruiting efforts for I1 will focus on 
freshman and sophomore engineering students in Industrial & Systems Engineering (ISE), as they are accessible and are 
likely to meet all requirements. I2 will actively recruit more broadly because more adults are eligible. 

In addition to the participants described above, Investigation 1 will recruit 20-30 participants from local manufacturing 
companies. The same requirements, recruiting, consent, and onboarding procedures will apply, and the experimental 
protocol is unchanged, except that those participants will be compensated. 

12B. Describe, step-by-step in lay language all procedures to recruit participants. Include in Appendix B    
         a copy of all e-mails, flyers, advertisements, recruiting scripts, invitations, etc., that will be used to invite people to  
         participate. (See sample documents at https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs)  

Students and Faculty will be recruited using flyers distributed around the Auburn University campus. Additionally, ISE 
students will be recruited via in-class announcements and the distribution of emails. Copies of each are included in 
Appendix B. Interested participants will be instructed to contact the PI for more information. In the call that follows, the PI 
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will:  1. Briefly explain the investigation, recapping and elaborating on the recruiting materials 2. Explain the exclusion 
criteria and identify relevant issues for the candidate 3. Set expectations for participant involvement, including time 
commitment and tasks 4. Answer any questions the candidate has regarding participation in the investigation  If the 
candidate is ready and willing to proceed, their information will be collected using the Subject Recruitment Data Sheet 
provided in Appendix C. They will be assigned a unique participant ID, the investigation(s) most appropriate for their 
exclusions, and a date and time for data collection.  If interest in either investigation exceeds capacity, additional 
participants will be thanked for their interest and informed that enrollment is limited. They will be given the option to 
remain "waitlisted" if additional participants or follow-up studies are required. 

As an alternative to the manual method described above, participants are able to use a self-service web-based sign-up 
system which automates the process. 

12C.  Minimum number of participants required to validate the study?   see table, below 

          Number of participants expected to enroll?   see table, below 

          Provide the rationale for the number of participants.  Appropriate for the desired power given the number of 
treatments and expected differences in outcomes. 

          Is there a limit to the number of participants that will be included in the study? 
                 ☐ No    ☒ Yes, the number is 180 in total 

Participant Summary 

• I1 is increased based on interest and progress to date, plus the added industry recruitment. 
• I2 is increased based on interest and progress to date, and the addition of possible incentives. 

 
12D.   Describe the process to compensate, amount and method of compensation and/or incentives for    
          participants.   AU Procurement and Business Services (PBS) policies 
          (benefits to participants are NOT compensation) 

           If participants will not be compensated, check here: ☐ 
           Indicate the amount of compensation per procedure and in total: see below 
           Indicate the type of compensation: ☒ Monetary     ☒ Incentives              
                                                                          ☒ Raffle or Drawing incentive (Include the chances of 
                                                                                   winning.) 
              ☒ Extra Credit (State the value) 
                          ☐ Other 

 Describe how compensation will be distributed (USPS, email, etc.):  in person or via email, whichever is easier 
considering the necessary procedures and source of funds, while ensuring confidentiality 
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First Investigation 
All subjects recruited from the local manufacturing industry will be offered gift cards in exchange for their participation. 
This is considered important to the success of that recruitment. All industry volunteers will be given $40 in cash / gift card 
at the completion of their participation. 

All subjects recruited from the Auburn University community will be considered for two different prizes. Anyone that 
participated is entered into the first drawing. Three winners will be randomly selected to receive $25 in cash / gift card. 
The chances of winning one of these prizes is approximately 3/60 (5%). In a second drawing, one winner will be randomly 
selected from all participants that met or exceeded a predefined quality level. That winner will receive $100 in cash / gift 
card. The chances of winning this prize will depend on the number of qualifying participants. We estimate 1/10 to 1/20 (5-
10%). Volunteers that participated before the addition of compensation are also eligible. 

Second Investigation 
All subjects will be considered for two different prizes. Anyone that participated is entered into the first drawing. Three 
winners will be randomly selected to receive $25 in cash / gift card. The chances of winning one of these prizes is 
approximately 3/67.5 (4.4%). In a second drawing, one winner will be randomly selected from all participants that met or 
exceeded a predefined productivity level. That winner will receive $100 in cash / gift card. The chances of winning this 
prize will depend on the number of qualifying participants. We estimate 1/10 to 1/20 (5-10%). Volunteers that participated 
before the addition of compensation are also eligible. 

Open House Event 
In order to incentivize participation during the open house, two additional awards will be offered. 

1. All attendees that participate in the retention experiment for either investigation are entered into a drawing. One 
entry is granted for each experiment they complete (max 2). Three winners will be randomly selected for each 
experiment to receive a $25 gift card (total of 6 winners). The chances of winning will depend on the number of 
entries, but we anticipate odds of approximately 3/25 (12%). 

2. The attendee(s) with the best performance in each retention experiment will receive a $50 gift card. Random 
selection will be used to break any ties. Otherwise, this is a performance based prize, so odds of winning are not 
applicable. 

Additionally, all attendees will be offered the opportunity to experience the other treatments and various demonstrations of 
the hardware from both investigations. Food and drink will also be offered. Manufacturing Volunteers from the first 
investigation will not be invited to this event. 

General 
Winnings are capped at $100 for any participant, which simplifies the relevant procedures. All drawings will be held at the 
conclusion of the open house event. Winners do not have to be present at the time of the drawing to receive their prize. 

No members of the research team are eligible for any of the financial compensation described. 

A total of $1800 is budgeted for all described compensation, as summarized in the table below: 

 

Extra Credit 
Any instructor promoting these studies to their students is free to provide extra credit for participation. This is entirely at 
the discretion of each individual instructor. We encourage no more than 1% on the final class average per investigation. 
Alternative bonuses should be provided for those unable to participate. 

13. Project Design & Methods 
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13A. Describe, step-by-step, all procedures and methods that will be used to consent participants. If a  
         waiver is being requested, indicate the waiver, and describe how the study meets the criteria for   
         the waiver. If minors will be enrolled describe the process to obtain parental/ legally authorized  
         guardian permission. 

        ☐ Waiver of Consent (including using existing data) 
        ☐ Waiver of Documentation of Consent (use of Information Letter) 
        ☐ Waiver of Parental Permission (for college students 18 years or younger) 

As each participant arrives, they will be welcomed and given brief introductions to members of the team administering the 
study. We will then ask them to review the consent document, encouraging them to ask any questions they have. After a 
verbal confirmation that the participant has read and is satisfied with the terms of this document, we will ask that they sign 
and date it. 

13B. In lay language, understandable by someone not familiar with the area of study, describe the 
         complete research design and methods that will be used to address the purpose. Include a clear  
         description of who, when, where and how data will be collected. Include specific information about  
          participants’ time and effort. 

First Investigation 
Following the recruitment, eligibility screening, and consent processes described above, participants are asked to provide 
basic demographic information, read the NASA TLX instruction sheet, and complete a Behavior Control Survey based on 
the Adult ADHD Self-Report Scale (ASRSv1.1). Finally, emergency procedures are described, and the participant is given 
the opportunity to use the restroom. Once the intake process is complete, the participant is ushered to work station 8 
where a short orientation process acclimates them to the work area. A research associate will point out the key features of 
a work cell (work surface, part bins, etc.), describe how to interpret the paperwork instructions, demonstrate typical 
assembly steps, and answer any relevant questions. (5-10 mins) 

Next, participants assigned to any AR IMT (PAR, HMDAR, or HMDMR) will receive a brief demonstration of its basic 
operation. In all cases, the participant will be shown how to use the appropriate forward and back triggers, and how the 
system signals instructions and feedback related to part bin and placement. PAR and HMDAR users will be instructed that 
the model must remain in the fixture. HMDMR users will understand that the model can be freely manipulated during 
assembly. (5-10 mins) 

Once orientation and training are complete, the experiment is conducted in two phases. Regardless of IMT assigned, all 
participants will wear the HL2 during both phases to control for its effects and allow us to record each session from their 
POV. 

In the first phase, participants will be asked to complete the assembly process for as many cars as they can, while 
learning the steps and limiting the number of errors produced. This phase will be conducted with the support of the 
assigned IMT and will last 10 minutes. Observations will be recorded on Data Collection Sheet #1. During that time, we 
expect that each participant will produce between 3 and 6 cars, based on prior performance data and the 60-second takt 
time for which the instructions were designed. (10 mins) 

During a short break to reset the workstation, the participant will complete the NASA TLX and System Usability surveys 
for the assigned treatment. In the second phase each participant will build 4 more cars using only paper work instructions. 
Their stated goal will be to deliver error-free results quickly, while referencing the instructions only when necessary. 
Observations will be recorded on Data Collection Sheet #2. (5-10 mins) 

Participant performance in both phases will be recorded on two cameras, one first-person view from onboard the HL2, 
and one third-person view from a camera mounted nearby. Experimental data will be derived from subsequent analysis of 
these videos. Participants will not be allowed to ask questions during either data collection phase of the experiment. 

Once the experiment is concluded, each participant will complete an exit survey that incorporates the NASA TLX and 
System Usability Scale instruments for PWI. When the surveys are completed a research associate will solicit any 
additional general feedback, ask if the participant experienced any injury or discomfort, and invite them to attend a follow-
up session for more in-depth exploration of the HoloLens2. Their responses will be recorded on the exit survey. (5-10 
mins) 
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We conservatively estimate a total time commitment of 45-60 minutes for each participant. 

Second Investigation 
Following the recruitment, eligibility screening, and consent processes described above, participants are asked to provide 
basic demographic information, read the NASA TLX instruction sheet, and complete a Behavior Control Survey based on 
the Adult ADHD Self-Report Scale (ASRSv1.1). Finally, emergency procedures are described, and the participant is given 
the opportunity to use the restroom. Once the intake process is complete, the participant is ushered to work station 10 
where a short orientation process acclimates them to the work area and emergency procedures are described. A research 
associate will point out the key features of a work cell (work surface, part bins, etc.), describe how to interpret the 
paperwork instructions, demonstrate typical assembly steps, and answer any relevant questions. Participants practice the 
station with four vehicles while researchers record results on Data Collection Sheet #2. (10-15 mins)  

Next, participants will learn how to use the camera inspection I-4.0 tool. In all cases, the participant will be shown how to 
use the technology to find errors in the construction on the top of the vehicle and identify which part is incorrect.  

In the first phase, participants will be asked to complete the assembly process for as many cars as they can and limit the 
number of errors produced. The participants will complete the four treatments in the order randomly selected for them, 
each treatment will last 10 minutes. During that time, we expect that each participant will produce between 3 and 6 cars, 
based on prior performance data and the 60-second cycle time for which the instructions were designed. Observations will 
be recorded on Data Collection Sheet #1. (10 mins) We expected approximately 5 minutes between treatments to have 
participants complete the NASA TLX and System Usability Scale. (Total of 55 minutes of treatment completion time).  

Participant performance in all treatments will be recorded on two cameras, a third-person view from a camera mounted 
nearby, and a head-mounted device. Experimental data will be derived from subsequent analysis of these videos. 
Participants will not be allowed to ask questions during any data collection phase of the experiment. Once the experiment 
is concluded, each participant will complete an exit survey that incorporates the NASA TLX and System Usability Scale 
instruments. When the surveys are completed a research associate will solicit any additional general feedback and ask if 
the participant experienced any injury or discomfort, and invite them to attend a follow-up session for more in-depth 
exploration of Augmented Reality. Their responses will be recorded on the exit survey. (5-10 mins) We conservatively 
estimate a total time commitment of 70-90 minutes for each participant. 

13C. List all data collection instruments used in this project, in the order they appear in Appendix C.            
         (e.g., surveys and questionnaires in the format that will be presented to participants, educational tests, data  
          collection sheets, interview questions, audio/video taping methods etc.) 

1. Subject Recruitment Data Sheet: filled out during the screening call; includes the exclusion checklist, participant 
number, basic demographics (age and gender), and date / time of scheduled trial 

2. Code Sheet: collects the personally identifiable data for eligible participants, including name, contact info (phone, 
email) and subject number 

3. Participant Intake Sheet: collects basic demographics and relevant prior experience 
4. Data Collection Sheet: consists of general notes from the experiment and data derived from subsequent analysis 

of video recordings 
5. NASA Task Load Index (TLX) instrument. 
6. System Usability Scale (SUS) instrument. 
7. Behavioral Control Survey based on the Adult ADHD Self-Report Scale (ASRSv1.1) 
8. General feedback form to collect open-ended comments and to note any participant injury or discomfort as well as 

their interest in the follow-up session. 

Additionally, video of each session will be recorded as described above, and pictures of the assembled LEGO vehicles 
will be taken after each task is completed. These items are not included in the Appendix. 

13D. Data analysis: Describe how data will be analyzed. If a data collection form (DCF) will be used, submit a  
         copy of the DCF. 

In both investigations, the independent variable is treatment type, and the dependent variables are task completion time 
and number of errors. The dependent variables will be recorded for each car completed in both sessions. 
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Data will be analyzed with a combination of visual (e.g., box plots) and statistical methods. Methods based on analysis of 
variance (ANOVA) will be used to test the stated hypotheses. Additional analysis will be done to explore the relationship 
between other variables of interest, including demographics, mental workload, behavioral control, and system usability 
with the measured outcomes. 

13E. List any drugs, medications, supplements, or imaging agents that participants will ingest/ receive  
        during participation in the study or indicate not applicable (N/A). 

n/a 

14. Risks & Discomforts: List and describe all the risks participants may encounter in this research including  
      risks from item 6d of this form, in this research. If deception will be part of the study, provide the rationale 
      for the deception, describe the debriefing process, and attach a copy of the debriefing form that will be used  
      as Appendix D. (Examples of possible risks are in section #6C) 

1. Physical Discomfort: All participants will be required to wear the HoloLens2 device, regardless of treatment 
group to control for its effects on user fatigue, etc., and to allow us to record a first-person view of their 
session. As a result, they may experience mild physical discomfort including neck strain after prolonged use. 
The limited duration of this study should mitigate this effect. 

2. Vestibular and Visual Discomfort: Participants assigned to the HMDAR and HMDMR treatments will 
experience display technology that may cause mild dizziness, eye strain, and related effects. Owing to the 
see-through design of the HoloLens2 device these effects are less common and less pronounced than seen 
in fully immersive Virtual Reality (VR) headsets. 

3. Trip and Impact Risk: Any head-mounted display can reduce the wearer's peripheral vision and otherwise 
impact their natural field of view. Consequently, they may become more susceptible to tripping over or 
running into things around them. This risk is minimized by the HoloLens2's design, which offers a very wide, 
minimally obscured field of view. Furthermore, the HL2 is a standalone device, so there is no risk of tripping 
over a cord. Additionally, the participant is generally stationary in an environment free of obstruction. Finally, 
the Lean Lab is a clean, organized, safe, and well-lit environment with no history of related hazards. 

4. Breach of Confidentiality Risk: All resulting data will be anonymized, and video of each session will be 
recorded from the first person and top-down angles to prevent participant exposure. That said, subjects 
could be seen entering, leaving, or during the experiment. All of these create a small possibility that subjects 
could be identified, inadvertently breaching their confidentiality. Additionally, there is the possibility that the 
subject code list, which connects each participant’s identity with their experimental data, could be obtained. 
Mitigation methods for this risk are described in section 17 Protection of Data. 

5. Psychological Discomfort: Due to the nature of the experiment, some participants may experience mild 
psychological discomfort induced by its time and performance-based measures. Participants will be told that 
their objective is to learn to perform the task quickly and error free. Otherwise, no overt pressure is put on 
the subjects to perform. Given that the outcome of their performance has no impact on their life outside the 
experiment, any related psychological discomfort should be minimal and short-lived. 

6. COVID-19 Exposure: This study will be a Category C study with no High-Risk Procedures or 
Participants.  Precautions will be implemented using the COVID-19 2022 Precautions Matrix to determine 
appropriate precautions at the time of data collection(s) for a Category C study. All work surfaces and the 
HMD will be wiped down before and after each participant. Necessary supplies will be made available, 
including as masks, hand sanitizer (60%+ alcohol), tissues, paper towels, trash baskets, and cleaners / 
disinfectants.  All research participants will follow the University’s guidance on self-screening. At the time of 
this writing, the CDC’s COVID-19 community level for Lee County, Alabama is LOW, so participant 
screening is not required. The Shelby Center for Engineering Technology, where this protocol will be 
administered, is assigned the highest level of building readiness due to increased air turn-over and filtration. 
Further details and resources can be found in Appendix D. 

15. Precautions / Minimization of Risks 

15A. Identify and describe all precautions that will be taken to eliminate or reduce risks listed in items 6.c. and 14. If  
         participants can be classified as a “vulnerable” population, describe additional safeguards that will be used to assure  
         the ethical treatment of vulnerable individuals. If applicable, submit a copy of any emergency plans/procedures  
         and medical referral lists in Appendix D. (Sample documents can be found online at  
         https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs precautions)  
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This study does not involve any vulnerable populations. Please see section 14, where the primary mitigations are 
described for each identified risk. Additionally, all participant activities will be supervised and monitored for relevant 
symptoms. If any participant experiences dizziness or related vestibular issues, or any other significant but unexpected 
side-effect, we will suspend the experiment, remove the HMD, have them sit and offer drinking water while assessing the 
situation. If escalation is required, the emergency plan and contact list is included in Appendix D.  During the debriefing all 
participants will be asked if they were injured or experienced any discomfort during their trials. The debriefing also serves 
to keep each participant under our supervision long enough to ensure no lingering or delayed effects. 

15B. If the internet, mobile apps, or other electronic means will be used to collect data, describe confidentiality  
         and/or security precautions that will be used to protect (or not collect) identifiable data? Include protections  
         used during collection of data, transfer of data, and storage of data.  If participant data may be obtained    
         and/or stored by apps during the study, describe. 

n/a 

15C. Does this research include purchase(s) that involve technology hardware, software or online services?  
          ☐  YES      ☒  NO  
          If YES: 

A. Provide the name of the product      Click or tap here to enter text. 
and the manufacturer of the product    Click or tap here to enter text. 

B. Briefly describe use of the product in the proposed human subject’s research.   
Click or tap here to enter text. 
 

C. To ensure compliance with AU’s Electronic and Information Technology Accessibility Policy, contact 
AU IT Vendor Vetting team at vetting@auburn.edu to learn the vendor registration process (prior to 
completing the purchase). 

D. Include a copy of the documentation of the approval from AU Vetting with the revised submission. 
 
15D. Additional Safeguards 
          Will DEXA, pQCT, or other devices which emit radiation be used? ☐  Yes   ☒  No 
          If yes, the IRB will notify the Auburn Department of Risk Management and Safety, who will contact the  
          Alabama Department of Public Health (ADPH) and secure approval. Research which includes device(s)  
          which emit radiation may NOT be initiated NOR will IRB stamped consent documents be issued until the    
          IRB is notified of ADPH approval. 

          Will a Certificate of Confidentiality (CoC) issued by NIH be obtained ☐ Yes ☒ No If yes, include CoC  
          language in consent documents and include the documentation of CoC approval. Research which includes       
          a CoC may not be initiated NOR will IRB stamped consent documents be issued until the IRB is notified of  
          CoC approval.  AU Required CoC Language 

          Is the study a clinical trial? ☐ Yes  ☒ No  
          If yes, provide the National Clinical Trial (NCT) # Click or tap here to enter text.  and include required clinical  
          trial information in all consent documents. AU Clinical Trial Information 

16. Benefits 

16A. List all realistic direct benefits participants can expect by participating in this study. (Compensation is not a  
         benefit)  If participants will not directly benefit check here. ☒  

There are no direct benefits for participants in this study. It will offer all of them an opportunity to interact with projection 
and/or head-mounted AR hardware and training methods for the first time. This may lead them to a greater appreciation 
for the benefits and opportunities these technologies offer. 

16B. List realistic benefits for the general population that may be generated from this study. 

First Investigation 
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Turnover in the workforce and the lack of skilled labor necessitates scalable, efficient training methods. Furthermore, the 
shift from mass production to mass customization forces operators to contend with wide variance in the assembly steps 
required at each workstation. Together, these trends demand innovative methods for operator training and support. 

Augmented and mixed reality are expected to help fill that need, but it is a fragmented market with a variety of solutions. 
Few studies explore the relationship between those methods (and the affordances that differentiate them) and 
corresponding learning rates and transfer. We believe this investigation will make meaningful contributions to that effort, 
helping to build a cohesive understanding of the utility of these systems and best practices for their application. 

Second Investigation 
The ultimate goal of this investigation is to develop a smart production system through the integration of Lean and 
Industry 4.0 (I-4.0) technology. However, still, in the literature, there is a research gap to see how the Lean and I-4.0 
technologies are aligned. Through this investigation, this research gap would be mitigated. Additionally, the proposed 
production model will be transferred to Small and Medium Enterprises (SMEs), and thus millions of people will be 
benefited.  

Additionally, by investigating the different impacts of technology and workplace changes on participants with few or many 
self-reported behavioral control symptoms, recommendations for future implementation can be made to best suit workers 
with conditions, such as ADD and ADHD. Designing manufacturing workplaces with an end goal of universal design that 
will be better suited for a variety of workers will benefit many in the workplace.  

17. Protection of Data 

17A. Data are collected: 

 ☐ Anonymously with no direct or indirect coding, link, or awareness by key personnel of who participated 
                 in the study (skip to item E) 

 ☐ Confidentially, but without a link to participant’s data to any identifying information (collected as  
                 “confidential” but recorded and analyzed  “anonymous”) (Skip to item E). 

 ☒ Confidentially with collection and protection of linkages to identifiable information. 

17B. If data are collected with identifiers and coded or as coded or linked to identifying information,  
         describe the identifiers and how identifiers are linked to participants’ data. 

In addition to the consent form, a code list will be maintained that includes identifying data of each participant (name, 
contact information, and ID number). This will be linked to all other data collection forms by the participant number. The 
consent forms and code list will be maintained on paper only, to facilitate secure storage and disposal (shredding). The 
consent form will not include reference to the participant’s ID number. Only the code list will directly connect participants 
to their data. 

The video recordings may also allow for participants to be identified, though the first-person recording will not allow a view 
of their face and the third-person view will focus on the work area. If the recorders do not provide a video-only option, 
audio from those sessions, which may also provide identifying data, will be stripped from the recordings before storage. 

17C. Provide the rationale for need to code participants’ data or link the data with identifying  
         information. 

Only for the purpose of contacting participants while the protocol is open. Once completed, the code list will be destroyed, 
making the data anonymous. 

17D. Describe how and where identifying data and/or code lists will be stored. (Building, room number,  
         AU BOX?) Describe how the location where data is stored will be secured. For electronic data,  
         describe security measures. If applicable, describe where IRB-approved and participant signed  
         consent documents will be kept on campus for 3 years after the study ends. 

Signed consent forms and the code list will be kept in a secure, locked file in offices 3301J (first investigation) or 0317 
(second investigation) of Shelby Center. 



Revised 07/12/2022 

 

21 
17E. Describe how and where data will be stored (e.g., hard copy, audio/ visual files, electronic data,  
         etc.), and how the location where data is stored is separated from identifying data and will be  
         secured. For electronic data, describe security. Note use of a flash drive or portable hard drive is  
         not appropriate if identifiable data will be stored; rather, identifying participant data must be  
         stored on secured servers. 

All electronic data pertaining to the study will be stored on a secured server. Non-identifiable data will be available to other 
members of the research team. 

17F. List the names of all who will have access to participants’ data? (If a student PI, the faculty advisor  
        must have full access and be able to produce study data in the case of a federal or institutional audit.) 

• Consent forms and code list: Dan O'Leary, Victoria Ballard, Md Monir Hossain, Dr. Richard Sesek, Dr. Gregory 
Purdy 

• Non-identifiable data: full research team, by request 

17G. When is the latest date that identifying information or links will be retained and how will that  
         information or links be destroyed? (Check here if only anonymous data will be retained ☒) 

December 2023 
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(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 

WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

INFORMED CONSENT 
for a Research Study entitled 

The Effects of Augmented Instruction on Manufacturing Assembly Training 

Concise Summary 
You are being asked to take part in a research study. This research study is voluntary, meaning 
you do not have to take part in it. The procedures, risks, and benefits are fully described further in 
the consent form. The purpose of this study is to measure the effect of augmented instruction on 
learning rates and skills transfer for industrial assembly tasks. Following an initial phone screening 
the experiment will be scheduled at your convenience. After a brief orientation you will be asked 
to learn a simulated manufacturing assembly task – building model “cars” with LEGO® bricks. 
For this phase you will be randomly assigned one of the following forms of instructional media: 
paper work instructions (PWI), projected augmented reality (PAR), head-mounted AR (HMDAR), 
or head-mounted mixed reality (HMDMR). After a 10-minute training session you will be asked 
to repeat the assembly task from memory for 4 cars. Paper work instructions will remain available 
for reference as needed. Finally, you will be asked to complete a survey with questions about the 
experience and related personal traits. The entire process will take 45-60 minutes. 

This study has some risk of physical and psychological discomfort, including fatigue, dizziness, 
eyestrain, and performance anxiety. Participants assigned the HMD instructional media are most 
susceptible to physical discomfort due to the nature of its display system, which can also increase 
the risk of tripping and impact. Finally, all of your personally identifiable data is carefully secured 
to protect against the risk of a breach of confidentiality. Your safety and privacy is our utmost 
priority, and steps have been taken to mitigate all known risks. 

Beyond the opportunity to experience modern AR training methods, there are no direct benefits to 
you for participating in this study. The researchers will benefit from a greater understanding of 
this emerging field that could potentially benefit the community. The alternative is to not 
participate in this study. 
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You are invited to participate in a research study to measure the effect of augmented instruction 
on learning rates and skills transfer for industrial assembly tasks.  The study is being conducted by 
Dan O’Leary, Ph.D. Candidate, under the direction of Dr. Richard Sesek, Tim Cook Associate 
Professor in the Auburn University Department of Industrial and Systems Engineering.  You were 
selected as a possible participant because you meet all the following qualifications: 

1. Are not prone to motion sickness. 
2. Have no prior experience with head-mounted or projected Augmented Reality (AR) 

systems. 
3. Have no prior experience building cars in the Tiger Motors Lean Education Center 

(Lean Lab, aka LEGO Lab) as part of INSY 5800/6800 or otherwise. 
4. Are age 18 or older. 

What will be involved if you participate?  
If you decide to participate in this research study, you will be asked to follow a mix of paper and 
augmented (projected or head-mounted AR) work instructions to build LEGO car models in a 
realistic manufacturing setting.  Your total time commitment will be approximately 45-60 minutes. 
You will be required to wear a HoloLens2 head-mounted display (HMD) and video of your session 
will be recorded for later analysis. Another video camera will capture the work area from above. 
Camera placement is designed to prevent / limit the capture of personally identifiable imagery. 
Fully redacted versions of these videos, wherein any personally identifiable imagery is removed, 
will be kept indefinitely. Original recordings will be deleted within 1 year of the protocol’s 
completion. 

Are there any risks or discomforts? 
The risks associated with participating in this study are identified below. 

1. Physical discomfort and/or fatigue related to the weight of the HoloLens2 HMD. 
2. Vestibular and/or visual discomfort for participants assigned to the HMD AR instructional 

methods, which may cause mild dizziness, eye strain, and related effects in some users. 
3. Psychological discomfort may be experienced by those prone to anxiety when encountering 

time and performance-based measures. 
4. Trip and impact risk due to slightly altered field of view and reduced peripheral vision 

while wearing the HoloLens2 HMD. 
5. Participant confidentiality may be breached if identifying data is compromised or 

participants are observed entering, leaving, or taking part in the experiment. 
6. Exposure to COVID-19 or other respiratory illnesses, such as the flu. 

The discomforts identified are considered mild and unlikely. The HoloLens2 is well-balanced and 
uses a state-of-the-art optical see-through design that limits display-related discomforts. To 
minimize the risk of tripping and impact, participants are largely stationary in a well-lit area that 
is free of hazards. The HoloLens2 features a wireless design, which eliminates cables as a source 
of tripping hazard. Finally, all activities will be supervised, and participants will be continuously 
monitored for relevant symptoms. 
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Confidentiality of the study data is of utmost importance. All research personnel are trained in 
research ethics and are aware of procedures to protect the confidentiality of participants and 
associated data. Paper files with personally identifiable information will be secured in an office 
that only the PI and Faculty Advisor have access to. Electronic data, including video recordings, 
will be maintained on a password-protected computer accessible only to the research team. 

To mitigate the risk of exposure to COVID-19 and other respiratory illnesses, the research team 
will follow University policies outlined on the Human Research COVID-19 Precautions page. All 
work surfaces and equipment will be wiped down before and after each participant, and all 
necessary supplies (e.g. masks, hand sanitizer) will be made available. The research staff will 
follow the University’s guidance on self-screening. Finally, conditions will be monitored, and 
precautions adjusted as necessary throughout the data collection process. 

Are there any benefits to yourself or others? 
There are no direct benefits from participating in this study. However, it is a unique opportunity 
for eligible participants to interact with projection and/or head-mounted AR hardware and training 
methods. This may lead them to a greater appreciation for the benefits and opportunities these 
technologies offer. 

Will you receive compensation for participating? 
All volunteers recruited from the Auburn University community will be eligible for up to $100 in 
participation and performance related prizes. Odds of winning one of the eight available prizes 
will depend on the number of qualifying participants. Attendance and participation in the end of 
semester open house event is required for some of the prizes. 

Volunteers from the manufacturing industry will be given $40 in cash / gift card(s) for their 
participation. 

Are there any costs? 
There is no cost for you to participate in this study. Auburn University has not provided for any 
payment if you are harmed as a result of participating in this study. 

If you change your mind about participating, you can withdraw at any time during the study.  
Your participation is completely voluntary.  If you choose to withdraw, your data can be withdrawn 
as long as it is identifiable. Your decision about whether or not to participate or to stop participating 
will not jeopardize your future relations with Auburn University, the Department of Industrial and 
Systems Engineering or any member of the research team. 

Your privacy will be protected.  Any information obtained in connection with this study will 
remain confidential.  Information obtained through your participation may be used in a variety of 
capacities, including fulfillment of educational requirements, publication in professional journals, 
and/or presentation at professional meetings. In any case, your identity will not be revealed, and 
your information will remain private. 
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If you have questions about this study, please ask now or contact Dan O’Leary at  
djo0008@auburn.edu, 407-399-3189, or Dr. Richard Sesek at rfs0006@auburn.edu, 334-728-
1438.  A copy of this document will be given to you to keep. 

If you have questions about your rights as a research participant, you may contact the Auburn 
University Office of Research Compliance or the Institutional Review Board by phone (334)-844-
5966 or e-mail at IRBadmin@auburn.edu or IRBChair@auburn.edu. 

HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE WHETHER 
OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH STUDY. YOUR 
SIGNATURE INDICATES YOUR WILLINGNESS TO PARTICIPATE. 

 

___________________________________  ____________________________________ 
Participant's signature Date Investigator obtaining consent Date 
 

___________________________________  ____________________________________ 
Printed Name  Printed Name 
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(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 

WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

INFORMED CONSENT 
for a Research Study entitled 

Studying Manufacturing with LEGO® Research 

Concise Summary 
You are being asked to take part in a research study. This research study is voluntary, meaning 
you do not have to take part in it. The procedures, risks, and benefits are fully described further in 
the consent form. The purpose of this study is to measure the effect of Lean Tools and Industry 
4.0 Technologies on productivity, learning rates, and skills transfer for industrial assembly tasks. 
Following an initial phone screening, the experiment will be scheduled at your convenience. After 
a brief orientation, you will be asked to learn a simulated manufacturing assembly task – building 
model “cars” with LEGO® bricks. For this phase you will be randomly assigned an order to 
complete the following treatments: paper work instructions (PWI), assembly with a pre-completed 
model for quality checks, an inspection camera for quality checks, and both the pre-completed 
model and inspection camera. You will be asked to complete four car assemblies for training using 
the paper work instructions prior to using the prescribed tasks. After the training, each treatment 
will last 10 minutes for a  total of four treatments. Paper work instructions will remain available 
for reference as needed. Between each task you will be asked to complete two brief surveys about 
your experience.  Finally, you will be asked to complete a survey with questions about the 
experience and related personal traits. The entire process will take 70-90 minutes. 

This study has some risk of physical and psychological discomfort, including fatigue and 
performance anxiety. Finally, all of your personally identifiable data is carefully secured to protect 
against the risk of a breach of confidentiality. Your safety and privacy is our utmost priority, and 
steps have been taken to mitigate all known risks. 

Beyond the opportunity to experience training in the Tiger Motors Lab, there are no direct benefits 
to you for participating in this study. The researchers will benefit from a greater understanding of 
this emerging field that could potentially benefit the community. The alternative is to not 
participate in this study. 
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You are invited to participate in a research study to measure the effect of Lean Tools and 
Industry 4.0 Technologies on productivity.  The study is being conducted by Victoria Ballard and 
Md Monir Hossain, Ph. D. students, under the direction of Dr. Richard Sesek, Tim Cook Associate 
Professor in the Auburn University Department of Industrial and Systems Engineering.  You were 
selected as a possible participant because you meet all the following qualifications: 

1. Are age 18 or older. 

What will be involved if you participate?  
If you decide to participate in this research study, you will be asked to follow work instructions to 
build LEGO car models in a realistic manufacturing setting.  Your total time commitment will -be 
approximately 70-90 minutes. Video of your session will be recorded for later analysis. Camera 
placement is designed to prevent / limit the capture of personally identifiable imagery. 

Are there any risks or discomforts? 
The risks associated with participating in this study are identified below. 

1. Psychological discomfort may be experienced by those prone to anxiety when encountering 
time and performance-based measures. 

2. Participant confidentiality may be breached if identifying data is compromised or 
participants are observed entering, leaving, or taking part in the experiment. 

Confidentiality of the study data is of utmost importance. All research personnel are trained in 
research ethics and are aware of procedures to protect the confidentiality of participants and 
associated data. Paper files with personally identifiable information will be secured in an office 
that only the PI and Faculty Advisor have access to. Electronic data, including video recordings, 
will be maintained on a password-protected computer accessible only to the research team. 

Are there any benefits to yourself or others? 
There are no direct benefits from participating in this study. However, it is a unique opportunity 
for eligible participants to participate in research in the Tiger Motors Lab. This may lead them to 
a greater appreciation for the benefits and opportunities these technologies offer. 

Will you receive compensation for participating? 
All volunteers recruited from the Auburn University community will be eligible for up to $100 in 
participation and performance related prizes. Odds of winning one of the eight available prizes 
will depend on the number of qualifying participants. Attendance and participation in the end of 
semester open house event is required for some of the prizes. 

Are there any costs? 
There is no cost for you to participate in this study. Auburn University has not provided for any 
payment if you are harmed as a result of participating in this study. 

If you change your mind about participating, you can withdraw at any time during the study.  
Your participation is completely voluntary.  If you choose to withdraw, your data can be withdrawn 
as long as it is identifiable. Your decision about whether or not to participate or to stop participating 
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will not jeopardize your future relations with Auburn University, the Department of Industrial and 
Systems Engineering or any member of the research team. 

Your privacy will be protected.  Any information obtained in connection with this study will 
remain confidential.  Information obtained through your participation may be used in a variety of 
capacities, including fulfillment of educational requirements, publication in professional journals, 
and/or presentation at professional meetings. In any case, your identity will not be revealed, and 
your information will remain private. 

If you have questions about this study, please ask now or contact Victoria Ballard at  
victoria.ballard@auburn.edu,360-632-1359, or Dr. Richard Sesek at rfs0006@auburn.edu, 334-
728-1438.  A copy of this document will be given to you to keep. 

If you have questions about your rights as a research participant, you may contact the Auburn 
University Office of Research Compliance or the Institutional Review Board by phone (334)-844-
5966 or e-mail at IRBadmin@auburn.edu or IRBChair@auburn.edu. 

HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE WHETHER 
OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH STUDY. YOUR 
SIGNATURE INDICATES YOUR WILLINGNESS TO PARTICIPATE. 

 

___________________________________  ____________________________________ 
Participant's signature Date Investigator obtaining consent Date 
 

___________________________________  ____________________________________ 
Printed Name  Printed Name 
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Appendix B - Recruiting Materials 

In-Class Recruiting Script 
Hello, Class. 
Industrial Engineering graduate students pursuing their PhDs are recruiting participants for a 
research study. They are investigating the effectiveness of Mixed Reality, Lean, and Industry 4.0 
methods for operator training and support in manufacturing. These investigations hope to better 
understand the relationships between those methods, learning effectiveness, and operator 
performance. A flyer with details of the study will be emailed to each of you. If you are interested, 
please follow up as described therein. 

Email Script 
Dear Student, 
Please review the attached flyer, which provides details of the study recently described in    class 
name   . You are invited to participate in a research study on the effectiveness of Mixed Reality, 
Lean, and Industry 4.0 methods for operator training and support in manufacturing. The 
research team is conducting this study as Ph.D. Candidates under the supervision of Dr. Richard 
Sesek, Tim Cook Associate Professor in the Department of Industrial and Systems Engineering at 
Auburn University. 
If you would like to participate, simply respond to this email or via text / phone to 407-399-3189. 
Questions or concerns can be directed to me through the same channels, or you may contact my 
advisor Dr. Sesek (sesek@auburn.edu). 
Thank you for your consideration, 

Email Script, Industry 
Dear Manufacturing Professional, 
You are invited to participate in a research study on the effectiveness of Mixed Reality, Lean, 
and Industry 4.0 methods for operator training and support in manufacturing. Please review the 
attached flyer for details. The research team is conducting this study as Ph.D. Candidates under 
the supervision of Dr. Richard Sesek, Tim Cook Associate Professor in the Department of 
Industrial and Systems Engineering at Auburn University. 
If you would like to participate, simply visit the website. Questions or concerns can be directed to 
the research team at leanmanufacturingteam@auburn.edu, or their faculty advisor Dr. Richard 
Sesek (sesek@auburn.edu). 
Thank you for your consideration, 



 

 

Confirmation Email 
Dear <student name>, 
Thank you for your interest in our study, and for taking the time to discuss it with me. I’m happy 
to confirm that your trial is scheduled as follows: 
Date and Time:<date and time> 
Location: Tiger Motors Lean Education Center (Lean Lab, aka LEGO® Lab), in the basement of 
the Shelby Center for Engineering Technology, room 0317, located at 345 W Magnolia Ave, 
Auburn, AL 36849 
Please arrive on time. We anticipate that it will take 45-90 minutes to complete the session. 
If you need to reschedule or have further questions, feel free to respond to this email or call / text 
me at 407-399-3189. 
Thank you for your participation, 

Invitation to Open House Event 
Dear Participant, 
Thank you for volunteering for our research studies. We are writing to invite you to an open house 
event on <DATE and TIME>. This is an opportunity for you to try some of the methods and 
technologies that you may not have experienced before, along with a variety of other software on 
the HoloLens 2 device. 
All attendees will have additional chances to win cash or gift cards worth up to $100 by 
participating in a single experiment designed to test how well you retained the prior training. 
Food and drink will also be provided. 
Hope to see you there! 
The Research Team 

Flyers 
On the following pages are flyers for both investigations, formatted as posters and slides. 

1. First investigation, printed poster format. 
2. Second investigation, printed poster format. 
3. First investigation, manufacturing recruitment, printed poster format. 
4. First investigation, displayed slide format. 
5. Second investigation, displayed slide format. 



 

 

Augmented Reality Research Study 
Training methods for tomorrow’s workforce, today! 

 

The Effects of Augmented Instruction on Manufacturing 
Assembly Training 

Interested in Augmented and Mixed Reality? 
Want to experience the latest in Projected and Head-Mounted AR? 

You may be eligible to participate in an important study! 

The purpose of this study is to measure the effect of augmented instruction on learning 
rates and skills transfer for industrial assembly tasks. The effect of projected (LightGuide) 
and head-mounted (HoloLens2) augmented reality methods will be compared with paper-
based materials for instruction and support. 
This study is open to anyone 18 and older that isn’t prone to motion sickness, has no prior 
experience with head-mounted or projected AR systems, and hasn’t worked in in the Tiger 
Motors Lean Education Center (aka LEGO® Lab). It takes 45 to 60 minutes to complete. 

!! Participants are eligible for up to $100 in cash / gift card prizes! !! 

Conducted by graduate students in the 
Department of Industrial & Systems 
Engineering at Auburn University. 

Sign up: https://aub.ie/TigerMotorsResearch or 
scan the QR Code. Contact the research team 
at leanmanufacturingteam@auburn.edu with 

any other questions. Scan to Sign Up! 



 

 

Studying Manufacturing with LEGO(R) Research  
Participate in research in Auburn’s Tiger Motors Lab! 

 

The Effects of Lean Tools and Industry 4.0 Technology on 
Manufacturing Assembly Performance 

Want to help the future of manufacturing research? 
Want to use the latest vision inspection equipment and play with LEGO? 

You may be eligible to participate in an important study! 

The purpose of this study is to measure the effect of Lean Tools and Industry 4.0 
Technology on industrial assembly tasks. The effect of a model check piece, camera 
inspection technology, and a combination of the two will be compared with paper-
based materials. Participants will assemble one station of LEGO vehicles in four 
scenarios. The time for completion is approximately 1.5 hours. 

!! Participants are eligible for up to $100 in cash / gift card prizes! !! 

This study is open to anyone 18 and older. 

Conducted by graduate students in the 
Department of Industrial & Systems 
Engineering at Auburn University. 

Sign up: https://aub.ie/TigerMotorsResearch or 
scan the QR Code. Contact the research team at 
leanmanufacturingteam@auburn.edu with any 

other questions. 
 



 

 

Manufacturing Volunteers Needed! 
Augmented Reality Research Study 

The Effects of Augmented Instruction on Manufacturing 
Assembly Training 

Are You Interested in Augmented and Mixed Reality? 

Do You Want to experience the latest in Projected and Head-Mounted AR? 

Build LEGO
®
 cars in Auburn’s famous Lean Education Lab, for Science! 

The purpose of this study is to measure the effect of augmented instruction on 
learning rates and skills transfer for industrial assembly tasks. The effect of projected 
(LightGuide) and head-mounted (HoloLens2) augmented reality methods will be 
compared with paper-based materials for instruction and support. 

All volunteers will receive a $40 gift card as thanks for their participation. 

This study is open to operators 18 and older, that aren’t prone to motion sickness, 
and have no prior experience with similar AR systems or Auburn’s Lean Education 
Center. For details, or to sign up, head to https://aub.ie/TigerMotorsResearch or scan 
the QR code below. 

Conducted by graduate students in the 
Department of Industrial & Systems 
Engineering at Auburn University. 

Contact the research team at 
leanmanufacturingteam@auburn.edu 

with any other questions. 



 

 



 

 

 



 

 

Appendix C - Data Collection Instruments 

See attached, on the pages that follow: 
1. Subject Recruitment Data Sheet 
2. Code Sheet 
3. Participant Intake Sheet 
4. Data Collection Sheet #1 
5. Data Collection Sheet #2 
6. Task Loading Index (NASA TLX) 
7. System Usability Scale 
8. Behavioral Control Survey 
9. General Feedback 



 

 

Subject Recruitment Data Sheet 

Eligibility Checklist: 

� 18 or older 
� Not prone to motion sickness 
� No prior experience with projected or head-mounted augmented reality systems 
� No prior experience building cars in the Tiger Motors Lean Education Center (Lean Lab, 

aka LEGO® Lab) as part of INSY 5/6800 or otherwise 

If eligible, record name, contact info (phone, email), and subject number in code sheet. 

Participant Number:  ____________________  

Gender:  ______________________________  

Age:  ________________________________  

Eligible: ____ I1 ____ I2 ____ Both 

Scheduled Trial(s):  _____________________  

 

Eligibility Checklist: 

� 18 or older 
� Not prone to motion sickness 
� No prior experience with projected or head-mounted augmented reality systems 
� No prior experience building cars in the Tiger Motors Lean Education Center (Lean Lab, 

aka LEGO® Lab) as part of INSY 5/6800 or otherwise 

If eligible, record name, contact info (phone, email), and participant number in code sheet. 

Participant Number:  ____________________  

Gender:  ______________________________  

Age:  ________________________________  

Eligible: ____ I1 ____ I2 ____ Both 

Scheduled Trial(s):  _____________________  

Notes: 

Notes: 



 

 

Participant Intake Sheet, p1 / 2 

Participant #: __________  Date: __________ 

1. Gender: 

� Female 

� Male 

� Other 
2. Age:  _____ 

3. Race (select those with which you identify): 

� American Indian or Alaska Native 

� Asian 

� Black or African-American 

� Native Hawaiian or Other Pacific Islander 

� White 

� More than one race 

� Unknown or not reported 
4. Ethnicity (select ONLY one with which you most closely identify): 

� Hispanic or Latino 

� Not Hispanic or Latino 

� Unknown or not reported 

5. Country of Origin:  _______________________ 
6. What language do you mainly speak at home? 

� English 

� Other 
7. What is the highest level of school you have completed or the highest degree you have 

received? 

� Less than high school degree 

� High school degree or equivalent (e.g., GED) 

� Some college but no degree 

� Associate degree 

� Bachelor degree 

� Graduate degree:  ____ Master or ____ PhD 



 

 

Participant Intake Sheet, p2 / 2 

Participant #: __________  Date: __________ 

8. If you are currently pursuing a degree, please complete the following: 
College (e.g. Education or Business):  _______________________ 
Program (e.g. MS Adult Ed or BS Accounting) :  _______________________ 

9. Which of the following statements best describes your experience building LEGO 
models? 
� I have little to no experience building LEGO models. 

� I have some experience building LEGO models. 
� I have lots of experience building LEGO models. 
� I consider myself an expert in building LEGO models. 

10. Please indicate your level of manufacturing experience 
� I have no experience in manufacturing. 

� I have taken one or more classes in manufacturing. 
� I have held a part-time or temporary position in manufacturing. 
� I have 1 or more years of experience working in manufacturing. 

11. Do you normally wear corrective lenses?  ____ Glasses  ____ Contacts  ____ Neither 
If yes, do you plan to wear them during this experiment?  ____ Yes  ____ No 

12. Are you color blind?  ____ Yes  ____ No 
13. Do you have any other condition that might affect your performance in this study? 

____ Yes  ____ No 
14. What is your height?  ____ feet  ____ inches 
15. Have you ever run an event of 5 kilometers or more?  ____ Yes  ____ No 
16. How did you learn about this study?  _______________________ 

 



 

 

Code Sheet 

Part. # Date Name Email Phone Assigned Notes 
     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

     1 2  

CONFIDENTIAL PAGE ___ of ___ 



 

 

Data Collection Sheet #1 

Participant #: __________  Date: __________  

First Investigation  Second Investigation 
Circle Training Treatment:  Treatment Number Treatment 

PWI  /  PAR  /  HMDAR  /  HMDMR  1   /   2   /   3   /   4 Control  /  Lean  /  I-4.0  /  Lean+I-4.0 
 

Car # TCT 
Errors Made Uncorrected Error Types PWI Ref 

Count Trial Notes 
Corrected Uncorrected Sel Pos Rot 

1 
        

2 
        

3 
        

4 
        

5 
        

6 
        

7 
        

8 
        

9 
        

10 
        

Observer Initials: ________ 



 

 

Data Collection Sheet #2 

Participant #: __________  Date: __________  

First Investigation  Second Investigation 
Circle Training Treatment:  Training with 

PWI  /  PAR  /  HMDAR  /  HMDMR  Paper Work Instructions 
 

Car # TCT 
Errors Made Uncorrected Error Types PWI Ref 

Count Trial Notes 
Corrected Uncorrected Sel Pos Rot 

1         

2         

3         

4         

General Notes: 

 
 
 
 
 
 

Observer Initials: ________ 
 



 

 

Task Loading Index, p1 / 2 

Participant #: __________ Invest / Treat: __________ Date: __________ 

Sources of Workload Evaluation 

Consider the following definitions: 

Title Range Description 
Mental 

Demand 
Low / High How much mental and perceptual activity was required (e.g. 

thinking, deciding, calculating, remembering, looking, searching, 
etc.)? Was the task easy or demanding, simple or complex, exacting 
or forgiving? 

Physical 
Demand 

Low / High How much physical activity was required (e.g. pushing, pulling, 
turning, controlling, activating, etc.)? Was the task easy or 
demanding, slow or brisk, slack or strenuous, restful or laborious? 

Temporal 
Demand 

Low / High How much time pressure did you feel due to the rate or pace at 
which the tasks or task elements occurred? Was the pace slow and 
leisurely or rapid and frantic? 

Performance Perfect / Failure How successful do you think you were in accomplishing the goals of 
the task set by the experiment (or yourself)? How satisfied were you 
with your performance in accomplishing these goals? 

Effort Low / High How hard did you have to work (mentally and physically) to 
accomplish your level of performance? 

Frustration Low / High How insecure, discouraged, irritated, stressed, and annoyed versus 
secure, gratified, content, relaxed, and complacent did you feel 
during the task? 

For each of the following pairs, circle the word that represents the more important contributor to 
workload for the specific task(s) you performed in this experiment. 

Effort 
or 

Performance 

Temporal Demand 
or 

Frustration 

Physical Demand 
or 

Performance 

Temporal Demand 
or 

Mental Demand 

Mental Demand 
or 

Physical Demand 

Temporal Demand 
or 

Effort 

Physical Demand 
or 

Frustration 

Frustration 
or 

Effort 

Performance 
or 

Mental Demand 

Effort 
or 

Physical Demand 

Performance 
or 

Frustration 

Physical Demand 
or 

Temporal Demand 

Performance 
or 

Temporal Demand 

Mental Demand 
or 

Effort 

Frustration 
or 

Mental Demand 

 



 

 

Task Loading Index, p2 / 2 

Participant #: __________ Invest / Treat: __________ Date: __________ 

Workload Rating Scales 
For each of the following 6 questions, consider the assembly task you just completed. Record 
your immediate response to each item by putting an “X” at the point which matches your 
experience. 

1. Mental Demand How mentally demanding was the task? 

 
Very Low Very High 

2. Physical Demand How physically demanding was the task? 

 
Very Low Very High 

3. Temporal Demand How hurried or rushed was the pace of the task? 

 
Very Low Very High 

4. Performance How successful were you in accomplishing what you were 
asked to do? 

 
Perfect Failure 

5. Effort How hard did you have to work to accomplish your level 
of performance? 

 
Very Low Very High 

6. Frustration How insecure, discouraged, irritated, stressed, and 
annoyed were you? 

 
Very Low Very High 



 

 

System Usability Scale 

Participant #: __________ Invest / Treat: __________ Date: __________ 

For each of the following 10 questions, consider the assembly task you just completed. Record 
your immediate response to each item by circling the number that you feel best represents your 
experience. 

  Strongly 
Agree 

 Strongly 
Disagree 

1 I think that I would like to use this system 
frequently. 1 2 3 4 5 

2 I found the system unnecessarily complex. 1 2 3 4 5 

3 I thought the system was easy to use. 1 2 3 4 5 

4 I think that I would need the support of a 
technical person to be able to use this system. 1 2 3 4 5 

5 I found the various functions in this system 
were well integrated. 1 2 3 4 5 

6 I thought there was too much inconsistency in 
this system. 1 2 3 4 5 

7 I would imagine that most people would learn 
to use this system very quickly. 1 2 3 4 5 

8 I found the system very cumbersome to use. 1 2 3 4 5 

9 I felt very confident using the system. 1 2 3 4 5 

10 I needed to learn a lot of things before I could 
get going with this system. 1 2 3 4 5 



 

 

Behavioral Control Survey 

Participant #: __________  Date: __________ 

Please answer the questions below, rating yourself on each of the criteria 
shown using the scale on the right side of the page. As you answer each 
question, place an X in the box that best describes how you have felt and 
conducted yourself over the past 6 months.  

N
ev

er
 

Ra
re

ly
 

So
m

et
im

es
 

O
fte

n 

Ve
ry

 O
fte

n  

 

1. How often do you have trouble wrapping up the final details of a 
project, once the challenging parts have been done?      

2. How often do you have difficulty getting things in order when you 
have to do a task that requires organization?      

3. How often do you have problems remembering appointments or obligations?      

4. When you have a task that requires a lot of thought, how often do 
you avoid or delay getting started?      

5. How often do you fidget or squirm with your hands or feet when 
you have to sit down for a long time?      

6. How often do you feel overly active and compelled to do things, 
like you were driven by a motor?      

7. How often do you make careless mistakes when you have to work on a 
boring or difficult project?      

8. How often do you have difficulty keeping your attention when you are doing 
boring or repetitive work?      

9. How often do you have difficulty concentrating on what people say 
to you, even when they are speaking to you directly?      

10. How often do you misplace or have difficulty finding things at home or at work?      

11. How often are you distracted by activity or noise around you?      

12. How often do you leave your seat in meetings or other situations 
in which you are expected to remain seated?      

13. How often do you feel restless or fidgety?      

14. How often do you have difficulty unwinding and relaxing when you 
have time to yourself?      

15. How often do you find yourself talking too much when you are in social 
situations?      

16. When you’re in a conversation, how often do you find yourself 
finishing the sentences of the people you are talking to, before 
they can finish them themselves? 

     

17. How often do you have difficulty waiting your turn in situations 
when turn taking is required?      

18. How often do you interrupt others when they are busy?      

 



 

 

General Feedback 

Participant #: __________  Date: __________ 

Please share with us any other feedback you have regarding this experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For Research Associate Only 
Follow-up? _____ Injury? _____ Discomfort? _____ Initial: _____ 



 

 

Appendix D - Emergency Plan, Contact List, and COVID Resources 
Emergency Action Plan 

In Case of Emergency DIAL 911 
For non-emergency assistance: 

Service On-Campus Off-Campus 
Ambulance (EMS) 9-749-8504 334-749-8504 

City of Auburn Police 9-501-3100 334-501-3100 

Auburn Medical Pavilion 9-364-3000 334-364-3000 

East Alabama Medical Center, Opelika 9-749-3411 334-749-3411 

Research Team Contact List: 

Contact Phone Email 
Dan O’Leary, 

Principal Investigator 
407-399-3189 (cell) djo0008@auburn.edu 

Dr. Richard Sesek, 

Faculty Advisor 
334-728-1438 (cell) rfs0006@auburn.edu 

Victoria Ballard, 

Graduate Student 
360-632-1359 (cell) vzb0024@auburn.edu 

Dr. Gregory Harris, 

Faculty Advisor 
334-844-1407 (office) gah0015@auburn.edu 

Dr. John Evans, 

Faculty Advisor 
334-844-1418 (office) evansjl@auburn.edu 

Tom Devall, 

Tiger Motors Director 
334-740-3905 (office) tld0017@auburn.edu 

Industrial & Systems 

Engineering Department 
334-844-4340 (main office) insy@eng.auburn.edu 

Lab Location and Access: 

Tiger Motors Lean Education Center (Lean Lab, aka LEGO® Lab), Basement, Shelby Center, 

Auburn University, room 0317. Street address: 345 W Magnolia Ave, Auburn, AL 36849. 

Elevator access: exit the lab and turn left 

Stairwell access: exit the lab, turn left, proceed around the elevator in either direction. 

Stairwell entrance is on the inside wall behind the elevator. 

Emergency exit: exit the lab and turn right. Continue to exit at ground level. 

Emergency Equipment: 

First aid kit, eye wash and shower station are present, as are fire extinguisher and alarm pull. 



 

 

COVID-19 Resources 
CDC COVID-19 Data Tracker for Lee County, Alabama 

University Policies for Research Exposure and Related Resources: 

• Human Research COVID-19 Precautions 
• COVID-19 Guidance on Self Screening 
• AU Facilities COVID Building Readiness Status Page 

Auburn University Screening Protocol (source): 
All research participants should be screened remotely (by phone or Zoom) for fever, cough, 
and flu-like symptoms the day before, with a repeat screening at the time of an in-person visit. 
Appropriate screening questions might include the following, which could be modified to fit 
your participant population and the location of in-person interactions: 

1. Do you have a fever or Respiratory Symptoms? Symptoms include fever, acute 
respiratory infection, persistent cough, sore throat, fatigue and shortness of breath, or 
sudden loss of taste or smell with or without a fever. 

2. Are you waiting on COVID-19 test results? 
3. Have you been asked to self-isolate by your doctor? 
4. In the past three weeks, have you visited another state, country, or facility with a 

substantial or high community COVID-19 level (see CDC COVID-19 Community 
Levels)? 

5. Health/Vaccination Status - Do you have underlying medical conditions, or are you 
unvaccinated? 

Precautions Matrix: 

 



 

 

Appendix E - CITI Training Documentation 
See attached, on the pages that follow: 

1. Dan O’Leary (3) 
2. Victoria Ballard (9) 
3. Gregory Harris (1) 
4. Richard Sesek (3) 
5. Gregory Purdy (3) 
6. Md Monir Hossain (6) 
7. Diego Roberto Caputo Rodriguez (1) 
8. Alex Barras (1) 
9. Brown Teague (1) 
10. Carson Tillery (1) 
11. Kralyn Thomas (1) 
12. Yen-Ting Guo (1) 
13. Yuqing “Lucie” Wang (1) 
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Participant’s Initials: ______  Page 1 of 4 
  Version Date: 4/3/23 

 
(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 

WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

INFORMED CONSENT 
for a Research Study entitled 

The Effects of Augmented Instruction on Manufacturing Assembly Training 

Concise Summary 
You are being asked to take part in a research study. This research study is voluntary, meaning 
you do not have to take part in it. The procedures, risks, and benefits are fully described further in 
the consent form. The purpose of this study is to measure the effect of augmented instruction on 
learning rates and skills transfer for industrial assembly tasks. Following an initial phone screening 
the experiment will be scheduled at your convenience. After a brief orientation you will be asked 
to learn a simulated manufacturing assembly task – building model “cars” with LEGO® bricks. 
For this phase you will be randomly assigned one of the following forms of instructional media: 
paper work instructions (PWI), projected augmented reality (PAR), head-mounted AR (HMDAR), 
or head-mounted mixed reality (HMDMR). After a 10-minute training session you will be asked 
to repeat the assembly task from memory for 4 cars. Paper work instructions will remain available 
for reference as needed. Finally, you will be asked to complete a survey with questions about the 
experience and related personal traits. The entire process will take 45-60 minutes. 

This study has some risk of physical and psychological discomfort, including fatigue, dizziness, 
eyestrain, and performance anxiety. Participants assigned the HMD instructional media are most 
susceptible to physical discomfort due to the nature of its display system, which can also increase 
the risk of tripping and impact. Finally, all of your personally identifiable data is carefully secured 
to protect against the risk of a breach of confidentiality. Your safety and privacy is our utmost 
priority, and steps have been taken to mitigate all known risks. 

Beyond the opportunity to experience modern AR training methods, there are no direct benefits to 
you for participating in this study. The researchers will benefit from a greater understanding of 
this emerging field that could potentially benefit the community. The alternative is to not 
participate in this study. 
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You are invited to participate in a research study to measure the effect of augmented instruction 
on learning rates and skills transfer for industrial assembly tasks.  The study is being conducted by 
Dan O’Leary, Ph.D. Candidate, under the direction of Dr. Richard Sesek, Tim Cook Associate 
Professor in the Auburn University Department of Industrial and Systems Engineering.  You were 
selected as a possible participant because you meet all the following qualifications: 

1. Are not prone to motion sickness. 
2. Have no prior experience with head-mounted or projected Augmented Reality (AR) 

systems. 
3. Have no prior experience building cars in the Tiger Motors Lean Education Center 

(Lean Lab, aka LEGO Lab) as part of INSY 5800/6800 or otherwise. 
4. Are age 18 or older. 

What will be involved if you participate?  
If you decide to participate in this research study, you will be asked to follow a mix of paper and 
augmented (projected or head-mounted AR) work instructions to build LEGO car models in a 
realistic manufacturing setting.  Your total time commitment will be approximately 45-60 minutes. 
You will be required to wear a HoloLens2 head-mounted display (HMD) and video of your session 
will be recorded for later analysis. Another video camera will capture the work area from above. 
Camera placement is designed to prevent / limit the capture of personally identifiable imagery. 
Fully redacted versions of these videos, wherein any personally identifiable imagery is removed, 
will be kept indefinitely. Original recordings will be deleted within 1 year of the protocol’s 
completion. 

Are there any risks or discomforts? 
The risks associated with participating in this study are identified below. 

1. Physical discomfort and/or fatigue related to the weight of the HoloLens2 HMD. 
2. Vestibular and/or visual discomfort for participants assigned to the HMD AR instructional 

methods, which may cause mild dizziness, eye strain, and related effects in some users. 
3. Psychological discomfort may be experienced by those prone to anxiety when encountering 

time and performance-based measures. 
4. Trip and impact risk due to slightly altered field of view and reduced peripheral vision 

while wearing the HoloLens2 HMD. 
5. Participant confidentiality may be breached if identifying data is compromised or 

participants are observed entering, leaving, or taking part in the experiment. 
6. Exposure to COVID-19 or other respiratory illnesses, such as the flu. 

The discomforts identified are considered mild and unlikely. The HoloLens2 is well-balanced and 
uses a state-of-the-art optical see-through design that limits display-related discomforts. To 
minimize the risk of tripping and impact, participants are largely stationary in a well-lit area that 
is free of hazards. The HoloLens2 features a wireless design, which eliminates cables as a source 
of tripping hazard. Finally, all activities will be supervised, and participants will be continuously 
monitored for relevant symptoms. 
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Confidentiality of the study data is of utmost importance. All research personnel are trained in 
research ethics and are aware of procedures to protect the confidentiality of participants and 
associated data. Paper files with personally identifiable information will be secured in an office 
that only the PI and Faculty Advisor have access to. Electronic data, including video recordings, 
will be maintained on a password-protected computer accessible only to the research team. 

To mitigate the risk of exposure to COVID-19 and other respiratory illnesses, the research team 
will follow University policies outlined on the Human Research COVID-19 Precautions page. All 
work surfaces and equipment will be wiped down before and after each participant, and all 
necessary supplies (e.g. masks, hand sanitizer) will be made available. The research staff will 
follow the University’s guidance on self-screening. Finally, conditions will be monitored, and 
precautions adjusted as necessary throughout the data collection process. 

Are there any benefits to yourself or others? 
There are no direct benefits from participating in this study. However, it is a unique opportunity 
for eligible participants to interact with projection and/or head-mounted AR hardware and training 
methods. This may lead them to a greater appreciation for the benefits and opportunities these 
technologies offer. 

Will you receive compensation for participating? 
All volunteers recruited from the Auburn University community will be eligible for up to $100 in 
participation and performance related prizes. Odds of winning one of the eight available prizes 
will depend on the number of qualifying participants. Attendance and participation in the end of 
semester open house event is required for some of the prizes. 

Volunteers from the manufacturing industry will be given $40 in cash / gift card(s) for their 
participation. 

Are there any costs? 
There is no cost for you to participate in this study. Auburn University has not provided for any 
payment if you are harmed as a result of participating in this study. 

If you change your mind about participating, you can withdraw at any time during the study.  
Your participation is completely voluntary.  If you choose to withdraw, your data can be withdrawn 
as long as it is identifiable. Your decision about whether or not to participate or to stop participating 
will not jeopardize your future relations with Auburn University, the Department of Industrial and 
Systems Engineering or any member of the research team. 

Your privacy will be protected.  Any information obtained in connection with this study will 
remain confidential.  Information obtained through your participation may be used in a variety of 
capacities, including fulfillment of educational requirements, publication in professional journals, 
and/or presentation at professional meetings. In any case, your identity will not be revealed, and 
your information will remain private. 
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If you have questions about this study, please ask now or contact Dan O’Leary at  
djo0008@auburn.edu, 407-399-3189, or Dr. Richard Sesek at rfs0006@auburn.edu, 334-728-
1438.  A copy of this document will be given to you to keep. 

If you have questions about your rights as a research participant, you may contact the Auburn 
University Office of Research Compliance or the Institutional Review Board by phone (334)-844-
5966 or e-mail at IRBadmin@auburn.edu or IRBChair@auburn.edu. 

HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE WHETHER 
OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH STUDY. YOUR 
SIGNATURE INDICATES YOUR WILLINGNESS TO PARTICIPATE. 

 

___________________________________  ____________________________________ 
Participant's signature Date Investigator obtaining consent Date 
 

___________________________________  ____________________________________ 
Printed Name  Printed Name 

jkk0013
New Stamp



  Page 1 of 3 
  Version Date: 4/3/23 

 
(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 

WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

INFORMED CONSENT 
for a Research Study entitled 

Studying Manufacturing with LEGO® Research 

Concise Summary 
You are being asked to take part in a research study. This research study is voluntary, meaning 
you do not have to take part in it. The procedures, risks, and benefits are fully described further in 
the consent form. The purpose of this study is to measure the effect of Lean Tools and Industry 
4.0 Technologies on productivity, learning rates, and skills transfer for industrial assembly tasks. 
Following an initial phone screening, the experiment will be scheduled at your convenience. After 
a brief orientation, you will be asked to learn a simulated manufacturing assembly task – building 
model “cars” with LEGO® bricks. For this phase you will be randomly assigned an order to 
complete the following treatments: paper work instructions (PWI), assembly with a pre-completed 
model for quality checks, an inspection camera for quality checks, and both the pre-completed 
model and inspection camera. You will be asked to complete four car assemblies for training using 
the paper work instructions prior to using the prescribed tasks. After the training, each treatment 
will last 10 minutes for a  total of four treatments. Paper work instructions will remain available 
for reference as needed. Between each task you will be asked to complete two brief surveys about 
your experience.  Finally, you will be asked to complete a survey with questions about the 
experience and related personal traits. The entire process will take 70-90 minutes. 

This study has some risk of physical and psychological discomfort, including fatigue and 
performance anxiety. Finally, all of your personally identifiable data is carefully secured to protect 
against the risk of a breach of confidentiality. Your safety and privacy is our utmost priority, and 
steps have been taken to mitigate all known risks. 

Beyond the opportunity to experience training in the Tiger Motors Lab, there are no direct benefits 
to you for participating in this study. The researchers will benefit from a greater understanding of 
this emerging field that could potentially benefit the community. The alternative is to not 
participate in this study. 
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You are invited to participate in a research study to measure the effect of Lean Tools and 
Industry 4.0 Technologies on productivity.  The study is being conducted by Victoria Ballard and 
Md Monir Hossain, Ph. D. students, under the direction of Dr. Richard Sesek, Tim Cook Associate 
Professor in the Auburn University Department of Industrial and Systems Engineering.  You were 
selected as a possible participant because you meet all the following qualifications: 

1. Are age 18 or older. 

What will be involved if you participate?  
If you decide to participate in this research study, you will be asked to follow work instructions to 
build LEGO car models in a realistic manufacturing setting.  Your total time commitment will -be 
approximately 70-90 minutes. Video of your session will be recorded for later analysis. Camera 
placement is designed to prevent / limit the capture of personally identifiable imagery. 

Are there any risks or discomforts? 
The risks associated with participating in this study are identified below. 

1. Psychological discomfort may be experienced by those prone to anxiety when encountering 
time and performance-based measures. 

2. Participant confidentiality may be breached if identifying data is compromised or 
participants are observed entering, leaving, or taking part in the experiment. 

Confidentiality of the study data is of utmost importance. All research personnel are trained in 
research ethics and are aware of procedures to protect the confidentiality of participants and 
associated data. Paper files with personally identifiable information will be secured in an office 
that only the PI and Faculty Advisor have access to. Electronic data, including video recordings, 
will be maintained on a password-protected computer accessible only to the research team. 

Are there any benefits to yourself or others? 
There are no direct benefits from participating in this study. However, it is a unique opportunity 
for eligible participants to participate in research in the Tiger Motors Lab. This may lead them to 
a greater appreciation for the benefits and opportunities these technologies offer. 

Will you receive compensation for participating? 
All volunteers recruited from the Auburn University community will be eligible for up to $100 in 
participation and performance related prizes. Odds of winning one of the eight available prizes 
will depend on the number of qualifying participants. Attendance and participation in the end of 
semester open house event is required for some of the prizes. 

Are there any costs? 
There is no cost for you to participate in this study. Auburn University has not provided for any 
payment if you are harmed as a result of participating in this study. 

If you change your mind about participating, you can withdraw at any time during the study.  
Your participation is completely voluntary.  If you choose to withdraw, your data can be withdrawn 
as long as it is identifiable. Your decision about whether or not to participate or to stop participating 
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will not jeopardize your future relations with Auburn University, the Department of Industrial and 
Systems Engineering or any member of the research team. 

Your privacy will be protected.  Any information obtained in connection with this study will 
remain confidential.  Information obtained through your participation may be used in a variety of 
capacities, including fulfillment of educational requirements, publication in professional journals, 
and/or presentation at professional meetings. In any case, your identity will not be revealed, and 
your information will remain private. 

If you have questions about this study, please ask now or contact Victoria Ballard at  
victoria.ballard@auburn.edu,360-632-1359, or Dr. Richard Sesek at rfs0006@auburn.edu, 334-
728-1438.  A copy of this document will be given to you to keep. 

If you have questions about your rights as a research participant, you may contact the Auburn 
University Office of Research Compliance or the Institutional Review Board by phone (334)-844-
5966 or e-mail at IRBadmin@auburn.edu or IRBChair@auburn.edu. 

HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE WHETHER 
OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH STUDY. YOUR 
SIGNATURE INDICATES YOUR WILLINGNESS TO PARTICIPATE. 

 

___________________________________  ____________________________________ 
Participant's signature Date Investigator obtaining consent Date 
 

___________________________________  ____________________________________ 
Printed Name  Printed Name 
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Appendix B - Recruiting Materials 

In-Class Recruiting Script 
Hello, Class. 
Industrial Engineering graduate students pursuing their PhDs are recruiting participants for a 
research study. They are investigating the effectiveness of Mixed Reality, Lean, and Industry 4.0 
methods for operator training and support in manufacturing. These investigations hope to better 
understand the relationships between those methods, learning effectiveness, and operator 
performance. A flyer with details of the study will be emailed to each of you. If you are interested, 
please follow up as described therein. 

Email Script 
Dear Student, 
Please review the attached flyer, which provides details of the study recently described in    class 
name   . You are invited to participate in a research study on the effectiveness of Mixed Reality, 
Lean, and Industry 4.0 methods for operator training and support in manufacturing. The 
research team is conducting this study as Ph.D. Candidates under the supervision of Dr. Richard 
Sesek, Tim Cook Associate Professor in the Department of Industrial and Systems Engineering at 
Auburn University. 
If you would like to participate, simply respond to this email or via text / phone to 407-399-3189. 
Questions or concerns can be directed to me through the same channels, or you may contact my 
advisor Dr. Sesek (sesek@auburn.edu). 
Thank you for your consideration, 

Email Script, Industry 
Dear Manufacturing Professional, 
You are invited to participate in a research study on the effectiveness of Mixed Reality, Lean, 
and Industry 4.0 methods for operator training and support in manufacturing. Please review the 
attached flyer for details. The research team is conducting this study as Ph.D. Candidates under 
the supervision of Dr. Richard Sesek, Tim Cook Associate Professor in the Department of 
Industrial and Systems Engineering at Auburn University. 
If you would like to participate, simply visit the website. Questions or concerns can be directed to 
the research team at leanmanufacturingteam@auburn.edu, or their faculty advisor Dr. Richard 
Sesek (sesek@auburn.edu). 
Thank you for your consideration, 
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Confirmation Email 
Dear <student name>, 
Thank you for your interest in our study, and for taking the time to discuss it with me. I’m happy 
to confirm that your trial is scheduled as follows: 
Date and Time:<date and time> 
Location: Tiger Motors Lean Education Center (Lean Lab, aka LEGO® Lab), in the basement of 
the Shelby Center for Engineering Technology, room 0317, located at 345 W Magnolia Ave, 
Auburn, AL 36849 
Please arrive on time. We anticipate that it will take 45-90 minutes to complete the session. 
If you need to reschedule or have further questions, feel free to respond to this email or call / text 
me at 407-399-3189. 
Thank you for your participation, 

Invitation to Open House Event 
Dear Participant, 
Thank you for volunteering for our research studies. We are writing to invite you to an open house 
event on <DATE and TIME>. This is an opportunity for you to try some of the methods and 
technologies that you may not have experienced before, along with a variety of other software on 
the HoloLens 2 device. 
All attendees will have additional chances to win cash or gift cards worth up to $100 by 
participating in a single experiment designed to test how well you retained the prior training. 
Food and drink will also be provided. 
Hope to see you there! 
The Research Team 

Flyers 
On the following pages are flyers for both investigations, formatted as posters and slides. 

1. First investigation, printed poster format. 
2. Second investigation, printed poster format. 
3. First investigation, manufacturing recruitment, printed poster format. 
4. First investigation, displayed slide format. 
5. Second investigation, displayed slide format. 
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Augmented Reality Research Study 
Training methods for tomorrow’s workforce, today! 

 

The Effects of Augmented Instruction on Manufacturing 
Assembly Training 

Interested in Augmented and Mixed Reality? 
Want to experience the latest in Projected and Head-Mounted AR? 

You may be eligible to participate in an important study! 

The purpose of this study is to measure the effect of augmented instruction on learning 
rates and skills transfer for industrial assembly tasks. The effect of projected (LightGuide) 
and head-mounted (HoloLens2) augmented reality methods will be compared with paper-
based materials for instruction and support. 
This study is open to anyone 18 and older that isn’t prone to motion sickness, has no prior 
experience with head-mounted or projected AR systems, and hasn’t worked in in the Tiger 
Motors Lean Education Center (aka LEGO® Lab). It takes 45 to 60 minutes to complete. 

!! Participants are eligible for up to $100 in cash / gift card prizes! !! 

Conducted by graduate students in the 
Department of Industrial & Systems 
Engineering at Auburn University. 

Sign up: https://aub.ie/TigerMotorsResearch or 
scan the QR Code. Contact the research team 
at leanmanufacturingteam@auburn.edu with 

any other questions. Scan to Sign Up! 
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Studying Manufacturing with LEGO(R) Research  
Participate in research in Auburn’s Tiger Motors Lab! 

 

The Effects of Lean Tools and Industry 4.0 Technology on 
Manufacturing Assembly Performance 

Want to help the future of manufacturing research? 
Want to use the latest vision inspection equipment and play with LEGO? 

You may be eligible to participate in an important study! 

The purpose of this study is to measure the effect of Lean Tools and Industry 4.0 
Technology on industrial assembly tasks. The effect of a model check piece, camera 
inspection technology, and a combination of the two will be compared with paper-
based materials. Participants will assemble one station of LEGO vehicles in four 
scenarios. The time for completion is approximately 1.5 hours. 

!! Participants are eligible for up to $100 in cash / gift card prizes! !! 

This study is open to anyone 18 and older. 

Conducted by graduate students in the 
Department of Industrial & Systems 
Engineering at Auburn University. 

Sign up: https://aub.ie/TigerMotorsResearch or 
scan the QR Code. Contact the research team at 
leanmanufacturingteam@auburn.edu with any 

other questions. 
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Manufacturing Volunteers Needed! 
Augmented Reality Research Study 

The Effects of Augmented Instruction on Manufacturing 
Assembly Training 

Are You Interested in Augmented and Mixed Reality? 

Do You Want to experience the latest in Projected and Head-Mounted AR? 

Build LEGO
®
 cars in Auburn’s famous Lean Education Lab, for Science! 

The purpose of this study is to measure the effect of augmented instruction on 
learning rates and skills transfer for industrial assembly tasks. The effect of projected 
(LightGuide) and head-mounted (HoloLens2) augmented reality methods will be 
compared with paper-based materials for instruction and support. 

All volunteers will receive a $40 gift card as thanks for their participation. 

This study is open to operators 18 and older, that aren’t prone to motion sickness, 
and have no prior experience with similar AR systems or Auburn’s Lean Education 
Center. For details, or to sign up, head to https://aub.ie/TigerMotorsResearch or scan 
the QR code below. 

Conducted by graduate students in the 
Department of Industrial & Systems 
Engineering at Auburn University. 

Contact the research team at 
leanmanufacturingteam@auburn.edu 

with any other questions. 
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Appendix C - Data Collection Instruments 

See attached, on the pages that follow. 

Only the highlighted items changed and thus require restamp. The others are not included. 
1. Subject Recruitment Data Sheet 
2. Code Sheet 
3. Participant Intake Sheet 
4. Data Collection Sheet #1 
5. Data Collection Sheet #2 
6. Task Loading Index (NASA TLX) 
7. System Usability Scale 
8. Behavioral Control Survey 
9. General Feedback 



 

 

Participant Intake Sheet, p1 / 2 

Participant #: __________  Date: __________ 

1. Gender: 

� Female 

� Male 

� Other 
2. Age:  _____ 

3. Race (select those with which you identify): 

� American Indian or Alaska Native 

� Asian 

� Black or African-American 

� Native Hawaiian or Other Pacific Islander 

� White 

� More than one race 

� Unknown or not reported 
4. Ethnicity (select ONLY one with which you most closely identify): 

� Hispanic or Latino 

� Not Hispanic or Latino 

� Unknown or not reported 

5. Country of Origin:  _______________________ 
6. What language do you mainly speak at home? 

� English 

� Other 
7. What is the highest level of school you have completed or the highest degree you have 

received? 

� Less than high school degree 

� High school degree or equivalent (e.g., GED) 

� Some college but no degree 

� Associate degree 

� Bachelor degree 

� Graduate degree:  ____ Master or ____ PhD 
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Participant Intake Sheet, p2 / 2 

Participant #: __________  Date: __________ 

8. If you are currently pursuing a degree, please complete the following: 
College (e.g. Education or Business):  _______________________ 
Program (e.g. MS Adult Ed or BS Accounting) :  _______________________ 

9. Which of the following statements best describes your experience building LEGO 
models? 
� I have little to no experience building LEGO models. 

� I have some experience building LEGO models. 
� I have lots of experience building LEGO models. 
� I consider myself an expert in building LEGO models. 

10. Please indicate your level of manufacturing experience 
� I have no experience in manufacturing. 

� I have taken one or more classes in manufacturing. 
� I have held a part-time or temporary position in manufacturing. 
� I have 1 or more years of experience working in manufacturing. 

11. Do you normally wear corrective lenses?  ____ Glasses  ____ Contacts  ____ Neither 
If yes, do you plan to wear them during this experiment?  ____ Yes  ____ No 

12. Are you color blind?  ____ Yes  ____ No 
13. Do you have any other condition that might affect your performance in this study? 

____ Yes  ____ No 
14. What is your height?  ____ feet  ____ inches 
15. Have you ever run an event of 5 kilometers or more?  ____ Yes  ____ No 
16. How did you learn about this study?  _______________________ 

 



 

 

Task Loading Index, p1 / 2 

Participant #: __________ Invest / Treat: __________ Date: __________ 

Sources of Workload Evaluation 

Consider the following definitions: 

Title Range Description 
Mental 

Demand 
Low / High How much mental and perceptual activity was required (e.g. 

thinking, deciding, calculating, remembering, looking, searching, 
etc.)? Was the task easy or demanding, simple or complex, exacting 
or forgiving? 

Physical 
Demand 

Low / High How much physical activity was required (e.g. pushing, pulling, 
turning, controlling, activating, etc.)? Was the task easy or 
demanding, slow or brisk, slack or strenuous, restful or laborious? 

Temporal 
Demand 

Low / High How much time pressure did you feel due to the rate or pace at 
which the tasks or task elements occurred? Was the pace slow and 
leisurely or rapid and frantic? 

Performance Perfect / Failure How successful do you think you were in accomplishing the goals of 
the task set by the experiment (or yourself)? How satisfied were you 
with your performance in accomplishing these goals? 

Effort Low / High How hard did you have to work (mentally and physically) to 
accomplish your level of performance? 

Frustration Low / High How insecure, discouraged, irritated, stressed, and annoyed versus 
secure, gratified, content, relaxed, and complacent did you feel 
during the task? 

For each of the following pairs, circle the word that represents the more important contributor to 
workload for the specific task(s) you performed in this experiment. 

Effort 
or 

Performance 

Temporal Demand 
or 

Frustration 

Physical Demand 
or 

Performance 

Temporal Demand 
or 

Mental Demand 

Mental Demand 
or 

Physical Demand 

Temporal Demand 
or 

Effort 

Physical Demand 
or 

Frustration 

Frustration 
or 

Effort 

Performance 
or 

Mental Demand 

Effort 
or 

Physical Demand 

Performance 
or 

Frustration 

Physical Demand 
or 

Temporal Demand 

Performance 
or 

Temporal Demand 

Mental Demand 
or 

Effort 

Frustration 
or 

Mental Demand 

 



 

 

Task Loading Index, p2 / 2 

Participant #: __________ Invest / Treat: __________ Date: __________ 

Workload Rating Scales 
For each of the following 6 questions, consider the assembly task you just completed. Record 
your immediate response to each item by putting an “X” at the point which matches your 
experience. 

1. Mental Demand How mentally demanding was the task? 

 
Very Low Very High 

2. Physical Demand How physically demanding was the task? 

 
Very Low Very High 

3. Temporal Demand How hurried or rushed was the pace of the task? 

 
Very Low Very High 

4. Performance How successful were you in accomplishing what you were 
asked to do? 

 
Perfect Failure 

5. Effort How hard did you have to work to accomplish your level 
of performance? 

 
Very Low Very High 

6. Frustration How insecure, discouraged, irritated, stressed, and 
annoyed were you? 

 
Very Low Very High 
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AUBURN UNIVERSITY INSTITUTIONAL REVIEW BOARD for RESEARCH INVOLVING HUMAN SUBJECTS 

PROTOCOL REVIEW FORM 
FULL BOARD or EXPEDITED REVIEW 

 
For assistance, contact: The Office of Research Compliance (ORC) 

Phone: 334-844-5966    E-Mail: IRBAdmin@auburn.edu    Web Address: http://www.auburn.edu/research/vpr/ohs 
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   Submission Status (Check One):  ☐  New     ☒  Revisions (to address IRB Review Comments) 
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2. Project Title:  The Effects of Augmented Instruction on Manufacturing Assembly Training 
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    Preferred Phone Number: 334-728-1438                         AU Email: rfs0006@auburn.edu 
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    b) List any other AU IRB approved protocols associated with this study and describe the association:  n/a 

    c) List any other institutions associated with this study and submit a copy of their IRB approval(s):  n/a 

Protocol Packet Checklist 
Check all applicable boxes.  A completed checklist is required. 
☒      Protocol Review Form (All required signatures included and all sections completed) 
       (Examples of appended documents are found on the website: https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs) 
 
☒      CITI Training Certificates for key personnel 
 
☒      Consent Form or Information Letter and any releases (audio, video or photo) that participants will review and/or sign 
 
☒      Appendix A “Reference List” 
 
☒      Appendix B if e-mails, flyers, advertisements, social media posts, generalized announcements or scripts, etc., will be used to recruit 
          participants. 
 
☒      Appendix C if data collection sheets, surveys, tests, other recording instruments, interview scripts, etc. will be used for data collection. Attach  
          documents in the order they are listed in item 13c.                                                                                                                Continued on Page 2 
 
☒      Appendix D if they study will use a debriefing form or will include emergency plans/ procedures and medical referral lists. (A referral list may 
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☐     Appendix E if research is being conducted at sites other than Auburn University or in cooperation with other entities. A permission letter from  
         the site/ program director must be included indicating their cooperation or involvement in the project. NOTE: If the proposed research is a multi- 
         site project, involving investigators or participants at other academic institutions, hospitals or private research organizations, a letter of IRB  
         approval from each entity is required prior to initiating the project. 
 
☐      Appendix F Written evidence of approval by the host country, local IRB or institutions if research is conducted outside the United States 

 
6. General Research Project Characteristics 

6A. Research Methodology 
 
Check all descriptions that best apply to the research methodology. 
 
 
Data Source(s):   ☒    New Data     ☐    Existing Data 

 
Will recorded data directly or indirectly identify participants?     
☒   Yes    ☐   No 
 

 
Data collection will involve the use of: 
 
    ☒     Educational Tests (cognitive diagnostic, aptitude, etc.)                                 ☒     Internet / Electronic  
    ☒     Interview                                                                                                         ☒     Audio 
    ☒     Observation                                                                                                    ☒     Video 
    ☐     Locations or Tracking Measures                                                                    ☐     Photos 
    ☐     Physical / Physiological Measures or Specimens                                          ☐     Digital Images 
    ☒     Surveys / Questionnaires                                                                               ☐     Private records or files 
    ☐     Other: Click or tap here to enter text. 
 

6B. Participant Information 6C. Risks to Participants 
 
Check all descriptors that apply to the TARGET population.         
(link to definition of target population) 
 ☐  Males    ☐   Females    ☐   AU students 
 
Vulnerable Populations 
☐  Pregnant Women/Fetuses    ☐   Prisoners     ☐    Institutionalized 
☐  Children and / or Adolescents (under age 18 in AL; if minor 
participants, at least 2 adults must be present during all research 
procedures that include the minors) 
 
Persons with: 
☐     Economic Disadvantages         ☐   Physical Disabilities 
☐     Educational Disadvantages      ☐    Intellectual Disabilities 
 
Will participants be compensated?    ☐  Yes    ☒   No 

 
Identify all risks participants might encounter in this research. 
 
☒     Breach of Confidentiality*            ☐    Coercion 
☐     Deception                                    ☐     Physical 
☐     Psychological                              ☐     Social 
☐     None 
☒     Other (COVID-19, other medical):  
COVID-19 Exposure; Discomfort, including possibility of mild 
nausea, see section 14 
 
*Note that if the investigator is using or accessing confidential or identifiable data, 

reach of confidentiality is always a risk. 

6D. Corresponding Approval/ Oversight 
• Does the study include participant exposure to radiation?   ☐ Yes              ☒ No 

If yes indicate:    ☐ DEXA       ☐ PQCT      ☐ Other 
 

• Is IBC Approval required for this study? 
☐ Yes                        ☒ No 
 
If yes, BUA # Click or tap here to enter text.          Expiration Date   Click or tap to enter a date. 
 

• Is IACUC Approval required for this study? 
☐ Yes                        ☒ No 
 
If yes, PRN # Click or tap here to enter text.          Expiration Date   Click or tap to enter a date. 
 

• Does this study involve the Auburn University MRI Center? 
☐ Yes                        ☒ No                                                                                                                                              
 
Which MRI(s) will be used for this project? (Check all that apply) 
☐ 3T                         ☐ 7T 
                                                                                                                                                                                         Continued on Page 3 
Does any portion of this project require review by the MRI Safety Advisory Council? 
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☐ Yes                        ☒ No 
 
Signature of one MRI Center Representative:___________________________________________________ 
Required for all projects involving the AU MRI Center 
Appropriate MRI Center Representatives: 
           Dr. Thomas S. Denney, Director AU MRI Center 

                           Dr. Ron Beyers, MR Safety Officer 
 

7. Project Assurances 

7A. Principal Investigator’s Assurances 
1. I certify that all information provided in this application is complete and correct. 
2. I understand that, as Principal Investigator, I have ultimate responsibility for the conduct of this study, the ethical    
    performance this project, the protection of the rights and welfare of human subjects, and strict adherence to any  
    stipulations imposed by the Auburn University IRB. 
3. I certify that all individuals involved with the conduct of this project are qualified to carry out their specified roles and  
    responsibilities and are in compliance with Auburn University policies regarding the collection and analysis of the  
    research data. 
4. I agree to comply with all Auburn policies and procedures, as well as with all applicable federal, state, and local laws 
     regarding the protection of human subjects, including, but not limited to the following: 
 a. Conducting the project by qualified personnel according to the approved protocol 
 b. Implementing no changes in the approved protocol or consent form without prior approval from the Office of  
                 Research Compliance 
 c. Obtaining the legally effective informed consent from each participant or their legally responsible representative  
                 prior to their participation in this project using only the currently approved, stamped consent form 
 d. Promptly reporting significant adverse events and / or effects to the Office of Research Compliance in writing  
                 within 5 working days of the occurrence. 
5. If I will be unavailable to direct this research personally, I will arrange for a co-investigator to assume direct  
    responsibility in my absence. This person has not been named as co-investigator in this application, or I will advise  
    ORC, by letter, in advance of such arrangements. 
6. I agree to conduct this study only during the period approved by the Auburn University IRB. 
7. I will prepare and submit a renewal request and supply all supporting documents to the Office of Research Compliance  
    before the approval period has expired if it is necessary to continue the research project beyond the time period  
    approved by the Auburn University IRB. 
8. I will prepare and submit a final report upon completion of this research project. 

My signature indicates I have read, understand and agree to conduct this research project in accordance with the 
assurances listed above. 

____Dan O’Leary_________________             ______________________________  _1/4/2022_ 
Principal Investigator Name                              Principal Investigator Signature                               Date 

7B. Faculty Advisor / Sponsor’s Assurances 
1. I have read the protocol submitted for this project for content, clarity, and methodology. 
2. By my signature as faculty advisor / sponsor on this research application, I certify that the student or guest investigator  
    is knowledgeable about the regulations and policies governing research with human subjects and has sufficient training  
    and experience to conduct this particular study in accord with the approved protocol. 
3. I agree to meet with the investigator on a regular basis to monitor study progress. Should problems arise during the  
    course of the study, I agree to be available, personally, to supervise the investigator in solving them. 
4. I assure that the investigator will promptly report significant incidents and / or adverse events and / or effects to the  
    ORC in writing within 5 working days of the occurrence. 
5. If I will be unavailable, I will arrange for an alternate faculty sponsor to assume responsibility during my absence, and I  
    will advise the ORC by letter of such arrangements. If the investigator is unable to fulfill requirements for submission of  
    renewals, modifications or the final report, I will assume that responsibility.  

____Richard Sesek__________________     ________________________________  ________________ 
Faculty Advisor / Sponsor Name                             Faculty Advisor Signature                                   Date 

            Continued on Page 4 

1/4/22

Dan O'Leary
1/4/2023

Dan O'Leary
1/4/2023
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7C. Department Head’s Assurance 
By my signature as department head, I certify that I will cooperate with the administration in the application and 
enforcement of all Auburn University policies and procedures, as well as all applicable federal, state, and local laws 
regarding the protection and ethical treatment of human participants by researchers in my department 
____Gregory Harris_______________     ________________________________  ________________ 
  Department Head Name                                        Department Head Signature                                    Date 

 

8. Project Overview:  

8A. A summary of relevant research findings leading to this research proposal: 
       (Cite source; include a “Reference List” as Appendix A.) 

Augmented Reality (AR) systems "combine real and virtual, are interactive in real time, and are registered in 3-D" [1]. By 
realistically integrating informative and/or interactive virtual objects in our view of the world, AR aims to enhance the users' 
interaction with and perception of it. Its essential affordance is the direct and natural manipulation of virtual objects in 
everyday surroundings. Relative to metaphorical digital interfaces, this is thought to improve the uptake of knowledge by 
reducing the overall cognitive load and better distributing it across multiple sensory pathways [2]. AR-assisted learners 
demonstrate improved perception, performance, and understanding of spatial concepts, with outcomes correlated to the 
amount of physical engagement involved [3]. As a result, AR is thought to be well-suited for task-related learning. Using 
untethered, hands-free devices with optical see-through head-mounted displays, AR can continuously enhance the user's 
actions in the real world [4]. These benefits have broad industrial applications. 

In manufacturing, operator support has been a common application of AR research and development since the early 
1990s [5]. It is also seen as a source of innovative operator training methods required to meet rapidly increasing demand 
for skilled labor due to high retirement rates, global expansion, and increasing specialization [6]. Manufacturing support, 
training, and related applications have been identified in the areas of assembly, maintenance, operations, quality control, 
safety, design, visualization, logistics, and marketing [7]. 

Despite great potential, the adoption of AR is slowed by technical, market, and other important social and legal obstacles 
[8]. To successfully transition from research projects and proof of concepts and gain widespread adoption in 
manufacturing, AR must demonstrate a worthwhile return on investment [9; 10]. But AR remains a highly fragmented 
market, including a diverse selection of screen-based, projected, and head-mounted technologies [6]. Studies show that 
the efficacy of these systems varies with the task type, technology used, application design, and other factors [11]. Thus, 
the success rate of AR adoption in industry would be improved by frameworks for strategic decision making based on 
quantified benefits in various scenarios [12–14]. Research in this area is young but accelerating. Most of it focuses on 
efficiency (task time) and accuracy (error count). These are relevant but incomplete measures for assessing training 
outcomes, where the learning rate and transfer effectiveness must also be considered [15]. This study extends prior work 
[16] to explore the relationship between a variety of AR technologies and their underlying affordances [17] and learning 
outcomes for manufacturing assembly operations. By controlling for the task type and application design we hope to 
better understand the relative value of these systems, filling in important gaps that can lead to a cohesive framework for 
successful adoption. 

8B. A brief summary/abstract of the study methodology, including design, population, and variables of interest.  
       (350 word maximum, in language understandable to someone who is not familiar with your area of study. Note this  
       summary/abstract can be used to prepare the concise summary in the consent document.): 

This experiment will be conducted in the Tiger Motors Lean Education Center, which simulates automotive manufacturing 
best practices using LEGO® cars. Participants will act as operators assembling the SUV car at station 8. This process has 
been used thousands of times in INSY 5/6800 without significant incident. 

1/4/23
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Figure 1 - Work Station 8 

 
Figure 2- LEGO Speedster Assembly 

A population of 40-60 adults will be recruited from Auburn University. Candidates with experience using head-mounted or 
projected AR or building cars in the Lean Lab will be excluded. Participants in this between-groups design will experience 
a single level of the Instructional Media Type (IMT) treatment, with increasingly augmented work instructions: 

1. Paper Work Instructions (PWI): traditional printed instructions (control) 
2. Projector Augmented Reality (PAR): interactive instructions projected on the work surface via the LightGuide 

system with a stationary model 
3. Head-Mounted Display AR (HMDAR): interactive instructions presented in the user's field of view using the 

HoloLens2 (HL2) HMD with a stationary model 
4. HMD Mixed Reality (HMDMR): extends the third treatment by leveraging advanced capabilities of the HL2, 

allowing for more natural interactions and movement of the model 

 
Figure 3 – Paper Work Instructions for Station 8 

 
Figure 4- LightGuide Work Instructions 

Participant groups will be set randomly. We hypothesize that HDMR will outperform other treatments in accuracy-based 
performance measures, as well as learning rate and transfer. In contrast, we expect participants assigned the PWI 
treatment to have the best times. 
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Figure 5 – HoloLens2 Wireless, See-Through Design 

 
Figure 6- HoloLens2 Work Instructions, 1st Person View 

First, participants will be shown how to interpret paper work instructions and use them to construct a sample LEGO 
assembly. Next, those assigned to an AR treatment level are given a brief introduction to its operation. Questions are 
allowed throughout this process. 

The hypotheses are then tested in two phases. The first compares the effects of instructional media on the speed (task 
completion time) and accuracy (number and type of corrected and uncorrected errors) with which participants perform 
each repetition of the task. These measures are tracked for each assembly completed in the 10-minute session, allowing 
us to assess learning rates. 

During the second phase, participants repeat the task four times in the control condition while the same measures are 
observed. Their results in each phase will be analyzed to compare transfer effectiveness between treatments. 

9. Purpose 

9A. State the purpose of the study and all research questions or aims. (Include a sentence that begins, “The 
purpose of this study is…”) 
       The purpose of this study is to measure the effect of instructional media type (IMT) on learning rates and skills 
transfer for industrial assembly tasks. The first phase will help us understand how each IMT affects the operator's learning 
rate (time or cycles to learn the process) and ultimate measures of performance (speed and accuracy). The second will 
help assess how learning transfer varies with each treatment. 

9B. Describe how results of this study will be used? (e.g., presentation? publication? thesis? dissertation?) 
The data collected during this project will be used for thesis and dissertations, scholarly publications and presentations, 
and grant proposals. 

10. Key Personnel. Describe responsibilities as specifically as possible. Include information on research training or 
certifications related to this project. To determine key personnel see decision tree at 
https://cws.auburn.edu/OVPR/pm/compliance/irb/training. Submit a copy of CITI training documentation for all 
key personnel. (For additional personnel, add lines as needed). 

To determine Auburn University HIPAA – covered entities click link to HIPAA Policy. 

If any key personnel have a formal association with institutions/entities involved in the study (for example is an employee 
or supervisor at the site research will occur), describe that affiliation.  For all non-AU affiliated key personnel, submit a 
copy of their IRB approval. 

Principal Investigator: Dan O’Leary                                               Rank/Title: Graduate Student     
Email Address: djo0008@auburn.edu                                                           Degree(s): BS ME, MS Eng Mgmt    
Dept / Affiliation:     Industrial & Systems Engineering                                  HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities: Overall responsibility for the project, including design and administration of experiments, 
coordinating recruitment, obtaining consent, and data collection and analysis. 
- AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
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  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         8/26/2025 
 

Individual: Richard Sesek                                                                       Rank/Title:  Associate Professor         
Email Address: rfs0006@auburn.edu                                                               Degree(s): BS, MS, MPH, PhD 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Advise, oversee, and assist with experiment design, IRB review process, obtaining consent, 
conducting trials, data collection and analysis. 
- AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         4/25/2023 
                                                                                           Choose a course         Expiration Date 
 

Individual: Gregory Harris                                                                       Rank/Title:  Associate Professor         
Email Address: gah0015@auburn.edu                                                               Degree(s): PhD 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Dissertation co-chair and primary advisor 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         5/12/2024 
                                                                                           Choose a course         Expiration Date 
 

Individual: Victoria Ballard                                                                       Rank/Title:  Graduate Student         
Email Address: vzb0024@auburn.edu                                                               Degree(s): BS CHE, MS CivE 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Lab manager, design and conduct research 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a  
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         2/9/2025 
                                                                                           Choose a course         Expiration Date 
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Individual: Md Monir Hossain                                                                       Rank/Title:  Graduate Student         
Email Address: mzh0116@auburn.edu                                                               Degree(s):BS BE, MS TM, MS ISE 
Dept. / Affiliation: Industrial and Systems Engineering                               HIPAA Covered Entity? Yes ☐ No ☒ 
Roles / Responsibilities:  Lab assistant, design and conduct research 
 - AU affiliated?  ☒ Yes  ☐ No    If no, name of home institution: n/a  
- Plan for IRB approval for non-AU affiliated personnel? n/a 
- Do you have any known competing financial interests, personal relationships, or other interests that could have  
  influence or appear to have influence on the work conducted in this project?   ☐  Yes    ☒  No 
- If yes, briefly describe the potential or real conflict of interest: n/a 
- Completed required CITI training? ☒ Yes   ☐ No If NO, complete the appropriate CITI basic course and update  
  the revised Exempt Application form.  
- If YES, choose course(s) the researcher has completed:  Human Sciences Basic Course         8/29/2025 
                                                                                           Choose a course         Expiration Date 
 

11. Location of research.   

11A. List all locations where data collection will occur.  If applicable, attach permission letters as Appendix 
E.  (School systems,  
         organizations, businesses, buildings and room numbers, servers for web surveys, etc.) Be as specific as possible.  
         (See sample letters at https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs) 
Data collection will take place at the Lean Lab in the basement of the Shelby Center for Engineering Technology, room 
0317, located at 345 W Magnolia Ave, Auburn, AL  36849 

11B. Will study data be stored within a HIPAA covered facility? Yes ☐ No ☒ 
         If yes, which facility(ies) (To determine AU HIPPA covered entities, go to VII of the HIPPA Hybrid Entity Policy):       
n/a 

12. Participants (If minor participants, at least 2 adults must be present during all research procedures that include the  
         minors.) 

12A. Describe the targeted/ intended participant population for the study. Include the anticipated number of  
         participants and inclusion and exclusion criteria and the procedures to ensure more than 1 adult is present  
         during all research procedures which include the minor. 

☐ Check here if existing data will be used and describe the population from whom data was collected  
                      including the number of data files. 
 ☐ Check here if permission to access existing data is required and submit a copy of the agreement to  
                      access. 

Between 40 and 60 subjects will be recruited from the Auburn University community.  Potential participants will be 
screened for exclusion based on the following: 1. Under 18 years of age 2. Prone to motion sickness 3. Prior experience 
with head-mounted or projected AR systems 4. Prior experience building cars in the Lean Lab as part of INSY 5800/6800 
or otherwise  Active recruiting efforts will focus on freshman and sophomore engineering students in Industrial & Systems 
Engineering (ISE), as they are accessible and are likely to meet all requirements. 

12B. Describe, step-by-step in lay language all procedures to recruit participants. Include in Appendix B    
         a copy of all e-mails, flyers, advertisements, recruiting scripts, invitations, etc., that will be used to invite people to  
         participate. (See sample documents at https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs)  

Students and Faculty will be recruited using flyers distributed around the Auburn University campus. Additionally, ISE 
students will be recruited via in-class announcements and the distribution of emails. Copies of each are included in 
Appendix B. Interested participants will be instructed to contact the PI for more information. In the call that follows, the PI 
will:  1. Briefly explain the study, recapping and elaborating on the recruiting materials 2. Explain the exclusion criteria and 
identify relevant issues for the candidate 3. Set expectations for participant involvement, including time commitment and 
tasks 4. Answer any questions the candidate has regarding participation in the study  If the candidate is ready and willing 
to proceed, their information will be collected using the Subject Recruitment Data Sheet provided in Appendix C. They will 
be assigned a unique participant ID and a date and time for data collection.  If interest in the study exceeds capacity, 
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additional participants will be thanked for their interest and informed that enrollment is limited. They will be given the 
option to remain "waitlisted" if additional participants or follow-up studies are required. 

12C.  Minimum number of participants required to validate the study?   40 

          Number of participants expected to enroll?   About 50 

          Provide the rationale for the number of participants.  Appropriate for the desired power given the number of 
treatments. 

          Is there a limit to the number of participants that will be included in the study? 
                 ☐ No    ☒ Yes, the number is 60, due to time constraints 

12D.   Describe the process to compensate, amount and method of compensation and/or incentives for    
          participants.   AU Procurement and Business Services (PBS) policies 
          (benefits to participants are NOT compensation) 

           If participants will not be compensated, check here: ☒ 

           Indicate the amount of compensation per procedure and in total: Click or tap here to enter text. 

           Indicate the type of compensation: ☐ Monetary     ☐ Incentives              
                                                                          ☐ Raffle or Drawing incentive (Include the chances of 
                                                                                   winning.) 
              ☐ Extra Credit (State the value) 
                          ☐ Other 

 Describe how compensation will be distributed (USPS, email, etc.):  Click or tap here to enter text. 

13. Project Design & Methods 

13A. Describe, step-by-step, all procedures and methods that will be used to consent participants. If a  
         waiver is being requested, indicate the waiver, and describe how the study meets the criteria for   
         the waiver. If minors will be enrolled describe the process to obtain parental/ legally authorized  
         guardian permission. 

        ☐ Waiver of Consent (including using existing data) 

        ☐ Waiver of Documentation of Consent (use of Information Letter) 

        ☐ Waiver of Parental Permission (for college students 18 years or younger) 

As each participant arrives, they will be welcomed and given brief introductions to members of the team administering the 
study. We will then ask them to review the consent document, encouraging them to ask any questions they have. After a 
verbal confirmation that the participant has read and is satisfied with the terms of this document, we will ask that they sign 
and date it. 

13B. In lay language, understandable by someone not familiar with the area of study, describe the 
         complete research design and methods that will be used to address the purpose. Include a clear  
         description of who, when, where and how data will be collected. Include specific information about  
          participants’ time and effort. 

Following the recruitment, eligibility screening, and consent processes described above, a short orientation process 
acclimates the participant to the work area and emergency procedures are described. A research associate will point out 
the key features of a work cell (work surface, part bins, etc.), describe how to interpret the paperwork instructions, 
demonstrate typical assembly steps, and answer any relevant questions. (5-10 mins) 

Next, participants assigned to any AR IMT (PAR, HMDAR, or HMDMR) will receive a brief demonstration of its basic 
operation. In all cases, the participant will be shown how to use the appropriate forward and back triggers, and how the 
system signals instructions and feedback related to part bin and placement. PAR and HMDAR users will be instructed that 
the model must remain in the fixture. HMDMR users will understand that the model can be freely manipulated during 
assembly. (5-10 mins) 
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Once orientation and training are complete, the experiment is conducted in two phases. Regardless of IMT assigned, all 
participants will wear the HL2 during both phases to control for its effects and allow us to record each session from their 
POV. 

In the first phase, participants will be asked to complete the assembly process for as many cars as they can, while 
learning the steps and limiting the number of errors produced. This phase will be conducted with the support of the 
assigned IMT and will last 10 minutes. During that time, we expect that each participant will produce between 3 and 6 
cars, based on prior performance data and the 60-second takt time for which the instructions were designed. (10 mins) 

Following a short break to reset the workstation, the second phase will begin. In this phase each participant will build 4 
more cars using only paper work instructions. Their stated goal will be to deliver error-free results quickly, while 
referencing the instructions only when necessary. (5-10 mins) 

Participant performance in both phases will be recorded on two cameras, one first-person view from onboard the HL2, 
and one third-person view from a camera mounted nearby. Experimental data will be derived from subsequent analysis of 
these videos. Participants will not be allowed to ask questions during either data collection phase of the experiment. 

Once the experiment is concluded, each participant will complete an exit survey that incorporates the NASA TLX and 
System Usability Scale instruments, along with the Adult ADHD Self-Report Scale (ASRSv1.1). It also includes a section 
for open-ended feedback. When the survey is collected a research associate will ask if the participant experienced any 
injury and if they are interested in attending a follow-up session for more in-depth exploration of the HoloLens2. Their 
responses will be recorded on the exit survey. (5-10 mins) 

We conservatively estimate a total time commitment of 45-60 minutes for each participant. 

13C. List all data collection instruments used in this project, in the order they appear in Appendix C.            
         (e.g., surveys and questionnaires in the format that will be presented to participants, educational tests, data  
          collection sheets, interview questions, audio/video taping methods etc.) 

1. Subject Recruitment Data Sheet: filled out during the screening call; includes the exclusion checklist, participant 
number, basic demographics (age and gender), and date / time of scheduled trial 

2. Code Sheet: collects the personally identifiable data for eligible participants, including name, contact info (phone, 
email) and subject number 

3. Data Collection Sheet: consists of general notes from the experiment and data derived from subsequent analysis 
of video recordings 

4. Exit Survey: incorporates the NASA TLX and System Usability Scale instruments, open-ended feedback, and 
area for research associate to indicate answers about participant injury and interest in follow-up session 

13D. Data analysis: Describe how data will be analyzed. If a data collection form (DCF) will be used, submit a  
         copy of the DCF. 

In both phases of this study, the independent variable is treatment type, and the dependent variables are task completion 
time and number of errors. The dependent variables will be recorded for each car completed in both sessions. 

Data will be analyzed with a combination of visual (e.g., box plots) and statistical methods. Methods based on analysis of 
variance (ANOVA) will be used to test the stated hypotheses. Additional analysis will be done to explore the relationship 
between other variables of interest, including demographics, mental workload, behavioral control, and system usability 
with the measured outcomes. 

13E. List any drugs, medications, supplements, or imaging agents that participants will ingest/ receive  
        during participation in the study or indicate not applicable (N/A). 

n/a 

14. Risks & Discomforts: List and describe all the risks participants may encounter in this research including  
      risks from item 6d of this form, in this research. If deception will be part of the study, provide the rationale 
      for the deception, describe the debriefing process, and attach a copy of the debriefing form that will be used  
      as Appendix D. (Examples of possible risks are in section #6C) 

1. Physical Discomfort: All participants will be required to wear the HoloLens2 device, regardless of treatment 
group to control for its effects on user fatigue, etc., and to allow us to record a first-person view of their 
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session. As a result, they may experience mild physical discomfort including neck strain after prolonged use. 
The limited duration of this study should mitigate this effect. 

2. Vestibular and Visual Discomfort: Participants assigned to the HMDAR and HMDMR treatments will 
experience display technology that may cause mild dizziness, eye strain, and related effects. Owing to the 
see-through design of the HoloLens2 device these effects are less common and less pronounced than seen 
in fully immersive Virtual Reality (VR) headsets. 

3. Trip and Impact Risk: Any head-mounted display can reduce the wearer's peripheral vision and otherwise 
impact their natural field of view. Consequently, they may become more susceptible to tripping over or 
running into things around them. This risk is minimized by the HoloLens2's design, which offers a very wide, 
minimally obscured field of view. Furthermore, the HL2 is a standalone device, so there is no risk of tripping 
over a cord. Additionally, the participant is generally stationary in an environment free of obstruction. Finally, 
the Lean Lab is a clean, organized, safe, and well-lit environment with no history of related hazards. 

4. Breach of Confidentiality Risk: All resulting data will be anonymized, and video of each session will be 
recorded from the first person and top-down angles to prevent participant exposure. That said, subjects 
could be seen entering, leaving, or during the experiment. All of these create a small possibility that subjects 
could be identified, inadvertently breaching their confidentiality. Additionally, there is the possibility that the 
subject code list, which connects each participant’s identity with their experimental data, could be obtained. 
Mitigation methods for this risk are described in section 17 Protection of Data. 

5. Psychological Discomfort: Due to the nature of the experiment, some participants may experience mild 
psychological discomfort induced by its time and performance-based measures. Participants will be told that 
their objective is to learn to perform the task quickly and error free. Otherwise, no overt pressure is put on 
the subjects to perform. Given that the outcome of their performance has no impact on their life outside the 
experiment, any related psychological discomfort should be minimal and short-lived. 

6. COVID-19 Exposure: This study will be a Category C study with no High-Risk Procedures or 
Participants.  Precautions will be implemented using the COVID-19 2022 Precautions Matrix to determine 
appropriate precautions at the time of data collection(s) for a Category C study. All work surfaces and the 
HMD will be wiped down before and after each participant. Necessary supplies will be made available, 
including as masks, hand sanitizer (60%+ alcohol), tissues, paper towels, trash baskets, and cleaners / 
disinfectants.  All research participants will follow the University’s guidance on self-screening. At the time of 
this writing, the CDC’s COVID-19 community level for Lee County, Alabama is LOW, so participant 
screening is not required. The Shelby Center for Engineering Technology, where this protocol will be 
administered, is assigned the highest level of building readiness due to increased air turn-over and filtration. 
Further details and resources can be found in Appendix D. 

15. Precautions / Minimization of Risks 

15A. Identify and describe all precautions that will be taken to eliminate or reduce risks listed in items 6.c. and 14. If  
         participants can be classified as a “vulnerable” population, describe additional safeguards that will be used to assure  
         the ethical treatment of vulnerable individuals. If applicable, submit a copy of any emergency plans/procedures  
         and medical referral lists in Appendix D. (Sample documents can be found online at  
         https://cws.auburn.edu/OVPR/pm/compliance/irb/sampledocs precautions)  

This study does not involve any vulnerable populations. Please see section 14, where the primary mitigations are 
described for each identified risk. Additionally, all participant activities will be supervised and monitored for relevant 
symptoms. If any participant experiences dizziness or related vestibular issues, or any other significant but unexpected 
side-effect, we will suspend the experiment, remove the HMD, have them sit and offer drinking water while assessing the 
situation. If escalation is required, the emergency plan and contact list is included in Appendix D.  During the debriefing all 
participants will be asked if they were injured or experienced any discomfort during their trials. The debriefing also serves 
to keep each participant under our supervision long enough to ensure no lingering or delayed effects. 

15B. If the internet, mobile apps, or other electronic means will be used to collect data, describe confidentiality  
         and/or security precautions that will be used to protect (or not collect) identifiable data? Include protections  
         used during collection of data, transfer of data, and storage of data.  If participant data may be obtained    
         and/or stored by apps during the study, describe. 

n/a 

15C. Does this research include purchase(s) that involve technology hardware, software or online services?  
          ☐  YES      ☒  NO  
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          If YES: 
A. Provide the name of the product      Click or tap here to enter text. 

and the manufacturer of the product    Click or tap here to enter text. 
B. Briefly describe use of the product in the proposed human subject’s research.   

Click or tap here to enter text. 
 

C. To ensure compliance with AU’s Electronic and Information Technology Accessibility Policy, contact 
AU IT Vendor Vetting team at vetting@auburn.edu to learn the vendor registration process (prior to 
completing the purchase). 

D. Include a copy of the documentation of the approval from AU Vetting with the revised submission. 
 
15D. Additional Safeguards 
          Will DEXA, pQCT, or other devices which emit radiation be used? ☐  Yes   ☒  No 
          If yes, the IRB will notify the Auburn Department of Risk Management and Safety, who will contact the  
          Alabama Department of Public Health (ADPH) and secure approval. Research which includes device(s)  
          which emit radiation may NOT be initiated NOR will IRB stamped consent documents be issued until the    
          IRB is notified of ADPH approval. 

          Will a Certificate of Confidentiality (CoC) issued by NIH be obtained ☐ Yes ☒ No If yes, include CoC  
          language in consent documents and include the documentation of CoC approval. Research which includes       
          a CoC may not be initiated NOR will IRB stamped consent documents be issued until the IRB is notified of  
          CoC approval.  AU Required CoC Language 

          Is the study a clinical trial? ☐ Yes  ☒ No  
          If yes, provide the National Clinical Trial (NCT) # Click or tap here to enter text.  and include required clinical  
          trial information in all consent documents. AU Clinical Trial Information 

16. Benefits 

16A. List all realistic direct benefits participants can expect by participating in this study. (Compensation is not a  
         benefit)  If participants will not directly benefit check here. ☒  

There are no direct benefits for participants in this study. It will offer all of them an opportunity to interact with projection 
and/or head-mounted AR hardware and training methods for the first time. This may lead them to a greater appreciation 
for the benefits and opportunities these technologies offer. 

16B. List realistic benefits for the general population that may be generated from this study. 

Turnover in the workforce and the lack of skilled labor necessitates scalable, efficient training methods. Furthermore, the 
shift from mass production to mass customization forces operators to contend with wide variance in the assembly steps 
required at each workstation. Together, these trends demand innovative methods for operator training and support. 

Augmented and mixed reality are expected to help fill that need, but it is a fragmented market with a variety of solutions. 
Few studies explore the relationship between those methods (and the affordances that differentiate them) and 
corresponding learning rates and transfer. We believe this study will make meaningful contributions to that effort, helping 
to build a cohesive understanding of the utility of these systems and best practices for their application. 

17. Protection of Data 

17A. Data are collected: 

 ☐ Anonymously with no direct or indirect coding, link, or awareness by key personnel of who participated 
                 in the study (skip to item E) 

 ☐ Confidentially, but without a link to participant’s data to any identifying information (collected as  
                 “confidential” but recorded and analyzed  “anonymous”) (Skip to item E). 

 ☒ Confidentially with collection and protection of linkages to identifiable information. 
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17B. If data are collected with identifiers and coded or as coded or linked to identifying information,  
         describe the identifiers and how identifiers are linked to participants’ data. 

In addition to the consent form, a code list will be maintained that includes identifying data of each participant (name, 
contact information, and ID number). This will be linked to all data collection forms by the participant number. The consent 
forms and code list will be maintained on paper only, to facilitate secure storage and disposal (shredding). The consent 
form will not include reference to the participant’s ID number. Only the code list will directly connect participants to their 
data. 

The video recordings may also allow for participants to be identified, though the first-person recording will not allow a view 
of their face and the third-person view will focus on the work area. If the recorders do not provide a video-only option, 
audio from those sessions, which may also provide identifying data, will be stripped from the recordings before storage. 

17C. Provide the rationale for need to code participants’ data or link the data with identifying  
         information. 

Only for the purpose of contacting participants while the protocol is open. Once completed, the code list will be destroyed, 
making the data anonymous. 

17D. Describe how and where identifying data and/or code lists will be stored. (Building, room number,  
         AU BOX?) Describe how the location where data is stored will be secured. For electronic data,  
         describe security measures. If applicable, describe where IRB-approved and participant signed  
         consent documents will be kept on campus for 3 years after the study ends. 

Signed consent forms and the code list will be kept in a secure, locked file in office 3301J of Shelby Center. 

17E. Describe how and where data will be stored (e.g., hard copy, audio/ visual files, electronic data,  
         etc.), and how the location where data is stored is separated from identifying data and will be  
         secured. For electronic data, describe security. Note use of a flash drive or portable hard drive is  
         not appropriate if identifiable data will be stored; rather, identifying participant data must be  
         stored on secured servers. 

All electronic data pertaining to the study will be stored on a secured server. Non-identifiable data will be available to other 
members of the research team. 

17F. List the names of all who will have access to participants’ data? (If a student PI, the faculty advisor  
        must have full access and be able to produce study data in the case of a federal or institutional audit.) 

• Consent forms and code list: Dan O'Leary, Gregory Harris 
• Non-identifiable data: full research team, by request 

17G. When is the latest date that identifying information or links will be retained and how will that  
         information or links be destroyed? (Check here if only anonymous data will be retained ☒) 

August 2023 
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AUBURN UNIVERSITY HUMAN RESEARCH PROTECTION PROGRAM (HRPP) 

REQUEST for MODIFICATION 
                  For Information or help completing this form, contact: The Office of Research Compliance (ORC) 
                                                   Phone: 334-844-5966    E-Mail: IRBAdmin@auburn.edu     
 
-    Federal regulations require IRB approval before implementing proposed changes. 
-    Change means any change, in content or form, to the protocol, consent form, or any supportive materials (such as the investigator’s  
     Brochure, questionnaires, surveys, advertisements, etc.). See Item 4 for more examples. 
 

 

2. Principal Investigator (PI) Name: Dan O’Leary 

PI’s Title: Instructor / PhD Candidate Faculty PI (if PI is a 
student): 

Dr. Richard Sesek 

Department: Industrial & Systems Eng Department: Industrial & Systems Eng 

Phone: 407-399-3189 Phone: 334-728-1438 

AU-E-Mail: djo0008@auburn.edu AU E-Mail: rfs0006@auburn.edu 

Contact person who 
should receive copies of 

IRB correspondence 
(Optional): 

Click or tap here to enter text. Department Head Name: Dr. Gregory Harris 

Phone: Click or tap here to enter text. Phone: 334-844-1407 

AU E-Mail: Click or tap here to enter text. AU E-Mail: gah0015@auburn.edu 

 

3. AU IRB Protocol Identification 

         3.a. Protocol Number: 22-538 

           3.b. Protocol Title: The Effects of Augmented Instruction on Manufacturing Assembly Training 

         3. c. Current Status of Protocol – For active studies, check ONE box at left; provide numbers and dates  
                 where applicable 

☒ Study has not yet begun; no data has been entered or collected  

☐ 
☐ 

In progress    If YES, number of data/participants entered: Click or tap 
here to enter text. 
Is this modification request being made in conjunction with/as a 
result of protocol renewal?      ☐ YES      ☐ NO 

Current Approval Dates 
From: 1/30/2023 
 

☐ Adverse events since last review   If YES, describe: Click or tap here to 
enter text. 

To: Click or tap to enter a date. 

☐ Data analysis only 

☐ Funding Agency and Grant Number: Click or tap here to enter text. AU Funding Information: Click or tap 
here to enter text. 

☐ List any other institutions and/ or AU approved studies associated 
with this project: Click or tap here to enter text. 

 

 

 

1. Today’s Date 2/6/2023 
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4. Types of Change 
       Mark all that apply, and describe the changes in item 5 

☒ 
Change in Key Personnel 
List the name(s) of personnel being added to or removed from the study and attach a copy of the CITI 
documentation for personnel being added to the study.  
Adding: Dr. Gregory Purdy, Diego Caputo Rodriguez, Alex Barras, David “Brown” Teague, Carson Tillery 

☐ 
Additional Sites or Change in Sites, including AU classrooms, etc. 
Attach permission forms for new sites. 
 

☐ 
Change in methods for data storage/ protection or location of data/ consent documents 
 

☐ 
Change in project purpose or project questions 
 

☐ 
Change in population or recruitment 
Attach new or revised recruitment materials as needed; both highlighted version & clean copy for IRB approval 
stamp 
 

☒ 
Change in study procedure(s) 
Attach new or revised consent documents as needed; both highlighted revised copy & clean copy for IRB 
approval stamp 
No change is required to the consent documents. 

☒ 
Change in data collection instruments/forms (surveys, data collection forms) 
Attach new forms as needed; both highlighted version & clean copy for IRB approval stamp 
Attached. 

☐ 
Other 
(BUAs, DUAs, etc.) Indicate the type of change in the space below, and provide details in the Item 5.c. or 5.d. as 
applicable. Include a copy of all affected documents, with revisions highlighted as applicable. 
Click or tap here to enter text. 
 

 

5. Description and Rationale 

5.a. For each item marked in Question #4 describe the requested change(s) to your research protocol, and the   
       rationale for each. 
Needed added team members to help run the protocol. Minor changes to streamline procedure. Added an expanded demographics form. Asking participants to 

repeat the NASA TLX and SUS instruments after each phase (twice total, one additional time). 

5.b. Briefly list (numbered or bulleted) the activities that have occurred up to this point, particularly those that  
       involved participants. 
Only initial recruiting. No trials run or scheduled yet. 

5.c. Does the requested change affect participants, such as procedures, risks, costs, benefits, etc. 
No. Added surveys may add a little time but that was offset by streamlined procedure. 

5.d. Attach a copy of all “IRB stamped” documents currently used. (Information letters, consent forms, flyers,  
       etc.) 
Attached. 

5.e. List all revised documents and attach two copies of the revised documents – one copy which highlights 
the revisions and one clean copy of the revised documents for the IRB approval stamp. 
Attached. 
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Version Date: Click or tap to enter a date. 

6. Signatures 

 
Principal Investigator: __________________________________________________________________________ 
 
Faculty Advisor PI, if applicable: _________________________________________________________________ 
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AUBURN UNIVERSITY HUMAN RESEARCH PROTECTION PROGRAM (HRPP) 

REQUEST for MODIFICATION 
                  For Information or help completing this form, contact: The Office of Research Compliance (ORC) 
                                                   Phone: 334-844-5966    E-Mail: IRBAdmin@auburn.edu     
 
-    Federal regulations require IRB approval before implementing proposed changes. 
-    Change means any change, in content or form, to the protocol, consent form, or any supportive materials (such as the investigator’s  
     Brochure, questionnaires, surveys, advertisements, etc.). See Item 4 for more examples. 
 

 

2. Principal Investigator (PI) Name: Dan O’Leary 

PI’s Title: Instructor / PhD Candidate Faculty PI (if PI is a 
student): 

Dr. Richard Sesek 

Department: Industrial & Systems Eng Department: Industrial & Systems Eng 

Phone: 407-399-3189 Phone: 334-728-1438 

AU-E-Mail: djo0008@auburn.edu AU E-Mail: rfs0006@auburn.edu 

Contact person who 
should receive copies of 

IRB correspondence 
(Optional): 

Click or tap here to enter text. Department Head Name: Dr. Gregory Harris 

Phone: Click or tap here to enter text. Phone: 334-844-1407 

AU E-Mail: Click or tap here to enter text. AU E-Mail: gah0015@auburn.edu 

 

3. AU IRB Protocol Identification 

         3.a. Protocol Number: 22-538 

           3.b. Protocol Title: The Effects of Augmented Instruction on Manufacturing Assembly Training 

         3. c. Current Status of Protocol – For active studies, check ONE box at left; provide numbers and dates  
                 where applicable 

☐ Study has not yet begun; no data has been entered or collected  

☒ 
☐ 

In progress    If YES, number of data/participants entered: 2 trials 
run, others scheduled 
Is this modification request being made in conjunction with/as a 
result of protocol renewal?      ☐ YES      ☐ NO 

Current Approval Dates 
From: 1/30/2023 
 

☐ Adverse events since last review   If YES, describe: Click or tap here to 
enter text. 

To: Click or tap to enter a date. 

☐ Data analysis only 

☐ Funding Agency and Grant Number: Click or tap here to enter text. AU Funding Information: Click or tap 
here to enter text. 

☐ List any other institutions and/ or AU approved studies associated 
with this project: Click or tap here to enter text. 

 

 

 

1. Today’s Date 2/20/2023 

The Auburn University Institutional 
Review Board has approved this 

Document for use from  
_______________to_______________ 
Protocol # ______________________ 

 

02/21/2023   -------------
22-538 EP 2301
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4. Types of Change 
       Mark all that apply, and describe the changes in item 5 

☒ Change in Key Personnel 
List the name(s) of personnel being added to or removed from the study and attach a copy of the CITI 
documentation for personnel being added to the study.  
Adding: Kralyn Thomas, Yen-Ting Guo, and Lucie Wang 

☐ Additional Sites or Change in Sites, including AU classrooms, etc. 
Attach permission forms for new sites. 
 

☒ Change in methods for data storage/ protection or location of data/ consent documents 
Added location for storage of consent forms for 2nd investigation. 

☒ Change in project purpose or project questions 
Added 2nd investigation using similar methods to explore other augmentations. 

☒ Change in population or recruitment 
Attach new or revised recruitment materials as needed; both highlighted version & clean copy for IRB approval 
stamp 
Expanded target number of participants in the same population. See revised protocol for details. 

☒ Change in study procedure(s) 
Attach new or revised consent documents as needed; both highlighted revised copy & clean copy for IRB 
approval stamp 
Updated procedures and added separate consent for 2nd investigation. Consent for 1st investigation unchanged. 

☒ Change in data collection instruments/forms (surveys, data collection forms) 
Attach new forms as needed; both highlighted version & clean copy for IRB approval stamp 
Reformatted to support both investigations. No material changes to data collected. Attached. 

☐ Other 
(BUAs, DUAs, etc.) Indicate the type of change in the space below, and provide details in the Item 5.c. or 5.d. as 
applicable. Include a copy of all affected documents, with revisions highlighted as applicable. 
Click or tap here to enter text. 
 

 

5. Description and Rationale 

5.a. For each item marked in Question #4 describe the requested change(s) to your research protocol, and the   
       rationale for each. 
Expanded scope of the experiment to include a second, directly related investigation. Needed added team members to help run the protocol. 

5.b. Briefly list (numbered or bulleted) the activities that have occurred up to this point, particularly those that  
       involved participants. 
Recruiting ongoing, two trial runs, additional scheduled. All those will continue to utilize the methods and forms previously approved. This modification creates no 
material change in the first investigation. Once the modification is approved we will revise our recruiting methods as described and begin running trials for the 2nd. 

5.c. Does the requested change affect participants, such as procedures, risks, costs, benefits, etc. 
Not for the first investigation. The 2nd will affect the participants recruited for it as described in the corresponding Informed Consent document. 

5.d. Attach a copy of all “IRB stamped” documents currently used. (Information letters, consent forms, flyers,  
       etc.) 
Attached. 

5.e. List all revised documents and attach two copies of the revised documents – one copy which highlights 
the revisions and one clean copy of the revised documents for the IRB approval stamp. 
Attached. 
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Version Date: 2/20/2023 

6. Signatures 

 
Principal Investigator: __________________________________________________________________________ 
 
Faculty Advisor PI, if applicable: _________________________________________________________________ 



Participant’s Initials: ______  Page 1 of 4 
  Version Date: 1/4/22 

 
(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 

WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

INFORMED CONSENT 
for a Research Study entitled 

The Effects of Augmented Instruction on Manufacturing Assembly Training 

Concise Summary 
You are being asked to take part in a research study. This research study is voluntary, meaning 
you do not have to take part in it. The procedures, risks, and benefits are fully described further in 
the consent form. The purpose of this study is to measure the effect of augmented instruction on 
learning rates and skills transfer for industrial assembly tasks. Following an initial phone screening 
the experiment will be scheduled at your convenience. After a brief orientation you will be asked 
to learn a simulated manufacturing assembly task – building model “cars” with LEGO® bricks. 
For this phase you will be randomly assigned one of the following forms of instructional media: 
paper work instructions (PWI), projected augmented reality (PAR), head-mounted AR (HMDAR), 
or head-mounted mixed reality (HMDMR). After a 10-minute training session you will be asked 
to repeat the assembly task from memory for 4 cars. Paper work instructions will remain available 
for reference as needed. Finally, you will be asked to complete a survey with questions about the 
experience and related personal traits. The entire process will take 45-60 minutes. 

This study has some risk of physical and psychological discomfort, including fatigue, dizziness, 
eyestrain, and performance anxiety. Participants assigned the HMD instructional media are most 
susceptible to physical discomfort due to the nature of its display system, which can also increase 
the risk of tripping and impact. Finally, all of your personally identifiable data is carefully secured 
to protect against the risk of a breach of confidentiality. Your safety and privacy is our utmost 
priority, and steps have been taken to mitigate all known risks. 

Beyond the opportunity to experience modern AR training methods, there are no direct benefits to 
you for participating in this study. The researchers will benefit from a greater understanding of 
this emerging field that could potentially benefit the community. The alternative is to not 
participate in this study. 
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You are invited to participate in a research study to measure the effect of augmented instruction 
on learning rates and skills transfer for industrial assembly tasks.  The study is being conducted by 
Dan O’Leary, Ph.D. Candidate, under the direction of Dr. Richard Sesek, Tim Cook Associate 
Professor in the Auburn University Department of Industrial and Systems Engineering.  You were 
selected as a possible participant because you meet all the following qualifications: 

1. Are not prone to motion sickness. 
2. Have no prior experience with head-mounted or projected Augmented Reality (AR) 

systems. 
3. Have no prior experience building cars in the Tiger Motors Lean Education Center 

(Lean Lab, aka LEGO Lab) as part of INSY 5800/6800 or otherwise. 
4. Are age 18 or older. 

What will be involved if you participate?  
If you decide to participate in this research study, you will be asked to follow a mix of paper and 
augmented (projected or head-mounted AR) work instructions to build LEGO car models in a 
realistic manufacturing setting.  Your total time commitment will be approximately 45-60 minutes. 
You will be required to wear a HoloLens2 head-mounted display (HMD) and video of your session 
will be recorded for later analysis. Another video camera will capture the work area from above. 
Camera placement is designed to prevent / limit the capture of personally identifiable imagery. 
Fully redacted versions of these videos, wherein any personally identifiable imagery is removed, 
will be kept indefinitely. Original recordings will be deleted within 1 year of the protocol’s 
completion. 

Are there any risks or discomforts? 
The risks associated with participating in this study are identified below. 

1. Physical discomfort and/or fatigue related to the weight of the HoloLens2 HMD. 
2. Vestibular and/or visual discomfort for participants assigned to the HMD AR instructional 

methods, which may cause mild dizziness, eye strain, and related effects in some users. 
3. Psychological discomfort may be experienced by those prone to anxiety when encountering 

time and performance-based measures. 
4. Trip and impact risk due to slightly altered field of view and reduced peripheral vision 

while wearing the HoloLens2 HMD. 
5. Participant confidentiality may be breached if identifying data is compromised or 

participants are observed entering, leaving, or taking part in the experiment. 
6. Exposure to COVID-19 or other respiratory illnesses, such as the flu. 

The discomforts identified are considered mild and unlikely. The HoloLens2 is well-balanced and 
uses a state-of-the-art optical see-through design that limits display-related discomforts. To 
minimize the risk of tripping and impact, participants are largely stationary in a well-lit area that 
is free of hazards. The HoloLens2 features a wireless design, which eliminates cables as a source 
of tripping hazard. Finally, all activities will be supervised, and participants will be continuously 
monitored for relevant symptoms. 

jkk0013
New Stamp



Participant’s Initials: ______  Page 3 of 4 
  Version Date: 1/4/22 

Confidentiality of the study data is of utmost importance. All research personnel are trained in 
research ethics and are aware of procedures to protect the confidentiality of participants and 
associated data. Paper files with personally identifiable information will be secured in an office 
that only the PI and Faculty Advisor have access to. Electronic data, including video recordings, 
will be maintained on a password-protected computer accessible only to the research team. 

To mitigate the risk of exposure to COVID-19 and other respiratory illnesses, the research team 
will follow University policies outlined on the Human Research COVID-19 Precautions page. All 
work surfaces and equipment will be wiped down before and after each participant, and all 
necessary supplies (e.g. masks, hand sanitizer) will be made available. The research staff will 
follow the University’s guidance on self-screening. Finally, conditions will be monitored, and 
precautions adjusted as necessary throughout the data collection process. 

Are there any benefits to yourself or others? 
There are no direct benefits from participating in this study. However, it is a unique opportunity 
for eligible participants to interact with projection and/or head-mounted AR hardware and training 
methods. This may lead them to a greater appreciation for the benefits and opportunities these 
technologies offer. 

Will you receive compensation for participating? 
No compensation is offered for your participation. 

Are there any costs? 
There is no cost for you to participate in this study. Auburn University has not provided for any 
payment if you are harmed as a result of participating in this study. 

If you change your mind about participating, you can withdraw at any time during the study.  
Your participation is completely voluntary.  If you choose to withdraw, your data can be withdrawn 
as long as it is identifiable. Your decision about whether or not to participate or to stop participating 
will not jeopardize your future relations with Auburn University, the Department of Industrial and 
Systems Engineering or any member of the research team. 

Your privacy will be protected.  Any information obtained in connection with this study will 
remain confidential.  Information obtained through your participation may be used in a variety of 
capacities, including fulfillment of educational requirements, publication in professional journals, 
and/or presentation at professional meetings. In any case, your identity will not be revealed, and 
your information will remain private. 
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If you have questions about this study, please ask now or contact Dan O’Leary at  
djo0008@auburn.edu, 407-399-3189, or Dr. Richard Sesek at rfs0006@auburn.edu, 334-728-
1438.  A copy of this document will be given to you to keep. 

If you have questions about your rights as a research participant, you may contact the Auburn 
University Office of Research Compliance or the Institutional Review Board by phone (334)-844-
5966 or e-mail at IRBadmin@auburn.edu or IRBChair@auburn.edu. 

HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE WHETHER 
OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH STUDY. YOUR 
SIGNATURE INDICATES YOUR WILLINGNESS TO PARTICIPATE. 

 

___________________________________  ____________________________________ 
Participant's signature Date Investigator obtaining consent Date 
 

___________________________________  ____________________________________ 
Printed Name  Printed Name 
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(NOTE:  DO NOT SIGN THIS DOCUMENT UNLESS AN IRB APPROVAL STAMP 

WITH CURRENT DATES HAS BEEN APPLIED TO THIS DOCUMENT.) 

INFORMED CONSENT 
for a Research Study entitled 

Studying Manufacturing with LEGO® Research 

Concise Summary 
You are being asked to take part in a research study. This research study is voluntary, meaning 
you do not have to take part in it. The procedures, risks, and benefits are fully described further in 
the consent form. The purpose of this study is to measure the effect of Lean Tools and Industry 
4.0 Technologies on productivity, learning rates, and skills transfer for industrial assembly tasks. 
Following an initial phone screening, the experiment will be scheduled at your convenience. After 
a brief orientation, you will be asked to learn a simulated manufacturing assembly task – building 
model “cars” with LEGO® bricks. For this phase you will be randomly assigned an order to 
complete the following treatments: paper work instructions (PWI), assembly with a pre-completed 
model for quality checks, an inspection camera for quality checks, and both the pre-completed 
model and inspection camera. You will be asked to complete four car assemblies for training using 
the paper work instructions prior to using the prescribed tasks. After the training, each treatment 
will last 10 minutes for a  total of four treatments. Paper work instructions will remain available 
for reference as needed. Between each task you will be asked to complete two brief surveys about 
your experience.  Finally, you will be asked to complete a survey with questions about the 
experience and related personal traits. The entire process will take 70-90 minutes. 

This study has some risk of physical and psychological discomfort, including fatigue and 
performance anxiety. Finally, all of your personally identifiable data is carefully secured to protect 
against the risk of a breach of confidentiality. Your safety and privacy is our utmost priority, and 
steps have been taken to mitigate all known risks. 

Beyond the opportunity to experience training in the Tiger Motors Lab, there are no direct benefits 
to you for participating in this study. The researchers will benefit from a greater understanding of 
this emerging field that could potentially benefit the community. The alternative is to not 
participate in this study. 

The Auburn University Institutional 
Review Board has approved this 

Document for use from  
_______________to_______________ 
Protocol # ______________________ 

 

02/21/2023   -------------
22-538 EP 2301
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You are invited to participate in a research study to measure the effect of Lean Tools and 
Industry 4.0 Technologies on productivity.  The study is being conducted by Victoria Ballard and 
Md Monir Hossain, Ph. D. students, under the direction of Dr. Richard Sesek, Tim Cook Associate 
Professor in the Auburn University Department of Industrial and Systems Engineering.  You were 
selected as a possible participant because you meet all the following qualifications: 

1. Are age 18 or older. 

What will be involved if you participate?  
If you decide to participate in this research study, you will be asked to follow work instructions to 
build LEGO car models in a realistic manufacturing setting.  Your total time commitment will -be 
approximately 70-90 minutes. Video of your session will be recorded for later analysis. Camera 
placement is designed to prevent / limit the capture of personally identifiable imagery. 

Are there any risks or discomforts? 
The risks associated with participating in this study are identified below. 

1. Psychological discomfort may be experienced by those prone to anxiety when encountering 
time and performance-based measures. 

2. Participant confidentiality may be breached if identifying data is compromised or 
participants are observed entering, leaving, or taking part in the experiment. 

Confidentiality of the study data is of utmost importance. All research personnel are trained in 
research ethics and are aware of procedures to protect the confidentiality of participants and 
associated data. Paper files with personally identifiable information will be secured in an office 
that only the PI and Faculty Advisor have access to. Electronic data, including video recordings, 
will be maintained on a password-protected computer accessible only to the research team. 

Are there any benefits to yourself or others? 
There are no direct benefits from participating in this study. However, it is a unique opportunity 
for eligible participants to participate in research in the Tiger Motors Lab. This may lead them to 
a greater appreciation for the benefits and opportunities these technologies offer. 

Will you receive compensation for participating? 
No compensation is offered for your participation. 

Are there any costs? 
There is no cost for you to participate in this study. Auburn University has not provided for any 
payment if you are harmed as a result of participating in this study. 

If you change your mind about participating, you can withdraw at any time during the study.  
Your participation is completely voluntary.  If you choose to withdraw, your data can be withdrawn 
as long as it is identifiable. Your decision about whether or not to participate or to stop participating 
will not jeopardize your future relations with Auburn University, the Department of Industrial and 
Systems Engineering or any member of the research team. 

The Auburn University Institutional 
Review Board has approved this 
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Your privacy will be protected.  Any information obtained in connection with this study will 
remain confidential.  Information obtained through your participation may be used in a variety of 
capacities, including fulfillment of educational requirements, publication in professional journals, 
and/or presentation at professional meetings. In any case, your identity will not be revealed, and 
your information will remain private. 

If you have questions about this study, please ask now or contact Victoria Ballard at  
victoria.ballard@auburn.edu,360-632-1359, or Dr. Richard Sesek at rfs0006@auburn.edu, 334-
728-1438.  A copy of this document will be given to you to keep. 

If you have questions about your rights as a research participant, you may contact the Auburn 
University Office of Research Compliance or the Institutional Review Board by phone (334)-844-
5966 or e-mail at IRBadmin@auburn.edu or IRBChair@auburn.edu. 

HAVING READ THE INFORMATION PROVIDED, YOU MUST DECIDE WHETHER 
OR NOT YOU WISH TO PARTICIPATE IN THIS RESEARCH STUDY. YOUR 
SIGNATURE INDICATES YOUR WILLINGNESS TO PARTICIPATE. 

 

___________________________________  ____________________________________ 
Participant's signature Date Investigator obtaining consent Date 
 

___________________________________  ____________________________________ 
Printed Name  Printed Name 
 

The Auburn University Institutional 
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Appendix B - Recruiting Materials 

In-Class Recruiting Script 
Hello, Class. 
Industrial Engineering graduate students pursuing their PhDs are recruiting participants for a 
research study. They are investigating the effectiveness of Mixed Reality, Lean, and Industry 4.0 
methods for operator training and support in manufacturing. These investigations hope to better 
understand the relationships between those methods, learning effectiveness, and operator 
performance. A flyer with details of the study will be emailed to each of you. If you are interested, 
please follow up as described therein. 

Email Script 
Dear Student, 
Please review the attached flyer, which provides details of the study recently described in    class 
name   . You are invited to participate in a research study on the effectiveness of Mixed Reality, 
Lean, and Industry 4.0 methods for operator training and support in manufacturing. The 
research team is conducting this study as Ph.D. Candidates under the supervision of Dr. Richard 
Sesek, Tim Cook Associate Professor in the Department of Industrial and Systems Engineering at 
Auburn University. 
If you would like to participate, simply respond to this email or via text / phone to 407-399-3189. 
Questions or concerns can be directed to me through the same channels, or you may contact my 
advisor Dr. Sesek (sesek@auburn.edu). 
Thank you for your consideration, 

Confirmation Email 
Dear <student name>, 
Thank you for your interest in our study, and for taking the time to discuss it with me. I’m happy 
to confirm that your trial is scheduled as follows: 
Date and Time:<date and time> 
Location: Tiger Motors Lean Education Center (Lean Lab, aka LEGO® Lab), in the basement of 
the Shelby Center for Engineering Technology, room 0317, located at 345 W Magnolia Ave, 
Auburn, AL 36849 
Please arrive on time. We anticipate that it will take 45-90 minutes to complete the session. 
If you need to reschedule or have further questions, feel free to respond to this email or call / text 
me at 407-399-3189. 
Thank you for your participation, 

Flyer 
On the following pages are flyers for both investigations, formatted as posters and slides. 

The Auburn University Institutional 
Review Board has approved this 
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Augmented Reality Research Study 
Training methods for tomorrow’s workforce, today! 

 

The Effects of Augmented Instruction on Manufacturing 
Assembly Training 

Interested in Augmented and Mixed Reality? 
Want to experience the latest in Projected and Head-Mounted AR? 

You may be eligible to participate in an important study! 

The purpose of this study is to measure the effect of augmented instruction on 
learning rates and skills transfer for industrial assembly tasks. The effect of projected 
(LightGuide) and head-mounted (HoloLens2) augmented reality methods will be 
compared with paper-based materials for instruction and support. 
This study is open to anyone 18 and older, that isn’t prone to motion sickness, has 
no prior experience with head-mounted or projected AR systems, and hasn’t worked 
in the Tiger Motors Lean Education Center (Lean Lab, aka LEGO® Lab)as part of 
INSY 5/6800 or otherwise. 

Conducted by graduate students in the 
Department of Industrial & Systems 
Engineering at Auburn University. 

If you are interested in participating or have 
questions, please contact Dan O’Leary 

(djo0008@auburn.edu, 407-399-3189), or scan 
the QR code to generate an email. Scan to Email! 

The Auburn University Institutional 
Review Board has approved this 
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Studying Manufacturing with LEGO(R) Research  
Participate in research in Auburn’s Tiger Motors Lab! 

 

The Effects of Lean Tools and Industry 4.0 Technology on 
Manufacturing Assembly Performance 

Want to help the future of manufacturing research? 
Want to use the latest vision inspection equipment and play with LEGO? 

You may be eligible to participate in an important study! 

The purpose of this study is to measure the effect of Lean Tools and Industry 4.0 
Technology on industrial assembly tasks. The effect of a model check piece, camera 
inspection technology, and a combination of the two will be compared with paper-
based materials. Participants will assemble one station of LEGO vehicles in four 
scenarios. The time for completion is approximately 1.5 hours.  No compensation 
for the study, but you will get to build LEGO cars in the world-famous Auburn Tiger 
Motors Lean Education Center (AKA LEGO Lab!).  

This study is open to anyone 18 and older. 

Conducted by graduate students in the Department of 
Industrial & Systems Engineering at Auburn University. 

If you are interested in participating or have 
questions, please contact Dan O’Leary 

(djo0008@auburn.edu, 407-399-3189), or scan the 
QR code to generate an email. 

The Auburn University Institutional 
Review Board has approved this 
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Subject Recruitment Data Sheet 

Eligibility Checklist: 

� 18 or older 
� Not prone to motion sickness 
� No prior experience with projected or head-mounted augmented reality systems 
� No prior experience building cars in the Tiger Motors Lean Education Center (Lean Lab, 

aka LEGO® Lab) as part of INSY 5/6800 or otherwise 

If eligible, record name, contact info (phone, email), and subject number in code sheet. 

Participant Number:  ____________________  

Gender:  ______________________________  

Age:  ________________________________  

Eligible: ____ I1 ____ I2 ____ Both 

Scheduled Trial(s):  _____________________  

 

Eligibility Checklist: 

� 18 or older 
� Not prone to motion sickness 
� No prior experience with projected or head-mounted augmented reality systems 
� No prior experience building cars in the Tiger Motors Lean Education Center (Lean Lab, 

aka LEGO® Lab) as part of INSY 5/6800 or otherwise 

If eligible, record name, contact info (phone, email), and participant number in code sheet. 

Participant Number:  ____________________  

Gender:  ______________________________  

Age:  ________________________________  

Eligible: ____ I1 ____ I2 ____ Both 

Scheduled Trial(s):  _____________________  

Notes: 

Notes: 

The Auburn University Institutional 
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Participant Intake Sheet, p1 / 2 

Participant #: __________  Date: __________ 

1. Gender: 

� Female 

� Male 

� Other 
2. Age:  _____ 

3. Race (select those with which you identify): 

� American Indian or Alaska Native 

� Asian 

� Black or African-American 

� Native Hawaiian or Other Pacific Islander 

� White 

� More than one race 

� Unknown or not reported 
4. Ethnicity (select ONLY one with which you most closely identify): 

� Hispanic or Latino 

� Not Hispanic or Latino 

� Unknown or not reported 

5. Country of Origin:  _______________________ 
6. What language do you mainly speak at home? 

� English 

� Other 
7. What is the highest level of school you have completed or the highest degree you have 

received? 

� Less than high school degree 

� High school degree or equivalent (e.g., GED) 

� Some college but no degree 

� Associate degree 

� Bachelor degree 

� Graduate degree:  ____ Master or ____ PhD 

jkk0013
New Stamp



Participant Intake Sheet, p2 / 2 

Participant #: __________  Date: __________ 

8. If you are currently pursuing a degree, please complete the following: 
College (e.g. Education or Business):  _______________________ 
Program (e.g. MS Adult Ed or BS Accounting) :  _______________________ 

9. Which of the following statements best describes your experience building LEGO 
models? 
� I have little to no experience building LEGO models. 

� I have some experience building LEGO models. 
� I have lots of experience building LEGO models. 
� I consider myself an expert in building LEGO models. 

10. Please indicate your level of manufacturing experience 
� I have no experience in manufacturing. 

� I have taken one or more classes in manufacturing. 
� I have held a part-time or temporary position in manufacturing. 
� I have 1 or more years of experience working in manufacturing. 
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Task Loading Index, p1 / 2 

Participant #: __________ Invest / Treat: __________ Date: __________ 

Sources of Workload 

Consider the following definitions: 

Title Range Description 
Mental 

Demand 
Low / High How much mental and perceptual activity was required (e.g. thinking, 

deciding, calculating, remembering, looking, searching, etc.)? Was the 
task easy or demanding, simple or complex, exacting or forgiving? 

Physical 
Demand 

Low / High How much physical activity was required (e.g. pushing, pulling, turning, 
controlling, activating, etc.)? Was the task easy or demanding, slow or 
brisk, slack or strenuous, restful or laborious? 

Temporal 
Demand 

Low / High How much time pressure did you feel due to the rate or pace at which the 
tasks or task elements occurred? Was the pace slow and leisurely or 
rapid and frantic? 

Performance Good / Poor How successful do you think you were in accomplishing the goals of the 
task set by the experiment (or yourself)? How satisfied were you with 
your performance in accomplishing these goals? 

Effort Low / High How hard did you have to work (mentally and physically) to accomplish 
your level of performance? 

Frustration Low / High How insecure, discouraged, irritated, stressed, and annoyed versus 
secure, gratified, content, relaxed, and complacent did you feel during 
the task? 

For each of the following pairs, circle the word that represents the more important contributor to 
workload for the specific task(s) you performed in this experiment. 

Effort 
or 

Performance 

Temporal Demand 
or 

Frustration 

Physical Demand 
or 

Performance 

Temporal Demand 
or 

Mental Demand 

Mental Demand 
or 

Physical Demand 

Temporal Demand 
or 

Effort 

Physical Demand 
or 

Frustration 

Frustration 
or 

Effort 

Performance 
or 

Mental Demand 

Effort 
or 

Physical Demand 

Performance 
or 

Frustration 

Physical Demand 
or 

Temporal Demand 

Performance 
or 

Temporal Demand 

Mental Demand 
or 

Effort 

Frustration 
or 

Mental Demand 
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Task Loading Index, p2 / 2 

Participant #: __________ Invest / Treat: __________ Date: __________ 

Workload Rating Sheet 
For each of the following 6 questions, consider the assembly task you just completed. Record 
your immediate response to each item by circling the number that you feel best represents your 
experience. 

1. How mentally demanding was the task? 

1 2 3 4 5 6 7 
Very Low      Very High 

2. How physically demanding was the task? 

1 2 3 4 5 6 7 
Very Low      Very High 

3. How hurried or rushed was the pace of the task? 

1 2 3 4 5 6 7 
Very Low      Very High 

4. How successful were you in accomplishing what you were asked to do? 

1 2 3 4 5 6 7 
Perfect      Failure 

5. How hard did you have to work to accomplish your level of performance? 

1 2 3 4 5 6 7 
Very Low      Very High 

6. How insecure, discouraged, irritated, stressed, and annoyed were you? 

1 2 3 4 5 6 7 
Very Low      Very High 

 



 

 

System Usability Scale 

Participant #: __________ Invest / Treat: __________ Date: __________ 

For each of the following 10 questions, consider the assembly task you just completed. Record 
your immediate response to each item by circling the number that you feel best represents your 
experience. 

  Strongly 
Agree 

 Strongly 
Disagree 

1 I think that I would like to use this system 
frequently. 1 2 3 4 5 

2 I found the system unnecessarily complex. 1 2 3 4 5 

3 I thought the system was easy to use. 1 2 3 4 5 

4 I think that I would need the support of a 
technical person to be able to use this system. 1 2 3 4 5 

5 I found the various functions in this system 
were well integrated. 1 2 3 4 5 

6 I thought there was too much inconsistency in 
this system. 1 2 3 4 5 

7 I would imagine that most people would learn 
to use this system very quickly. 1 2 3 4 5 

8 I found the system very cumbersome to use. 1 2 3 4 5 

9 I felt very confident using the system. 1 2 3 4 5 

10 I needed to learn a lot of things before I could 
get going with this system. 1 2 3 4 5 

Dan O'Leary



 

 

Behavioral Control Survey 

Participant #: __________  Date: __________ 

Please answer the questions below, rating yourself on each of the criteria 
shown using the scale on the right side of the page. As you answer each 
question, place an X in the box that best describes how you have felt and 
conducted yourself over the past 6 months.  

N
ev

er
 

Ra
re

ly
 

So
m

et
im

es
 

O
fte

n  

Ve
ry

 O
fte

n  

 

1. How often do you have trouble wrapping up the final details of a 
project, once the challenging parts have been done?      

2. How often do you have difficulty getting things in order when you 
have to do a task that requires organization?      

3. How often do you have problems remembering appointments or obligations?      

4. When you have a task that requires a lot of thought, how often do 
you avoid or delay getting started?      

5. How often do you fidget or squirm with your hands or feet when 
you have to sit down for a long time?      

6. How often do you feel overly active and compelled to do things, 
like you were driven by a motor?      

7. How often do you make careless mistakes when you have to work on a 
boring or difficult project?      

8. How often do you have difficulty keeping your attention when you are doing 
boring or repetitive work?      

9. How often do you have difficulty concentrating on what people say 
to you, even when they are speaking to you directly?      

10. How often do you misplace or have difficulty finding things at home or at work?      

11. How often are you distracted by activity or noise around you?      

12. How often do you leave your seat in meetings or other situations 
in which you are expected to remain seated?      

13. How often do you feel restless or fidgety?      

14. How often do you have difficulty unwinding and relaxing when you 
have time to yourself?      

15. How often do you find yourself talking too much when you are in social 
situations?      

16. When you’re in a conversation, how often do you find yourself 
finishing the sentences of the people you are talking to, before 
they can finish them themselves? 

     

17. How often do you have difficulty waiting your turn in situations 
when turn taking is required?      

18. How often do you interrupt others when they are busy?      

 

Dan O'Leary



 

 

General Feedback 

Participant #: __________  Date: __________ 

Please share with us any other feedback you have regarding this experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For Research Associate Only 
Follow-up? _____ Injury? _____ Discomfort? _____ Initial: _____ 

Dan O'Leary



Appendix D - Emergency Plan, Contact List, and COVID Resources 
Emergency Action Plan 

In Case of Emergency DIAL 911 
For non-emergency assistance: 

Service On-Campus Off-Campus 
Ambulance (EMS) 9-749-8504 334-749-8504 

City of Auburn Police 9-501-3100 334-501-3100 

Auburn Medical Pavilion 9-364-3000 334-364-3000 

East Alabama Medical Center, Opelika 9-749-3411 334-749-3411 

Research Team Contact List: 

Contact Phone Email 
Dan O’Leary, 

Principal Investigator 
407-399-3189 (cell) djo0008@auburn.edu 

Dr. Richard Sesek, 

Faculty Advisor 
334-728-1438 (cell) rfs0006@auburn.edu 

Victoria Ballard, 

Graduate Student 
360-632-1359 (cell) vzb0024@auburn.edu 

Dr. Gregory Harris, 

Faculty Advisor 
334-844-1407 (office) gah0015@auburn.edu 

Dr. John Evans, 

Faculty Advisor 
334-844-1418 (office) evansjl@auburn.edu 
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Lab Location and Access: 

Tiger Motors Lean Education Center (Lean Lab, aka LEGO® Lab), Basement, Shelby Center, 

Auburn University, room 0317. Street address: 345 W Magnolia Ave, Auburn, AL 36849. 

Elevator access: exit the lab and turn left 

Stairwell access: exit the lab, turn left, proceed around the elevator in either direction. 

Stairwell entrance is on the inside wall behind the elevator. 

Emergency exit: exit the lab and turn right. Continue to exit at ground level. 

Emergency Equipment: 

First aid kit, eye wash and shower station are present, as are fire extinguisher and alarm pull. 



COVID-19 Resources 
CDC COVID-19 Data Tracker for Lee County, Alabama 

University Policies for Research Exposure and Related Resources: 

• Human Research COVID-19 Precautions 
• COVID-19 Guidance on Self Screening 
• AU Facilities COVID Building Readiness Status Page 

Auburn University Screening Protocol (source): 
All research participants should be screened remotely (by phone or Zoom) for fever, cough, 
and flu-like symptoms the day before, with a repeat screening at the time of an in-person visit. 
Appropriate screening questions might include the following, which could be modified to fit 
your participant population and the location of in-person interactions: 

1. Do you have a fever or Respiratory Symptoms? Symptoms include fever, acute 
respiratory infection, persistent cough, sore throat, fatigue and shortness of breath, or 
sudden loss of taste or smell with or without a fever. 

2. Are you waiting on COVID-19 test results? 
3. Have you been asked to self-isolate by your doctor? 
4. In the past three weeks, have you visited another state, country, or facility with a 

substantial or high community COVID-19 level (see CDC COVID-19 Community 
Levels)? 

5. Health/Vaccination Status - Do you have underlying medical conditions, or are you 
unvaccinated? 

Precautions Matrix: 
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