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Abstract

Semi-supervised multi-class classification with novelty detection consists of one tool that

can accurately define what class an instance belongs to from a set group of known classes

while simultaneously detecting instances that do not belong to any of the classes. This field of

machine learning has been studied for a decade or more, with many different algorithms and

solutions tested. In this thesis, an algorithm built using One-Class Support Vector Machines

(OCSVM) and Linear Discriminant Analysis (LDA) will be explored and demonstrated on data

from simulated missile trajectories. Not only is this algorithm novel to the aerospace industry,

but also to the computer science and machine learning industries as well. Its strengths and

limitations will be explored, as well as techniques to increase accuracy and ideas for future

work and other uses for this tool.

The data used is produced by the Auburn University Solid Rocket Code (AUSRC), a val-

idated code which simulates the flight of a missile given its design parameters. The output

data from the AUSRC is preprocessed using common techniques such as standardization, to

eliminate the influence of units of measurement, and principal component analysis (PCA) as a

method of data reduction. The data is then fed into an iterative OCSVM, during which neces-

sary data is recorded to extract any outlier points. An objective threshold is used to differentiate

between instances that are outliers of a known clean class and instances that are true novelties

from an unknown class. The instances deemed ’true’ novelties by the threshold are added to the

training data to fit the LDA to. The data is then run through the LDA, which provides a higher

classification accuracy than the OCSVM, cleaning up inter-class misclassifications as well as

tracking the outliers back to their known class. Since the LDA was trained on the ’true’ novelty

class data, it acts as a novelty detector by extracting any other points the OCSVM missed.

This method works accurately (> 90% overall accuracy) on simulated missile trajectories

across 3 different data sets and robustness tests. The data set features used are comprised of

performance parameters, trajectory data, or derived features. The tests comprise of reduced
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time frames and random missing data. The OCSVM provides high accuracy novelty detection

while the LDA provides high accuracy classification, exploiting the strengths of each machine

learning algorithm. Further work should be done to improve the hybrid method and to investi-

gate ways to eliminate the LDA’s underlying assumption of the data set to have a multivariate

Gaussian distribution.
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Chapter 1

Introduction

Multi-class classification with novelty detection is an ongoing issue, with many researchers

testing and proposing methods to effectively accomplish this feat. Novelty detection involves

detecting instances that deviate from the norm of the clean data available to train on, and there

are many machine learning algorithms that can accurately perform this [17]. Novelty detection

is found in many industries and real world uses, including bioinformatics [19], seizure anal-

ysis [20], fraud identification [21], data stream monitoring [22], inspection robotics [23], and

planetary exploration [24] to name a few. Extending this principle to multi-class classifica-

tion with novelty detection increases the difficulty of this problem, because a machine learning

algorithm must not only learn the feature space of the known classes but also reserve the proba-

bility of determining a point to not belong to any of the known classes. This is difficult because

many statistical learning algorithms use probability functions that ’force’ all points into a class,

classifying the point purely based off of which class it scores highest for.

A popular state-of-the-art method for tackling this problem is using Support Vector Ma-

chines (SVM). Many papers have been published demonstrating methods on how to use support

vector methods or how to make them more accurate [10] [25] [26] [27] [28]. The SVM is tra-

ditionally a binary classification algorithm between two classes, but the One-Class Support

Vector Machine (OCSVM) only trains on one class and uses hyperparameters and a kernel to

define a hyperplane that returns a binary classification as either belonging to the trained on class

or not. The OCSVM can be implemented iteratively to learn multiple hyperplanes, shown to

be more accurate than lumping all known classes together into a large group [11] [18], with the

advantage of the opportunity for classification.
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The OCSVM has its disadvantages, including suffering from the ’curse of dimensionality’

[3] where too many features causes the algorithm to become inaccurate due to no built in

feature weight function. Zhu et al. [28] attempted to recify this by adding their own. Others

have tested their own methods that resemble some principles from OCSVMs, such as non-

linear transformations [11] [29], large margin distribution [30], and a neural network that only

defines trained on feature space [12].

The data sets used in this thesis are comprised of simulated missile trajectories modeled

by the Auburn University Solid Rocket Code (AUSRC). It is FORTRAN tool that calculates the

mass properties, aerodynamics, propulsion, 6-DOF flight, guidance and autopilot for a missile

given its design inputs to model the trajectory. Aerospace vehicles such as missiles can be

safely assumed to have a multivariate Gaussian class distribution due to their flight windows

and performance limitations. This allows the use of Linear Discriminant Analysis (LDA) on

the data, which requires this distribution.

The iterative OCSVM analysis is ran first and returns its results, consisting of predicted

classification labels as well as points deemed novelties. These novelty points contain false

positives, or points that are outliers of a clean class, not a true novelty from an unknown class.

An objective threshold is used to split the two. The points that score below the threshold are

deemed ’true’ novelties and can be added to the training data. The LDA can then take the

results or new incoming data and increase the overall classification accuracy, increase novelty

detection accuracy, and reclassify false positives back to their clean class.
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Chapter 2

Data Generation

2.1 Auburn University Solid Rocket Code (AUSRC)

The Auburn University Solid Rocket Code is a tool for developing the trajectories of solid pro-

pellant missile systems [1]. This FORTRAN tool contains routines to develop mass properties,

propellant performance characteristics, missile aerodynamics, potentially guidance, and a re-

sulting simulated flight trajectory. The inputs for the missile design parameters are stated as a

range of values, set as a median with a noise range, and a chosen random sampling routine is

used to run various scenarios, returning the data for the successful flights while discarding the

failed ones. The user can set the number of successful flights required to be returned before

terminating the simulations. One should refer to Cervantes’s doctoral dissertation [1] for more

information on the AUSRC including details for each subroutine that calculates the mass prop-

erties, aerodynamics, propulsion, 6-DOF flight, guidance and autopilot, as well as the sampling

routines used in the Auburn code and tools. The solid propellant rockets are loosely sized by

the performance of the liquid propellant SCUD-B missile, a tactical ballistic missile developed

by the Soviet Union.

2.2 Box and Whisker Plots

Box and whisker plots are used throughout the paper to visualize the data sets. Figure 2.1

shows a diagram of how they are formatted. The interquartile range is encapulated by the box,

representing the middle 50% of the data, where the center line is the median and the edges of
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the box represent the upper and lower quartile. The whiskers extend from each end of the box

and extend out to an extreme of the data. Each whisker also represents 25% of the data.

Fig. 2.1: Box and Whisker Plot Explanation

The box and whisker plots show the range of the inputs, where the AUSRC samples a point

from, as well as the range of the outputs in the data set following the missile flyout simulations.

The box and whisker plot visualization allows the reader to better understand the data set as

well as gain valuable insight into the relationships between the variance of inputs on the affect

of outputs.

2.3 18 Class Data Set

The ’18 Class Data Set’ is used as a proof of concept for all advances in the hybrid method

because of its relative ease of classification. The data set developed for this initial demon-

stration effort consists of 18 different classes of ballistic missiles, differentiated by the inputs

DBODY (body diameter), THROAT (throat diameter), and FINENESS (fineness ratio). A total

of 45, 000 runs were generated, or 2, 500 runs per class. Table 2.1 shows the 3 discriminating

input values for each of the 18 classes. There are 3 different values for DBODY, 3 different

values for FINENESS, and 2 different values for THROAT.
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Table 2.1: 18 Class Data Set Mean Value for Discriminating Inputs

Class Body Diameter Fineness Ratio Throat Diameter
(DBODY) (FINENESS) (THROAT)

1 0.844 8.91878 0.14264
2 0.884 8.91878 0.14264
3 0.924 8.91878 0.14264
4 0.844 9.11878 0.14264
5 0.884 9.11878 0.14264
6 0.924 9.11878 0.14264
7 0.844 9.31878 0.14264
8 0.884 9.31878 0.14264
9 0.924 9.31878 0.14264

10 0.844 8.91878 0.18264
11 0.884 8.91878 0.18264
12 0.924 8.91878 0.18264
13 0.844 9.11878 0.18264
14 0.884 9.11878 0.18264
15 0.924 9.11878 0.18264
16 0.844 9.31878 0.18264
17 0.884 9.31878 0.18264
18 0.924 9.31878 0.18264

DBODY can be seen in Fig. 2.2 for each class with an added noise of +/− 0.002 meters.

FINENESS can be seen in Fig. 2.3 for each class with an added noise of +/− 0.01. THROAT

can be seen in Fig. 2.4 for each class with an added noise of +/ − 0.006 meters. The noise is

added as a part of the random sampling subroutine in the AUSRC. The subroutine picks a value

within the bounds of the variable and simulates its flight. If the variables are not compatible,

the run is terminated and new variables within the bounds are chosen. This routine continues

until the program performs the set number of required successful runs, in this case 2, 500 per

class.
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Fig. 2.2: DBODY Box Plots for Each Class (18 Class)

Fig. 2.3: FINENESS Box Plots for Each Class (18 Class)
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Fig. 2.4: THROAT Box Plots for Each Class (18 Class)

The outputs used from this data set as ’features’ are BURNTIME (Burn Time), MAX-

THRUST (Maximum Thrust), MAXPC (Maximum Chamber Pressure), and MAXPE . While

these performance parameters are not readily available from an adverse missile, this data set

still provides valuable insight to how the OCSVM iterative algorithm functions (OCSVM It-

erative Method Alone, Section 5.1) and how preprocessing the data increases accuracy (Data

Handling, Section 4.1).

Fig. 2.5: BURNTIME Box Plots for Each Class (18 Class)
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Fig. 2.6: MAXTHRUST Box Plots for Each Class (18 Class)

Fig. 2.7: MAXPC Box Plots for Each Class (18 Class)
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Fig. 2.8: MAXPE Box Plots for Each Class (18 Class)

The inputs can be used to analyze how they affect the outputs. Increasing THROAT leads

to an increase in BURNTIME, while decreasing MAXTHRUST, MAXPC, and MAXPE. In-

creasing FINENESS leads to a decrease in BURNTIME, while increasing MAXTHRUST,

MAXPC, and MAXPE. Increasing DBODY increases all four outputs. These results are to

be expected and can be shown through aerospace performance equations.

2.4 12 Class Data Set

For robustness, a second data set consisting of 12 different classes of missiles was developed,

again primarily differentiated by the inputs DBODY, THROAT, and FINENESS. A total of

36, 000 runs were generated, or 3, 000 per class. Table 2.2 shows the 3 discriminating input

values for each of the 12 classes.
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Table 2.2: 12 Class Data Set Mean Value for Discriminating Inputs

Class Body Diameter Fineness Ratio Throat Diameter
(DBODY) (FINENESS) (THROAT)

1 0.70 14.3337 0.250
2 0.70 15.7671 0.250
3 0.70 14.3337 0.325
4 0.70 15.7671 0.325
5 0.75 14.3337 0.250
6 0.75 15.7671 0.250
7 0.75 14.3337 0.325
8 0.75 15.7671 0.325
9 0.80 14.3337 0.250

10 0.80 15.7671 0.250
11 0.80 14.3337 0.325
12 0.80 15.7671 0.325

There are 3 different values for DBODY, with an added noise of +/ − 0.0075 meters.

FINENESS has 2 different values and an added noise of +/−0.1434. THROAT has 3 different

values and an added noise of +/−0.0029 meters. The box plots below (Figures 2.9, 2.10, 2.11)

help visualize these inputs with their respective noise.

Fig. 2.9: DBODY Box Plots for Each Class (12 Class)
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Fig. 2.10: FINENESS Box Plots for Each Class (12 Class)

Fig. 2.11: THROAT Box Plots for Each Class (12 Class)

The outputs used as features differ in this data set compared to the ’18 Class Data Set’.

This data set uses pure trajectory data consisting of position and velocity data in the X and Z

directions. This data is recorded once every 0.4 seconds for a total of 30 seconds. Using this

time step, other useful features can be calculated and used, such as acceleration or curve fits

on a position versus time plot. Using pure trajectory data versus derived features is a topic of
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interest and will be demonstrated and compared using this data set in the ’12 Class Data Set’

results section (Section 5.2.1).

Figure 2.12 shows a randomly selected trajectory from each of the 12 classes. There is a

lot of overlap between classes early on but diverge later in their respective flights. This single

plot is not indicative of each class as a whole but just provides a visual for how each one might

fly.

Fig. 2.12: Sample Trajectory from Each Class (12 Class)

Figures 2.13 and 2.14 give a better representation of how each class is performing. The

maximum position and velocity for a sample of 150 runs per class were found and plotted

against each other to better visualize the overlap between classes. This overlap stress tests the

developed hybrid method and is the reason this data set is used to test robustness. A time study

(Section 5.2.1) and a missing data study (Section 5.2.1) were used to further test the hybrid

method on this data set by dropping time steps across the trajectory to determine where the

limits for the algorithm are as well as to gain insight on the what portion of the trajectory is

most discriminating.
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Fig. 2.13: 150 Run Sample Maximum Positions for Each Class (12 Class)

Fig. 2.14: 150 Run Sample of Maximum Velocities for Each Class (12 Class)

2.5 Ballistic/Maneuverable Data Set

This data set consists of 2 different classes of missiles, one built as ballistic missile and one

built as a maneuverable missile with adjustable fins. The two classes of missiles are identical

except for that the maneuverable missiles have actuators to manipulate the fins. These actuators

add weight, which is the primary discriminating input between these two classes. A total of

2, 000 runs were generated, or 1, 000 per class.
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Fig. 2.15: WEIGHT Box Plots for Each Class (B/M)

While each class produces the same amount of thrust, this small weight discrepancy leads

to different accelerations and velocities, even early in flight, primarily in the Z direction. The

outputs used as features are position and velocity data in 2 dimensions (X,Z), recorded once ev-

ery 0.4 seconds until the missile completes its flight and hits the ground, which occurs roughly

between 450 − 475 seconds. Figure 2.16 below shows the maximum velocity in the vertical

direction (VZMAX) for each class.

Fig. 2.16: VZMAX Box Plots for Each Class (B/M)
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Figure 2.17 below shows a sample trajectory for a ballistic and a maneuverable missile

through the first 9.6 seconds of flight, amounting to 24 total observation points (1 observation

every 0.4 seconds). Note that the missiles have a steep launch angle and are flying almost

vertically.

Fig. 2.17: Sample Trajectory for Each Class (B/M)

The extra weight in the maneuverable missile detracts from its climbing ability, as shown

in its VZMAX and the respective heights in their sample flights. Even early on the height

difference is noticeable to the eye. The goal for this data set is to identify the maneuverable

missile as early as possible, the results of which are shown in the ’Ballistic/Maneuverable Data

Set’ results (Section 5.2.2). These flights are easily distinguishable to the naked eye, but when

the time scale is cut down to just a few seconds it becomes more ambiguous, also noting that

this is a sample flyout and does not represent the entire class. The flight envelope for the

missiles overlap, they are not completely distinct.
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Chapter 3

Machine Learning Algorithms

3.1 One-Class Support Vector Machine

The Support Vector Machine (SVM) is a machine learning algorithm that finds the maximum

margin hyperplane that separates two data sets. The margin is the minimum distance from the

hyperplane to the nearest point in either class. The SVM is a binary classification algorithm,

defining each point to one of the two input classes. The One-Class SVM (OCSVM) is one of

the many different SVM models built from the original. The OCSVM is still a binary classi-

fication algorithm, but instead of requiring two data sets to define a separating hyperplane, it

only requires one ’clean’ (known) class and no adversarial data. The binary classification then

becomes either belonging to the trained-on class or not. This is possible by setting hyperpa-

rameters which are tuned according to the intricacies of the data set and the needs of the user,

and by setting a kernel to define the shape of the hyperplane. This attribute makes the OCSVM

a popular algorithm for novelty detection and is considered one of the state-of-the-art methods.

3.1.1 SVM Theory

The SVM is built as an extension of the Perceptron, one of the earliest machine learning algo-

rithms developed. The Perceptron is a machine learning algorithm that will find a hyperplane

that separates two data sets if this separation is possible. This algorithm stops once it finds a

separating hyperplane and if the data sets are linearly separable, there are infinite separating

hyperplanes, shown in Fig. 3.1. It should be noted that figures and the notation throughout

the linear SVM portion are modeled after a lecture from a machine learning course at Cornell
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University [2]. This lecture provides a good understanding of how SVMs work and the theory

behind them.

Fig. 3.1: Example Hyperplanes that Separate the Same Data Sets

The linear SVM extends off this principle by introducing a margin, γ, defined as the

distance from the hyperplane to the nearest point from either class, and a hyperplane normal

vector, w. By using an optimization routine, this margin can be maximized to provide the most

robust and accurate separating hyperplane, shown in Fig. 3.2. Using the largest margin makes

the decision boundary less suceptible to noise and perturbations in the data [5]. To perform this,

a linear classifier is used of the form h(x) = sign(wTx + b) with the aforementioned binary

classification defined with labels {+1,−1}.
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Fig. 3.2: Maximum Margin Separating Hyperplane

The hyperplane, H , is defined by x and b, representing a set of points such that H =

{x|wTx + b = 0}. The distance then of a point (x) to the hyperplane (H) can be defined by

Eq. 3.1. Figure 3.3 shows the distance (d), the sample point (x), the projected point (xp), the

hyperplane (H), and the hyperplane normal vector (w) on an example plot for visualization.

Fig. 3.3: SVM Distance Example
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∥d∥2 =
√

dTd =
|wTx + b|√

wTw
=

|wTx + b|
∥w∥2

(3.1)

It follows then that the margin for this hyperplane is the shortest distance to a point from

both classes. The margin (γ) of the hyperplane (H) with respect to the matrix of distances (D)

is defined as Eq. 3.2.

γ(w, b) = minx∈D
|wTx + b|
∥w∥2

(3.2)

As stated before, for the most robust decision boundary the hyperplane with the largest

separating margin is found and used. This is done such that there are no negative values across

the entirety of both class instances, indicating that the hyperplane is a separating hyperplane

and all the points are on the correct side. The problem then becomes an optimization routine to

find the maximum, shown in Eq. 3.3.

maxw,b
1

∥w∥2
minxi∈D|wTxi + b| such that ∀i yi(wTxi + b) ≥ 0 (3.3)

Through rescaling, a simpler formation can be shown for the optimization problem. This

formation, shown in Eq. 3.4, is a quadratic optimization problem that has one unique solution

given that a separating hyperplane exists.

minw,bwTw such that ∀i yi(wTxi + b) ≥ 1 (3.4)

From this optimization routine the resultant w and b for the maximum margin separating

hyperplane will be defined. The points which are closest to this hyperplane are called the
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support vectors and they define the hyperplane as well as the margin. The hyperplane acts

independently of points that are not support vectors [4].

In cases where the data sets cannot be separated, soft constraints can be used. This allows

points to be ’sacrificed’ and will fall on the wrong side of the hyperplane to maximize the

margin and provide higher overall accuracy. This can be seen below in Fig. 3.4 where there is

one green point on the incorrect side of the hyperplane, as well as a red point inside the margin.

This hyperplane, with a soft constraint error factor (ν) of 0.1, was made using Ref. [6]. The

slack parameters ξ and C can be introduced as a constant in the optimization routine, updated

and shown in Eq. 3.5. The parameter ξ is the minimized variable according to C which sets the

error rate, or the fraction of points which can be in error.

minw,bwTw + C
N∑
i=1

ξi such that ∀i yi(wTxi + b) ≥ 1− ξi ∀i ξi ≥ 0 (3.5)

This allows the SVM to find the optimal separating line that provides the highest classifi-

cation accuracy by minimizing the slack variable (ξ) contribution. The routine will allow points

to invade the separating margin or even points to be on the incorrect side if the line leads to a

simpler solution.

Fig. 3.4: Linear SVM with Soft Constraints
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Using a kernel, the data can be non-linearly transformed before fitting a linear SVM to

the data. In the original feature space this makes the boundary non-linear and more robust

to difficult datasets. The non-linear transformation used is the Radial Basis Function (RBF)

kernel. The linear solution function takes the form of h(x) = sign(wTx + b) while the RBF

kernel solution function takes the form of Eq. 3.6, pulled from Ref. [3]. This kernel function

also includes α, a value resulting from introducing soft constraints. The function depends on a

matrix of data points (x), a matrix of input vectors (x′), and the kernel learning rate coefficient

(γRBF ).

h(x) =
N∑
i=1

αiyiK(x, x′)RBF + b where K(x, x′)RBF = exp(−γRBF∥x − x′∥2) (3.6)

Figure 3.5 shows a data set that is not linearly separable. The result is a very inaccurate

linear SVM hyperplane. Figure 3.6 shows the same data set but using an RBF kernel to define

the hyperplane, resulting in a perfectly accurate non-linear hyperplane. In these figures, the

instances that have blue circles are the support vectors. These figures were made using Ref.

[6].

Fig. 3.5: Linear SVM Example
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Fig. 3.6: RBF SVM Example

For a more in-depth explanation of SVMs, one should refer to Refs. [2], [3], [4], and [5].

These lectures and textbooks provide comprehensive explanations and examples of SVMs. The

theory above is meant to give a general understanding of how a binary SVM works. A One-

Class SVM works much in the same way, except that it only needs one class to train on, with

the length of the support vectors and slack parameters determined by the input hyperparameters

and the shape of the hyperplane determined by the input kernel.

3.1.2 ”OneClassSVM” Algorithm

The algorithm ”OneClassSVM”, Ref. [7], from the scikit-learn python library is utilized in this

paper. The definitions and explanation below are pulled from Ref. [7] as well. Hence the name,

it is an unsupervised OCSVM algorithm implemented by inputting your hyperparameters and

a kernel, then fitting it to a clean class. New data can then be run through, and the OCSVM will

judge each instance and give it a score that determines if it is an inlier or outlier. All aspects

are explained in depth below throughout this section.

Kernel

This function defines the kernel type used in the analysis. As stated above, shown in Eq. 3.6,

the RBF kernel is used.
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Radial Basis Function: K(x, x′) = exp(−γRBF∥x− x′∥2)

This kernel is used for complex data sets and is known for being robust and returns a

smooth but intricate hyperplane. The RBF kernel depends only on the radial distance from the

center [4] of the data set to form the hyperplane.

Hyperparameters

While ”OneClassSVM” has several hyperparameters, only three are explicitly defined for this

research while the rest were left to their default settings. These three are nu, gamma, and tol.

Proper hyperparameter tuning is essential for an accurate analysis and is the difference between

a successful run and a failure. The definitions below were pulled from the ”OneClassSVM”

page on the scikit-learn website [7].

1. nu: An upper bound on the fraction of training errors and a lower bound on the fraction

of support vectors. Should be in the interval (0, 1].

This hyperparameter is found in the SVM theory (Section 3.1.1) equations as C.

(a) nu = 0.01 (b) nu = 0.1

Fig. 3.7: Effect of ’nu’ on OCSVM Boundary

Figure 3.7 shows how ’nu’ affects the OCSVM boundary. A lower value of ’nu’ produces

a larger boundary with a shallow gradient. Remember that the value of ’nu’ is the upper bound

of training errors, that can be shown by the ’error train’ fraction in the bottom left. In this case,

changing the ’nu’ hyperparameter does not change the error rate in regular or abnormal points,

but is very important and has drastic effects in more difficult scenarios.
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2. gamma: Kernel coefficient for ’rbf’.

(a) gamma = 1 (b) gamma = 10

Fig. 3.8: Effect of ’gamma’ on OCSVM Boundary

Figure 3.8 shows how ’gamma’ affects the OCSVM boundary. The hyperparameter ’gamma’

is shown in the SVM theory (Section 3.1.1) as γRBF and is the learning rate parameter for the

RBF kernel. If it is too high, the algorithm doesn’t properly converge on a solution, as shown

when ’gamma’ equals 10 and a rough boundary is returned. For data sets with many features,

’gamma’ needs to be small to produce accurate results. Take note of the increase in error rates

in train and regular points when ’gamma’ is increased between the two runs.

3. tol: Tolerance for stopping criterion.

(a) tol = 1e−3 (b) tol = 50

Fig. 3.9: Effect of ’tol’ on OCSVM Boundary
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Figure 3.9 shows how the OCSVM boundary changes as ’tol’ changes. Since this data set

is a simple 2D example, the ’tol’ increase had to be exaggerated to give a good representation

of its influence. If the convergence tolerance is too small, overfitting will occur, while if the

tolerance is too large, training errors are increased because the algorithm’s optimization routine

stops too early.

Properly tuning these three hyperparameters is essential to creating a smooth, accurate

decision boundary, especially in difficult data sets with many features.

Score Samples

The ”OneClassSVM” algorithm has a feature called score samples which is a built-in raw

scoring function of the samples. It gives a score to each instance and that score is used in

determining if a point is an inlier or an outlier. For example, Fig. 3.10 shows an OCSVM

scenario where ’nu’ = 0.05, ’gamma’ = 1, and ’tol’ = 1e−3. Table 3.1 shows the resultant stats

for the score samples given to the train (error train), test (errors novel regular), and outliers

(errors novel abnormal) data points.

Fig. 3.10: Score Sample SVM Example
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Table 3.1: Score Sample Stats for Each Data Set

Train Test Outliers
Count 1000 40 20
Mean 12.15 12.19 1.73

std 0.794 0.595 3.09
min 7.27 11.06 ∼0.00
max 12.95 12.94 11.30

Checking the error rates in Fig. 3.10 supports what we can observe from the score samples

from the data sets. The training points received scores ranging from 7.27-12.95, which defines

the inlier score range. The range for the test points was 11.06-12.94, and the OCSVM had zero

errors in identifying these points, because their scores all fell inside of the inlier score range.

The outlier points had a score range from 0.00-11.30. The OCSVM had one error in identifying

outlier points, making the mistake on the point that fell inside the range for the training points

and received a score of 11.30, well inside of the inlier range.

The score samples prove important in identifying novelties and in multi-class OCSVM

classification. How they are used is laid out in depth later in the OCSVM portion of the Devel-

oped Methods chapter (Section 4.2).

3.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a generalization of Fisher’s Linear Discriminant and

finds linear combinations of features that characterize and separate two or more classes. It is

a fully supervised method, meaning it can utilize class labels to maximize variance between

classes while also minimizing variance within each class. It also acts as a feature reduction

method by learning the most discriminating axes between classes and dropping the ones that

are negligible. After transforming the data based on these most discriminating axes, the LDA

then defines hyperplanes that separate the various classes.
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3.2.1 LDA Theory

The LDA theory and nomenclature in this section is taken from the Elements of Statistical

Learning textbook [3], used for the feature space explanation and equations, and the Proba-

bilistic Machine Learning textbook [5], used for the feature reduction explanation and equa-

tions.

LDA is used in a case when it is assumed that the classes all have a common covariance

matrix (Σk = Σ ∀k) and the classes conditional densities are multivariate Gaussians. When

dealing with aerospace vehicles this is a safe assumption, as each one should have a multivariate

Gaussian distribution due to its flight window and other limitations in performance. The log-

ratio between two classes (k and l), shown in Eq. 3.7, is linear in x, meaning that the decision

boundary is also linear in x. Equation 3.7 can be thought of as the difference of distances to

each class’s centroid. If the feature space is divided into N regions, each classified to different

classes, these regions will be separated by linear hyperplanes and each region will represent the

class that has the highest probability for that space based on the log-posterior of the fit model.

log
Pr(G = k|X = x)

Pr(G = l|X = x)
= log

πk

πl

− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl) (3.7)

From Eq. 3.7, the linear discriminant functions, shown in Eq. 3.8, are the description of

the decision rule, where G(x) = argmaxkδk(x).

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + logπk (3.8)

The training data is used to estimate the parameters for the Gaussian distribution for each

class.
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π⃗k =
Nk

N
,where Nk is the number of class-k observations (3.9)

µ⃗k =
∑
gi=k

xi

Nk

(3.10)

Σ⃗ =

∑K
k=1

∑
gi=k(xi − µ⃗k)(xi − µ⃗k)

T

N −K
(3.11)

The LDA is implemented by projecting the data with respect to the most discriminatory

axes. Instances can be classified to the closest class centroid in this transformed space. To find

these axes, let mk = wTµk be the projection of each class’s mean (µk) onto the line (w) and let

zn = wTxn be the projection of the data (xn) onto the line (w). The variance of these points is

defined by Eq. 3.12.

s2k =
∑
yn=k

(zn −mk)
2 (3.12)

As stated before, the LDA is fully supervised, meaning it can utilize class labels. Using

this information the goal then becomes to maximize Eq. 3.13, by maximizing the distance

between the class means [(m2 −m1)
2] and minimizing the variances of each class [(s21 + s22)].

J(w) =
(m2 −m1)

2

s21 + s22
(3.13)

Extending this principle to several classes is very similar. The goal of the LDA is to reduce

the number of dimensions in the features (x ∈ RD) by transforming the data to the resulting
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low-dimension features (z ∈ RK). This is done using a linear projection matrix (z = Wx)

where W is a KxD matrix.

Two scatter matrices can be defined as Eqs. 3.14 and 3.15, where S⃗B is the between-class

scatter matrix, and S⃗W is the within-class scatter matrix. The variable mc is the mean for class

’c’, while m (m = 1
N

∑C
c=1Ncmc) is the overall mean.

S⃗B =
C∑
c=1

Nc(mc − m)(mc − m)T (3.14)

S⃗W =
C∑
c=1

∑
yn=c

(zn − mc)(zn − mc)
T (3.15)

Equation 3.13 can be rewritten in terms of W by inserting Eqs. 3.14 and 3.15 in. The goal

can now be defined as maximizing Eq. 3.16.

J(W) =
|WTSBW|
|WTSWW|

(3.16)

The solution of Eq. 3.16 can be shown as Eq. 3.17, where U are the K leading eigenvectors

of S− 1
2

W SBS− 1
2

W .

W = S− 1
2

W U (3.17)

3.2.2 LinearDiscriminantAnalysis Algorithm

The algorithm ”LinearDiscriminantAnalysis”, Ref. [8], from the scikit-learn python library

is utilized in this paper. The algorithm is a is a fully supervised LDA which provides high

accuracy classification. Since the LDA uses a log-posterior probability function do determine
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class, it classifies points based on what class they score highest for. This means this algorithm

cannot be used alone for novelty detection because each point will be ’forced’ into a class. The

solution to this issue is described in depth later in the Developed Methods chapter (Section

4). In short, the OCSVM is used as a novelty detector and the LDA is used for increased

classification accuracy, exploiting the strengths of both individual algorithms.

Components

The number of components can be defined in the algorithm. The components are linear com-

binations of features, the most discriminatory of which will be used to project the data into a

new, low-dimensional feature space. The definition for the hyperparameter that controls this is

defined below, taken from Ref. [8].

n components: Number of components (≤ min(n classes−1, n features)) for dimen-

sionality reduction

Figure 3.11 is a two component LDA projection of the commonly used Iris data set. The

source code for this example came from the scikit-learn website (Ref. [13]).

Fig. 3.11: LDA Projection of Iris Data Set

3.3 Principal Components Analysis

Principal Components Analysis (PCA) is a popular method for feature reduction. The PCA

finds the most discriminating projections or linear combinations of the data, called principal
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components, that provide the maximum variance for the data set. The number of principal

components needed to properly capture the variance of the data set can be defined and used to

transform the data set, reducing the number of features down to this number. While the PCA

is very similar to an LDA, it is unsupervised so it can only maximize variance through the data

set as a whole, it cannot use class labels to maximize variance between classes or minimize

variance within a class.

How the PCA is applied is laid out in detail in the Developed Methods chapter (Section 4).

The OCSVM is subject to the ’curse of dimensionality’ [3], where noisy or negligible features

lead to high run times and inaccuracies. Using a PCA to preprocess the data increases the

accuracy and effectiveness of the OCSVM [14].

3.3.1 PCA Theory

The PCA theory and nomenclature in this section was pulled from Ref. [4], Pattern Recognition

and Machine Learning by Christopher M. Bishop. For a data set with N observations, the goal

of a PCA is to project the data set into D dimensions where D < N while maximizing the

variability in the projection. The mean of the original data is given by Eq. 3.18 and the mean

of the projected data is uT
1 x, where u1 is a vector with D dimensions that defines the direction

of the projection. The variance of the projected data is given by Eq. 3.19.

x =
1

N

N∑
n=1

xn (3.18)

1

N

N∑
n=1

{uT
1 xn − uT

1 x}2 = xT
1 Su1 (3.19)

Where S above is the covariance matrix for the data, given by Eq. 3.20.
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S =
1

N

N∑
n=1

(xn − x)(xn − x)T (3.20)

To maximize the variance with respect to u1, a constraint is introduced in the form of the

normalization condition uT
1 u1 = 1. A Lagrange multiplier (λ1) is introduced to enforce this

condition. Through further analysis, Bishop (Ref. [4]) shows that u1 must be an eigenvector of

S. This then gives the variance as shown by Eq. 3.21.

uT
1 Su1 = λ1 (3.21)

The eigenvector (u1) with the largest eigenvalue (λ1) will have the maximum variance.

This eigenvector is called the first principal component. The principal components are arranged

in order of eigenvalues, allowing the original data set to be projected in multiple dimensions in

the directions of maximum variance.

3.3.2 ”PCA” Algorithm

The algorithm ”PCA”, Ref. [9], from the scikit-learn python library is utilized in this paper. The

algorithm is an unsupervised PCA used as a feature reduction method and to increase accuracy

by maximizing the variability in the data. This becomes useful when processing data to feed

into the OCSVM, since it does not include weights in the process and suffers from the ’curse

of dimensionality’ [3], and is shown to increase OCSVM accuracy [14]. This is especially

important to missile classification due to having redundant, highly correlated features in the

trajectory. An example can be seen in the X position data, where x1 is very highly correlated

to x2, x2 is very highly correlated to x3, and so on.
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Components

Similar to the implementation of the LDA algorithm, the components are the only variable

explicitly defined by the user. The definition of this variable is shown below, pulled from [9].

n components: Number of components to keep. If n components is not set all compo-

nents are kept.

The user can tune the number of principal components kept according to the data set.

Relatively few dimensions can account for > 95% of the total variability in the data set. After

the PCA is run on the data set, the transform function takes the original data set and projects

it according to the principal components.

Figure 3.12 shows a two component PCA projection of the commonly used Iris data set.

The first two principal components account for 97.76% of the explained variance in the data

set. The source code to produce this plot was pulled from the scikit-learn website [13].

Fig. 3.12: PCA Projection of Iris Data Set

Figures 3.11 and 3.12 can be compared to each other to show how the 2D projections

differ between LDA and PCA on the same data set. Figure 3.13 below shows that comparison

and many similarities between the two can be observed.
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(a) Two Component LDA (b) Two Component PCA

Fig. 3.13: Comparison of LDA and PCA on Iris Data Set
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Chapter 4

Developed Hybrid Methods and Python Code Process

This section will describe in detail how the whole developed method works, as well as the

reasoning behind each step. The code was written in Python and is run using JupyterLab,

a web-based development, editing and application environment for notebooks, code and data

[15].

4.1 Data Handling

4.1.1 Reading in Data

The output data from the AUSRC is read into the JupyterLab workspace and is manipulated so

that the features are represented by columns, and individual flyouts are represented by rows. It

is important to exclude any features that could not be readily measured or are not of importance.

For example, the ’12 Class Data Set’ is modeled in two dimensions (X and Z), but still

returns Y dimension data that has a mean of zero but involves some noise. This Y position

and velocity is dropped before being inserted into the algorithm. The data set also includes

TIME, a set of features representing time from launch, which is manipulated to show time

from detection since time from launch should not be assumed to be available. This is done by

setting the initial observation TIME to zero and subtracting the initial observation TIME from

the rest of the observations.
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4.1.2 Features

Now that the data is properly manipulated to represent an adverse missile scenario, the feature

type can be selected. The features can be left as is, or ’derived’ features can be calculated.

Three scenarios will be shown in the Results chapter (Section 5):

1. Performance Variables: Performance parameters such as thrust, exit pressure, cham-

ber pressure and burn time are the features. These parameters may not be readily available in a

real life scenario.

2. Trajectory Data: Time from detection, position and velocity are the features. They are

recorded at regular intervals over a select period in multiple dimensions. These are meant to

emulate incoming radar data.

3. Derived Features: To attempt to emulate performance variables, ’derived’ features are

calculated from the trajectory data. This method was only applied to the ’12 Class Data Set’.

The ’derived’ features include determining the average and maximum position, velocity and

acceleration in both X and Z dimensions. Acceleration is calculated using the change in veloc-

ity across the known time between observations (0.4 seconds). A two-degree polynomial curve

fit is applied to the trajectory, on three scenarios, X vs Z, X vs TIME, and Z vs TIME.

The coefficients from these polynomials are used as the features. This method gives 21 total

features.

4.1.3 Train-Test Split

The data set is now ready to split into a train, test, and validation group. This is done using

the scikit-learn algorithm train test split [16]. The algorithm splits the data into two groups

according to the user’s desired size, stratified by class label, so each class is equally represented

in the each set. The first split is typically a 90% training to 10% test from the original data set.

To make a validation set, the test set is split in half, again by class label. The result is 90%

training, 5% test, and 5% validation sets, where the percentages are of the original data set size.

The training set is used to train the OCSVM and LDA, the test set is used on the OCSVM, and
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the validation set is used on the LDA. To create a novelty class, the novelty class labels is input

into the code and that is dropped from the training data set.

4.1.4 Standardization

All three data sets are then standardized according to each feature across all classes. Standard-

ization results in a data set with a mean of 0 and a standard deviation of 1. The mean (µ) and

standard deviation (σ) of each feature is calculated, then each is transformed according to Eq.

4.1.

xstandardized =
xoriginal − µ

σ
(4.1)

Standardizing the data set eliminates the impact of units, leading to higher accuracy analy-

sis. Figure 4.1 shows a sample OCSVM scenario where the white points represent the training

points of the clean class, the purple points represent the test points of the clean class, and the

yellow points represent test points from a novel class. Note the transformation of units and how

the standardization reduces the training error by 60% and the test error by 75%. The novel error

slightly (8%) increases in this scenario. Overall error is considerably reduced.

(a) Original Data (b) Standardized Data

Fig. 4.1: OCSVM Comparison Standardized vs Original Data
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4.1.5 Feature Reduction

The standardized data sets are then run through the PCA. The number of components set are

determined on a case-by-case basis. In general, the minimum number of components needed

to represent > 95% of the explained variance is used. Figure 4.2 below shows the first three

principal components plotted against each other from the ’12 Class Data Set’ (Section 2.4).

The first three principal components account for 91% of the explained variance. The explained

variance percentage can be seen on the axis labels for each component.

Fig. 4.2: PCA Projection of 12 Class Data Set

In this example, there were 304 original features, reduced to 50 principal components by

the PCA, which explained 99.76% of the explained variance.

Confusion matrices are a easy way to visualize the accuracy of an algorithm. They show

the algorithm’s predicted classification labels across the horizontal axis and the actual classifi-

cation labels across the vertical axis. These matrices will be used extensively throughout the

Results chapter (Section 5).

Figure 4.3 shows a sample run of the OCSVM on the ’12 Class Data Set’. Class ’12’ is

the novelty class, labelled as ’Nov.’. Confusion matrix (a) is the OCSVM run on the original

data, resulting in a 79.3% overall accuracy. The PCA was then run on the data set with no other
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changes, and returned confusion matrix (b), with an 85.6% overall accuracy, or a 6.3% overall

increase for this scenario.

(a) Before PCA (79.3% Accuracy) (b) After PCA (85.6% Accuracy)

Fig. 4.3: Confusion Matrix Comparison of PCA Utilization

The PCA not only increased accuracy but also shifted where the error occurs. Before

the PCA, there was more inter-class misclassification, which is defined as a clean class point

that was incorrectly classified as a different clean class. After the PCA, more false positives

occurred, which are defined as a clean class point classified as a novelty point. False positives

are much easier to deal with in post-run analysis and are as equally important as novelties

to extract and identify, because they represent outliers for their respective clean class. For

the current scenario, they represent a missile flyout that is pushing the boundaries of what is

commonly known about the class, indicating modifications to the missile class.

4.2 One-Class Support Vector Machine

Once all data handling and preprocessing is complete, the OCSVM is fit to the data. Since

the OCSVM is a one-vs-all algorithm, a multi-class classifier with novelty detection is built

by iteratively training and running one clean class at a time. Not only is this more accurate

than lumping all the clean classes into one single system [11], but gives the ability to classify
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clean points and classify false positives. Since the iterative OCSVM creates boundaries around

each clean class, it only defines the feature space it learns through training, unlike some other

traditional machine learning algorithms such as LDA where the entire feature space is defined.

Figure 4.4 shows a traditional feature space, note how both novelty classes would be incorrectly

classified.

Fig. 4.4: Traditional Feature Space

Figure 4.5 shows how an iterative OCSVM feature space looks. Each OCSVM iteration

defines the feature space for the clean class that it was trained on and nothing else. In this

scenario, both novelty classes are extracted and not forced into a clean class. Figs. 4.4 and 4.5

were modeled after Ref. [12].

The iterative OCSVM does not store the hyperplanes for all classes though. It should be

elaborated that each class is run one at a time, the OCSVM is fit to the class, the hyperplane

is defined and each flyout from the test set is judged and scored. All data but the classification

and sample scores are discarded before proceeding to the next class. This process is further

explained below in this section.

40



Fig. 4.5: OCSVM Feature Space

OCSVM hyperparameters are tuned according to the data set and scenario being run, tak-

ing into account the number of flyouts and the number of features being used. Proper tuning

for high classification accuracy without overfitting the data results in the most accurate novelty

detection. Reference [10] attempted to build a multi-class classifier with novelty detection us-

ing SVMs but struggled to produce accurate results. One reason for this was that their variable

’reject’ was a set percentage of points that were to be classified as novelty points. For instance,

if the ’reject’ is 10%, in every run only 90% of the points are kept. When tuning the OCSVM

hyperparameters, an error rate on the training data is set (Section 3.1.2), but nothing is defined

as to how many points to classify as novelties. This allows the algorithm to be more objective

in its classification process, not forcing any points out.

Throughout the iterative OCSVM, the score samples and class prediction are kept in a ma-

trix, constantly updating if better predictions are found. As described in Section 3.1.2, a score

is given to each missile flyout, receiving a higher score the more it resembles the clean class

the OCSVM was trained on. The OCSVM will classify some instances as inliers, belonging

to the trained-on class, and the rest as outliers, or not belonging to the trained-on class. Since

multiple OCSVM iterations can claim points as an inlier and the inlier score range between

OCSVM iterations are different, a relative score similar to a percentile is used. This relative
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score is defined in Eq. 4.2. The missile flyout is classified as the class that it scored the highest

relative score for.

Relative Score =
Score Sample−Minimum Inlier Score

Maximum Inlier Score−Minimum Inlier Score
(4.2)

Table 3.1 shows an example of a missile flyout. In this example, Class ’1’, ’2’, and ’3’ all

claimed the flyout as an inlier. The flyout scored highest for Class ’2’ with a 2.38, but is in the

bottom ∼ 17% (Relative Score: 0.172) of flyouts claimed as inliers. Compare this to Class ’1’,

where the flyout only scored a 1.47, but is in the top ∼ 30% (Relative Score: 0.698) of flyouts

claimed. This flyout then looks much more like Class ’1’ than Class ’2’ and would therefore

be classified as Class ’1’.

Table 4.1: Sample Score Example for Single Flyout

Class 1 OCSVM Class 2 OCSVM Class 3 OCSVM
Score 1.47 2.38 0.47

Max Inlier Score 1.69 4.54 3.02
Min Inlier Score 0.96 1.93 0.40
Relative Score 0.698 0.172 0.02

This process repeats itself and continuously updates predictions as each OCSVM iteration

is ran. If a point is never claimed by any of the known classes, it is deemed a novelty point.

The novelty points still receive sample scores from each class’s OCSVM, and the highest raw

score the point receives is stored in the same matrix although it was never an inlier.

4.3 Novelty Class Extraction

After the iterative OCSVM has ran, a matrix is returned of its class predictions and the max-

imum relative score each claimed flyout received along with the maximum raw score each

outlier received. The flyouts that the OCSVM classified as novelties may contain clean class

points that are outliers for their respective classes, called false positives. An objective thresh-

old, defined by Eq. 4.3, equal to 95% of the minimum inlier score for the class that the missile

flyout scored highest for, is used to divide these flyouts.
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Objective Threshold = 0.95(Class Minimum Inlier Score) (4.3)

This objective threshold is used to distinguish the clean class outliers from the true novelty

points. In general, if the missile flyout scores higher than this threshold, that means it looks

very similar to but scored just outside of what was considered an inlier. These points then

can be classified and are important to detect and study as well, because they can represent

a modification or performance increase for a known missile class. If a missile flyout scores

below this threshold, it is considered a ’true’ novelty, and generally looks nothing like what is

currently known. The points that score below the threshold are grouped together, considered

’true’ novelties, and are labeled as a new class.

4.4 Linear Discriminant Analysis

Once enough ’true’ novelty points are found and grouped into a class, they can be added to the

training data. In this way, the LDA works as a novelty detector by giving the ’true’ novelty

points a class label, allowing the LDA to fit a hyperplane to the feature space for the novelty

class. It is shown by the ’Ballistic/Maneuverable Data Set’ Results (Section 5.2.2) how few

points are required for the LDA to accurately characterize a novelty class.

The LDA then takes the clean class training data and the ’true’ novelty class extracted by

the iterative OCSVM and is fit to them. The LDA is implemented in one of two ways.

The first is to use the LDA to clean up the analysis on the incoming test data done by

the iterative OCSVM. Since the LDA provides higher accuracy classification than the iterative

OCSVM, the LDA can classify the false positives back to their clean classes, decrease the

number of inter-class misclassifications and extract any more novelty points that the OCSVM

missed. Figure 4.6 shows sample scenario results for this cleanup implementation method.
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(a) Iterative OCSVM Test Results (85.3% Accuracy) (b) LDA Cleanup Test Results (95.3% Accuracy)

Fig. 4.6: Confusion Matrix Comparison Before/After LDA Cleanup

In this sample run, the iterative OCSVM returns an 85.3% (3073/3600) overall accuracy,

with a 97.3% (292/300) novelty extraction rate, 392 inter-class misclassifications, and 135

false positives. After filtering the entire predicted novelty class (rightmost column) through the

threshold and adding the ’true’ novelty class to the training data, the same data set was run

through the LDA. The LDA cleaned up the analysis and returned a 95.3% (3434/3600) overall

accuracy, with a 100% (300/300) novelty extraction rate, 165 inter-class misclassifications and

1 false positive. The LDA not only greatly increased accuracy (+10%), but by cross referencing

the results from both algorithms, the points that were false positives in the OCSVM results were

reclassified to their clean classes and can now also be further analyzed.

The second method is to apply the LDA to the validation data set. The validation was set

aside to be used as a stress test to determine how accurate the LDA would be on new incoming

data and to observe where and when it becomes inaccurate or breaks down. Most of the results

are done using this method across a variety of scenarios.
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Chapter 5

Results

5.1 OCSVM Iterative Method Alone

This section shows the results of using the iterative OCSVM by itself, in multiple scenarios

without the aid of the LDA or a PCA. The iterative OCSVM shows promise for future work by

itself and paired with other machine learning algorithms.

5.1.1 Single Novelty Class

This scenario shows the ability of the iterative OCSVM to accurately classify known classes

and extract a single novelty class.

The ’18 Class Data Set’ (Section 2.3) is used for this analysis. The run uses 4 perfor-

mance parameters as features: BURNTIME (Time of burn), MAXTHRUST (Maximum thrust),

MAXPC (Maximum chamber pressure), and MAXPE (Maximum exit pressure). It should not

be assumed that these performance features can be observed in real scenarios. This data set

was used as a proof-of-concept before adding to the developed algorithm. These features are

fed directly to the iterative OCSVM, a PCA is not run for this scenario. The OCSVM hyperpa-

rameters are: nu = 0.01, gamma = 0.5, and tol = 1e−3. Class ’18’ was used as the novelty

class, the training data set had 2000 runs per class and the testing data set had 250 runs per

class. Figure 5.1 shows the results of this run.
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Fig. 5.1: Single Novelty Class Iterative OCSVM Confusion Matrix

This confusion matrix represents an overall 99% accuracy (4456/4500) with 2 inter-class

misclassifications and 42 false positives. Figure 5.2 shows a BURNTIME vs MAXTHRUST

scatter plot with the points deemed novelties in yellow. Subplot (a) shows all points plotted to

give a visual of how the classes overlap in this feature space. Class ’18’ is the dense cluster

of yellow points, selected as the novelty class since it is pushing the boundaries of what is

currently known for missile performance. Subplot (b) shows how the outlier data looks alone.

When using many test points, the novelty class is clearly observable and can be extracted using

a clustering machine learning algorithm or by using the objective threshold described in Section

4.3. After the threshold is applied and the novelty points are separated from the outliers, the raw

sample scores can be used to classify the outlier points back to their respective clean classes.
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(a) Iterative OCSVM Results (b) Outlier Data

Fig. 5.2: BURNTIME vs MAXTHRUST

5.1.2 Multiple Novelty Classes

This scenario shows the ability of the iterative OCSVM to accurately classify known classes

while extracting multiple novelty classes. This is useful in cases where there may be many

forms of adversaries, in this case multiple missile classes. This analysis proves that the OCSVM

is not affected by adversarial data and is only trained on clean class data.

The ’18 Class Data Set’ (Section 2.3) is used in this analysis. The run uses 4 perfor-

mance parameters as features: BURNTIME (Time of burn), MAXTHRUST (Maximum thrust),

MAXPC (Maximum chamber pressure), and MAXPE (Maximum exit pressure). These fea-

tures are fed directly to the iterative OCSVM, a PCA is not run for this scenario. The OCSVM

hyperparameters are: nu = 0.01, gamma = 0.5, and tol = 1e−3. Class ’17’ and Class ’18’

were used as novelty classes, the training data set had 2000 runs per class and the testing data

set had 250 runs per class. Figure 5.3 shows the results of this run.

The confusion matrix represents an overall 98.6% accuracy (4440/4500) with 0 inter-

class misclassifications and 60 false positives. As a reminder, the novelty class is made up of

two classes, totaling 500 points. Figure 5.4 shows that Class ’17’ is from the middle of the

class distribution, as opposed to the edge like Class ’18’, when viewing the BURNTIME vs

MAXTHRUST feature space. This highlights the ability of the iterative OCSVM to provide

high accuracy novelty extraction despite the class location.
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Fig. 5.3: Multiple Novelty Classes Iterative OCSVM Confusion Matrix

Figure 5.4 shows the resulting scatter plot from this scenario. When many test points,

once again clear classes are observed. Pairing a clustering machine learning algorithm to these

results to define and extract multiple novelty classes should be pursued in future work.

(a) Iterative OCSVM Results (b) Outlier Data

Fig. 5.4: BURNTIME vs MAXTHRUST
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5.2 OCSVM - LDA

This section shows the entire developed OCSVM-LDA hybrid method. It is applied to two

different data sets, the ’12 Class Data Set’ (Section 2.4) and the ’Ballistic/Maneuverable Data

Set’ (Section 2.5).

5.2.1 12 Class Data Set

Three tests were done on the ’12 Class Data Set’. It was first utilized to test the accuracy

when using trajectory data and derived features (Section 4.1.2). As will be shown later in this

section, the OCSVM-LDA is accurate on both data types, with each type having advantages and

disadvantages. A time study was conducted next, where the OCSVM-LDA had only portions

of the full trajectory. This was done to emulate the event that the missile was detected late

or that the time frame is limited in which the algorithm must accurately classify the incoming

missile. Lastly a missing data study was conducted, where time steps throughout the trajectory

are dropped at random to emulate spotty radar observances. These tests and scenarios are

explained further in detail later throughout this section.

Trajectory Data versus Derived Features

After the OCSVM-LDA concept was proven on trajectory data, it was then tested on derived

features to determine which data type was more accurate and robust. The output data, or trajec-

tory data, from the ’12 Class Data Set’ consists of position and velocity data from the missile

in the X and Z coordinate directions. An observation is made every 0.4 seconds for 30 sec-

onds. The derived features are calculated from the trajectory data, used to attempt to emulate

performance parameters for each missile.

A. Trajectory Data

For the trajectory data the full 30 seconds of observations are used, resulting in 300 initial

features. There are 75 features each from X position (’xs’), Z position (’zs’), X velocity (’vxs’)

and Z velocity (’vzs’). The data is split three ways into a training set with 2700 flyouts per class,

a test set with 150 flyouts per class, and a validation set with 150 flyouts per class. Class ’12’ is
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set as the novelty class. A PCA is run on the data, reducing the number of dimensions from 300

features down to 48 principal components. The 48 principal components account for 99.76%

of the explained variance for the data set. The iterative OCSVM is ran on the data, the results

of which are shown in the confusion matrix below, Fig. 5.5. The OCSVM’s hyperparameters

were set at: nu = 0.01, gamma = 0.009, and tol = 1e−3. The confusion matrix represents

an overall 86.5% (1557/1800) accuracy with 52 false positives, 5 false negatives and 186 inter-

class misclassifications.

Fig. 5.5: Trajectory Data Iterative OCSVM Confusion Matrix

The OCSVM had a 96.7% (145/150) novelty detection rate and 197 points classified as

novelties. Out of the 197 points run through the objective threshold, 148 points scored below

the threshold and were deemed ’true’ novelties. Take note that there are more points deemed

’true’ novelties than were extracted from the novelty class (145). The threshold is not perfect

and the newly built ’true’ novelty class will contain clean class points. The LDA proves to be
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robust and is able to accurately classify the novelty class in light of these adverse points within

the ’true’ novelty class.

The ’true’ novelty class is added to the training data and the LDA is fit to the now 12 known

classes. The validation data set is fed into the LDA. Figure 5.6 shows the confusion matrix from

the LDA analysis on the validation data set. It shows an overall 96.0% (1728/1800) accuracy

with 0 false positives and 72 inter-class misclassifications. That represents an increase in overall

classification of 9.5% from the OCSVM analysis.

Fig. 5.6: Trajectory Data LDA Confusion Matrix

B. Derived Features

The derived features consist of 21 total features calculated from the full 30 seconds of tra-

jectory data. These include 6 features from the maximum position, velocity and acceleration in

both coordinate directions (Max X,Z,VX,VZ,AX,AZ). Another 6 features come from the aver-

age position, velocity, and acceleration in both coordinate directions (Avg. X,Z,VX,VZ,AX,AZ).
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Lastly, 9 features come from the coefficients of two degree polynomial curve fits on: X vs Z,

X vs TIME, and Z vs TIME. TIME is time from detection. Position and velocity data are

given from the AUSRC, but acceleration is calculated using the known observation time step.

The data is split three ways into a training set with 2700 flyouts per class, a test set with

150 flyouts per class, and a validation set with 150 flyouts per class. Class ’12’ is set as the

novelty class. A PCA is ran on the data, reducing the number of dimensions from 21 features

down to 15 principal components. The 15 principal components account for > 99% of the

explained variance for the data set. The iterative OCSVM is ran on the data, the results of

which are shown in the confusion matrix below, Fig. 5.7. The OCSVM’s hyperparameters

were set at: nu = 0.01, gamma = 0.175, tol = 1e−3. The confusion matrix represents an

overall 86.1% (1551/1800) accuracy with 65 false positives, 3 false negatives and 181 inter-

class misclassifications.

Fig. 5.7: Derived Features OCSVM Confusion Matrix
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The OCSVM had a 98.0% (147/150) novelty detection rate and 212 points total classified

as novelties. Out of the 212 points run through the objective threshold, only 181 scored below

the threshold and were deemed ’true’ novelties. The ’true’ novelty class is added to the training

data and the LDA is fit to the now 12 known classes. Figure 5.8 shows the confusion matrix

from the LDA analysis on the validation data set. It shows an overall 95.5% (1719/1800)

accuracy with 0 false positives and 81 inter-class misclassifications. This represents an increase

in overall accuracy of 9.4% from the OCSVM analysis.

Fig. 5.8: Derived Features LDA Confusion Matrix

Time Study

After demonstrating that the OCSVM-LDA hybrid method worked accurately on the full 30

seconds from the ’12 Class Data Set’, a time study was done. Time was cut from the beginning

and end of the 30 second time frame to emulate late detection of the missile or limited time
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frames in which the algorithm must accurately classify the incoming missile. This also tests

the robustness of the algorithm as well as determines the portion of the missile trajectory most

critical to classification and novelty extraction. For each time frame the observations are steady,

remaining at the original time step of 0.4 seconds for the duration of the selected frame.

Traditionally these problems are done by training the algorithm on the full data set and

then dropping data from the test set until the results become inaccurate. In this method, the

incoming data is observed and then the same data is pulled from the training data and used

to train the algorithm. For example, if the missile data that is observed is from 5 through 10

seconds after initial detection, missile data from 5 through 10 seconds would be used to train

the algorithm and classify the missile.

The results are shown in table form, as there are too many runs to concisely show all of the

confusion matrices. In the table, ’Total Time’ shows the total time observed and ’T.F.D. Range’

shows the time from detection range. The accuracies shown are the circled numbers in Fig. 5.9

divided by the total number of instances for a perfect run, given the test size. The ’SVM Total

Acc.’ is SVM overall accuracy shown by Fig. 5.9 (a) circled in red, divided by 1800, ’LDA

Nov. Acc.’ is LDA novelty class accuracy shown in Fig. 5.9 (b) circled in yellow, divided by

150, and ’LDA Total Acc.’ is overall accuracy shown in Fig. 5.9 (b) circled in green, divided

by 1800.

For example Fig. 5.9 (a) gives a ’SVM Total Acc.’ of 86.9% (1565/1800), Fig. 5.9 (b)

shows a ’LDA Nov. Acc.’ of 100% (150/150) and a ’LDA Total Acc.’ of 95.1% (1713/1800).
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(a) Sample OCSVM Results (b) Sample LDA Results

Fig. 5.9: Accuracy Definitions

This study was run on 6 different time frames, with the full 30 second trajectory shown

at the top of each table. The results for both the trajectory data and the derived features are

shown. The OCSVM hyperparameter ’gamma’ is shown next to the ’OCSVM Total Acc.’.

For the trajectory data, since the number of initial features fluctuates with the time frame, the

number of principal components are set to 16% of the total number of features. This percentage

consistently allows the PCA to characterize the data through explained variance on the ’12

Class Data Set’. The derived features number of principal components stays constant at 15.

Table 5.1: Time Study OCSVM Total Accuracy Results

Time Scale OCSVM Total Acc. (gamma)
Total Time T.F.D Range Trajectory Data Derived Features

30 sec 0-30 sec 86.6% (0.009) 87.0% (0.175)
22 sec 0-22 sec 88.0% (0.009) 86.7% (0.175)
14 sec 0-14 sec 78.8% (0.009) 90.1% (0.175)
10 sec 0-10 sec 76.1% (0.04) 79.4% (0.175)
10 sec 4-14 sec 88.7% (0.04) 83.9% (0.175)
8 sec 6-14 sec 83.0% (0.04) 81.4% (0.175)
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Table 5.2: Time Study LDA Novelty Accuracy Results

Time Scale LDA Nov. Acc.
Total Time T.F.D Range Trajectory Data Derived Features

30 sec 0-30 sec 100.0% 100.0%
22 sec 0-22 sec 100.0% 100.0%
14 sec 0-14 sec 98.7% 98.7%
10 sec 0-10 sec 4.7% 13.3%
10 sec 4-14 sec 98.7% 97.3%
8 sec 6-14 sec 86.0% 81.3%

Table 5.3: Time Study LDA Total Accuracy Results

Time Scale LDA Total Acc.
Total Time T.F.D Range Trajectory Data Derived Features

30 sec 0-30 sec 95.0% 96.0%
22 sec 0-22 sec 95.7% 95.9%
14 sec 0-14 sec 95.1% 95.8%
10 sec 0-10 sec 66.4% 69.4%
10 sec 4-14 sec 93.5% 92.2%
8 sec 6-14 sec 80.2% 83.0%

Table 5.3 shows how the overall accuracy changes across various time frames. It shows

that using the ’T.F.D Range’ 0-10 sec and 6-14 sec, the algorithm breaks down and becomes

inaccurate. This can be backtracked to the iterative OCSVM providing the LDA with bad ’true’

novelty information. As shown in Table 5.1 the OCSVM dips to its lowest overall accuracy at

this time frame, where most of the decline in accuracy comes from losses in extracting the

novelty class as opposed to inter-class errors. In terms of overall accuracy, ’T.F.D Range’

of 4-14 seconds is the most critical section of the flyout for these missile classes. In the 4-14

second ’T.F.D Range’, the algorithm provides > 92% accuracy and < 4% off the peak accuracy

across both data types. As stated before, when accounting for the small fluctuations in accuracy

(< 2%) between runs due to random sampling when splitting, the differences in accuracies

between the trajectory data and derived features are negligible. The largest difference can be

seen in Table 5.1 ’T.F.D Range’ 0-14 seconds, where the OCSVM Total Acc. differs by 11.3%.

This contrast does not show up in Table 5.3 though, where the LDA Total Acc. only differs by

0.7%.

56



Missing Data Study

The missing data study was the final test conducted on the ’12 Class Data Set’. This study

was performed by dropping time steps throughout the trajectory at random, meant to emulate

spotty radar observations of an incoming missile trajectory. A variable called ’fraction’ is set,

representing the fraction of the total time steps removed from the set. For example, when

’fraction’ is set to 20%, only 80% of the data is kept.

The training method worked well in the time study, so the same method was employed

here. All of the time steps that are missing from the incoming data are also removed from

the training data. This allows the algorithm to compare the two flyouts according to the same

points along their individual trajectories.

The results are in table form below, as there are too many runs to show all of them con-

cisely in confusion matrices. The accuracies shown are the same as used in the time study, and

are explained by Fig. 5.9.

The missing data study was done across 10 different ’fraction’ values, starting at 10% and

working all the way up to 95%. The number of principal components for the trajectory data

varied according to the fraction dropped from the data set, and again was set equal to 16% of

the total original features. The number of principal components kept for the derived features

stays constant at 15.

Table 5.4: Missing Data Study OCSVM Total Accuracy Results

Missing Data Fraction OCSVM Total Acc. (gamma)
Trajectory Data Derived Features

10% 86.2% (0.009) 82.4% (0.175)
20% 84.4% (0.009) 79.2% (0.175)
30% 83.6% (0.009) 81.7% (0.175)
40% 82.9% (0.009) 83.9% (0.175)
50% 89.1% (0.02) 81.9% (0.175)
60% 86.5% (0.03) 81.6% (0.175)
70% 84.5% (0.03) 83.3% (0.175)
80% 87.9% (0.04) 83.3% (0.175)
90% 89.3% (0.15) 86.1% (0.175)
95% 88.7% (0.25) 88.2% (0.175)

57



Table 5.5: Missing Data Study LDA Novelty Accuracy Results

Missing Data Fraction LDA Nov. Acc.
Trajectory Data Derived Features

10% 100.0% 100.0%
20% 99.3% 96.0%
30% 100.0% 94.7%
40% 99.3% 100.0%
50% 100.0% 97.3%
60% 100.0% 98.0%
70% 100.0% 98.7%
80% 100.0% 95.3%
90% 99.3% 98.7%
95% 100.0% 99.3%

Table 5.6: Missing Data Study LDA Total Accuracy Results

Missing Data Fraction LDA Total Acc.
Trajectory Data Derived Features

10% 94.9% 94.7%
20% 94.9% 95.1%
30% 95.9% 95.8%
40% 95.7% 95.5%
50% 95.4% 95.2%
60% 94.8% 95.1%
70% 93.9% 93.8%
80% 94.0% 94.5%
90% 90.3% 94.2%
95% 93.6% 94.2%

The results of the missing data study are unexpected and differ from the time study. All

three accuracies recorded fluctuate negligibly across all ’fraction’ value. Even when only

using 5% of the data the ’LDA Total Acc.’ is > 90%. The random sampling from the

train/test/validation splits and dropped time steps causes a higher rate of accuracy fluctuation

when using little data. A run has the possibility of the incoming data to be points early on

or very late in the trajectory, making the run very inaccurate. If the random points are spread

sufficiently far enough apart to represent the entire trajectory, the analysis is accurate. Again,

between the trajectory data and the derived features, the difference in accuracy is negligible.
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5.2.2 Ballistic/Maneuverable Data Set

The ’Ballistic/Maneuverable Data Set’ (Section 2.5) was the last data set applied to the OCSVM-

LDA hybrid method. This data set is comprised of two classes, one ballistic and one maneu-

verable. The goal of this data set is to determine how quickly the algorithm can identify if an

adverse missile is maneuverable. For the run, 4 seconds of trajectory data were used across

the time frame 0.8-4.8 seconds after detection. Again, the trajectory data is recorded every 0.4

seconds. The data was split three ways into a training set with 800 flyouts per class, a test set

with 100 flyouts per class and a validation set with 100 flyouts per class. The maneuverable

class is set as the novelty class. The PCA transforms the 66 total features down to 30 principal

components that account for > 99.9% of the explained variance in the data set.

Figure 5.10 shows the OCSVM confusion matrix. The OCSVM hyperparameters were

set at: nu = 0.01, gamma = 0.009, and tol = 1e−3. The confusion matrix shows an overall

51.5% accuracy with 25 false positives and 72 false negatives. Out of the 53 points deemed

novelties, 33 scored under the objective threshold and were deemed ’true’ novelties.

Fig. 5.10: OCSVM Confusion Matrix
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Even with a low accuracy OCSVM analysis, the LDA is robust enough to accurately char-

acterize the maneuverable group on few data points. Figure 5.11 shows the LDA resulting

confusion matrix with an overall 98.5% accuracy with 1 false positive and 2 false negatives.

Fig. 5.11: LDA Confusion Matrix
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Chapter 6

Conclusions and Future Work

The OCSVM-LDA hybrid method worked accurately and was robust on AUSRC missile data,

providing high accuracy multi-class classification and novelty detection. The ’18 Class Data

Set’ provided a relatively simple data set for proof-of-concept. The OCSVM alone is able to

extract multiple novelty classes, for which a clustering machine learning algorithm should be

added to identify groupings and extract the classes.

Results from the trajectory data and derived features on the ’12 Class Data Set’ showed

negligible overall accuracy differences. The difference seen is in running each data type

through the algorithm. The disadvantage of derived features is that they add a significant com-

putational load to the process, inflating the run time to 133 seconds when running the full 30

second trajectory, while the trajectory data run on the same scenario only took 18 seconds.

The disadvantage to trajectory data is that through the time study and missing data study the

number of total features changed, necessitating hyperparameter tuning and principal compo-

nent number changes between runs. The derived features stay constant at 21, allowing the

hyperparameters and principal component number to stay constant as well. An automatic hy-

perparameter tuner should be added to eliminate the manual user tuning. Overall, the baseline

accuracy on the ’12 Class Data Set’ for the LDA when it is fully supervised, or allowed to train

on all 12 clean classes, is between 94− 96%. The OCSVM-LDA is able to reach this baseline

accuracy when only training on 11 clean classes, even reaching this accuracy at points in the

time study and missing data study when the full trajectory was not available.
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Results from the ’Ballistic/Maneuverable Data Set’ showed how the iterative OCSVM

can return inaccurate results but the LDA is robust enough to still accurately characterize and

classify the novelty class on few points.

Through various data sets, tests and scenarios, the OCSVM-LDA hybrid method proved

to be a robust and accurate multi-class classification and novelty detection method. It provides

an in depth analysis of the incoming data points, not only classifying points and detecting true

novelty points, but also detecting and reclassifying clean class outliers. The OCSVM-LDA

hybrid method is both novel not only to the aerospace industry but also to the machine learning

industry. It has worked accurately on aerospace vehicle data, but this includes the underlying

assumption for the LDA that the class data has a multivariate Gaussian distribution. An option

for the hybrid method could be to replace the LDA with a neural network, eliminating any

assumptions for the incoming data. Further work should be done to continue improving this

method as well as to compare it to the other developed algorithms for multi-class classification

with novelty detection on data sets from different backgrounds.
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