
AI-aided System and Design Technology Co-optimization Methodology
Towards Designing Energy-efficient and High-performance AI Accelerators

by

Kaniz Fatema Mishty

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 14, 2024

Keywords: AI accelerator, MRAM, Chiplets, Reinforcement Learning, STCO, DTCO

Copyright 2024 by Kaniz Fatema Mishty

Approved by

Mehdi Sadi, Chair, Assistant Professor of Electrical and Computer Engineering
Ujjwal Guin, Associate Professor of Electrical and Computer Engineering
Vishwani Agrawal, Professor of Electrical and Computer Engineering
Yin Sun, Associate Professor of Electrical and Computer Engineering

Akond Rahman, Assistant Professor of Computer Science and Software Engineering

Abstract

The rapid growth of artificial intelligence (AI) and deep learning (DL) workloads has

created an urgent need for more efficient and high-performance AI accelerators, both at

the edge and in cloud data centers. The computational and memory demands of large

models, such as ChatGPT and Sora, have far outpaced advancements in semiconductor

technology, leading to the emergence of the memory wall and area wall. These challenges

necessitate the exploration of new technologies and methodologies. This dissertation presents

a comprehensive investigation into emerging memory technologies, innovative architectural

designs, and optimization methodologies aimed at improving energy efficiency, performance,

and area utilization in AI accelerators.

First, we introduce a high-performance AI accelerator that incorporates spin transfer

torque magnetic RAM (STT-MRAM) as the on-chip memory system. Through model-driven

design space exploration, we develop a novel scratchpad-assisted buffer architecture that

optimizes memory retention time, read/write latency, and energy efficiency by dynamically

adjusting for process and temperature variations. Our STT-MRAM-based design (STT-AI)

achieves a 75% reduction in area and 3% power savings compared to SRAM-based systems,

with minimal trade-offs in accuracy, demonstrating its suitability for modern AI workloads.

Next, we address the limitations of existing accelerators in handling large-batch AI

training and inference due to memory bandwidth and capacity constraints. We propose

a design technology co-optimization (DTCO)-enabled memory system utilizing spin-orbit

torque magnetic RAM (SOT-MRAM) to significantly increase on-chip memory capacity.

The limitations posed by STT-MRAM are also addressed by introducing SOT-MRAM. This

workload-aware memory system shifts AI accelerators from being memory-bound to achiev-

ing system-level peak performance. Our results show an 8× improvement in energy efficiency

and 9× reduction in latency for computer vision benchmarks, along with substantial gains

2

in natural language processing tasks, while consuming just 50% of the area compared to

SRAM at the same capacity.

Finally, to address the limitations of large monolithic designs, we explore the potential

of chiplet-based architectures for AI accelerators. The vast design space and complex trade-

offs between power, performance, area, and cost (PPAC) require a systematic optimiza-

tion approach. We introduce an optimization framework, Chiplet-Gym, which integrates

heuristic-based methods, such as simulated annealing (SA), with learning-based algorithms,

such as reinforcement learning (RL), to evaluate and optimize chiplet-based AI accelerator

designs by accounting for resource allocation, placement, and packaging architecture. Our

results indicate that reinforcement learning demonstrates greater stability and achieves a

16% higher cost model value than simulated annealing. The framework-suggested design

choice delivers a 1.52× improvement in throughput, a 0.27× reduction in energy, and a

0.89× lower cost compared to monolithic designs at iso-area, underscoring the potential of

chiplet architectures for the next-generation AI hardware.

3

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Mehdi Sadi, for his support

and guidance throughout my PhD journey. I am profoundly grateful to the members of my

dissertation committee — Dr. Ujjwal Guin, Dr. Vishwani Agrawal, Dr. Yin Sun, and Dr.

Akond Rahman — for their valuable feedback, time, and support in helping me refine my

research. Their input has been pivotal in improving the quality of this work.

I would also like to extend my heartfelt thanks to my colleagues and friends, whose

collaboration and brainstorming sessions helped refine my ideas and made this challenging

journey both manageable and enjoyable.

My deepest gratitude goes to my mother, sisters, and father, whose love and unwavering

belief in me provided the strength I needed to persevere through the ups and downs of

this journey. To my elder sister, Jawata Afnan Saba, thank you for your endless support,

encouragement, and sacrifices. Special thanks to my younger sister, Sumaiya Tohorat, for

always keeping me cheerful. This achievement would not have been possible without you.

Finally, I believe that everything has been possible because Almighty Allah (SWT) has

paved the way for me. His guidance and blessings have given me the strength, wisdom, and

perseverance to accomplish this work.

4

Table of Contents

Abstract . 2

Acknowledgments . 4

List of Figures . 9

List of Tables . 17

1 Introduction . 18

1.1 Thesis Outline and Contributions . 23

1.2 Background and Literature Review . 25

1.2.1 Overview of DNN and Generative AI 25

1.2.2 Overview of AI accelerators . 28

1.2.3 Optimization & Evaluation of Accelerators 32

1.2.4 Impact of memory in AI accelerators & potential of Emerging memory

technologies in AI accelerators . 35

1.3 Thesis Organization . 37

2 Energy-efficient and High-performacne AI accelerator with customized STT-MRAM 38

2.1 Introduction . 38

2.2 Background . 41

2.2.1 Deep Neural Networks . 41

2.2.2 Deep Learning/AI Hardware Accelerators 43

2.2.3 Memory System in AI/Deep Learning Hardware 43

2.3 Efficient AI/Deep Learning Hardware . 44

2.3.1 Reconfigurable Core . 44

2.3.2 STT-MRAM Based On-Chip Memory System 46

2.3.3 Retention time of Convolution layer followed by FC layer 53

2.4 Optimizing STT-MRAM for AI Accelerators 53

5

2.4.1 Critical Design and Performance Parameters of MTJ 54

2.4.2 Customizing STT-MRAM For AI Accelerators 56

2.4.3 Addressing Process and Temperature Variation 57

2.4.4 MRAM Write Energy Optimization in Accelerator with ScratchPad . 60

2.5 Results and Analysis . 61

2.5.1 Design Space Exploration for Selecting Memory Capacity 61

2.5.2 Memory Retention Time Estimation for AI Models and Accelerator

Architecture . 64

2.5.3 Customizing STT-MRAM for AI Accelerator 64

2.5.4 Energy Optimization with Variable Retention MRAM Banks 67

2.5.5 Optimizing Energy with Scratchpad for Partial Ofmaps 68

2.5.6 Accelerator Implementation . 68

2.5.7 Accelerator Performance with ImageNet Dataset 71

2.6 Related Work . 71

2.7 Conclusions . 74

3 System and Design Technology Co-optimization of SOT-MRAM for High-Performance

AI Accelerator Memory System . 75

3.1 Introduction . 75

3.2 Background . 78

3.2.1 AI/DL Applications . 78

3.2.2 AI/DL Accelerators . 80

3.2.3 SOT-MRAM . 81

3.3 DNN WORKLOAD PROFILING . 82

3.3.1 Memory Bandwidth Expression . 83

3.3.2 Memory Access Patterns . 87

3.4 DTCO of SOT-MRAM . 92

6

3.4.1 Optimizing critical switching current Ic 92

3.4.2 Optimizing read-write pulse width . 93

3.5 Results and Analysis . 94

3.5.1 Bandwidth Demand . 95

3.5.2 Impact of on-chip memory . 98

3.5.3 DTCO of SOT for PPA Optimization 100

3.5.4 Process & Temperature Variation and Bitcell Simulation 104

3.5.5 System level performance evaluation of SOT-MRAM based Memory . 107

3.6 Related Work . 108

3.7 Conclusion . 109

4 Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforce-

ment Learning . 111

4.1 Introduction . 111

4.2 Background . 114

4.2.1 AI workloads and Accelerators . 114

4.2.2 Chiplets and Heterogeneous Integration 116

4.3 Throughput formulation and Design space exploration 117

4.3.1 Top level Architectural exploration 118

4.3.2 Throughput and Energy efficiency formulation 119

4.3.3 Chiplet allocation and Placement . 121

4.3.4 Package architectures and configurations 126

4.4 Optimizing Chiplet-based Architecture . 130

4.4.1 RL problem formulation . 131

4.4.2 Simulated Annealing . 134

4.5 Experiments and Results . 135

4.5.1 Experimental method . 135

7

4.5.2 Implementation details . 136

4.5.3 Results . 140

4.6 Related works . 146

4.6.1 Chiplet-based architecture exploration 146

4.6.2 RL in Design-space exploration . 147

4.7 Limitations and Future Works . 147

4.8 Conclusion . 148

5 Conclusions and future works . 149

5.1 Conclusions . 149

5.2 Future works . 150

5.2.1 Dynamic Re-configuration of Hardware Resources at Runtime to Op-

timize Energy and Throughput . 150

5.3 Photonic interconnects in chiplet-based AI accelerators 151

5.4 Reconfigurable memory system . 151

Bibliography . 153

Publications . 169

8

List of Figures

1.1 Growth trend of Deep Learning models with year 20

1.2 Trend of AI hardware accelerators specs over the years: (a) Compute throughput

(TFLOPS), (b) Memory capacity (GB), and (c) Memory BW (GBps) 21

1.3 Thesis outline and contributions: key metrics of DL/AI accelerators and the

chapter-wise distribution of the contribution. 24

1.4 Vanilla Neural Network (Multilayer perceptron) and its underlying matrix-vector

multiplication representation of the hidden layer. 26

1.5 Illustration of 1D convolution operation. A 2x2 Output activation is generated

by convolving a 2x2 Kernel with a 3x3 Input activation with a stride size of 1.

Each element of output activation is generated by taking the element-wise dot

product of the Kernel and Kernel-overlapped input activation region. 27

1.6 CV model (CNN/DNN) abstract architecture. Deep convolution (Conv) layers

with residual/skip connection followed by fully connected (FC) layer/s. For sym-

bol meaning please see Table 3.1. 27

1.7 Transformer model workflow breakdown . 28

1.8 (a) SIMD type architecture. (b) Systolic array-based Deep Learning accelerator

architecture . 29

1.9 Power and performance comparsion of A100 GPU vs TPUv4, showing the impact

of on-chip memory. 36

9

2.1 Convolution and fully connected layer operations 42

2.2 AI Accelerator with reconfigurable cores optimized for both Conv. and FC layers,

and STT-MRAM based on-chip memory. 44

2.3 (a) Reconfigurable core, (b) Reconfigurable core acting as building block of sys-

tolic array when mode is low, and (c) Reconfigrable core acting as convolution

PE, when mode is high. 45

2.4 A 3×3 kernel (kh = kw = 3) is convolved (with stride=1) over a 5×5 ifmap to

produce 3×3 ofmap (Nofmp rw = Nofmp cl = 3). The size of unit PE block, Ps = 3.

Total 9 PE blocks are required for this convolution. 49

2.5 (a) Dataflow inside systolic array, (b) Larger matrices can be divided into smaller

sub-matrices to fit in the systolic array. An example of dividing two 4×4 matrix

into four 2×2 matrices to fit into 2×2 systolic array. 51

2.6 Bit cell of STT-MRAM. (a) shows reading from it and writing 1, (b) shows writing

0. 54

2.7 Impact of process and temperature variation on thermal stability factor (∆). . . 58

2.8 Distribution of read/write currents with PT variation. Worst-case occurs when

worst process corners experience Thot or Tcold. 58

2.9 Modified Write Driver . 60

2.10 (a) Complete sizes of widely used AI models. (b) Activation map (ofmap/ifmap)

sizes, (c) Weight sizes for Conv layers. 62

10

2.11 Required capacity of global buffer with varying batch sizes to avoid DRAM access

during inference. 62

2.12 For Conv. layers, total extra DRAM access latency for varying batch sizes: (a)

int8, (b) BF16 data types; total extra DRAM access energy for varying GLB size:

(a) int8, (b) BF16 data types. 63

2.13 Global buffer retention time range for 42x42 MAC array (Bfloat16 hardware,

CLK details in Table 2.2) and batch size 16. 64

2.14 The required retention time of MRAM global buffer for Bfloat16 hardware (CLK

cycles and frequency given in Table II), (a) varying MAC array capacity. (b)

varying batch sizes. 65

2.15 (a) Thermal stability (∆) scaling for 3 years retention time (for pre-trained weight

storage NVM application). (b) ∆ and retention time scaling for accelerator’s

global buffer memory design. (c), (d) With scaled ∆, read pulse width scaling

while ensuring RD BER is within limit. (e), (f) Write latency scaling with ∆,

within target write error rate. Note: (c), (e) uses base-case (10yrs ret. time)

from [69], and (d), (f) from [62]. Target BER is chosen to ensure no accuracy

impact on AI tasks [76]. 65

2.16 Energy and area comparison of SRAM and STT-MRAM for various sizes. ∆

scaled: (a),(b) for global buffer; (c), (d) for eMRAM banks to store lower half

(i.e., LSB groups) of weight/fmap bits. 66

2.17 ∆ scaling with relaxed BER for LSB bit groups. (a) Retention, (b) Read, and

(b) Write latency within target BER. (Base case, ∆ = 60, data modeled after [62]). 68

11

2.18 Maximum size of partial ofmaps. 68

2.19 Comparison of buffer memory energy dissipation for SRAM, MRAM, and MRAM

with scratch pad architectures. 69

2.20 Top level floorplan view from ICC2. Accelerator designed with, (a) 12MB SRAM.

(b) 12MB STT-MRAM with scratchpad. 71

2.21 Top-1 and Top-5 accuracy comparisons for STT-AI/Baseline and STT-AI Ul-

tra cases. No accuracy change for STT-AI/Baseline cases, and negligible (less

than 1% normalized) accuracy change occurs on STT-AI Ultra acclerator. Both

original and pruned (at 50% pruing rate) [9] model results are shown. 72

3.1 Workflow of closed-loop analysis for system and device level optimization for

AI/Deep Learning Accelerator Design . 76

3.2 CV model (CNN/DNN) abstract architecture. Deep convolution (Conv) layers

with residual/skip connection followed by fully connected (FC) layer/s. For sym-

bol meaning please see Table 3.1. 78

3.3 Transformer model workflow breakdown . 79

3.4 Physical structure of a SOT-MRAM bit cell highlighting separate read (along

blue line) and write (along red line) path . 80

3.5 Block diagram of Accelerator architecture . 82

3.6 Computational graph of DNN training . 82

3.7 Bandwidth requirement of CV models for different PE array sizes. (a) Read

Bandwidth, (b) Write Bandwidth. Bandwidth varies from model to model be-

cause of their variation in layer size and type. 96

12

3.8 Bandwidth requirement of NLP models for different PE array size. (a) Read

Bandwidth (for GEMM and softmax operation), (b) Write Bandwidth. Read

bandwidth is the same across all the models because it is limited by the PE array

dimension, whereas the write bandwidth varies across models because of their

different sequence lengths . 97

3.9 Impact of larger GLB memories on performance and energy efficiency for CV

models at inference and training. Percentage reduction in DRAM accesses at in-

ference (a) and training (d). Performance Speedup from DRAM access reductions

at inference (b) and training (e). Energy savings from reduced DRAM accesses

at inference (c) and training (f). Both cases compare results to a baseline of 2MB

GLB running 16 samples. 98

3.10 Impact of batch size on performance and energy efficiency for CV models at

inference and training. Percentage increase in DRAM accesses at inference (a),

at training (d). Performance slowdown (latency increase) from extra DRAM

accesses at inference (b), at training (e). Energy increase from extra DRAM

accesses at inference (c), at training (f). In both cases, results are compared to

a baseline of 16 samples running with 4MB GLB. 99

3.11 Impact of larger GLB memories on performance and energy efficiency for NLP

models at inference and training. Percentage reduction in DRAM accesses at in-

ference(a), at training (d). Performance Speedup from DRAM access reductions

at inference (b), at training (e). Energy savings from reduced DRAM accesses at

inference (c), at training (e). In both cases, results are compared to a baseline of

2MB GLB running 16 samples . 100

13

3.12 Impact of batch size on performance and energy efficiency for NLP models at

inference and training. Percentage increase in DRAM accesses, inference (a),

and training (d). Performance slowdown (latency increase) from extra DRAM

accesses at inference (b), at training (e). Energy increase from extra DRAM

accesses at inference (c), at training (f). Results are compared to a baseline of

16 samples running with 4MB GLB. 101

3.13 Critical current vs θSH(a), wSOT (b), tSOT (c), and tFL(d). 101

3.14 (a) Switching pulse width τp vs applied switching current Isw. (b) Thermal

stability factor ∆ (left Y-axis) and retention time tret (right Y-axis) vs MTJ

dimension for a fixed retention failure rate, PRF = 10−9. At ∆ = 70, MTJ

dimension = 88nm, retention time is > 10 years [124]. 102

3.15 Impact of (a) oxide thickness on TMR, (b) TMR on read latency. 102

3.16 Impact and distribution of Process and Temperature variation on scaled parameters.105

3.17 SOT-MTJ bitcell with read sensing circuitry. 106

3.18 System level energy improvement with SOT-MRAM and DTCO-optimized-SOT-

MRAM over SRAM at the same size for CV (a-d) and NLP (e-h) models. The

top plots show energy (a, e) and latency (b, f) for inference, and the bottom plots

show energy (c, g) and latency (d,h) for training. 107

3.19 Area improvement of SOT-MRAM and SOT-MRAM-OPT 109

4.1 AI accelerator chiplet architecture . 115

14

4.2 Top-level system architecture for different scenarios. (a) CPU, AI accelerator and

HBM chiplets are connected in package level through 2.5D interconnects. CoWoS

and EMIB are two options of 2.5D interconnects. (b) CPU and AI accelerator

chiplets are connected through 2.5D interconnects and HBM is stacked on top

of CPU and AI accelerator through 3D interconnects. (c) Two AI accelerator

chiplets are stacked on top of each other through 3D interconnects and they are

interconnected to CPU, HBM and other AI chiplets pair through 2.5D. 116

4.3 (a) Yield (left y-axis) and normalized cost per yielded area (right y-axis) vs area

at different tech nodes. (b) Normalized latency vs number of chiplets. 122

4.4 Illustration of latency (in terms of hop) calculation. (a) AI2AI chiplet commu-

nication, considering the farthest chiplets as source-destination pair. (b) One

HBM chiplet, located at the left connected in 2.5D, and the farthest AI chiplet

as source-destination pair. (c) One HBM chiplet, 3D-stacked on top of a left-

most AI chiplet, and the farthest AI chiplet as source-destination pair. (d) 5

HBM chiplets are placed in 5 different positions. The highest latency decreases

from 6 hops (case (c)) to 3 hops with most of the AI chiplets can be provided

with data in 2 hops by nearest HBMs. 125

4.5 Illustration of mapping and dataflow. (a) Splitting the matrices into smaller parts

for different chiplets. (b) Initial data supply from DRAM. Once the chiplets are

loaded with required data, computation begins. (c) Final output collection to

the DRAM. In this dataflow, there is no inter-chiplet communication during

computation for partial sum. 126

4.6 Optimization framework overview . 132

15

4.7 Impact of episode length in convergence (PPO algorithm). Inset shows the

zoomed-in version of each plot. 138

4.8 (a) Impact of entropy coefficient in RL convergence and (b) impact of temperatue

on SA convergence . Inset shows the zoomed-in version of each plot. 139

4.9 Convergence behavior of (a) SA and (b) RL for multiple runs with 10 different

seed values for case (i) (i.e., 64 chiplets). Inset shows the zoomed-in version of

each plot. 141

4.10 Convergence behavior of (a) SA and (b) RL for multiple runs with 10 different

seed values for case (ii) (i.e., 128 chiplets). Inset shows the zoomed-in version of

each plot. 141

4.11 Highest cost model value achieved by the SA and RL algorithms for multiple

runs: (a) for 64 chiplets and (b) for 128 chiplets. 141

4.12 Comparison of 60-chiplet, 112-chiplet, 2-chiplet and monolithic system: (a) In-

ferences/sec, (b) Inferences/joule for MLPerf benchmark, and (c) cost. (d) Cost

breakdown of monolithic, 2-chiplet, 60-chiplet, and 112-chiplet system at 99%

and 100% package bonding yield (BY = bonding yield). 143

16

List of Tables

1.1 Commonly known datasets and their sizes . 20

1.2 Comparative summary of AI accelerator simulator frameworks for design space
analysis . 33

1.3 High-level comparison between SRAM and emerging memory technologies . . . 37

2.1 Parameters & description . 48

2.2 Reconfigurable PE core details (Bfloat16 hardware, and synthesized with 14nm
standard cell library [85]) . 69

2.3 Accelerator Design Details at 14nm . 70

3.1 CNN and systolic array parameters nomenclature 85

3.2 RD/WR bandwidth expression of FC layer for different cases 86

3.3 Parameter nomenclature for Algorithm 1 and 2 87

3.4 DTCO control parameters & their impact on Power, Performance and Area (PPA) 93

3.5 Parameters of NLP models . 95

3.6 SOT-MRAM DTCO optimized parameters. 30% guard-band are added with
thickness and width for process variations. 103

3.7 Dynamic Power consumption (in uW) of SRAM and SOT-MRAM. (1/0) means
the corresponding power to access bit 1 and 0. 106

4.1 Parameters and values of Design Space . 130

4.2 Per hop wire length and delay for 2.5D and 3D architecture [157][130] 135

4.3 Interconnects’ properties[129] . 135

4.4 PPO hyper-parameters & their values . 139

4.5 Optimized parameters for α, β, γ = [1, 1, 0.1] found by PPO algorithm 140

4.6 DNN benchmark features . 142

17

Chapter 1

Introduction

We are in the era of the Fourth Industrial Revolution, characterized by the unprece-

dented success of Artificial Intelligence (AI), including advancements in Generative AI. These

technologies have transformed our lives in every aspect, from performing monotonous tasks

such as data entry and spam email filtering to creative endeavors such as creating artwork,

producing images and videos, and understanding complex behaviors of time-series data, pro-

tein folding, and DNA structure. AI is revolutionizing various sectors, including healthcare,

transport, agriculture, finance, business, education, entertainment, security, etc., to name a

few. In many instances, AI-provided solutions have proven to be even more effective than

those provided by humans, enhancing efficiency, accuracy, and innovation.

As a result, the demand for Deep Learning and Artificial Intelligence (AI) is growing

at a rapid pace across a wide range of applications such, as self-driving vehicles, image and

voice recognition, medical imaging and diagnosis, finance and banking, defense operations,

etc. Because of these data-driven analytics and AI boom, demands in deep learning and AI

will emerge at both data centers and the edge [9, 56, 155]. In a recent market research [56],

it has been reported that AI-related semiconductors will see a growth of about 18 percent

annually over the next few years - five times greater than the rate for non-AI applications.

By 2025, AI-related semiconductors could account for almost 20 percent of all semiconductor

demand, which would translate into about $67 billion in revenue [56]. As a result, significant

R&D efforts in developing AI accelerators - optimized to achieve much higher throughput

in deep learning compared to GPUs - are underway from academia, big techs, as well as

startups [9]. In AI technology innovation and leadership, high-throughput AI accelerator

hardware chips will serve as the differentiator [155, 56].

18

The great success of AI is fueled by the advancement in the semiconductor industry, the

computing and storage capacity of computers, the Internet of Things (IoT), and the evolution

of Big Data. We are seeing that more computation power is being made available with newer

generations of GPUs and AI accelerators, interconnected at lightning speeds. However, the

AI advancements are far outpacing the Moore’s law. We continue to see hyperscaling of

AI models leading to better performance, with seemingly no end in sight. A few of the

prime reasons AI models achieve human-level performance are model size and training data

set size. These models with hundreds of billions of parameters are trained on thousands of

gigabytes of data. The power-law relationship between accuracy and data set growth and the

sublinear relationship between model size and dataset size [1] imply that to keep pace with

the accuracy improvement, dataset sizes will need to grow by 33–971×, while model sizes

will need to grow by 6.6–456× [3]. Figure 1.1 shows the trend of growing model size, and

Table 1 shows the dataset size of the commonly used datasets used to train the AI models in

different domains. The large model and dataset sizes eventually translate into hundreds of

exaflops of compute and terabytes of data movement while training/running these models.

That being said, it is impossible to use (both in inference and training mode) the State-

of-the-Art AI models with general purpose CPU. Though general-purpose GPUs are able

to handle parallel processing, the huge amount of data movement makes them inefficient

as well. As a result, Application Specific Integrated Circuits (ASIC)s have evolved, known

as AI accelerators, in the last decade. These AI accelerators are specifically designed to

take advantage of the inherent parallel computation and data reuse properties of the Deep

Learning (DL) models to ensure performance and energy efficiency.

The existing DL/AI accelerators can sustain the computation demand of the current

AI models, thanks to the inherent parallel property of the DL workloads. However, with

the rapid growth of model and dataset size, even with the advancement in architectural

innovation, it is hard to support the DNN/AI models training and inference. As shown

19

VG
G

Re
sN

et5
0

In
ce

pt
ion

 V
4

Xc
ep

tio
n

Na
sN

et
Tr

an
sfo

rm
er

BE
RT

GPT
-1

GPT
-2

M
eg

at
ro

nL
M

M
icr

os
of

t T
-N

LG

GPT
-3

GSh
ar

d
M

eg
at

ro
n

T-
NL

G

101

102

103

104

105

106

Pa
ra

m
et

er
 C

ou
nt

s (
M

ill
io

ns
)

2014

2015 2016
2016

2017 2018
2018 2018

2018

2019

2020

2020

2020 2022

Figure 1.1: Growth trend of Deep Learning models with year

Table 1.1: Commonly known datasets and their sizes

Dataset Name Size (Instance or Bytes)
ImageNet 14M (Image)

Kinetics-700 7M (Video clip)
YFCC100M 100M (Media Objects)
Wikipedia 45TB
MovieLens 25M movie ratings

Jester 4.1M continuous ratings
Alibaba 2.15B product reviews

in Figure 1.2, while the compute throughput has increased by 900×, the memory capacity

and the memory bandwidth have increased only by 5×, creating the Memory Wall, which

means that the hardware is memory bound. Despite having a higher theoretical throughput,

the achievable throughput is less because of less memory bandwidth. This translates into

huge data movement between processors, from host to processor, and processor to processor,

incurring significant performance loss and energy consumption.

20

P100(2016)

TPUv2(2017)

V100(2017)

TPUv3(2018)

TPUv4(2020)

A100(2020)

TPUv5(2022)

H100(2022)
0

200

400

600

800

1000

C
om

pu
te

 th
ro

ug
hp

ut
(T

FL
O

PS
)

P10
0(2

01
6)

TPUv2
(20

17
)

V10
0(2

01
7)

TPUv3
(20

18
)

TPUv4
(20

20
)

A10
0(2

02
0)

H10
0(2

02
2)

10

20

30

40

50

60

70

80

M
em

or
y

ca
pa

ci
ty

 (G
B)

P10
0(2

01
6)

TPUv2
(20

17
)

V10
0(2

01
7)

TPUv3
(20

18
)

TPUv4
(20

20
)

A10
0(2

02
0)

H10
0(2

02
2)

500

1000

1500

2000

2500

3000

M
em

or
y

BW
 (G

Bp
s)

(a)

(b)

(c)

Figure 1.2: Trend of AI hardware accelerators specs over the years: (a) Compute throughput
(TFLOPS), (b) Memory capacity (GB), and (c) Memory BW (GBps)

Nowadays, with the growing size of parameters and dataset, the models can no longer

be trained with a single GPU as the model parameters cannot fit in the main memory of the

21

GPU; even the largest GPU cannot hold the parameters. Hence, the models are trained in the

data center with racks of powerful GPUs/TPUs interconnected with PCIe or NVLink with

a distributed training technique. When it comes to running AI workloads, energy efficiency

is of paramount importance, be it inference or training. While the inference devices have

limited battery life, data centers are constrained by electricity costs, environmental impact,

and carbon footprint. Producing an image using Generative AI, such as OpenAI’s DALL-E

3, consumes an equivalent amount of energy as fully charging a smartphone. The carbon

footprint of training a single large language model is around 600,000 pounds of CO2 emissions,

which is the equivalent of 125 round-trip flights between New York and Beijing[50] [51]. The

energy usage of data centers is growing exponentially, with projections indicating a surge to

1,000TWh by 2026, further escalating to 2500TWh by 2030 [50] [51]. It is also very expensive

to train the LLM models. OpenAI’s GPT-3 language model, each training run required at

least $5 million worth of GPUs [52].

As a result, the key metrics of an AL/AI accelerator are: (i) high performance or

high throughput (TOPS), (ii) energy efficiency (TOPS/W), (iii) area efficiency (logics/A),

(iv) cost efficiency, (v) scalability, and (vi) generality. To ensure performance, the AI/DL

hardware should support for parallel workloads, by having powerful matrix and vector en-

gines. To ensure energy-efficiency, they should have high memory capacity, both on-chip

and off-chip DRAM, and high memory bandwidth, less data movement. The cost efficiency

is ensured by the high yield, less NRE and RE cost. To ensure generality, they should have

the ability to keep pace with the rapid ever-evolving DNN/AI model architectures, support

for multi-domain and diverse AI/DL models all in one efficiently. With powerful matrix and

vector engines, the existing accelerators/GPU offer high performance. However, because

of the smaller memory bandwidth and less memory capacity, they suffer from poor energy

efficiency and cost efficiency. The challenge is to balance the need for more computational

throughput at lower energy and cost.

22

The goal of this research is to optimize compute and memory resources to meet work-

load demands, achieving energy and cost efficiency while maintaining high performance. We

hypothesize that memory capacity and bandwidth, both on-chip (cache) and main memory

(DRAM), play a significant role in the performance, energy, and cost efficiency of AI accel-

erators. This thesis presents a System and Design Technology Co-optimization (STCO &

DTCO) methodology aimed at achieving energy, area, and cost efficiencies while preserving

high performance.

1.1 Thesis Outline and Contributions

Towards achieving energy efficiency, I evaluate the significance of on-chip memory on the

energy efficiency and performance of AI accelerators and explore the potential and feasibility

of NVM technologies as embedded on-chip memory/cache to increase the on-chip memory

capacity. In chapter 2, I design an energy-efficient and high-performance AI accelerator

with customized STT-MRAM (Spin Transfer Troque Magnetic Random Access Memory).

Based on model-driven detailed design space exploration, a design methodology of an in-

novative scratchpad-assisted on-chip STT-MRAM based buffer system for high-performance

accelerators is presented. Using analytically derived expression of memory occupancy time

of AI model weights and activation maps, the volatility of STT-MRAM is adjusted with

process and temperature variation aware scaling of thermal stability factor to optimize the

retention time, energy, read/write latency, and area of STT-MRAM. In chapeter 3, we ad-

dress the limitations that we faced with STT-MRAM by introducing SOT-MRAM as the

on-chip memory. We develop the memory system with Design Technology Co-optimization

(DTCO)- enabled customized Spin Orbit Torque (SOT)-MRAM as large on-chip memory

through System Technology Co-optimization (STCO) and detailed characterization of the

DL workloads. Together, these chapters provide an important contribution by introducing

23

Performance
(TOPS)

Energy efficiency
(TOPS/W)

Area efficiency
(logics/A)

Cost efficiency
($$)

Scalability &
Generality

 Powerful and efficient matrix/vector engines
 High memory bandwidth
 Large on-chip memory capacity
 High logic & cache density
 Less off-board data movement

Key metrics of DL/AI hardware

 High yield
 Less RE & NRE
 Keeping pace with new AI models
 Support for diverse AI models across

multiple domains

Chapter 2 &3

Chapter 4

Features ensuring key metrics

Figure 1.3: Thesis outline and contributions: key metrics of DL/AI accelerators and the
chapter-wise distribution of the contribution.

a larger on-chip memory and high on-chip bandwidth towards achieving high performance,

energy, and area efficiency.

In Chapter 4, we explore the chipset-based AI accelerator to improve performance,

energy, and cost efficiency. We analytically model the PPAC (Power, Performance, Area, and

Cost) of the chiplet-based AI accelerator and integrate it into an OpenAI gym environment

to systematically navigate the vast design space of chiplet-based AI accelerator. This system

and package-level co-design methodology aid the designer in finding the optimum design

point regarding Power, Performance, Area, and manufacturing Cost (PPAC) in a time and

resource constrained environment.

Finally, as shown in Figure 1.3, this dissertation addresses several essential aspects of

achieving the primary metrics/qualities of DL/AI accelerators through two straightforward

methods: (i) Implementing NVM as on-chip memory to minimize off-chip data movements

in chapters 2 and 3, and (ii) Utilizing chiplets to decrease off-package data movement in

chapter 4.

24

1.2 Background and Literature Review

1.2.1 Overview of DNN and Generative AI

The AI that captivates our imaginations today owes its success to the profound capabili-

ties of Deep Neural Networks and Self Attention mechanism. An artificial neuron, mimicking

a biological neuron, is a mathematical operation that accepts an input vector, where each

element is weighted by a corresponding element of a weight vector. The weighted sum, ac-

cumulated with a bias term, is passed through an activation function to generate the final

output element. Mathematically, this is expressed as: y = act.(
∑n

i=1(wixi) + b). There are

various activation functions, such as sigmoid, ReLU, leaky ReLU, etc. Multiple neurons are

grouped together to form a layer. A network is formed with an input layer and an output

layer, with or without hidden layers. The layers between the input and output layers are

known as hidden layers. Networks with many hidden layers are known as Deep Neural Net-

works (DNNs), and the depth of the network is determined by the number of hidden layers.

The simplest network is a Multi layer perceptron (MLP) or fully connected layer. Where,

each neuron of the previous layer is connected to each neuron of the next layer. Mathemati-

cally, the operations performed in each layer are equivalent to a matrix-vector multiplication.

The output vector is generated by multiplying the weight matrix with the activation vector,

which is either the input or the output of the previous layer. Figure 1.4 shows a vanilla

neural network and the mapping of its operations to matrix-vector multiplication.

Another type of layer, best known for extracting spatial information from an image, is

the convolution layer, where multiple kernels/filters are convolved over the inputs to generate

the output. Figure 1.5 shows the operations performed in convolution operation. The convo-

lution operation can be converted to matrix-matrix multiplication by performing a Im2Col

transformation on the input matrix and unrolling the filter matrices and concatenating them

25

x1x1

x2x2

a1a1

a2a2

a3a3

y1y1

y2y2

w11

w12

w21

w22

w31

w32

w11
w12

w13

w21

w22

w23

a1 = f(∑xiw1i) + b1

 𝑎1 𝑎2 𝑎3 = 𝑓(𝑥1 𝑥2

𝑤11 𝑤12

𝑤21 𝑤22

𝑤31 𝑤32

𝑇

+ 𝑏1 𝑏2 𝑏3)

Input layer

Hidden layer

Output layer

b1b1

b2b2

b3b3

Figure 1.4: Vanilla Neural Network (Multilayer perceptron) and its underlying matrix-vector
multiplication representation of the hidden layer.

along the rows [9]. The Deep Neural Networks (DNN) comprising of stacks of multiple con-

volutional layers connected straight and/or through residual connection [55] to extract the

embedded features and one or more Fully connected layers to classify them dominate the

Computer Vision (CV) domain of AI. Figure 1.6 shows the typical structure of the CV mod-

els. Image classification, captioning, reconstruction and object/instance segmentation are

the scopes of CV models. Deep Residual Networks, having convolutional layers at their core,

dominate the CV domain.

Language modeling deals with processing sequential data. Recurrent Neural Networks

(RNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) have been

used in language modeling until the state-of-the-art Transformer [111] model is introduced.

NLP models are used in machine translation, text summarization, speech recognition, syn-

tactic and semantic parsing, question answering, dialog system etc. Fig 1.7) illustrates the

architecture of the Transformer model.

In Generative AI (GenAI) the new realistic data such as text, image, video, etc. are

generated by the generative models. These models acquire an understanding of the under-

lying patterns and structures within their training data, subsequently producing fresh data

26

I1 I2 I3

I4 I5 I6

I7 I8 I9

I1 I2 I3

I4 I5 I6

I7 I8 I9

F1 F2

F3 F4

F1 F2

F3 F4

O1 O2

O3 O4

O1 O2

O3 O4

F1 F2

F3 F4

F1 F2

F3 F4

Kernel (K)

Input activation
Output activation

Sliding window

Figure 1.5: Illustration of 1D convolution operation. A 2x2 Output activation is generated
by convolving a 2x2 Kernel with a 3x3 Input activation with a stride size of 1. Each element
of output activation is generated by taking the element-wise dot product of the Kernel and
Kernel-overlapped input activation region.

BN +

pooling

BN +

pooling
Conv 0Conv 0 Conv 1Conv 1 Conv 2Conv 2 Conv 3Conv 3 Conv 4Conv 4 Conv nConv n FCFC softmaxsoftmax

Input

(image)

Output

(classification

prediction)

.

.

.

.

n1
n2

nfc

m1

mfc

m2.

.

.

.

n1
n2

nfc

m1

mfc

m2

ifmap
ofw

ofh

ofw

ofh

ofmap
ofw

ofh

ofmap
ofw

ofh

ofmapfilter
ifw

ifh

ifw

ifh

ifmap
ofw

ofh

ofmapfilter
ifw

ifh

Residual/skip

connection

Figure 1.6: CV model (CNN/DNN) abstract architecture. Deep convolution (Conv) layers
with residual/skip connection followed by fully connected (FC) layer/s. For symbol meaning
please see Table 3.1.

that share similar traits and characteristics of their training data. While there are differ-

ent approaches to training the generative models, such as Generative Adversarial Networks

(GAN), Variational Auto-Encoders (VAE), Transformer based models, and Diffusion mod-

els, their building blocks are Deep Neural Networks or the transformer-based self-attention

mechanism [2]. As a result, the most compute and memory intensive part of these workloads

are also DNN and transformer-based attention mechanism.

27

QNsql

d_q
QNsql

d_q

KNsql

d_k
KNsql

d_k

VNsql

d_v

VNsql

d_v

Zi
Nsql

Nem /h

Zi
Nsql

Nem /h

* N
em

d_q

* N
em

d_q

* N
em

d_q

* N
em

d_v

* N
em

d_v

* N
em

d_v

Nsql

Nem

Nsql

Nem

Linear Linear

h

Scaled Dot Product Attention

h

Scaled Dot Product Attention

AF

N
sq

l

Nsql

AF

N
sq

l

Nsql

*Q K
T

MatMul

*Q K
T

MatMul

Scale &

Softmax

Scale &

Softmax
*

MatMul

*

MatMul

AFAF VV*

MatMul

AF VAF

N
sq

l

Nsql

*Q K
T

MatMul

Scale &

Softmax
*

MatMul

AF V

ConcatenateConcatenate
Nsql

Nem

Nsql

Nem

ZNsql

Nem

Z *

Nem

N
em

Nem

N
em

Linear

Nsql

Nem

Z *

Nem

N
em

Linear

Nsql

Nem

Nsql

Nem

ENsql

Nem

E

LinearLinear

* N
em

d_k

* N
em

d_k

Linear

* N
em

d_k

QNsql

d_q

KNsql

d_k

VNsql

d_v

Zi
Nsql

Nem /h

* N
em

d_q

* N
em

d_v

Nsql

Nem

Linear Linear

h

Scaled Dot Product Attention

AF

N
sq

l

Nsql

*Q K
T

MatMul

Scale &

Softmax
*

MatMul

AF V

Concatenate
Nsql

Nem

Z *

Nem

N
em

Linear

Nsql

Nem

E

Linear

* N
em

d_k

Inputs

Multi-head AttentionMulti-head Attention

Add & NormAdd & Norm

Feed Forward NNFeed Forward NN

Add & NormAdd & Norm

Encoder #2Encoder #2

Encoder #nEncoder #n

N
sq

l

Nem

N
sq

l

Nem(Input + Positional)

Embeddings

(Input + Positional)

Embeddings

E
n

co
d

er
 #

1

(Output + Positional)

Embeddings

(Output + Positional)

Embeddings

Outputs (shifted right)

Add & NormAdd & Norm

Feed Forward NNFeed Forward NN

Add & NormAdd & Norm

Add & NormAdd & Norm

Encoder-Decoder AttentionEncoder-Decoder Attention D
ec

o
d
er

 #
1

Decoder #nDecoder #n

Output (Probabilities)

Linear and Softmax

Multi-head AttentionMulti-head Attention

Decoder #2Decoder #2

(Output + Positional)

Embeddings

Outputs (shifted right)

Add & Norm

Feed Forward NN

Add & Norm

Add & Norm

Encoder-Decoder Attention D
ec

o
d
er

 #
1

Decoder #n

Output (Probabilities)

Linear and Softmax

Multi-head Attention

Decoder #2

N
sq

l

Nem

N
sq

l

Nem

Figure 1.7: Transformer model workflow breakdown

1.2.2 Overview of AI accelerators

The fundamental component of DNN workloads (such as Conv. layer, FC layer, self-

attention mechanism) are MAC (Multiply-Accumulate) operations, which are essentially the

matrix-vector/matrix multiplication, or can be converted to matrix-vector/matrix multipli-

cation with massive parallelism. CPUs are inefficient in parallel processing. GPU with tem-

poral features such as vector processing (SIMD), parallel threading (SIMT) can accelerate

the parallel computations[9]. However, they are inefficient in data movement. In addition to

28

ALU ALU ALUALU ALU ALU

ALU ALU ALUALU ALU ALU

ALU ALU ALUALU ALU ALU

Register file

Control unit

Memory hierarchy

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

Register file

Control unit

Memory hierarchy

PE Core

 PE Reg file PE Reg file MAC MAC PE Reg file MAC PE Unit PE Unit

DL Accelerator

SRAM BufferSRAM Buffer

Unified Global

Buffer

CPUCPU

DRAM

(HBM3)
Special Function

Unit (SFU)

Control unit

(a) (b)

Figure 1.8: (a) SIMD type architecture. (b) Systolic array-based Deep Learning accelerator
architecture

the parallel computation, systolic array type architecture [4] with spatial features can also

leverage the dataflow architecture to reduce the data movement to a significant amount.

As a result, Systolic array-based architecture has been widely used in accelerating DNN

workloads[155] efficiently. The typical architecture of AI accelerators is composed of array of

Processing Elements (PE) containing MAC (multiplier and adder) modules, with/without

register file and control unit local to each PE unit along with the Global bufffer (GLB) to

hold to weights and activations. The number of PE units and the size of GLB may differ.

Figure 1.8 (a) shows the block diagram of a SIMD-type temporal architecture, and Figure

1.8 shows the typical architecture of a Systolic Array-based Deep Learning accelerator.

Diannao[5] and ShiDianNao[6] are two of the earliest accelerator architectures that fo-

cused on reducing memory access to improve energy efficiency and performance by play-

ing with memory hierarchy to extract the reuse of operands for CNNs and MLP net-

works. Eyeriss[7] is an energy-efficient DNN accelerator that introduces Row Stationary

(RS) dataflow to maximize data reuse and minimize data movement, utilizing a hierarchical

memory structure to significantly reduce energy consumption and improve performance. To

29

keep up with the diverse structure of DNN layers and to support multiple mapping strate-

gies, flexible architectures such as MAERI [10], Flexflow [11] have recently been proposed.

In addition to the massive parallalism and reuse propetry, the DNN workloads come with

another special feature, sparsity, that can be leveraged to accelerate the performance and im-

prove energy-efficiency. Sparsity means that a significant amount of activations and weights

are either zero or close to zero (because of activation function, regularization, pruning tech-

nique). SCNN[8] proposed by NVIDIA is one of the first ASIC architectures supporting

sparsity. It leverages sparse operands by first constructing tiles from sparse matrices and

then using a dense accelerator substrate for non-zero operands. CambriconX[12] uses hard-

ware indexing to eliminate redundant computations in sparse matrix multiplications, while

Cambricon-S[13] enhances software to reduce sparse activation irregularities, simplifying the

hardware indexing unit. SIGMA[14] employs specialized interconnects to efficiently handle

large-scale sparse computations with irregular operand matrices.

Advances in machine learning, including GenAI, have led to increasingly large and

complex models, outpacing the capabilities of conventional accelerators and necessitating new

designs for efficient large-scale computation. DaDiannao [15] is one of the earliest accelerator

that introduced interconnected accelerators for large network training and inference. Nvidia’s

Simba[16] features a scaled-out, still targetting inference, on-chip DNN accelerators linked

via a silicon interposer. Stanford’s Tangram[17] uses Eyeriss-like PEs with a new interconnect

structure.

Apart from academia, Google’s TPU [155][164], NVIDIA’s NVDLA [18], Microsoft’s

Brainwave [28], Apple’s Neural Engine [22], Intel’s Nervana Neural Network Processor (NNP)

[25], Tesla’s FSD [26], Cerebra’s Wafer Scale Engine (WSE) [19], SambaNova’s Reconfig-

urable Dataflow Unit (DFU) [23], Groq’s tensor streaming processor [24], Huawei’s Ascend

[29] are the notable and successful accelerators proposed from the industry.

30

Another domain of AI accelerator research is ”In-memory computing” or ”Processing-in-

memory”, where the computation is performed in the memory to reduce the data movement.

In this thesis, we only focus on the regular temporal or spatial AI accelerator architecture,

not in-memory or processing-in-memory architectures.

Chiplet-based AI accelerator

Recent advances in AI, including GenAI, have led to a substantial increase in com-

putational and memory demands on AI hardware across various domains, from edge to

cloud. To address the high demand for computing and memory resource capability, chiplet-

based AI accelerators have recently evolved as a viable solution. Unlike monolithic designs,

which are often constrained by the fabrication yields, area, power consumption, heat dissi-

pation, etc., chiplet-based AI accelerators provide scalability, area, yield, and cost efficiency.

Simba [16] is one of the first chiplet-based AI accelerators for inference, which integrates 36

chiplets on organic package substrate with ground-referencing signaling (GRS) technology for

intra-package communication. Centaur [35] integrates CPU and FPGA chiplets on package

targeting recommendation system workloads. SPRINT [36] is a 64-chiplet system with pho-

tonic interconnect for DNN inference. [33] proposes a chiplet-based AI accelerator with IMC

(In-Memory Computing) technology. [40] proposes a chiplet-based ASIC supercomputer for

LLM that optimizes the total cost of ownership (TCO) per generated token. [38] proposes

Tascade, a task-oriented scalable chiplet architecture for distributed wprkload execution,

evaluated across 256 distributed chips. NN-Baton [34] is a tool for analyzing and optimiz-

ing the granularity of chips that proposes a 4-chiplet AI accelerator for DNN workloads.

Monad [41] and SCAR [39] perform design space exploration for chiplet-based AI acceler-

ator, focusing different aspcects of the design space, such as monad considers architecture

and integration, while SCAR considers multi-model dataflow scheduling on heterogeneous

multi-chiplet modules.

31

1.2.3 Optimization & Evaluation of Accelerators

Impact of Design Space Exploration (DSE) and System & Design technology

co-optimization (STCO & DTCO)

With the AI models becoming increasingly complex and large, the design space of the

AI accelerators are also booming. As a result, the importance of Design Space Exploration

(DSE) and system and design technology co-optimizations across the entire stack, starting

from the AI application to all the way down to the circuit and device level of the hardware

running the AI models, has become pivotal to ensure the high performance, energy, area,

and cost efficiency. The standalone optimization of any component of the stack, may lead

to sub-optimal accelerator design. Edge devices are constrained by area and energy, while

cloud or data centers are constrained by latency and environmental impact. The prediction

accuracy of AI models should be given a high priority for Safety-critical applications such as

wearable medical devices, autonomous vehicles and (Depart of Defense) DoD applications.

The key attributes contributing to the quality of AI accelerator are dataflow and map-

ping styles, and hardware resources. Dataflow styles incorporate computation order, loop

tiling and parallelization strategies. While HW resources incorporate on-chip compute re-

sources, memory hierarchy, on-chip memory capacity, and bandwidth, main memory capac-

ity and bandwidth. Going from monolithic to multi-chiplet based AI accelerator, the design

space further explodes, with different types of packaging and interconnect architectures, to

name a few. From architectural perspective, resource allocation, monolithic or multi-chiplet

based architecture, memory hierarchy, memory capacity, mapping and dataflow of the DNN

workloads across the compute and memory resources should be considered. From com-

munication and integration perspective, chiplet and memory placement, routing protocols,

stacking/packaging technologies, interconnect types, bandwidth, and finally from application

perspective, system requirement, such as reliability, scalibility etc., should be considered all

32

at the same time capturing their inter-dependency while optimizing for PPAC (Power, Per-

formance, Area, and Cost).

Table 1.2: Comparative summary of AI accelerator simulator frameworks for design space
analysis

Simulator/Optimizer/
Architecture

Design space/Architectural details
Monolithic/
Chiplet-based

Scale-sim [27] Performance Simulator
(i) Dataflow: WS, IS, OS
(ii) HW resource: No. of PE, on-chip memory size
(iii) Architecture type: Eyeriss, TPU

Monolithic

Timeloop+
accelergy [53]

Mapping optimizer + Performance,
energy, and area simulator

(i) Dataflow: WS, IS, OS
(ii) HW resource: No. of PE, on-chip memory size
(iii) Different memory hierarchies
(iv) Architecture type: Eyeriss, Simba

Monolithic

Maestro [186]
Performance and energy
Simulator +Optimizer

(i) Dataflow: flexible
(ii) HW resources: Number of PEs,
NoC BW/Latency, on-chip memory size
(iii) Architecture type: NVDLA-like

Monolithic

Astra-sim [31] Performance Simulator

(i) Distributed training: data, model, hybrid parallelism
(ii) Hierarchical collective algorithms: on-load, off-load
(iii) Fabric design: number of links & latency/BW per link
(iv) Fabric topology: pt-to-pt, 2D/3D Torus

Multi-chip
(package/board level)

STONNE [30]
Performance, energy and area
Simulator

Architecture type: flexible & reconfigurable architecture Monolithic

Confucuix[49]
Performance and energy
optimizer

(i) HW resource: Number of PE, on-chip buffer size Monolithic

SIMBA [16]
Performance & power
Optimizer + 36-chiplet
Architecture

(i) Mapping and tiling strategies
(ii) 36 NVDLA chiplets connected in 2D mesh

Multi-chip
(package level)

SPRINT [36] 64-chiplet Architecure
64-chiplet architecture with photonic interconnect
for interchiplet communication

Multi-chip
(package level)

NN-Baton [34] Simulator + Optimizer

(i) No. of accelerator chiplets: 1, 2, 4, 8
(ii) On-chip memory: 36 to 642KB
(iii) Different mapping strategies
(iv) Routing topology: Ring

Multi-chip
(package level)

Moand[41] Optimizer

(i) No. of accelerator chiplets
(ii) mapping & tiling
(iii) packaging
(iv) network topology
(v) placement

Multi-chip
(package level)

TVLSI’20[183] Simulator
(i) 64-core ROCKET-64 architecture
(ii) 2.5D interposer-based centralized NoC

Multi-chip
(package level)

Magnet [32]
Area, Power, Performance
optimizer and RTL generator

(i) Dataflow: WS, OS, WS-LOS, OS-LWS
(ii) HW resources: No. of PE, on-chip memory size
(iii) Precision: 4/8 bits (weight/activation),
16/20/24 bits (accumulation)
(iv) Operating frequency: 0.5 GHz, 1 GHz

Monolithic

Chiplet-gym
(This work
Chapter 4 [37])

Performance, power, area and
cost Optimizer

(i) No. of AI accelerator chiplets, no. & location of
HBM chiplets
(ii) package architecture: 2.5D, 3D
(iii) Interconnect types & configuration
(details in Table 4.1)

Multi-chip
(package level)

Use of AI/ML in design space exploration and optimization

With the exponential increase in valid design points within the design space, learning-

based approaches, especially Reinforcement Learning (RL), have become more popular than

traditional heuristic and metaheuristic-based search algorithms due to their efficiency and

performance. Apollo[47] uses black-box optimization methods and transfer learning for

33

sample-efficient accelerator design. Confuciux [49] uses RL and genetic algorithm to ex-

plore the on-chip HW resource allocation on AI accelerator for a given dataflow and reuse.

Zeus [45] co-optimizes performance and energy by finding optimal job and GPU-level con-

figurations for recurring DNN training jobs using RL. [46] proposes a Deep Reinforcement

Learning (DRL) based frmework for exploring the router-less Network-on-chip (NoC) design

space. [48] uses multi-agent reinforcement learning to optimize DRAM-memory controller.

Apart from architectural design space exploration, RL has also used in back-end of ASIC

design, such as physical design [42], circuit design [43][44].

Existing simulators, optimizer and and DSE frameworks

To evaluate the performance and efficacy of the accelerators, and to accelerate the re-

search, simulators and optimization frameworks have been proposed, specifically tailored for

DNN accelerators. Scalesim [27] is one of the earlier simulator for systolic array type architec-

ture. Given the architectural and workload parameters, it outputs the computation cycles,

mapping utilization, SRAM and DRAM bandwidth. Timeloop+Accelergy[53][54] projects

the performance and energy-efficiency of DNN accelerator for inference exploring different

mapping and tiling strategies. While these two simulators work in layer-wise, STONNE[30]

is an end-end, meaning that it can simulate the entire model, cycle-level simulator for both

flexible architectures such as MAERI[10], SIGMA[14] and conventional architectures, such

as Eyeriss[7]. MAESTRO[186] is another simulator which takes DNN models, mapping or

dataflow and hardware resources as input, and outputs the performance report such as la-

tency, NoC bandwidth requirement, and cost report such as activity count (energy), buffer

size requirement, data reuse amount, etc. ASTRASIM [31] is the only system-level simu-

lator available today, supporting distributed machine learning as well. Table 1.2 shows the

framework for design space exploration in the literature.

34

1.2.4 Impact of memory in AI accelerators & potential of Emerging memory

technologies in AI accelerators

When it comes to DNN workload processing, on-chip memory plays a crucial role in per-

formance and energy efficiency. Because data movement from processor to memory is two

orders of magnitude more expensive than MAC (Multiply-Accumulate) operation, the dom-

inant arithmetic operation in DNN workloads. Each MAC operation requires three memory

reads (filter weights, fmap (feature map) activation, and partial sum) and one memory write

operation [9]. Each memory access is at least 200× more energy and latency expensive than

the MAC operations. The idea is that the more weights and intermediate activations can

be accommodated in the on-chip memory, the off-chip main/DRAM access can be reduced,

hence improving the performance and energy efficiency. A comparative analysis between

A100 and TPUv4 processors, as shown in Fig. 1.9, effectively illustrates the impact of on-

chip memory on performance and energy efficiency. The A100, with specifications of 312

TFLOPS and a 40MB L2 cache, is compared to the TPUv4, which boasts 275 TFLOPS and

a 160MB L2 cache. The performance metrics reveal that for the BERT model, the TPUv4

demonstrates a 1.93× reduction in mean power (measured in watts) compared to the A100.

Similarly, for the ResNet model, the TPUv4 shows a 1.33× reduction in mean power over

the A100. Furthermore, the normalized performance for BERT is 1.15× higher with the

TPUv4, while for ResNet, the TPUv4 offers a 1.67× increase over the A100. These data

points clearly indicate that TFLOPS is not the sole determinant of performance, highlighting

the critical role of memory capacity.

Recent advancements in on-chip memory capacity across industry further underscore

this point. NVIDIA’s transition from the A100 to the H100 demonstrates an increase in

L2 cache capacity from 40MB to 50MB, integrated with a transformer engine, signifying

significant improvements in processing efficiency and capability. AMD’s MI300 processor

35

BERT ResNet
0

50

100

150

200

250

300

350

400

M
ea

n
po

w
er

 (W
)

A100(312TFLOPS, 40MB-L2)
TPUv4(275TFLOPS, 160MB-L2)

BERT ResNet
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

A100(312TFLOPS, 40MB-L2)
TPUv4(275TFLOPS, 160MB-L2)

1.93x 1.15x

1.67x

1.33x

(a) (b)

Figure 1.9: Power and performance comparsion of A100 GPU vs TPUv4, showing the impact
of on-chip memory.

incorporates 190GB of HBM3 and 3D-vCache technology with 144MB SRAM, represent-

ing a leap in memory architecture that enhances computational throughput and efficiency.

Cerebras’ WSE-2 [19] features 40GB of on-wafer memory, underscoring the shift towards in-

tegrating substantial memory directly on the chip to optimize performance. Similarly, Groq’s

TSP [24] boasts 220MB of SRAM, illustrating the industry’s focus on increasing memory

capacity to reduce the energy and latency hungry data movement.

SRAM has been predominantly used as the on-chip memory for CPUs and GPUs due

to its ultra-fast access times (in pico-second range), unlimited endurance (exceeding 1016

cycles), and scalability with technology scaling. However, for such large memory capacity as

demanded by AI accelerators, SRAM is an expensive technology in terms of silicon footprint,

with a relatively low integration density of only dozens of megabits per millimeter squared. It

also suffers from high standby leakage power, ranging from tens to hundreds of picowatts per

bit. As a result, to meet the demand of AI accelerators’ Global Buffer (GLB), exploration of

alternate memory technologies has gained interest. Emerging memory technologies, such as

MRAM, RRAM, PCM etc. have shown potentials. Table 1.2.4 shows a comparsion between

the properties of emerging memories and SRAM.

36

Table 1.3: High-level comparison between SRAM and emerging memory technologies

Property
Resistive RAM

(RAM)
Phase Change

Memory (PCM)
Magnetic RAM

(MRAM)
Static RAM
(SRAM)

Cell area
(Storage density)

4− 12F 2

(High)
4− 30F 2

(High)
6− 50F 2

(High)
160F 2

(Low)
On/OFF

resistance ratio
High High Low High

Retention time
(Non-volatility)

> 10y
(High)

> 10y
(High)

> 10y
(High)

N/A

Leakage power Low Low Low High
Write latency 100ns 150ns 10ns < 1ns
Write energy 2nj 6nj 1nj 0.2nj
Read latency 10ns 10ns 10ns < 1ns
Endurance 106 − 1012 109 1015 1016

For example, as shown in Table 1.2.4, while the emerging memories have the advantages

of high integration density they also face high write energy and latency. A co-optimization

methodology, guided by the demands of AI workloads and applications, is required to extract

the benefits while discarding its drawbacks.

1.3 Thesis Organization

The thesis is organized as follows. In Chapter 2, we design an energy-efficient and

high-performance deep learning accelerator with customized STT-MRAM. In Chapter 3, the

drawbacks of STT-MRAM is mitigated by introducing SOT-MRAM in the memory system

and performing a system and design technology co-optimization of the system requirement,

workloads, and SOT-MRAM. In Chapter 4, we present Chiplet-gym, a Reinforcement Learn-

ing based system and package level co-design methodology for chiplet-based AI accelerator.

Finally, the thesis is concluded in Chapter 5 with potential future research direction.

37

Chapter 2

Energy-efficient and High-performacne AI accelerator with customized STT-MRAM

2.1 Introduction

On-chip memory capacity plays a significant role in the performance and energy ef-

ficiency of AI tasks [9, 7, 58, 155]. In AI accelerator, off-chip Dynamic Random-Access

Memory (DRAM) accesses can take 200 times and 10 times more energy compared to the

local register file and global buffer memory, respectively [7]. Larger on-chip buffer memory

is needed to minimize DRAM accesses, and it can improve the energy efficiency and speed of

the accelerator. However, conventional Static Random-Access Memory (SRAM) based solu-

tions suffer from area constraints and leakage power at advanced technology nodes [69, 74],

which is a major concern for the energy-constraint IoT domain. STT-MRAM has the poten-

tial to replace SRAM as the global buffer in high-performance AI accelerators that require

large on-chip memory [57, 155]. For AI accelerators used in inference-only applications, the

pre-trained weights need to be stored on-chip. As conventional embedded Flash storage suf-

fers from scalability and reliability issues at advanced nodes [74], emerging memory-based

solutions are required for AI accelerators. As analyzed in detail in [75], because of weight

reuse in Deep Learning, radiation-induced soft errors in the memory block of the accelerator

can impact the accuracy of AI models. This is especially a concern for safety-critical appli-

cations such as autonomous vehicles with rigid FIT requirements [75], and STT-MRAM can

be a better option for these types of applications.

At scaled technologies (e.g., 10nm and newer), static energy loss from the high leakage

current dominates the overall energy dissipation in DRAM and SRAM technologies [74].

Although Trench cap based embedded DRAM (eDRAM) has a higher density compared

to SRAM, the leakage power and scaling challenges of eDRAM at advanced process nodes

make it less competitive in the future technology roadmap [74]. Beyond 28nm node eFlash

38

faces scaling challenges, and eMRAM technology becomes superior over eFlash because of

its lower write voltage and energy, higher endurance, lower area, and faster read/write time

[63]. The emerging resistive RAM (RRAM) and Phase Change (PCM) based cross-point

memory suffers from endurance, reliability and variability problems [70, 74]. Among all the

emerging embedded memory technologies, STT-MRAM is one of the most promising due to

its high energy efficiency, write endurance (e.g., more than 1 million cycles), high cell density,

high-temperature data retention capability, operating voltage comparable with CMOS logic,

and immunity to soft errors [74, 69, 60, 62, 61, 77, 78]. Moreover, STT-MRAM is higly

compatible with CMOS and requires only 2 to 6 extra masks in the backend-of-the-line

(BEOL) process [62, 69]. Because of the leakage power issue, beyond a certain memory size,

embedded MRAM becomes more energy efficient compared to SRAM [69].

While performing Deep Learning/AI tasks, the throughput of the AI accelerator pri-

marily depends on, (i) the number of Processing Elements (PE), and (ii) the size of on-chip

buffer memory [9, 155]. As a result, area-efficiency is of paramount importance for AI accel-

erators, and the critical design goal is to increase PE density and on-chip memory capacity.

Because of compact size (6F 2 of STT-MRAM vs. 100F 2 of SRAM [81, 66]), STT-MRAM

has the potential to outperform conventional SRAM as the on-chip memory in accelerators.

At iso-memory capacities, the MRAM module occupies much lower area compared to SRAM

[69]. Additionally, for power constraint mobile/edge/IoT applications, STT-MRAM based

AI accelerators can significantly minimize static power compared to SRAMs. However, the

higher write energy and write latency of conventional eMRAM can be a deterrent in their

full adoption in AI accelerators. In this paper, we present a methodology to design efficient

AI accelerators with customized STT-MRAM that can provide high bit cell density while

still ensuring fast write speed and decreased write energy. We achieve this feat by analyzing

39

the volatility requirement of weight and input/output feature-map (ifmap/ofmap) data on-

chip, and scaling the eMRAM’s retention time accordingly without incurring unacceptable

bit error rates.

The key contributions and highlights of this chapter are:

• We present an innovative runtime reconfigurable core design that can be optimized for

both dot products of convolution layers and matrix multiplications of fully connected

layers.

• We derive the analytical expressions of occupancy times of weights and input/output

feature maps in the global memory of the AI accelerator between different stages (i.e.,

Conv. layer followed by Conv., Conv. layer followed by Fully-Connected (FC) layer,

and FC-FC) of AI/Deep Learning operation. Guided by this data activity duration,

we scale the retention time of STT-MRAM and customize the design for application

as the global buffer memory in energy-efficient AI accelerator. We consider Process

variations and runtime Temperature fluctuations in this scaling procedure to ensure

negligible read/write Bit Error Rates (BER) and retention failures across all corners.

• Based on detailed design space exploration using state-of-the-art AI/Deep Learning

models, an AI accelerator system and MRAM technology co-design framework is pre-

sented with the key innovations, - (i) Optimizes STT global buffer size to minimize

DRAM accesses. (ii) A novel scratchpad-assisted STT-MRAM based global buffer ar-

chitecture is presented to minimize the writes to the MRAM by bypassing writes of

the partial ofmaps to the scratchpad. (iii) For inference-only tasks, to store the trained

weights a specially customized embedded STT-MRAM - as a Flash replacement - with

optimized retention time (e.g., 3 to 4 years) and robust BER is used.

40

• To further improve the energy and area efficiency, we exploited the inherent error

tolerance of Deep Learning/AI models and created two STT-MRAM banks for the

global buffer. For the first bank, the thermal stability factor is scaled further to a

relaxed BER, and the less critical half of the weights/fmap bits (e.g., LSB groups)

are assigned to this memory block. The second bank has scaled retention time with a

robust BER, and the other remaining half of the bits (e.g., MSB groups) are stored in

this bank.

The remainder of this chapter is organized as follows. The background is discussed in

Section 2.2. STT-MARM based optimum AI/Deep learning accelerator design methodology

is presented in Section 2.3. The AI accelerator-aware eMRAM technology co-design method-

ology is presented in Section 2.4. We present Simulation Results in Section 2.5, Related work

in Section 2.6, and Conclusions in Section 2.7.

2.2 Background

2.2.1 Deep Neural Networks

At the core of Deep Learning/AI is the Deep Neural Network (DNN). Modern state-of-

the-art DNN consists of stacks of Convolution layers to extract the objects’ features and a

few Fully Connected layers at the end to classify them. Convolutions are element-wise dot

products between matrix (or vector) and matrix. In convolution, kernels convolve over input

feature maps (ifmap) to extract embedded features and generate the output feature maps

(ofmap) by accumulating the partial sums (psums) as shown in Fig. 2.1. Each fmap and

filter is a 3D structure consisting of multiple 2D planes, and a batch of 3D fmaps is processed

by a group of 3D filters in a layer. Activation functions (e.g., ReLU) operate on the results

before they go to the MaxPooling layer. The computations of a convolutional layer can be

41

expressed as:

Ofmap[z][u][x][y] = ReLU(B[u] +

Nin ch∑
v=1

kh∑
i=1

kw∑
j=1

I[z][v][Sx+ i][Sy + j]× F [u][v][i][j]),

0 ≤ z < N, 0 ≤ u < Nout ch, 0 ≤ y < Nofmap rw, 0 ≤ x < Nofmap cl,

Nofmap rw = ((Ih − kh + 2P)/S) + 1, Nofmap cl = ((Iw − kw + 2P)/S) + 1

(2.1)

Nofmap_cl

N
of

m
ap

_r
w

Output fmaps (ofmap)

Nofmap_cl

N
of

m
ap

_r
w

Output fmaps (ofmap)

Filters
kwkw

kh

kw

kh

kw

kh

kwkw

kh

kw

kh

kw

kh

Output channel =1

Output channel =Nout_ch

Filters
kw

kh

kw

kh

Output channel =1

Output channel =Nout_ch

Input fmaps (ifmap)

Iw

Ih

Input fmaps (ifmap)

Iw

Ih

Input fmaps (ifmap)

Iw

Ih

Convolution Operation

layer 2layer 1

.

.

.

.

Fully Connected

Layers

layer 2layer 1

.

.

.

.

Fully Connected

Layers

Xi

Xo=ReLu(Xi*W` + b)

Xo

Figure 2.1: Convolution and fully connected layer operations

where, Ofmap, N , F , I, P , S, and B represent output feature maps, number of inputs

in a Batch, filter weights, input feature maps, padding, stride size, and bias respectively [7].

Unlike the convolution layers, each neuron of the Fully Connected (FC) layer is gen-

erally connected to every other neuron of its previous/next layer with a specific weight

(0 for no connection) associated with each connection. The computations of FC layers are

matrix/vector-matrix multiplications, where the output activation (Xo) of a layer is obtained

by multiplying the input activation (Xi) matrix/vector with the weight matrix (W) followed

by the addition of a bias term, and finally passing the result through a non-linear function

such as ReLU, Xo = ReLu(Xi ∗W + b).

42

2.2.2 Deep Learning/AI Hardware Accelerators

SIMD, or Systolic array based hardware optimized for matrix (or vector)-matrix multi-

plication, is the present state-of-the-art hardware to accelerate AI operations [9, 155]. The

systolic array is only optimized for matrix-matrix multiplication, but it can not perform the

dot product necessary for convolution layers. Mapping the convolution dot products into the

matrix multiplications by converting the activation maps into the Toeplitz matrix and the

kernel weights into a row vector is a popular solution to address this problem. Nonetheless,

it involves redundant data in the input feature map which give rise to inefficient memory

storage, and complex memory access pattern [9]. More recently, heterogeneous architectures

are evolving that have optimized cores for Convolution and FC layers [58]. While this solves

the complications regarding Toeplitz matrix conversion, it incurs area overhead. Because

when convolution core is active, FC core remains idle, wasting circuit area. In response

to the existing issues, in this chapter, we propose a novel concept of a reconfigurable core

capable of efficiently performing both convolution dot products and matrix multiplications

based on the operation-dependent (i.e., convolution or fully-connected) control signal.

2.2.3 Memory System in AI/Deep Learning Hardware

The memory system is one of the vital metrics in determining the performance of AI

hardware. Each off-chip DRAM access is 100 to 200 times more energy costly than any

ALU operation or a local memory (e.g., register file/scratchpad) access [9]. As a result,

most energy-constraint AI hardware leverage a memory hierarchy of register file, global

buffer, and DRAM. Moreover, a significant amount of memory is required to store the pre-

trained weights for inference-only applications. The larger the global buffer memory, the

more energy-efficient the AI hardware is due to lower DRAM access. Most of the existing

DNN hardware use SRAM both as Global Buffer and Register file and eFlash as weight

43

storage memory [9]. Because of the large size of SRAM and static energy loss due to high

leakage at scaled nodes (e.g., 10nm and newer), the global buffer size cannot be increased

beyond a certain threshold energy-efficiently. eFlash starts to suffer from scaling challenges

even at earlier technology such as 28nm [63]. The benefits of our proposed ∆-customized

STT-MRAM as a replacement of both the SRAM-based global buffer and the eflash-based

weight storage memory are many-fold: higher memory capacity, lower read-write latency

and energy, and higher endurance against soft errors.

2.3 Efficient AI/Deep Learning Hardware

Fig. 2.2 depicts the top-level architecture of the accelerator containing the proposed

reconfigurable core and MRAM-based memory system. The following sections describe the

dataflow in convolution and systolic mode and formulate the memory occupancy time in

each mode.

 Customized STT-

MRAM

Weight Storage
Memory

(for Inference Tasks with
pre-trained models)

Customized STT-MRAM

CPU

AI/Deep Learning Accelerator

O
ff

-C
hi

p
D

R
A

M

2-D Array of
Reconfigurable

PE Cores
 Scratchpad

Global Buffer
Memory

Figure 2.2: AI Accelerator with reconfigurable cores optimized for both Conv. and FC layers,
and STT-MRAM based on-chip memory.

2.3.1 Reconfigurable Core

The architecture and workflow of our proposed Reconfigurable Core are quite simple

but powerful enough to support both matrix multiplication and convolution dot product at

run-time configuration. The reconfigurable core consists of three MAC modules and four

44

P
_s

um

1

1

1

1

0

0
0

0

Mode PE_OUT

I1 F1I2 F2I3 F3

P
E

_I
NP

_s
um

P
_s

um

P
_s

um

Mode

Mode

Mode

(c)

1

1

1

1

0

0
0

0

I1 F1I2 F2I3 F3

P
E

_I
N

MAC_1_outMAC_3_out MAC_2_out

P
_s

um

P
_s

um

Mode

Mode Mode

Mode
(b)

1

1

1

1

0

0

0

0

PE_OUT

I1 F1I2 F2I3 F3

P
E

_I
NP

_s
um

MAC_1_outMAC_3_out MAC_2_out /

P
_s

um

P
_s

um

Mode

Mode Mode

Mode

(a)

m
ul
2

m
ul
3

m
ul
1

add1
add2add3

add1add2

add2 add1
add3

add3
m
ul
3

m
ul
3

m
ul
2

m
ul
2

m
ul
1

m
ul
1

P
_s

um

2D array of
reconfigurable cores

(PE/MAC)

HA

WA

Figure 2.3: (a) Reconfigurable core, (b) Reconfigurable core acting as building block of
systolic array when mode is low, and (c) Reconfigrable core acting as convolution PE, when
mode is high.

Multiplexers. Each MAC contains a BFloat16 multiplier and an FP32 adder [82, 83] to

accommodate both training and inference. If only inference is desired, the hardware can

be 8-bit int8 type [9, 155]. The multipliers take input feature maps and filter weights as

inputs and pass the results to their neighboring adders to be added with the previous partial

sum results. The multiplexers act as mode selectors of the core. When Mode is de-asserted,

the MACs are disconnected from each other and their outputs are collected downward to

reflect the systolic array architecture (Fig. 2.3(b)). On the other hand, when Mode is

asserted, three MACs collectively act as a convolution block that performs three dot products

parallelly and produces one partial sum (Fig. 2.3(c)). In this case, adder3 adds the outputs

of multiplier3 and multiplier2 to produce the intermediate sum. Meanwhile, adder1 adds

45

the multipler1 output with the previous partial sum. These operations occur concurrently,

provided that the input activations and filter weights are assigned to the multipliers parallelly.

Once the outputs from adder3 and adder1 are ready, adder2 sums them up to produce the

PE OUT . The building block containing three MACs and four Muxes is defined as a Process

Element (PE) block for convolution in this work. Fig. 2.3 illustrates the functionality of the

Reconfigurable core in systolic array mode (b) and convolution mode (c).

2.3.2 STT-MRAM Based On-Chip Memory System

The prime criteria of memory to sustain as an on-chip memory are: high density, low

read/write latency and energy. Conventional STT-MRAM suffers from high read/write

energy and latency. However, in the case of on-chip memory/global buffer, the intrinsic

non-volatility property of STT-MARM can be compromised to minimize the read/write

energy and latency by adjusting the thermal stability factor (∆). Considering the data re-

tention time in the global buffer, ∆ can be scaled down to achieve a significant reduction

in read/write energy, latency, and increase in cell density. This subsection will formulate

necessary expressions to calculate the data retention time in the global buffer for the most

time-consuming AI operations, such as the convolution layer and fully connected layer op-

erations. The derived expressions will help us to precisely determine the maximum data

retention time in global buffer, and thus help to scale down ∆.

Deep Learning/AI operations are layer-wise sequential operations, meaning the current

layer’s output acts as input to the following layer. To formulate the data retention time

between two consecutive layers, in inference mode, we define T1 as the time required by the

accelerator to generate the ofmap of one layer. Once the ofmap of one layer is generated, it

goes through Maxpooling and Activation functions (e.g., ReLU) to serve as the input to the

following layer. We refer Tpool relu as the time required to perform the Maxpooling and ReLU

operations. The time required to generate the ofmap of the following layer is termed as T2.

46

Finally, Tret is the data retention time in memory between two consecutive convolution (or

fully connected) layers.

Retention time for Conv-Conv layers

In convolution mode, each PE block of the array performs the dot product between

the input feature maps (ifmaps) and weights. Each unit PE block’s size is defined as Ps,

where Ps represents the number of elements the MAC module can process. The ifmaps

and kernel weights are loaded into the PE array from global buffer memory, and the PE

array computations occur in parallel. Without loss of generality, in our analysis, we adopted

the Row Stationary data flow where kernel rows are loaded into the PE blocks and kept

stationary, and ifmaps are loaded and shifted according to the stride size [9, 7]. The partial

sums are accumulated vertically to generate the output feature maps (ofmaps). This process

is repeated until a complete ofmap is generated. Setting Mode = 1 in the Muxes of the PE

blocks (Fig. 2.3) ensures that the Reconfigurable core is acting as a Convolution core.

To calculate T1, we formulate an expression that helps us estimate the time required to

generate the output (ofmap) of a convolution layer. We assume that the operations related

to the next output channel will be assigned in the accelerator array only after all the MAC

operations related to the previous output channel have been completed. In other words, in an

iteration of the accelerator array, the input channels present in it are all related to the same

output channel. In addition to simplifying the PE scheduling procedure, this assumption

also aligns with our goal of obtaining a convolution layer’s worst-case completion time.

For layer n − 1, a single row of a partial ofmap (i.e., ofmap corresponding to one

kernel and one input channel) will require (kh ∗ ⌈kw/Ps⌉) PE blocks (symbol meanings are

given in Table 1), implying that a partial ofmap for a single input channel will require

Nofmp rw ∗ kh ∗ ⌈kw/Ps⌉ PEs. (The ⌈⌉ symbol means ceil operation where the result is

47

Table 2.1: Parameters & description

Parameter Description

Nin ch Number of input channels

Nout chn Number of input channels

Nbat Number of images per mini batch

kh kernel height

kw kernel width

Ps PE internal size

WA Accelerator array width (PEs)

HA Accelerator array height (PEs)

WSA Systolic array width (# of MACs), Ps ∗WA

Nofmap rw Number of rows in ofmap

Nofmap cl Number of columns in ofmap

Ncyc per stp Total clk cycles per iteration in conv./systolic mode of accelerator

nfc number of neurons in input FC layer

mfc number of neurons in output FC layer

Tclk Clock cycle time

rounded to the nearerst larger integer). An example of convolution operation inside the core

in Conv. mode is shown in Fig. 2.4.

Next, we find out how many partial ofmaps (i.e., how many input channels) can be

fitted in the full accelerator array in one step. This number is obtained by dividing the total

available PEs in the accelerator array, WA∗HA, by the number of PEs required for one input

channel. The total number of required steps (i.e, number of times the complete accelerator

array will be used) for all input channels (Nin ch) for one 3D filter (i.e, one output channel),

Nsteps per out ch, can be expressed as,

Nsteps per out ch = ⌈
Nin ch ∗ kh ∗ Nofmp rw ∗ ⌈kwPs

⌉
WA ∗ HA

⌉ (2.2)

The details of the symbols used in Equations (2.2)-(2.6) can be found in Table 1. Inside

the accelerator, time for each of the above steps,

48

of11 of21 of31

Stride Step 1

I31 I32 I33

F31 F32 F33

PE 7

I11 I12 I13

F11 F12

PE 1

I21 I22 I23

F21 F22 F23

PE 4

PE

PE

PE

I51 I52 I53

F31 F32 F33

PE 9

I31 I32 I33

F11 F12 F13

PE 3

I41 I42 I43

F21 F22 F23

PE 6

F13

of12 of22 of32

I32 I33 I34

F31 F32 F33

I12 I13 I14

F11 F12

I22 I23 I24

F21 F22 F23

I42 I43 I44

F31 F32 F33

PE 8

I22 I23 I24

F11 F12 F13

PE 2

I32 I33 I34

F21 F22 F23

PE 5

I52 I53 I54

F31 F32 F33

PE 9

I32 I33 I34

F11 F12 F13

PE 3

I42 I43 I44

F21 F22 F23

PE 6

F13

Stride Step 2
PE 7

PE 1

PE 4

Stride Step 3

of13 of23 of33

I33 I34 I35

F31 F32 F33

I13 I14 I15

F11 F12

I23 I24 I25

F21 F22 F23

I43 I44 I45

F31 F32 F33

PE 8

I23 I24 I25

F11 F12 F13

PE 2

I33 I34 I35

F21 F22 F23

PE 5

I53 I54 I55

F31 F32 F33

PE 9

I33 I34 I35

F11 F12 F13

PE 3

I43 I44 I45

F21 F22 F23

PE 6

F13

PE 7

PE 4

PE 1

 After Stride
Step 1

After Stride
Step 3

Outputs:

of11

of21

of31

of13

of23

of33

of11

of21

of31

of12

of22

of32

of11

of21

of31

After Stride
Step 2

of12

of22

of32

I41 I42 I43

F31 F32 F33

I21 I22 I23

F11 F12 F13

I31 I32 I33

F21 F22 F23

PE 8

PE 2

PE 5

3x3 kernel
5x5 ifmap

Figure 2.4: A 3×3 kernel (kh = kw = 3) is convolved (with stride=1) over a 5×5 ifmap to
produce 3×3 ofmap (Nofmp rw = Nofmp cl = 3). The size of unit PE block, Ps = 3. Total 9
PE blocks are required for this convolution.

tper step = Tclk ∗ Ncyc per stp ∗ Nofmp cl ∗ Nbat (2.3)

Ncyc per stp refers to the total clock cycles required in the accelerator, for one image of

the batch, to perform, (i) dot products between the kernel and ifmap elements, (ii) partial

sum accumulation of the dot products, and (iii) partial sum of ofmap of previous input

channel with current channel. This term depends on the circuit-level implementation of

accelerator hardware. The term Nofmap cl appears in Equation (2.3) because the kernel

needs to be shifted (i.e., according to the stride parameter of convolution) this many times

to generate the partial ofmap for each input channel. Nbat appears in the equation since

each image from the mini-batch will be serially processed [7]. In between each input channel

49

operations, the partial sum of ofmaps of the input channels will be stored in the scratchpad

to be accumulated to the next input channel’s partial ofmaps to finally create the full ofmap

output for that particular output channel and filter. The total time required to generate

each output channel/ofmap, tper out ch, is given by,

tper out ch = Nsteps per out ch ∗ tper step (2.4)

If there are a total of Nout chn output channels, then the total time required to generate

the full ofmap (i.e., for all output channels) is, T1 = tper out ch ∗ Nout chn. Using Equations

(2.2)-(2.4), the T1 term can be expressed with the following equation. All parameters in

Equation (2.5) are for Conv. layer n− 1.

T1 = ⌈
Nin ch ∗ kh ∗Nofmp rw ∗ ⌈kwPs

⌉
WA ∗HA

⌉ ∗ Tclk ∗Ncyc per stp ∗Nofmp cl ∗Nbat ∗Nout chn (2.5)

The ofmap of layer n − 1 will act as ifmap to next layer n after passing through the

ReLU and MaxPool layers. The ifmapn should be retained in the memory until layer n has

finished reading it to generate its output ofmapn. A closer look into the situation will reveal

that the input data read time for layer n is related to the ofmapn generation time. This

implies that the ifmapn data need to be in the memory for a maximum duration of time that

is equal to the time required for complete ofmapn generation. Considering the above facts,

we first calculate ofmapn generation time using the similar methods of Equations (2.2)-(2.5)

and then assign it as T2. All parameters in Equation (2.6) are for Conv. layer n.

T2 = ⌈
Nin ch ∗ kh ∗Nofmp rw ∗ ⌈kwPs

⌉
WA ∗HA

⌉ ∗ Tclk ∗Ncyc per stp ∗Nofmp cl ∗Nbat ∗Nout chn (2.6)

50

ReLU and MaxPool layers take relatively much shorter time and also do not involve

complex computations as Conv. layers do. Therefore, we can directly estimate Tpool relu from

hardware implementation of ReLU and MaxPool layers. Combining T1, T2, and Tpool relu,

we can estimate the required data retention time, Tret, in memory between two consecutive

Conv. layers in inference phase.

Tret conv−conv = T1 + Tpool relu + T2 (2.7)

MACw11 w12

w21

w41

w31

w22

w32

w42

w13

w23

w33

w43

w14

w24

w34

w44

MAC

MAC

MACMACMACMACMAC

MAC

A
ct

iv
at

io
n

D
at

a[
x]

x11
x21
x31
x41

x12
x22
x32
x42

x23
x33

x13 x14

x43 x44

x34

x24

w11
w21
w31
w41

w12
w22
w32
w42

w23
w33

w13 w14

w43 w44

w34

w24
*y=

= Partial sum movement
= Activation Data movement

x11

x12

x13

x14

(a)

*

a b
c d

e f
g h

* = ae+bg af+bh
ce+dg cf+dh

w11
w21

w31w41

w12
w22

w32w42

w23

w33

w13 w14

w43 w44
w34

w24

x11
x21

x31
x41

x12
x22

x32
x42

x23
x33

x13 x14

x43 x44

x34

x24

(b)

Figure 2.5: (a) Dataflow inside systolic array, (b) Larger matrices can be divided into smaller
sub-matrices to fit in the systolic array. An example of dividing two 4×4 matrix into four
2×2 matrices to fit into 2×2 systolic array.

Retention time for FC-FC layers

To perform the computations associated with FC layers, the Reconfigurable Core trans-

forms into the Systolic array. This is achieved by disabling the Mode signal of the Muxes

present in the PE blocks. In this section, we formulate an expression to estimate the time

required to compute the output of an FC layer. The systolic array shown in Fig. 2.3 (b) has

HA×WSA MAC modules. Because of the reconfigurable feature of the core, WSA = Ps ∗WA.

The weights are loaded into the array according to the capacity of the systolic array implying

51

that the number of weights can be loaded into the array in one step is equal to the number of

MACs present in the array, Nwt per step = HA ∗WSA. If the total number of weights is greater

than the number of weights the array can accommodate in one step, i.e., Ntot wt > Nwt per step,

using the concept of divide & conquer in matrix multiplication (Fig. 2.5 (b)) we find out how

many steps (i.e., number of times we need to load new weights to the accelerator array) are

required to complete the computation with all elements of the weight matrix. The number of

steps required to complete the computation with all weights is, ⌈mfc/HA⌉∗⌈nfc/WSA⌉. (For

symbol meanings see Table 1). In every step, the array is loaded with Nwt per step weights,

inputs are streamed from left to right, and the partial sums move downward to be collected

in accumulators [155]. The clock cycles required to complete each step are Ncyc per stp that

depends on the circuit-level implementation of systolic array hardware and the dimension

of systolic array core. Combining the above terms, and considering there are Nbat images in

the mini-batch, time required to generate the output of FC layer (n− 1), T1, is expressed in

Equation (2.8), where all parameters are for FC layer (n− 1).

T1 = ⌈
mfc

HA

⌉ ∗ ⌈ nfc

WSA

⌉ ∗ Tclk ∗Ncyc per stp ∗Nbat (2.8)

FC layer n will consider the output of previous FC layer (n−1) as its input. The output

of FCn-1 should be stored in the memory until FCn has completed reading it for generating

its output. With this reasoning, we calculate the output generation time for FCn following

the above method and assign it as T2. All parameters of Equation (2.9) are for FC layer n.

T2 = ⌈
mfc

HA

⌉ ∗ ⌈ nfc

WSA

⌉ ∗ Tclk ∗Ncyc per stp ∗Nbat (2.9)

52

Two consecutive FC layers do not have MaxPooling layer in between. Therefore, we

can find the data retention time, Tret fc−fc, for an FC layer followed by another FC as,

Tret fc−fc = T1 + T2 (2.10)

2.3.3 Retention time of Convolution layer followed by FC layer

The retention time between a Convolution layer followed by an FC layer is also expressed

as,

Tret conv−fc = T1 + Tpool relu + T2 (2.11)

Here, T1 is the time required to generate the Conv. layer ofmap and T2 is the time required

to generate the FC layer output.

Using the above expressions of weight, ifmap, and ofmap occupancy times in global

buffer memory, for a particular accelerator hardware architecture and the operating clock

frequency, we can estimate the maximum retention time required for STT-MRAM based

global buffers. The MRAM Write and Read times will be added with the above retention

time expressions. As the MRAM Read/Write times are orders of magnitude lower (i.e., less

than 10ns) compared to the retention times T1 and T2 which are in the ms or s range as

explained in Section IV, we did not explicitly add the MRAM Read/Write time with the

above retention time (Tret) expressions.

2.4 Optimizing STT-MRAM for AI Accelerators

A bit cell of STT-MRAM consists of a Magnetic Tunnel Junction (MTJ) for storing

the bit and an access transistor to read/write the bit. The MTJ contains two ferromagnetic

layers, one with fixed magnetic orientation, and another free layer whose orientation can be

switched externally by an applied current. The orientation of the free layer relative to the

53

reference layer represents the state of the stored bit; parallel orientation refers to logic 0,

while anti-parallel orientation refers to logic 1. Fig. 2.6 depicts the cell schematic, read, and

write operations.

Access Transistor

S
L

 (
re

ad
(0

,1
),

w

ri
te

(1
))

 =
 G

N
D

 WL = VDD

B
L

 (
re

ad
(0

,1
),

w

ri
te

(1
))

 =
 V

D
D

Iread(0,1), Iwrite (1)

= Reference Layer = Free Layer= Insulating oxide layer WL= Word line
BL= Bit Line
SL= Source Line

Access Transistor

S
L

(w
ri

te
(0

))
 =

 V
D

D

WL = VDD

B
L

(w
ri

te
(0

))
 =

 G
N

D

Iwrite (0)

(a) (b)

Figure 2.6: Bit cell of STT-MRAM. (a) shows reading from it and writing 1, (b) shows
writing 0.

2.4.1 Critical Design and Performance Parameters of MTJ

Thermal Stability Factor and Critical Current

The energy barrier Eb, which the free layer magnetization must overcome to switch its

stable state is defined as the thermal stability factor (∆), and is expressed as [64, 65]:

∆ =
Eb

kBT
=

HKMSV

2kBT
(2.12)

Where, Eb = Energy Barrier of free layer, kB = Boltzmann Constant, T = Temperature,

HK = Anisotropy field, MS = Saturation Demagnetization, V = Volume of MTJ.

Critical current, Ic, is defined as the minimum current required to flip the state of the

free layer [64, 65, 66]. The critical switching current is modeled as[64, 65]:

Ic = (
4ekBT

h
) ∗ α

η
∗∆ ∗ (1 + 4πMeff

2HK

) (2.13)

54

Where, e = electron charge, kB = Boltzmann Constant, T = Temperature, h = Plank’s

Constant, α = LLGE damping constant, η = STT-MRAM efficiency parameter, 4πMeff =

Effective demagnetization field, and HK = Anisotropy field.

Retention Time & Retention Failure

Once data is written, MTJ should retain its state, even if the power source is removed,

until any external force is applied to flip the state. However, due to thermal noise, the logic

state might get flipped unintentionally. The maximum time MTJ can retain its non-volatility

is known as data retention time. The retention failure probability for a given time period

tret is [64, 65]:

PRF = 1− exp

[
− tret
τ ∗ exp(∆)

]
(2.14)

Where, tret= retention time, τ= technology constant.

Read Disturbance (RD)

To read a bit from STT-MRAM, read current Ir, much less than the critical current Ic,

is flown from bit line through the access transistor and MTJ. Fig. 2.6 shows that writing

1 and reading (both 0 & 1) share the same current path. This can sometimes cause the

unintentional switching of the bit-cell content resulting in Read Disturbance (RD). For read

current Ir and read latency tr, the probability of RD can be modeled as[64, 65]:

PRD = 1− exp

[
− tr

τ ∗ exp(∆(1− Ir
Ic
))

]
(2.15)

Write Error Rate (WER)

Writing a bit cell requires a write current Iw, larger than Ic, to be flown between BL

to SL as shown in Fig. 2.6. Because of the stochastic nature of the write operation, the

55

switching time of MTJ varies from access to access [64, 65, 66]. If the write current is

terminated before the free layer has successfully changed its state, the write operation can

be erroneous. For write pulse width tw, the Write Error Rate (WER) is [64, 65]:

WERbit = 1− exp

[
−π2∆(Iw

Ic
− 1)

4[Iw
Ic
∗ exp{ tw

τ
(Iw
Ic
− 1)} − 1]

]
(2.16)

2.4.2 Customizing STT-MRAM For AI Accelerators

Scaling Thermal Stability Factor

To achieve typical retention period of 10 years, the thermal stability factor, ∆ ≥ 60 is

required [59, 62, 63, 64, 65, 66]. However, such a long retention time may be unnecessary

depending on the application. For example, if MRAM is used as the global buffer memory in

AI accelerators, then the retention time can be significantly scaled depending on the weight

and input/output feature-map data occupancy time (e.g., ms to s range) in that memory.

If STT-MRAM is used as eFlash replacement for pre-trained weight storage for AI inference

tasks, then 3 to 5 years retention might be enough instead of 10 years. From Equation

(2.12), it is seen that by adjusting the volume (i.e., area and/or thickness) of the MTJ the

thermal stability factor (∆) can be scaled. In other words, considering the target operating

temperature range of the AI accelerator and the expected life-time of the data, scaling down

of thermal stability factor will improve area efficiency by increasing the memory bit-cell

density. Moreover, with scaled ∆ and bit-cell area, the cell would require a lower operating

current, thus saving energy.

Optimizing Read/Write Latency and Energy at Target WER and RD

Recent state-of-the-art STT-MRAMs can compete or outperform SRAMs in all aspects

except write energy and write latency [69, 62, 61]. However, for AI accelerator applications,

56

by scaling ∆ and the retention time of STT-MRAM we can circumvent the write energy

and latency limitations. Equation (2.16) implies that write latency, tpw ∝ ln(∆) at con-

stant write error rate. We can exploit this relationship to reduce the write latency with

scaling down of ∆. From Equation (2.14) we infer that retention time tret is exponentially

proportional to ∆. Thus, depending on the desired retention period of STT-MRAM in AI

accelerator, we can optimally scale down ∆, and also minimize write latency at that target

retention time. However, Equation (2.16) also implies an inverse relationship between write

latency and write error rate, which hinders us from aggressively scaling down write latency

at the desired ∆. Fortunately, to increase the writing speed at the scaled ∆, we can keep Iw

higher (e.g. close to the prescaled value), and this can assist in designing a STT-MRAM with

high write speed [66]. Recently, high-speed writing has been experimentally demonstrated

in [78] by optimizing the free-layer materials. We can identify the optimum ∆ and Iw that

minimizes write latency and write energy while still satisfying the WER and retention time

requirements for the AI accelerator. As depicted in Equation (2.13), with scaling of ∆, the

critical current Ic decreases linearly, and hence read current Ir also decreases. At this scaled

∆ and Ir, the read latency can also be scaled by adjusting the sense amplifier reference

voltage [66, 69]. Equation (2.15) implies that at scaled ∆, the shortened read pulse duration

will also ensure that the Read Disturb rate is within the acceptable target.

2.4.3 Addressing Process and Temperature Variation

The performance of MRAM can degrade due to the process and temperature variations

[62, 69, 79]. Process-induced variations in free layer thickness in MTJ, and in access transistor

channel length/width and threshold voltage contribute to the performance variations in

MRAM. From Silicon measurement data in [69], the standard deviation (σ) of MTJ diameter

variation was reported to be 2.1% of the mean. Magnetic Anisotropy field (HK) is another

source of process variation in STT-MRAM.

57

PT_GuardBanded

(Nominal Process
and Temperature)Min. 

Process
Variation

Max.
TempHot

Process
Variation

PT_MAXPT_MIN ≥ (Target scaled)

TempCold

n n
µ-n µ+nµ

Figure 2.7: Impact of process and temperature variation on thermal stability factor (∆).

The bit-cells are placed compactly on the layout, as a result, the bit-cell to bit-cell

variations within the same die/chip are minimal, and the process variation is dominated

by the chip-to-chip variations. ∆ increases with an increase in MTJ diameter and HK due

to process variation, and a decrease in temperature from the nominal value (Fig. 2.7 and

Equation 2.12). An increase in ∆ increases critical current (Ic) which eventually increases

the write current (Iw) (Equation 2.13 and 2.16). Given the smaller write pulse, write failure

occurs when supplied Iw is less than the required Iw. Worst-case occurs when both, (i) the

supplied Iw decreases due to the access transistor being in the slow process corner, and (ii) the

required Iw increases due to increase in ∆ resulting from Process and runtime Temperature

(PT) variations. On the other hand, decrease in ∆ beyond a minimum due to PT variation

will result in retention failure (Equation 2.14).

Iread_high-resistance Iread_low-resistance
Iread_reference

Iwrite

Tcold
∆PT_MAX∆Scaled

Thot

Iwrite_low Iwrite_nom Iwrite_high

Tnom
∆PT_GuardBanded

Current

Figure 2.8: Distribution of read/write currents with PT variation. Worst-case occurs when
worst process corners experience Thot or Tcold.

To protect the desired ∆scaled against the worst-case PT variation, appropriate Guard-

Band needs to be added. The ∆PT GuardBanded is chosen to cover both the worst-case 4σ

range (i.e., 99.993% of the samples) of process variation and high temperature operating

58

scenario as shown in Equation 2.17.

∆scaled ≤ (∆PT GuardBanded − 4σ) ∗ (Tnom/Thot) (2.17)

∆PT MAX = (∆PT GuardBanded + 4σ) ∗ (Tnom/Tcold) (2.18)

The chip samples located on the right side of the process variation distribution (i.e.,

µ+n∗σ, where n ≥ 1) of ∆PT GuardBanded, will experience larger ∆ as shown in Fig. 2.7 and

2.8. Additionally, at cold temperatures, the ∆ will further increase to ∆PT MAX as shown in

Equation (2.18). Although the higher ∆PT MAX > ∆scaled will be benign for retention time,

the required write current will increase in this scenario to confine the write time and Write

Error Rate (WER) of these samples within the nominal bound. Designing the write driver for

this worst-case scenario will dissipate unnecessary power for all other non-worst-case samples.

To address this, we propose a dynamically adjustable write driver depicted in Fig. 2.9. The

proposed write-driver circuit provides additional write current in extreme PT conditions.

The Process and Temperature Monitor (PTM) block continuously monitors the process

and temperature changes. In addition to adjusting the write current according to process

variation profile of the MRAM chip/die, the PTM also senses the runtime temperature and

adjusts the current dynamically by turning on/off the additional PMOS transistors (Fig.

2.9). For example, at the nominal process and temperature, the extra transistors can be

off, however, at PT-induced rise in ∆ the transistors can be individually activated to ensure

successful write.

In summary, we design the MTJ with higher ∆PT GuardBanded than the desired ∆scaled to

accommodate potential degradation in thermal stability from worst-case 4σ process variation

59

and runtime high temperature, and proposed a write-driver with controllable current drive

to address the high write-current demand at cold temperature and slow process corner.

W W/4 W/4 W/4 W/4

VDD
Digital Controller

Process (P) and
Temperature (T) Monitor

Additional current sources to
compensate PT variations

Regular
current
driver

MTJ Bitcell
Array

Figure 2.9: Modified Write Driver

2.4.4 MRAM Write Energy Optimization in Accelerator with ScratchPad

Addressing the fact that the write energy of STT-MRAM is higher than the read energy,

we propose an innovative scratchpad-assisted MRAM global buffer architecture to minimize

the write frequency in STT-MRAM, and thus further optimize the energy. Reduced write-

frequency is achieved by using a small global SRAM scratchpad, typically in the KB range

(details in Section 2.5), in addition to a large (i.e., MB range) global STT-MRAM buffer.

When the accelerator PE array generates partial ofmaps (i.e., ofmap corresponding to each

input channel), they need to be stored somewhere in memory to be added to the next partial

ofmap to produce the complete ofmap of an output channel. The reason behind these

partial-ofmap writes is that the accelerator might not produce the complete ofmap in one

step. Between the subsequent steps, the partial ofmap result from the previous step needs

to be written in the memory to be subsequently read and accumulated with the partial

ofmap result from the following step. Adding this small SRAM scratchpad memory (for

intermediate ofmap writes) with MRAM global buffer further improves the energy efficiency

60

of MRAM-buffer-based deep learning accelerators. In summary, our proposed scratchpad-

assisted MRAM memory architecture provides energy efficiency by, (i) minimizing the STT-

MRAMwrite frequency, and (ii) additionally, at a smaller size, SRAM is more energy-efficient

than STT-MRAM [69].

2.5 Results and Analysis

2.5.1 Design Space Exploration for Selecting Memory Capacity

Nineteen widely used state-of-the-art deep learning models were analyzed to design

and validate our STT-MRAM based AI accelerator with the reconfigurable core. Fig. 2.10

(a) shows the model sizes both in 8-bit int8 (left Y-axis) and 16-bit BrainFloat16 (BF16)

[82, 83] (right Y-axis) datatypes. For inference-only accelerator int8 datatype and hardware

suffice, however, if full-scale training or transfer-learning is desired then BF16 hardware

and data-type are necessary [82, 83]. The models’ sizes imply that around 280MB and

140MB of STT-MRAM is required as non-volatile (NVM) weight storage memory to store

the pre-trained models using BF16 and int8 datatypes, respectively. The STT-MARM non-

volatile weight storage memory can replace the currently used eFlash memory as an efficient

alternative. Fig. 2.10 (b) and (c) represent the input/output featuremap and weight size

ranges of all models for convolution layers both in int8 (left Y-axis) and BF16 (right Y-axis)

formats, and these data helps us to estimate the maximum required global buffer (GLB)

memory size to avoid DRAM accesses during each convolution layer operation. In the cases

of fully-connected layer operations, only the featuremaps, usually in KB range for most of

the models, are stored in the GLB, and the weights, around 200MB in size for the largest

model in BF16, are directly assigned from DRAM (or weight-storage NVM) to the systolic

array for matrix multiplications. Hence, we ignored the fully connected layers’ weight and

activation sizes from design space analysis for selecting on-chip GLB memory capacity.

61

0

1

2

3

4

(a)

(b)

(c)

C
on

vL
ay

er
 W

ei
gh

t
S

iz
e

R
an

ge
 (

M
B

)
C

on
vL

ay
er

 f
m

ap

S
iz

e
R

an
ge

 (
M

B
)

M
od

el
 S

iz
e

(M
B

)

140
100

50

0

70
50

25

0 S
iz

e
(K

B
)

[i
nt

8
da

ta
 ty

pe
]

S
iz

e
(K

B
)

[b
f1

6
da

ta
 ty

pe
]

Alex
Net

Squ
ee

ze
ne

t

Goo
gle

ne
t

In
ce

pti
on

v3

Den
se

ne
t20

1

M
ob

ile
ne

tv2

Res
ne

t18

Res
ne

t50

Res
ne

t10
1

Xce
pti

on

In
ce

pti
on

res
ne

tv2

Shu
ffl

en
et

Nas
ne

tm
ob

ile

Nas
ne

tla
rg

e

Dark
ne

t19

Dark
ne

t53

Effi
cie

ntn
etb

0

Vgg
16

Vgg
19

Alex
Net

Squ
ee

ze
ne

t

Goo
gle

ne
t

In
ce

pti
on

v3

Den
se

ne
t20

1

M
ob

ile
ne

tv2

Res
ne

t18

Res
ne

t50

Res
ne

t10
1

Xce
pti

on

In
ce

pti
on

res
ne

tv2

Shu
ffl

en
et

Nas
ne

tm
ob

ile

Nas
ne

tla
rg

e

Dark
ne

t19

Dark
ne

t53

Effi
cie

ntn
etb

0

Vgg
16

Vgg
19

M
od

el
 S

iz
e

(M
B

)

[i
nt

8
da

ta
 ty

pe
]

[i
nt

8
da

ta
 ty

pe
]

150

100

50

300

200

100

4

2

0

5

6.5

0

2

4

6

8

 2

 1

 0

 2.5

3.25

[i
nt

8
da

ta
 ty

pe
]

[b
f1

6
da

ta
 ty

pe
]

[b
f1

6
da

ta
 ty

pe
]

[b
f1

6
da

ta
 ty

pe
]

0 0

Figure 2.10: (a) Complete sizes of widely used AI models. (b) Activation map (ofmap/ifmap)
sizes, (c) Weight sizes for Conv layers.

Si
ze
 (
M
B
)
 [
in
t8
 d
at
a
ty
p
e]

Si
ze
 (
M
B
)
 [
b
f1
6
 d
at
a
ty
p
e]

Bfloat16 data type

Buffer Size = 12MB
Int8 data type

Buffer Size = 12MB

80

60

40

20

0

10

0

2

4

6

8

0

0.5

1.5

2

Ex
tr
a
D
R
A
M
 A
cc
es
s

La
te
n
cy
 (
m
ill
is
ec
o
n
d
s)

1 2 4 8 1 2 4 8
Batch Sizes Batch Sizes

1

2

1.5

1

0.5

0

8

6

4

2

0
2 4 8 10 12 12 10 84 2

Global Buffer Size (MB) Global Buffer Size (MB)

Ex
tr
a
D
R
A
M
 A
cc
es
s

En
er
gy
 (
A
.U
)

Int8 data type

Batch Size = 4

Bf16 data type

Batch Size = 4

(c) (d)

(a) (b)

20

40

60

80

Si
ze
 (
M
B
)
 [
B
f1
6
 d
at
a]

10

20

30

40

Si
ze
 (
M
B
)
 [
in
t8
 d
at
a]

8 4 2 1

Figure 2.11: Required capacity of global buffer with varying batch sizes to avoid DRAM
access during inference.

To fit a Conv. Layer data completely into the GLB, it needs the capacity to store the

(i) input fmap (ifmap), (ii) filter weights, and (iii) output fmap (ofmap) of current layer.

Fig. 2.11 shows the required GLB size for 19 widely-used deep learning models in int8 (left

Y-axis) and BF16 (right Y-axis) for different batch sizes. For smaller batch-size (i.e., ≤ 2),

a maximum of 12MB of GLB would be enough for int8 datatype. With 12MB on-chip GLB

memory, most of the models, except a few (e.g., Darknet53, VGG19, Nasnetlarge, Xception,

etc.), can support larger batch-sizes such as 8. For BF16, 12MB would suffice for batch size

1 for all models. If pruned models [9] are used, batch of more images can be fit into the

62

GLB. For high-performance accelerators that operate with larger batches of data, the GLB

size can be further increased.

When a Conv. layer data - ifmap, weight, and ofmap - do not fit into GLB at one

attempt, extra DRAM accesses are needed, incurring extra energy and latency. Fig. 2.12

(a) shows, if a GLB of 12MB is used, even larger batch sizes, such as 8, the extra DRAM

access-related latency is zero for most of the models (int8 case), and around 2ms for few

models. For BF16 datatype, the extra DRAM access latency increases slightly but is within

10ms. Fig. 2.12 (c) depicts that if the GLB size is 12MB, for most of the models in int8

datatype extra DRAM access-associated energy reduces to zero. For BF16 datatype, most

models would need a few extra DRAM accesses (Fig. 2.12 (d)). The DRAM access energy

and latency were calculated for dual-channel DDR4-2933 DRAM with 64bit data bus.

Si
ze
 (
M
B
)
 [
in
t8
 d
at
a
ty
p
e]

Si
ze
 (
M
B
)
 [
b
f1
6
 d
at
a
ty
p
e]

Bfloat16 data type

Buffer Size = 12MB
Int8 data type

Buffer Size = 12MB

80

60

40

20

0

10

0

2

4

6

8

0

0.5

1.5

2

Ex
tr
a
D
R
A
M
 A
cc
es
s

La
te
n
cy
 (
m
ill
is
ec
o
n
d
s)

1 2 4 8 1 2 4 8
Batch Sizes Batch Sizes

1

2

1.5

1

0.5

0

8

6

4

2

0
2 4 8 10 12 12 10 84 2

Global Buffer Size (MB) Global Buffer Size (MB)

Ex
tr
a
D
R
A
M
 A
cc
es
s

En
er
gy
 (
A
.U
)

Int8 data type

Batch Size = 4

Bf16 data type

Batch Size = 4

(c) (d)

(a) (b)

20

40

60

80

Si
ze
 (
M
B
)
 [
B
f1
6
 d
at
a]

10

20

30

40

Si
ze
 (
M
B
)
 [
in
t8
 d
at
a]

8 4 2 1

Figure 2.12: For Conv. layers, total extra DRAM access latency for varying batch sizes: (a)
int8, (b) BF16 data types; total extra DRAM access energy for varying GLB size: (a) int8,
(b) BF16 data types.

63

2.5.2 Memory Retention Time Estimation for AI Models and Accelerator Ar-

chitecture

The data retention time in GLB for the models (in BF16 datatype) are calculated

using Equations (2.5) - (2.11) (Section 2.3) and the post-layout timing results from the

implementation of our proposed reconfigurable accelerator core at 14nm technology (Table

2.2). The results for 42×42 MAC array and batch size 16, presented in Fig. 2.13, show

that the maximum data retention time in GLB for all models is less than 1.5s where most

models have retention time less than 0.5s. The retention time goes even smaller (in ms

range) for int8 datatype as the clock cycle reduces significantly (usually 1-2 clock cycles) in

int8 version hardware. Fig. 2.14 (a) shows the maximum retention time for all models (in

BF16 datatype) for fixed batch size 16 and varying MAC array sizes, whereas Fig. 2.14 (b)

shows the maximum retention time needed for a fixed MAC array size of 42×42 for varying

batch sizes. From the figures, it is evident that further reduction in retention time can be

achieved by using the proper combination of batch and MAC array sizes.

--

AlexN
et

Sq
ueezenet

Google
net

IncepƟ
onv3

Densenet201

Mobile
netv2

Resnet18

Resnet50

Resnet101

XcepƟ
on

IncepƟ
onresnetv2

Sh
uffl

enet

Nasn
etm

obile

Nasn
etla

rge

Dark
net19

Dark
net5

3

Effi
cie

ntnetb0
Vgg1

6
Vgg19

Re
te

nƟ
on

 T
im

e
Ra

ng
e

 (s
ec

on
ds

)

Figure 2.13: Global buffer retention time range for 42x42 MAC array (Bfloat16 hardware,
CLK details in Table 2.2) and batch size 16.

2.5.3 Customizing STT-MRAM for AI Accelerator

Using Equation (2.14), we analyzed the impact of thermal stability factor (∆) on reten-

tion time within certain Bit Error Rates (BER). To identify the target BER of STT-RAM

64

Al
ex
Ne
t

Sq
ue
ez
en
et

Go
og
le
ne
t

In
ce
pƟ
on
v3

De
ns
en
et
20
1

M
ob
ile
ne
tv
2

Re
sn
et
18

Re
sn
et
50

Re
sn
et
10
1

Xc
ep
Ɵo
n

In
ce
pƟ
on
re
sn
et
v2

Sh
uffl
en
et

Na
sn
et
m
ob
ile

Na
sn
et
lar
ge

Da
rk
ne
t1
9

Da
rk
ne
t5
3

Effi
cie
nt
ne
tb
0

Vg
g1
6

Vg
g1
9

R
et
en

Ɵ
o
n
 T
im

e
R
an
ge

 (
se
co
n
d
s)

(a)

(b)

Fixed batch size =16

Fixed MAC array size=42x42

Figure 2.14: The required retention time of MRAM global buffer for Bfloat16 hardware
(CLK cycles and frequency given in Table II), (a) varying MAC array capacity. (b) varying
batch sizes.

Target RD
Error Rate

Target RF
Error Rate

Target RF
Error Rate

Target RD
Error Rate Target Write

Error Rate
W

rit
e

Er
ro

r R
at

e

 (a) (b) (c) (d) (e) (f)

10-6

Re
ad

 D
ist

ur
b

Ra
te

Re
te

nt
io

n
Fa

ilu
re

 R
at

e

4

3

2

1

0 0

1

2

3

3 5 7 10
Time (Years) Time (Seconds)

0

1

2

3

0

1

2

3

0.2 0.6
Read Pulse Duration (ns) Read Pulse Duration (ns) Write Pulse Duration (ns) Write Pulse Duration (ns)
 0.2 0.4 0.6 2.5 3 3.5 4 4.5 5 1 1.2 1.4 1.6

0

1

2 2

3

1

0

 x 10-8 x 10-8 x 10-8 x 10-8 x 10-8 x 10-9

 1 2 3 4 0.4

Target Write
Error Rate

3

Figure 2.15: (a) Thermal stability (∆) scaling for 3 years retention time (for pre-trained
weight storage NVM application). (b) ∆ and retention time scaling for accelerator’s global
buffer memory design. (c), (d) With scaled ∆, read pulse width scaling while ensuring RD
BER is within limit. (e), (f) Write latency scaling with ∆, within target write error rate.
Note: (c), (e) uses base-case (10yrs ret. time) from [69], and (d), (f) from [62]. Target BER
is chosen to ensure no accuracy impact on AI tasks [76].

for applications in pre-trained weight storage and global buffer (GLB) memory, we first an-

alyzed the size of modern AI models. From Fig. 2.10 (a), it can be seen that a few hundred

MBs would be enough to store the pre-trained weights, within this memory capacity we

choose BER in the order of 10−9 (i.e., 1 bit-flip per 1 billion bits). Given the worst-case

cumulative BER can occur from Retention Failure (RF), Read Disturb (RD), and Write

Error (WE), the worst-case bit-flips for VGG16 at this BER is about 12 bits. This BER is

65

(a) (b)

(c) (d)

(a) (b)

4 8 10 12 16 32 64
Memory Size (MB)

100

101

102 STT-MRAM
SRAM

Scaled =17

4 8 10 12 16 32 64
Memory Size (MB)

1

5

15
25

N
or

m
al

iz
ed

 E
ne

rg
y STT-MRAM

SRAM
Scaled =26.5

(c) (d)

Figure 2.16: Energy and area comparison of SRAM and STT-MRAM for various sizes. ∆
scaled: (a),(b) for global buffer; (c), (d) for eMRAM banks to store lower half (i.e., LSB
groups) of weight/fmap bits.

negligible and cannot make any impact on the AI task’s accuracy [76]. Fig. 2.15 (a) shows

that with ∆ = 39 we can ensure the loaded pre-trained weight will successfully remain in the

accelerator for about 3 years at this target BER, which is enough given that AI models are

replaced frequently with better ones. To address Process variation and runtime Temperature

fluctuation, we chose σ = 2.1% of mean, Thot = 120◦C (393K) and Tcold = −20◦C (253K) in

the Equations 2.17 and 2.18 as discussed in Section 2.4.3 and adjust ∆ = 39 to ∆PT GB = 55

after guard-banding.

For GLB memory, we can lower the ∆ and retention time much lower according to the

average occupancy time of weight and input/output fmaps in the accelerator’s GLB memory.

Also, since this memory size is within few tens of MB (e.g., 12MB), we can increase the BER

to 10−8, which will cause less than 3 bit-flips in the worst-case (i.e., considering BER from

Retention Failure (RF), Read Disturb (RD), and Write Error (WE)) at this memory size.

The accuracy impact of deep learning models at this BER and memory size is negligible [76].

In Fig. 2.15 (b), at scaled ∆ = 19.5 we can achieve 3 seconds of retention time (which is

much higher than the minimum required as shown in Fig. 2.14) at the target BER of 10−8.

66

Next, we analyze the impact of scaling ∆ on the read pulse width. If the read pulse

width is large then the chances of RD increase. Moreover, with scaling ∆ = 19.5 (after

Guardbanding ∆PT GB = 27.5), the required read current also decreases. As a result, a

significant reduction in read energy is also possible. In our study of ∆ scaling impact of

read/write latency, as the base-case STT-MARM we used the chip-implemented (for 10

years retention) data of [62, 69]. Fig. 2.15 (c), (e) uses base-case (i.e., ∆ = 60) from [69],

and (d), (f) from [62]. With the scaling of retention time, the write latency only scales as a

factor of ln(∆), to further decrease the write latency we can use the write current as another

knob as discussed in Section 2.4. The write latency scaling are shown in Fig. 2.15 (e), (f).

We used Destiny memory modeling tool [81] to compare STT-MRAM area and energy

with SRAM while ∆ is scaled down. Although theoretically, STT-MRAM has a minimum

area of 6F 2, however, silicon results show that MRAM area scaled by 70% compared to

SRAM at 14nm node [69]. We modified the Destiny tool to incorporate this silicon obser-

vation. The results for scaled ∆ at 14nm technology node are shown in Fig. 2.16. We see

a significant advantage from STT-MRAM beyond 4MB capacity. Compared to SRAM, the

area scales by more than ten times at iso-memory-capacity (Fig. 2.16 (b),(d)). Similarly, for

STT-MRAM the relative energy efficiency improves as the memory capacity increases (Fig.

2.16 (a), (c)). These results imply STT-MRAM can offer significant performance gains at

future high-performance AI accelerators that will use large on-chip buffer memory.

2.5.4 Energy Optimization with Variable Retention MRAM Banks

We further improved the efficiency in STT-AI Ultra accelerator with two separate

MRAM banks of, ∆ = 19.5 (after PT guard-band ∆PT GB = 27.5), and ∆ = 12.5 (∆PT GB =

17.5). The first half of the weight/fmap bits are considered significant (MSB group) and

stored in ∆PT GB = 27.5 bank, and the rest of the LSB groups in ∆PT GB = 17.5 bank. For

67

the LSB group at ∆PT GB = 17.5 we relaxed the BER to 10−5 as shown in Fig. 2.17. The

relative gains in energy and area at ∆PT GB = 17.5 are shown in Fig. 2.16 (c), (d).

 (a) (b) (c)

 x 10-5
 2

1.5

1

0.5

Re
te

nt
io

n
Fa

ilu
re

 R
at

e

Time (Seconds)
 0 1 2

Re
ad

 D
ist

ur
b

Ra
te

 2

1.5

1

0.5

W
rit

e
Er

ro
r R

at
e

0.5

1.5

 2

1

 x 10-5 x 10-5

 1.5 2 2.5 0.2 0.4 0.6
Read Pulse Duration (ns) Write Pulse Duration (ns)

Target
Error Rate

Target
Error Rate

Target
Error Rate

Figure 2.17: ∆ scaling with relaxed BER for LSB bit groups. (a) Retention, (b) Read, and
(b) Write latency within target BER. (Base case, ∆ = 60, data modeled after [62]).

2.5.5 Optimizing Energy with Scratchpad for Partial Ofmaps

Our simulation results show that for STT-MRAM the write energy is about 70% more

than the read energy at scaled ∆. As described in Section 2.4.4, using a small SRAM scratch-

pad for writing the intermediate partial ofmaps instead of the MRAM can significantly reduce

the write frequency and save energy. Fig. 2.18 shows the partial ofmap size distribution. For

BF16 data type, we see that 52KB (26KB for int8) scratchpad will fit most of the models in

one attempt. The normalized energy improvements of proposed scratchpad-assisted MRAM

system is shown in Fig. 2.19 for ResNet-50 model and 14nm technology.

2.5.6 Accelerator Implementation

We implemented our AI accelerator architecture with reconfigurable cores (i.e., in Fig.

2.3), at RTL level using BF16 hardware as BF16 can support both inference and training.

(a)

(b)

(c) C
on

vL
ay

er
 W

ei
gh

t
S

iz
e

R
an

ge
 (

M
B

)

C
on

vL
ay

er
 A

ct
iv

at
io

n
S

iz
e

R
an

ge
 (

M
B

)
M

od
el

 S
iz

e
(M

B
)

140
100

50

0

70
50

25

0 S
iz

e
(K

B
)

[i
nt

8
da

ta
 ty

pe
]

S
iz

e
(K

B
)

[b
f1

6
da

ta
 ty

pe
]

Alex
Net

Squ
ee

ze
ne

t

Goo
gle

ne
t

In
ce

pti
on

v3

Den
se

ne
t20

1

M
ob

ile
ne

tv2

Res
ne

t18

Res
ne

t50

Res
ne

t10
1

Xce
pti

on

In
ce

pti
on

res
ne

tv2

Shu
ffl

en
et

Nas
ne

tm
ob

ile

Nas
ne

tla
rg

e

Dark
ne

t19

Dark
ne

t53

Effi
cie

ntn
etb

0

Vgg
16

Vgg
19

Figure 2.18: Maximum size of partial ofmaps.

68

2 4 8 10 12

Global Buffer Size (MB)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 E
ne

rg
y

SRAM only MRAM only MRAM with Scratch-pad

Figure 2.19: Comparison of buffer memory energy dissipation for SRAM, MRAM, and
MRAM with scratch pad architectures.

Table 2.2: Reconfigurable PE core details (Bfloat16 hardware, and synthesized with 14nm
standard cell library [85])

Reconfigurable Core Mode CLK Freq Required CLK Cycles

Systolic Core (1 MAC) 1 GHz 11

Conv. Core (3 MAC) 1 GHz 17

We used Synopsys 14nm standard cell library [85] to complete synthesis, and place and route

of the design. The post-layout CLK cycle data for the PE/MAC are shown in Table 2.2.

The top-level view of physical design from ICC2 tool [85] is shown in Fig. 2.20. We used

Synopsys 14nm memory compiler to create the SRAMs for our baseline accelerator. Results

from post-layout and timing-closed accelerator design are shown in Table 2.3, where Row

7 shows the area and power for the base-line accelerator with 12MB global buffer memory.

Next, to implement MRAM based STT-AI accelerator, we estimated areas and power data

from the Destiny [81] tool at scaled ∆ and modeled those as blackbox in the physical design

part in Synopsys ICC2 [85] for 14nm node. The 52KB SRAM Scratchpad is divided into two

banks with individual CLK/power gating. Rows 4 and 8 show that the STT-AI accelerator

offers significant area and leakage energy savings. The STT-AI Ultra accelerator achieves

further improvements in power and area as shown in Row 9 in Table 2.3.

69

Table 2.3: Accelerator Design Details at 14nm

Module Details
Area

(mm2)

Dynamic

Power

(mW)

Leakage

Power

(mW)

Functional

Core

Reconfigurable core

with 42x42 MACs
4.08 954 0.91

SRAM

Block

12 MB SRAM global

memory
16.2 48.98 0.21

STT-MARM

(∆=27.5)

12 MB MRAM

global memory
1.01 17.61 0.08

STT-MRAM

(∆=17.5, ∆=27.5)

6 MB MRAM (∆=17.5)

6 MB MRAM (∆=27.5)
0.93 13.75 0.06

SRAM ScratchPad

(for MRAM)

52 KB (two 26KB blocks

with CLK/power gating)
0.069 0.2 8E-4

Baseline

Accelerator

(SRAM-based)

Functional Core and

SRAM (Row 3 above)
20.28 1003 1.13

STT-AI

Accelerator

Functional core and

STT-RAM (Row 4 above)
5.09 972 0.99

STT-AI Ultra

Accelerator

Functional Core and

STT-RAM (Row 5 above)
5.0 968 0.98

70

Page 1 of 1

 STT-MRAM

 42x42 array of PE

(a)

(b)

 Scratch Pad

 SRAM

 Scratch Pad

Figure 2.20: Top level floorplan view from ICC2. Accelerator designed with, (a) 12MB
SRAM. (b) 12MB STT-MRAM with scratchpad.

2.5.7 Accelerator Performance with ImageNet Dataset

Next, we modeled our hardware and STT-MRAM BERs in PyTorch [84] and ran

inference for pre-trained AlexNet, VGG16, and ResNet-50 models with ImageNet bench-

mark to obtain Top-1 and Top-5 accuracy results. As expected, with STT-MRAM having

∆PT GB = 27.5, there were no accuracy loss compared to the baseline SRAM version. How-

ever, for STT-AI Ultra accelerator, with BER = 10−5 in half of the bits (LSB group in lower

∆ STT-MRAM bank), we observed negligible (less than 1% normalized) accuracy loss as

shown in Fig. 2.21.

2.6 Related Work

Over the last decade, STT-MRAM technology has been extensively researched for its

high-endurance, radiation hardness, non-volatility, and high-density memory properties. The

prior works on STT-MRAM applications can be broadly categorized into two domains: (i)

71

Figure 2.21: Top-1 and Top-5 accuracy comparisons for STT-AI/Baseline and STT-AI
Ultra cases. No accuracy change for STT-AI/Baseline cases, and negligible (less than 1%
normalized) accuracy change occurs on STT-AI Ultra acclerator. Both original and pruned
(at 50% pruing rate) [9] model results are shown.

Its use as the last-level cache memory in processors; (ii) Its application in emerging Process-

in-Memory (PIM) based computing paradigm.

Several studies [90, 87, 88, 89] have demonstrated the excellence of STT-MRAM over

other NVM technologies in PIM setting due to complex and tunable resistance dynamics

achieved through its spin-transfer torque mechanism and simultaneous access to multiple

word-lines of the same array. [87] proposed an STT-MRAM based crossbar arrays where

the internal resistance states - which were used to mimic the weights of the models - of

STT-MRAM were tuned to support non-uniform quantization. This study provided en-

ergy efficiency and loss reduction, however, additional circuitry, Digital to Analog Converter

(DAC) and Analog to Digital Converter (ADC) were needed to support the PIM work-

flow. Some studies, such as, [91] used the PIM architecture, where the MAC operation

was simplified to addition/subtraction, and bit-wise operation by manipulating the models’

parameters. [89] mapped the LeNet5 model to a synaptic cross-bar array of STT-MRAM

memory cells for inference and showed improved performance in terms of area, leakage power,

energy over SRAM for 65nm to 7nm technology node. However, major challenges of PIM

over conventional Deep Learning/AI are - (i) requirements of additional hardware circuitry,

such as DAC, ADC, which results in area overhead; (2) quantization of weights to be repre-

sented with fewer bits resulting in lower precision; (3) in digital PIM, extra manipulation of

models’ algorithm is needed to replace MAC with the bit-wise operation; and (4) in most of

72

the cases, PIM is only suitable for inference-only applications. Although PIM-based analog

architectures provide fast execution, the performance, energy efficiency, and reliability of

analog PIM still lags behind the state-of-the-art DNN/AI models and their corresponding

hardware accelerators [9, 155, 70].

While some research leveraged the scalable property of thermal stability factor of STT-

MRAM to replace SRAM-based cache memory, others used the error tolerance property of

certain applications and designed STT-MRAM based energy-efficient cache with approximate

storage. In [72], the retention time of STT-RAM was scaled to implement cache memory

that can compete with SRAM-based caches, and DRAM-like refresh was used to compromise

the ultra-low retention time. In [73, 94] STT-MRAM based approximate cache was proposed

to exploit the error-resilience property of some specific applications. Unlike previous studies,

[101] proposed a hybrid STT-MRAM design for cache for different applications depending

on the run-time requirements without compromising any reliability degradation. In [59],

area-and-retention-time-scaled STT-MRAM was presented as DRAM replacement.

In [71] a hybrid of SRAM and 3D-stacked STT-MRAM based AI accelerator was pro-

posed for real-time learning where eMRAM acted as weight storage memory for infrequently

accessed and updated layers, such as all convolutional layers and first few fully connected

layers for a Transfer Learning followed by Reinforcement Learning algorithm. However,

due to the use of typical slow and write-power-hungry STT-MRAM, this study could not

completely exploit STT-MRAM to substitute SRAM and eventually used SRAM for storing

weights of the last few fully connected layers which are accessed and updated frequently in

transfer learning-based reinforcement learning setting.

In summary, prior notable research on STT-MRAM applications focused on imple-

menting last-level cache memory, designing in-memory computing architectures, and high-

capacity 3D-stacked memory as DRAM replacement for DNN hardware. Our work is the

first to present a detailed analysis on the feasibility of using STT-MRAM as high bandwidth

73

on-chip buffer memory in DNN/AI accelerator hardware that can offer much larger capacity

at lower energy and area costs compared to SRAM. Moreover, for complete DNN model

storage in edge inference devices, a non-volatility relaxed STT-MRAM design is presented

as an alternative to e-flash, which suffers from scaling limitations at advanced technology

nodes.

2.7 Conclusions

In this chapter, we demonstrated the design of highly efficient AI/Deep Learning ac-

celerators that utilize emerging STT-MRAMs. Based on detailed design space exploration,

we designed the STT-MRAM-based global buffer to minimize DRAM access latency and

energy, as well as reduce the area and power of the MRAM buffer. We presented an innova-

tive runtime-reconfigurable core optimized for both dot products and matrix multiplication

in convolution and fully-connected layers, respectively. A scratchpad-assisted STT-MRAM

global buffer design has been demonstrated that reduces the frequency of energy-dominant

write operations of the partial ofmaps during convolution. Using actual data occupancy

times in memory for AI tasks, we guided the STT-MRAM thermal stability factor scaling.

We showed that with STT-AI accelerator 75% area and 3% power savings are possible at

iso-accuracy. Furthermore, with STT-AI Ultra, 75.4%, and 3.5% savings in area and power,

respectively, over regular SRAM-based accelerators at minimal accuracy trade-off. While

successful integration of this ∆-scaled STT-MRAM as GLB memory depends on advance-

ments in the fabrication process of MRAM technology, the adoption of this technology will

transform the AI accelerator industry by enabling sustainable, energy- and area-efficient

accelerators for real-time applications.

74

Chapter 3

System and Design Technology Co-optimization of SOT-MRAM for High-Performance AI

Accelerator Memory System

3.1 Introduction

The proliferation of artificial intelligence (AI) and deep learning (DL) has precipitated

the computing hardware community to continually design innovative AI/DL accelerators

with large data processing capabilities. However, with the ever-growing trend of model size,

the bottleneck for state-of-the-art AI/DL accelerators is now memory rather than data and

compute availability, and we expect this trend to worsen in the future [9][95][155]. The lack

of efficient and high-performance data flow between the computing and memory element

(i.e., the memory wall or memory bottleneck) masks the improvement coming from the

efficient compute system [96]. One promising solution to the memory bottleneck of AI-

specific workload is to increase the on-chip memory capacity[98]. For both training and

inference, the on-chip memory capacity in the accelerator needs to be increased to ensure

that the intermediate activations, as well as the weights of the current layer, can be loaded.

Moreover, significantly more memory is required during training to store the gradients and

optimizer states. Inadequate on-chip memory capacity causes frequent DRAM accesses which

exacerbates energy costs, as well as stalls the compute cores of AI/DL accelerator until the

data is fetched. Because of this large capacity demand, an SRAM-based on-chip memory

system can be detrimental due to leakage energy and area inefficiency.

The promising features, such as high density, near-zero leakage power, immunity against

radiation-induced soft errors, and CMOS compatibility of emerging Spin-based non-volatile

(NVM) magnetic memory (i.e., MRAM) technologies, attracted researchers from academia

and industry [74]. Spin Transfer Torque (STT) MRAM, has already shifted its gear from

the R&D phase to commercialization as the NAND-based embedded flash replacement [70]

75

System Technology Co-Optimization

(STCO)

Design Technology Co-Optimization

(DTCO)

On-chip Memory

Banks (BW adjustable)

Read Line

Channel

Body

M
T

J

R
ea

d
 P

at
h

W
ri

te
 P

at
h

Read Line

Channel

Body

M
T

J

R
ea

d
 P

at
h

W
ri

te
 P

at
h

SoT bit cell

Read Line

Channel

Body

M
T

J

R
ea

d
 P

at
h

W
ri

te
 P

at
h

SoT bit cell

MB1MB1 MB2MB2

MB3MB3 MB4MB4

On-chip Memory

Banks (BW adjustable)

Read Line

Channel

Body

M
T

J

R
ea

d
 P

at
h

W
ri

te
 P

at
h

SoT bit cell

MB1 MB2

MB3 MB4

System Technology Co-Optimization

(STCO)

Design Technology Co-Optimization

(DTCO)

On-chip Memory

Banks (BW adjustable)

Read Line

Channel

Body

M
T

J

R
ea

d
 P

at
h

W
ri

te
 P

at
h

SoT bit cell

MB1 MB2

MB3 MB4

Closed Loop STCO and DTCO for Power and Performance Optimized AI/Deep Learning Accelerator Design

 MLP
Bottom
 MLP
Bottom

 MLP
Top

 MLP
Top

Concat.Concat.
Pairwise Pairwise

interaction

Pairwise

interaction

Embedding
tables

Embedding
tables

output

 MLP
Bottom

 MLP
Top

Concat.
Pairwise

interaction

Embedding
tables

output

features
numerical categorical

features

Deep Learning
Recommender System

Deep Learning
Recommender System

 MLP
Bottom

 MLP
Top

Concat.
Pairwise

interaction

Embedding
tables

output

features
numerical categorical

features

Deep Learning
Recommender System

AI/Deep Learning Model Architectures

encoderencoder

encoderencoder

encoderencoder

output

input

Transformer

Linear & softmaxLinear & softmax

decoderdecoder

decoderdecoder

decoderdecoderencoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
n
v
1

co
n
v
1

co
n
v
2

co
n
v
2

co
n
v
3

co
n
v
3

co
n
v
4

co
n
v
4

p
o
o
l

co
n
v
0

co
n
v
0

residual block1

re
si

d
u
al

b
lc

o
k
2

re
si

d
u
al

b
lc

o
k
2

re
si

d
u
al

b
lc

o
k
#
N

re
si

d
u
al

b
lc

o
k
#
N

li
n
ea

r
li

n
ea

r

o
u
tp

u
t

ResNet

im
ag

e

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

p
o
o
l

co
n
v
0

residual block1

re
si

d
u
al

b
lc

o
k
2

re
si

d
u
al

b
lc

o
k
#
N

li
n
ea

r

o
u
tp

u
t

ResNet

 MLP
Bottom

 MLP
Top

Concat.
Pairwise

interaction

Embedding
tables

output

features
numerical categorical

features

Deep Learning
Recommender System

AI/Deep Learning Model Architectures

encoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

p
o
o
l

co
n
v
0

residual block1

re
si

d
u
al

b
lc

o
k
2

re
si

d
u
al

b
lc

o
k
#
N

li
n
ea

r

o
u
tp

u
t

ResNet

 MLP
Bottom

 MLP
Top

Concat.
Pairwise

interaction

Embedding
tables

output

features
numerical categorical

features

Deep Learning
Recommender System

AI/Deep Learning Model Architectures

encoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

p
o
o
l

co
n
v
0

residual block1

re
si

d
u
al

b
lc

o
k
2

re
si

d
u
al

b
lc

o
k
#
N

li
n
ea

r

o
u
tp

u
t

ResNet

Workload

Image, Text,

Speech,

Patterns,

Graphs, etc.

Workload

Image, Text,

Speech,

Patterns,

Graphs, etc.

Key Performance Parameters
of Memory System

 ▪ Active and Leakage Power
 ▪ Memory Bandwidth (Read/
Write latency)
 ▪ Memory Capacity and Area
 ▪ Compute Throughput Usage

Key Performance Parameters
of Memory System

 ▪ Active and Leakage Power
 ▪ Memory Bandwidth (Read/
Write latency)
 ▪ Memory Capacity and Area
 ▪ Compute Throughput Usage

On-chip Memory

(SRAM, SOT-MRAM)

On-chip Memory

(SRAM, SOT-MRAM)

Off-chip Memory

(HBM3)

Off-chip Memory

(HBM3)

Memory system

On-chip Memory

(SRAM, SOT-MRAM)

Off-chip Memory

(HBM3)

Memory system

AI/Deep Learning

Accelerator Hardware

On-chip Memory

(SRAM, SOT-MRAM)

Off-chip Memory

(HBM3)

Memory system

AI/Deep Learning

Accelerator Hardware

Compute CoreCompute Core

On-chip Memory

(SRAM, SOT-MRAM)

Off-chip Memory

(HBM3)

Memory system

AI/Deep Learning

Accelerator Hardware

Compute Core

System Technology Co-Optimization

(STCO)

Design Technology Co-Optimization

(DTCO)

On-chip Memory

Banks (BW adjustable)

Read Line

Channel

Body

M
T

J

R
ea

d
 P

at
h

W
ri

te
 P

at
h

SoT bit cell

MB1 MB2

MB3 MB4

Closed Loop STCO and DTCO for Power and Performance Optimized AI/Deep Learning Accelerator Design

 MLP
Bottom

 MLP
Top

Concat.
Pairwise

interaction

Embedding
tables

output

features
numerical categorical

features

Deep Learning
Recommender System

AI/Deep Learning Model Architectures

encoder

encoder

encoder

output

input

Transformer

Linear & softmax

decoder

decoder

decoder

im
ag

e

co
n
v
1

co
n
v
2

co
n
v
3

co
n
v
4

p
o
o
l

co
n
v
0

residual block1

re
si

d
u
al

b
lc

o
k
2

re
si

d
u
al

b
lc

o
k
#
N

li
n
ea

r

o
u
tp

u
t

ResNet

Workload

Image, Text,

Speech,

Patterns,

Graphs, etc.

Key Performance Parameters
of Memory System

 ▪ Active and Leakage Power
 ▪ Memory Bandwidth (Read/
Write latency)
 ▪ Memory Capacity and Area
 ▪ Compute Throughput Usage

On-chip Memory

(SRAM, SOT-MRAM)

Off-chip Memory

(HBM3)

Memory system

AI/Deep Learning

Accelerator Hardware

Compute Core

Figure 3.1: Workflow of closed-loop analysis for system and device level optimization for
AI/Deep Learning Accelerator Design

[100]. However, STT-MRAM, the memory technology used in Chapter 2, faces several

challenges - poor write performance, Read Disturbance (RD), retention failure [100][102].

These challenges stem from two main reasons. First, the high write current flowing through

the MTJ accounts for almost 10× energy consumption as SRAM. Large write delay (> ns

range) resulting from spin injection symmetry in switching the magnetic orientation of free

layer belittles STT-MRAM’s feasibility as an on-chip cache [103]. The stress on the dielectric

oxide of the MTJ due to the large write current accelerates the time-dependent wear out of

the cell [101]. Second, its shared read-write path makes it vulnerable to RD.

SOT MRAM, considered the next generation of STT-MRAM, offers high performance

without compromising reliability issues such as RD. SOT-MRAM is a three-terminal mem-

ory cell that uses MTJ as the storing element [107]. By splitting the read-write path and

using a different switching scheme, SOT-MRAM resolves all the challenges of STT-MRAM

while retaining its every benefit [100] [101] [102] [103] [104]. The isolated read-and-write

path allows the designer to optimize the read-and-write path independently, decreasing the

write current and increasing the read-write operating margin, thus solving the RD-induced

reliability issues. Though lacking mass-scale production from foundries due to early-stage

manufacturing challenges, [100] [102] [103] [104] [105][106] have demonstrated the success-

ful fabrication of SOT-MRAM with attractive specifications. Its attractive features, such

76

as high density, reliability and endurance, zero leakage, read-write latency comparable to

SRAM, and research effort to enable mass production make it one of the best candidates

for AI accelerator memory system where large on-chip memory is a must for training and

inference.

The performance of an AI accelerator depends on both the compute and memory

throughput of the device. While most accelerators have enough compute throughput, their

performance is limited by memory throughput operating in the memory bound region. To

address the memory bound problem of the AI hardware, in this chapter, we perform a closed-

loop STCO on AI workloads and DTCO on SOT-MRAM to present a hybrid memory system.

To our knowledge, this is the first work that analyzes and evaluates the performance of SOT-

MRAM as the on-chip memory of AI accelerators targeting both inference and training. The

STCO-DTCO methodology is shown in Fig. 3.1, and the key contributions of the chapter

are highlighted as follows.

• We present a power and performance-optimized hybrid memory system for Deep Learn-

ing (DL) accelerators through a workload-aware STCO and DTCO. Comprised of off-

chip HBM3 DRAM, on-chip SRAMs, and DTCO-enabled SOT-MRAM, the hybrid

memory system can support the training and inference of DL workloads. We perform

a closed-loop STCO and DTCO by taking into account the (i) System performance at-

tributes (e.g., throughput and energy cost); (ii) Architectural and micro-architectural

attributes (e.g., compute resources utilization, memory bandwidth) (iii) Workload at-

tributes at both training and inference (e.g., runtime action counts, dataflow and data

reuse) to reach the Pareto optimal solution.

• Using the Deep Learning models’ execution profiles, DTCO enables device and circuit

level customization of read/write bandwidth, retention time, and capacity of SOT-

MRAM memory banks to meet the bandwidth and capacity demands of DL workloads.

77

Memory banks are individually optimized with various bandwidths and capacities to

achieve dynamic runtime optimization of the power and performance of the accelerator

hardware for diverse workloads.

• Finally, using various DNN benchmarks, we provide a comparative analysis of the ex-

isting SRAM-based memory system and the proposed DTCO-STCO optimized hybrid

memory system for AI accelerators.

The chapter is organized as follows. Section 3.2 discusses the background. In Section

3.3, we present the analytical model for DNN workload profiling, followed by the DTCO of

SOT-MRAM in Section 3.4. Sections 3.5 and 3.6 present the results & analysis, and related

works, respectively, following the conclusion in Section 3.7.

3.2 Background

3.2.1 AI/DL Applications

BN +

pooling

BN +

pooling
Conv 0Conv 0 Conv 1Conv 1 Conv 2Conv 2 Conv 3Conv 3 Conv 4Conv 4 Conv nConv n FCFC softmaxsoftmax

Input

(image)

Output

(classification

prediction)

.

.

.

.

n1

n2

nfc

m1

mfc

m2.

.

.

.

n1

n2

nfc

m1

mfc

m2

ifmap

ofw

ofh

ofw

ofh

ofmap
ofw

ofh

ofmap
ofw

ofh

ofmapfilter
ifw

ifh

ifw

ifh

ifmap

ofw

ofh

ofmapfilter
ifw

ifh

ifmap

ofw

ofh

ofmapfilter
ifw

ifh

Residual/skip connection

Figure 3.2: CV model (CNN/DNN) abstract architecture. Deep convolution (Conv) layers
with residual/skip connection followed by fully connected (FC) layer/s. For symbol meaning
please see Table 3.1.

Computer Vision (CV) and Pattern Recognition

CV models, also called Convolutional/Deep Neural Networks (CNN/DNN), are the

stacks of convolution layers connected straight and/or through residual connection [55] to

78

extract the objects’ features, and a few Fully Connected (FC) layers at the end to classify the

objects. The input images are convolved with the filter weights to produce the output feature

map (OFMAP). The OFMAP goes through the pooling and normalization layers to act as

input (IFMAP) to the next layer. The linear and softmax layer at the end finally recognizes

the image (Fig. 3.2). The size of each data entity (IFMAP, OFMAP, and Weights) depend

on the model architecture.

Natural Language Processing (NLP)

Transformer-based [111] models dominate the NLP domain. In Transformer-based mod-

els [111], the input sequence propagates through the embedding layer and different sublayers

of the encoder stacks to extract different linguistic features and inter-token dependency of

the input sequence. The decoder stacks then generate the output sequence by taking the

encoded input sequence from the encoder stack and the output sequence generated by itself

in the previous timesteps (Fig 3.3). The input sequence multiplied by different layer weights

takes different activation names and shapes throughout the model operation.

Inputs

Multi-head AttentionMulti-head Attention

Add & NormAdd & Norm

Feed Forward NNFeed Forward NN

Add & NormAdd & Norm

Encoder #2Encoder #2

Encoder #nEncoder #n

N
sq

l

Nem

N
sq

l

Nem

(Input + Positional)

Embeddings

(Input + Positional)

Embeddings

E
n
co

d
er

 #
1

QNsql

d_q

QNsql

d_q

KNsql

d_k

KNsql

d_k

VNsql

d_v

VNsql

d_v

Zi
Nsql

Nem /h

Zi
Nsql

Nem /h

* N
em

d_q

* N
em

d_q

* N
em

d_q

* N
em

d_v

* N
em

d_v

* N
em

d_v

Nsql

Nem

Nsql

Nem

Linear Linear

h

Scaled Dot Product Attention

h

Scaled Dot Product Attention

AF

N
sq

l

Nsql

AF

N
sq

l

Nsql

*Q KT

MatMul

*Q KT

MatMul

Scale &

Softmax

Scale &

Softmax
*

MatMul

*

MatMul

AFAF VV*

MatMul

AF VAF

N
sq

l

Nsql

*Q KT

MatMul

Scale &

Softmax
*

MatMul

AF V

ConcatenateConcatenate
Nsql

Nem

Nsql

Nem

ZNsql

Nem

Z *

Nem

N
em

Nem

N
em

Linear

Nsql

Nem

Z *

Nem

N
em

Linear

Nsql

Nem

Nsql

Nem

ENsql

Nem

E

LinearLinear

* N
em

d_k

* N
em

d_k

Linear

* N
em

d_k

(Output + Positional)

Embeddings

(Output + Positional)

Embeddings

Outputs (shifted right)

Add & NormAdd & Norm

Feed Forward NNFeed Forward NN

Add & NormAdd & Norm

Add & NormAdd & Norm

Encoder-Decoder AttentionEncoder-Decoder Attention D
ec

o
d
er

 #
1

Decoder #nDecoder #n

Output (Probabilities)

Linear and Softmax

Multi-head AttentionMulti-head Attention

Decoder #2Decoder #2

(Output + Positional)

Embeddings

Outputs (shifted right)

Add & Norm

Feed Forward NN

Add & Norm

Add & Norm

Encoder-Decoder Attention D
ec

o
d
er

 #
1

Decoder #n

Output (Probabilities)

Linear and Softmax

Multi-head Attention

Decoder #2

N
sq

l

Nem

N
sq

l

Nem

Inputs

Multi-head Attention

Add & Norm

Feed Forward NN

Add & Norm

Encoder #2

Encoder #n

N
sq

l

Nem

(Input + Positional)

Embeddings

E
n
co

d
er

 #
1

QNsql

d_q

KNsql

d_k

VNsql

d_v

Zi
Nsql

Nem /h

* N
em

d_q

* N
em

d_v

Nsql

Nem

Linear Linear

h

Scaled Dot Product Attention

AF

N
sq

l

Nsql

*Q KT

MatMul

Scale &

Softmax
*

MatMul

AF V

Concatenate
Nsql

Nem

Z *

Nem

N
em

Linear

Nsql

Nem

E

Linear

* N
em

d_k

(Output + Positional)

Embeddings

Outputs (shifted right)

Add & Norm

Feed Forward NN

Add & Norm

Add & Norm

Encoder-Decoder Attention D
ec

o
d
er

 #
1

Decoder #n

Output (Probabilities)

Linear and Softmax

Multi-head Attention

Decoder #2

N
sq

l

Nem

Figure 3.3: Transformer model workflow breakdown

79

3.2.2 AI/DL Accelerators

At the core of AI/DLs is the matrix-matrix/vector multiplication (GEMM) with mas-

sive parallelism. Exploiting this parallelism, Systolic Array (SA) based architecture [155]

have been used to accelerate the computations. Different dataflows, such as row stationary,

output stationary, weight stationary, have been evolved to maximize the reuse and reduce

the data movement. Off-chip DRAM access being 100-200 times more energy and latency

expensive than any ALU operation or on-chip access [7] plays a crucial role in determining

the overall system performance. Another non-conventioanl type of architecture, In-Memory

Computing (IMC) [109] has recently evolved to address the data communication cost for

DNN accelerators. However, in this work, we focus on reducing the off-chip memory access

for conventional DNN accelerator architectures [7][18][155] by increasing the on-chip Global

Buffer (GLB) size with SOT-MRAM.

Channel

WWL

BL

M
T

J

W
ri

te
 P

at
h

S
O

T
 p

ro
ce

ss
C

M
O

S
 p

ro
ce

ss

= Via

= Metal layers

= p/n diffusion

= Fixed Layer

= Oxide Barrier

= Free Layer

RWL

BL

SL

tSOT

tFL WSOT

Read Path

tMgO

Figure 3.4: Physical structure of a SOT-MRAM bit cell highlighting separate read (along
blue line) and write (along red line) path

80

3.2.3 SOT-MRAM

Physical Structure

With MTJ [64] as storing element, the SOT-MRAM is a three terminal device. Depend-

ing on the type of bit cell, there are three to four lines to control the read-write operation. In

this work, we consider a two transistor one SOT (2T1SOT) bit cell architecture that requires

two access transistors, (i) Read Wordline (RWL), (ii) Write Wordline (WWL), (iii) Bit Line

(BL), and (iv) source Line (SL) to accommodate separate read-write access path [107] [97]

(Fig. 3.4). The MTJ stack, with its free layer at the interface, is placed on top of a SOT

layer (i.e., channel) to ensure SOT-induced switching. The SOT layer is composed of heavy

metals or topological insulators [110].

Read-Write Operation

Upon the activation of RWL, a small amount of current is passed through BL and

grounded SL. The resistive state of the MTJ is captured by sensing the voltage across it

and comparing the voltage with a reference value [102]. Low resistive state (RP) and high

resistive state (RAP) represent bit 0 and 1 respectively. The write operation of MTJ-based

MRAM involves switching the resistive status of MTJ. In SOT-MRAM, switching occurs

due to Spin Orbit Torque (SOT) effect. Unlike STT-MRAM, a current is passed through

the SOT layer to change the MTJ resistive state by switching the magnetic orientation of the

free layer. A bidirectional write current flows through BL and SL during write operation.

The potential of BL and SL changes depending on the bit value written in the cell. For

example, to write ‘1’, current flows from BL to SL and vice versa to write ‘0’ [102] [101].

81

3.3 DNN WORKLOAD PROFILING

Profiling the target workload is a prerequisite for designing an accelerator for the target

workload. Assuming that we have a powerful computing system to handle the exhaustive

computations of the DL workload, we focus on providing efficient data movement between the

compute and memory system to ensure 100% utilization of computing resources by introduc-

ing the workload-aware hybrid memory system. We propose the hybrid memory system by

analyzing the Deep Learning model workloads from CV and NLP domain. We analytically

model the on-chip bandwidth requirement and memory access patterns of different parts of

the workload during inference and training, Memory and Compute Model, to develop the

memory system for TPU-like [155] DNN accelerators.

PE Core

DL Accelerator

SRAM BufferSRAM Buffer

Global Buffer

(MRAM)

CPUCPU

DRAM

(HBM3)
Special Function

Unit (SFU)
Special Function

Unit (SFU)

HA

WA

PE Core

DL Accelerator

SRAM Buffer

Global Buffer

(MRAM)

CPU

DRAM

(HBM3)
Special Function

Unit (SFU)

HA

WA

 PE Reg file PE Reg file MAC MAC PE Reg file MAC PE Unit PE Unit PE Reg file MAC PE Unit

Figure 3.5: Block diagram of Accelerator architecture

𝛿3 𝛿2 𝛿1

Layer 2 backward Layer 3 backwardLayer 1 backward

Loss func.

actual class

Input

W1

Layer 1 Activation 1 z1 a1

W2

Layer 2 Activation 2
z2 a2

W3

Layer 3 Activation 3
z3 a3

WN

Layer N Activation N zN aN L
W4

Forward Pass

Backward Pass

𝑓ሺ𝛿2, 𝑎1ሻ 𝑓ሺ𝛿3, 𝑎2ሻ

Layer N backward

𝑓ሺ𝛿𝑁 ,𝑎𝑁െ1ሻ

𝛿𝑁
𝑓 ൬𝛿4,𝑊4,

𝑑𝑎3

𝑑𝑧3
൰ 𝑓 ൬

𝑑𝐿
𝑑𝑎𝑁

,
𝑑𝑎𝑁
𝑑𝑧𝑁

൰𝑓 ൬𝛿3,𝑊3,
𝑑𝑎2

𝑑𝑧2
൰𝑓 ൬𝛿2,𝑊2,

𝑑𝑎1

𝑑𝑧1
൰

𝜕𝐿
𝜕𝑊1

𝑓ሺ𝛿𝑘 , 𝑎𝑘െ1ሻ=𝑎𝑘െ1 ∗ 𝛿𝑘 𝛿𝑘െ1 ൌ 𝑓 ൬𝛿𝑘 ,𝑊𝑘 ,
𝑑𝑎𝑘
𝑑𝑧𝑘

൰ ൌ ሺ𝑊𝑘
′ ∗ 𝛿𝑘ሻሺ

𝑑𝑎𝑘
𝑑𝑧𝑘

ሻ ; 𝑓𝑜𝑟 1 ൑ 𝑘 ൑ 𝑁 ; 𝑓𝑜𝑟 2 ൑ 𝑘 ൑ 𝑁 െ 1
Backpropagation Equations:

𝜕𝐿
𝜕𝑊3

𝜕𝐿
𝜕𝑊2

𝜕𝐿
𝜕𝑊𝑁

𝛿𝑁 ൌ 𝑓 ቀ 𝑑𝐿
𝑑𝑎𝑁

, 𝑑𝑎𝑁
𝑑𝑧𝑁

ቁ= 𝑑𝐿
𝑑𝑎𝑁


𝑑𝑎𝑁
𝑑𝑧𝑁

a0

𝑓ሺ𝛿1,𝑎0ሻ

𝑑
𝑑𝑧

𝑑
𝑑𝑧

𝑑
𝑑𝑧

𝑑
𝑑𝑧

𝑑
𝑑𝑎

Figure 3.6: Computational graph of DNN training

82

3.3.1 Memory Bandwidth Expression

We express the required bandwidth (BW) as a function of compute resources and work-

load. BW (bytes/sec) is defined as the rate at which data needs to be transferred to/from

memory by a processor to utilize the computation resources of the processor fully. Mathe-

matically,

BW =
Fp

OI
(3.1)

Where Fp = Theoretical peak performance (ops/sec) = number of operations the accelerator

performs per sec. The Fp of a HA ×WA Processing Element (PE) array (Fig. 3.5):

Fp = HA ∗WA ∗ Facc (3.2)

Facc = Operating frequency of the accelerator. OI = Operational Intensity of Workload

(ops/byte) = number of operations performed per byte accessed. It is a measure of paral-

lelism of the workload. In the subsequent subsections, we will formulate the OI of Conv.

and FC layer to find their BW, respectively. Note that the read and write bandwidth will

not be the same for these workloads.

Read Bandwidth (BWRD) of Conv. layer

To formulate an expression for OI of convolution workload: First, we determine the

total number of MAC operations, TMAC , performed by a HA×WA PE array per clock cycle

TMAC = HA ∗ WA (3.3)

83

Second, we figure out how many bytes should be read from memory to utilize all PEs of the

accelerator in one clock cycle. In a row stationary dataflow [7], it takes (kh∗kw+ofh∗ofw)∗dw

bytes of data (dw = data type in bytes, i.e., FP32, BF16 etc.) and #(ofh ∗ofw ∗kh ∗kw) PEs

to generate the partial ofmaps corresponding to one input channel. Depending on the size

of the PE array, in each iteration (one complete use of accelerator), multiple input channels

can be fit. The input channels (i.e., no. of partial ofmaps) computed by the PE array in

each iteration:

Nich per stp =
HA ∗WA

ofh ∗ ofw ∗ kh ∗ kw
(3.4)

Total bytes read from memory to utilize all PEs:

Tbyte =
HA ∗WA

kh ∗ kw ∗ ofh ∗ ofw
∗ (kh ∗ kw + ifh ∗ ifw) ∗ dw (3.5)

We divide the total number of MAC operations, TMAC , by the total bytes accessed, Tbyte, to

find OI:

OI =
kh ∗ kw ∗ ofh ∗ ofw

dw ∗ (kh ∗ kw + ifh ∗ ifw)
(3.6)

Substituting the expression of OI in equation (3.1) gives BWRD as a function of array size

and workload:

BWRD =
(kh ∗ kw + ifh ∗ ifw) ∗ dw

kw ∗ kh ∗ ofh ∗ ofw
∗HA ∗WA ∗ Facc (3.7)

For the symbol meanings, please see Fig. 3.2 and Table 3.1.

84

Table 3.1: CNN and systolic array parameters nomenclature

WA, HA Accelerator array width & height (PEs)
kw, kh Kernel width & height
ofw, ofh Output feature map width & height
ifw, ifh Input feature map width & height
Nich, Noch No. of input & output channel
Nbt Batch size
nfc,mfc No. of neurons in input & output FC layer

Write Bandwidth (BWWR) of Conv. Layer

Partial ofmap of a single input channel requires #(ofh ∗ ofw ∗ kh ∗ kw) PEs. Therefore,

HA×WA PEs generate (HA ∗WA)/(ofh ∗ofw ∗kh ∗kw) ofmaps in each iteration. Each partial

ofmap contains ofh ∗ofw elements. The total output bytes generated by the PE array in one

iteration is, equivalently, the write bandwidth:

BWWR =
HA ∗WA ∗ Facc ∗ dw

kh ∗ kw
(3.8)

BWRD & BWWR of FC layer

The systolic array is a widely used architecture to perform GEMM operation [155].

Depending on the array dimension (HA×WA) and operand matrix dimension (input matrix:

K ×M , weight matrix: M × N , and output matrix: K × N), we formulate required Read

and Write GLB bandwidth for four different cases: (i) Weight matrix dimensions (both) are

less than the systolic array dimensions (M < HA, N < WA), (ii) Height of weight matrix

is less than the height of systolic array, but the width of weight matrix is larger than or

equal to the width of the systolic array (M < HA, N ≥ WA), (iii) Height of weight matrix

is larger than or equal to the height of systolic array, but width of the weight matrix is less

than the width of the systolic array (M ≥ HA, N < WA), and (iv) Both height and width of

85

Table 3.2: RD/WR bandwidth expression of FC layer for different cases

Cases BWRD BWWR

M < HA; N < WA

K < WA
M∗N+K∗M

N+K
K∗N

2∗N+K−1

K ≥ WA
M∗N+WA∗M

N+WA

WA∗N
2∗N+K−1

M < HA;N ≥ WA

K < WA
M∗WA+K∗M

N+K
K∗WA

2∗WA+K−1

K ≥ WA
M∗WA+WA∗M

2∗WA

WA
2

2∗WA+K−1

M ≥ HA;N < WA

K < WA
HA∗N+K∗HA

N+K
K∗N

2∗N+K−1

K ≥ WA
HA∗N+WA∗HA

WA+N
WA∗N

2∗N+K−1

M ≥ HA;N ≥ WA

K < WA
HA∗WA+WA∗HA

WA+K
WA∗N

2∗N+K−1

K ≥ WA
HA∗WA+WA∗HA

2∗WA

W 2
A

2∗WA+K−1

weight matrix are larger than or equal to the height and width of systolic array respectively

(M ≥ HA, N ≥ WA).

In a weight stationary dataflow, it takes N clock cycles to load the weight matrix into

the systolic array. Once the weights are loaded, the input matrix is streamed from left to

right and the outputs are collected downward. The input matrix’s first column reaches the

weight matrix’s last column at 2N clock cycles. The last (or Kth) column of the input matrix

reaches the last column of weight matrix after 2N + K − 1 clock cycles and generates the

output matrix, K × N . Based on the above dataflow and mapping, the peak read-write

bandwidth per clock cycle for different cases is summarized in Table 3.2. The expressions

are shown for weight stationary dataflow.

From the transformer-based NLP model architecture (Fig. 3.3), we observe that the

dominant operations are the GEMM operations. As a result, we model the read-write band-

width requirement for different layers of the transformer-based model same as the read-write

86

Table 3.3: Parameter nomenclature for Algorithm 1 and 2

I, O,W ifmap, ofmap, weight size in MB
RDDRAM DRAM Read access counts
WRDRAM DRAM Write access counts
RDGLB GLB Read access counts
WRGLB GLB Write access counts
GI,GO,GW ifmap, ofmap, weight Gradient size in MB
mbpa MB of data fetched per memory access
layer f Layer size (MB) combining ifmap, ofmap &

weights
layer b Layer size (MB) in backprop combining upstream,

ofmap & weight gradient
cum layer Cummulative size of layer
rd f, rd b DRAM read access during forward & backward pass
wr f, wr b DRAM write access during forward & backward pass

bandwidth of FC layer. Another dominant operation after GEMM is softmax operation.

Softmax operation is performed mostly on the scaled attention filter matrix, AF of size

Nsql × Nsql; σ(AF)ij = eAFij∑Nsql
i=1 eAFij

. The softmax operation is generally performed in the

Special Function Unit (SFU)[95] (Fig. 3.5). The bandwidth requirement of the softmax

operation depends on the hardware architecture, mapping, and AF matrix dimension. As-

suming that the SFU contains 1 × HA units, each capable of performing one exponential

operation, followed by an accumulator for accumulating the exponentials, and a regular

ALU for performing the division the bandwidth of softmax operation on SFU is estimated

as BWsoftmax = dw ∗HA.

3.3.2 Memory Access Patterns

Our proposed memory system consists of HMB3 (off-chip DRAM memory), a large GLB

with multiple SOT-MRAM banks, a smaller double-buffered SRAM, and PE reg file specific

to each PE unit (Fig. 3.5). The banks inside SOT-MRAM are optimized through a DTCO

between the SOT-MRAM parameters and the workload requirements. The double-buffered

87

Algorithm 1: DRAM & GLB access count at Inference

1 for i = 1 to no. of layers do
2 RDGLB ← Ii

mbpaGLB

3 if i = 1 then
4 WRGLB ← Ii+Oi

mbpaGLB

5 if (Ii +Wi) ≤ GLB then
6 RDDRAM ← Ii+Wi

mbpaDRAM

7 else
8 RDDRAM ← Ii+Wi

mbpaDRAM
+ Ii+Wi−GLB

mbpaDRAM

9 end

10 else
11 WRGLB ← Oi

mbpaGLB

12 if Oi−1 ≤ UB then
13 if Wi ≤ GLB then
14 RDDRAM ← Wi

mbpaDRAM

15 else
16 RDDRAM ← Wi

mbpaDRAM
+ Wi−GLB

mbpaDRAM

17 end

18 else

19 RDDRAM ← Ii+Wi

mbpaDRAM
+ (Ii+Wi)−GLB

mbpaDRAM

20 end

21 end
22 if i = no. of layers then
23 WRDRAM ← Oi

mbpaDRAM

24 else
25 if Oi > GLB then
26 WRDRAM ← Oi−UB

mbpaDRAM

27 else
28 WRDRAM ← 0
29 end

30 end

31 end

SRAM holds the weights and partial outputs. In this subsection, we analyze the memory

access patterns of CV and NLP models for the proposed memory system.

The required number of main memory accesses depends on the GLB size, weight, ac-

tivation size, and dataflow. Assuming a fixed dataflow, weight stationary in this case, we

model the memory access counts during inference and training as a function of the model’s

workloads and the GLB size in Algorithm 1, and 2 for inference and training, respectively.

During inference, inputs (e.g., images, tokens) are read from HBM3, written to GLB, and

88

Algorithm 2: DRAM & GLB access count at Training

1 cum layer ← 0;
2 tmp← 0;
3 for i = 1 to no. of layers do
4 layer fi ← Ii +Oi +Wi ;
5 layer bi ← GIi +GOi +GWi ;
6 layer (i)← layer fi + layer bi ;
7 cum layer(i)← tmp+ layer (i) ;
8 tmp← cum layer(i) ;

9 RDGLB ← 3∗Ii+Oi+5∗Wi

mbpaGLB

10 WRGLB ← 2∗Ii+2∗Oi+3∗Wi

mbpaGLB

11 if cum layer(i) ≤ GLB then
12 if i = 1 then
13 rd f(i)← Ii+Wi

mbpaDRAM

14 end
15 if i = no. of layers then
16 wr f(i)← Oi

mbpaDRAM

17 end

18 rd f(i)← Wi

mbpaDRAM
;

19 rd b(i)← 0 ;
20 wr f(i)← 0 ;

21 else
22 if (i ̸= 1) AND (Oi−1 ≤ GLB) then
23 rd f(i)← Wi

mbpaDRAM

24 else
25 if Ii +Wi ≤ GLB then
26 rd f(i)← Ii+Wi

mbpaDRAM

27 else
28 rd f(i)← Ii+Wi

mbpaDRAM
+ Ii+Wi−GLB

mbpaDRAM

29 end

30 end
31 if (GIi +GOi +GWi ≤ GLB) then
32 wr f(i)← 0
33 rd b(i)← 0

34 else
35 wr f(i)← GIi+GOi+GWi

mbpaDRAM

36 rd b(i)← GIi+GOi+GWi

mbpaDRAM

37 end

38 end

39 wr b(i)← Wi

mb per acs

40 end

read from GLB to be operated inside PEs core. The read-only weights are directly loaded

from HBM3 to the register file of each PE unit, bypassing the GLB. Using double-buffered

89

SRAM, while the array is computing with loaded weights, the next set of weights is tem-

porarily written to the SRAM buffer to hide the off-chip access latency behind the PE array

computation latency. Suppose the GLB size is large enough to hold all samples in the mini-

batch. In that case, the data entity can be read all at once, resulting in the memory accesses

equal to the algorithmic minimum memory accesses. Algorithmic minimum memory access

represents the number of elements in the data entity [53]. For weight gradient calculation,

during backpropagation of the training, the inputs are read from GLB to PE core, assuming

that the GLB is large enough to hold the input images along with the generated ofmap of

the current layer, thus avoiding the DRAM accesses during backward pass. In convolution,

the inputs can be reused multiple times for convolutional and filter reuse. It can also be

reused multiple times during backpropagation to calculate the gradients of different filters.

In Transformer-based NLP models, the embedded input can be reused thrice as input to

Key, Query, and Value linear layer. It can also be reused thrice during backpropagation

to calculate the weight gradient of the Key, Query, and Value linear layer. The training

workflow is complicated and requires many more memory accesses (both off-chip and on-

chip) compared to inference. For example, to calculate the weight gradients of Layer 1, it

requires the current layer’s activation gradient da1
dz1

, input (a0), next layer’s weight (W2) and

the upstream gradient from Layer 2 (δ1) (Fig. 3.6).

The pseudo code of Alg. 1 models the inference memory access patterns. The inputs

and weights must be loaded from DRAM for the first layer. Depending on the combined size

of input & weight matrix size, and GLB size, it requires either algorithmic minimum read

accesses or more than that (lines 3-9 of Alg. 1). For the rest of the layers, if the ofmap of

the previous layer can fit in GLB, then no read accesses are required for input activation, as

the ofmap of the previous layer will act as the ifmap to the next layer. Only the weights

are read from DRAM for such layers (lines 12-20 of Alg. 1). The opposite case applies to

write accesses: the ofmap of the last layer must be written to the DRAM. For other layers,

90

it needs to be written to DRAM depending on its size and GLB size (lines 22-30 of Alg. 1).

No write accesses are required for weight matrices during inference. As the weights bypass

the GLB during inference, the GLB read accesses are calculated from the ifmap size for

each layer (line 2). The write accesses are calculated from the ofmap except for the 1st

layer (line 11, 4). See Table 3.3 for symbol meanings.

The pseudo code of Algorithm 2 models the training behavior. We initialize several

temporary variables: layer fi (comprising of ifmap, ofmap, and weight matrices of ith

layer), layer bi (comprising of upstream gradient, ofmap, and weight matrix gradients of

ith layer), and layeri (combining layer fi and layer bi) as shown in lines 4-6 in Alg. 2.

cum layer(i) contains all layers’ all entities up to ith layer (line 7-8, Alg. 2). If the GLB is

large enough to hold cum layer(i), we just need to read the ifmap of the first layer & weight

of all layers from DRAM during the forward pass and write all layers’ updated weight during

the backward pass and last layer’s ofmap to DRAM during the forward pass (lines 11-20 &

39, Alg. 2). Otherwise, the forward pass is the same as the inference (lines 22-30, Alg. 2).

During the backward pass, depending on the size of upstream gradients, ofmap, and weight

gradients, it accesses the gradients from DRAM (lines 31-37, Alg. 2). The GLB read-write

accesses are shown in lines 9-10 in Alg. 2. The ifmap of each layer needs to be read twice,

once during the forward pass and once during the backward pass. The upstream gradient,

equal in size as ifmap, must be read once during the backward pass. The ofmap is read

once during the backward pass to calculate the upstream gradient. The weight is read 5

times (once during the forward pass, 4 times during the backward pass). The ifmap and

ofmap are written twice, once during the forward pass and once during the backward pass.

The weight is written thrice, twice during forward pass and once during backward pass.

91

3.4 DTCO of SOT-MRAM

To ensure overall system performance for AI workloads, the memory system should have

large on-chip memory to avoid frequent DRAM accesses, and the on-chip memory should

have high bandwidth to prevent the system from being memory-bound while being energy

efficient. In this section, we perform a DTCO of SOT-MRAM in bit-cell level based on the

workload profiling done in section 3.3.

3.4.1 Optimizing critical switching current Ic

In SOT-MRAM, the magnetic orientation of the free layer is switched by Spin-Orbit

Torque induced by spin Hall and interfacial effects between the channel (i.e., SOT layer)

and free layer (FL) of MTJ. An in-plane charge current is flown through the channel to

generate a spin current that exerts a spin torque on the free layer, which rotates the free

layer’s magnetic orientation. The critical current density required to switch the magnetic

orientation of FL is expressed as [116]

jc =
2eµ0Ms,FLtFL

ℏθSH
(
Hk,eff

2
− Hx√

2
) (3.9)

Where Hk,eff is the effective anisotropy field, Hx is the applied field, Ms,FL is the saturation

magnetization of free layer, and tFL is its thickness. Our interest is in lowering the switching

current to achieve low write energy. Here, the free layer thickness tFL and spin Hall efficiency

θSH act as a control knob for critical switching current. θSH is a material-specific parameter

and its higher value is expected to reduce the switching current. The typical value of θSH in

heavy metal alloys ranges between 0.1 to 0.5 [110]. However, recent topological insulators as

SOT layer can have a very large θSH . [117] demonstrated θSH = 152 with BiSb thin films.

92

3.4.2 Optimizing read-write pulse width

Read pulse width

The reading of SOT-MRAM involves sensing the resistance of the MTJ. A small amount

of current is passed through the MTJ stack and the voltage across the stack Vdata+ or Vdata−

is compared against a reference voltage Vref = 1
2
(Vdata+ + Vdata−) to read out the stored bit.

The read Sensing Margin SM = |Vref−Vdata| is typically very small. Sensing and amplifying

this small difference requires a strong and complex Sense Amplifier that contributes to most

of the read latency and energy. The SM is determined by the Tunnel Magneto Resistance

ratio (TMR ratio = RAP−RP

RP
) of MTJ. A higher TMR ratio produces a larger SM by making

Vdata+ higher and Vdata− lower. Thus the TMR ratio is inversely proportional to the read

latency[118]. The higher the TMR window, the higher the read speed and the less effort

required on the periphery. The typical range of the TMR ratio is between 100 to 300%. The

TMR is tunable by oxide thickness [119] as shown in Fig. 3.15 (a). In SOT-MRAM, we can

increase the oxide thickness, thanks to the decoupled read-write path of SOT-MRAM, to

achieve a high TMR and increase the read speed without worrying about the large incubation

time [120].

Table 3.4: DTCO control parameters & their impact on Power, Performance and Area (PPA)

DTCO Parameters Impact on PPA
Spin Hall angle θSH θSH ↑, jc ↓, Switching energy ↓
Free layer thickness tFL tFL ↓, jc ↓, Switching energy ↓, Area ↓
SOT layer dimension ASOT ASOT ↓, τp ↓, Area ↓, Write Bandwidth ↑
Oxide thickness tMgO tMgO ↑, TMR ↑, Read Bandwidth ↑

93

Write pulse width τp

The width of the write current pulse for switching is inversely proportional to the mag-

nitude of the applied current density in the SOT layer jsw [110]

τp ∝
1

jsw
(3.10)

As the area of the SOT layer (ASOT) is scaled down, the effective current density in-

creases, jsw ∝ 1/(ASOT). Successful switching should take place when jsw > jc. We can

increase jsw by reducing the SOT layer dimension and decrease jc by increasing θSH or

by decreasing tFL. Thus we can achieve successful switching in much shorter pulse width

(equation 3.10). [121] demonstrated the switching at 180ps, [122] at 400ps, and [123] at

210ps. Switching in shorter pulse width ensures larger write bandwidth which is essential

for memory systems used in AI/Deep Learning hardware. The key DTCO parameters of

SOT-MRAM and their impact on Power, Performance and Area (PPA) are listed in Table

3.4.

3.5 Results and Analysis

In this section, we provide the results and analysis of the STCO on the CV and NLP

workloads during inference and training and present the optimum Power, Performance, and

Area results by performing the DTCO of SOT-MRAM. We developed a MATLAB-based

framework to implement our analytical Memory and Compute Model to capture the rela-

tionship between the memory access counts and the memory hierarchy sizes in typical systolic

array based AI accelerators. Unlike ScaleSim [27] and Timelooop [53] simulator, which only

94

Table 3.5: Parameters of NLP models

Model
Enc.
layer

Dec.
layer

Attention
head

Word
Embedding

(Nem)

Intermediate
dimension

(dff)

Seq.
length
(Nsql)

Vocab.
size

(Nvocab)
Transformer 12 6 8 512 2048 1024 37000

BERT 12 - 12 768 3072 512 30522
Distil
BERT

6 - 12 768 3072 512 30522

Mobile
BERT

24 - 4 128 512 512 30522

Squeeze
BERT

12 - 12 768 3072 512 30522

Visual
BERT

12 - 12 512 3072 512 30522

GPT - 12 12 768 2048 512 40478
GPT-2 - 12 12 768 2048 1024 50257
GPT-3 - 96 96 12288 49152 2048 50257

GPT-Neo - 24 16 2048 8192 2048 50257
GPT-J - 28 16 4096 16384 2048 50400

support profiling DNN workloads in inference mode to date, our model captures both train-

ing and inference behavior of CV and NLP models. We also verified our model’s results with

Timeloop in inference mode.

3.5.1 Bandwidth Demand

In Fig. 3.7 (a), (b), we plot the read-write on-chip bandwidth demand in bytes/cycle of

18 widely used CV models. Resenet101 and Resnet50 running on a 256×256 PE array will

demand the highest read bandwidth, 4017 bytes/cycle, from GLB, whereas Squeezenet will

demand the lowest bandwidth, 1028 bytes/cycle. Naturally, as the PE array size increases,

the computation capacity per cycle TMAC increases which demands more data from memory

to keep all PEs active. From the workload perspective, we observe that the most contribut-

ing factor to the read bandwidth demand is its inverse relationship with the filter and ofmap

size. We explain the inverse relationship of filter and ofmap size with the read bandwidth

95

Al
ex
ne
t

VG
G1
9

Ef
fic
ien
tn
etb
0

Da
rk
ne
t5
3

Da
rk
ne
t1
9

Na
sn
etL
ar
ge

Na
sn
etM

ob
ile

Sh
uf
fle
Ne
t

In
ce
pt
io
nR
es
ne
tv
2

Xc
ep
tio
n

Re
sn
et1
01

Re
sn
et5
0

Re
sn
et1
8

M
ob
ile
ne
tv
2

De
ns
en
et2
01

In
ce
pt
io
nv
3

Go
og
len
et

Sq
ue
ez
en
et

100

1000

4000
B
yt
es
/C
yc
le

Al
ex
ne
t

VG
G1
9

Ef
fic
ien
tn
etb
0

Da
rk
ne
t5
3

Da
rk
ne
t1
9

Na
sn
etL
ar
ge

Na
sn
etM

ob
ile

Sh
uf
fle
Ne
t

In
ce
pt
io
nR
es
ne
tv
2

Xc
ep
tio
n

Re
sn
et1
01

Re
sn
et5
0

Re
sn
et1
8

M
ob
ile
ne
tv
2

De
ns
en
et2
01

In
ce
pt
io
nv
3

Go
og
len
et

Sq
ue
ez
en
et

40

100

1000
256x256 100x100 64x64 32x32

(a) (b)

Figure 3.7: Bandwidth requirement of CV models for different PE array sizes. (a) Read
Bandwidth, (b) Write Bandwidth. Bandwidth varies from model to model because of their
variation in layer size and type.

using the convolutional reuse concept. As the filter size decreases, the scope of convolutional

reuse decreases. The ofmap again depends on the filter and ifmap size. With the decrease

of filter size and ofmap size, the convolutional reuse decreases, giving rise to more band-

width demand. The layer of Resnet101 that requires the most bandwidth (4017 bytes/cycle)

has the ofmap dimension (7×7) and filter dimension (1×1). On the other hand, the most

demanding (1028 bytes/cycle) layer of Squeezenet has the ofmap dimension (18×18) and

filter dimension (1×1). Another observation is that though 1×1 convolution reduces the

computation complexity, it requires more bandwidth from memory, i.e., becomes memory

intensive. The write bandwidth is also inversely proportional to the filter size. However,

in 1×1 convolutions, it depends on the number of outputs generated by the PE array. The

write bandwidth is always smaller than the read bandwidth (Fig. 3.7 (b)) as it takes more

than one operands to generate one output. For example, in a 3×3 convolution, it takes 18

operands to generate a single output; in a 1×1 convolution, it takes two operands.

96

Tr
an
sfo
rm
er

Di
sti
lB
ER
T

BE
RT

Sq
ue
ez
eB
ER
T

Vi
su
alB
ER
T

M
ob
ile
BE
RT GP
T

GP
T-
2

GP
T-
Ne
o

GP
T-
J

GP
T-
3

100

500

1000
B
yt
es
/C
yc
le

Tr
an
sfo
rm
er

Di
sti
lB
ER
T

BE
RT

Sq
ue
ez
eB
ER
T

Vi
su
alB
ER
T

M
ob
ile
BE
RT GP
T

GP
T-
2

GP
T-
Ne
o

GP
T-
J

GP
T-
3

100

101

102

256x256 100x100 64x64 32x32

(a) (b)

Figure 3.8: Bandwidth requirement of NLP models for different PE array size. (a) Read
Bandwidth (for GEMM and softmax operation), (b) Write Bandwidth. Read bandwidth is
the same across all the models because it is limited by the PE array dimension, whereas the
write bandwidth varies across models because of their different sequence lengths

.

As mentioned in section 3.3.1, the bandwidth requirement for transformer-basded model

are calculated using the expressions of Table 3.2. The dimension of the operand matrices

is larger than the PE array dimension, hence following Case IV (Table 3.2, Section 3.3.1),

the read bandwidth of all models depends on the PE array size (Fig. 3.8 (a)). The write

bandwidth depends on the PE array dimension and the input sequence length. The softmax

read bandwidth depends on the SFU width, and matches with the GEMM read bandwidth.

As different models are trained with different input sequence lengths[108], their write band-

width demand is not the same across all models. The parameter sizes and settings of the

models used in this work are shown in Table 3.5. The models having the highest sequence

length (2048) have the lower write bandwidth demand 102 bytes/cycle running on a 256×256

PE array (Fig. 3.8 (b)).

97

D
RA

M
 a

cc
es

s
Re

du
ct

io
n

(%
)

Pe
rf.

sp
ee

du
p

(in
 m

s)

Alex
ne

t
VGG19

Effi
cie

ntn
etb

0
Dark

ne
t53

Dark
ne

t19
Nasn

etL
arg

e

Nasn
etM

ob
ile

Sh
uff

leN
et

Inc
ep

tio
nR

esn
etv

2
Xce

pti
on

Resn
et1

01
Resn

et5
0

Resn
et1

8
M

ob
ile

ne
tv2

Den
sen

et2
01

Inc
ep

tio
nv

3
Goo

gle
ne

t
Sq

ue
ez

en
et

En
er

gy
sa

vi
ng

(in
 j)

Alex
ne

t
VGG19

Effi
cie

ntn
etb

0
Dark

ne
t53

Dark
ne

t19
Nasn

etL
arg

e

Nasn
etM

ob
ile

Sh
uff

leN
et

Inc
ep

tio
nR

esn
etv

2
Xce

pti
on

Resn
et1

01
Resn

et5
0

Resn
et1

8
M

ob
ile

ne
tv2

Den
sen

et2
01

Inc
ep

tio
nv

3
Goo

gle
ne

t
Sq

ue
ez

en
et

(a)

(b)

(c)

(d)

(e)

(f)

(a) (b) (c)

(d)
(e) (f)

Figure 3.9: Impact of larger GLB memories on performance and energy efficiency for CV
models at inference and training. Percentage reduction in DRAM accesses at inference (a)
and training (d). Performance Speedup from DRAM access reductions at inference (b) and
training (e). Energy savings from reduced DRAM accesses at inference (c) and training (f).
Both cases compare results to a baseline of 2MB GLB running 16 samples.

3.5.2 Impact of on-chip memory

Compared to a GLB size of 2MB, the DRAM access counts for all CV models decrease

significantly if we increase the GLB size. In inference, reaching the 100% reduction in access

means it only needs to read the initial inputs, weights for each layer, and write the final layer

output, no DRAM access is needed for the intra and inter-layer operations. Further increase

in GLB size will not improve the performance in these cases. Considering 16 samples, DRAM

access is reduced by 100% for 14 models at 128MB, and most models experience a reduction

of > 80% at 64MB (Fig. 3.9 (a)). Fig. 3.9 (b), (c) show the performance speed up and

energy saving coming from these DRAM access reductions.

We observe a slower improvement in the DRAM access reduction during training unless

the GLB size is large enough, at least 256MB for most models (Fig. 3.9 (d)). However, even

the smaller percent reduction in DRAM access results in significant performance and energy

improvement (Fig. 3.9 (e), (f)). This is because training requires at least 2× DRAM accesses

as inference. The smaller percent reduction of a large number of DRAM accesses translates

98

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Impact of batch size on performance and energy efficiency for CV models at
inference and training. Percentage increase in DRAM accesses at inference (a), at training
(d). Performance slowdown (latency increase) from extra DRAM accesses at inference (b),
at training (e). Energy increase from extra DRAM accesses at inference (c), at training (f).
In both cases, results are compared to a baseline of 16 samples running with 4MB GLB.

to a significant energy and latency improvement. A similar trend is observed for NLP models.

Transformer-based NLP models are usually larger than the CV models. This is the reason

we achieve more performance speedup and energy reduction even at smaller DRAM access

reduction rate (Fig. 3.11).We also observe that DNN models learn faster if we increase the

batch size. However, for a fixed GLB size, the DRAM access count increases significantly at

larger batch size, causing performance slowdown and more energy consumption. Fig. 3.10

and Fig. 3.12 (a, b, c for inference and d, e, f for training) show the increase in DRAM

access count and its associated impact on performance and energy for CV and NLP models

respectively at different batch sizes.

The key takeaway from this analysis is that we can reduce the energy and latency

associated with DRAM accesses if we increase the GLB size. For larger batch sizes, the

energy and latency improvement is even more. Because at large batch sizes, throughput

increases at the cost of DRAM accesses. As we increase the GLB size, DRAM accesses

reduce, and we achieve latency and energy reduction.

99

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.11: Impact of larger GLB memories on performance and energy efficiency for NLP
models at inference and training. Percentage reduction in DRAM accesses at inference(a),
at training (d). Performance Speedup from DRAM access reductions at inference (b), at
training (e). Energy savings from reduced DRAM accesses at inference (c), at training (e).
In both cases, results are compared to a baseline of 2MB GLB running 16 samples

3.5.3 DTCO of SOT for PPA Optimization

From section 3.5.2 we see that the GLB size of 64MB (for inference) and 256MB (for

training) offer significant energy and performance improvement. However, it is not feasi-

ble and efficient to use such large SRAMs because of its area and leakage power, even if

the low-power techniques are employed. Section 3.5.1 implies that we need approximately

4000bytes/cycle bandwidth between GLB and PE array for larger array size (256×256). In

this subsection, we provide the SOT-MRAM DTCO results and observation meeting the re-

quirements stated in the above two subsections. We perform the DTCO in Cadence Virtuoso

tool using the compact SOT-MRAM model from [107], and use Synopsys 14nm library [85]

for the CMOS transistors and peripheral circuits.

IC optimization

To realize the impact of SOT efficiency θSH on Ic, we sweep θSH from 0.1 to 100 (Fig.

3.13 (a)). With θSH ≥ 100, Ic goes as low as 0.5uA. Even though the widely used SOT layers

100

(a)

(d) (e)

(b)

(f)

(c)

Figure 3.12: Impact of batch size on performance and energy efficiency for NLP models at
inference and training. Percentage increase in DRAM accesses, inference (a), and training
(d). Performance slowdown (latency increase) from extra DRAM accesses at inference (b),
at training (e). Energy increase from extra DRAM accesses at inference (c), at training (f).
Results are compared to a baseline of 16 samples running with 4MB GLB.

0.
1

0.
3

0.
5

0.
7

0.
9 1

5

10

20

40

60

80

10
0

SH

0.1
1

10
100
500

I c(u
A)

40

50

60

70

80

90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

wSOT (nm)

0

50

100

150

0.
3

0.
5

0.
7

0.
9 1

3

5

10

tSOT (nm)

0

200

400

0.
2

0.
3

0.
5

0.
6

0.
7

0.
8

0.
9

10

tFL (nm)

0

200

400

(a) (b) (c) (d)

Figure 3.13: Critical current vs θSH(a), wSOT (b), tSOT (c), and tFL(d).

are made of heavy metal alloys having smaller θSH (e.g., 0.1 to 0.5), recent advancement

in material engineering demonstrates that in topological insulator θSH can go as high as

152 [117]. We recommend using topological insulators as the SOT layer to achieve a lower

switching current.

Next, we analyze the impact of SOT layer geometry on the switching current (Fig. 3.13

(b), (c)). Ic scales down linearly with the decrease of SOT layer width, and wSOT can be set

to desired value based on the performance and reliability requirement (Fig. 3.13 (b)). While

Ic scales linearly with the width of the SOT layer, the thickness of the SOT layer has an

interesting effect on the switching current. The SOT layer should be relatively thin but bulk

101

80 100 120 140 160
Isw(uA)

0

200

400

600

800

p (p
s)

WSOT = 150nm
WSOT = 100nm

40 60 80
MTJ dimension (nm)

20

30

40

50

60

70

 (k
B

T)

102

109
1012
1015

1021

t re
t(s

)

(a) (b)

Figure 3.14: (a) Switching pulse width τp vs applied switching current Isw. (b) Thermal
stability factor ∆ (left Y-axis) and retention time tret (right Y-axis) vs MTJ dimension for
a fixed retention failure rate, PRF = 10−9. At ∆ = 70, MTJ dimension = 88nm, retention
time is > 10 years [124].

1 1.5 2
tMgO (nm)

100

150

200

250

TM
R

 ra
tio

(%
)

120 160 200 240
TMR ratio(%)

200

220

240

260

280
R

ea
d

la
te

nc
y

(p
s)

(a) (b)

Figure 3.15: Impact of (a) oxide thickness on TMR, (b) TMR on read latency.

enough for heavy metal layers to experience the bulk effect to achieve high SOT efficiency.

Once it crosses optimum thickness, which is 3nm (Fig. 3.13 (c)), many of the charges that

are injected into the metal do not contribute to the switching, and Ic increases.

The smaller the free layer thickness, tFL, the smaller the switching current (Fig. 3.13

(d)). We also scale the diameter of MTJ, dMTJ , to reduce the MTJ area. However, with

the scaling down of dMTJ together with tFL, the thermal stability factor ∆ also scales down,

reducing the memory’s data retention time tret. Non-volatility is a great feature of MRAM,

but it can be compromised to achieve higher density, higher bandwidth, and lower energy

when the target application is a cache. Because, in the cache even for AI workloads, the

102

data lifetime is much shorter, typically in the seconds range [99]. Fig. 3.14(b) shows ∆ and

tret as functions of free layer volume. While scaling down tFL to optimize Ic, and dMTJ to

optimize area, we keep an eye on the reliability of the stored data. We consider a retention

failure rate of 10−9 (i.e., 1 bit flip per billion).

Bandwidth optimization

As shown in Fig. 3.15 (a), TMR ratio of the MTJ device can be increased by increasing

the oxide thickness [119]. We increase the oxide thickness to decrease the read latency (Fig.

3.15 (b)). The write pulse width is inversely proportional to the applied switching current.

While we want to lower the applied current to achieve low energy, the higher amplitude of

the applied current is required for faster magnetization reversal. However, switching occurs

at smaller pulse width at the iso-current if we scale down the SOT layer width. This is

because of the smaller critical current at smaller geometry (Fig. 3.13 (b,d)). Fig. 3.14(a)

shows that switching pulse width can be reduced significantly by scaling down the SOT layer

width. Thus, we can achieve higher write bandwidth by scaling down the SOT layer width

to meet the high BW demand from AI workloads.

Table 3.6: SOT-MRAM DTCO optimized parameters. 30% guard-band are added with
thickness and width for process variations.

Parameter Value Parameter Value
Spin Hall angle θSH 1 TMR 240%
Free layer thickness tFL 0.5nm MTJ diameter dMTJ 55nm
SOT width wSOT 130nm SOT thickness tSOT 3nm
Oxide thickness tMgO 3nm Thermal stability factor ∆ 45

103

3.5.4 Process & Temperature Variation and Bitcell Simulation

In this subsection, we perform Process and Temperature variation on the DTCO-

optimized parameters, design the peripheral circuits, and test the read-write operation on

the bit cell at scaled parameters.

Process and Temperature variation

To incorporate process variations, we model MTJ diameter, free layer thickness, and

SOT layer width as Gaussian variables in the Verilog A model of SOT-MTJ [107]. We

assume standard deviations (σ) as 5% of their respective means (µ) and perform Monte

Carlo simulations with 5000 samples within 4σ variation. We also consider the temperature

variations. The extreme point at the right side of the scaled target parameter is µ+4σ, Tcold

(Fig. 3.16). From equations 3.9 and 3.10, Isw and τp are independent of Temperature. As a

result, the worst case for write operation (highest Isw and longest τp) is at µ+4σ. This point

is, however, benign to the read operation and retention failure. As we scale down dMTJ and

tFL, ∆ also reduces, reducing tret, and Idata. ∆ reduces further as temperature increases [64].

Thus, the worst case for read operation (smallest Idata) and retention failure (smallest tret)

is at µ − 4σ, Thot (see Fig. 3.16). As Idata reduces, the difference between Idata1 and Idata0

becomes even smaller and difficult to sense.

To ensure the reliability of the SOT-MRAM bit cell, we add a 30% guard band on the

scaled SOT device parameters: 20% for process variation and 10% for temperature variation.

The optimized DTCO parameters after adding the PT induced 30% guard-band are shown

in Table 3.6.

104

(WSOT, tFL, dMTJ)scaled
Nominal Process &

Temp.
Process

variation
Temp.

reducing
Temp.

increasing
Process
variation

4σ 4σ

Worst case for
Write op. No impact on

Write op.; benign
to Read op.

Worst case for Read op.
& tret ; benign to Write op.

µ - 4σµ - 4σ, Thot µ + 4σ µ + 4σ, Tcoldµ
 Isw,τp increasing Idata, tret decreasing

Figure 3.16: Impact and distribution of Process and Temperature variation on scaled pa-
rameters.

Write operation

To write SOT-MRAM bitcell, we bias BL with the data-to-be-written and SL with the

complement of data-to-be-written. Assuming that the magnetization state of the Reference

layer is -1, to write 1 into the MTJ bitcell, we switch the magnetic orientation of the Free

layer to +1 state resulting in a high resistive state. To achieve this state, we turn on the

WWL, connect BL to VDD and SL to the ground. The resultant current switches the free

layer’s magnetic orientation from -1 to +1. The opposite bias is applied to write 0. We do

not need any additional peripheral circuits for the write operation of SOT-MTJ.

Read operation

Read operation involves sensing the current passing through MTJ at P and AP states.

For our SOT-MRAM bitcell, with the parameters shown in Table 3.6, Idata0 = 20uA and

Idata1 = 33uA. We design and optimize the read circuitry to sense this small differential

current, as shown in Fig. 3.17. Our proposed read sensing circuit only contains an additional

current mirror block (to amplify current), and it does not require the precharge circuits

105

VREF
Vdata

RDEN
RDEN

SEEN

BLSL
RWL

WWL

SE
ou
t Dout

SOT bitcell

Current
mirror

Sense amplifier &
latch

MTJ

SEEN

La
tc

h

Figure 3.17: SOT-MTJ bitcell with read sensing circuitry.

compared to SRAM. Hence, there is no additional area overhead in the periphery compared

to SRAM. The dynamic power consumption are shown in Table 3.7

To capture the stochastic nature of MTJ switching, we simulate the bit cell for 1000

bitstream. We achieve a read and write yield of 100%, and at 250ps and 520ps, respectively.

This results in read bandwidth of 4 Gbps and a write bandwidth of 1.9 Gbps. We then

dynamically allocate the memory bus width on-demand to satisfy the bandwidth requirement

for different workloads and PE array size stated in section 3.5.1.

Table 3.7: Dynamic Power consumption (in uW) of SRAM and SOT-MRAM. (1/0) means
the corresponding power to access bit 1 and 0.

Read(1/0) Write(1/0)
SRAM 426 373

SOT-MRAM 150/368 325/300

106

0

0.5

1

N
or
m
al
iz
ed

En
er
gy

(I
nf
er
)

0

0.5

1

N
or
m
al
iz
ed

En
er
gy

(T
ra
in
)

0

0.5

1

N
or
m
al
iz
ed

La
te
nc
y

(I
nf
er
)

Al
ex
ne
t

Da
rk
ne
t1
9

Da
rk
ne
t5
3

De
ns
en
et2
01

Ef
fic
ien
tn
etb
0

Go
og
len
et

In
ce
pt
io
nr
es
ne
tv
2

In
ce
pt
io
nv
3

M
ob
ile
ne
tv
2

Na
sn
etl
ar
ge

Na
sn
etm
ob
ile

Re
sn
et1
01

Re
sn
et1
8

Re
sn
et5
0

Sh
uf
fle
ne
t

Sq
ue
ez
en
et

Vg
g1
9

Xc
ep
tio
n

0

0.5

1

N
or
m
al
iz
ed

La
te
nc
y

(T
ra
in
)

0

0.5

1
SRAM_64MB SOT_64MB SOT-OPT_64MB

0

0.5

1

0

0.5

1
SRAM_256MB SOT_256MB SOT-OPT_256MB

Tr
an
sfo
rm
er

BE
RT

Di
sti
lB
ER
T

M
ob
ile
BE
RT

Sq
ue
ez
eB
ER
T

Vi
su
alB
ER
T

GP
T

GP
T-
2

GP
T-
3

GP
T-
Ne
o

GP
T-
J

0

0.5

1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.18: System level energy improvement with SOT-MRAM and DTCO-optimized-
SOT-MRAM over SRAM at the same size for CV (a-d) and NLP (e-h) models. The top
plots show energy (a, e) and latency (b, f) for inference, and the bottom plots show energy
(c, g) and latency (d,h) for training.

3.5.5 System level performance evaluation of SOT-MRAM based Memory

In this subsection, we analyze the PPA (Power, Performance, and Area) metrics at

the system level on the DNN/CNN benchmarks with SRAM, SOT-MRAM, and DTCO-

optimized-SOT-MRAM. We use the Destiny [81] memory simulator to find the array-level

data for both SRAM and SOT-MRAM. We modify Destiny source code to reflect: (i) SOT

switching mechanism, (ii) special read sensing circuit for SOT-MRAM, and (iii) 14nm CMOS

technode. Then, we feed the extracted bitcell-level data of SOT-MRAM in the .cell file to

find the PPA at the desired memory capacity.

Based on the array-level results from Destiny, and DRAM & GLB access counts from Al-

gorithms 1, and 2, we estimate the system-level power and performance. Finally, we analyze

the area of the memory modules of different technologies (14nm SRAM, SOT-MRAM, and

DTCO-opt-SOT-MRAM) at iso-capacity. This analysis only incorporates the PPA metrics

from the memory system (DRAM and GLB), assuming that the PPA of the compute unit

is constant. With SOT-MRAM as GLB, we see significant energy and latency improvement

107

over SRAM at 64MB (for inference) and 256MB (for training) (see Fig. 3.18 (a-d) for DNN

benchmarks and (e-h) for NLP benchmarks). On average, the 64MB SOT-MRAM offers 5×

energy reduction and 2× latency reduction over 64MB SRAM across all CNN models at in-

ference. Our DTCO-optimized-SOT-MRAM offers further improvement, 7× energy, and 8×

latency reduction over SRAM at iso-capacity. For latency improvement, the most contribut-

ing factor is the DRAM access reduction with large GLB and the smaller read/write latency

of SOT-MRAM at larger capacity compared to SRAM. At smaller capacity, SRAM is way

faster than SOT-MRAM [101, 105]. We observe that the most contributing factor in energy

reduction (> 50%) is the near-zero leakage power of SOT-MRAM compared to high leakage

power of SRAM. The improvement is even more in training mode; 6× (8× with SOT-opt.)

energy reduction and 2× (9× with SOT-opt.) latency reduction. With 64MB SOT-MRAM,

NLP models in inference mode experience 2× (3× with SOT-opt.) energy reduction and

2× (4× with SOT-opt.) latency reduction than 64MB SRAM. Like CV benchmarks, with

256MB SOT-MRAM, NLP benchmarks also experience more energy improvement, 6× (8×

with SOT-opt.), and latency improvement, 2.5× (4.5× with SOT-opt.), in training mode.

The more improvement in training mode is because of two reasons: (1) GLB size increases

from 64MB to 256MB, and (ii) GLB access counts are significantly large (at least 5×) in

training. Our DTCO-opt-SOT-MRAM further adds value to PPA by its smaller silicon area,

0.54× at 64MB and 0.52× at 256MB of 14nm SRAM at iso-capacity (Fig. 3.19).

3.6 Related Work

SOT-MRAMs have been widely studied as the next generation of STT-MRAM to lever-

age all benefits of MRAMs as embedded memory [100][102][103][104][105][106]. However,

very few studies have evaluated the performance of SOT-MRAM as on-chip memory in

108

Figure 3.19: Area improvement of SOT-MRAM and SOT-MRAM-OPT

system-level for AI accelerators. [101] and [112] demonstrated the performance improve-

ment of SOT-MRAM as L2 data cache compared to SRAM L2 cache on MiBench, SPEC2000

and SPEC2006 benchmarks. SOT-MRAMs have also been explored in the context of DL

accelerators as a promising technology for In-Memory Computing (IMC) or Computing-In

Memory (CIM) [113][114][115] [125][126]. IMC/CIM over conventional AI accelerator has

pros and cons, and the detailed comparison between these two domains is outside the scope

of this work. Our work, where we use SOT-MRAM as the cache storage element, differs

from crossbar-based in-memory computing. While the scope of SOT-MRAM has been ex-

plored both as regular CPU cache and IMC for DL accelerator to some extent, to the best

of our knowledge, unlike IMC, this is the first work that presents a comprehensive analysis

of SOT-MRAM as on-chip memory for application in AI/DL accelerators.

3.7 Conclusion

In this research, we presented a System and Design Technology Co-optimization method-

ology for efficient and high-performance memory system design with SOT-MRAM for modern

AI accelerators. Guided by detailed target workload characterization, our memory system

comprises of HBM3 DRAM, a DTCO-enabled SOT-MRAM GLB and a small SRAM buffer.

109

Our large SOT-MRAM GLB significantly reduces the energy and latency by reducing ex-

pensive DRAM accesses while still having acceptable on-chip access energy and latency,

achieving overall system-level high performance. We finally demonstrate that our memory

system performs 8× and 9× better in terms of energy and latency respectively on CV bench-

marks in training (7 and 8 times better in inference) and 8× and 4.5× better in terms of

energy and latency respectively on NLP benchmarks in training (3 and 4 times better in

inference) while consuming only around 50% of SRAM area at iso-capacity.

110

Chapter 4

Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement

Learning

4.1 Introduction

As Large Language Models (LLMs), such as chatGPT, GPT-4, LLaMA [174], etc., gain

widespread use, there is a growing demand for energy-efficient hardware that can deliver high

throughput. To support hundreds of trillions of operations and hundreds of gigabytes of data

movement, the high-performance and energy-efficient hardware demands more silicon area,

accommodating more compute cores and memory capacity. Training any state-of-the-art AI

or Deep Learning (DL) model with a single GPU or accelerator is nearly impossible due

to extreme computing and memory demands. The data centers are equipped with clusters

of powerful computers and GPUs connected via PCIe, NVLink, etc.[45][134]. Even though

these supercomputers can deal with large workloads, they consume a significant amount of

energy [45] and involve longer latency. Because off-board communications consume at least

one order of magnitude more power and time than any on-package communications [170].

The ideal scenario would be a hardware capable of housing the entire model parameters

and intermediate activations on-chip[172], promising optimal performance and energy effi-

ciency. Unfortunately, this is not feasible due to the stagnation of Moore’s law and Dennard

scaling, die size reaching the reticle limit, and the prohibitive manufacturing cost and yield

limitations[134]. Consequently, researchers endeavor to replicate this ‘hypothetical ideal’

hardware concept by integrating multiple smaller chiplets at the package level, allowing

near-ideal performance while minimizing costs and energy consumption.

With the advent of advanced packaging technologies, the chiplet-based heterogeneous

integration has opened up a new dimension of chip design, More-than-Moore [134]. In

chiplet-based system, multiple chiplets (i.e., SoCs) of diverse functionalities (e.g., logic dies,

111

memories, analog IPs, accelerators etc.) and tech nodes (e.g., 7nm or beyond) from different

foundries are interconnected in package level using the advanced packaging technologies,

such as CoWoS, EMIB, etc. [134]. The value proposition of chiplet-based architectures is

manifold. Compared to multiple monolithic SoCs interconnected via off-package or off-board

links such as PCIe, NVLink, CXL etc. [134], package-level integration of multiple monolithic

SoCs via 2.5D or 3D has accelerated performance and lower energy consumption, alleviating

off-package communications. Chiplet-based systems offer lower RE (Recurrent Engineering)

cost by providing higher yield and lower NRE (Non-Recurrent Engineering) by enabling IP

reuse and shortening IC design cycle [149].

The commercial chiplet-based general purpose products [140] [138] are designed and

developed at vertically integrated companies without exposing much knowledge about the

chiplet-based architectures’ design space. Unlike these general purpose products, chiplet-

based AI accelerators demand extensive design space exploration to hit the target Power,

Performance, Area, and Cost (PPAC) budget. From architectural perspective, designers

must consider the resource allocation, mapping and dataflow of the DNN workloads. From

communication and integration perspective, chiplet placement, routing protocols, stack-

ing/packaging technologies, interconnect types, and finally from application perspective,

system requirement, such as reliability, scalibility etc., should be considered all at the same

time while optimizing for PPAC [41]. The existing works often focus either on the archi-

tectural or integration aspects as a separate design flow: explore routing and packaging

given chiplets [141][143][144] or explore chiplets architecture given the packaging [16][34]

[36][172]. An isolated approach, addressing individual aspects independently, may result in

sub-optimal designs due to the inter-dependency among these factors. For instance, varying

resource allocation impacts communication demands, influencing the choice of packaging and

its configuration, consequently leading to cost variations.

112

Currently, many flavors of packaging technologies, both from 2.5D and 3D, are avail-

able from the industry leaders, which makes it difficult for system designers and integrators

to choose the optimum set of configurations from the vast design space based on the sys-

tem requirements [134]. The various packaging technologies differ in fabrication cost and

complexity, performance, and underlying integration technologies [134]. As a result, no sin-

gle package technology can be marked as superior to others. Each of the other domains,

such as resource allocation, chiplet granularity, placement, Network on Package (NoP), and

interconnect architectures, to name a few, also has an extensive design space. A proper

co-optimization across all these domains based on the system and application requirements

at the available cost is necessary for a successful chiplet based system design.

Optimizing all possible domains results in a combinatorial explosion where brute force

search is not an option and random search might not result in the optimum point. The

expensive simulation environment of chip design exacerbates this problem.

To overcome these limitations, in this chapter, we make the following contributions:

bridging the gap between the system requirements and design aggregation, planning, and

optimization for chiplet-based architecture.

• We develop a co-design methodology for chiplet-based AI accelerators. The co-design

task contemplates resource allocation, such as the number of AI chiplets, memory ca-

pacity, and bandwidth; partitioning and placement of chiplets such as aspect ratio of

the accelerator chiplet arrays, and logical placement of accelerator and memory chiplet;

different packaging technologies (i.e., CoWoS, EMIB, SoIC, and FOVEROS [134]) and

their attributes such as bandwidth, bump pitch density, cost and complexity, to opti-

mize the system-level Power, Performance, Area, and Cost (PPAC) of the chiplet-based

AI accelerators.

113

• We formulate an analytical cost model for assessing the chiplet-based architectures.

This analytical model enables us to assess the chiplet-based AI accelerator in a time-

and-resource-constrained environment.

• To optimize throughput, energy efficiency, and cost, we identify the inter-dependency

of the design space parameters and formulate the optimization problem as a Reinforce-

ment Learning (RL) problem. We also explore non-RL based optimization approaches,

such as simulated annealing, and combine these two approaches to ensure the robust-

ness of the optimizer.

• Finally, we validate our methodology by comparing the performance of our optimized

design against state-of-the-art monolithic GPU on MLPerf benchmark and justify the

performance improvement.

The rest of the article is organized as follows. Section 4.2 presents the background.

Section 4.3 describes the analytical modeling and design space exploration. The optimization

framework is presented in section 4.4 followed by experiments and results in Section 4.5,

related works in Section 4.6, limitations and future works in Section 4.7 and conclusion in

Section 4.8.

4.2 Background

4.2.1 AI workloads and Accelerators

AI workloads

The primary domains of AI encompass Computer Vision (CV), Natural Language Pro-

cessing (NLP), Recommender Systems, and Reinforcement Learning. The integration of

114

these domains has led to the emergence of Generative AI, enabling models to generate di-

verse content, including text and images. In Generative or Multi-modal AI, diverse AI/DNN

(Deep Neural Network) models are fused together to generate an output.

While the architectural characteristics and parameters of LLM and CV models may dif-

fer, their fundamental components share similarities with the structure of Transformer[111]

for NLP and ResNet[55] for CV, respectively. The critical operations in CV models involve

regular convolution, Depth-wise or Point-wise convolution, residual blocks, FC (Fully Con-

nected) operations, whereas the scaled-dot product attention operations, and FC operations

dominate in LLM. These operations can be expressed as or converted to matrix-matrix/vector

multiplication (GEMM) with massive parallelism.

PE Core

AI Accelerator

SRAM BufferSpecial Function
Unit (SFU)

HA

WA

 PE Reg file MAC PE Unit

Global Buffer

Figure 4.1: AI accelerator chiplet architecture

AI Accelerator

Systolic array [164] type architecture, leveraging the inherent parallelism of DNN work-

loads, has been used as the core of AI accelerators. A typical AI accelerator is composed of

arrays of Processing Element (PE) for computation and on-chip buffer to hold the weights

and activations. PEs are composed of Multiplier-Adder (MAC) units and small register file

for each MAC units to hold the stationary data, depending on the dataflow. The size of

the PE array, memory hierarchy, and memory size are critical design parameters of an AI

accelerator. Fig. 4.1 shows an AI accelerator with a PE core, Special Function Unit (SFU),

115

Package

AI accel. HBM µbump

C4 bump

Interposer
(silicon/organic)

RDL

CoWoS (TSMC)

AI accel. HBM

Package

EMIB
interconnect

EMIB (Intel)

HBM AI accel.CPU

Package

2.5D
interconnect

3D
interconnect

HBM CPUAI accel. HBM AI accel.

AI accel. AI accel.

Package

(a)

HBM

AI accel.CPU

Package

HBM

(b)

Package

Interposer

Package

Interposer

Die 0

Die 1
µbump/
hybrid
bond

Die 1

TSV

Die 0

(c)

F2F bonding:
FOVEROS/SoIC SoIC

F2B bonding:

Figure 4.2: Top-level system architecture for different scenarios. (a) CPU, AI accelerator and
HBM chiplets are connected in package level through 2.5D interconnects. CoWoS and EMIB
are two options of 2.5D interconnects. (b) CPU and AI accelerator chiplets are connected
through 2.5D interconnects and HBM is stacked on top of CPU and AI accelerator through
3D interconnects. (c) Two AI accelerator chiplets are stacked on top of each other through
3D interconnects and they are interconnected to CPU, HBM and other AI chiplets pair
through 2.5D.

and Global Buffer. The PE core contains a small SRAM buffer and bunch of PE units. Each

PE consists of a MAC unit and a reg. file [178].

4.2.2 Chiplets and Heterogeneous Integration

2.5D architecture

In 2.5D architecture, two or more chiplets, fabricated separately, are connected side-by-

side with each other in package-level through interposer (silicon/organic) or silicon bridge.

Two commercial 2.5D interconnects are Chip on Wafer on Substrate (CoWoS) from TSMC

[129] and Embedded Multi-die Interconnect Bridge (EMIB) from Intel [130]. In CoWoS,

two side-by-side dies are connected with each other and with package substrate through an

intermediate interposer layer [129]. Interposer can be active and passive. Active interposer

contains embedded logics and Re-Distribution Layers (RDL) where as passive interposer

116

containing RDLs are only used for routing purpose. CoWoS typically employs passive in-

terposer for 2.5D integration. In contrast, Intel’s EMIB utilizes thin silicon pieces with

multilayer BEOL interconnects (Silicon Bridge) embedded in the organic package substrate

for high-density localized interconnects, eliminating the need for a separate interposer layer

[130]. CoWoS and EMIB architectures are illustrated in Fig. 4.2 (a).

3D architecture

In 3D, two or more separately fabricated chiplets are stacked on top of each other

through 3D interconnects formed with copper micro-bumps, or hybrid wafer bonding [156].

Depending on the bonding interface orientation of the interconnected dies, different bonding

configurations are possible, such as face-to-face (F2F), face-to-back (F2B), back-to-back

(B2B) etc. Intel’s FOVEROS [131] uses F2F bonding where the face of the top die is

bonded to the face of the bottom die (active interposer) through Cu micro-bump connections.

Bottom die is connected to the package through TSV [131]. TSMC has the option of both

F2F and F2B bonding configuration in their System on Integrated Chips (SoIC), however,

they use hybrid bonding instead of Cu µ-bumps [133]. The latest upgrade of FOVEROS,

FOVEROS-Direct, also leverages direct cu-cu hybrid bonding for inter-die interconnection.

Recently, both 2.5D and 3D can be integrated on the same package and these architectures

are known as 5.5D [180].

4.3 Throughput formulation and Design space exploration

In this section, we formulate the cost model for chiplet-based AI accelerators, including

throughput, energy, and cost. We perform design space exploration to comprehend the

influence of various design parameters on the cost model.

117

4.3.1 Top level Architectural exploration

We explore two architectural approaches: (i) 2.5D architecture, where all chiplets are

connected with each other at the package level through 2.5D interconnects (Fig. 4.2(a)).

(ii) 5.5D (combining 2.5D and 3D)[180] where two or more 3D-stacked (connected via 3D

interconnects) chiplets are further linked through 2.5D interconnects (Fig. 4.2 (b) & (c)). In

all cases, the architecture of the AI accelerator chiplet is a regular systolic-array composed

of PE array and dedicated on-chip buffer shown in Fig. 4.1[178]. However, the number of

PE units and on-chip buffer size varies with the number of allocated chiplets, as we consider

a fixed package size.

2.5D architecture

In 2.5D architecture, we consider that CPU, AI accelerator, and HBM chiplets are

connected at the package level through 2.5D interconnects (Fig. 4.2 (a)). We explore two

2.5D integration technologies, EMIB and CoWoS, and their different configurations.

5.5D architecture (combining 2.5D and 3D)

5.5D architecture is divided into two cases: (i) memory-on-logic, where HBMs are

stacked on top of CPU and/or AI chiplets as shown in Fig. 4.2 (b), and (ii) logic-on-logic,

where two AI chiplets are 3D-stacked on top of each other. These 3D-stacked AI chiplets are

connected to CPU and/or HBM and other 3D-stacked AI chiplets through 2.5D intercon-

nects as shown in Fig. 4.2 (c). To avoid temperature-induced breakdowns [156], we limit our

exploration to only 2-tiers. We explore the off-the-shelf 3D integration techniques, SoIC and

FOVEROS, and their different configurations. Depending on the integration technology and

their configuration settings, these architectures offer different bandwidths, energy efficiency,

area efficiency, and cost.

118

4.3.2 Throughput and Energy efficiency formulation

Throughput

We define system throughput as tasks completed per second,

T =
tasks

sec
(4.1)

tasks represents different entities depending on the DNN domain and its mode of operations.

During inference, tasks represents the number of inferences. During the training of CV

and NLP models, tasks means the number of images and tokens processed per second,

respectively. tasks/sec can be decomposed into [150]

tasks

sec
=

ops

sec
× 1

(ops
task

)G
× 1

(ops
task

)nG
×Meff (4.2)

Here, ops/sec depends on both DNN hardware and DNN models. GEMM operations per

task, (ops/task)G, and non-GEMM operations per task (ops/task)nG depend on only DNN

models, and Meff , mapping efficiecny depends on DNN models and hardware, along with

mapping strategies. ops means the MAC operation. The GEMM operations are performed

in the systolic array. The non-GEMM operations such as softmax is performed in the SFU of

the accelerator. Dropout and residual operations manifested as Element-wise multiplication

and addition, are also performed using the MAC modules. Layer normalization and other

reduction or control flow operations are taken care of in the ALU or scalar unit of the SFU.

For a system comprising multiple AI accelerator chiplets, the operations/sec is expressed

as,

(
ops

sec
)sys = (

ops

sec
)AI chip × AI chiptot × Usys (4.3)

119

Where (ops/sec)AI chip is the peak throughput per AI chiplet, AI chiptot = total number

of AI chiplets, and Usys = system utilization factor. It represents the effective fraction of

the active chiplets out of the total chiplets. It depends on the interchiplet communication

bandwidth (BWAI−AI), determined by choice of the packaging architecture, package type,

and their different configuration. In section 4.3.4, we describe this in detail. The peak

throughput per AI chiplet is expressed as

(
ops

sec
)AI chip = (

1
cycles
op

× cycles

sec
)× PEtot × UAI chip (4.4)

Where,

cycles

op
= cyclecomm + cycleop∗ (4.5)

cyclecomm = chiplet-to-chiplet communication latency, cycleop∗ = arithmetic operation la-

tency of the chiplet microachitecture, and cycles/sec=f , frequency of the AI accelerator

chiplets. cyclecomm depends on the distance between the data source and destination. It is

impacted by the chiplet allocation, chiplet array dimension (i.e., number of AI chiplets in X

and Y dimension) and the physical location of the AI and HBM chiplets. cycleop∗ depends

on the micro-architecture of the chiplet (design of PE array, MAC unit) and the type of

operations. We assume that all AI chiplets can operate at the same frequency and have the

same architectural and functional configuration. However, the frequency of each chiplet can

be further controlled based on the data traffic and location of chiplets to optimize system

throughput and energy. PEtot = total number of PEs per AI chiplet, and UAI chip = chiplet

utilization representing the fraction of PEs utilized during computation. UAI chip depends

on mapping of the AI model tasks to the accelerator.

120

Energy efficiency

Energy efficiency is paramount when processing DNN at edge devices and cloud data

centers. Edge devices are usually constrained by battery life and thermal budget, and data

centers are typically constrained by electricity bills, thermal budget, and environmental

impact [45]. Data centers are mainly focused on achieving higher throughput, which requires

higher energy budget. In this work, we closely monitor energy efficiency while maximizing

the throughput.

We define energy efficiency (Eeff) of a system as tasks completed per joule:

Eeff =
tasks

joule
=

1
joules
ops

∗ 1
ops
task

(4.6)

joules/operations depends on both DNN hardware and DNNmodels, whereas operations/task

depends only on the considered DNN model. We break down the energy per operations, Eop,

(i.e. joules/operations) into its constituent parts:

Eop = Ecomm + Eop∗ (4.7)

Ecomm is the energy required to transfer data from chiplet-to-chiplet and Eop∗ is the energy

to perform an arithmetic operation. Ecomm depends on the choice of packaging architectures

(e.g., 2.5D, 3D), interconnect types (e.g., EMIB, CoWoS, FOVEROS, SoIC), and the data

traffic, whereas Eop∗ depends on the microarchitecture.

4.3.3 Chiplet allocation and Placement

In the context of chiplet-based accelerator design, determining the number of chiplets,

area allocated to each chiplet, and their placement becomes pivotal, as they impact the

121

throughput, energy, and cost. Here we will delve into the relationship between yield, area,

cost, communication latency across various chiplet configurations.

= Yield
= Cost

(a) (b)

Figure 4.3: (a) Yield (left y-axis) and normalized cost per yielded area (right y-axis) vs area
at different tech nodes. (b) Normalized latency vs number of chiplets.

Yield and Cost vs Area

Intuitively, as the chip area increases, its compute and memory capacity increases,

ensuring high performance and energy-efficiency. However, as shown in Fig. 4.3 (a), we are

limited by the fact that in advanced tech nodes, as the chip area increases, yield decreases,

resulting in increased cost per area [149]. The yield of the manufactured chip, Ydie is expressed

as the following Negative Binomial model:

Ychip = (1 +
dA

α
)−α (4.8)

where d is the defect density of the tech node, A is the area of the chip, and α is the cluster

parameter. Assuming P0 as unit price, we can also estimate the cost per yielded area as

Cyield =
P0

Ychip

≈ P0(1 + dA+
α− 1

2α
d2A2) (4.9)

122

Inter-Chiplet Communication Latency

As mentioned earlier, the chiplet-to-chiplet data communication latency, cyclecomm, im-

pacts the system performance by contributing to cycles/operations.

Data transfer between chiplets occurs through the package-level interconnects such as

CoWoS, EMIB, FOVEROS, SoIC etc. Considering that the data might be supplied from

another AI-chiplet or directly from HBM, we estimate both AI-AI chiplet communication

latency, LAI−AI , and HBM-AI communication latency, LHBM−AI .

cyclecomm =


LAI−AI if data moves from AI to AI chip

LHBM−AI if data moves from mem. to AI chip

(4.10)

Impact of AI chiplet count. As the number of chiplet increases, the physical distance

between the source and destination chiplet increases, resulting in increased communication

latency. We consider 2D-mesh topology, which is widely used in tile-based architecture for its

simplicity and scalability. Routing in the package substrate is more intricate than on-chip.

As a result, tile-based chiplet architectures have been architected with mesh topology[16].

Fig. 4.3 (b) shows that communication latency increases drastically with the number of

chiplets for a mesh topology.

Impact of Chiplet array dimension.

The longest AI-to-AI chiplet communication latency is expressed as

LAI−AI = HAI−AI × tw +HAI−AI × tr + Tc + Ts (4.11)

As we consider a 2D mesh of AI accelerator chiplets, HAI−AI = m+n−2 denotes the number

of hops between the source-destination pair. m,n represent the number of AI chiplets in the

X and Y dimension of the array, respectively. tw is per-hop wire delay, tr, Tc, and Ts are

123

router delay, contention delay, and serialization delay, respectively [151]. Here, tw, tr, Ts are

design time metrics, that depend on tech. node, interconnect technologies, circuit, and mi-

croarchitecture design, Tc depends on workload/data traffic. For a fixed number of chiplets

and routing topology, HAI−AI depends on the chiplet array X and Y dimension. We try to

keep the aspect ratio of the chiplet array as close as possible to 1 to reduce the communi-

cation latency. In addition, the physical dimension of the chiplet array impacts the system

performance by affecting the choice of dataflow and workload mapping strategies [34]. For a

fixed dataflow and mapping strategy, the system performance largely depends on the chiplet

array dimension as shown in Fig. 4.4.

Impact of HBM/CPU count and location. We analyze the impact of dividing the

allocated HBM into multiple chiplets and placing the chiplets in multiple positions on sys-

tem latency. Partitioning a large chunk of memory into multiple memory chiplets (instead

of placing the large memory in one place) and placing these multiple memory chiplets in

different locations improves the system latency. Unlike, AI chiplet counts, as the number

of HBM chiplets increases, communication latency decreases. Because the communication

latency depends on the physical location of the data [16]. Fig. 4.4 illustrates how chiplet

partitioning and placement improve the system latency.

As we consider a 2D mesh of AI accelerator chiplets, there are 6 locations: left, right,

top, bottom, middle, and 3D stacking, to place the HBM chiplets around the AI chiplets

array. These locations result in 26 − 1 combinations for HBM/CPU placements. We model

LHBM/CPU−AI same as equation 4.11, where HAI−AI is replaced by HHBM/CPU−AI .

We use the model presented in [179] to calculate HHBM/CPU−AI for different locations

of HBM/CPU pair. We consider a 16GB (8-stack, each stack 16Gb) HBM3 chiplet [135],

giving the highest capacity of 80GB with 5 chiplets. We assume that each HBM chiplet

has a dedicated memory controller and NoC router integrated within it [182]. As a result,

124

LAI-to-AI = 7 hops

src

des

src

des

AI chiplet array

src

des

AI chiplet array

LAI-to-AI = 7 hops

src

des

AI chiplet array

LAI-to-AI = 7 hops

src

des

AI chiplet array(a)

LAI-to-AI = 7 hops

src

des

AI chiplet array(a) AI chiplet array

HBM (src)HBM (src)

des

LHBM-to-AI =7 hops

AI chiplet array

HBM (src)

des

LHBM-to-AI =7 hops

AI chiplet array

HBM (src)

des

LHBM-to-AI =7 hops

(b) AI chiplet array

HBM (src)

des

LHBM-to-AI =7 hops

(b)

(d)

AI chiplet array

des

LHBM-to-AI = 6 hops

AI chiplet array

des

LHBM-to-AI = 6 hops

AI chiplet array

des

LHBM-to-AI = 6 hops

(c)

AI chiplet array

des

LHBM-to-AI = 6 hops

(c)

(2)

(2) (2) (2)

(2)

(2)

(2)(2)(2)

(2) (2) (2)

(2)

(2)

(2)(2)

LHBM-to-AI = 3 hops

Figure 4.4: Illustration of latency (in terms of hop) calculation. (a) AI2AI chiplet commu-
nication, considering the farthest chiplets as source-destination pair. (b) One HBM chiplet,
located at the left connected in 2.5D, and the farthest AI chiplet as source-destination pair.
(c) One HBM chiplet, 3D-stacked on top of a left-most AI chiplet, and the farthest AI chiplet
as source-destination pair. (d) 5 HBM chiplets are placed in 5 different positions. The high-
est latency decreases from 6 hops (case (c)) to 3 hops with most of the AI chiplets can be
provided with data in 2 hops by nearest HBMs.

at iso-memory-capacity (i.e, same number of HBMs with integrated memory controller) the

cost associated with HBM for both monolithic and chiplet systems is equivalent.

The host CPU is primarily responsible for dispatching the workloads to the accelerator

chiplets. The package area is shared by accelerator chiplet, HBMs as well as CPUs. However,

the majority of the package area is used for AI computing and HBM memories [182][16].

Hence, in this work we only focus on the AI accelerator and HBMs.

The above discussion suggests that, for cost-effective integration of more functionali-

ties, we should partition the total chip area into multiple chiplets, each with smaller areas.

125

x11 x12 x13 x14
x21
x31
x41

x22 x23 x24
x32 x33 x34
x42 x43 x44

w11 w12 w13 w14
w21
w31
w41

w22 w23 w24
w32 w33 w34
w42 w43 w44

A
B
C
D

E F G H

DRAM

Ch-1
A.E
B.E

Ch-3

Ch-2

Ch-4

C,D,E
D.E
C.E

A.F
B.F

C,D,F C.F
D.F

Ch-5

Ch-7

Ch-6

Ch-8

C,D,G

C,D,H

A.G
B.G

A.H
B.H

C.G

C.H

D.G

D.H

x
DRAM

Ch-1
o11
o21

Ch-3

Ch-2

o42

o41

o31

o12
o22

o32

Ch-5

Ch-7

Ch-6

Ch-8

o13
o23

o14
o24

o33

o34

o43

o44

Ch-4

o31,o41

o32,o42

o33,o43

o34,o44

o11 o12 o13 o14
o21
o31
o41

o22 o23 o24
o32 o33 o34
o42 o43 o44

=

(a)

= Input flow = Output flow = Idle link = Partial sum flow

(b) (c)

Figure 4.5: Illustration of mapping and dataflow. (a) Splitting the matrices into smaller
parts for different chiplets. (b) Initial data supply from DRAM. Once the chiplets are loaded
with required data, computation begins. (c) Final output collection to the DRAM. In this
dataflow, there is no inter-chiplet communication during computation for partial sum.

From the yield and cost perspective, the more the number of chiplets, the better throughput

and less cost. However, this also introduces another consideration: an increase in the num-

ber of chiplets results in higher inter-chiplet communication latency, ultimately diminishing

throughput and energy efficiency. Therefore, a balance must be struck between dividing the

area into an appropriate number of chiplets to enhance functionality and ensure the associ-

ated communication latency does not compromise overall system performance and efficiency.

4.3.4 Package architectures and configurations

We explore different packaging architectures, interconnects, and their different configu-

rations [129][130][131][133] to analyze their impact on the system performance and budget.

Inter-chiplet communication bandwidth

The system utilization term, Usys, of equation 4.3 depends on the inter-chiplet commu-

nication bandwidth. We define Usys:

Usys =
BWact

BWreq

(4.12)

126

Where, BWact is the actual bytes of data transferred per sec and BWreq is the required

bytes to keep all the neighboring AI chiplets at 100% utilization, i.e., no stalling for data.

For the layout of AI and HBM chiplets we consider in this work, the HBM chiplet needs

to deliver data to its 4 neighboring AI chiplets simultaneously at most, and any AI chiplet

needs to deliver data to its 1 neighboring chiplets at most. However, it can change with

the mapping strategies. As the communication between CPU and AI chiplet primarily

involves the instruction dispatch and output accumulation, the communication bandwidth

is dominated by bandwidth requirements of the AI accelerator to HBM chiplet.

Chiplet mapping exploration. For large sequence lengths and batch sizes of NLP/LLM

models as well for large FC/Conv. layers of DNN models, the matrix sizes get larger, which

need to be split temporally in the monolithic chips if the monolithic chip does not contain

enough PE units and memory. Having multiple chiplets, the matrices can be split spatially

and mapped to multiple chiplets, performing parallel computation.

As illustrated in Fig. 4.5(a-c), the input matrix is split along rows (A, B, C, D), and

the weight matrix is split along columns (E, F, G, H). Chiplets 1, 3, 5, 7 handle data chunks

A and B, while Chiplets 2, 4, 6, 8 handle C and D. The weight matrix portions (E, F,

G, H) are distributed to all chiplets accordingly. During initialization, the DRAM supplies

data 4 × [A,B,C,D], and [E,F,G,H] simultaneously to chiplets 1, 3, 5, 4, with A and

B reaching neighboring chiplets in one hop and C and D reaching distant chiplets in the

next hop. Data chunks E, F, G, H reach neighboring and distant chiplets in one hop and

two hops, respectively. The outputs are collected back to DRAM once the computations

are completed. Outputs from neighboring chiplets (ch-1, ch-3, ch-5, ch-7) reach DRAM in

one hop, while outputs from distant chiplets reach DRAM in two hops. No inter-chiplet

communication is required for partial sum accumulation, however, the required AI-HBM

bandwidth (or number of channels) is higher in this mapping strategy, as DRAM needs to

127

broadcast [A,B,C,D] to all four neighboring chiplets. According to the above mentioned

mapping and dataflow, the required bandwidth is formulated as

BWreq =


4×No × dw × f × (ops

sec
)AI chip if src. is HBM

1×No × dw × f × (ops
sec

)AI chip if src. is AI chip

(4.13)

Where, No is the number of operands required to perform a MAC operation, which is 2 in

general (two multipliers for the multiplication and no new external operands are needed for

addition). dw is the data width and (ops/sec)AI chip is the peak throughput of the AI chiplet,

and f is the frequency of the accelerator. If BWact ≥ BWreq, then there is no stalling in

initializing the chiplets’ PE array with data. However, if BWact < BWreq, then there will

be ⌈BWreq

BWact
⌉ cycle stalling for operand data to start the computation. We penalize the overall

system throughput with these stalling periods while estimating the system throughput. From

equation 4.13, the required bandwidth is smaller if the peak throughput of the AI chiplet is

low, resulting in less penalty.

Impact of Data rates and Link count. The data rate per pin (in Gbps), DR, and the

number of links assigned for data transfer, L, of different package type determine the active

bandwidth, BWact,

BWact = DR× L (4.14)

DR and L depend on the interconnect technology. It plays a significant role in the system

throughput by contributing to the system utilization.

128

Inter-chiplet communication energy

Interchiplet communication energy Ecomm depends on the packaging architecture and

the data transfer volume. We model it as

Ecomm = Ebit pkg × bittot (4.15)

Ebit pkg is the energy per bit data communication for different interconnect technologies, and

bittot is the data traffic required for the desired operation.

Impact of trace length and no. of RDL layers. For a specific data rate and link count,

Ebit pkg again depends on trace length, tr len, (link-to-link distance between two intercon-

nected dies). To achieve a specified data rate over a longer trace length, intricate circuit

techniques and more RDL layers are required resulting in the Ebit pkg ∝ tr len relationship

[129].

Packaging cost

The packaging cost (CP) depends on the packaging architecture and interconnect type.

For the same package type, the packaging cost again depends on (i) package area (AP), (ii)

number of layers (i.e., core and RDL), and (iii) link count (L) and modeled as [153] :

CP = µ0AP + µ1L+ µ2 (4.16)

Where µ0, µ1, and µ2 are the regression parameters based on the number of core and RD

layers. In this work, we consider a fixed package area of 900mm2, leaving the packaging cost

dependent on the number of package layers and link density.

The above discussion suggests that, based on the BWreq, which also depends on the

number of chiplets, energy and cost budget, appropriate allocation of DR and L requires

129

co-optimization, such that the hardware is not suffering from under-utilization while not

spending too much budget unnecessarily.

4.4 Optimizing Chiplet-based Architecture

In this section, we build a framework to efficiently navigate the search space, as detailed

in Table 4.1, aiming to optimize throughput, energy, and cost efficiency. We formulate the

objective function as:

max
X∈D

αT (X)− βE(X)− γC(X) (4.17)

where T, E, and C are the throughput, energy, and cost, respectively, expressed as

the function of design parameters, X, within design space, D. α, β, γ are the user-specified

constants which let the users put specific weightage on the desired metrics.

Table 4.1: Parameters and values of Design Space

Parameter Values
Architecture type 2.5D, 5.5D: (i) memory-on-logic

(ii) logic-on-logic
No. of chiplets 1 to 128 @ step of 1

No. & location of HBMs
Left, right, top, bottom, middle,
3D stacked; 26 -1 location

AI2AI interconnect 2.5D CoWoS, EMIB
AI2AI data rate 2.5D (Gbps) 1 to 20 @ step of 1

AI2AI link count 2.5D 50 to 5000 @ step of 50
AI2AI trace length (mm) 2.5D 1 to 10 @ step of 1

AI2AI interconnect 3D SoIC, FOVEROS
AI2AI data rate 3D (Gbps) 20 to 50 @ step of 1

AI2AI link count 3D 100 to 10,000 @ step of 100
AI2HBM interconnect 2.5D CoWoS, EMIB

AI2HBM data rate 2.5D (Gbps) 1 to 20 @ step of 1
AI2HBM link count 2.5D 50 to 5000 @ step of 50

AI2HBM trace length 2.5D (mm) 1 to 10 @ step of 1

Comprising of 14 parameters and their possible values, our parameter space has more

than 2× 1017 design points which poses challenges for exhaustive search due to its time and

130

resource-intensive nature. To address this, we explore learning-based and meta-heuristic

search approaches to efficiently reach global or near-global optima.

Because of the inherent stochastic nature of Reinforcement Learning (RL) and Simulated

Annealing (SA) algorithms, we observe slight variations in the achieved objective function

values. To enhance the robustness of the optimizer, we train multiple RL models and SA

algorithms with different seed values. Subsequently, we perform an exhaustive search across

the outcomes of these algorithms to pinpoint the optimum solution (refer to Alg. 3). An

overview of the optimization framework is presented in Fig. 4.6. It takes the design space

and constraints as input and outputs the optimized design points.

Algorithm 3: Proposed optimization algorithm

1 t← Trialmax;
2 objbest ← −inf ;
3 while t ≤ Trialmax do
4 paramSA, objSA ← SA();
5 if objSA > objbest then
6 parambest, objbest ← paramSA, objSA;
7 end
8 paramRL, objRL ← RL();
9 if objRL > objbest then

10 parambest, objbest ← paramRL, objRL;
11 end

12 end
13 return parambest, objbest

4.4.1 RL problem formulation

RL tries to mimic human learning behavior to learn about a new environment. In

RL, an Agent continuously interacts with an Environment, takes Actions by observing

the present State of the environment, receives feedback as a form of Reward from the

environment, and updates its underlying Policy to take new actions to maximize reward.

After enough interaction with the environment, the agent can take a specific set (sequence) of

131

- Constraints: Package area, max area per chiplet, compute &
memory resources per chiplet, min. distance between chiplets
- Optimization objective: Throughput, energy, cost etc.

Design Space

- Architecture type, - Chiplet allocation & placement,
- HBM allocation & placement, - AI2AI interconnect type,
data rate, bump density, trace length, - AI2HBM
interconnect type, data rate, bump density, trace length

Convergence
criteria met?

Analytical Simulator

Terminate process

Output: Optimized parameters (system prototype)

Yes

No

Explores design space and tries to select
best parameter

Evaluates design
choices and quantifies

cost function

Throughput model

Energy model

Cost model

Optimizer (Reinforcement Learning + Simulated Annealing)

Post synthesis
area, power of
unit building

blocks

Figure 4.6: Optimization framework overview

actions that maximize the reward in the given environment. Formulating a Markov Decision

Process (MDP) consisting of a tuple of five key elements: < S,A,P , r, δ > is at the core of

formulating an RL problem. Where S = State space, A = Action space, P = Transition

probability matrix of going to St from St−1 by taking action At−1, r = Reward function, and

δ = discount factor that takes any value between [0, 1] [154].

Environment provides feedback to the agent by quantifying the rewards. In our case, we

incorporate our analytical expressions discussed in Section 4.3 into a Gym[166] environment,

known as Chiplet-Gym, to assess the performance of the action taken by the agent.

State or Observation space contains the set of all possible states of the environment. It

should include all the information for the agent to take the next action, making the process

an MDP. In our case, the observation space contains the following items: {maximum package

area, the maximum area allowed per chiplet, current area per chiplet, ai2ai communication

132

latency, ai2hbm communication latency, current communication energy, current packaging

cost, current throughput}.

Action space defines the set of all possible actions available to the agent each time step.

Our action space, consisting of a combination of discrete integers and categorical values,

corresponds to the parameters we aim to optimize. Given the state of the environment and

the reward, the agent selects values for each of the parameters in Table 4.1 to maximize the

reward.

Reward is provided to the agent as a form of feedback in response to every action it takes.

We formulate the reward function same as the objective function we want to maximize

r = αT − βE − γC (4.18)

Where T,E,C represent the throughput, communication energy, and packaging cost respec-

tively. α, β, γ are the user-defined constants that let the users put specific weight on specific

parameters of the objections function, such as throughput, cost, energy-efficiency during

optimization. Based on the reward, which is formulated from the analytical expressions of

Section 4.3, RL finds the optimum design choices considering complex trade-offs of chiplet

area, bandwidth, chiplet-to-chiplet communication.

RL algorithm We use Proximal Policy Optimization (PPO) algorithm [162] imple-

mented by Stable-Baselines3 [163] because of its simplicity, computational efficiency, and

compatibility with the action and state space of our problem. PPO is a on-policy policy

gradient method that combines the idea of having multiple workers from Advantage Actor-

Critic (A2C) algorithm and the idea of using trust region to improve the current policy from

Trust Region Policy Optimization (TRPO) algorithm [163].

133

4.4.2 Simulated Annealing

In addition to RL, we also explore meta-heuristic search approaches, such as simulated

annealing, to evaluate their efficacy in navigating the design space. Simulated annealing

adds an exploitation step on top of random search. It randomly samples the design points

and in addition to accepting the better design points, based on the acceptance criterion, it

also accepts the design points that worsen the objective function. We modify the simulated

annealing algorithm by slightly changing the acceptance criterion for our problem. The

algorithm is shown in Algorithm 4. We optimize the same objective function as shown in

Equation 4.17: maxX∈D αT (X)− βE(X)− γC(X).

Algorithm 4: Modified simulated annealing algorithm

1 iteration← Tmax;
2 temp← temperature;
3 st sz ← step size;
4 Xcurr ← randomly choose initial solution;
5 Ocurr ← evaluate initial solution;
6 Xbest, Obest ← Xcurr, Obest;
7 while iterations ≤ Tmax do

/* find candidate solution */

8 Xcand ← Xcurr + uniform(−1, 1) ∗ st sz;
/* evaluate candidate solution */

9 Ocand ← f(Xcand);
10 if Ocand > Obest then
11 Obest ← Ocand;
12 Xbest ← Xbest;

13 end
14 t← temp/iterations;
15 if Ocand > Ocurr OR rand() < t then
16 Xcurr, Ocurr ← Xcand, Ocand;
17 end

18 end
19 return Xbest, Obest

Finally, we deploy RL and SA algorithm multiple times, followed by conducting a com-

prehensive search on the outputs produced by SA and RL agents.

134

While demonstrated explicitly for AI accelerators and mesh routing topology, the pro-

posed optimization framework can be generalized to diverse chipset-based designs and routing

topology, requiring users to model their architectures and network topology in equations 4.4,

4.10, 4.11, and 4.13 to find the correct blend of the package and interconnect architecture.

For example, I/O chiplets provide signal transmission and regeneration. Their performance

can be modeled as extra latency in our framework.

4.5 Experiments and Results

4.5.1 Experimental method

As shown in Fig. 4.6, at the core of the optimizer we implement PPO and simulated

annealing algorithm. The optimizer explores the design space and tries to select the best

parameters sticking to the design constraints and user-given optimization objective, such

as throughput optimization, energy, and/or cost optimization. To evaluate the optimizer’s

objective function, we implement our cost model, explained in Section 4.3, in an OpenAI

Gym[166] environment named as Chiplet-Gym.

Table 4.2: Per hop wire length and delay for 2.5D and 3D architecture [157][130]

Packaging arch. Per hop wire length (mm) Delay, tw (ps)
2.5D 1 17.2
3D 0.08 1.6

Table 4.3: Interconnects’ properties[129]

Interconnect Bond/bump TSV pitch Energy Implementation
pitch (µm) pitch(µm) (pJ/bit) cost

CoWoS 30 - 40 - 0.2 ∼0.5 Medium
EMIB 55 - 45 - 0.17 ∼0.7 Low
SoIC 9 9 0.1 ∼0.2 High

FOVEROS < 10 - < 0.05 Highest

135

We consider a fixed amount of package area, 900mm2, dedicated for AI and HBM chiplets

[182]. To avoid thermal hotspot, we place the chiplets at 1mm apart from each other in a

mesh topology [159]. This leaves (900 − (m + n + 2)mm2) of area for the chiplets. The

optimizer will select the number of chiplets such that it maximizes the throughput while

sticking to the area constraint. The area per chiplet is calculated as the total package area

available for AI chiplets over the number of chiplets. Analyzing the yield vs area curve (Fig.

4.3) we set the maximum allowable area per chiplet to 400mm2 as a constraint. Because, at

14nm, for the die area beyond 400mm2 the yield is even lower than 75%. Inspired by the

recent trend of higher on-chip memory to reduce the DRAM accesses [164], we allocate 40%

of the chiplet area to the compute resources, 40% to the on-chip SRAM, and rest 20% to

other blocks such as control, IO, NoC, routing etc. For 3D architecture, we have to sacrifice

some of the area of the chiplet for the TSV and its associated keepout zone. From SoIC TSV

pitch of 9um[129], > 12K TSVs can be fit into 1mm2. So we keep at most 2mm2 for TSV in

3D architecture. Which is enough for both signal and power supply [160]. We use the values

shown in Table 4.2 and 4.3 in our throughput, cost, and energy model to calculate the cost

function of the design points.

4.5.2 Implementation details

The optimization framework1 is written in Python v3.9. and run on an Intel hexa-core

i5-9500 @ 3 GHz machine.

RL

The Chiplet-Gym environment is constructed by integrating our analytical simulator

into OpenAI Gym v0.26.2 [166] to establish a unified interface between the RL algorithm

and the analytical simulator. We define the action space as MultiDiscrete and observation

1https://github.com/KFM135/chiplet-optimizer

136

space as Box space. The current state (which includes design metrics like throughput,

energy, and cost) is mapped to the action space through the PPO policy network that

outputs a probability distribution over possible actions in the MultiDiscrete action space.

This distribution allows the PPO agent to select a combination of parameters that define

a design point for the simulator. After the action is taken, the simulator updates the state

with new design metrics and calculates a reward based on performance. This state-reward

feedback is then used by the PPO’s critic network to refine the policy, encouraging actions

that yield higher rewards in future steps. PPO’s clipping mechanism ensures stable updates

by constraining drastic changes in the policy, promoting a smooth and reliable mapping of

states to actions to maximize overall rewards.

Policy-Value network. PPO utilizes the Multi-Layer Perceptron (MLP) as both its policy

and value network. The architecture of the actor or policy network is defined as [10, 64, 64,

810], and the architecture of the critic or value network is set as [10, 64, 64, 1], employing

the tanh activation function. The size of the input for both networks is determined by

the dimension of the observation space, while the output layer size of the policy network is

determined by the action space. The output layer size of the value network is set to 1.

Impact of episode length on RL convergence. The algorithms are trained with an

episode length of 2. While a longer episode length often results in a higher mean episodic

reward, it does not guarantee a superior cost model value for the optimized parameters.

Although longer episodes are generally associated with increased exploration, our hypothesis

is that, in our specific case, the agents lean towards exploitation to maximize rewards. This

hypothesis arises from the fact that our reward values span from a large negative value to

a positive one. Once the agent discovers a positive value, it tends to exploit that particular

action to maximize the mean episodic reward neglecting further exploration of the design

space. Figure 4.7 (a) shows that the agent achieves a mean episodic reward of 800 at episode

length of 10, where as the cost model value of these actions are less than 100 (Fig. 4.7 (b)).

137

On contrary, at episode length of 2, the mean episodic reward is around 300 and the cost

model value is around 150. (Note: The cost model value at each timesteps are calculated as

mean episodic reward/episode length.)

0 200 400
Timesteps(K)

-10000

-5000

0

400 450 500
0

200

400

600

800

0 200 400
Timesteps(K)

-2000

-1000

0

ep_len = 2 ep_len=5 ep_len=10

400 450 500
0

100

200

(a) (b)

Figure 4.7: Impact of episode length in convergence (PPO algorithm). Inset shows the
zoomed-in version of each plot.

Impact of entropy coefficient on RL convergence Another hyper-parameter impacting

the exploration and exploitation balance is entropy coefficient. Serving as a regularizer, en-

tropy coefficient plays a crucial role in shaping the behavior of the RL agent during training.

A larger entropy coefficient implies that all actions are equally likely, fostering exploration,

while a smaller entropy coefficient indicates that one action’s probability within the policy

dominates, emphasizing exploitation. Fig. 4.8 (a) shows that when entropy coefficient is set

to 0, the agent stabilizes to a lower reward value more rapidly. However, when the entropy

coefficient is increased to 0.1, the agent achieves a higher reward value, albeit with a slightly

less stable trajectory. In this case, we use an entropy coefficient of 0.1 to reach higher con-

vergence value. Other significant hyperparameters of PPO algorithm are shown in Table

4.4.

Simulated Annealing

We employ Algorithm 4, initializing it with a randomly chosen candidate solution from

the design space. Like PPO, SA’s performance is also sensitive to initial temperature, a

138

0 200 400
Timesteps(K)

-1000

-500

0
M

ea
n

ep
is

od
ic

re
w

ar
d

ent_coeff=0.0
ent_cpeff=0.1

400 450 500
200

300

400

0 200 400
Iteration (K)

50

100

150

200

C
os

t m
od

el
va

lu
e

temp = 100
temp = 200

(a) (b)

Figure 4.8: (a) Impact of entropy coefficient in RL convergence and (b) impact of temperatue
on SA convergence . Inset shows the zoomed-in version of each plot.

measure of exploration vs exploitation. As shown is Fig. 4.8 (b), SA achieves significant

higher cost model value with higher temperature value. Higher temperature value ensures

more exploration by increasing the probability of accepting a worse trial point. As a result,

the initial temperature to 200, and a step size of 10 is employed for locating the neighboring

points. We do not use the general Metropolis acceptance criterion, metropolis = exp −

{(Ocurr−Ocand)/t}, due to the potential for (Ocurr−Ocand) to become very large or very small,

leading to the metropolis evaluating to either infinity or 0. Instead, we solely utilize the

parameter t to statistically accept poorer solutions in the early stages, facilitating exploration

of the search space. Ocurr=cost model value for current design point and Ocand=cost model

value at candidate design point.

Table 4.4: PPO hyper-parameters & their values

n steps 2048 n epoch 10
batch size 64 learning rate 0.0003
clip range 0.2 value func. coef. 0.5

entropy coeff. 0.1 discount factor 0.99
bias-variance trade-off factor 0.95

139

Table 4.5: Optimized parameters for α, β, γ = [1, 1, 0.1] found by PPO algorithm

Parameter
Case (i): 64 chiplets as

upper bound
Case (ii): 128 chiplets

as upper bound
Architecture type 5.5D-Logic-on-Logic 5.5D-Logic-on-Logic

No. of chiplets
60 (30 3D chiplet pairs

arranged in 5X6 2.5D mesh)
112 (56 3D chiplet pairs

arranged in 7X8 2.5D mesh)
Package area;
per-chiplet area

900 mm2; 26mm2 900 mm2; 14mm2

HBM location
& capacity

4 16GB HBM chiplets @ top,
bottom, right, and middle of
5X6 chiplet pairs with a total

capacity of 64GB

4 16GB HBM chiplets @ left,
right, bottom, and middle

of 7X8 chiplet pairs with a total
capacity of 64 GB

AI2AI 2.5D
interconnect

EMIB EMIB

AI2AI 2.5D
data rate

20 Gbps 20 Gbps

AI2AI 2.5D
link density

3100 1450

AI2AI 2.5D
trace length

1 mm 1 mm

AI2AI 3D
interconnect

SoIC FOVEROS

AI2AI data rate
3D

42 Gbps 34 Gbps

AI2AI 3D
link density

3200 4400

AI2HBM 2.5D
interconnect

EMIB EMIB

AI2HBM 2.5D
data rate

20 Gbps 20 Gbps

AI2HBM 2.5D
link density

4900 3850

AI2HBM 2.5D
trace length

1 mm 1 mm

4.5.3 Results

Performance and runtime analysis of optimizer

In our investigation of the design space, we consider two distinct scenarios: case (i),

wherein the upper limit for the number of AI chiplets is set to 64, and case (ii), where this

upper limit is increased to 128. We ran each of the algorithms multiple times for each cases

with different seed values to ensure their convergence stability. Fig. 4.9 and 4.10 (a) and

140

(a) (b)

Figure 4.9: Convergence behavior of (a) SA and (b) RL for multiple runs with 10 different
seed values for case (i) (i.e., 64 chiplets). Inset shows the zoomed-in version of each plot.

0 200 400
Iteration (K)

-6000

-4000

-2000

0

C
os

t m
od

el
va

lu
e

400 450 500
160

170

180

190

0 100 200
Timesteps (K)

-4000

-2000

0

150 200 250

160

180

200

(a) (b)

Figure 4.10: Convergence behavior of (a) SA and (b) RL for multiple runs with 10 different
seed values for case (ii) (i.e., 128 chiplets). Inset shows the zoomed-in version of each plot.

#1 #2 #3 #4 #5 #6 #7 #8 #9#1
0

Runs

175
180
185
190

SA RL

#1 #2 #3 #4 #5 #6 #7 #8 #9#1
0

Runs

160

170

180

(a) (b)

Figure 4.11: Highest cost model value achieved by the SA and RL algorithms for multiple
runs: (a) for 64 chiplets and (b) for 128 chiplets.

141

Table 4.6: DNN benchmark features
Benchmark

model
Domain Dataset

Ops. per
forward pass

Resnet50 Image classification Imagenet 4 GFLOPs
Efficientdet Light weight object detection COCO 2017 410 GFLOPs
mask-RCNN Heavy weight object detection COCO 2014 447 GFLOPs
3D-UNet Biomedical image segmentation KiTS19 947 GFLOPs
BERT Natural Language Processing Wikipedia 2020 32 GFLOPs

(b) show the convergence behavior of SA and PPO algorithm for case (i) and case (ii) for

10 runs, respectively. As expected, both algorithms achieve a better cost model value for

case (ii) because of its higher throughput, however, due to large packaging cost, case (i) 64

chiplets as the upper bound, is considered more practical. Fig. 4.11 (a) and (b) show the

highest cost model value achieved by SA and RL algorithm over 10 runs for case (i) and (ii),

respectively. We observe that RL achieves higher cost model values each run and more stable

over multiple runs ranging from 178 - 185 for case (i) and 188 - 194 for case (ii). Where SA

achieves 151 - 176 and 170 - 188 for case (i) and case (ii), respectively.

The run time of SA for 500K iterations is less than a minute and the run time to train

the PPO agent for 250K timesteps is < 20 mins. We finally integrated several trained RL

agents and performed SA optimization on-the-go, and performed an exhaustive search among

those SA and RL agents. The final optimizer with 20 SAs and 20 RL trained RL agents take

around 10 mins to report the optimized parameter. As the RL is used in inference mode,

here the SA dominates the runtime.

Optimized architecture evaluation

Table 4.5 shows the optimized parameter found by the optimizer for both cases for a

specific α, β, γ value (user-defined weights on the objective function as explained in Eqn.

4.18). We observe that the RL PPO algorithm found the best parameter. Please note that

multiple design configurations may coexist, achieving almost identical cost model value.

142

Resn
et5

0v
1.5

Effi
cie

ntd
et

Mask
-R

CNN

3D
-U

ne
t

BERT

100

200

300

In
fe

re
nc

es
/s

ec

60 chiplets 112 chiplets 2 chiplets GPU

Resn
et5

0v
1.5

Effi
cie

ntd
et

Mask
-R

CNN

3D
-U

ne
t

BERT

100

In
fe

re
nc

es
/jo

ul
e

0.
01

1.
62

1.
28

1.
12

0.
89

0.
00
7

2.
46

1.
63 1.
7

1.
13

0.
94
2

2.
31

2.
27

1.
88

1.
86

Die
co

st

Int
eg

rat
ion

 co
st (

99
% BY)

Int
eg

rat
ion

 co
st (

10
0%

 BY)

Tota
l c

ost
 (9

9%
 BY)

Tota
l c

ost
 (1

00
% BY)

100

N
or

m
al

iz
ed

co
st

GPU

2 c
hip

let
s (

99
% BY)

60
 ch

ipl
ets

 (9
9%

 BY)

11
2 c

hip
let

s (
99

% BY)

2 c
hip

let
s (

10
0%

 BY)

60
 ch

ipl
ets

 (1
00

% BY)

11
2 c

hip
let

s (
10

0%
 BY)

0

50

100

C
os

t (
%

)

Raw die
Defected die

Raw chips
Defected chips

Raw package
Defected package

Wasted KGD

(a) (b) (c) (d)

Figure 4.12: Comparison of 60-chiplet, 112-chiplet, 2-chiplet and monolithic system: (a)
Inferences/sec, (b) Inferences/joule for MLPerf benchmark, and (c) cost. (d) Cost breakdown
of monolithic, 2-chiplet, 60-chiplet, and 112-chiplet system at 99% and 100% package bonding
yield (BY = bonding yield).

The optimal design point for case (i) consists of 30 3D AI chiplet pairs arranged in

a mesh topology 5 × 6, resulting in 60 chiplets in total. 2 chiplets (forming a pair) are

connected with SoIC 3D integration technology with a data rate of 42Gbps per link and link

count of 3200 providing up to 131.25 Tbps of bandwidth. Each chiplet pair is connected with

other chiplet pair with 2.5D EMIB integration with a data rate of 20Gbps and a link count

of 3100 delivering up to 60 Tbps of bandwidth. Four 16GB HBM chiplets, located at top,

right, bottom, and middle of the 5 × 6 mesh topology, are connected to 2 to 4 neighboring

AI chiplets with EMIB 2.5D integration technology with a data rate of 20Gbps per link

and a link count of 4900, resulting in a bandwidth of 95 Tbps. The trace length for each

2.5D interconnect is selected as the minimum trace length possible (minimum chiplet-to-

chiplet distance). In case (ii), when we increase the maximum number of chiplets to 128,

we observe that the optimum design configuration contains 112 chiplets (56 chiplet pairs)

and the communication bandwidth decreases for all cases. This is because, as the number

of chiplets increases, area per chiplet decreases, resulting in smaller throughput per chiplet,

less bandwidth demand, and high system utilization. We observe that 3D architecture, even

with area penalty for TSV and TSV-associated keep-out zone[181], achieves 1.52× more logic

density than its 2D/2.5D counterpart at the same package size.

143

We synthesize the chiplet module, found by the optimizer, with Synopsys Fusion Com-

piler using their 14nm PDK [85] at 1GHz clock frequency and obtain the peak throughput

per chiplet, (ops/sec)AI chip, and energy consumption per MAC operation, Eop∗. We use

these values in our analytical model to estimate the throughput and energy efficiency of the

60 and 112 chiplet system. For cost estimation, we use the model from [149].

Fig. 4.12 compares the 60-chiplet, 112-chiplet, 2-chiplet and monolithic GPU for MLPerf

benchmark [169]. The benchmark features are briefly summarized in Table 4.6. We observe

that 3D 112-chiplet, 60-chiplet, and 2-chiplet systems achieve 1.60×, 1.52×, and 1.24× higher

throughput of the monolithic one, respectively (Fig. 4.12 (a)). The higher throughput of

the chiplet-based system can be explained with three facts. First, higher logic density in 3D

logic-on-logic systems in the same area footprint increases the peak theoretical throughput.

This explains why all chiplet-based systems show higher throughput than the monolithic

one. Second, as the peak theoretical throughput per chiplet (or chiplet pair) increases, the

required inter-chiplet communication bandwidth increases. If the active bandwidth cannot

sustain the required inter-chiplet (both AI2AI and AI2HBM) bandwidth, system utilization

decreases, resulting in decreased achieved throughput. This explains why the 112-chiplet

system has the highest throughput compared to the 60-chiplet and 2-chiplet systems. The

per-chiplet throughput in the 112-chiplet system is smaller, requiring less inter-chiplet band-

width and ensuring higher system utilization. Conversely, the 2-chiplet system requires a

higher inter-chiplet bandwidth due to its higher per-chiplet throughput, leading to under-

utilization and reduced overall throughput. Third, as the number of AI chiplet increases,

the inter-chiplet communication latency increases. However, the lower bandwidth penalty of

the 112-chiplet system outweighs the higher latency penalty, resulting in a superior overall

throughput compared to the 60-chiplet and 2-chiplet systems.

The 2-chiplet, 60-chiplet, and 112-chiplet systems are 4.63×, 3.76×, and 3.62× energy-

efficient (inverse of energy consumption) compared to the monolithic, respectively (Fig. 4.12

144

(b)). The monolithic system is less energy-efficient than the 3D chiplet based system at

iso-throughput. Because, to achieve equal throughput, more than one monolithic chips need

to be connected off-board on the PCB, consuming at least one order of magnitude more

energy[170] than on-package communication. Among the 3 chiplet-based configurations,

2-chiplet system achieves slightly higher energy-efficiency, 1.23× and 1.28× compared to 60-

chiplet and 112-chiplet system, respectively, as it requires less inter-chiplet communication.

However, handling the thermal hotspot and heat removal for such large and high-throughput

3D stacked chiplets presents a significant challenge.

Fig. 4.12 (c) shows the cost comparison of the monolithic vs chiplet based systems at

different bonding yields. The raw die costs of 60-chiplet, 112-chiplet, and 2-chiplet configu-

ration are 0.01×, 0.007×, and 0.94×, respectively, of the monolithic system. This significant

cost difference arises from the low yield (48%) of the monolithic chip of 826mm2, compared

to the 97% and 98% die yield of the 60 and 112 chiplet systems, with a die size of 26mm2 and

14mm2, respectively, at 7nm node. In addition to that, the cost of Known Good Dies (KGD)

is inversely proportional to the number of KGD (NKGD). As the die area (A) increases, the

number of good dies (NKGD) decreases, leading to a substantial increase in cost. The rela-

tionship between the cost and die area can be approximated as costKGD ∝ A
5
2 (taking up to

2 terms of Taylor series expansion of die yield) [170][149].

We estimate the packaging cost of chiplets at 99% and 100% inter-chiplet bonding yield.

With better process control and TSV/pad repair techniques, TSMC reported that the bond-

ing yield can reach 100%[133][185]. Although the raw die cost is smaller, for chiplet based

configurations, the integration cost, including all the defected and wasted chips and pack-

ages, of chiplet based system are 1.62× (for 60-chiplet), 2.46× (for 112-chiplet), and 2.31×

(for 2-chiplet) higher than the monolithic system at 99% bonding yield. The integration

cost improves with the 100% bond yield. Finally, combining the die and integration cost,

we observe that the total cost for the 60-chiplet system can achieve the 0.89× cost of the

145

monolithic system with the 100% bonding yield, while the total cost for 112-chiplet configu-

rations is slightly higher (1.13×) than that of the monolithic system. The 2-chiplet system

is the most cost inefficient, as it does not benefit from the lower raw die cost and also suffers

the high 3D integration cost. Fig. 4.12 (d) shows the breakdown of the total cost of the

different configurations. For all configurations, wasted KGD (i.e., wasted chips) consumes a

significant amount of total cost, with a maximum of 40% of the total cost for the 112-chiplet

system at 99% bonding yield and a minimum of 29% of the total cost for the 60-chiplet

at 100% bonding yield. In monolithic and 2-chip systems, die and chip costs (raw and de-

fective) contribute equally to the total cost, and package-related costs (raw and defective)

only consume 6% and 20% of the total cost, respectively. On the other hand, in 60 and 112

chiplet-based configurations, the cost of the defected dies and chips are less than 1%. The

cost of raw chips and packages (raw and defected) dominates the total cost in these cases.

We implement our chiplet in synopsys 14nm free PDK. However, we estimate the cost for

7nm to have a fair comparison between the monolithic one, which was fabricated in 7nm

technode[95].

4.6 Related works

4.6.1 Chiplet-based architecture exploration

DNN accelerator

SIMBA [16] is a pioneering work in chiplet-based AI accelerator, that integrates 36

NVDLA-like accelerator chiplets on a package. Centaur [35] integrates CPU and FPGA

chiplets on package, specially for recommendation system workload. SPRINT [36] is a 64-

chiplet system with photonic interconnect for DNN inference. There have been few works

in chiplet based architecture focusing on different aspect of design space exploration. NN-

Baton[34] proposes a framework for DNN workload mapping and chiplet granularity in small

146

scale (1 to 8 chiplets), however, they do not consider the packaging integration aspect and

fabrication cost. While Monad [41] incorporates mapping, resource allocation, communica-

tion and different package substrate to optimize for PPA and fabrication cost, their packaging

integration design space is limited to 2.5D, excluding 3D. [172] proposes ChipletCloud for

LLM inference, however, their chiplets are connected in board-level instead of package level.

General purpose

Some works focus on the exploration of Network-on-Package (NoP) and reliable routing

protocols [141] for chiplet-based architecture. [143] explores network topology and cost-aware

chiplet placement for 2.5D architecture. [149] puts forward a cost model for evaluating

the 2.5D manufacturing cost. [170][158] suggest the importance of chiplet design space

exploration for performance, energy, cost, reliability enhancement.

4.6.2 RL in Design-space exploration

Deep Reinforcement Learning has gained popularity in exploring the design space ex-

ploration and optimization of the EDA domain, spanning from front-end (i.e., planning and

architectural exploration) [45][49][144][147] to back-end (i.e., implementation, physical de-

sign and circuit design)[42][43] [176]. To the best of our knowledge, this work is the first to

perform a comprehensive design space search, encompassing resource allocation, placement,

packaging architectures (both 2.5D and 3D), and their configurations to optimize for Power,

Performance, Area, and Cost (PPAC) using Deep Reinforcement Learning (DRL).

4.7 Limitations and Future Works

In order to keep the design space concise and tractable, we limit it as mentioned in

Table 4.1 and make several assumptions as mentioned in Section 4.5.1. We also assume

147

that the HBM3e chiplets have their integrated memory controller and NoC router that can

be used as a node in the mesh topology. The analysis of the cost of additional chips with

the NoC+memory interface, exploring other routing topology such as p2p with photonic

interconnects, H tree, bus, ring etc., exploring more heterogeneous architectures, multi-tier

3D-stacks, placement of host CPU chiplets and exploring their different layouts are future

works.

4.8 Conclusion

This chapter proposes Chiplet-Gym to explore the design space of chiplet-based AI

accelerators to optimize for Power, Performance, Area, and Cost (PPAC). To evaluate the

design points, we analytically model the power, performance, and cost for chiplet-based AI

accelerator. With reinforcement learning and simulated annealing, the optimizer is robust

and efficient in locating the global or near-global optima of the design space for PPAC. The

results show that the optimizer finds the design point that achieves 1.52× throughput, 0.27×

energy, and 0.89× cost of its monolithic counterpart in iso-area.

148

Chapter 5

Conclusions and future works

5.1 Conclusions

With the ever-increasing demand for AI and generative AI, AI/DL accelerators capable

of running the AI/DL workloads optimally become inevitable. This dissertation identifies

the key metrics of AI/DL accelerators and presents system- and circuit-level design and

optimization methodologies to achieve some of the key metrics of AI/DL accelerators.

We showed that the larger on-chip memory plays a significant role in the performance

boost and energy efficiency of the AI/DL accelerators. To enable larger on-chip mem-

ory/cache, we explored the potentials and feasibility of emerging NVM technologies as em-

bedded on-chip memory. Chapter 2 presents a design methodology of an innovative scratch-

pad assisted on-chip STT-MRAM based buffer system based on the model-driven detailed

design space exploration. The STT-MRAM based AI accelerator achieves 75% area and and

3% power saving over regular SRAM-based AI accelerator at iso-accuracy of the DNN mod-

els. Chapter 3 explores SOT-MRAM to address the limitations posed by STT-MRAM. The

SOT-MRAM based memory system was developed by performing a closed-loop STCO and

DTCO by taking the system performance attributes, architectural and micro-architectural

attributes, workload attributes into account while performing the device and circuit-level

optimization on SOT-MRAM. The proposed SOT-MRAM-based memory system achieves

8× energy and 9× latency savings compared to the SRAM-based memory system on the

CV and NLP benchmarks in training mode while consuming only 50% of the SRAM area at

iso-capacity. Together, these 2 chapters provide high performance and energy efficiency over

the baseline SRAM-based accelerator by increasing on-chip memory and the use of MRAM

over SRAM provide area efficiency at iso-capacity.

149

To improve the logic density cost-efficiently and to reduce the off-board communication

we explore chiplet-based 3D accelerators, in chapter 4. However, the design space explodes in

the chiplet-based accelerator. We analytically model the Power, Performance, Cost and Area

of chiplet based AI accelerator and to efficiently navigate the vast design space, we introduce

Reinforcement Learning to find the optimal design point. The optimizer suggested design

point achieves 1.52× throughput, 0.27× energy, and 0.89× cost of its monolithic counterpart

in iso-area.

Overall, this work provides a solid foundation for future research and development of

energy-efficient, high-performance AI hardware. The methodologies and findings presented

here can serve as a valuable resource for both academic research and industry applications,

contributing to the ongoing evolution of AI accelerator technologies.

5.2 Future works

5.2.1 Dynamic Re-configuration of Hardware Resources at Runtime to Opti-

mize Energy and Throughput

This work focuses on design-time optimization for chiplet-based architectures based on

workload type (e.g., inference, training). However, for multi-modal DNN models and Gen-

erative AI, dynamic run-time reconfiguration of hardware resources could further improve

energy efficiency and throughput. This approach could also enhance the scalability and

generality of AI accelerators.

The existing run-time dynamic re-configurations approaches such as dynamic voltage

and frequency scaling (DVFS) are designed considering a single device operation (i.e., stan-

dalone CPU/GPU). As a result, conventional DVFS techniques cannot be applied to multi-

accelerator systems to optimize performance-per-watt. The design and exploration of a dy-

namic resource management framework - consisting of (i) memory resource, (de)activation,

150

and (ii) DVFS policies - for multi-accelerator systems to optimize energy and throughput

that is aware of model/data-parallel execution paradigm will be interesting future work.

5.3 Photonic interconnects in chiplet-based AI accelerators

As the communication demands continue to rise in the data-intensive and parallel com-

puting of AI workloads, existing interconnect solutions face scalability challenges, impact-

ing both performance and power consumption. Photonic interconnects, with their high

bandwidth density, low power per bit, and resilience to distance-dependent latency, offer

a promising alternative. However, their successful deployment in chiplet architectures re-

quires overcoming specific challenges, including thermal sensitivity, device reliability, and

optimal integration with existing electronic systems. Future research should focus on high-

performance, energy-efficient, and scalable chiplet architectures that leverage the full poten-

tial of silicon photonics for next generation computing. These include the exploration of

adaptive, application-aware photonic interconnect solutions that enhance not only dataflow

and reconfigurability across diverse workloads but also the power and thermal constraints

that hinder the scalability in large chiplet systems.

5.4 Reconfigurable memory system

In-memory computing, where computation is performed directly within the memory ar-

rays, represents a promising paradigm for addressing the memory bottleneck in data-intensive

applications, especially in deep learning and artificial intelligence (AI). By eliminating the

need to transfer data back and forth between memory and processing units, in-memory com-

puting can significantly reduce data movement and thus improve energy efficiency. However,

despite its potential, in-memory computing faces several challenges that limit its current

151

utility, such as handling training, accuracy loss, and the additional circuit complexity of

ADC-DAC converters.

A potential solution to these limitations is the development of a reconfigurable memory

system, where individual cells can be dynamically configured to function as either storage

or computation units, depending on the workload requirements. By dynamically adjusting

the mode of operations of the memory cells, such a system could flexibly allocate resources

depending on the workload features, computation, and memory requirements. For example,

during inference tasks, a subset of cells could be reconfigured to perform matrix multipli-

cations while other cells store intermediate results. In contrast, during training, more cells

could revert to their storage roles while the matrix multiplications are performed in the tra-

ditional MAC core. Ultimately, a reconfigurable in-memory computing architecture, which

can dynamically balance computing and storage functions, has the potential to advance

the performance and energy efficiency of AI and data-intensive applications significantly,

supporting different types of DNN applications.

152

Bibliography

[1] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. Mostofa,
Y. Yang, and Y. Zhou, “Deep Learning Scaling is Predictable, Empirically” in arXiv
preprint arXiv:1712.00409, 2017.

[2] S. Singh, A. Bin, S. Kumar, and F. Carroll, “Generative Artificial Intelligence: A
Systematic Review and Applications” in arXiv arXiv:2405.11029, 2024.

[3] J. Hestness, D. Newsha and G. Diamos, “Beyond human-level accuracy: computational
challenges in deep learning,” in ACM Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming, Pages 1-14, February 2019.

[4] S. Kung, “VLSI Array processors” in IEEE ASSP Magazine, vol. 2, Pages 4-22, 1985.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: a small-
footprint high-throughput accelerator for ubiquitous machine-learning” in Proceedings
of the 19th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Pages 269–284, 2014.

[6] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam,
“ShiDianNao: Shifting vision processing closer to the sensor” in 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA), Pages 92-104,
2015.

[7] Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable
Accelerator for Deep Convolutional Neural Networks” in IEEE Journal of Solid-State
Circuits, vol. 52, Pages 127-138, 2017.

[8] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. Keckler, and W. Dally, “SCNN: An Accelerator for Compressed-sparse Convolutional
Neural Networks” in SIGARCH Comput. Archit. News, vol. 45, Pages 27–40, 2017.

[9] V. Sze, Y. Chen, T. Yang, and J. Emer, “Efficient Processing of Deep Neural Networks:
A Tutorial and Survey” in Proceedings of the IEEE, vol. 105, Pages 2295-2329, 2017.

[10] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible Dataflow Mapping
over DNN Accelerators via Reconfigurable Interconnects” in SIGPLAN Not., vol. 53,
Pages 461–475, 2018.

[11] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A Flexible Dataflow
Accelerator Architecture for Convolutional Neural Networks” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), Pages 553-564, 2017.

153

[12] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,
“Cambricon-X: An accelerator for sparse neural networks” in 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Pages 1-12, 2016.

[13] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen, and
Y. Chen, “Cambricon-S: Addressing Irregularity in Sparse Neural Networks through A
Cooperative Software/Hardware Approach” in 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Pages 15-28, 2018.

[14] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T. Kr-
ishna, “SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects
for DNN Training” in IEEE International Symposium on High Performance Computer
Architecture (HPCA), Pages 58-70, 2020.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,
and O. Temam, “DaDianNao: A Machine-Learning Supercomputer” in 47th Annual
IEEE/ACM International Symposium on Microarchitecture, Pages 609-622, 2014.

[16] Y. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller, A.
Klinefelter, N. Pinckney, P. Raina, S. Tell, Y. Zhang, W. Dally, J. Emer, C. Gray, B.
Khailany, and S. Keckler, “Simba: Scaling Deep-Learning Inference with Multi-Chip-
Module-Based Architecture” in Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, Pages 14–27, 2019.

[17] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “TANGRAM: Optimized
Coarse-Grained Dataflow for Scalable NN Accelerators” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, Pages 807–820, 2019.

[18] Online, “NVDLA”, Available in https://nvdla.org/, 2024.

[19] Online, “CEREBRA’s WSE-3”, Available in https://cerebras.ai/product-chip/, 2024.

[20] Whitepaper, “Accelerated Computing with a Reconfigurable Dataflow Architecture” in
https://sambanova.ai/, 2024.

[21] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay, M.
Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods, S.
Lanka, S. Reinhardt, A. Caulfield, E. Chung, and D. Burger, “A Configurable Cloud-
Scale DNN Processor for Real-Time AI” in ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA), Pages 1-14, 2018.

[22] Online, Apple Neural Engine, Available in https://machinelearning.apple.com/research/neural-
engine-transformers, 2024.

154

[23] R. Prabhakar, S. Jairath and J. L. Shin, ”SambaNova SN10 RDU: A 7nm Dataflow
Architecture to Accelerate Software 2.0,” in IEEE International Solid-State Circuits
Conference (ISSCC), pp. 350-352, 2022.

[24] D. Abts et al., “Think Fast: A Tensor Streaming Processor (TSP) for Accelerating
Deep Learning Workloads,” in ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pp. 145-158, 2020.

[25] B. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski and S. Avancha, ”Intel Nervana
Neural Network Processor-T (NNP-T) Fused Floating Point Many-Term Dot Product,”
in IEEE 27th Symposium on Computer Arithmetic (ARITH), pp. 133-136, 2020.

[26] E. Talpes, D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering, A. Jalote,
C. Hsiong, S. Arora, A. Gorti, and G. Sachdev, “Compute Solution for Tesla’s Full Self-
Driving Computer” in IEEE Micro, vol. 40, Pages 25-35, 2020.

[27] A. Samajdar, J. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “A sys-
tematic methodology for characterizing scalability of DNN accelerators using SCALE-
sim” in IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), Pages 58–68, 2020.

[28] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay, M.
Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods, S.
Lanka, S. Reinhardt, A. Caulfield, E. Chung, and D. Burger, “A Configurable Cloud-
Scale DNN Processor for Real-Time AI” in ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA), Pages 1-14, 2018.

[29] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend: a Scalable and
Unified Architecture for Ubiquitous Deep Neural Network Computing : Industry Track
Paper” in IEEE International Symposium on High-Performance Computer Architecture
(HPCA), Pages 789-801, 2021.

[30] F. Muñoz-Mart́ınez, J. L. Abellán, M. E. Acacio, and T. Krishna, “STONNE: Enabling
Cycle-Level Microarchitectural Simulation for DNN Inference Accelerators” in IEEE
International Symposium on Workload Characterization (IISWC), pp. 201-213, 2021.

[31] W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna, “ASTRA-
sim2.0: Modeling Hierarchical Networks and Disaggregated Systems for Large-model
Training at Scale” in IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), vol. , Pages 283-294, 2023.

[32] R. Venkatesan et al., ”MAGNet: A Modular Accelerator Generator for Neural Net-
works,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1-8, 2019.

155

[33] Z. Wang et al., ”AI Computing in Light of 2.5D Interconnect Roadmap: Big-
Little Chiplets for In-memory Acceleration,” in International Electron Devices Meeting
(IEDM), pp. 23.6.1-23.6.4, 2022.

[34] Z. Tan, H. Cai, R. Dong and K. Ma, ”NN-Baton: DNN Workload Orchestration and
Chiplet Granularity Exploration for Multichip Accelerators,” in ACM/IEEE 48th An-
nual International Symposium on Computer Architecture (ISCA), pp. 1013-1026, 2021.

[35] R. Hwang, T. Kim, Y. Kwon, and M. Rhu, “Centaur: a chiplet-based, hybrid sparse-
dense accelerator for personalized recommendations” In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA ’20). IEEE
Press, 968–981, 2020.

[36] Y. Li, A. Louri and A. Karanth, ”Scaling Deep-Learning Inference with Chiplet-based
Architecture and Photonic Interconnects,” in 58th ACM/IEEE Design Automation Con-
ference (DAC), pp. 931-936, 2021.

[37] K. Mishty and M. Sadi, ”Chiplet-Gym: Optimizing Chiplet-based AI Accelerator
Design with Reinforcement Learning,” in IEEE Transactions on Computers, doi:
10.1109/TC.2024.3457740., 2024,

[38] M. Orenes-Vera, et al. ”Massive data-centric parallelism in the chiplet era.” in arXiv
preprint arXiv:2304.09389, 2023.

[39] M. Odema et al. ”SCAR: Scheduling Multi-Model AI Workloads on Heterogeneous
Multi-Chiplet Module Accelerators.” in arXiv preprint arXiv:2405.00790, 2024.

[40] H. Peng et al. ”Chiplet cloud: Building ai supercomputers for serving large generative
language models.” in arXiv preprint arXiv:2307.02666, 2023.

[41] X. Hao, Z. Ding, J. Yin, Y. Wang and Y. Liang, ”Monad: Towards Cost-Effective Spe-
cialization for Chiplet-Based Spatial Accelerators,” in IEEE/ACM International Con-
ference on Computer Aided Design (ICCAD), pp. 1-9, 2023.

[42] A. Mirhoseini et al. ”Chip placement with deep reinforcement learning” in arXiv preprint
arXiv:2004.10746, 2020.

[43] H. Wang et al. ”GCN-RL circuit designer: Transferable transistor sizing with graph
neural networks and reinforcement learning.” in 57th ACM/IEEE Design Automation
Conference (DAC) IEEE, pp. 1-6, 2020.

[44] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi and B. Nikolic, ”AutoCkt: Deep
Reinforcement Learning of Analog Circuit Designs,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 490-495, 2020.

156

[45] J. You, J.W. Chung, and M. Chowdhury. ”Zeus: Understanding and optimizing GPUen-
ergy consumption of DNNtraining.” in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 2023.

[46] T. -R. Lin, D. Penney, M. Pedram and L. Chen, ”A Deep Reinforcement Learning
Framework for Architectural Exploration: A Routerless NoC Case Study,” in IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp.
99-110, 2020.

[47] A. Yazdanbakhsh et al. ”Apollo: Transferable architecture exploration.” in arXiv
preprint arXiv:2102.01723, 2021.

[48] S. Krishnan et al. ”Multi-Agent Reinforcement Learning for Microprocessor Design
Space Exploration.” in arXiv preprint, 2022.

[49] S. C. Kao, G. Jeong and T. Krishna, ”ConfuciuX: Autonomous Hardware Resource
Assignment for DNN Accelerators using Reinforcement Learning,” in 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 622-636,
2020.

[50] F. Ahmad et al. ”Llmcarbon: Modeling the end-to-end carbon footprint of large lan-
guage models.” in arXiv preprint arXiv:2309.14393, 2023.

[51] E. Strubell, A. Ganesh, and A. McCallum. ”Energy and policy considerations for modern
deep learning research.” in Proceedings of the AAAI conference on artificial intelligence.
Vol. 34. No. 09. 2020.

[52] OpenAI’s GPT-3: Technical Overview, in https://lambdalabs.com/blog/demystifying-
gpt-3

[53] A. Parashar et al. ”Timeloop: A systematic approach to DNN accelerator evaluation,”
in IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 304-315, 2019.

[54] Y. N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation
Methodology for Accelerator Designs,” in International Conference on Computer Aided
Design (ICCAD), pp. 1-8, November 2019.

[55] K. He et al. ”Deep residual learning for image recognition.” in Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pp. 770-778, 2016.

[56] G. Batra et al., “Artificial-intelligence hardware: New opportunities for semiconductor
companies” in McKinsey & Company, 2019.

[57] S. Moore, “Cerebras’s Giant Chip Will Smash Deep Learning’s Speed Barrier” in IEEE
Spectrum, 2020.

157

[58] D. Shin, J. Lee, J. Lee, J. Lee, and H. Yoo, “DNPU: An Energy-Efficient Deep-Learning
Processor with Heterogeneous Multi-Core Architecture” in IEEE Micro, vol. 38, no. 5,
pp. 85-93, Sep./Oct. 2018.

[59] Y. Jin, M. Shihab, and M. Jung, “Area, Power, and Latency Considerations of STT-
MRAM to Substitute for Main Memory” in 41st International Symposium on Computer
Architecture (ISCA-41), 2014.

[60] Q. Dong et al., “A 1Mb 28nm STT-MRAM with 2.8ns read access time at 1.2V VDD
using single-cap offset-cancelled sense amplifier and in-situ self-write-termination” in
IEEE ISSCC, pp. 480-482, 2018.

[61] Y. Chih et al., “A 22nm 32Mb Embedded STT-MRAM with 10ns Read Speed, 1M
Cycle Write Endurance, 10 Years Retention at 150°C and High Immunity to Magnetic
Field Interference” in IEEE ISSCC, pp. 222-224, 2020.

[62] L. Wei et al., “A 7Mb STT-MRAM in 22FFL FinFET Technology with 4ns Read
Sensing Time at 0.9V Using Write-Verify-Write Scheme and Offset-Cancellation Sensing
Technique” in IEEE ISSCC, pp. 214-216, 2019.

[63] A. Antonyan, S. Pyo, H. Jung, and T. Song, “Embedded MRAM Macro for eFlash
Replacement” in IEEE ISCAS, pp. 1-4, 2018.

[64] A V Khvalkovskiy et al., “Basic principles of STT-MRAM cell operation in memory
arrays,” in Journal of Physics D: Applied Physics, 2013.

[65] Z. Diao et al., “Spin-transfer torque switching in magnetic tunnel junctions and spin-
transfer torque random access memory” in Journal of Physics: Condensed Matter, 2007.

[66] A. Raychowdhury, D. Somasekhar, T. Karnik, and V. De, “Design space and scala-
bility exploration of 1T-1STT MTJ memory arrays in the presence of variability and
disturbances” in IEEE IEDM, pp. 1-4, 2009.

[67] E. Cheshmikhani, H. Farbeh, and H. Asadi, “A System-Level Framework for Analytical
and Empirical Reliability Exploration of STT-MRAM Caches” in IEEE Transactions
on Reliability, vol. 69, no. 2, pp. 594-610, 2020.

[68] T. Zheng, J. Park, M. Orshansky, and M. Erez, “Variable-energy write STT-RAM
architecture with bit-wise write-completion monitoring” in ISLPED , pp. 229-234, 2013.

[69] S. Sakhare et al., “JSW of 5.5 MA/cm2 and RA of 5.2−Ω.m2 STT- MRAM Technology
for LLC Application,” in IEEE Transactions on Electron Devices, vol. 67, no. 9, 2020,
pp. 3618–3625.

[70] H. Li, M. Bhargav, P. N., and H. Philip, “On-Chip Memory Technology Design Space
Explorations for Mobile Deep Neural Network Accelerators” in Design Automation Con-
ference (DAC), pp. 1-6, 2019.

158

[71] I. Yoon, M. A., R. V., T. Rakshit, and A. Raychowdhury, “Hierarchical Memory Sys-
tem With STT-MRAM and SRAM to Support Transfer and Real-Time Reinforcement
Learning in Autonomous Drones” in IEEE Journal on Emerging Topics, vol. 9, no. 3,
pp. 485-497, Sept. 2019.

[72] C. W Smullen et al., “Relaxing non-volatility for fast and energy-efficient STT-RAM
caches” in IEEE 17th International Symposium on High Performance Computer Archi-
tecture (HPCA), pp. 50-61, 2011.

[73] A. Ranjan, S. Venkataramani, Z. Pajouhi, R. Venkatesan, K. Roy, and A. Raghunathan,
“STAxCache: An approximate, energy efficient STT-MRAM cache” in DATE, pp. 356-
361, 2017.

[74] H.S.P. Wong et al., “Stanford Memory Trends” on
https://nano.stanford.edu/downloads/stanford-memory-trends, 2020.

[75] G. Li et al., “Understanding Error Propagation in Deep Learning Neural Network
(DNN) Accelerators and Applications” in ACM Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 1-12, 2017.

[76] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K., N. Mulholland, D. Brooks,
and G. Wei, “Ares: A framework for quantifying the resilience of deep neural networks”
in Design Automation Conference (DAC), pp. 1-6, 2018.

[77] J. Park et al., “A novel integration of STT-MRAM for on-chip hybrid memory by
utilizing non-volatility modulation” in IEEE International Electron Devices Meeting
(IEDM), pp. 2.5.1-2.5.4, 2019.

[78] G. Hu et al., “Spin-transfer torque MRAM with reliable 2 ns writing for last level cache
applications” in IEEE International Electron Devices Meeting (IEDM), pp. 2.6.1-2.6.4,
2019.

[79] J. Iwata-Harms et al., “High-temperature thermal stability driven by magnetization
dilution in CoFeB free layers for spin-transfer-torque magnetic random access memory”
in Nature Scientific Reports, 2018.

[80] J. G., “2 MB Array-Level Demonstration of STT-MRAM Process and Performance To-
wards L4 Cache Applications” in IEEE International Electron Devices Meeting (IEDM),
pp. 2.4.1-2.4.4, 2019.

[81] M. Poremba, S. Mittal, D. Li, J. S., and Y. Xie, “DESTINY: A tool for modeling emerg-
ing 3D NVM and eDRAM caches” in Design, Automation Test in Europe Conference
Exhibition, pp. 1543-1546, 2015.

[82] S. Wang, and P. Kanwar, “BFloat16: The secret to high performance on Cloud TPUs”
in Google Cloud Blog, 2019.

159

[83] D. Kalamkar et al., “A Study of BFLOAT16 for Deep Learning Training” in
arXiv:1905.12322, 2019.

[84] Online, “PyTorch”, Avalable in https://pytorch.org/, 2021.

[85] Online, “Synopsys Inc.”, Available in https://www.synopsys.com/, 2021.

[86] B. Sun, D. Liu, L. Yu, J. Li, H. Liu, W. Zhang, and T. Torng, “Mram co-designed
processing-in-memory cnn accelerator for mobile and iot applications” in arXiv preprint
arXiv:1811.12179, 2018.

[87] H. Yan, H. Cherian, E. Ahn, X. Qian, and L. Duan, “iCELIA: a full-stack framework for
STT-MRAM-based deep learning acceleration” in IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 2, pp. 408-422, 2019.

[88] A. Anwar, A. Raychowdhury, R. Hatcher, and T. Rakshit, “XBAROPT-Enabling ultra-
pipelined, novel STT MRAM based processing-in-memory DNN accelerator” in IEEE
International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp.
36-40, 2020.

[89] Y. Shi, S. Oh, Z. Huang, X. Lu, S. Kang, and D. Kuzum, “Performance prospects
of deeply scaled spin-transfer torque magnetic random-access memory for in-memory
computing” in IEEE Electron Device Letters, pp. 1126-1129, 2020.

[90] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-
transfer torque magnetic RAM” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 3, pp. 470-483, 2017.

[91] S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA: An MRAM-Based In-Memory Ac-
celerator” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 5, pp. 1123-1136, 2020.

[92] M. Suri, A. Gupta, V. Parmar, and K. Lee, “Performance enhancement of edge-ai-
inference using commodity MRAM: Iot case study” in 2019 IEEE 11th International
Memory Workshop (IMW), pp. 1-4, 2019.

[93] N. Sayed, L. Mao, R. Bishnoi, and M. Tahoori, “Compiler-assisted and profiling-based
analysis for fast and efficient STT-MRAM on-chip cache design” in ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 24, no. 41, Pages 1 - 25,
2019.

[94] N. Sayed, R. Bishnoi, and M. Tahoori. ”Approximate spintronic memories.” in ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 16, no. 43, Pages
1 - 22, 2020.

[95] Online, “NVIDIA Ampere100 GPU”, Available in ttps://www.nvidia. com/en-us/data-
center/ampere-architecture/, 2024.

160

[96] Q. Cao et al., “Are Mobile DNN Accelerators Accelerating DNNs?” in International
Workshop on Embedded and Mobile Deep Learning, Pages 7 - 12, 2021.

[97] Y. Seo, K. Kwon, X. Fong, and K. Roy, “High Performance and Energy-Efficient On-
Chip Cache Using Dual Port (1R/1W) Spin-Orbit Torque MRAM” in IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 6, Pages 293-304, 2016.

[98] J. Park, “Deep learning inference in facebook data centers: Characterization, perfor-
mance optimizations and hardware implications” in arXiv preprint arXiv:1811.09886,
2018.

[99] K. Mishty, and M. Sadi, “Designing Efficient and High-Performance AI Accelerators
With Customized STT-MRAM” in IEEE Transactions on Very Large Scale Integration
Systems, vol. 29, Pages 1730-1742, 2021.

[100] T. Endoh, H. Honjo, K. Nishioka, and S. Ikeda, “Recent Progresses in STT-MRAM
and SOT-MRAM for Next Generation MRAM” in 2020 IEEE Symposium on VLSI
Technology, Pages 1-2, 2020.

[101] F. Oboril, R. Bishnoi, M. Ebrahimi, and M. Tahoori, “Evaluation of Hybrid Memory
Technologies Using SOT-MRAM for On-Chip Cache Hierarchy” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, Pages 367-380,
2015.

[102] M. Natsui et al., “Dual-Port Field-Free SOT-MRAM Achieving 90-MHz Read and 60-
MHz Write Operations under 55-nm CMOS Technology and 1.2-V Supply Voltage” in
IEEE Symposium on VLSI Circuits, pp. 1-2, 2020.

[103] K. Garello, F. Yasin, and G. Kar, “Spin-Orbit Torque MRAM for ultrafast embedded
memories: from fundamentals to large scale technology integration” in IEEE Interna-
tional Memory Workshop (IMW), pp. 1-4, 2019.

[104] S.Z. Rahaman et al., “Size-Dependent Switching Properties of Spin-Orbit Torque
MRAM With Manufacturing-Friendly 8-Inch Wafer-Level Uniformity” in IEEE Journal
of the Electron Devices Society, vol. 8, Pages 163-169, 2020.

[105] M. Gupta et al., “High-density SOT-MRAM technology and design specifications for
the embedded domain at 5nm node” in IEEE International Electron Devices Meeting,
Pages 24.5.1-24.5.4, 2020.

[106] H. Honjo et al., “First demonstration of field-free SOT-MRAM with 0.35 ns write
speed and 70 thermal stability under 400°C thermal tolerance by canted SOT structure
and its advanced patterning/SOT channel technology” in IEEE International Electron
Devices Meeting (IEDM), pp. 28.5.1-28.5.4, 2019.

161

[107] M. Kazemi et al., “Compact Model for Spin–Orbit Magnetic Tunnel Junctions” in
IEEE Transactions on Electron Devices, vol. 63, no. 2, pp. 848-855, 2016.

[108] Online, “Hugging Face”, Available in https://huggingface.co/, 2024.

[109] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L. Chen, B. Zhang, and P. Deav-
ille, “In-Memory Computing: Advances and Prospects” in IEEE Solid-State Circuits
Magazine, vol. 11, Pages 43-55, 2019.

[110] A. Manchonet et al., “Current-induced spin-orbit torques in ferromagnetic and anti-
ferromagnetic systems” in APS, vol. 91, Pages 035004, 2019.

[111] A. Vaswani et al., “Attention is all you need” in Advances in Neural Information
Processing Systems, vol. 30, 2017.

[112] Y. Seo, K. Kwon, X. Fong, and K. Roy, “High Performance and Energy-Efficient On-
Chip Cache Using Dual Port (1R/1W) Spin-Orbit Torque MRAM” in IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 6, Pages 293-304, 2016.

[113] H. Wang et al., “A New MRAM-Based Process In-Memory Accelerator for Efficient
Neural Network Training with Floating Point Precision” in IEEE International Sympo-
sium on Circuits and Systems, pp. 1-5, 2020.

[114] G. Yuan, X. Ma, S. Lin, Z. Li, and C. Ding, “A SOT-MRAM-based processing-
in-memory engine for highly compressed DNN implementation” in arXiv preprint
arXiv:1912.05416, 2019.

[115] Y. Luo et al., “Performance Benchmarking of Spin-Orbit Torque Magnetic RAM for
Deep Neural Network (DNN) Accelerators” in IEEE International Memory Workshop
(IMW), Pages 1-4, 2022.

[116] K. Lee, S. Lee, B. Min, and K. Lee, “Threshold current for switching of a perpendicular
magnetic layer induced by spin Hall effect” in American Institute of Physics, vol. 102,
2013.

[117] N. Khang, Y. Ueda, and P. Hai, “A conductive topological insulator with large spin
Hall effect for ultralow power spin–orbit torque switching” in Nature Publishing Group,
vol. 17, Pages 808–813, 2018.

[118] B. Wu et al., “Field-Free 3T2SOT MRAM for Non-Volatile Cache Memories” in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, Pages 4660-4669, 2020.

[119] K. Tsunekawa et al., “Giant tunneling magnetoresistance effect in low-resistance
CoFeB/ MgO (001)/ CoFeB magnetic tunnel junctions for read-head applications” in
American Institute of Physics, vol. 87, 2005.

162

[120] K. Wang, J. Alzate, and P. Amiri, “Low-power non-volatile spintronic memory: STT-
RAM and beyond” in IOP Publishing, vol. 46, 2013.

[121] K. Garello et al., “Ultrafast magnetization switching by spin-orbit torques” in AIP
Publishing LLC, vol. 105, 2014.

[122] Y.C. Wu et al., “Voltage-gate-assisted spin-orbit-torque magnetic random-access mem-
ory for high-density and low-power embedded applications” in APS, vol. 15, 2021.

[123] K. Garello et al., “SOT-MRAM 300mm integration for low power and ultrafast em-
bedded memories” in IEEE Symposium on VLSI Circuits, Pages 81-82, 2018.

[124] K. Garello et al., “Manufacturable 300mm platform solution for Field-Free Switching
SOT-MRAM” in Symposium on VLSI Technology, pp. T194-T195, 2019.

[125] L. Chang, X. Ma, Z. Wang, Y. Zhang, Y. Xie, and W. Zhao, “PXNOR-BNN: In/With
Spin-Orbit Torque MRAM Preset-XNOR Operation-Based Binary Neural Networks”
in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, Pages
2668-2679, 2019.

[126] S. Angizi, Z. He, A. Rakin, and D. Fan, “CMP-PIM: An Energy-Efficient Comparator-
based Processing-In-Memory Neural Network Accelerator” in 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1-6, 2018.

[127] S. Naffziger et al., “2.2 AMD chiplet architecture for high-performance server and
desktop products” in 2020 IEEE International Solid-State Circuits Conference-(ISSCC),
Pages 44-45, 2020.

[128] M.-S. Lin et al., “A 7nm 4GHz Arm®-core-based CoWoS® Chiplet Design for High
Performance Computing” in 2019 Symposium on VLSI Circuits, Pages C28-C29, 2019.

[129] C.-H.H. Kenny, “Designs of Communication Circuits for Side-by-Side and Stacked
Chiplets” in ISSCC 2021 Forums, 2021.

[130] R. Mahajan et al., “Embedded Multi-die Interconnect Bridge (EMIB) – A High Den-
sity, High Bandwidth Packaging Interconnect” in IEEE 66th Electronic Components
and Technology Conference, pp. 557-565, 2016.

[131] D. B. Ingerly et al., “Foveros: 3D Integration and the use of Face-to-Face Chip Stacking
for Logic Devices” in IEEE International Electron Devices Meeting, pp. 19.6.1-19.6.4,
2019.

[132] F. J. C. Lee et al., “Heterogeneous System-Level Package Integration — Trends and
Challenges” in IEEE Symposium on VLSI Technology, Pages 1-2, 2020.

163

[133] F.C. Chen et al., “System on integrated chips (SoICTM) for 3d heterogeneous integra-
tion,” in IEEE 69th Electronic Components and Technology Conference, pp. 594-599,
2019.

[134] Online, “Heterogeneous Integration Roadmap”, Available in
https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-
edition.html, 2021.

[135] Online, “High-Bandwidth Memory(HBM)”, Available in https://www.jedec.org/,
2023.

[136] Online, “TSMC”, Available in https://3dfabric.tsmc.com/english/dedicatedFoundry/
technology/cowos.htm, 2024.

[137] Online, “Intel’s new 3D Foveros packaging tech: LEGO-like chiplets for CPUs”, Avail-
able in https://www.tweaktown.com/news/index.html, 2022.

[138] S. Naffziger et al., “Ryzen” in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture, vol. , Pages 57-70, 2021.

[139] W. Gomes et al., “8.1 Lakefield and Mobility Compute: A 3D Stacked 10nm and
22FFL Hybrid Processor System in 1212mm2, 1mm Package-on-Package” in 2020 IEEE
International Solid- State Circuits Conference, Pages 144-146, 2020.

[140] Hong Jiang, “Intel’s Ponte Vecchio GPU” in 2022 IEEE Hot Chips 34 Symposium,
vol. , Pages 1-29, 2022.

[141] T. Wang et al., “Application Defined On-chip Networks for Heterogeneous Chiplets:
An Implementation Perspective” in IEEE International Symposium on High-
Performance Computer Architecture, Pages 1198-1210, 2022.

[142] Y. Wu et al., “Upward Packet Popup for Deadlock Freedom in Modular Chiplet-
Based Systems” in IEEE International Symposium on High-Performance Computer
Architecture, Pages 986-1000, 2022.

[143] A. Coskun et al., “Cross-Layer Co-Optimization of Network Design” in IEEE TRANS-
ACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, vol. 39, no. 12, pp. 5183-5196, 2022.

[144] T.-R. Lin et al., “A Deep Reinforcement Learning Framework for Architectural Ex-
ploration: A Routerless NoC Case Study,” in IEEE International Symposium on High
Performance Computer Architecture, pp. 99–110, 2020.

[145] A. Kumar et al., ”Data-driven offline optimization for architecting hardware accelera-
tors.” arXiv preprint arXiv:2110.11346, 2021.

164

[146] Dan et al. Zhang, “A Full-Stack Search Technique for Domain Optimized Deep Learn-
ing Accelerators” in ASPLOS, Pages 27-42, 2022.

[147] S. Krishnan et al., “Multi-Agent Reinforcement Learning for Microprocessor Design
Space Exploration” in arXiv preprint arXiv:2211.16385, 2022.

[148] J.A. Cunningham, “The use and evaluation of yield models in integrated circuit manu-
facturing” in IEEE Transactions on Semiconductor Manufacturing, vol. 3, Pages 60-71,
1990.

[149] Y. Feng, and K. Ma, “Chiplet Actuary: A Quantitative Cost Model and Multi-Chiplet
Architecture Exploration” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, Pages 121-126, 2022.

[150] V. Sze et. al., “How to Evaluate Deep Neural Network Processors: TOPS/W (Alone)
Considered Harmful” in IEEE Solid-State Circuits Magazine, vol. 12, Pages 28-41, 2020.

[151] S. Bharadwaj et al., “Kite: A Family of Heterogeneous Interposer Topologies Enabled
via Accurate Interconnect Modeling” in 57th ACM/IEEE Design Automation Confer-
ence (DAC), Pages 1-6, 2020.

[152] S. Pal et al., “Designing a 2048-Chiplet, 14336-Core Waferscale Processor” in 58th
ACM/IEEE Design Automation Conference (DAC), pp. 1183-1188, 2021.

[153] T. Tang, and Y. Xie, “Cost-Aware Exploration for Chiplet-Based Architecture with
Advanced Packaging Technologies” in arXiv preprint arXiv:2206.07308, 2022.

[154] R. Sutton, and A. Barto, “Reinforcement learning: An introduction” in MIT press,
2018.

[155] N. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit”
in Proceedings of the 44th annual international symposium on computer architecture,
Pages 1-12, 2017.

[156] R. Mathur et al., “Thermal-aware design space exploration of 3-D systolic ML ac-
celerators,” in IEEE Journal on Exploratory Solid-State Computational Devices and
Circuits, vol. 7, no. 1, pp. 70–78, 2021.

[157] H. T. Kung et al., “Systolic Building Block for Logic-on-Logic 3D-IC Implementations
of Convolutional Neural Networks” in IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1-5, 2019.

[158] G. Loh, and R. Swaminathan, “The Next Era for Chiplet Innovation” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1-6, 2023.

165

[159] P. Shukla et al., “Temperature-Aware Sizing of Multi-Chip Module Accelerators for
Multi-DNN Workloads” in Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), pp. 1-6, 2023.

[160] P. Vivet et al., “IntAct: A 96-Core Processor With Six Chiplets 3D-Stacked on an
Active Interposer With Distributed Interconnects and Integrated Power Management”
in IEEE Journal of Solid-State Circuits, vol. 56, Pages 79-97, 2021.

[161] D. C. Price e. al., “Optimizing performance-per-watt on GPUs in high performance
computing: Temperature, frequency and voltage effects” in Springer, vol. 31, Pages
185–193, 2016.

[162] J. Schulman et al., “Proximal policy optimization algorithms” in arXiv preprint
arXiv:1707.06347, 2017.

[163] Online, “Stable-Baselines3”, Available in https://stable-
baselines3.readthedocs.io/en/master/, 2024.

[164] N. Jouppi et al., “Tpu v4: An optically reconfigurable supercomputer for machine
learning with hardware support for embeddings” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, Pages 1-14, 2023.

[165] Online, “AMD 3D V-Cache Technology”, Available in https://www.amd.com/, 2024.

[166] Online, “OpenAI Gym”, Available in https://github.com/openai/gym, 2024.

[167] V. Mnih, A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu, “Asynchronous methods for deep reinforcement learning” in International
conference on machine learning, Pages 1928–1937, 2016.

[168] Dzmitry Bahdanau, “The FLOPs Calculus of Language Model Training”, Availble in
https://medium.com/, 2022.

[169] Online, “MLPerf Benchmark”, Available in https://www.nvidia.com/en-us/data-
center/resources/mlperf-benchmarks/, 2024.

[170] A. Sangiovanni-Vincentelli et al., “Automated Design of Chiplets” in International
Symposium on Physical Design, Pages 1-8, 2023.

[171] K. Hazelwood et al., “Applied Machine Learning at Facebook: A Datacenter Infras-
tructure Perspective” in IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), Pages 620-629, 2018.

[172] Huwan et al. Peng, “Chiplet Cloud: Building AI Supercomputers for Serving Large
Generative Language Models” in arXiv preprint arXiv:2307.02666, 2023.

166

[173] S. Chen et al., ”Floorplet: Performance-Aware Floorplan Framework for Chiplet Inte-
gration,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 43, no. 6, pp. 1638-1649, June 2024.

[174] Y. Chang et al., “A Survey on Evaluation of Large Language Models” in ACM Trans.
Intell. Syst. Technol., vol. 15, Pages 1-45, 2024.

[175] Y. Kim, and C. Wu, “Autoscale: Energy efficiency optimization for stochastic edge
inference using reinforcement learning” in 53rd Annual IEEE/ACM international sym-
posium on microarchitecture (MICRO), Pages 1082–1096, 2020.

[176] K. Settaluri et al., “AutoCkt: Deep reinforcement learning of analog circuit designs”
in 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Pages
490–495, 2020.

[177] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I.
Sutskever, “Zero-shot text-to-image generation” in International Conference on Machine
Learning, vpp. 8821-8831, 2021.

[178] K. Mishty and M. Sadi, ”System and Design Technology Co-Optimization of SOT-
MRAM for High-Performance AI Accelerator Memory System,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 43, no. 4, pp. 1065-
1078, April 2024.

[179] K. Mishty, and M. Sadi, “System and Design Technology Co-optimization of Chiplet-
based AI Accelerator with Machine Learning” in Proceedings of the Great Lakes Sym-
posium on VLSI, Pages 697 - 702, 2023.

[180] E. Marinissen, T. McLaurin, and H. Jiao, “IEEE Std P1838: DfT standard-under-
development for 2.5D-, 3D-, and 5.5D-SICs” in 21th IEEE European Test Symposium
(ETS), pp. 1-10, 2016.

[181] J. M. Joseph et al., “Architecture, dataflow and physical design implications of 3D-ICs
for DNN-accelerators” in 22nd International Symposium on Quality Electronic Design
, pp. 60-66, 2021.

[182] Online, “AMD MI300”, Available in Available: https://www.amd.com/en.html, 2024.

[183] J. Kim et al., “Architecture, Chip, and Package Codesign Flow for Interposer-Based
2.5-D Chiplet Integration Enabling Heterogeneous IP Reuse” in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 28, Pages 2424-2437, 2020.

[184] S. W. Liang ett al., “High Performance and Energy Efficient Computing with Advanced
SoIC™ Scaling” in 2022 IEEE 72nd Electronic Components and Technology Conference
(ECTC), Pages 1090-1094, 2022.

167

[185] Q. Xu and L. Jiang, “On Effective Through-Silicon Via Repair for 3-D-Stacked ICs”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 4, pp. 559-571, April 2013.

[186] H. Kwon et al., “MAESTRO: A Data-Centric Approach to Understand Reuse, Perfor-
mance, and Hardware Cost of DNN Mappings” in IEEE Micro, vol. 40, Pages 20-29,
2020.

168

Publications

• K. Mishty and M. Sadi, ”Chiplet-Gym: Optimizing Chiplet-based AI Accelerator De-
sign with Reinforcement Learning,” in IEEE Transactions on Computers, 2024. doi:
10.1109/TC.2024.3457740

• K. Mishty and M. Sadi, ”System and Design Technology Co-Optimization of SOT-
MRAM for High-Performance AI Accelerator Memory System,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 43, no. 4, pp.
1065-1078, April 2024

• K. Mishty and M. Sadi, “System and Design Technology Co-optimization of Chiplet-
based AI Accelerator with Machine Learning,” In Proceedings of the Great Lakes
Symposium on VLSI 2023 (GLSVLSI ’23). Association for Computing Machinery,
697–702, 2023.

• K. Mishty and M. Sadi, ”Designing Efficient and High-Performance AI Accelerators
With Customized STT-MRAM,” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 29, no. 10, pp. 1730-1742, Oct. 2021

• Knipper, R. Alexander, K. Mishty, M. Sadi, SKK Santu, ”SNNLP: energy-efficient nat-
ural language processing using spiking neural networks.” arXiv preprint arXiv:2401.17911
(2024).

• M. Sadi, B.M.S.B. Talukder, K. Mishty, M.T. Rahman, “Attacking Deep Learning AI
Hardware with Universal Adversarial Perturbation,” in Information 2023, 14, 516.

169

