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Abstract 

 

 

 The gut microbiota plays a crucial role in the health and physiology of animals, 

significantly affecting various biological processes and disease mechanisms. However, there are 

limited studies on the gut microbiota in cats and dogs, especially regarding the specific 

characteristics of the gut microbiota in obese cats and its relationship to memory performance in 

dogs. This dissertation aims to address these shortcomings by characterizing the gut microbiota 

of obese cats and exploring the association between gut microbiota and memory in dogs using 

metagenomic sequencing. 

The first part of this study focuses on the importance of employing appropriate fecal 

sample collection methods to ensure accurate characterization of the gut microbiota in cats. For 

domestic cats, lubricants are often necessary to obtain an adequate number of samples. We 

evaluated the impact of mineral oil lubrication during the collection of cat stool samples on 

subsequent gut microbiome analysis. We also compared the two primary methods of collecting 

cat fecal samples using a fecal ring versus using a litter box. This study aims to provide valuable 

insights into the impact of different fecal collection methods and to assist in the development of 

standardized protocols for collecting fecal samples in feline microbiome studies. 

In addition, metagenomic analysis of the gut microbiota in obese cats was performed to 

identify key microbial species and their potential roles in obesity-related metabolic 

dysregulation. We observed a significant reduction in microbial diversity in obese cat gut 

microbiota, suggesting potential dysbiosis. A panel of seven significantly altered, highly 

abundant species can serve as a microbiome indicator of obesity. Our findings in the obese cat 

microbiome composition, abundance, and functional capacities provide new insights into feline 

obesity. 
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Finally, this dissertation also explored the potential links between gut microbiota 

composition and memory performance in dogs. A single bacterial species, Bifidobacterium 

pseudolongum, was identified and confirmed to be correlated with memory performance in dogs. 

Using a random forest regression model, we found that the abundance of 17 bacterial taxa in the 

microbiome exhibited a stronger predictive capacity for memory performance. Our findings offer 

valuable insights into microbiome underpinnings of mammalian cognitive functions and suggest 

avenues for developing psychobiotics to enhance canine memory and learning. 

Overall, this dissertation contributes to a deeper understanding of the gut microbiota in 

both cats and dogs, highlighting its relevance in veterinary medicine and its potential 

implications for improving health and treatment strategies in these companion animals. 
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CHAPTER 1 

Introduction 

1.1 Background 

1.1.1 Functional anatomy of the mammalian gastrointestinal tract 

The mammalian gastrointestinal (GI) tract is a complex network of organs. It plays a 

fundamental role in maintaining physiological processes essential for survival. It is responsible 

for digesting food, absorbing nutrients, and eliminating waste [1]. It is specifically designed to 

convert ingested food into essential nutrients and energy required for survival. Subsequently, it 

efficiently processes and prepares solid waste, or stool, for excretion during bowel movements. 

1.1.1.1 Gross anatomy 

The gross anatomy of the mammalian gastrointestinal (GI) tract includes the mouth, esophagus, 

stomach, small intestine (consisting of the duodenum, jejunum, and ileum), large intestine 

(comprising the caecum, colon, and rectum), and the anus [2]. The GI tract also includes vital 

accessory organs such as the liver, pancreas, gallbladder, and salivary glands [3]. The form and 

location of these organs are shown in Figure 1.1. 
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Figure 1.1 Gross anatomy of the mammalian gastrointestinal tract (From Wikimedia Commons, 

the free media repository). 

 

1.1.1.2 Microanatomy and histophysiology 

The microanatomy of the digestive tract starts with the mouth, which is constituted by oral 

mucosa, tongue, teeth, periodontium, and salivary glands. The oral mucosa is lined with stratified 

squamous epithelium, providing a protective barrier against mechanical forces, pathogens, and 

toxins. It also assists in food processing and aids in the secretion of mucus, which lubricates food 
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for easier swallowing [4]. Tongue, teeth, and periodontium play an important role in chewing 

and swallowing food, preparing food for further digestion in the gastrointestinal tract. The 

salivary glands serve several key functions in the digestive system. They contain acinar cells for 

enzyme secretion and ductal cells for saliva transport. Saliva provides essential lubrication for 

both eating and speaking. It contains the enzyme amylase, which begins the breakdown of 

carbohydrates into simpler sugars, initiating digestion in the mouth [5]. Additionally, saliva plays 

some important roles in taste facilitation, oral health protection, and pH buffering to maintain the 

balance required for oral hygiene [6]. 

 

The esophagus is a muscular tube that connects the pharynx (throat) to the stomach. Its primary 

function is to transport food and liquid from the mouth to the stomach through coordinated 

muscle contractions [7]. The epiglottis is a leaf-like cartilage flap at the base of the tongue. It 

closes over the trachea when swallowing, ensuring that food and liquid are directed into the 

esophagus and not into the respiratory tract [8]. The esophagus is lined with stratified squamous 

epithelium to protect against abrasion from food particles [9].  

 

The stomach in mammals is transversely arranged and takes a saclike form [10]. It is divided into 

distinct regions: 1) The cardiac region, which is adjacent to the esophagus. It primarily secretes 

mucus through its specialized glands called cardiac glands,  to protect the stomach lining and the 

pyloric region [11]; 2) The pyloric region, which is regulated by the pyloric sphincter. It serves 

as a valve that controls the release of chyme (partially digested food) into the duodenum (the first 

part of the small intestine) [12].  
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The small intestine is an important organ of the digestive system, consisting of the duodenum, 

jejunum and ileum. The small intestine is located in the lower part of the abdominal cavity, 

below the stomach [13]. Its wall comprises four main layers: the mucosa, submucosa, muscularis 

externa, and serosa. The mucosa features absorptive cells with microvilli. They help absorb 

nutrients. Goblet cells produce mucus to protect the lining [14]. The submucosa contains 

connective tissue for support, blood vessels for nutrient supply, and glands that help neutralize 

stomach acid [15]. The muscularis externa has a smooth muscle layer that promotes peristalsis 

and segmentation, aiding the movement and mixing of intestinal contents [16]. The serosa is the 

outermost layer of the small intestine and plays a key role in reducing friction between the 

intestine and surrounding organs. It secretes serous fluid, which is a lubricating fluid that allows 

the intestines to move smoothly within the abdominal cavity. It prevents irritation and damage 

caused by friction [17].  

The large intestine comprises the caecum, colon, and rectum. It is characterized by a wider 

diameter compared to the small intestine. It has unique structural features, such as taenia coli, 

anus, and appendix. The large intestine is located in the lower abdominal cavity and surrounds 

the small intestine in a square or question mark shape [18]. Compared to small intestine, the 

large intestine lacks microvilli structures and has a smoother inner surface. Its wall is lined with 

simple columnar epithelium and abundant goblet cells that secrete mucus to facilitate the passage 

of feces [19]. The submucosa contains connective tissue, blood vessels, and lymphatics, 

supporting nutrient supply and immune function [20]. Different from the smooth muscle layer of 

small intestine, the muscularis externa of large intestine has three distinct longitudinal muscle 

bands called taeniae coli. It aids in peristalsis and segmentation, promoting the elimination of 
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feces [21]. The main function of the small intestine is to digest and absorb nutrients. In contrast, 

the large intestine mainly absorbs water and electrolytes, forming and storing feces. 

The liver, pancreas, and gallbladder each have accessory but vital roles in the gastrointestinal 

tract. The liver produces bile, which is essential for the digestion of fat. The liver also processes 

nutrients absorbed from the small intestine [22]. At the same time, it can detoxify harmful 

substances and store important vitamins and minerals [23]. The pancreas secretes digestive 

enzymes (amylase, lipase, and protease) and bicarbonate [24]. These enzymes help break down 

carbohydrates into simple sugars, fats into fatty acids and glycerol, and proteins into amino 

acids. The bicarbonate can neutralize the chyme (partially digested food) that comes from the 

stomach into the small intestine [25]. In addition, the pancreas can regulate blood sugar by 

releasing insulin and glucagon [26]. The gallbladder stores and concentrates bile from the liver 

and releases it into the small intestine to aid fat digestion [27]. These organs work together to 

ensure efficient digestion and nutrient absorption, but dysfunction in any one organ can disrupt 

the health of the overall digestive system. 

1.1.2 Establishment of the gut microbiome 

1.1.2.1 Origins of the gut microbiome 

The gut microbiota refers to the diverse community of microorganisms inhabiting the intestines 

of humans and animals. Its primary members are various bacterial species, alongside smaller 

populations of fungi, archaea, viruses, and protozoa, collectively constituting the gut micro-

ecosystem [28, 29]. The development of the gut microbiome begins at birth, when a newborn is 

first exposed to bacteria from the mother and the environment. Some research suggested that 
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some microbial colonization may occur in utero through the placenta [30, 31]. DNA from a 

variety of bacteria was detected in the placenta, umbilical cord blood, amniotic fluid and fetal 

stool, suggesting that the gut was not sterile at birth [30, 32, 33]. However, due to the lack of 

direct evidence of active bacterial colonization before birth, this theory remains unproven. 

Further research is needed to confirm these findings. The initial microbial colonization of the 

intestine can be influenced by factors such as the mode of delivery (vaginal birth or cesarean 

section), early feeding practices (breastfeeding or formula feeding), environment exposure and 

host genetics.  

 

Mode of delivery: Within the first few days after birth, the newborn intestine is rapidly 

colonized by maternal and environmental bacteria.  One of the most important influencing 

factors is the mode of delivery. Infants delivered vaginally (i.e., born through the birth canal) 

acquire a microbiome similar to their mothers' vaginal flora, which is dominated by 

Lactobacillus, Prevotella, and Sneathia [34, 35]. However,  C-section infants develop a 

microbiota more similar to the skin microbiome, including Staphylococcus, Corynebacterium, 

and Propionibacterium [36]. C-section infants also experience delayed colonization of beneficial 

bacteria such as Bifidobacterium and Bacteroides [37-39].  C-section infants also have increased 

rates of Clostridium difficile, which is particularly widespread in hospital settings [40]. The risk 

of colonization of this bacterium increases with the number of days staying in hospital [40]. 

These microbiota differences in C-section infants can persist for up to a year, and some minor 

changes can persist even for up to seven years, although the mechanisms of the long-term effects 

on development and health remain uncertain [41].  
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The C-section rates are increasing in many parts of the world, including Europe, the United 

States, large cities in China, Australia, and Brazil [42]. These rates far exceed the 10 to 15% 

recommended by the World Health Organization (WHO) [43]. Studies have shown that infants 

born via C-section face an increased risk of obesity, allergies, and asthma in childhood [44-47]. 

These findings emphasized the critical role of the first exposure to microbiome. 

 

Early feeding practices: Breastfeeding shapes a baby's gut microbiome in several ways. 

Beneficial bacteria are transmitted directly from breast milk and the mother's skin. Prebiotic 

nutrients and bioactive compounds further support this process. Breast milk is rich in human 

milk oligosaccharides (HMOs), which promote the growth of beneficial bacteria such as 

bifidobacteria. HMOs are scarce in formula-milk. Exclusively breastfed infants typically have 

microbiota dominated by Bifidobacterium, which is able to protect the infant against a number of 

enteropathogenic microorganisms [48].  Breastmilk also contains immunological compounds like 

IgA, lactoferrin, and lysozyme [49]. They support the expansion of commensal bacteria by 

inhibiting harmful pathogens from attaching to the intestinal mucosal surface [50]. In addition, 

vitamin D is mainly contained in formula, which is recommended for breastfed babies, and it 

may affect microbiome development [51]. Vitamin D plays a role in the development of 

regulatory T-cells and dendritic cells [52]. Although direct evidence is lacking, one study 

suggests that lower vitamin D intake in adult African Americans is associated with a different 

microbiome composition compared to Caucasian Americans [53]. Larger, long-term studies are 

needed to confirm these findings. 
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Environmental exposure: Environmental exposure has been shown to affect the gut 

microbiome development. A recent longitudinal study by the Home Microbiome Consortium 

demonstrates significant interactions among the microbiomes of humans, home, and pets [54]. 

Singletons exhibit distinct colonization patterns compared to infants with older siblings. Infants 

who live with older sisters or brothers have lower levels of Clostridium species and higher levels 

of microbial diversity [38, 55, 56]. Infants without older siblings are reported to have lower 

levels of bifidobacteria in the gut microbiome [40]. Studies indicate that firstborns have less 

mature microbiota, compared to infants with older siblings. The less mature gut microbiome may 

increase the risk of allergy [46]. Pets and house dust have also been reported to play a role in 

affecting infant microbial colonization [40, 57, 58]. However, due to limited available data and 

further research, there are contradictions in current findings. 

 

Host genetics: Several studies have reported that host genetics have effects on the microbiota 

composition [59, 60 , 61]. An interesting study analyzed the microbiome development of three 

dichorionic triplets by next-generation sequencing. The results showed that at one month of age, 

monozygotic twins had more similar microbiomes than their siblings [62]. By the 12th month, 

the characteristics of the three babies became more consistent [62]. This suggests that host genes 

initially play an important role. However, after 12 months, environmental factors became more 

dominant. Another comprehensive research of fecal samples from 416 adult twins showed 

greater microbiota similarity between twin pairs, especially monozygotic twins [63].  

 

Individual genes also play a role. For example, individuals with a functional fucosyltransferase 2 

(FUT2) gene, have different microbial communities compared to individuals without FUT2 gene 
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[64]. This gene plays a role in affecting glycosylation of mucus and breastmilk oligosaccharides 

[65, 66]. It also can regulate the presence of mucosal ABH and Lewis blood group antigen [67]. 

Consistent with this, a recent study found that bifidobacterium colonizes earlier and at higher 

levels in breastfed infants whose mothers have FUT2 gene [68]. Other candidate genes, like 

NOD2 and MEFV, also have the potential to impact the gut microbiota composition of infants 

and are linked to conditions such as inflammatory bowel disease and lower bacterial diversity 

[69-71]. 

 

1.1.2.2 Development of the gut microbiome with age from birth to adulthood 

The development of the gut microbiome from birth to adulthood in mammalian animals is a 

dynamic and complex process. The gut microbiome begins to form at birth and undergoes 

significant changes throughout the whole lifespan. Early life is a critical period for the 

establishment of the gut microbiota [72, 73]. Initial microbial colonization is critical for the 

physiological and immune development of infants, which may have long-term effects later in life 

[74]. The initial colonization is influenced by many factors such as mode of delivery, 

breastfeeding, environmental exposure, and host genetics. The influence of the difference in gut 

microbial composition during early life continues into early childhood, with the microbiome 

gradually developing a composition similar to that of adults [75, 76]. 

 

At birth, a baby's gut is almost sterile, but soon becomes colonized with microorganisms. The 

first bacteria to dominate the gut are facultative anaerobic bacteria such as Escherichia, 

Streptococcus and Enterococcus [77, 78]. This is because newborns have more oxygen in their 

intestines. Some studies showed steady changes in the species and diversity of bacteria, while 
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others reported unpredictable changes, including a temporary drop in diversity in the first week 

[77, 79, 80]. With less competition, newborns have more bacteria than adults [81]. Facultative 

anaerobic bacteria consume oxygen and create a better environment for strict anaerobic bacteria 

to grow. Over the next few weeks, these anaerobic bacteria multiply, feeding on the lactic acid in 

the breast milk. Breast milk contains beneficial bacteria and prebiotics like human milk 

oligosaccharides (HMOs) and IgA, that promote the growth of beneficial bacteria such as 

Bifidobacteria and Lactobacilli [48]. Formula-fed infants tend to have a more diverse 

microbiome but with fewer beneficial bacteria compared to breastfed infants. Recent studies 

show that breast milk has its own microbiota. Exclusively breastfed infants ingest 10^5 to 10^7 

bacteria each day [82]. Early milk, or colostrum, contains bacteria from the ducts and skin, 

including Staphylococci, Streptococci, and Lactobacilli [83]. However, by six months, bacteria 

from the oral cavity, like Veillonella and Prevotella, become more common in the breast milk 

[83]. Some research suggests that gut bacteria from the mother may travel to the mammary gland 

and pass to the baby through breastfeeding[84]. Bifidobacterium, Bacteroides, and Clostridia 

have been found in the mother’s feces, breastmilk, and the baby’s feces, suggesting this transfer 

[85]. Breast milk provides immune components, like IgA, that are important for the growth and 

development of the infant's immune system. This is why WHO recommends exclusive 

breastfeeding for the first 6 months of life, followed by complementary breastfeeding up to two 

years of age as solid foods are introduced.  

 

Usually, around 4 to 6 months following childbirth, solid foods are introduced into the child's 

feeding. The introduction of soild food alters both the composition and function of gut bacteria. 

As solid foods are introduced, genes responsible for digesting breast milk sugars become less 
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active, while genes for breaking down complex sugars and starch become more abundant [78]. 

The impact of solid food varies by region and dietary habits. In Western countries, a complex 

diet for children can increase Bacteroides and Clostridium in the gut microbiome, with altered 

Lactobacilli communities, and reduced Bifidobacterium [77, 78, 80, 86]. By the age of three, the 

gut microbiota resembles that of an adult [80, 86]. One study showed that the cessation of the  

breastfeeding pushed the microbiome into an adult state more than the introduction of solid foods 

[78]. These findings highlight the important role of both breast milk and diet in shaping the early 

microbiota. 

Studies have shown that the microbiome of adults is relatively stable and resilient [87, 88]. 

Although the microbiome can be influenced by extreme external stressors, such as diet changes 

or antibiotic treatment, the significant resilience enables the gut microbiome to return to its 

original state once the alteration stops [89, 90]. This ability to bounce back is crucial for 

maintaining a balanced microbial community. A balanced microbial community is crucial for 

overall health and functionality. 

1.1.3 The role of gut microbiota 

The human gut harbors thousands of bacterial species, with an estimated bacterial population of 

approximately 38 trillion, exceeding the number of human cells, which is around 30 trillion. The 

dry weight of these bacteria is roughly 200 grams [91]. The gut microbiome contains over 3 

million bacterial genes, which is 150 times the number of genes in the human genome [92]. 

These microorganisms play a vital role in various physiological processes, including digestion, 

nutrient absorption, immune modulation, metabolism and Gut-Brain Communication: 
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Nutrient Absorption and Metabolism: Gut microbiota plays critical roles in the digestion and 

metabolism of dietary nutrients [93]. They can break down complex carbohydrates such as 

cellulose, resistant starch, pectin, and oligosaccharides, converting them into short-chain fatty 

acids (SCFAs) like acetate, propionate, and butyrate. These SCFAs not only provide energy for 

intestinal cells but also help maintain intestinal mucosal integrity [94]. Additionally, gut 

microbiota participates in protein breakdown, producing amino acids and other metabolic 

products crucial for host nitrogen balance and intestinal health [95, 96]. They can also influence 

lipid metabolism, including cholesterol metabolism and fatty acid synthesis, which are important 

for cardiovascular health and energy balance [97]. Furthermore, microbes can aid in synthesizing 

vitamins such as B and K vitamins [98, 99]. 

 

Immune System Support and Regulation: Intestinal microbes adhere, settle, and proliferate 

within the intestinal tract, forming a 'barrier' with potent antimicrobial effects against pathogens 

[100]. Competition exists among the gut microbiota: beneficial species occupy intestinal space 

and nutritional resources, outcompeting harmful microbes and preventing their growth and 

proliferation [101]. Additionally, certain gut microbes produce antimicrobial substances like 

bacteriocins, which directly kill or inhibit the growth of harmful microorganisms [102, 103]. 

Moreover, some gut microbes can produce SCFAs or lactic acid, regulating intestinal pH to 

create an environment unfavorable for pathogen growth [104-106]. Furthermore, the gut 

microbiota plays a pivotal role in enhancing host immune function. For instance, Lactobacilli 

and Bifidobacteria can effectively boost host immune responses [107]. 
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Gut-Brain Communication: Gut microbiota influences host physiological and psychological 

functions via the gut-brain axis [108]. The gut-brain axis constitutes a bidirectional 

communication system between the gut and the brain, involving gut microbiota, the immune 

system, the neuroendocrine system, and the nervous system [109]. Through the gut-brain axis, 

gut microbiota exerts significant effects on host immunity, metabolism, anxiety, depression, and 

cognitive function [110-113]. 

 

The gut environment and microbiota maintain a complex dynamic equilibrium in humans and 

animals. Balanced gut microbiota promotes both physical and mental health, whereas dysbiosis 

may lead to gut-brain axis dysregulation, resulting in gastrointestinal disorders (e.g., IBS [114, 

115], IBD [116, 117]), liver diseases (e.g., hepatic encephalopathy [118, 119]), CNS diseases 

(e.g., multiple sclerosis [120], Alzheimer's disease [121],  and autism [122]). Dysbiosis can also 

affect mental health, contributing to conditions such as anxiety and depression [123, 124]. 

Furthermore, alterations in gut microbiota can lead to metabolic diseases (e.g., obesity [125], 

diabetes [126]), cardiovascular diseases (e.g., coronary artery disease [127], hypertension [128]), 

and immune-related diseases (e.g., rheumatoid arthritis [128]). 

 

1.1.4 Therapeutic approaches 

The gut microbiota plays a crucial role in maintaining health. Imbalances in the gut flora, known 

as dysbiosis, have been linked to various diseases. Therapeutic approaches that target the 

microbiome aim to restore balance or enhance its beneficial functions. These therapies range 

from promoting the growth of beneficial microorganisms to directly modifying bacterial 
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genomes. Each treatment has a specific mechanism of action. Each targets different aspects of 

microbiome function and brings different outcomes. Here are the main approaches: 

 

Prebiotics: Prebiotics are non-digestible food components that promote the growth and activity 

of beneficial bacteria in the gut, such as Bifidobacterium and Lactobacillus [129, 130]. There are 

several types of prebiotics, primarily oligosaccharide carbohydrates (OSCs), but some non-

carbohydrate compounds also meet prebiotic criteria [131, 132]. Prebiotics are naturally present 

in a range of foods, including vegetables like asparagus, sugar beet, garlic, chicory, onion, and 

Jerusalem artichoke; grains such as wheat, barley, and rye; fruits like bananas and tomatoes; 

legumes such as peas and beans; as well as in human and cow’s milk [133]. Recently, they have 

also been identified in seaweeds and microalgae [133]. Some prebiotics are produced using 

lactose, sucrose and starch as raw materials [134].  

 

Prebiotics remain undigested as they travel through the upper GI tract to the colon, where they 

are fermented by gut microbes [135]. This fermentation produces short-chain fatty acids 

(SCFAs), such as acetate, propionate, and butyrate [136]. These SCFAs support gut health by 

providing energy to colon cells and strengthening the gut barrier [137]. They also have systemic 

benefits, such as immune system modulation and anti-inflammatory effects [138]. Prebiotics 

selectively promote the growth of beneficial bacteria such as Bifidobacteria and Lactobacillus, 

improving the balance of gut microbiota and outcompeting harmful pathogens [139]. Prebiotics 

can also impact metabolism by enhancing lipid profiles and improving the absorption of minerals 

like calcium and magnesium, which contribute to bone health [140]. 
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Ongoing studies have explored the potential of prebiotics to treat various conditions, including 

irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and mental health problems, 

through the gut-brain axis [141-143]. 

 

Probiotics: Probiotics are live microorganisms that provide health benefits when taken in 

adequate amounts [144]. To be effective, they must be safe for consumption, survive the 

gastrointestinal tract, and adhere to the intestinal mucosa. Probiotics can enhance gut health, 

boost immune function, and lower the risk of specific infections and diseases [145, 146]. 

They work by balancing gut microbiota, inhibiting harmful pathogens, and modulating the 

immune response [147, 148]. Probiotics are commonly found in dietary supplements and 

functional foods and are also used for the treatment of various gastrointestinal disorders [149, 

150]. 

 

Fecal microbiota transplant (FMT): Fecal microbiota transplantation (FMT) is a medical 

procedure in which stool from a healthy donor is transplanted into the gastrointestinal tract of a 

patient to restore a balanced gut microbiota and help treat various gastrointestinal and systemic 

diseases [151]. The practice dates back to 4th century China, where it was used to treat severe 

diarrhea and food poisoning [152]. This practice has evolved over centuries, and in modern 

medicine, it gained significant attention in the 20th century, particularly for its effectiveness in 

treating recurrent Clostridium difficile infection (CDI) [153]. Initially, FMT was primarily used 

to treat recurrent and refractory CDI, enteric infections with bacteria that cause severe diarrhea 

and colitis [154]. However, research has expanded its potential applications to inflammatory 

bowel diseases (IBD) such as Crohn's disease and ulcerative colitis, irritable bowel syndrome 
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(IBS), metabolic syndrome (including obesity and type 2 diabetes), neurological disorders such 

as autism spectrum disorder and multiple sclerosis, and other infections, including infections 

with antibiotic-resistant bacteria [155-157]. 

 

The FMT process involves several steps to ensure safety and efficacy: the potential donor is 

rigorously screened for infectious and GI diseases, and the donor's stool is processed to isolate 

the microbiota[158-161]. This preparation involves homogenizing the feces, filtering, and 

sometimes adding a cryoprotectant if the sample is to be stored [162]. The prepared fecal 

microbiota can then be delivered to the recipient by various methods, including colonoscopy 

(direct access to the colon), enema (a less invasive method), nasogastric or nasoduodenal tubes 

(access to the stomach or small intestine through the nose), and oral capsules containing freeze-

dried fecal microbiota [163, 164]. 

 

FMT is generally considered safe, with few reports of adverse effects. They are usually mild 

gastrointestinal symptoms such as colic, bloating and diarrhea [165, 166]. However, long-term 

safety and efficacy are still being investigated, and ongoing studies are aimed at better 

understanding potential risks and benefits. 

 

Gene editing: Recent advances in genetic manipulation techniques, particularly CRISPR-Cas 

and transposon-based systems, have revolutionized the ability to modify both model and non-

model gut bacteria [167, 168]. CRISPR-Cas technology allows precise editing of bacterial 

genomes, allowing researchers to knock out or insert specific genes that affect microbial 

behavior and function [169]. On the other hand, transposon systems facilitate the random 
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insertion of genetic material, helping to identify essential genes associated with specific traits or 

functions of gut bacteria [170]. Several challenges remain in the genetic manipulation of gut 

bacteria. A major challenge is the efficient delivery of DNA into bacterial cells, since many gut 

bacteria have defense mechanisms that degrade foreign DNA [171, 172]. Researchers are 

exploring innovative solutions, such as targeted integration using CRISPR-Cas9, which could 

bypass some of these barriers [173, 174]. In addition, transposon-based integration approaches 

are being developed to improve the efficiency of gene delivery and expression in bacterial 

populations [175]. 

 

Gene editing offers unique advantages over prebiotics and fecal microbiota transplantation 

(FMT) for manipulating the gut microbiome. Its precision allows for the targeted modification of 

specific genes in bacteria, leading to the development of customized strains that are effective in 

addressing specific health problems. Unlike complex mixtures introduced through FMT, gene 

editing simplifies intervention by focusing on specific strains, resulting in more stable and 

predictable outcomes. In addition, engineered strains can induce long-lasting changes in the 

microbiome. In contrast, prebiotics and FMT usually require continuous administration. 

 

These approaches to manipulate gut microbiome have advanced our understanding of host-

microbiome interactions, paving the way for more effective microbiome-based therapies. As the 

field grows, more research needs to be carried out and more ethical and safety factors must be 

carefully considered. 

 

1.1.5 Animal models 
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Animal models play a crucial role in gut microbiome studies, providing insights into the complex 

interactions between the host and its microbiota. They allow researchers to manipulate variables 

such as diet, environment, and microbiota composition to observe physiological and pathological 

outcomes. Animal studies can help assess the effects of specific bacteria on health and disease, 

and evaluate potential therapeutic interventions. Moreover, they allow us to investigate the 

underlying mechanisms of host-microbiome interactions, which can be challenging to conduct in 

human subjects due to ethical constraints. Animal models for studying the gut microbiome 

include rodents, large animals like cats, dogs, and minipigs, as well as invertebrate models like 

fruit flies and worms. 

 

It is essential to understand the characteristics of different animal models and how they differ 

from humans. First, it helps researchers determine which models best mimic human gut 

physiology and microbiome interactions, leading to more reliable experimental results. Second, 

recognition of anatomical and physiological differences facilitates the interpretation of findings, 

ensuring that conclusions drawn from animal studies can be appropriately translated into the 

human context. Such knowledge facilitates the development of effective therapies and 

interventions for gut-related diseases, ultimately improving the efficacy and safety of treatment 

in humans. 

 

Traditional rodent models: Rodent models, especially mice and rats, are widely used for gut 

microbiome studies due to their genetic similarity to humans (mice: ~70%; rats: ~90%) and the 

convenience of researchers to control environmental variables [176, 177]. Rodents have a 

simpler GI tract than humans, with a shorter colon, which is proportional to their body size [178, 
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179]. Rodents have similar organ systems compared to humans, including heart, brain, lungs, 

kidneys, and liver [180]. For example, the circulatory, reproductive, digestive, hormonal, and 

nervous systems of rodents function similarly to those of humans [177]. This similarity extends 

to hormonal regulation of body functions and susceptibility to many of the same diseases, such 

as cardiovascular disease, diabetes, and neurological diseases [181-183]. These genetic and 

physiological similarities allow researchers to study disease mechanisms, test new treatments, 

and understand complex biological processes in ways that are generally applicable to human 

health. 

 

Germ-free mice are experimental animals that are completely free of any microbes, including 

bacteria, viruses, fungi, and parasites [184]. They are kept in a sterile environment ensuring that 

they are not exposed to microorganisms throughout their lives [185]. These mice are valuable 

tools in microbiome studies because they allow scientists to study the effects of individual or 

groups of microbes on host physiology, immune function, and metabolism in a highly controlled 

environment. By colonizing germ-free mice with specific microbial communities, researchers 

can analyze the contribution of these microbes to various health conditions or disease 

mechanisms [186]. Currently, germ-free mice have been particularly useful in microbiome 

studies to study the relationship between gut microbiota and diseases such as obesity, 

inflammatory bowel disease, and even neurodevelopmental disorders [187-189].  

 

Large animal research models: Cats share both differences and similarities with humans in 

their gut anatomy and physiology. This makes them valuable models in certain areas of research, 

but there are limitations. Cats share a great deal of genetic similarity with humans, with domestic 
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cats sharing approximately 90% of their genes with humans [190]. In addition, the genome 

structure and organization of cats are more similar to those of humans compared to mice and 

dogs, which further enhances their utility in genetic studies [191]. 

 

However, cats are obligate carnivores, whereas humans are omnivores [192]. This means that 

their digestive systems are highly specialized in processing animal-derived proteins and fats 

rather than carbohydrates [193]. They have shorter guts compared to humans, which is typical of 

carnivorous species [194]. Because they do not rely heavily on plant materials that require 

prolonged fermentation [195]. They are also limited in their ability to metabolize carbohydrates 

compared to humans due to their low levels of enzymes such as amylase [196]. These differences 

in genetic, dietary, and digestive functions mean that while cats are useful in genetic disease 

studies and those related to carnivorous diets and protein metabolism, they are less suitable for 

studies focusing on omnivorous diets and carbohydrate handling. 

 

To date, there have been over 20 studies on the feline gut microbiota, demonstrating that factors 

such as diet, prebiotics or probiotics, age, diarrhea, or other health conditions can influence its 

composition [197-220]. Similar to cats, dogs have both differences and similarities to humans in 

terms of gut anatomy and physiology, making them valuable models for some gastrointestinal 

studies but less applicable in other areas. First of all, dogs share a significant amount of genetic 

similarity with humans, approximately 84% of the DNA in dogs is shared with humans [221]. 

Like humans, dogs are monogastric and have a single-chamber stomach that allows for similar 

digestive processes, including the breakdown of food through gastric acids and enzymes [222]. 

The structure of the small and large intestine in dogs is also similar to that in humans and plays a 
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comparable role in nutrient absorption and water reabsorption [222]. These similarities make the 

dog an appropriate model to study various aspects of the human digestive system, including the 

gut microbiome and GI diseases. However, compared to humans, dogs are omnivores and have a 

stronger carnivorous tendency, which affects their digestive physiology [223]. Their digestive 

tract is shorter than that of humans, digests proteins and fats more efficiently, and has limited 

capacity to process carbohydrates [223, 224]. In addition, dogs have shorter intestinal transit 

times than humans, which may affect nutrient absorption and gut microbiota development [225, 

226]. These differences highlight the limitations of using dogs as direct models for studies 

related to carbohydrate metabolism and intestinal transport. 

 

Pigs, especially minipigs, share significant anatomical and physiological similarities with 

humans, making them valuable models for gut microbiome studies. What's more, pigs share a 

great degree of genetic similarity with humans, with about 98% of the pig genome being similar 

to the human genome [227]. This genetic similarity makes the pig a valuable model for studying 

human diseases and for biomedical research, including organ transplantation 

(xenotransplantation) [228, 229]. The structure of the porcine digestive system, including similar 

large bowel length and surface area, is very similar to that of humans [230]. Both species exhibit 

an omnivorous diet and similar GI transit times [231, 232]. In addition, the microbial 

composition of the pig gut, especially the large intestine, has significant similarities to the human 

microbiome [233]. However, there are differences such as the relative size of the pig stomach 

and the larger cecum, which may affect microbial fermentation and nutrient absorption 

differently from humans. Despite these differences, the pig remains one of the most relevant 

large animal models for the study of human gut health and microbiome-related diseases. 
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Some simple invertebrates, such as flies, worms, and bees, are also valuable animal models for 

gut microbiome studies. They have relatively simple and well-characterized gut microbiota, 

which makes it easier to study specific microbial interactions and their impact on host 

physiology [234]. In addition, these models are cost-effective, have short generation times, and 

are easy to genetically manipulate, allowing high-throughput and detailed mechanistic studies 

[234]. 

 

1.2 Dissertation Structure 

The gut microbiota is essential for the health and physiology of animals, influencing a wide 

range of biological processes and disease mechanisms. However, research on the gut microbiota 

in cats and dogs is limited, particularly concerning the unique characteristics of the gut 

microbiota in obese cats and its relationship with memory performance in dogs. This dissertation 

seeks to fill these gaps by characterizing the gut microbiota of obese cats and investigating its 

association with memory in dogs through metagenomic sequencing. The work focuses on three 

key aspects: (1) standardized fecal sample collection methods for accurately characterizing the 

gut microbiota in cats; (2) the metagenomic analysis of gut microbiota in obese cats to identify 

microbial species associated with feline obesity; and (3) the exploration of the relationship 

between gut microbiota composition and memory performance in dogs. 

 

In Chapter 1, we introduced the background of the study, highlighting the crucial role of gut 

microbiota in animal health and physiology. We discussed the current understanding of the 

establishment of gut microbiome and how gut microbiota influences various biological 

processes, including metabolism, immune function, and behavioral outcomes. 
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In Chapter 2, the research focuses on the methodologies for collecting fecal samples from 

domestic cats. It evaluates the impact of the use of lubrication during sample collection and 

compares two primary fecal collection techniques: using a fecal ring versus a litter box. This 

chapter aims to provide insights into how these methods can affect the analysis of gut microbiota 

and seeks to develop standardized protocols for fecal sample collection in feline microbiome 

studies. 

 

In Chapter 3, the study presents the metagenomic analysis of the gut microbiota in obese cats. 

The study identifies key microbial species associated with obesity and reveals a significant 

reduction in microbial diversity, suggesting potential dysbiosis. The findings indicate a panel of 

seven specific microbial species that could serve as indicators of obesity in cats. This chapter 

contributes new insights into the composition, abundance, and functional capacities of the gut 

microbiome in obese cats, emphasizing its role in metabolic dysregulation. 

 

In Chapter 4, this part explores the relationship between gut microbiota composition and memory 

performance in dogs. It identifies Bifidobacterium pseudolongum as a bacterial species correlated 

with memory performance. Utilizing a random forest regression model, the study reveals that the 

abundance of 17 bacterial taxa in the microbiome has a strong predictive capacity for memory 

performance. The findings shed light on the microbiome's influence on cognitive functions in 

mammals and suggest potential strategies for enhancing canine memory and learning. 

In Chapter 5, we concluded the whole work and outlined the future direction of the research 

regarding animal health. 
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CHAPTER 2 

 

Analysis of the Impact of Different Sampling Methods on 

Reconstructing the Gut Microbiome Profiles in Cats Based 

on Metagenomic Sequencing Technology 

 

CHAPTER 2.1 

Effect of mineral oil as a lubricant to collect feces from cats 

for microbiome studies 

 

2.1.1 Introduction 

The gut microbiota is the collection of microorganisms that inhabit the host’s gastrointestinal 

tract. There is clinical and physiological importance to understanding the gut microbiome based 

on its interactions with the host in healthy states and its involvement in the etiology of many 

diseases, including rheumatoid arthritis [235], colorectal cancer [236, 237], cardiovascular 

disease [238], and inflammatory bowel disease [239, 240].  
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Low-stress handling and fear reduction techniques are the new standard of care for veterinary 

patients [241, 242]. Using a lubricant can minimize stress, discomfort, and pain and prevent 

escalating fear in cats. An additional challenge of the dry collection (nonlubricated) approach 

using a fecal loop is that, in many cases, little to no fecal material is obtained, resulting in 

variable and insufficient amounts of material for metagenomic analysis, which leads to missing 

data and an imbalanced experimental design. During sample collection with a fecal loop, 

lubrication can consistently guarantee sufficient specimens for analysis. In addition to the 

previously mentioned welfare benefits, the lubrication approach will reduce potential host 

contamination. Fecal loop use could cause abrasion to the intestinal wall, leading to the shedding 

of host cells and bleeding, which increases host DNA contamination. Therefore, using lubricant 

will allow sufficient fecal sample collection with reduced incidence of bleeding, pain, 

discomfort, and potential infection and less chance for host contamination in the fecal samples. 

However, using lubricant might alter the microbial composition and abundance in the gut 

microbiome. Currently, no research has addressed this issue. 

 

Reproducibility and stability of microbial profiles recovered from fecal samples are vital to the 

reliability of the analytical results. In this study, we evaluated the WGS metagenomic data 

consistency from cat fecal samples collected using mineral oil lubrication vs no lubrication, to 

provide information for veterinarians and researchers regarding appropriate methods to evaluate 

the cat gut microbiome. 

 

2.1.2 Materials and methods 

2.1.2.1 Animals 
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The study was approved by the Auburn University Institutional Animal Care and Use Committee 

(IACUC) with protocol number PRN 2019-3482. Eight obese, 6-year-old, neutered male cats 

were enrolled. All the animals were maintained at the Scott-Ritchey Research Center, College of 

Veterinary Medicine, Auburn University (Auburn, Alabama), and cared for according to the 

principles outlined in the NIH Guide for the Care and Use of Laboratory Animals. 

 

2.1.2.2 Study design 

The sample size of 8 was determined based on the rarefaction plots in our published research on 

the feline microbiome [243], to ensure at least 90% of bacterial species and microbial genes in 

the reference assembly (NCBI Assembly ID JAIZPE000000000) were covered. Two fecal 

samples were collected from each of the 8 enrolled cats under sedation. The first batch of 

collections was performed without any lubrication (noLub sample group), and the second batch 

of collections was performed on the same day with mineral oil lubricant (miOil sample group). 

All fecal specimens were placed into 1.5 mL sterile Eppendorf tubes, flash-frozen, and stored 

immediately in a −80°C freezer (CryoCube F570, Eppendorf North America, Enfield, 

Connecticut). 

 

2.1.2.3 Sedation and rectum fecal sample collection procedure 

Adopting low-stress handling methods [242], cats were sedated to effect using a cocktail of 

intramuscularly administered medetomidine, ketamine, and butorphanol. For each participant, 

the small end of a plastic fecal loop (cat. no. 7500, Covetrus, Dublin, Ohio) was inserted into the 

rectum and descending colon to obtain an adequate amount (>200 mg) of feces. For the miOil 

samples, the fecal loop was coated with mineral oil (Equate, Bentonville, Arkansas), and the 
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same sampling procedure was repeated. 

 

2.1.2.4 Microbial DNA extraction and quality control 

Genomic DNA samples were extracted from 200 mg fecal samples using the Allprep PowerFecal 

DNA/RNA kit (Qiagen, Redwood City, California) according to the manufacturer's protocols. To 

reduce technical variability, the homogenization step was performed for all fecal samples in the 

same batch using a PowerLyzer24 instrument (Qiagen, Redwood City, California). DNA 

concentrations were measured by a Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, 

Massachusetts), and the A260/A280 absorption ratios were assessed by a NanoDrop One C 

Microvolume Spectrophotometer (Thermo Scientific, Waltham, Massachusetts). 

 

2.1.2.5 Whole-genome shotgun metagenomic library construction and sequencing 

For each sample, 1 μg of DNA was sheared into fragments of 500 bp by an M220 Focused-

ultrasonicator (Covaris, Woburn, Massachusetts). Whole-genome shotgun metagenomic 

sequencing libraries were constructed using NEBNext Ultra II DNA Library Prep Kit for 

Illumina (New England BioLabs, Ipswich, Massachusetts). LabChip GX Touch HT Nucleic Acid 

Analyzer (PerkinElmer, Hopkinton, Massachusetts) was used to determine the library 

concentrations and size distributions, which were 600 bp on average, including sequencing 

adapters. The final libraries were measured by qPCR before being sequenced on an Illumina 

NovaSeq6000 sequencing machine in 150-bp paired-end mode at Novogene (Novogene 

Corporation Inc., Sacramento, California). 

 

2.1.2.6 Processing and bioinformatic analysis of metagenomic data 
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The 16 metagenomes yielded a total of 1.28 billion raw sequencing reads (192 Gbp). After 

trimming the adapter sequences and low-quality bases using Trimmomatic (version 0.36) [244], 

the high-quality reads were aligned to the feline reference genome Felis_catus_9.0 [245] using 

Burrows-Wheeler Aligner (BWA) (version 0.7.17-r1188) [246] to detect host contaminations. 

The feline reads were extracted using SAMtools (version 1.6) [247] and BEDTools (version 

2.30.0) [248]. The remaining microbial reads were aligned to the feline gut metagenomic 

reference contigs (GCA_022675345.1) [249] with comprehensive taxonomy assignments and 

microbial gene annotations. Taxonomic abundances were determined in the form of read counts, 

which were normalized by the total amount of sequences to obtain counts per million mapped 

reads (CPM) for subsequent metagenomic analyses. 

 

2.1.2.7 Microbial diversity analyses 

Alpha- and beta-diversity analyses were performed with the R package vegan (version 2.5.7) 

[250]. The alpha diversity measures of microbial profiles at different taxonomic levels and the 

microbial gene level were calculated using the Shannon index [251]. Beta diversity was 

calculated based on the Bray-Curtis dissimilarity matrices [252] generated from the composition 

of the microbial profiles. Visualization of the beta diversity was in the format of PCoA (Principal 

Coordinates Analysis) plot using the R software [253].  

 

2.1.2.8 Statistical analysis 

The statistical analyses were performed using the statistical software package R, version 4.0.2 

[253]. Differences in DNA yield (ng/mg fecal specimen), library yield (Gbp), percentage of host 

contamination, number of microbial genes, relative abundance of specific taxa, and Shannon 
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index from α-diversity analyses of microbial profiles at each taxonomic levels between groups, 

were analyzed using the Wilcoxon signed-rank test in the R software [254, 255]. Permutational 

multivariate analysis of variance (PERMANOVA) test was performed using Adonis function in 

the R package vegan [256-260], to estimate the percentage of variability (R2) explained by 

different fecal sample collection methods based on Bray-Curtis distance matrices. When P-value 

was less than 0.05, the null hypothesis was rejected. To estimate the correlation of taxonomy 

composition of fecal samples collected using mineral oil lubrication or without lubrication, 

Spearman’s rank-order correlation coefficients were calculated using the R software. The P-

value was determined using Spearman’s correlation test (a permutation test). To determine the 

differences in the variance, non-parametric Levene's test of equality of variances was performed 

using the R software. 

 

2.1.2.9 Data availability 

The whole-genome shotgun metagenomic sequencing data is available at NCBI SRA under 

accession number PRJNA821230.  

 

2.1.3 Results 

2.1.3.1 Fecal sample collection using mineral oil lubrication does not alter microbial DNA 

yield 

No significant differences were observed in DNA yield per mg fecal specimen between miOil 

and noLub groups (75.75 ng [25.80-125.70] vs 60.72 ng [33.49-87.95], P = 0.95, Wilcoxon 

signed-rank test; Figure 2.1A), suggesting a lack of effect on microbial DNA yield using mineral 

oil lubricant. 
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Figure 2.1 Metagenomic sequencing statistics from fecal samples in miOil and noLub groups. 

(A) Boxplot of DNA yield (ng) per mg fecal specimens in miOil (red) and noLub (blue) groups. 

(B) Boxplot of metagenomic library yield (Gbp) of each sample in miOil (red) and noLub (blue) 

groups. (C) Boxplot of percentage of host contamination in miOil (red) and noLub (blue) groups. 

(D) Boxplot of percentage of microbial reads in miOil (red) and noLub (blue) groups. 

 

 

2.1.3.2 WGS metagenomics sequencing yield and levels of host contamination are not 

significantly affected by mineral oil lubrication 

In total, 1.28 billion 150-bp reads (or 192 Gbp reads) were generated in the WGS metagenomic 

sequencing of 16 fecal DNA samples. Of these, 1.2% were adapter sequences or low-quality bases, 

and 12.5% were cat sequences. The yield from the miOil group (13.5 Gbp on average) was not 
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statistically different from the noLub group (10.3 Gbp; P = 0.2, Wilcoxon signed-rank test; 

Figure 2.1B). We did observe an increased variation in sequencing yield in the noLub group (23.1) 

compared to the miOil group (3.2), which is statistically significant (P = 0.04, Levene's test of 

homogeneity of variance). The percentage of host contamination was not significantly different 

between the miOil group and the noLub group (P = 0.84, Wilcoxon signed-rank test; 

Figure 2.1C,D). 

 

2.1.3.3 Fecal sample collection using mineral oil lubrication does not change the number of 

microbial taxa discovered in the WGS metagenomic sequencing data 

In the WGS metagenomic data from the noLub group, on average, we discovered 84.5 phyla [75.1-

93.9], 73.8 classes [69.1-78.4], 157.8 orders [146.4-169.1], 330.5 families [303.7-357.3], 1141.6 

genera [1002.5-1280.7], and 4985.9 species [4300.3-5671.5]. Under mineral oil lubrication, there 

was no significant change in the number of phyla (86.6, [77.2-96]; P = 0.96), classes (75.1, [71-

79.2]; P = 0.96), orders (162.4, [153-171.8]; P = 0.83), families (342.8, [323.1-362.4]; P = 0.83), 

genera (1196.6, [1076.2-1317]; P = 0.67), and species (5300.6, [4679.3-5921.9]; P = 0.67) detected 

in the rectum microbiome (Figure 2.2). 
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Figure 2.2 Microbial diversity analyses at different taxonomic levels from fecal samples collected 

with mineral oil (miOil) or without lubrication (noLub). Boxplots of number of categories of 

nonredundant taxonomic units and Shannon index of alpha diversity for each sample and principal 

coordinates analysis (PCoA) plot of beta diversity using Bray-Curtis dissimilarity for microbial 

profiles from the miOil (red) and noLub (blue) groups at (A) phylum, (B) class, (C) order, (D) 

family, (E) genus, and (F) species levels. 

 

2.1.3.4 Fecal sample collection using mineral oil lubrication does not change the microbial 

diversity measured by WGS metagenomic sequencing at all taxonomic levels 

Alpha-diversity was measured for the noLub and miOil metagenomes using the Shannon index 

(Figure 2.2). No significant differences in α-diversity were detected between the noLub and 
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miOil samples at phylum (1.16 vs 1.18, [1.06-1.27] vs [1.08-1.28]; P = 0.83), class (1.59 vs 1.54, 

[1.37-1.82] vs [1.35-1.73]; P = 0.75), order (1.67 vs 1.62, [1.41-1.93] vs [1.4-1.84]; P = 0.6), 

family (2.25 vs 2.15, [1.97-2.52] vs [1.93-2.37]; P = 0.53), genus (2.48 vs 2.35, [2.16-2.81] vs 

[2.1-2.6]; P = 0.4), and species level (4.06 vs 3.88, [3.56-4.55] vs [3.49-4.26]; P = 0.4; 

Figure 2.2). When β-diversity was examined using Bray-Curtis dissimilarity in PCoA analyses, 

no significant changes were detected either (P > 0.39 for comparisons at all 6 taxonomical levels; 

PERMANOVA test; Figure 2.2). The overlapping confidence intervals indicated the microbial 

compositions could not be distinguished between the 2 fecal sample collection methods. 

 

2.1.3.5 Use of mineral oil lubrication did not alter the relative abundance of major 

microbial phyla in the cat rectal microbiome 

The top five most abundant phyla in the cat gut microbiota are Bacteroidetes, Firmicutes, 

Actinobacteria, Proteobacteria, and Fusobacteria [198, 249]. In our WGS metagenomic data, 

none of the 5 major phyla (Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and 

Fusobacteria) had significant differences in their relative abundance between miOil and noLub 

groups (P > 0.05, adjusted P > 0.85; Wilcoxon signed-rank tests; Figure 2.3A).  
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Figure 2.3 Phylum level taxonomy composition and relative abundance and correlation plots of 

microbes with high abundance (>1%) at family and genus levels. (A) Boxplots of top 4 high-

abundance phyla (relative abundance >0.01%) in miOil (red) and noLub (blue) groups. (B) 

Correlation plots of microbes with high abundance (>1%) at family and genus levels. 

 

2.1.3.6 Correlation of taxonomy composition inferred from fecal samples collected using 

mineral oil lubrication vs. no lubrication 

In both the miOil and noLub groups, 99.72% of the metagenomic sequences belonged to bacteria 

reads, 0.11% were viral reads, 0.01% were archaeal reads, and the rest (0.16%) remained 

unknown. Considering the biological importance, we examined the microbial taxa with high 
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relative abundance (>1.00%) at different taxonomical levels, which included 7 classes, 7 orders, 

10 families, 11 genera, and 14 species. No significant changes were detected between miOil and 

noLub groups in the relative abundance at any taxonomic level (adjusted P > 0.8, Wilcoxon 

signed-rank test). The Spearman's rank-order correlation coefficients were extremely high 

between the noLub and miOil groups at the family (ρ = 0.99, P < 0.000001) and the genus levels 

(ρ = 0.98, P < 0.0000001; Spearman's rank-order correlation test; Figure 2.3B). 

 

2.1.3.7 Number of microbial genes annotated from fecal samples collected using mineral oil 

lubrication vs. no lubrication 

A total of 834,014 nonredundant microbial genes were identified in the 16 metagenomes. Of 

these, 798,430 genes were identified in 8 miOil metagenomes, and 769,476 genes were identified 

in 8 noLub metagenomes (Figure 2.4A). There was no significant difference in the number of 

observed genes between fecal samples collected with mineral oil and samples collected without 

lubrication (P = 0.31, Wilcoxon signed-rank test; Figure 2.4A). The alpha diversity based on the 

Shannon index of the observed genes from the 2 groups showed no significant difference either 

(P = 0.38, Wilcoxon signed-rank test; Figure 2.4B). Based on the Bray-Curtis distance matrix, no 

significant dissimilarity was detected between miOil and noLub groups in the PCoA analysis, 

and 95% confidence interval ellipses were overlapped (P = 0.94, PERMANOVA test; 

Figure 2.4C). 
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Figure 2.4 The number, alpha diversity and beta diversity of the microbial genes identified in the 

miOil and noLub groups. (A) Boxplot of the number of observed genes in the miOil (red) and 

noLub (blue) groups. (B) Boxplot of Shannon index of genes identified in the miOil (red) and 

noLub (blue) groups. (C) PCoA plot of beta diversity based on Bray-Curtis distance of the genes 

identified in the miOil (red) and noLub (blue) groups. 

 

2.1.4 Discussion and conclusion 

Fecal specimen collection is a commonly used approach in veterinary clinics and research to 

detect zoonotic parasites and diagnose pathogenic infections. Common methods for fecal sample 

collection in veterinary medicine include collection from the litter box and collection from the 

rectum using a fecal loop. Studies using cat fecal samples from litter boxes have 2 potential 

shortcomings. First, it is difficult to determine the freshness of the specimen, and excessive time 

at room temperature will shift the microbial composition. Second, it is likely the sample is 

contaminated by the environment. For projects designed to accurately represent the gut 

microbiome, fecal samples are collected from the rectum using a fecal loop, which can cause 

increased distress compared to litterbox collections. Lubrication is necessary to increase sample 

quality and to improve animal welfare during sample collection. In this group of cats, our results 

suggest that if adequately lubricated, the mineral oil applied will not affect the fecal microbial 
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DNA extraction or gut microbiome analysis. The benefits of collection with lubrication include 

improved animal welfare and reduced variability in sequencing yield. 

 

Fecal sample collection using a fecal loop in cats is challenging. It can cause discomfort, pain, 

and bleeding in the cat and result in little to no samples if it is done incorrectly. In an earlier 

attempt to collect fecal samples from the 8 cats enrolled in this research using a dry collection 

approach, we were only able to obtain a sufficient quantity of feces from 6/8 cats, and bleeding 

was observed in 5/8 cats. This failure led us to explore modifications to the fecal sample 

collection methods. Lubrication can ease the fecal sample collection process and ensure a 

sufficient amount of samples, but the lubricant could introduce materials that could prevent DNA 

extraction and sequencing or alter the microbiome composition. To determine if using lubricants 

during fecal sample collection has potential effects on the gut microbiome, we performed fecal 

collections with lubrication and without lubrication on the same 8 cats. The sample size was 

determined from the rarefaction plots from a previous study, in which a sample size of n = 6 will 

detect >90% of the bacterial species and microbial genes in the cat reference microbiome 

[243]. In our metagenomic data analyses, we did not observe any significant changes in alpha-

diversity, beta-diversity, the number of taxa discovered at each taxonomy level, and the relative 

abundances of taxonomic units are also highly correlated, indicating that the microbial 

composition was not affected by the use of lubricant. 

 

We expected to see less host sequence contamination in the samples collected with mineral oil 

lubrication because the use of the fecal loop without lubrication is more likely to damage the 

intestinal wall, resulting in a higher proportion of host contamination. However, we did not 
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observe any significant differences in host contamination, which could be because we sampled 

the same cat on the same day, and the more readily sloughed host cells had already exfoliated 

after the fecal loop collection without lubrication. The level of host DNA contamination (12.5%) 

is acceptable in both groups, given that intestinal cells are constantly sloughed off into the gut 

lumen. 

 

Lubrication did not cause any issues in microbial DNA extraction, and a similar yield was 

observed in both groups, which is sufficient for subsequent research purposes. Interestingly, we 

observed a lower variability of the metagenomic sequencing yield, and this homogenous yield 

across the samples is beneficial for achieving an even level of metagenome coverage. 

Whole-genome shotgun (WGS) metagenomic sequencing was performed in this study to assess 

the feline microbiome, as this method is rapidly becoming the new standard for assessing 

microbiomes across all species. We anticipate that the results will be applicable to 16S rDNA 

ampliconic sequencing, because a high correlation in taxonomic composition was observed in 

the feline microbiome using these 2 approaches [243].  

 

One limitation of this study is that our results only applied to fecal samples stored immediately in 

an ultracold freezer after collection. The same results might not hold in other storage conditions 

(room temperature, 4°C refrigeration, DNA stabilizing solution, etc.). 
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CHAPTER 2.2 

Evaluation of fecal sample collection methods for feline gut 

microbiome profiling: fecal loop vs. litter box 

 

2.2.1 Introduction 

Understanding the feline microbiome is essential in veterinary medicine, informing the diagnosis 

and treatment of conditions such as gastrointestinal disorders, obesity, and immune-mediated 

diseases [243, 261, 262]. Additionally, research on the feline microbiome offers insights into 

zoonotic disease transmission and the transfer of beneficial microorganisms between cats and 

their owners [263, 264]. Thus, investigating the feline microbiome is crucial for advancing 

veterinary medicine and enhancing our understanding of human-animal interactions. The method 

of collecting fecal samples is crucial for obtaining accurate microbial profiles in microbiome 

studies [265-268], providing insights into microbial population structures and their correlations 

with health or disease. The two most commonly used methods for collecting feline fecal samples 

are: (1) the fecal loop method, which involves using a small plastic instrument with a looped end 

to collect a sample of the cat’s stool from the rectum, and (2) the litter box approach, which 

involves collecting the cat’s stool directly from the litter box. For the latter approach, it is vital to 

collect the sample immediately after the animal defecates to minimize the risk of environmental 

contamination of the microbiome. The fecal loop method provides a precise and sanitary 

collection technique, which minimizes the risk of cross-contamination and exposure of anaerobes 

to oxygen. However, this approach is often invasive and potentially uncomfortable or painful for 
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cats. It should only be performed by veterinarians or experienced personnel who can insert the 

loop into the rectum and gently scoop out a small amount of feces. Moreover, sedation may be 

required prior to fecal loop collection, which can increase the time and cost involved in the 

process, particularly when dealing with multiple cats. The litter box method involves regularly 

monitoring the litter box, and promptly collecting the fresh stool with a clean and sterile 

container or scoop when the cat defecates. This approach is a non-invasive and cost-effective 

method commonly used in large-scale population studies, involving sample collection by cat 

owners. However, there is a greater risk of introducing environmental contaminations, which 

may affect the accuracy and completeness of the microbial community representation in the 

sample [269-271]. Collecting fecal samples directly from the litter box may limit the information 

available to the clinician and researcher regarding fecal consistency [272]. The choice of method 

depends on factors such as the specific research goals, the need for precision and sanitation, the 

invasiveness and discomfort for the cat, and the potential for environmental contamination. 

 

Researchers should be mindful of the potential limitations and take steps to minimize 

environmental contamination and ensure timely sample collection. In addition to the conditions 

of the fecal sample, the stability of the microbial community within fecal samples is a critical 

aspect of microbiome research. This is particularly important when considering the method of 

sample collection, as gut microbial profiles are often linked to health status and have the 

potential to indicate the development of metabolic diseases, gastrointestinal disorders, and even 

cancer [273-281]. Using a fecal loop may reduce environmental contamination, but it also poses 

the risk of contaminating the sample with cells from the host’s bowel wall or blood due to 

improper technique. Furthermore, it is important to note that using a fecal loop for sample 
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collection may result in insufficient amounts of fecal material, which in turn could lead to an 

incomplete representation of the microbial community [282-284]. Conversely, collecting fecal 

samples directly from the litter box may eliminate the risk of inadequate sample collection; 

however, it may also increase the likelihood of environmental contamination and the 

introduction of extraneous bacterial taxa into the samples. It is essential to note that fecal 

samples collected directly from litter boxes may not be collected promptly, which can lead to 

prolonged exposure to ambient conditions. Room temperature and oxygen levels are crucial 

environmental factors that influence the growth and survival of bacteria, potentially leading to 

changes in the composition of the gut microbiome. Research studies have shown that long-term 

storage at room temperature may alter the microbial diversity and community [270, 285-287], 

leading to an inaccurate representation of the fecal microbiome. Oxygen levels significantly 

affect the growth and metabolic processes of both aerobic and anaerobic bacteria [284]. This 

emphasizes consideration of environmental conditions when determining the optimal method for 

collecting cat fecal samples. 

 

More than 10 previous studies have explored fecal collection and storage methods, examining 

variables such as temperature, storage duration at different temperatures, and the application of 

stabilizers like the OMNI-gene GUT kit, 95% ethanol, RNAlater, and other preservative 

solutions [271, 288-301]. While these studies have identified various methods to achieve stable 

microbial composition results, a universally accepted standard protocol has yet to emerge. This 

standard is crucial to the consistency, reliability, and comparability of results across studies. The 

majority of such studies concentrated on the methods of collecting and storing human fecal 

samples, while research on handling animal fecal samples is relatively limited. In the case of 
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cats, the only prior study was our own research, which focused on the fecal loop collection 

method, specifically examining the use of lubricant versus no lubricant [302]. This research is the 

first investigation into two fecal sample collection methods in cats, specifically examining the 

potential variances in gut microbiome composition resulting from the use of a fecal loop for 

collection compared to direct retrieval from a litter box. This research addresses a previously 

unexplored area by systematically comparing microbiome profiles derived from fecal samples 

collected via these two distinct methods. To assess the potential impact of various collection 

methods on the composition of the microbial community, we collected two sets of fecal samples 

from a group of cats housed in a controlled research environment. One set was collected using 

fecal loops, while the other was collected directly from the litter box. The collected samples 

underwent whole-genome shotgun metagenomic sequencing, followed by comprehensive 

analyses of microbial diversity, composition, and abundance at all taxonomic and gene levels. 

Our study aimed to provide valuable insights into the impact of different fecal collection 

methods and to contribute to the development of standardized protocols for collecting fecal 

samples in feline microbiome research. 

 

2.2.2 Materials and methods 

2.2.2.1 Animals 

The Auburn University Institutional Animal Care and Use Committee (IACUC) approved the 

study. Four intact female and six intact male cats, raised and maintained at the Scott-Ritchey 

Research Center, Auburn University College of Veterinary Medicine (Auburn, AL, USA), were 

enrolled in this study (Table 2.1). The age range of the 10 adult cats is 2.7–7.0 years old, with a 

mean age of 4.4 years. All cats are housed in USDA and AAALAC accredited facilities in indoor 
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wards with heating and air conditioning that allow compliance with federally mandated climate 

control parameters including an ambient temperature of ~72 degrees Fahrenheit, ranging from 64 

to 84 degrees, with humidity between 30 and 70%. Cats were allowed ad libitum access to food 

and water. They were fed a Hill’s Science Diet maintenance-formula dry food mixed with an 

equal amount of Friskies canned food. There was a rotation of the canned food protein sources 

(tuna, salmon, chicken, beef, and turkey) to increase enrichment. All cats were provided access 

to the same rotating protein source and there was no changes in diet throughout the study. The 

cats are born, raised, and housed in the colony and are maintained in these conditions throughout 

adulthood or until adoption. They were all cared for according to the principles outlined in the 

NIH Guide to the Care and Use of Laboratory Animals. 

 

Table 2.1 Characteristics of study participants and fecal sample collection date/time. 

Cat ID Sex Date of birth 

Date of 

litterbox 

collection 

Time of 

litterbox 

collection 

Date of fecal 

loop 

collection 

Time of 

fecal loop 

collection 

9-1866 F 10/20/2015 10/4/2022 6:00 10/4/2022 13:00 

944 F 3/17/2019 10/5/2022 14:00 10/10/2022 13:30 

924 F 9/20/2018 9/27/2022 22:00 9/28/2022 8:20 

960 F 1/25/2020 10/12/2022 12:00 10/13/2022 11:15 

926 M 9/20/2018 9/28/2022 6:00 9/28/2022 12:00 

936 M 1/21/2019 9/27/2022 18:00 9/28/2022 8:20 

9-2033 M 5/5/2018 9/27/2022 6:00 9/28/2022 8:30 

921 M 2/25/2018 10/4/2022 14:00 10/5/2022 14:00 

9-2060 M 8/6/2018 9/28/2022 6:00 9/28/2022 12:00 

9-1952 M 3/23/2017 9/28/2022 12:00 9/29/2022 15:00 

F: Intact female; M: Intact male. 

 

2.2.2.2 Sample size determination 

To perform a systematic comparison of microbiome profiles generated from fecal samples 

collected using these two methods, we collected two sets of fecal samples from these cats. One 
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set was obtained using fecal loops, while the other was collected directly from the litter box. 

In total, 20 fecal samples were collected from 10 cats. Our previous work has discovered that 

that more than 90% of microbial genes and species are covered in a feline microbiome study 

when the sample size reaches eight [302]. In this study, we performed rarefaction analyses on the 

20 samples in this study at both the gene level (Figure 2.5A) and the species levels (Figure 2.5B), 

through random subsampling from 20 samples multiple times and plotting the average gene and 

species richness against different numbers of included samples using a customized R script. 

 

Figure 2.5 Rarefaction analyses to assess species and gene richness from the results of sampling. 

(A) Rarefaction curve based on bacterial gene profiles of 20 samples. (B) Rarefaction curve 

based on taxonomy profiles at the species level of 20 samples. 

 

2.2.2.3 Fecal sample collection and storage 

Each cat was given 24 h to acclimate to a single housing environment. Afterward, each cat was 

provided with a fresh litter box and monitored every 2–6 h. After the cat defecated, the sample 

was immediately collected in a sterile 1.5 mL Eppendorf tube and stored at −80°C. The 

following morning, after collecting the fecal sample from the litterbox, the cat was sedated with 

intramuscular administration of medetomidine, ketamine, and butorphanol. A plastic fecal loop 

(Catalog number 7500, Covetrus, Dublin, OH, USA) was inserted into the rectum and 
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descending colon to collect the fecal sample. The fecal loop was coated with mineral oil (Equate, 

Bentonville, AR, USA) as a lubricant, as described in our previous study [302]. The samples 

were collected using 1.5 mL sterile Eppendorf tubes (Eppendorf, Hamburg, Germany) and 

immediately stored at −80°C (CryoCube F570, Eppendorf North America, Enfield, CT, USA) 

until analysis. 

 

2.2.2.4 Whole-genome shotgun metagenomic sequencing 

The Qiagen Allprep PowerFecal DNA/RNA kit (Qiagen, Redwood City, CA, USA) was used for 

microbial DNA extraction. For each cat, the weight of fecal specimens was measured (Table 2.2) 

before being placed into a Microbial Lysis Tube for homogenization using a PowerLyzer24 

instrument (Qiagen, Redwood City, CA, USA). DNA extraction procedures were conducted for 

all fecal samples in the same batch to minimize technical variability. The DNA concentrations 

were measured using a Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA), 

and the A260/A280 absorption ratios were determined with a NanoDrop One C Microvolume 

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). 500 ng of DNA from each 

sample was fragmented into 500-bp fragments using an M220 Focused-ultrasonicator (Covaris, 

Woburn, MA, USA). The WGS metagenomic libraries were prepared using the NEBNext Ultra 

II DNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA, USA). TapeStation 

4,200 (Agilent Technologies, Santa Clara, CA, USA) was utilized to evaluate the library size 

distributions. Subsequently, the final libraries were quantified using qPCR before being 

sequenced on an Illumina NovaSeq6000 sequencing platform in 150-bp paired-end mode by 

Novogene Corporation Inc. in Sacramento, CA, USA. 
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Table 2.2 Amount of fecal material collected and DNA yield from fecal samples.  

Cat ID Group 
Weight of feces 

collected (mg) 

DNA yield 

(μg) 
Group 

Weight of feces 

collected (mg) 

DNA yield 

(μg) 

9-1866 LB 205 238 FL 112 181 

944 LB 208 165 FL 165 113 

924 LB 212 121 FL 192 134 

960 LB 201 156 FL 190 39.4 

926 LB 198 138 FL 160 89.2 

936 LB 215 202 FL 100 179 

9-2033 LB 219 150 FL 201 79.4 

921 LB 202 193 FL 165 65.4 

9-2060 LB 216 290 FL 212 226 

9-1952 LB 212 286 FL 176 144 

LB: fecal collection by picking from litterbox; FL: fecal collection by using fecal loop. 

 

2.2.2.5 Bioinformatic processing of metagenomic data 

A total of 1.02 billion raw metagenomic reads, or 153 Gigabases (Gbp) of sequences, were 

generated from the 20 metagenomes (Table 2.3). The sequencing depth of coverage was 

9.59 ± 2.04 per sample. Trimmomatic (version 0.36) [244] was utilized to remove adapter 

sequences and low-quality bases. Host and viral sequences were eliminated by aligning the high-

quality reads to the feline reference genome Felis_catus_9.0 [303] and the viral genome 

downloaded from National Center for Biotechnology Information (NCBI) using Burrows-

Wheeler Aligner (BWA) (v0.7.17-r1188) [246]. The virus reference consists of 5,540 high-

quality complete viral genomes curated by NCBI, with a total genome length of 166.4 megabases 

(Mb). The remaining microbial reads were extracted using SAMtools (version 1.17) [304] and 

aligned to the feline gut microbiome reference contigs assembled from 16 Illumina short-read 

metagenomics data (GCA_022675345.1; short-read reference assembly) [302]. To investigate 

whether different microbiome references will affect our analysis and conclusion, we also aligned 

metagenomic reads to the feline gut microbiome contigs assembled from Pacific Biosciences 
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HiFi long-read using N = 8 fecal samples (accession number: PRJNA1062788; long-read 

reference assembly). The read mapping percentages against both short-read and long-read 

assemblies are summarized in Table 2.3. 

Table 2.3 Whole-genome shotgun metagenomic sequencing yield, quality control, and 

alignment statistics. 

 

Cat ID Group 
Total number of 

reads 

% adapters & 

low-quality reads 

% host 

sequences 

% read 

alignment 

(reference 1) 

% read 

alignment 

(reference 2) 

9-1866 LB 42,054,216 2.23% 0.49% 96.82% 89.25% 

944 LB 48,132,278 1.24% 0.08% 98.01% 92.79% 

924 LB 46,459,964 0.72% 0.14% 97.81% 90.50% 

960 LB 49,593,768 1.00% 0.30% 96.09% 87.73% 

926 LB 55,893,016 0.95% 0.11% 98.41% 93.59% 

936 LB 23,861,570 0.69% 2.48% 96.87% 86.83% 

9-2033 LB 30,247,308 0.62% 2.49% 96.88% 86.84% 

921 LB 47,944,568 0.75% 0.07% 97.84% 92.86% 

9-2060 LB 68,800,896 0.63% 0.09% 98.41% 92.18% 

9-1952 LB 49,365,474 0.61% 0.07% 98.52% 91.07% 

9-1866 FL 42,659,160 0.75% 0.13% 93.65% 84.40% 

944 FL 59,450,856 0.55% 0.66% 97.64% 88.93% 

924 FL 58,907,188 0.53% 6.65% 97.83% 88.40% 

960 FL 52,903,612 0.53% 3.48% 97.47% 90.17% 

926 FL 61,076,576 0.62% 1.10% 97.90% 91.02% 

936 FL 52,452,186 0.51% 1.31% 98.14% 87.30% 

9-2033 FL 59,764,500 0.70% 38.98% 96.42% 85.48% 

921 FL 53,357,488 0.49% 0.08% 97.09% 91.40% 

9-2060 FL 63,409,540 0.51% 0.27% 98.41% 93.33% 

9-1952 FL 56,489,430 0.51% 0.24% 98.28% 91.47% 

LB: fecal collection by picking from litterbox; FL: fecal collection using fecal loop. 

Reference 1: feline gut reference contigs from Illumina short-read metagenomic assembly (GCA_022675345.1) 

Reference 2: feline gut reference contigs from Pacific Biosciences long-read metagenomic assembly 

(PRJNA1062788) 

 

2.2.2.6 Taxonomy assignment and quantification of taxonomy abundance 

Taxonomy assignments were performed on reference contigs [292] against the NCBI-NR 

database using Kaiju (v1.7.3) [305] to determine taxonomy annotations at the phylum, class, 

order, family, genus, and species levels. More than 90% of the reference contigs were annotated 

with the NCBI (National Center for Biotechnology Information) taxonomy ID. Based on the 
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BWA alignments, read counts were obtained using BEDTools (version 2.30.0) [290] with the 

command ‘bedtools coverage-f 0.9 -a region.bed -b reads.bam - counts’[248]. The taxonomy 

counts table was generated by aggregating the read counts of all contigs with the same taxonomy 

annotation using a custom Perl script. The taxonomy counts were then normalized by the total 

number of mapped reads in a sample to quantify the relative abundance of each taxonomic unit. 

 

2.2.2.7 Microbial diversity analyses 

Alpha- and beta-diversity analyses were conducted on the microbial profiles at all taxonomic 

levels using the R package vegan (version 2.6–4) [306]. The alpha diversity was assessed using 

the Shannon index [307]. The beta diversity was calculated based on the Bray-Curtis distance 

[308] and visualized in the PCoA (Principal Coordinates Analysis) plot format. A permutational 

multivariate analysis of variance (PERMANOVA) test [309] was performed to assess the 

centroids and dispersion of the LB (litter box) and FL (fecal loop) groups, based on the 

dissimilarity matrix. 

 

2.2.2.8 Microbial gene abundance analysis 

Microbial gene predictions were performed on reference metagenomic contigs using 

MetaGeneMark (v3.38) [310]. The redundant genes were identified and combined using CD-

HIT-est (v4.7) [311, 312] with the criterion of global sequence identity exceeding 95%. To 

determine the gene abundance, per-gene read counts were extracted using “BEDtools coverage,” 

and gene abundance was normalized by RPKM (Reads Per Kilobase gene model per Million 

reads). 
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2.2.2.9 Statistical analysis 

The comparison of DNA yield, levels of host and viral contaminations, number of taxonomic 

units and microbial genes, alpha diversities, and relative abundance of each taxon between the 

LB and FL groups was conducted using the Wilcoxon signed-rank test [254, 313] in the R 

software [314]. For the multiple comparisons of the microbial profiles, we utilized the R package 

qvalue [315] to determine the false discovery rate. When the p-value was less than 0.05 or the q-

value was less than 0.1, the null hypothesis was rejected. In addition to the pairwise 

nonparametric test, we also performed differential abundance testing using Analysis of 

Compositions of Microbiomes with Bias Correction (ANCOM-BC), which was implemented in 

the R package ANCOMBC [316]. To determine the differences in the variance, Levene’s test of 

equality of variances [317, 318] and the Brown–Forsythe test [319] were performed. To estimate 

the correlation of taxonomy composition in fecal samples between the LB and FL groups, 

Spearman’s rank correlation tests were conducted on the average relative abundance of taxa 

between the LB and FL groups using the “cor.test()” function from the stats R package (Table 

2.4). 

 

Table 2.4 Correlation of taxonomic abundance at phylum, class, order, family, genus, and 

species level between fecal loop (FL) and litter box (LB) groups.  

Taxonomy 

level 

% of FL taxa identified 

in LB 

 (short-read assembly) 

FL-LB abundance 

correlation  

(short-read assembly) 

% of FL taxa 

identified in LB 

 (long-read assembly) 

FL-LB abundance 

correlation  

(long-read assembly) 

Phylum 95.83% 0.9573 100.0% 0.9912 

Class 97.80% 0.9804 100.0% 0.9915 

Order 98.97% 0.9789 100.0% 0.9914 

Family 96.97% 0.9698 100.0% 0.9912 

Genus 94.07% 0.9373 99.21% 0.9876 

Species 89.83% 0.8974 99.65% 0.9794 
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2.2.2.10 Data availability 

The whole-genome shotgun metagenomic sequencing data is available at NCBI SRA under 

accession number PRJNA821230.  

 

2.2.3 Results 

2.2.3.1 Fecal sample collection using a fecal loop resulted in a lower DNA extraction yield 

compared to the litterbox method 

The amount of fecal material per sample collected using a fecal loop (FL group) was 

significantly lower than that collected from the litter box approach (P =0.002, Wilcoxon signed-

rank test; Table 2.2). As a result, the DNA yield of the FL group (4.376 μg [2.905 μg – 5.848 μg, 

95% CI]) was significantly lower than that of the LB group (6.787 μg [5.285 μg – 8.288 μg, 95% 

CI]) (P =0.004, Wilcoxon signed-rank test; Figure 2.6A). This suggests that the fecal collection 

method using a fecal loop might result in a reduced amount of DNA for subsequent research. 

 

Figure 2.6 Metagenomic sequencing statistics from fecal samples collected by fecal loop (FL) 

and litter box (LB) approaches. (A) Boxplot of DNA yield (μg) extracted from fecal specimens 

in LB (brown) and FL (blue) groups. (B) Boxplot of percentage of host contamination in LB 

(brown) and FL (blue) groups. (C) Boxplot of percentage of viral contamination in LB (brown) 

and FL (blue) groups. 
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2.2.3.2 No significant difference was observed in the levels of contaminants in the WGS 

metagenomic sequencing data between the LB and FL groups 

A total of 1.02 billion 150-bp reads (153.4 Gbp of sequences) were generated in total through 

whole-genome shotgun (WGS) metagenomic sequencing of 20 fecal DNA samples (51.1 million 

reads per sample; Table 2.3). On average, 0.76% of the adapter sequences and low-quality bases 

were trimmed and excluded from subsequent analysis. The level of feline sequence 

contamination was 8-fold higher in the FL group (5.290% [−3.306–13.886%, 95% CI]) than in 

the LB groups (0.631% [−0.073–1.337% 95%, CI]), but the difference did not reach statistical 

significance (P =0.11, Wilcoxon signed-rank test; Figure 2.6B). The levels of viral 

contamination did not show a significant difference between the LB group (0.039% [0.036–

0.042%, 95% CI]) and the FL group (0.042% [0.035–0.050%, 95% CI]) (P =0.232, Wilcoxon 

signed-rank test; Figure 2.6C). However, there were higher variations in host and viral sequence 

contamination detected in FL samples, with marginal significance (P =0.05, Levene’s test of 

homogeneity of variance). When the Brown–Forsythe test was used, homogeneity of variances 

between the two groups cannot be rejected (P =0.25). 

 

2.2.3.3 No significant differences were found in the number of microbial taxa discovered in 

the fecal specimens from the LB and FL groups 

From the WGS metagenomic data, a total of 127 phyla, 93 classes, 196 orders, 435 families, 1,892 

genera, and 8,467 species were identified in 20 samples based on the short-read reference assembly. 

No significant difference was observed in the number of microbial taxa between the LB (79.8 taxa 

[73.0–86.6, 95% CI]) and FL groups (82.7 [77.5–87.9, 95% CI]) at the phylum (P =0.441, 
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Wilcoxon signed-rank test), class (LB: 73.0 [67.7–78.3, 95% CI], FL: 72.1 [67.9–76.3, 95% CI], P 

=0.682), order (LB: 151.5 [144.0–159.0, 95% CI], FL: 153.2 [146.5–159.9, 95% CI], P =0.959), 

family (LB: 317.2 [300.2–334.2, 95% CI], FL: 327.7 [312.0–343.4, 95% CI], P =0.275), genus 

(LB: 1093.9 [1007.2–1180.6, 95% CI], FL: 1146.2 [1069.5–1222.9, 95% CI], P =0.160) and 

species levels (LB: 4074.3 [3709.4–4439.2, 95% CI], FL: 4288.0 [3985.3–4590.7, 95% CI], P 

=0.106; Figure 2.7).  

 

The short-read assembly contains a large number of rare taxa, which greatly inflates the number 

of identified taxa due to ambiguity and false positives in taxonomic assignments. To address this 

issue, we aligned the metagenomic reads to an improved long-read feline gut microbiome 

assembly with enhanced metagenomic contig size and completeness. A total of 19 phyla, 35 

classes, 63 orders, 104 families, 298 genera, and 936 species were identified using the long-read 

reference. When we repeated the analyses, we did not discover any significant differences in the 

number of microbial taxa between the groups either (Figure 2.8).  
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Figure 2.7 Microbial diversity analyses at different taxonomic levels from fecal samples collected 

by fecal loop (FL) and litter box (LB) approaches. Boxplots of non-redundant microbial taxa and 

alpha diversity (Shannon index) for each sample and principal coordinates analysis (PCoA) plot 

of beta diversity (Bray–Curtis dissimilarity) for microbial profiles from the LB (brown) and FL 

(blue) groups at (A) phylum, (B) class, (C) order, (D) family, (E) genus, and (F) species levels. 
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Figure 2.8 Microbial diversity analyses using long-read reference assembly at different 

taxonomic levels from fecal samples collected by fecal loop (FL) and litter box (LB) approaches. 

Boxplots of non-redundant microbial taxa and alpha diversity (Shannon index) for each sample 

and principal coordinates analysis (PCoA) plot of beta diversity (Bray-Curtis dissimilarity) for 

microbial profiles from the LB (brown) and FL (blue) groups at (A) phylum, (B) class, (C) order, 

(D) family, (E) genus, and (F) species levels. 

 

2.2.3.4 No significant variation in microbial diversities was observed at all taxonomic levels 

between the LB and FL groups 

Alpha-diversity, as measured by the Shannon index, and beta-diversity, assessed using the Bray-

Curtis distance, were determined for microbial profiles in both the LB and FL groups (Figure 2). 

https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1337917/full#fig2
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For alpha-diversity, no significant differences were detected between the LB and FL groups at 

the phylum (LB: 1.05 [1.02–1.08, 95% CI], FL: 1.10 [1.03–1.18, 95% CI]; P =0.064), class (LB: 

1.68 [1.56–1.79, 95% CI], FL: 1.74 [1.66–1.82, 95% CI]; P =0.275), order (LB: 1.78 [1.65–1.91, 

95% CI], FL: 1.83 [1.74–1.93, 95% CI]; P =0.432), family (LB: 2.36 [2.21–2.50, 95% CI], FL: 

2.41 [2.29–2.53, 95% CI]; P =0.492), genus (LB: 2.58 [2.42–2.74, 95% CI], FL: 2.67 [2.54–

2.80, 95% CI]; P =0.160), and species levels (LB: 3.57 [3.42–3.73, 95% CI], FL: 3.57 [3.42–

3.71, 95% CI]; P =0.846; Figure 2.7). When additional alpha diversity metrics were examined, 

we failed to discover any significant differences in Simpson diversity index, richness, or Chao1 

index between FL and LB (p > 0.05). Similarly, no significant changes were detected in beta-

diversity analysis either (p > 0.689 for all taxonomic levels, PERMANOVA test; Figure 2.7) 

using both Bray-Curtis and Jaccard distance measures. When we use the long-read assembled 

reference contigs as the mapping reference, the results remain consistent (Figure 2.8). 

 

2.2.3.5 Consistent relative taxonomic abundance in the microbiome quantified from fecal 

samples collected by LB and FL 

Through Wilcoxon signed-rank tests on all taxonomic categories at the phylum level in the LB 

and FL groups, no significant difference was detected in the relative abundance of the top five 

most abundant phyla: Firmicutes (LB: 48.6% [42.6–54.6%, 95% CI] vs. FL: 47.5% [43.1–

51.9%, 95% CI]; Padj = 1), Actinobacteria (LB: 39.4% [30.8–47.9%, 95% CI] vs. FL: 37.7% 

[29.4–46.0%, 95% CI]; Padj = 1), Bacteroidetes (LB: 8.1% [6.1–10.1%, 95% CI] vs. FL: 9.6% 

[5.3–14.0%, 95% CI]; Padj = 0.880), Proteobacteria (LB: 0.9% [0.4–1.4%, 95% CI] vs. FL: 1.9% 

[0.6–3.3%, 95% CI]; Padj = 0.639), and Fusobacteria (LB: 0% [0–0%, 95% CI] vs. FL: 0% [0–

0%, 95% CI]; Padj = 0.639; Figure 2.9A). Collectively, these five predominant phyla represented 
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more than 97% of all phyla observed in both the LB and FL groups (97.6% [97.2–97.9%, 95% 

CI] vs. 97.5% [97.2–97.8%, 95% CI]; P =1). When utilizing the long-read assembled feline gut 

microbiome contigs as the reference, the top five most abundant phyla remained consistent and 

maintained the same ranking order (Figure 2.10A). Upon examining lower taxonomic units, 

there were no significant differences in the relative abundance between the LB and FL groups at 

the class, order, family, genus, or species levels (Padj > 0.909 for short-read assembly, 

and Padj > 0.379 for long-read assembly). Furthermore, in addition to pairwise nonparametric 

tests, we employed the ANCOM approach for detecting differential abundance as outlined in the 

Methods section. Our analysis did not reveal any taxa with a statistically significant difference in 

abundance between the LB and FL groups (FDR > 0.05), and 99.5% of the tested taxa exhibited 

an FDR = 1, suggesting remarkable concordance in microbial abundance between the two fecal 

sample collection methods. 
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Figure 2.9 Relative abundance of major phyla and microbiome abundance (> 0.1%) correlation 

at class and order levels in the feline microbiome from samples collected by fecal loop (FL) and 

litter box (LB) approaches. (A) Boxplots of major phyla in LB (brown) and FL (blue) 

groups. (B) Correlation plots of microbes with high abundance (> 0.1%) at class and order levels. 

Each data point on the plot represents the averaged relative abundance of a particular taxon 

across samples within each group (FL on the y-axis and LB on the x-axis), and error bars indicate 

the standard error intervals around the mean for FL (vertical lines) and LB (horizontal lines) 

groups. 



74 

 

 

Figure 2.10 Relative abundance of major phyla and microbiome abundance correlation at class 

and order levels in the feline microbiome from samples collected by fecal loop (FL) and litter 

box (LB) approaches from the alignment results against long-read reference assembly. (A) 

Boxplots of major phyla in LB (brown) and FL (blue) groups. These five predominant phyla 

collectively represented more than 96% of all phyla observed in both the LB and FL groups 

(97.0% [96.2%-97.8% 95% CI] vs 96.8% [96.0%-96.7% 95% CI]; P = 0.922). (B) Correlation 

plots of microbes with high abundance (> 0.1%) at class and order levels. 

 

2.2.3.6 A strong correlation in taxonomic composition was observed among fecal samples in 

the LB and FL groups 

When using the long-read assembled feline gut microbiome reference contigs, the LB and FL 

groups showed nearly perfect abundance correlation at phylum, class, order, and family levels, 

with Spearman’s rank-order correlation coefficients greater than 0.99 (Table 2.4 and Figure 
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2.10B; P =0.000; Spearman’s Rank-Order Correlation test). All taxa identified in the FL samples 

were also detected in the LB data (Table 2.4). At phylum, class, order, and family levels, results 

from short-read assembly demonstrated strong abundance correlations with lightly lower 

correlation coefficients, ranging from 0.957 and 0.980, with >95% taxa shared among FL and LB 

groups (Table 2.4 and Figure 2.9B). For the genus and species levels, the Spearman’s correlation 

coefficients are 0.937 and 0.897, respectively (Table 2.4), which is presumably due to potential 

misannotations of shorter contigs in the short-read reference assembly at lower taxonomic units. 

For the long-read assembly with much greater contig completeness, abundance correlation 

coefficients remain remarkably high even at the genus (ρ = 0.988) and the species levels 

(ρ = 0.979; Table 2.4), with >99% of FL taxa also identified in LB samples, indicating excellent 

consistency in taxonomic abundance between the two fecal sample collection approaches. 

 

2.2.3.7 The number, alpha diversity, and beta diversity of microbial genes are similar 

between the LB and FL groups 

A total of 860,169 unique microbial genes were identified in the 20 metagenomes. Among these, 

10 metagenomes from the LB group contained 796,138 nonredundant genes, while 10 

metagenomes from the FL group contained 797,990 nonredundant genes (Figure 2.11A). 

Statistical analysis revealed no significant difference in the number of observed genes between 

fecal samples obtained from the fecal loop and litter box approaches (P =0.770, Wilcoxon 

signed-rank test; Figure 2.11A). Additionally, the alpha diversity, as assessed by the Shannon 

index of observed genes, did not exhibit any significant difference between the two groups (P 

=1, Wilcoxon signed-rank test; Figure 2.11B). Furthermore, the PCoA plot based on the Bray-

Curtis distance matrix did not reveal any significant dissimilarities between the LB and FL 



76 

 

groups, as indicated by the overlapping 95% confidence interval ellipses (P =0.964, 

PERMANOVA test; Figure 2.11C).  

 

Figure 2.11 Number of non-redundant microbial genes and gene level diversity in the feline 

fecal microbiome from samples collected by fecal loop (FL) and litter box (LB) approaches. (A) 

Boxplot of the number of observed genes in the LB (brown) and FL (blue) groups. (B) Boxplot 

of Shannon index of genes identified in the LB (brown) and FL (blue) groups. (C) PCoA plot of 

beta diversity based on Bray-Curtis distance of the genes identified in the LB (brown) and FL 

(blue) groups. 

 

No significant differences were observed in the number, alpha diversity, and beta diversity of the 

microbial genes identified in the LB and FL groups when long-read assembled feline gut 

microbiome reference contigs were used as the references (Figure 2.12). A total of 693,003 

unique microbial genes were annotated across the 20 metagenomes. Among these, ten 

metagenomes from the LB group contained 678,212 nonredundant genes, while ten 

metagenomes from the FL group contained 678,524 nonredundant genes. Statistical analysis 

revealed no significant difference in the number of observed genes between fecal samples 

obtained from the fecal loop and litter box approaches (P = 0.770, Wilcoxon signed-rank test). 

There was no significant difference in alpha diversity between the two groups (P = 0.432, 

Wilcoxon signed-rank test). There was no significant dissimilarities between the LB and FL 
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groups, as indicated by the overlapping 95% confidence interval ellipses (P = 0.961, 

PERMANOVA test). 

 

 

Figure 2.12 Number of non-redundant microbial genes and gene level diversity in the feline 

fecal microbiome from samples collected by fecal loop (FL) and litter box (LB) approaches from 

the alignment results against long-read reference assembly. (A) Boxplot of the number of 

observed genes in the LB (brown) and FL (blue) groups. (B) Boxplot of Shannon index of genes 

identified in the LB (brown) and FL (blue) groups. (C) PCoA plot of beta diversity based on 

Bray-Curtis distance of the genes identified in the LB (brown) and FL (blue) groups.  

 

2.2.4 Discussion and conclusion 

Fecal sample collection plays a crucial role in veterinary medicine for routinely diagnosing 

various health conditions, including parasitism [320], enteropathogenic bacteria [321] and 

viruses [322] in research for studying the gut microbiome. Establishing a gold standard for fecal 

sample collection is crucial for acquiring accurate, reliable, and reproducible microbiome data in 

a feasible manner. Such a standard safeguards the validity and consistency of microbiome 

research, facilitating the smooth transition of discoveries into clinical and therapeutic practices. 

Studies to optimize fecal sample collection techniques were mainly performed for humans, with 

no specific emphasis on investigating methods tailored for cats. Typically, there are two common 

methods of collecting feline fecal samples: from the litter box or from the rectum using a fecal 



78 

 

loop. Each method possesses its own unique advantages and disadvantages. The fecal loop 

method is generally considered a more accurate approach for faithfully representing the gut 

microbiome, as it minimizes the risks of potential cross-contamination and exposure to the 

environment. However, inserting a fecal loop into the cat rectum requires experienced veterinary 

professionals to administer sedation, which may not be practical for all situations, particularly in 

cases where the cat is uncooperative, aggressive, or unable to tolerate sedation due to health 

concerns. In contrast, fecal samples collected from the litterbox are noninvasive, but more 

susceptible to environmental contamination, and the duration after defecation may cause 

bacterial growth to shift the microbiome composition [323]. Our aim was to conduct a thorough 

comparison of their impact on microbiome studies to assess whether the two collection methods 

could be interchangeable under certain circumstances. In this study, we demonstrated that there 

was no significant difference in the microbial profiles of fecal samples collected from the litter 

box compared to those collected using a fecal loop. No significant changes were observed in 

terms of alpha-diversity, beta-diversity, the number of taxa identified at each taxonomic level, 

and the relative abundances of taxonomic units. Collectively, these findings suggest that the 

microbiome composition of fecal samples collected using a fecal loop is the same as those 

collected directly from the litterbox within 6 h post-defecation. This indicates that collecting 

fecal samples directly from a clean litterbox in a timely manner can be considered a reliable 

method for feline microbiome studies. 

 

The fecal loop collection approach resulted in a significantly lower DNA yield than the litterbox 

approach. Due to the uncertainty regarding whether sufficient feces can be collected from the 

colon in a single trial, the fecal loop method may cause missing data in the research or require 
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multiple collections at different time points, which are not ideal for the experimental design. 

Consequently, the DNA yield was lower from fecal specimens collected using a fecal loop in this 

study. If consistent microbial DNA yield is a concern, the litter box approach will guarantee a 

superior DNA yield compared to the fecal loop approach. 

 

Another disadvantage of using the fecal loop is the possibility of introducing host contaminations 

to the sample. Our results demonstrated that fecal samples collected using a fecal loop exhibited 

greater variability in the proportion of host contaminations compared to samples collected from 

the litter box, although this difference did not reach statistical significance. Notably, one of the 

fecal samples collected using a fecal loop in this study had a host contamination level of 39%, 

making it difficult to estimate the necessary sequencing data to achieve the desired depth. 

However, using a fecal loop to collect fecal samples remains indispensable for veterinary 

diagnosis. When fresh feces are needed for medical diagnosis, it is more appropriate to collect 

fresh fecal samples using a fecal loop in a clinical setting with trained personnel. This method 

enables the direct assessment of a presenting enteric complaint and the localization to the small, 

large, or mixed bowel based on fecal features [272], which may be challenging when relying on 

litter box samples exposed to unknown factors. 

 

For citizen science projects or owner-participated research projects, the fecal loop collection 

approach is likely not feasible due to the requirement for access to sedation. In such cases, the 

litter box method is amenable to the participants as it only involves regularly monitoring the 

litter box. It supports the possibility of applying this feline fecal sample collection method in 

large-scale population microbiome studies when access to a veterinarian and medical facility is 
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not feasible. One limitation of our study is that we did not investigate the potential impact of 

extended room temperature exposure on the microbiome of the fecal samples. In our study, we 

monitored the litter box every 2 to 6 h to detect fecal deposits. The potential impact of prolonged 

exposure to room temperature on the composition of the microbiome in fecal samples is an area 

that requires further exploration. 
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CHAPTER 3 

Whole-genome shotgun metagenomic sequencing reveals 

distinct gut microbiome signatures of obese cats 

3.1 Introduction 

A combination of excessive food intake and lack of physical exercise leads to an expansion of 

adipose tissue in the body, resulting in metabolic dysregulation. When excess body adipose 

tissue has accumulated to the extent that it has adverse effects on health, it is termed obesity. 

Feline obesity is a major epidemic with a current prevalence of around 45% [324-326] and is 

considered the second most common health problem in domestic cats in developed countries 

[327]. It is linked to many systemic health conditions, including altered lipid profiles [328], 

insulin resistance [329], neoplasia, urinary diseases [326], cardiovascular diseases [330], and 

reduced lifespan. There are no available licensed drugs for treating feline obesity, and classic 

interventions for weight loss such as calorie restrictions and physical exercise are often 

challenging and are ultimately ineffective [331]. Understanding the obese cat gut microbiota is 

necessary to facilitate the development of treatment strategies through dietary probiotics and gut 

microbiota manipulations. 

The gut microbiome is the entire collection of microorganisms in the gastrointestinal tract. In 

humans, microorganisms are about 38 trillion in total, exceeding the number of human cells 

[332]. The gut microbiota is an integral part of the body, affecting many aspects of disease 
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physiology, including rheumatoid arthritis [235], colorectal cancer [236, 237], cardiovascular 

disease [238], and inflammatory bowel disease [239, 240]. Gut microbiome composition and 

function are directly related to digestion, nutrient metabolism, and assimilation, which play 

important modulative roles in total body adiposity. The gut microbiota modulates obesity 

through food absorption and low-grade inflammation [333, 334]. In mice, changes in intestinal 

bacterial compositions and microbial metabolites can cause increases in endotoxemia and further 

exacerbate obesity and insulin resistance [335, 336]. Studies in both humans and mice have 

shown that influencing the gut microbiota, such as with fecal transplantation, or external 

chemicals or drugs, can have favorable or unfavorable effects on fat gain [337-343]. Conversely, 

being overweight or obese can cause dysbiosis, often associated with low microbial diversity and 

richness in gut microbiota [344-346]. Many studies reported that the relative proportions of 

microbes in the gut microbiota correspond to body weight in humans [347]. Obesity can alter the 

microbial composition in the gut, and reduced levels of Bacteroidetes have been reported in 

obese versus lean members of twin pairs [346]. The reduction of Bacteroidetes in obese animals 

could be reversed through a calorie-restricted diet [348].  

 

To date, there are over twenty studies on the feline gut microbiota [198-200, 202, 206, 214, 349-

365], all of which used the 16S rDNA sequencing approach. Factors such as diets, pre-

/probiotics, age, diarrhea, and other diseased states have been shown to influence gut microbiota 

composition [199, 200, 202, 220]. One study examined the effect of obesity on the gut 

microbiome and found that the gut microbiome of lean cats was significantly different (P < 0.05) 

from that of overweight and obese cats [349]. Lean and obese cat gut microbiota were also 

reported to respond differentially to dietary protein and carbohydrate ratio [360]. These previous 
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studies identified phylum and genus level changes in the obese cat microbiome, but failed to 

discover bacterial species-level changes in the feline gut microbiota. Another limitation is that 

these studies often performed using client-owned cats from diverse household environments, 

which diminished the statistical power to detect microbiome differences. Last but not least, fecal 

sample collection methods also affect the results of microbiome analysis. Many previous studies 

collected feces from litterbox, which could be contaminated, and the microbiota composition can 

shift after the fecal sample left the intestine. To address these issues and obtain comprehensive 

genome coverage for bacteria composition at the species level [366], whole-genome shotgun 

(WGS) metagenomic sequencing was performed in normal vs. obese cats, using fecal samples 

collected from the rectum and descending colon by a fecal loop. We assembled the first cat 

reference microbial contigs, predicted and annotated taxonomy identity and microbial genes, and 

discovered and validated significant changes in species abundance in obese vs. normal cat gut 

microbiota. Our results provide a deeper understanding of the feline gut microbiota and its link to 

body conditions, which shed light on the microbiome basis of feline obesity and will inform the 

development of weight loss therapy using probiotics and fecal transplantation. 

 

3.2 Materials and methods 

3.2.1 Animal selection and maintenance 

All procedures were approved by the Auburn University Institutional Animal Care and Use 

Committee (IACUC) with protocol number PRN 2019-3482. Animals were provided and/or 

maintained by the Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn 

University. The obese group consists of animals who participated in a study of the effects of 

obesity on feline health, which are obese, neutered male cats at 6 years of age (n=8). The normal 
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group includes eight lean and reproductively intact cats from the Scott-Ritchey breeding colony, 

ranging in age from 4 months to 6 years old (Figure 3.1 and Table 3.1).  

 

 

Figure 3.1 Graphic illustration of the experimental design. 

 

Table 3.1 Bodyweight and body condition score measurements in normal and obese cats. 

 

Cat ID Group Sex 

Female 

sample 

collection 

date 

Age at 

collection 

BW at 

collection 

(kg) 

lean 

BW 

(kg)* 

% increase 

in BW 

Body 

Condition 

Score 

D001 obese male 5/15/2019 6y 7.00 4.08 71.57 9 

F001 obese male 5/15/2019 6y 5.55 3.77 47.21 8 

G001 obese male 5/10/2019 6y 5.35 3.78 41.53 8 

H001 obese male 5/15/2019 6y 6.25 3.20 95.31 9 

I001 obese male 6/28/2019 6y 5.70 4.10 39.02 7 

J001 obese male 5/10/2019 6y 7.00 3.97 76.32 9 

K001 obese male 6/28/2019 6y 6.60 3.70 78.38 9 

L001 obese male 5/10/2019 6y 6.50 3.87 67.96 9 

Mean ± s.d.     6.2 ± 0.65  64.7 ± 20.1  

Fc111468 normal male 8/31/2020 4m 2.20 n/a n/a 5 

Fc111473 normal male 9/10/2020 4m 2.60 n/a n/a 5 

Fc09Z110 normal female 8/28/2020 8m 2.41 n/a n/a 5 

Fc09Z113 normal female 8/28/2020 8m 2.54 n/a n/a 5 

Fc09Z116 normal male 8/28/2020 8m 3.38 n/a n/a 5 

Fc081392 normal female 7/12/2018 6y 2.64 n/a n/a 5 

Fc111030 normal female 10/15/2019 6y 3.26 n/a n/a 5 

Fc111041 normal male 1/9/2020 6y 4.08 n/a n/a 5 

Mean ± s.d.     2.9 ± 0.63  n/a  

* body weight measurement of obese cats when they were lean. 
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The normal cats were fed with Hill’s Science Diet Adult Chicken Recipe Dry Cat Food with the 

following nutritional ingredients determined by the manufacturer (Hill’s): 35.0% protein, 21.4% 

fat, 35.2% carbohydrate (nitrogen-free extract), and 1.6% crude fiber. The obese cats were on the 

LabDiet laboratory feline diet 5003 with the following ingredients provided by the manufacturer 

(LabDiet): 30.5% protein, 24.5% fat, 38.1% carbohydrate (nitrogen-free extract), and 2.3% crude 

fiber. Both diets were standard adult cat food with very similar nutritional ingredients. No 

probiotics were provided to any of these cats. No antibiotic treatments were applied to any of 

these cats within two months prior to the study. The cats were not experiencing any stress prior 

to the fecal sample collection either. 

 

3.2.2 Morphometrics, blood glucose, and insulin measurements in obese cats 

Cats were sedated to effect using medetomidine, ketamine, and butorphanol administered 

intramuscularly. Body condition score was evaluated using the World Small Animal Veterinary 

Association criteria for cats [367, 368]. Whole blood glucose was evaluated immediately using 

the AphaTrak 2 monitoring system (Zoetis, MI). Serum was separated from clotted whole blood 

by centrifugation at 800g for at least 15 minutes and was frozen at -80 C until needed. Serum 

insulin was determined using a commercially available ELISA kit specific to cats (Mercodia 

Inc., NC) [369]. The homeostatic model assessment for insulin resistance (HOMA-IR) was 

calculated as the basal glucose and insulin concentration product, divided by 22.5 [329]. 

 

3.2.3 Fecal sample collection and microbial DNA extraction 

Fecal samples were collected under sedation immediately after blood collection to prevent 

interference of epinephrine-mediated hyperglycemia (Table 3.1). Plastic fecal loops were coated 
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with mineral oil and inserted into the rectum and descending colon of the cats until an adequate 

amount of feces was collected. The samples in this study reflect the fecal composition of the 

rectum and descending colon, which is representative of the lower gut. We referred to the 

microbiota characterized in the fecal samples in this research as cat gut microbiota.  

Genomic DNA samples were extracted from 200 mg fecal samples using the Qiagen Allprep 

PowerFecal DNA/RNA kit (QIAGEN, MD) following the manufacturer’s protocols. To achieve 

homogeneous results, the homogenization step was performed by the Qiagen PowerLyzer24 

instrument (QIAGEN, MD) in the same batch. DNA and total RNA concentrations were 

measured by a Qubit 3 Fluorometer (Invitrogen, CA), and the A260/A280 absorption ratios were 

assessed using a NanoDrop One C Microvolume Spectrophotometer (Thermo Scientific, MA).  

 

3.2.4 Metagenomic sequencing, quality control, and preprocessing of metagenomic reads 

For each sample, 1.5~2 μg of DNA was fragmented by M220 Focused-ultrasonicator (Covaris, 

MA) to achieve a target insert size of 500 bp. Whole-genome shotgun metagenomic sequencing 

libraries were constructed using NEBNext Ultra II DNA Library Prep Kit for Illumina (New 

England Biolabs, MA), according to the manufacturer’s protocols. Final library concentrations 

and size distributions were determined by LabChip GX Touch HT Nucleic Acid Analyzer 

(PerkinElmer, MA). The libraries were measured by qPCR before being sequenced on an 

Illumina NovaSeq6000 sequencing machine with 150-bp paired-end reads at the Genomics 

Service Laboratory at the HudsonAlpha Institute for Biotechnology (Huntsville, AL). 

 

A total of 1.8 billion sequencing reads (or 271 Gbp reads) were obtained from 16 metagenomes 

(Table 3.2). Paired-end reads were merged to increase read length with PEAR (v0.9.11) [370]. 
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Adapter sequences and low-quality sequences were cleaned from subsequent reads using 

Trimmomatic (v0.36) [244]. High-quality filtered reads were then mapped to the feline reference 

genome (GCF_000181335.3) using Burrows-Wheeler Aligner (BWA) (v0.7.17-r1188) [246] and 

SAMtools (v1.6) [247]. The retained reads were mapped to the viral genome database 

downloaded from National Center for Biotechnology Information (NCBI) to remove the viral 

sequences [371]. The remaining reads were extracted for subsequent analysis using BEDTools 

(v2.30.0) [248]. 

Table 3.2 Whole genome shotgun metagenomic sequencing yield, control statistics, and 

mapping rate. 

 

Animal ID 

total 

number of 

reads 

total 

yield 

(Gbp) 

% adapters 

& low 

quality reads 

% host 

sequences 

% viral 

sequences 

% read 

alignment 

111468 224,309,608 33.65 1.26% 1.75% 0.06% 96.54% 

111473 252,204,562 37.83 0.78% 0.85% 0.05% 97.76% 

81392 68,992,950 10.35 1.65% 19.62% 0.04% 78.82% 

111030 67,304,938 10.10 1.05% 3.26% 0.05% 95.31% 

111041 62,165,458 9.32 1.49% 3.14% 0.05% 95.31% 

9Z110 177,167,802 26.58 1.68% 5.54% 0.04% 92.28% 

9Z113 187,101,498 28.07 1.23% 3.43% 0.06% 94.74% 

9Z116 71,831,380 10.77 1.84% 9.91% 0.05% 88.36% 

D001 114,565,502 17.18 2.74% 16.53% 0.03% 81.42% 

F001 88,239,704 13.24 3.37% 69.19% 0.01% 27.67% 

G001 96,951,866 14.54 3.81% 35.50% 0.02% 61.68% 

H001 81,550,038 12.23 2.44% 0.21% 0.04% 98.16% 

I001 88,388,090 13.26 2.67% 2.09% 0.03% 95.74% 

J001 93,732,658 14.06 3.11% 21.16% 0.02% 76.28% 

K001 54,533,852 8.18 2.30% 2.66% 0.03% 95.46% 

L001 77,921,032 11.69 3.89% 48.57% 0.02% 48.22% 

 

3.2.5 Feline gut metagenome assembly and microbial gene annotation 

The filtered reads were assembled into metagenomic contigs with MEGAHIT v1.1.2 with default 

parameters [372]. Contigs shorter than 400 bp were filtered out, and redundant contigs were 

removed using cd-hit-est (v4.7) [311, 312] with the criteria of global sequence identity more than 

95%. Microbial genes were predicted from the assembled cat reference metagenomic contigs 

using MetaGeneMark (v3.38) [310].  
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3.2.6 Taxonomy assignment and taxonomy abundance analysis 

Taxonomy assignments for these non-redundant metagenomic contigs were performed using 

Kaiju (v1.7.3) [373] against NCBI-NR database at superkingdom, phylum, class, order, family, 

genus, and species levels. 92.6% of the contigs were annotated and assigned an NCBI taxonomy 

ID (National Center for Biotechnology Information). Among these contigs, 54.6% are annotated 

to the species level. The filtered PE reads from each metagenome were aligned to the assembled 

cat reference metagenomic contigs (Table 3.2). For each sample, the relative taxonomic 

frequencies were calculated as the number of reads mapped to the contigs in a specific taxon 

normalized by the total number of aligned reads. The top 20 most abundant bacterial genera and 

species were listed in Table 3.3 and Table 3.4. 

Table 3.3 Top 20 most abundant bacterial genera in the cat rectum microbiota. 

 

Genus name Phylum 
Average relative 

abundance  
STDEV 

NCBI taxonomy 

ID 

Prevotella Bacteroidetes 24.31% 0.177 838 

Collinsella Actinobacteria 12.70% 0.085 102106 

Bacteroides Bacteroidetes 8.17% 0.057 816 

Blautia Firmicutes 4.04% 0.023 572511 

Clostridium Firmicutes 3.24% 0.022 1485 

Megasphaera Firmicutes 2.26% 0.035 906 

Sutterella Proteobacteria 1.76% 0.012 40544 

Faecalibacterium Firmicutes 1.65% 0.02 216851 

Megamonas Firmicutes 1.50% 0.013 158846 

Eubacterium Firmicutes 0.92% 0.01 1730 

Roseburia Firmicutes 0.75% 0.009 841 

Flavonifractor Firmicutes 0.75% 0.007 946234 

Ruminococcus Firmicutes 0.55% 0.004 1263 

Lactimicrobium Firmicutes 0.43% 0.005 2563777 

Dorea Firmicutes 0.42% 0.003 189330 

Lachnoclostridium Firmicutes 0.39% 0.002 1506553 

Phascolarctobacterium Firmicutes 0.38% 0.005 33024 

Agathobaculum Firmicutes 0.37% 0.003 2048137 

Parabacteroides Bacteroidetes 0.27% 0.002 375288 

Drancourtella Firmicutes 0.16% 0.002 1903506 

STDEV: standard deviation;  NCBI ID: National Center for Biotechnology Information, taxonomy ID 
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Table 3.4 Top 20 most abundant bacterial species in the cat rectum microbiota. 
 

species name 

normal 

average 

RA 

normal 

STDEV 

normal 

rank 

obese 

average 

RA 

obese 

STDEV 

obese 

rank 

NCBI 

ID 

Prevotella copri 12.863% 0.074 1 19.646% 0.163 1 165179 

Erysipelotrichaceae bacterium AU001MAG 3.066% 0.012 2 0.002% 0.000 847 - 

Collinsella tanakaei 2.418% 0.016 3 2.399% 0.022 10 626935 

Megasphaera elsdenii 1.940% 0.029 4 0.580% 0.007 29 907 

Collinsella stercoris 1.833% 0.016 5 4.566% 0.033 2 147206 

Clostridium sp. CAG:169 1.700% 0.011 6 0.625% 0.006 28 1262778 

Succinatimonas sp. CAG:777 1.568% 0.014 7 0.332% 0.007 46 1262974 

Subdoligranulum variabile 1.274% 0.009 8 2.691% 0.023 3 214851 

Acidaminococcus sp. CAG:542 1.207% 0.018 9 0.053% 0.000 143 1262687 

Blautia sp. CAG:257 1.170% 0.006 10 2.446% 0.019 9 1262756 

Prevotella sp. CAG:891 1.157% 0.018 11 2.335% 0.027 11 1262937 

Collinsella intestinalis 1.100% 0.015 12 0.677% 0.005 24 147207 

Clostridium sp. CAG:299 0.898% 0.006 13 0.429% 0.003 36 1262792 

Faecalibacterium prausnitzii 0.851% 0.007 14 0.228% 0.002 57 853 

Bacteroides plebeius 0.771% 0.004 15 2.456% 0.021 5 310297 

Firmicutes bacterium CAG:424 0.760% 0.004 16 0.379% 0.003 39 1263022 

Eubacterium sp. TM06-47 0.683% 0.006 17 0.087% 0.001 111 2292354 

Bifidobacterium gallinarum 0.681% 0.013 18 2.503% 0.037 4 78344 

Collinsella phocaeensis 0.677% 0.005 19 0.566% 0.004 30 1871016 

Bacteroides stercoris 0.633% 0.004 20 2.010% 0.028 289 46506 

RA: relative abundance;  NCBI ID: taxonomy ID from National Center for Biotechnology Information.   

 

3.2.7 Microbial diversity analysis in normal and obese cats 

The alpha- and beta-diversity of taxonomy profiles were performed using R package vegan 

v2.5.7 [250]. Alpha-diversity was analyzed using the Shannon index [251] at the genus level and 

the species level. Beta-diversity was analyzed based on the Bray-Curtis dissimilarity [252] at the 

species level and visualized in the format of PCoA (Principal Coordinates Analysis) plot using R 

software [253].  

 

3.2.8 Analysis of age and sex effects in the normal cat group 
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Given that age and sex may potentially affect the gut microbiome composition, we performed 

PCoA analysis at the species level in the control group and used permutational multivariate 

analysis of variance (PERMANOVA) to determine significant differences between different 

males and females, as well as between different age groups. 

 

3.2.9 Identification of significantly altered genera or species in normal and obese cats 

To assess the statistical significance of the differential abundance of genera or species in normal 

cats and obese cats, Mann-Whitney U tests [254] were performed in R. The heatmap plots were 

generated using R package pheatmap (v1.0.12), and the adjusted P values (P-adj) were 

calculated using R package qvalue (v2.22.0) [374]. Genera with an average frequency of at least 

0.1% and a minimum absolute value of log2 fold change of 2 were listed in Table 3.5. Species 

with an average frequency of at least 0.01% and a minimum absolute value of log2 fold change 

of 2 were listed in Table 3.6 and Table 3.7. 
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Table 3.5 Significantly altered genera in obese cat rectum microbiota compared to normal 

cat. 
 

Genus name* 
obese average 

RA 

normal 

average RA 

adjusted P-

value 

log2 (fold 

change) 
NCBI ID 

Anaerolactibacter 0.00% 0.23% 0.006 -11.773  2563783 

Solobacterium 0.00% 0.23% 0.006 -11.379 123375  

Lactimicrobium 0.00% 0.87% 0.006 -11.125 2563777 

Galactobacillus 0.00% 0.18% 0.006 -6.61  2060871  

Phascolarctobacterium 0.02% 0.75% 0.006 -5.397 33024 

Butyricicoccus 0.07% 0.33% 0.006 -2.188 580596 

Holdemanella 0.01% 0.11% 0.008 -3.013 1573535 

Butyrivibrio 0.03% 0.13% 0.008 -2.252 830 

Fusobacterium 0.00% 0.12% 0.012 -4.743 848 

Escherichia 0.01% 0.24% 0.012 -4.157  561 

Eubacterium 0.27% 1.57% 0.012 -2.552 1730  

Lactobacillus 0.04% 0.48% 0.017 -3.528 1578 

Faecalibacterium 0.44% 2.86% 0.017 -2.705 216851 

Helicobacter 0.07% 0.70% 0.023 -3.279 209 

Succinatimonas 0.37% 1.60% 0.09 -2.099 674963 

Bifidobacterium 8.02% 1.61% 0.049 2.32 1678 

Dialister 1.94% 0.01% 0.059 7.897 39948 

 

*Genera with an average frequency of at least 0.1% in normal or obese cats and a minimum absolute value of log2 

fold change of 2 were included.  

RA: relative abundance; NCBI ID: taxonomy ID from National Center for Biotechnology Information.   

 

 

 

Table 3.6 Significantly decreased species in obese cat rectum microbiota compared to 

normal cat. 
 

Species name* 
obese 

average RA 

normal 

average 

RA 

adjuste

d P-

value 

log2 

(fold 

change) 

NCBI 

ID 
Phylum 

Erysipelotrichaceae bacterium 

AU001MAG 
0.002% 3.066% 0.012 -10.786 - Firmicutes 

Anaerolactibacter massiliensis 0.000% 0.060% 0.012 -9.926 2044573 Firmicutes 

Phascolarctobacterium 

succinatutens 
0.002% 0.623% 0.012 -8.572 626940 Firmicutes 

Clostridium ventriculi 0.001% 0.176% 0.019 -8.399 1267 Firmicutes 

Clostridium colicanis 0.000% 0.050% 0.019 -7.819 179628 Firmicutes 

Helicobacter sp. 48519 0.001% 0.149% 0.021 -7.623 2315333 
Proteobacte

ria 

Prevotella sp. CAG:755 0.003% 0.069% 0.043 -4.511 1262935 
Bacteroidet

es 

Lactobacillus reuteri 0.007% 0.149% 0.037 -4.413 1598 Firmicutes 

Lactobacillus sp. 0.002% 0.051% 0.063 -4.412 1591 Firmicutes 
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Table 3.6 Continued. 

Species name* 
obese 

average RA 

normal 

average 

RA 

adjuste

d P-

value 

log2 

(fold 

change) 

NCBI 

ID 
Phylum 

Escherichia coli 0.011% 0.237% 0.016 -4.406 562 
Proteobacte

ria 

Faecalibacterium prausnitzii 0.009% 0.129% 0.028 -3.775 718252 Firmicutes 

Campylobacter helveticus 0.018% 0.215% 0.026 -3.589 28898 
Proteobacte

ria 

Eubacterium sp. AM28-29 0.013% 0.128% 0.026 -3.285 2292349 Firmicutes 

Eubacterium sp. TM05-53 0.008% 0.072% 0.021 -3.250 2292353 Firmicutes 

Clostridium perfringens 0.023% 0.204% 0.087 -3.138 1502 Firmicutes 

Collinsella sp. AM42-18AC 0.006% 0.052% 0.021 -3.058 2292321 
Actinobacte

ria 

Allisonella histaminiformans 0.011% 0.088% 0.017 -3.009 209880 Firmicutes 

Eubacterium sp. TM06-47 0.087% 0.683% 0.028 -2.966 2292354 Firmicutes 

Prevotellamassilia timonensis 0.008% 0.058% 0.028 -2.893 1852370 
Bacteroidet

es 

Helicobacter canis 0.063% 0.453% 0.026 -2.849 29419 
Proteobacte

ria 

Blautia wexlerae 0.096% 0.576% 0.028 -2.588 418240 Firmicutes 

Collinsella sp. AM18-10 0.018% 0.107% 0.046 -2.565 2292028 
Actinobacte

ria 

Roseburia inulinivorans 0.010% 0.054% 0.026 -2.468 360807 Firmicutes 

Blautia schinkii 0.046% 0.248% 0.021 -2.419 180164 Firmicutes 

Dorea sp. Marseille-P4003 0.024% 0.126% 0.043 -2.404 2040291 Firmicutes 

Faecalimonas umbilicata 0.013% 0.068% 0.016 -2.373 1912855 Firmicutes 

Succinatimonas sp. CAG:777 0.332% 1.568% 0.043 -2.238 1262974 
Proteobacte

ria 

Roseburia hominis 0.092% 0.420% 0.028 -2.188 301301 Firmicutes 

Coprococcus sp. AF21-14LB 0.024% 0.108% 0.021 -2.168 2292231 Firmicutes 

Lachnospiraceae bacterium 0.013% 0.059% 0.026 -2.164 1898203 Firmicutes 

Butyricicoccus pullicaecorum 0.056% 0.250% 0.012 -2.150 501571 Firmicutes 

Dorea formicigenerans 0.014% 0.057% 0.046 -2.085 39486 Firmicutes 

uncultured Eubacterium sp. 0.019% 0.081% 0.037 -2.084 165185 Firmicutes 

*Species with an average frequency of at least 0.05% and a minimum of log2 fold change of 2 or less were included. 

RA: relative abundance; NCBI ID: taxonomy ID from National Center for Biotechnology Information. 
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Table 3.7 Significantly increased species in obese cat rectum microbiota compared to 

normal cat. 
 

Species name 

obese 

average 

RA 

normal 

average 

RA 

adjusted P-

value 

log2 

(fold 

change) 

NCBI ID Phylum 

Dialister sp. CAG:486 1.935% 0.001% 0.043 10.598 1262870 Firmicutes 

Bifidobacterium adolescentis 2.113% 0.036% 0.017 5.879 1680 Actinobacteria 

Megasphaera sp. An286 0.073% 0.002% 0.046 5.261 1965622 Firmicutes 

Campylobacter upsaliensis 0.497% 0.020% 0.043 4.640 28080 Proteobacteria 

Olsenella provencensis 2.268% 0.115% 0.071 4.300 1852386 Actinobacteria 

Bacteroides coprophilus CAG:333 0.099% 0.005% 0.026 4.226 1263041 Bacteroidetes 

Bacteroides xylanisolvens 0.122% 0.007% 0.026 4.102 371601 Bacteroidetes 

Bifidobacterium longum 0.633% 0.040% 0.019 3.975 216816 Actinobacteria 

Phocaeicola coprophilus 0.529% 0.037% 0.037 3.831 387090 Bacteroidetes 

Megasphaera stantonii 0.118% 0.011% 0.028 3.456 2144175 Firmicutes 

Olsenella sp. An290 0.053% 0.005% 0.037 3.441 1965625 Actinobacteria 

Bifidobacterium pseudolongum 0.187% 0.023% 0.071 3.044 1694 Actinobacteria 

Bacteroides ovatus 0.101% 0.013% 0.071 2.901 28116 Bacteroidetes 

Collinsella sp. An268 0.367% 0.058% 0.028 2.665 1965612 Actinobacteria 

Flavonifractor sp. An306 0.119% 0.020% 0.100 2.566 1965629 Firmicutes 

Olsenella sp. Marseille-P2300 0.067% 0.016% 0.071 2.083 1805478 Actinobacteria 

Olsenella mediterranea 0.071% 0.017% 0.059 2.034 1871031 Actinobacteria 

Slackia equolifaciens 0.133% 0.033% 0.028 2.002 498718 Actinobacteria 

*Species with an average frequency of at least 0.05% and a minimum of log2 fold change of 2 or more were 

included. RA: relative abundance; NCBI ID: taxonomy ID from National Center for Biotechnology Information.   

 

 

3.2.10 Linear discriminant analysis in normal and obese cat gut microbiota 

Linear discriminant analysis Effect Size (LEfSe v1.1.1) analysis was performed via Galaxy web 

application (http://huttenhower.org/galaxy) with default options to determine the most featured 

families, genera, and species that explain the differences between normal and obese cat gut 

microbiota. The relative taxonomic frequencies were used as the input of LEfSe pipeline. 

 

3.2.11 Metagenomic assembly, genome completeness, and synteny analysis of a previously 

uncharacterized species Erysipelotrichaceae bacterium AU001MAG 

http://huttenhower.org/galaxy
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The genome of the uncharacterized Erysipelotrichaceae bacterium species was assembled from 

the metagenomic reads using MEGAHIT [372], and this species is named Erysipelotrichaceae 

bacterium AU001MAG. CheckM [375] was used to assess the quality of this microbial genome 

and the two most related species in the family of Erysipelotrichaceae, Lactimicrobium 

massiliense (NCBI assembly accession number GCA_900343155) and Bulleidia sp. zg-1006 

(NCBI assembly accession number GCA_016812035). The synteny analysis of these species was 

performed with MCscan (Python version) [376]. 

 

3.2.12 qPCR validation of microbial abundance changes 

A total of eight bacterial species were selected for qPCR (quantitative Polymerase Chain 

Reaction) validation, including Prevotella copri, the most abundant species with no significant 

changes between normal and obese microbiota, four highly abundant species enriched in obese 

cat gut microbiota (Bifidobacterium adolescentis, Olsenella provencensis, Dialister sp. 

CAG:486, and Campylobacter upsaliensis), and three species enriched in normal gut microbiota 

(Erysipelotrichaceae bacterium AU001MAG, Phascolarcobacterium succinatutens, and 

Campylobacter helveticus). The qPCR primers were designed in Oligo 7 software [377] and 

synthesized by Eurofins (Eurofins Genomics Inc., KY). For each qPCR reaction, 30 ng fecal 

DNA sample was mixed with PerfeCTa SYBR Green FastMix, Low ROX (Quantabio, Cat No. 

95072-012) in 96-well plates, and the qPCR was performed on a Bio-Rad C1000 Touch Thermal 

Cycler with CFX96 Real-Time PCR Detection Systems (Bio-Rad Laboratories, CA). Non-

parametric Wilcoxon Rank Sum test was performed on log10 scale of expression values to assess 

the statistical significance. 
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3.2.13 Enrichment of functional categories and pathways 

The HMP Unified Metabolic Analysis Network, HUMAnN 3.0 [378] was used to profile the 

abundance of microbial metabolic pathways from metagenomic sequencing data based on 

MetaCyc database [379]. Functional annotation was performed with eggNOG-mapper [380] 

based on eggNOG 5.0 database [381]. CAZymes (Carbohydrate-active Enzymes) were predicted 

using and automated carbohydrate-active enzyme annotation tool dbCAN [382]. Wilcoxon Rank 

Sum tests were performed to assess the statistical significance of the differential pathways in 

normal cats and obese cats. 

 

3.2.14 Data availability 

The whole-genome shotgun metagenomic sequencing data is available at NCBI SRA under 

accession number PRJNA758898. This whole-genome shotgun metagenomic assembly has been 

deposited at DDBJ/ENA/GenBank under the accession GCA_022675345.1. 

 

3.3 Results 

3.3.1 A comprehensive characterization of feline gut microbiota using deep WGS 

metagenomic data 

The body condition score (BCS) and body weight were measured for cats in this study (Table 

3.1). We collected 16 fecal samples from eight overweight/obese cats (BCS ≥ 7) and eight 

normal cats (BCS = 5) maintained in the same research environment (Figure 3.2A and Figure 

3.1).  
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Figure 3.2 Body weight, body condition score, serum glucose level, and insulin resistance 

parameters for obese cats. (A) Bar plot of the body condition scores of normal and obese cats in 

this study. (B) Box plot of the body weight of normal cats, obese cats when they were lean, and 

obese cats at the time of fecal and blood sample collection. (C) Box plot of the blood glucose 

scores (left) and homeostatic model assessment for insulin resistance (HOMA-IR) scores (right) 

of obese cats at collection. 

 

WGS (whole-genome shotgun) metagenomic sequencing of the fecal DNA generated 1.8 billion 

150-bp reads (or 271 Gbp reads). Of these, 2.21% are adapter sequences or low-quality bases, 

15.21% are host sequences from the feline genome, and 0.04% are viral reads (Table 3.2). After 

removing these non-microbial reads, we performed de novo metagenomic assembly using 16 

samples combined for a feline reference gut microbiome. The non-redundant assembly contains 

355,573 microbial contigs, with a total length of 961,105,174 bp (N50 = 11,097 bp). When 

filtered metagenomic sequences were aligned to this feline gut microbial reference assembly for 

each sample, the average mapping percentage was 82.7% (Table 3.2) with a mean coverage 

depth of 282×. A total of 1.14 million non-redundant microbial genes were identified from the 

reference contigs. Rarefaction analysis of non-redundant genes revealed a curve approaching 

saturation (Figure 3.3A). The number of bacterial species discovered in these metagenomes was 

also saturated, suggesting sufficient sequencing coverage and samples size (Figure 3.3B). 
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Figure 3.3 Rarefaction analyses to assess species and gene richness from the results of sampling. 

(A) Rarefaction curve based on bacterial gene profiles of 16 samples. (B) Rarefaction curve 

based on taxonomy profiles at the species level of 16 samples.  

 

3.3.2 High blood glucose levels and insulin resistance were associated with feline obesity 

The eight obese cats in this study were on a similar diet to lean cats, based on major nutrients and 

fiber content (see Materials and Methods). Before they became obese, their body weight ranged 

from 3.20 to 4.10 kg (Table 3.1). After ad libitum feeding, these animals had a mean body 

weight of 6.20 kg at the time of fecal sample collection (Table 3.1), which was significantly 

heavier (Figure 3.2B; P < 0.001, Mann-Whitney U test). Cats in the normal body weight group 

were from the Scott-Ritchey Research Center breeding colony housed in the same facility, and 

they were significantly lighter than the obese cats at the time of fecal sample collection (Figure 
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3.2B; P < 0.001, Mann-Whitney U test). Blood glucose levels of these obese cats were 192.4 ± 

59.3 mg/dL (ranging from 127 to 285 mg/dL), which were all above the reference interval for cat 

blood glucose levels determined by Auburn University College of Veterinary Medicine Clinical 

Pathology Laboratory (Table 3.8 and Figure 3.2C). Serum insulin levels were also measured, and 

the homeostasis model assessment of insulin resistance (HOMA-IR) was 3.16 ± 0.72 (ranging 

from 2.44 to 3.89; Figure 3.2C), which were also higher than the population-based reference 

interval of HOMA-IR in healthy lean cats (0.4~2.1) [329]. Therefore, the eight obese cats had 

significantly elevated blood glucose levels with demonstratable insulin resistance at the time of 

fecal sample collection. 

 

Table 3.8 Blood glucose and HOMA-IR measurements in obese cats at the time of fecal 

sample collection. 

 

Cat ID Group Sex 
Blood glucose at 

collection (mg/dL) 

Blood glucose 

reference range 

HOMA-IR at 

collection 

HOMA-IR for 

normal cats 

D001 obese male 127 58~116 2.86 1.3+/–0.9 

F001 obese male 256 58~116 4.60 1.3+/–0.9 

G001 obese male 226 58~116 2.62 1.3+/–0.9 

H001 obese male 203 58~116 3.27 1.3+/–0.9 

I001 obese male 133 58~116 2.14 1.3+/–0.9 

J001 obese male 147 58~116 3.00 1.3+/–0.9 

K001 obese male 285 58~116 3.47 1.3+/–0.9 

L001 obese male 162 58~116 3.37 1.3+/–0.9 

Mean ± s.d.   192.4 ± 59.3  3.16 ± 0.72  

 

 

3.3.3 Lack of significant sex or age effects on gut microbiome within the normal cat group 

In the normal cat group in this research, four male and four female participants were included, 

with ages ranging from 4 months to 6 years (Table 3.2). To determine whether there were 

significant differences in the microbiome composition between sex and age groups, we 
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performed Principal Coordinates Analysis (PCoA) analyses and discovered no significant effect 

of sex (Figure 3.4A; P = 0.473, PERMANOVA test) or age (Figure 3.4B, P = 0.468, 

PERMANOVA test) on the cat gut microbiome composition. Compared to the obese cat 

microbiota from 6-year males, the normal cats formed a cluster, which was well separated from 

the obese cat microbiota (Figure 3.5C; P = 0.001, PERMANOVA test). These results justified 

the inclusion of these eight cats in the normal body weight group.  

 

 

Figure 3.4 Principal Coordinates Analysis (PCoA) plots of beta diversity between rectum 

microbiota of cats of different sex or age using Bray-Curtis distance. (A) The Principal 

Coordinates Analysis (PCoA) plot of Bray-Curtis distance of relative abundance of microbial 

species between male cats and female cats. Statistical significance was assessed using 

permutational multivariate analysis of variance (PERMANOVA). (B) The Principal Coordinates 

Analysis (PCoA) plot of Bray-Curtis distance of relative abundance of microbial species between 

cats at 4 months to 8 months and cats at 6 years. Statistical significance was assessed using 

permutational multivariate analysis of variance (PERMANOVA). 
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Figure 3.5 Significant changes of microbial diversity and phylum-level composition in cat gut 

microbiota. (A to B) Box plots of alpha diversity in normal (green) and obese (yellow) cat 

microbiota at the species (A) level and genus (B) level, measured using the Shannon index. (C) 

The PCoA plots of beta diversity between normal and obese rectum microbiota using Bray-

Curtis distance. Statistical significance was assessed using permutational multivariate analysis of 

variance (PERMANOVA). (D) Bar plot of phylum-level relative frequency in normal and obese 

cat microbiota. (E) Pie charts of the phylum-level composition in normal and obese cat gut 

microbiota. (F) Bar plot of the Firmicutes-to-Bacteroidetes ratios in normal and obese cat gut 

microbiota. (G to K) Box plots of frequency for the five most abundant phyla: Firmicutes (G), 

Bacteroidetes (H), Fusobacteria (I), Proteobacteria (J), and Actinobacteria (K). Statistical 

significance was determined by the Mann-Whitney U test. 
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3.3.4 Significant reduction in microbial diversity in obese cat gut microbiota 

A total of 92.6% of the cat gut microbial contigs were taxonomically classified at the 

superkingdom level, among which bacteria account for 99.5%, with the remaining 0.5% from 

archaea and viruses. At lower taxonomy levels, 61.7% and 54.7% of the reference contigs were 

assigned to genus and species, respectively. Alpha diversity measured by the Shannon index 

showed a significant reduction in obese cat microbiome compared to normal cats, at the species 

level (Figure 3.5A; P = 0.009, Mann-Whitney U test) and genus level (Figure 3.5B, P = 0.006, 

Mann-Whitney U test). This result indicated a substantial reduction in gut microbiome 

complexity in obese cats compared to normal cats, suggesting dysbiosis in the obese microbiota. 

Principal Coordinates Analysis (PCoA) plot of beta diversity between normal and obese cat gut 

microbiomes using Bray-Curtis distance showed significant separation between these two groups 

at the species level (Figure 3.5C; P = 0.001, PERMANOVA test). The diversity analyses 

identified distinct patterns of gut microbiota in obese cats and normal cats.  

 

3.3.5 Phylum-level characterization of feline gut microbiota revealed a significantly lower 

Firmicutes-to-Bacteroidetes ratio in obese cats 

Among the assembled microbial contigs, 87.2% were taxonomically classified at the phylum 

level. Almost 98% of the microbes belong to the top 5 phyla, including Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria (Figure 3.5D). The most 

dominant phylum in normal cat gut microbiota was Firmicutes (47.4%), and the second was 

Bacteroidetes (27.1%), which was consistent with previously reported in 16S rDNA 

metagenomic studies [364] (63.3% Firmicutes and 27.6% Bacteroidetes; Figure 3.6A). In obese 

cats, the most abundant phylum was Bacteroidetes (40.9%), followed by Firmicutes (27.9%) 

(Figure 3.5E). This dramatic shift from Firmicutes to Bacteroidetes resulted in a significantly 
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lower Firmicutes-to-Bacteroidetes ratio (2.10 to 0.94) in obese cat microbiota (Figure 3.5F-H; P 

= 0.021, Mann-Whitney U test). Another phylum, Fusobacteria, which accounted for 0.3% of the 

normal gut microbiome, was also depleted in obese cats (Figure 3.5I; P-adj = 0.002, Mann-

Whitney U test). No significant changes were detected at the phylum level for Proteobacteria or 

Actinobacteria (Figure 3.5J-K; P-adj > 0.05, Mann-Whitney U test).  

 

Figure 3.6 Bacterial relative abundance correlations between between WGS metagenomic data 

in this research and 16S rDNA ampliconic sequencing data in Fisher et al. 2017 at phylum and 

genus levels. (A) Scatterplot of relative frequency of the top 5 most abundant phyla from cat 

intestinal WGS metagenomic data in this research and the16S ampliconic sequencing data in 

Fisher et al. 2017. (B) Scatterplot of relative frequency at log10 scale of the 15 most abundant 

genera from normal cat intestinal WGS metagenomic data in this research and lean cat 16S 

ampliconic sequencing data in Fisher et al. 2017.  
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3.3.6 The top 20 most abundant bacterial genera distinguish the normal and obese cat gut 

microbiota. 

The top 20 genera accounted for approximately 70% of total abundance (Table 3.3). The eight 

normal and eight obese cat microbiomes formed two distinct groups when unsupervised 

clustering was performed using the relative abundance of the top 20 genera (Figure 3.7A), 

indicating microbial composition differences occurred at the most abundant genera level. 

Prevotella was the most abundant genus (24.3%; Figure 3.7A-B and Table 3.3-3.4), and the 

relative proportions of the top 20 genera were highly correlated with the previous 16S rDNA 

sequencing studies (Figure 3.6B; Spearman’s ρ = 0.703, P = 0.003, Spearman's Rank Correlation 

test). Of the top five genera, Bacteroides increased in the obese cat gut microbiota with a 

marginal statistical significance (Figure 3.7C; P-adj = 0.059, Mann-Whitney U test). Two 

Firmicutes genera were significantly altered in the obese cat gut microbiome: Lactimicrobium 

and Phascolarctobacterium accounted for 0.87% and 0.75% respectively in normal cats, but 

were not found (<0.0005%) in obese cats (P-adj = 0.006; Figure 3.7C and Table 3.5). This result 

was consistent with the decreased abundance in Firmicutes in the obese microbiome at the 

phylum level (Figure 3.5E). The Prevotella-to-Bacteroides ratio, which was reported to predict 

body weight and fat loss potential in humans [383], showed no significant change in obese and 

normal cat gut microbiota (Figure 3.7D; P > 0.05, Mann-Whitney U test). 
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Figure 3.7 Top 20 abundant bacterial genera and species in cat gut microbiota, and their 

relationship to cat obesity. (A, B) Heatmap of relative frequency for the top 20 most abundant 

bacteria genera (A) and species (B). The taxa were rank-ordered with the most abundant taxon 

on the top. (C). Box plots of relative frequency for three top 20 genera that exhibit significant 

abundance differences between normal and obese cat gut microbiota: Lactimicrobium, 

Phascolarctobacterium, and Bacteroides. (D). Bar plot of Prevotella-to-Bacteroides ratios in 

normal and obese cat gut microbiota. 

 

3.3.7 Linear discriminant analysis revealed the most featured bacterial families, genera, 

and species in normal vs. obese cat gut microbiota. 

To identify the featured taxa associated with obesity, we performed linear discriminant analysis 

(LDA) on microbial abundance profiles at the family, genus, and species levels. At the family 
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level, Bifidobacteriaceae was the only featured family in obese cat gut microbiota (LDA > 3.0), 

whereas ten families were featured in the normal microbiome, including Lachnospiraceae, 

Clostridiaceae, Acidaminococcaceae, Eubacteriaceae, Erysipelotrichaceae, Helicobacteraceae, 

Peptostreptococcaceae, Lactobacillaceae, Oscillospiraceae, and Enterobacteriaceae (Figure 

3.8A). At the genus level, Bifidobacterium and Dialister were the most featured obese genera to 

distinguish from normal cat microbiota (Figure 3.8B). The normal cat microbiome featured 15 

genera, 14 of which belonged to the most featured families except Succinatimonas, in the family 

of Succinivibrionaceae (Figure 3.8A-B). The significance was driven by Succinatimonas 

CAG:777, which was the second most featured species (Figure 3.8C). We identified 11 featured 

bacteria species in the obese microbiome (LDA score > 3; Figure 3.8C), including 7 

Actinobacteria in the genera of Olsenella, Bifidobacterium, Collinsella, two Bacteroidetes 

(Phocaeicola), a Firmicutes species Dialister sp. CAG486, and a Proteobacteria Campylobacter 

upsaliensis. In contrast, 11 Firmicutes and 3 Proteobacteria species were featured in the normal 

gut microbiome (Figure 3.8C), including the species in the top-20 genera we identified in Figure 

3.7A. Our results further confirmed that the normal and obese cat gut microbiota have distinct 

taxonomical signatures. 
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Figure 3.8 Significant differences in taxonomic abundance that discriminate normal and obese 

cat gut microbiome at the family, genus, and species levels. (A to C) Linear discriminant analysis 

(LDA) scores of top featured microbial families (A), genera (B), and species (C) in normal 

(green) and obese (yellow) cat gut microbiota. Taxa with an LDA score greater than 3.0 were 

included in these plots. (D) Heatmaps of the relative frequency for significantly (FDR < 0.10) 

altered genera in normal (green) and obese (yellow) cat gut microbiota. Genera with an average 

frequency of at least 0.1% and a minimum absolute value of log2 fold change (log2FC) of 2 were 

included in the plot. (E) High abundant bacterial species (relative abundance > 0.5%) with high-

fold change (>16) between normal (green) and obese (yellow) cat gut microbiota. Four species 

enriched in obese microbiota (HAHFC-obese) and two species enriched in normal gut microbiota 

(HAHFC-normal) were shown in the heatmap. 
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To determine the degree of abundance changes in the obese microbiome, we performed pairwise 

nonparametric tests to identify significantly altered taxa based on relative abundance (see 

Materials and Methods). At an FDR (False Discovery Rate) of 10% and relative abundance of 

0.5% or higher, 17 genera have a log2 fold change greater than 2 (Figure 3.8D). 14/17 significant 

featured genera with LDA score > 3 (Figure 3.8B) were also found in this list, and they were the 

most important genera that discriminate normal and obese cat gut microbiomes. High-

abundance, high-fold change (HAHFC) marker species were filtered according to the criteria of 

16-fold change and average abundance of 0.5% or higher. Six bacterial species were selected for 

further analysis and validation (Figure 3.8E).  

 

3.3.8 Metagenomic-assembled genome (MAG) of the most featured species in LDA analysis 

- a previously uncharacterized Erysipelotrichaceae bacterium AU001MAG 

The most featured species in the normal gut microbiome (LDA score>4; Figure 3.8C) was 

initially annotated as Lactimicrobium massiliense (Figure 3.7B), and its reference genome 

sequenced strain was discovered in human breast milk from a healthy lactating mother [384]. 

However, when the metagenomic reads were aligned to its reference assembly 

(GCA_900343155), the mapping rate was poor with only 82% average nucleotide identity, 

suggesting that this OTU in the cat gut microbiome was a different uncharacterized species in the 

same family of Erysipelotrichaceae [385]. The metagenomic reads from this novel species were 

also misannotated as another closely related Erysipelotrichaceae species Bulleidia sp. zg-1006 

(78% sequence identity). Using the metagenomic assembly approach, we assembled a MAG 

genome of 1,798,709 bp in length, consistent with a single species (123 contigs with N50 = 

25,047 bp and 1,657 protein-coding genes annotated). The checkM genome completeness was 
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96.2% (Figure 5A), which was comparable to the two related species Lactimicrobium 

massiliense (99.1%) and Bulleidia sp. zg-1006 (86.7%). We concluded that the MAG assembly 

of this species was nearly complete and named it Erysipelotrichaceae bacterium AU001MAG. 

This species was also the most enriched species in the normal gut microbiome (log2FC=10.8, 

FDR = 0.01, Mann-Whitney U test, same below; Figure 3.8C, 3.10A, and Table 3.6), with an 

average depth of >200 across the entire genome in the normal microbiome but zero coverage in 

the obese microbiome (Figure 3.9B). Erysipelotrichaceae bacterium AU001MAG was the second 

most abundant bacterial species in the cat gut microbiome (3.1% in the normal microbiome), just 

trailing the most abundant species Prevotella copri (12.9%; Table 3.4). Gene annotation-based 

syntenic analysis revealed that Erysipelotrichaceae bacterium AU001MAG contigs could be 

anchored to ~2/3 of the Lactimicrobium massiliense genome, and most of the gene orders were 

conserved (Figure 3.9C), suggesting that Lactimicrobium massiliense was the closest genome-

sequenced species in the NCBI database. In contrast, Bulleidia sp. zg-1006 had fewer syntenic 

regions and more genome rearrangement events (Figure 3.9C).  
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Figure 3.9 MAG genome quality assessment, normal and obese microbiota coverage, and 

syntenic analysis of the most featured species in obese cat gut microbiome, Erysipelotrichaceae 

bacterium AU001MAG. (A) Genome completeness of Lactimicrobium massiliense, Bulleidia sp. 

Zg-1006, and Erysipelotrichaceae bacterium AU001MAG assessed by checkM, showing the 

fraction of single-copy, missing, and contaminated genes. (B) Sliding window plot of the average 

coverage depth of Erysipelotrichaceae bacterium AU001MAG in normal (green) and obese 

(yellow) metagenomic data. (C) Syntenic region plot of Erysipelotrichaceae bacterium 

AU001MAG with its two most related species, Lactimicrobium massiliense and Bulleidia sp. Zg-

1006. 

 

 

3.3.9 Hallmark of the obese cat gut microbiome - dramatic increases in abundance of 

Bifidobacterium sp., Dialister sp., Olsenella provencensis, and Campylobacter upsaliensis 

A total of 400 bacteria species were significantly enriched in the obese cat gut microbiome, at an 

FDR of 10% and log2 fold change of 2 or more. Of these, many had an extremely low relative 

abundance in both groups, which were unlikely to be relevant to the disease. Eighteen obese-
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enriched species had a relative abundance of 0.05% or higher in the obese microbiome (Table 

3.7), including 9 Actinobacteria, 4 Bacteroidetes, 4 Firmicutes, and 1 Proteobacteria. Among 

them, four species had high abundance in the obese cat gut microbiome (>0.5%) with extremely 

high fold increase (fold change >16), which were defined as HAHFC-obese species (Figure 

3.8E). As a species in one of the two most featured genera in the obese microbiome (Figure 

3.8B), Dialister sp. CAG:483 accounted for less than 0.001% in the normal microbiome and 

1.935% in the obese microbiome, with an over 1500-fold increase (FDR = 0.04; Table 3.7). 

Dialister is a Firmicutes genus in the class of Negativicutes. Although we observed an overall 

reduction of Firmicutes in obese cat gut microbiota (Figure 3.5E), the proportion of 

Negativicutes in Firmicutes increased from 14% to 20%, as shown in the Krona plot (Figure 

3.10A), which was partly driven by a dramatic increase of the Dialister genus from 0.003% to 

7% in Firmicutes in the obese cat gut microbiome (Figure 3.10A).  
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Figure 3.10 Krona plots reflecting the phylogenetic relationship and composition changes in 

Firmicutes, Actinobacteria, and Proteobacteria. Annotated taxonomy units within the phyla of 

Firmicutes (A), Actinobacteria (B), and Proteobacteria (C) were visualized in terms of relative 

abundance and taxonomic hierarchy for normal (left) and obese (right) cat gut microbiome. 

Different taxonomic terms are color-coded, and the composition percentages are labeled at the 

genus level (A, B) or the species level (C). The area in the chart is proportional to the relative 

abundance. The proportions of each phylum in the normal and obese microbiome were 

represented in a pie chart in the center of the circle. 



112 

 

The number of Actinobacteria species dominated the obese cat gut microbiome enriched species. 

Bifidobacterium adolescentis is the second most enriched species (FDR = 0.02, LDA score>4; 

Figure 3.8C, E) with a fold change of over 50, accounting for 2.11% of the obese cat gut 

microbiome (Table 3.7). Bifidobacterium was the other featured genus in the obese cat gut 

microbiome, and six species were significantly overrepresented (log2FC > 1.5, FDR < 0.10), 

including B. adolescentis, B. longum, B. pseudolongum, B. pullorum, B. pullorum subsp. 

Gallinarum, and B. pullorum subsp. Saeculare (Figure 3.11). Collectively, these species caused 

an increase of the Bifidobacterium genus and the Bifidobacteriaceae family from 10% to 32% in 

Actinobacteria (Figure 3.10B), serving as a major signature of the obese cat gut microbiome 

(Figure 3.8A-B). The other two HAHFC-obese species were Olsenella provencensis 

(Actinobacteria) and Campylobacter upsaliensis (Proteobacteria). Olsenella provencensis was 

the most featured species (Figure 3.8C, E), with a 20-fold increase in the obese microbiome from 

0.11% to 2.27% (Table 3.7 and Figure 3.11). The Olsenella genus was also overrepresented in 

the obese cat gut microbiome (Figure 3.10B). Campylobacter upsaliensis is a human pathogen 

found globally, associated with self-limiting diarrhea in companion animals and humans [386, 

387]. As a featured species in the obese microbiome (Figure 3.8C), the abundance of C. 

upsaliensis is extremely low in the normal microbiome (0.020%), but a 25-fold increase was 

observed in the obese microbiome (Figure 3.8E, 3.10C, and Table 3.7).  
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Figure 3.11 Heatmap of species abundance from the Bifidobacterium genus in normal vs. obese 

cat rectum microbiome. Heatmap of relative frequency at log2 scale for all Bifidobacterium 

species detected in the cat rectum microbiome. Six significantly overrepresented species in the 

obese gut microbiome (log2FC>1.5, q<0.10), including B. adolescentis, B. longum, B. 

pseudolongum, B. pullorum, B. pullorum subsp. Gallinarum, and B. pullorum subsp. Saeculare, 

were denoted in red. 

 

3.3.10 Hallmark of the obese cat gut microbiome – depletion of two highly abundant species 

in the normal gut microbiome, Erysipelotrichaceae bacterium AU001MAG and 

Phascolarctobacterium succinatutens 

The two top-20 genera that displayed significant differential abundance in normal vs. obese 

microbiome (Figure 3.7A, C) were driven by two HAHFC-normal species, Erysipelotrichaceae 

bacterium AU001MAG (initially annotated as Lactimicrobium massiliense) and 

Phascolarctobacterium succinatutens (Figure 3.8E). They were also featured in the linear 

discriminant analysis at species (Figure 3.8C), genus (Figure 3.8B), and family levels 
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(Erysipelotrichaceae and Acidaminococcaceae, respectively; Figure 3.8A). Erysipelotrichaceae 

bacterium AU001MAG accounted for 3.1% in the normal gut microbiome, with over one-

thousand-fold reduction in the obese microbiome (log2FC = 10.79, FDR = 0.01; Figure 3.10A 

and Table 3.6). P. succinatutens, another highly abundant Firmicutes in the normal microbiome 

(0.62%), had a ~400-fold decrease in the obese microbiome (log2FC = 8.57, FDR = 0.01; Figure 

3.10A and Table 3.6). The depletion of these two species is a hallmark of microbiome alterations 

in the obese cat gut microbiome.  

 

3.3.11 Distinct metabolic pathways and CAZy families in normal and obese cat gut 

microbiota 

At the microbial metabolic pathway level, we identified 10 pathways significantly enriched in 

abundance in the obese cat gut microbiome (log2FC > 1.5, FDR < 0.1), while 11 pathways were 

significantly depleted (log2FC < -1.5, FDR < 0.1). Among the obese microbiome enriched 

pathways, 8/10 were biosynthesis pathways. In sharp contrast, 9 of the 11 obese microbiome 

depleted pathways were involved in degradation and fermentation (Figure 3.12A). 

Overrepresented pathways in the obese microbiome included the biosynthesis of fatty acids 

(stearate, palmitoleate, oleate, and oxononanoate), the biosynthesis of biotin, acyl-carrier protein, 

and nucleotide sugar CMP-legionaminate, as well as the saturated fatty acid elongation 

pathways. These pathways were mainly related to lipid biosynthesis. On the contrary, the normal 

microbiome was enriched for three degradation and two fermentation terms (Figure 3.12A). 

Methylcitrate cycle I and II, as well as the biosynthesis of glutamine and arginine amino acids 

were also enriched compared to the obese cat gut microbiome (Figure 3.12A).  
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Figure 3.12 Significantly altered metabolic pathways and CAZy families in obese and normal 

cat gut microbiota. (A) Heatmap of the relative frequencies for significantly (FDR < 0.10) altered 

microbial metabolic pathways in normal (green) and obese (yellow) cat gut microbiota. 

Pathways with a minimum absolute value of log2 fold change (log2FC) of 1.5 were included in 

the plot. (B) Bar plots of percentages for phyla to which CAZyme genes from different CAZy 

families in normal (green) and obese (yellow) cat gut microbiota belong. (C) Line plot of CPM 

(mapped reads) at log2 scale for most abundant CAZy families (CPM > 10) in normal (green) and 

obese (yellow) cat gut microbiota. CAZy families with a minimum absolute value of log2FC of 

1.5 were denoted in red. 
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As an important aspect of microbiome function, CAZymes are responsible for the synthesis and 

breakdown of complex carbohydrates in the cat gut microbiome. Based on the protein sequence 

homology to the CAZy database, we detected 105 CAZy families, which were assigned to 51 

GHs (glycoside hydrolases), 38 GTs (glycosyltransferases),7 CBMs (carbohydrate-binding 

modules), 6 PLs (polysaccharide lyases), 2 CEs (carbohydrate esterases) and 1 AA (auxiliary 

activities). Overall, a larger number of CAZyme encoding genes were characterized in the 

normal gut microbiome compared to the obese microbiome, but the proportion of CAZymes in 

all annotated genes was higher in the obese microbiome. A total of 1.26% of the annotated genes 

in the obese cat gut microbiome were CAZyme encoding genes, which was significantly higher 

(P = 0.01, Mann-Whitney U test) than the proportion of CAZymes in the normal microbiome 

(1.19%; Figure 3.13A). When taxonomy abundances of CAZymes were measured by CPM 

(Counts Per Million mapped reads), Firmicutes and Bacteroidetes were most abundant in 

CAZymes, accounting for 77.5% of all CAZyme abundance (Figure 3.12B). In the obese cat gut 

microbiome, a significant increase of CAZyme abundance originated from Bacteroidetes was 

observed, whereas Firmicutes CAZymes were significantly decreased (P < 0.01; Figure 3.12B), 

which was consistent with the microbial composition changes at the phylum level (Figure 3.5E). 

The top six CAZyme-encoding genera accounted for 32.2% of all CAZyme encoding genes, 

including Bacteroides (8.15%), Clostridium (5.83%), Prevotella (5.04%), Blautia (5.01%), 

Collinsella (4.46%), and Bifidobacterium (3.67%; Figure 3.13B). 
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Figure 3.13 Numbers of CAZyme (Carbohydrate-Active Enzymes) genes identified in normal 

and obese cat gut microbiomes. (A) Percentage of CAZyme genes identified in normal (green) 

and obese (yellow) cat gut microbiomes. (B) Barplot of numbers of CAZyme encoding genes in 

top 20 most abundant genera in normal (green) and obese (yellow) cat gut microbiomes. 

 

 

By comparing the relative abundance of CAZyme families between normal and obese 

microbiomes, we discovered that in the obese cat gut microbiome, Firmicutes were significantly 

less in GHs, GTs, CBMs, PLs, and CEs, whereas Bacteroidetes were significantly enriched for 

GHs, PLs, and CEs (Figure 3.12B). Actinobacteria were also higher in GHs, GTs, CBMs, and 
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CEs in the obese microbiome (Figure 3.12B), suggesting a potential contribution of the 

carbohydrate metabolism primarily in the obese microbiome. Among the 63 highly abundant 

CAZy families (CPM > 500), five enzymes had a log2 fold change of 1.5 or higher. GT25 

(log2FC = -1.62) and CBM50 (log2FC = -1.69) were significantly decreased in obese cat gut 

microbiome (FDR < 0.05). Three glycoside hydrolases, GH28 (log2FC = 3.47), GH19 (log2FC = 

1.92), and GH116 (log2FC = 1.53), were upregulated in the obese cat gut microbiome with 

marginal significance.  

 

3.4 Discussion and conclusion 

Discussion 

Feline gut microbiota composition – similarity to canine and human microbiome and 

consistency between WGS and 16S rDNA data 

To our best knowledge, we report here the first metagenomic assembly of the feline gut 

microbiome using whole-genome shotgun (WGS) metagenomic approaches. In normal lean cat 

gut microbiomes, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria 

were the top five most abundant phyla, which were also the top five phyla of the human and dog 

gut microbiome in the same order [388-390]. Compared to a previous 16S rDNA study of cat gut 

microbiome in 2017 [364], the taxonomy abundance quantified in this study has a high 

correlation when the top five phyla and the top 20 most abundant genera were examined, 

suggesting that the composition of the feline gut microbiome was stable in different cat 

populations under similar but slightly different standard diet (Mars Petcare diet with 39.8% 

protein, 12.5% fat, 38.3% carbohydrate, and 2.3% crude fiber was used in Fischer 2017). This 
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also serves as a proof of principle of our WGS metagenomic study.  

 

The first cat gut microbiome contigs assembly and microbial gene catalog provided 

sequence references and information of sufficient samples size for future studies 

In this study, we assembled 234 Gbp of high-quality microbial reads from a total of 16 

metagenomes and generated a de novo assembly of the feline gut microbiome. The non-

redundant contigs length was 961 Mbp in total, with 1.14 million predicted microbial genes.  

Rarefaction analyses found that both the number of bacterial species and microbial genes 

were >90% saturated when n > 5 samples were included, indicating that a sample size of n = 6 is 

sufficient in future WGS metagenomic analysis of cat gut microbiomes. A sample size larger 

than n = 6 would only have marginal benefit in identifying additional taxa. The result suggested 

that the sample size in this study (n = 6 for each group) is sufficient and the reference assembly 

with 16 metagenomes has excellent completeness. On average, 83% of the metagenomic reads 

were aligned to our reference assembly, which is comparable to the human gut microbiome 

reference genome [391]. Compared to the canine gut microbiome with 1.25 million predicted 

microbial genes [392],  there were 9% fewer non-redundant genes in the cat gut microbiome. A 

total of 95.9% microbial genes in cat gut catalog had a phylum-level annotation, and 

genus/species level annotations were available for 68.9% and 62.7% of genes. The feline gut 

microbial gene catalog served as a comprehensive annotation set for functional studies of the 

microbiome.  

 

Potential confounding factors in comparing normal vs. obese cat microbiomes  

In humans and mice, sex, age, and diet can significantly affect the gut microbiome compositions.  
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The gut microbiota associations with feline obesity had been studied in the context of age, diet, 

neutering, and diabetic status [349, 360, 364, 365]. In all four independent studies, obese status 

was discovered to influence the cat gut microbiome, but no significant effects of age, sex, diet, or 

neutering status were detected in previous feline 16S rDNA studies by multiple research groups. 

In a 2016 study using 16S rDNA PCR analysis of fecal samples from shelter cats, no significant 

associations were identified between bacterial groups and sex or neutering status [349]. The cats 

were on various diets and of diverse age groups (16 cats between 10-week and 1-year, 41 

between 1-year and 5-year, and 20 of unknown age). Another study in 2019 contrasting the 

microbiomes of diabetic and control cats found no effect of breed, sex, or age on the gut 

microbial communities [365]. In a 2020 study comparing lean and overweight cats, no 

significant differences were discovered in fecal microbiomes due to sex or age or different diet 

groups [360]. Another study published in 2017 also found no significant effects of sex or age on 

cat gut microbiome in adult cats [364]. In this study, the obese group consists of eight 6-year-old 

male cats. For the normal body weight group, we enrolled three 6-year-old cats to match the 

obese group; two 4-month-old cats and three 8-month-old cats were also included to make it a 

balanced comparison. No significant differences due to age or sex were detected according to 

permutational multivariate analysis of variance, which was consistent with all previous 16S 

rDNA studies [349, 360, 364, 365]. The normal and obese cats were on two different brands of 

standard adult cat food with similar nutritional compositions. There could be subtle gut 

microbiome changes due to the slight differences in the diet, but none of the minor variations 

between the diet are sufficient to explain the dramatic microbiome composition shifts observed 

between normal and obese groups. Consistent with this interpretation, the previous 16S rDNA 

studies confirmed that diets with similar nutrient ingredients did not affect the cat gut microbiota 
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[349, 360], and cross-comparison between our normal cat group and the Fischer 2017 16S rDNA 

study revealed highly correlated microbial genera composition (Figure 3.6B), despite the 

differences in diets. Therefore, it is extremely unlikely standard diets with similar nutrients will 

cause hundred-fold changes in bacterial composition observed in our study, but it is still a 

potential limitation of this research and might decrease the statistical power. Future studies that 

evaluate the feline microbiome using metagenomics sequencing should consider diet as a 

potential variable when interpreting their findings. 

 

Signatures of obese cat gut microbiota – what did we learn at the microbial diversity level?   

Since the gut microbiota composition is directly relevant to the host’s digestion and energy 

metabolism, thorough identification of gut microbiome signatures is critical to define the medical 

condition of feline obesity in terms of microbiota dysbiosis. Significant differences in the gut 

microbiome have been reported in obese compared to lean cats using PCA analysis [349], but the 

qPCR approach cannot determine the microbial diversity. Another 16S rDNA metagenomic 

study of lean neutered/intact and obese cats identified a lower alpha diversity in lean neutered 

cats, and no significant grouping was detected when beta diversity was analyzed [364]. In this 

study, we discovered a significant reduction in alpha diversity at both the genus and species 

levels in the obese microbiome, suggesting dramatically reduced microbial complexity, which 

often reflects a state of dysbiosis in the gut microbiome. The beta-diversity analysis also revealed 

a distinct separation of the normal and obese cat microbiomes. In addition to the taxonomy level, 

the reduced diversity was also observed at the gene level, in which the number of microbial 

genes predicted in the obese microbiome (598,349) was significantly fewer than the normal cat 

microbiome (912,251). Another study of the gut microbiome of diabetic cats discovered 
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decreased gene mark richness in DM (diabetes mellitus) cats (FDR = 0.04) [365]. The obese cats 

in this study also demonstrated significant insulin resistance, and the reduction in gene richness 

was in the same direction as the 2019 study [365].   

 

Shift from Firmicutes to Bacteroidetes in obese cat gut microbiota is in the opposite 

direction compared to human and mouse gut microbiomes 

Phylum-level abundance changes are directly relevant to obesity. Previous studies in humans and 

rodents found that the ratio of the two most dominant phyla, the gram-positive Firmicutes over 

the gram-negative Bacteroidetes, was elevated in obese individuals and may be a hallmark of 

obesity [346, 393-395]. The validity of this potential marker was questioned subsequently by 

contradictory results [396-400], but this metric was still worth investigating. Interestingly, we 

observed an inverse pattern compared to what was reported in humans and rodents, with a 

significantly decreased Firmicutes-to-Bacteroidetes ratio in the obese cat gut microbiome. 

Bacteroidetes replaced Firmicutes as the most dominant phylum in obese cat gut microbiota. A 

similar pattern was also reported in a cat 16S rDNA study, in which lean neutered cats had a 

greater abundance of Firmicutes and a lower abundance of Bacteroidetes compared to obese 

neutered cats [364]. Based on the current knowledge, this dramatic shift in the F/B ratio is likely 

to be unique in cats, and may serve as an indicator of microbiome health in obese and overweight 

cats. 

 

Signatures of obese cat gut microbiota – what did we learn at the microbial species level?   

Previous 16S rDNA studies of the link between the gut microbiome and feline obesity were 

extremely informative at the phylum and genus levels, but failed to identify any individual 
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bacteria species associated with obesity. Thanks to the resolution enabled by the WGS 

metagenomic sequencing, we identified hundreds of bacterial species with a significantly altered 

abundance between normal and obese gut microbiomes. Since many of these significant species 

may not be biologically relevant due to low abundances, we focused on high abundance (>0.5%) 

microbial species with high fold change (>16) between obese and normal cat gut microbiomes 

(HAHFC species). Among the six HAHFC species, Bifidobacterium adolescentis, Dialister sp. 

CAG:486, Olsenella provencensis, and Campylobacter upsaliensis were significantly enriched in 

the obese cat gut microbiome, whereas Erysipelotrichaceae bacterium AU001MAG and 

Phascolarctobacterium succinatutens were depleted in the obese cat gut microbiome. The 

significant changes in these species were validated using qPCR experiments. At the genus level, 

Bifidobacterium and Dialister were identified to be increased in obese/overweight compared to 

lean cats (FDR = 0.04 for Dialister and FDR < 0.0001 for Bifidobacterium) in a 16S rDNA study 

of obese cat gut microbiota [365]. Our research has identified the driving microbial species in 

these two genera, which were the most featured genera in the obese cat gut microbiota 

discovered in this study. The family Erysipelotrichaceae was discovered to be significantly 

decreased (>5-fold) in obese women compared to healthy control individuals [401], which is the 

same direction as our results on the newly discovered species Erysipelotrichaceae bacterium 

AU001MAG  in this family, suggesting it may play an important role in obesity. Olsenella 

provencensis and Campylobacter upsaliensis were not reported to be associated with obesity in 

any other species. Our findings of key bacterial community alterations at the species level will 

inform the development of probiotic treatment for weight loss therapy in cats. 

 

Obesity etiology from cat to human – shared significant bacterial genera between human 
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and cat gut microbiota provide potential translational value 

In a Mayo Clinic study published in 2017, 26 participants (18-65 years) were enrolled in the 

Mayo Clinic Obesity Treatment Research Program, and the body weight was measured at the 

beginning and after three months of this program. At least 5% weight loss after 3 months was 

defined as success [402]. Gut microbiome composition was compared between the success and 

failure groups. Two genera were identified with significant changes according to the LEfSe 

analysis (LDA score > 2), and the remaining ones were non-significant [402]. Increased 

Phascolarcobacterium abundance was associated with success (P = 0.008), and increased 

Dialister abundance was associated with failure of weight loss (P = 0.030) [402]. Strikingly, 

species in these two genera were among the six HAHFC species identified in this study: 

Dialister sp. CAG486 was the most enriched bacterial species in the obese cat microbiome with 

1500-fold increase; Phascolarctobacterium succinatutens was highly abundant in the normal cat 

gut microbiome, but almost missing in the obese cat gut microbiome with 400-fold reduction in 

abundance. Based on the human gut microbiome study on weight loss outcomes [402] and our 

results in obese cats, high levels of Dialister may prevent body weight loss, and 

Phascolarctobacterium was associated with lean microbiomes by promoting body weight loss. 

 

Bifidobacterium in feline obesity – is Bifidobacterium a good choice for probiotic health 

supplement in cats? 

Bifidobacterium is believed to be among the first members of microbes colonizing the human 

gastrointestinal tract since the infant stage. They were known to positively impact the host gut 

health [403]. Therefore, Bifidobacterium are often used as probiotics to reduce gut problems 

such as diarrhea or constipation, and they were also shown to have impact on obesity. In rats, B. 
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adolescentis supplementation can reduce visceral fat accumulation [404]. In mouse models of 

high-fat diet-induced NAFLD (non-alcoholic fatty liver disease) [405] and colitis [406], B. 

adolescentis were shown to ameliorate the disease symptoms. Interestingly, B. adolescentis was 

identified an HAHFC species in this study, with a 60-fold increase in the obese cat gut 

microbiome, which was in the opposite direction compared to previous rodent studies. In 

addition to B. adolescentis, we found that five other Bifidobacterium species/subspecies were 

also significantly increased in the obese cat microbiome. The effects on body weight were 

reported to be strain-dependent: B. adolescentis strains isolated from the feces of elderly human 

donors (Z25, 17_3, and 2016_7_2) decreased the body weight or weight gain in mice, while the 

strain isolated from the human newborn (N4_N3) increased the body weight in mice [407]. In a 

recent weight management and microbiome study, cats on a high-protein, low-carbohydrate diet 

had decreased Bifidobacterium level (P = 0.002) compared to animals on the control diet, 

suggesting a lower level of Bifidobacterium is beneficial to body weight loss [360]. Taken 

together, higher levels of Bifidobacterium were associated with obesity in cats, which was 

different from the human and rodent studies. We need to be cautious when designing probiotic 

formula for cat weight management.  

 

Erysipelotrichaceae bacterium and Phascolarctobacterium – beneficial bacteria for feline 

weight loss?  

A previously uncharacterized genus Erysipelotrichaceae bacterium was largely depleted in obese 

cat gut microbiota (from 0.383% to <0.001%, FDR = 0.012), which was the most decreased 

species in the obese cat microbiome. Similarly, the abundance of Phascolarctobacterium 

dropped from 0.078% in normal cats to <0.001% in obese cats. We validated the dramatic 
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decreases in both Erysipelotrichaceae and Phascolarctobacterium by qPCR. Moreover, the 

increased abundance of Phascolarctobacterium was proved to be associated with successful 

weight loss in the Mayo Clinic study [402]. These two species deserve further consideration as 

potential probiotics for weight loss.  

 

Microbiome signatures in feline obesity – obese cat microbiome index C. ups/C. hel and a 

qPCR panel to detect obesity-associated microbiomes 

We detected 20 species in the genus of Campylobacter in the cat gut microbiome. A pathogenic 

species, Campylobacter jejuni, can colonize obese (ob/ob) mice with oral inoculation, and the 

ob/ob mice were extremely sensitive to C. jejuni infection [408]. However, C. jejuni had low 

abundance in this study, and there was no significant difference between normal and obese cats. 

Notably, C. upsaliensis and C. helveticus, which were not linked with obesity before, were 

discovered to have significant abundance changes in the obese cat gut microbiome in the 

opposite direction. As an HAHFC-obese species, C. upsaliensis was almost absent in the normal 

microbiome (0.02%) but accounted for 0.5% in the obese cat gut microbiome. In contrast, C. 

helveticus, was extremely low in abundance in the obese microbiome (0.02%), but with a 12-fold 

increase in the normal microbiome. This inverse pattern in the normal vs. obese microbiome was 

validated by qPCR, and the relative ratio of the two species had a much-improved discriminative 

power between obese and normal individuals. Therefore, we proposed to define the relative 

abundance of C. upsaliensis over C. helveticus as an obese cat microbiome index.   

 

To investigate the microbiome features of feline obesity and define obesity-associated 

microbiomes, a total of eight microbial species were selected as an indicator panel for dysbiosis 
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in the obese cat gut microbiome. Prevotella is the most abundant genus in cat gut microbiome, 

according to 16S studies [364] and this WGS metagenomic study. At the microbial species level, 

we found that Prevotella copri is the most abundant species in the cat gut microbiome, 

accounting for 12.9% of the entire microbiota in normal cats. We also observed a potential trend 

of increasing abundance in the obese cat gut microbiome (19.6% abundance), but it was not 

statistically significant (P = 0.44 and FDR = 0.67). Interestingly, Prevotella copri has a 

significantly higher abundance in fat pigs, and was shown to promote host chronic inflammation, 

intestinal permeability, lipogenesis, and fat accumulation through the TLR4 and mTOR signaling 

pathways [409]. Our result showed a similar trend, but it did not reach statistical significance. 

Prevotella copri was selected as the control species for the indicator panel because of its high 

abundance. The panel also includes four highly enriched species in obese cat gut microbiota 

(Bifidobacterium adolescentis, Olsenella provencensis, Dialister sp. CAG:486, and 

Campylobacter upsaliensis), and three significantly depleted species in obese cat gut microbiota 

(Phascolarcobacterium succinatutens, Erysipelotrichaceae bacterium AU001MAG, and 

Campylobacter helveticus). This panel will serve as a cost-effective method to examine the 

microbiome correlates of feline obesity and can be applied in a much larger sample size.  

 

Fatty acids biosynthesis pathways are enriched in obesity-associated microbiota  

We discovered that fatty acid biosynthesis pathways were significantly overrepresented in the 

obese cat gut microbiome compared to normal cats, including biosynthesis and elongation of 

saturated fatty acids (SFAs). SFAs can add to the risk of cardiovascular disease by increasing the 

low-density lipoprotein (LDL) cholesterol levels in the serum. A study has found stearic acid-

rich fat can raise the LDL/HDL (high-density lipoprotein) ratio [410]. These SFAs generated by 
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gut microbiota may contribute to lipid dyscrasia in obese and overweight cats [411]. One 

limitation of our results is that they were merely correlations, and we do not know whether the 

shifted metabolic pathways caused the obesity phenotype, or the obese environment drove the 

microbiome changes. Further studies are needed to disentangle the causal relationships.   

 

Significant changes in carbohydrate metabolism on the obese cat gut microbiota  

The metabolic pathway analyses suggested that increased carbohydrate metabolism in the gut 

microbiome may be associated with feline obesity. The carbohydrate biosynthesis pathway of 

certain sugar, including CMP-legionaminate, was significantly overrepresented in the obese cat 

gut microbiome. A human study contrasting long-term healthy vs. unhealthy diet discovered that 

increased degradation (or reduced biosynthesis) of CMP-legionaminate was associated with the 

healthy diet [412], which is consistent with the findings in this feline study. Compared to normal 

cats, the obese cat gut microbiome had a higher proportion of CAZymes. The elevated CAZymes 

were primarily driven by Bacteroidetes and Actinobacteria. When the individual CAZyme 

families were investigated, we discovered a significant decrease in the carbohydrate-binding 

module CBM50 and Glycosyltransferase GT25 in obese cat gut microbiota. GT25 belongs to 

GlycosylTransferase Family, usually acts as lipopolysaccharide β-1,4-galactosyltransferase, β-

1,3-glucosyltransferase, and β-1,2-glucosyltransferase. CBM50s, also known as LysM domains, 

mainly bind to the N-acetylglucosamine residues in bacterial peptidoglycans and in chitin. Three 

glycoside hydrolases, GH28, GH19, and GH116, were enriched in the obese cat gut microbiota. 

These changes in different CAZyme categories may define the microbiome functional 

differences in carbohydrate metabolism.  
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Conclusions 

Through comprehensive analyses of normal and obese cat gut microbiota using whole-genome 

shotgun metagenomic sequencing, we report the first reference contig assembly of the cat gut 

microbiome and its first microbial gene catalog. This contig assembly and gene catalog provide 

both the reference for cat metagenome study and the essential feline microbiome toolkit for 

comparative analysis across mammalian microbiomes. Obese cat gut microbiome has distinct 

patterns compared to cats with normal body weight, including significant reductions in microbial 

diversity and gene numbers, a dramatic shift in phylum-level composition from Firmicutes-

dominant to Bacteroides-dominant microbiome, and a number of abundant bacterial species with 

extremely high-fold changes (>0.5% in composition with >16-fold change). We identified the 

gut microbiome profiles associated with lean cat health, and a panel of marker species that 

indicate dysbiosis in obese cat microbiota, which may negatively impact feline health. The 

findings from this study will be critical to inform weight management strategies for obese cats, 

including evaluations of specific diet formulas that alter the microbiome composition, the 

development of prebiotics and probiotics that promote the increase of beneficial species and the 

depletion of obesity-associated species, as well as potential microbiome transplantation 

therapies. Bacteria identified in our study were also shown to affect the weight loss success in 

human patients, suggesting translational potential in human obesity.  

 

 

 

 

CHAPTER 4  
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Metagenomic analysis reveals associations between memory 

performance and Bifidobacterium pseudolongum abundance 

in canine gut microbiome 

 

4.1 Introduction 

Working memory in non-human animals is defined as short-term memory for stimuli within a 

specific experimental trial or session [413, 414]. Animal working memory lasts from a couple of 

seconds to a few minutes, with dogs displaying an estimated memory performance half-life of 71 

seconds [415]. A two-timepoint study of puppy (8-week) and adult dog (21-month) cognitive 

traits suggested that memory improved with age, but puppy memory performance did not predict 

the adult performance [416]. In addition, memory was less heritable (h2 = 0.17) compared to 

other cognitive traits such as inhibitory control in dogs (h2 = 0.70) [417]. Rearing environment, 

including diet and socialization, may affect canine memory development and performance. 

Training can improve odor memory in working dogs [418, 419]. Collectively, these reports 

suggest plasticity in canine memory performance, suggesting potential roles of nongenetic 

factors. 

 

In mammals, behavior-related traits are heavily influenced by the gut microbiota [420, 421] 

through the microbiota–gut–brain axis [422]. Gut microbiota can produce neurotransmitters, 

impact the central nervous system and affect human cognition and behavior [423], especially in 

stress-related psychiatric diseases, including depression, anxiety, and even autism [420, 424, 

425]. Recent metagenomic studies using 16S rDNA ampliconic sequencing in dogs showed 

correlation between aggression and microbiome composition in pit bull type rescue dogs [426] 



131 

 

and mixed breeds [427]. A recent study in pet dogs discovered that improved memory was 

associated with a lower abundance of Actinobacteria, whereas none of the lower taxonomy levels 

were significant [428]. The Kubinyi et al study provided some insights into the link between gut 

microbiome and memory. However, studies using client-owned dogs only detected phylum-level 

differences and suffer from confounding factors such as variable age, diet, breeds, housing, and 

body conditions, which substantially decreases the statistical power. 

 

To address this, we enrolled four litters of dogs born, reared, and trained at the Auburn 

University College of Veterinary Medicine’s Canine Performance Sciences Program (AUCVM-

CPS) colony, a research and breeding program for purpose-bred detection dogs, to study the 

relationship between the gut microbiome and memory performance across three timepoints. To 

obtain the best resolution of the gut microbiome, we performed whole-genome shotgun (WGS) 

metagenomic sequencing from fecal samples collected near the three timepoints of memory test. 

Our study represents the most comprehensive and systematic assessment of the microbiome 

correlates of canine memory performance.  

 

4.2 Materials and methods 

4.2.1 Study subject and ethics statement 

Dogs (11 females and 16 males) enrolled in this study were born, raised, and maintained at the 

Auburn University College of Veterinary Medicine Canine Performance Sciences program under 

the same diet, training, and medical care in a controlled environment (see Table 4.1). All 

experimental animal protocols were approved by the Auburn University Institutional Animal 

Care and Use Committee (approved protocol number PRN-2019-3564). 
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Table 4.1 Information of 27 dogs enrolled in this study. 

Dog ID Breed Sex 
Date of 

Birth 
litter 

Body 

condition 

score 

2019041 Labrador Retriever Male 3/14/2019 A 5 

2019042 Labrador Retriever Male 3/14/2019 A 5 

2019044 Labrador Retriever Female 3/14/2019 A 5 

2019045 Labrador Retriever Male 3/14/2019 A 5 

2019046 Labrador Retriever Female 3/14/2019 A 5 

2019048 Labrador Retriever Female 3/14/2019 A 5 

2019049 Labrador Retriever Male 3/27/2019 B 5 

2019050 Labrador Retriever Male 3/27/2019 B 5 

2019051 Labrador Retriever Female 3/27/2019 B 5 

2019053 Labrador Retriever x German Wire Haired Pointer Female 7/8/2019 C 5 

2019054 Labrador Retriever x German Wire Haired Pointer Female 7/8/2019 C 5 

2019055 Labrador Retriever x German Wire Haired Pointer Female 7/8/2019 C 5 

2019056 Labrador Retriever x German Wire Haired Pointer Female 7/8/2019 C 5 

2019057 Labrador Retriever x German Wire Haired Pointer Male 7/8/2019 C 5 

2019059 Labrador Retriever x German Wire Haired Pointer Male 7/8/2019 C 5 

2019060 Labrador Retriever x German Wire Haired Pointer Male 7/8/2019 C 5 

2019061 Labrador Retriever x German Wire Haired Pointer Male 7/8/2019 C 5 

2019062 Labrador Retriever x German Wire Haired Pointer Male 7/8/2019 C 5 

2019063 Labrador Retriever x German Wire Haired Pointer Male 7/8/2019 C 5 

2019064 Labrador Retriever x German Wire Haired Pointer Male 7/8/2019 C 5 

2019065 Labrador Retriever Male 7/24/2019 D 5 

2019066 Labrador Retriever Male 7/24/2019 D 5 

2019067 Labrador Retriever Male 7/24/2019 D 5 

2019068 Labrador Retriever Female 7/24/2019 D 5 

2019069 Labrador Retriever Female 7/24/2019 D 5 

2019070 Labrador Retriever Female 7/24/2019 D 5 

2019071 Labrador Retriever Male 7/24/2019 D 5 

 

4.2.2 Phenotypic measurement and analysis 

Working memory tests were performed three times for 27 dogs at the puppy stage (3.0–

3.5 months), juvenile stage (5.2–6.2 months), and young adult stage (12.8–16.0 months; 

see Table 4.2). 

Table 4.2 Short-term memory test scores for 27 dogs at the puppy stage (3.0~3.5 month), 

juvenile stage (5.2~6.2 month), and young adult stage (12.8~16.0 month). 
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Dog ID DOB Sex Litter Test Date 
# correct in 

3 trials, 10-s 

# correct in 3 

trials, 40-s 

# correct in all 6 

trials 

2019041 3/14/2019 M A 6/20/2019 1 1 2 

2019042 3/14/2019 M A 6/20/2019 1 0 1 

2019044 3/14/2019 F A 6/20/2019 1 2 3 

2019045 3/14/2019 M A 6/20/2019 2 0 2 

2019046 3/14/2019 F A 6/20/2019 0 2 2 

2019048 3/14/2019 F A 6/20/2019 2 2 4 

2019049 3/27/2019 M B 6/20/2019 3 3 6 

2019050 3/27/2019 M B 6/20/2019 2 2 4 

2019051 3/27/2019 F B 6/20/2019 0 2 2 

2019053 7/8/2019 F C 10/10/2019 2 1 3 

2019054 7/8/2019 F C 10/10/2019 2 3 5 

2019055 7/8/2019 F C 10/10/2019 2 1 3 

2019056 7/8/2019 F C 10/10/2019 1 2 3 

2019057 7/8/2019 M C 10/10/2019 3 2 5 

2019059 7/8/2019 M C 10/10/2019 2 1 3 

2019060 7/8/2019 M C 10/10/2019 3 2 5 

2019061 7/8/2019 M C 10/10/2019 3 1 4 

2019062 7/8/2019 M C 10/10/2019 2 2 4 

2019063 7/8/2019 M C 10/10/2019 2 1 3 

2019064 7/8/2019 M C 10/10/2019 2 3 5 

2019065 7/24/2019 M D 10/31/2019 2 1 3 

2019066 7/24/2019 M D 10/31/2019 3 2 5 

2019067 7/24/2019 M D 10/31/2019 2 2 4 

2019068 7/24/2019 F D 10/31/2019 1 2 3 

2019069 7/24/2019 F D 10/31/2019 3 3 6 

2019070 7/24/2019 F D 10/31/2019 2 2 4 

2019071 7/24/2019 M D 10/31/2019 3 2 5 
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Table 4.2 Continued.  

Dog ID DOB Sex Litter Test Date 
# correct in 

3 trials, 10-s 

# correct in 3 

trials, 40-s 

# correct in all 6 

trials 

2019041 3/14/2019 M A 8/20/2019 3 2 5 

2019042 3/14/2019 M A 8/20/2019 2 2 4 

2019044 3/14/2019 F A 8/20/2019 1 1 2 

2019045 3/14/2019 M A 8/20/2019 3 1 4 

2019046 3/14/2019 F A 8/20/2019 1 2 3 

2019048 3/14/2019 F A 8/20/2019 1 2 3 

2019049 3/27/2019 M B 8/20/2019 3 2 5 

2019050 3/27/2019 M B 8/20/2019 3 1 4 

2019051 3/27/2019 F B 8/20/2019 3 2 5 

2019053 7/8/2019 F C 12/5/2019 2 3 5 

2019054 7/8/2019 F C 12/5/2019 2 1 3 

2019055 7/8/2019 F C 12/5/2019 1 1 2 

2019056 7/8/2019 F C 12/5/2019 2 2 4 

2019057 7/8/2019 M C 12/5/2019 3 1 4 

2019059 7/8/2019 M C 12/5/2019 1 1 2 

2019060 7/8/2019 M C 12/5/2019 3 1 4 

2019061 7/8/2019 M C 12/5/2019 1 3 4 

2019062 7/8/2019 M C 12/5/2019 1 2 3 

2019063 7/8/2019 M C 12/5/2019 2 2 4 

2019064 7/8/2019 M C 12/5/2019 2 1 3 

2019065 7/24/2019 M D 1/14/2020 1 2 3 

2019066 7/24/2019 M D 1/14/2020 3 1 4 

2019067 7/24/2019 M D 1/14/2020 2 2 4 

2019068 7/24/2019 F D 1/14/2020 1 2 3 

2019069 7/24/2019 F D 1/14/2020 3 3 6 

2019070 7/24/2019 F D 1/14/2020 1 3 4 

2019071 7/24/2019 M D 1/14/2020 3 2 5 
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Table 4.2 Continued.  

Dog ID DOB Sex Litter Test Date 
# correct in 

3 trials, 10-s 

# correct in 3 

trials, 40-s 

# 

correct 

in all 6 

trials 

2019041 3/14/2019 M A 6/3/2020 3 2 5 

2019042 3/14/2019 M A 6/3/2020 2 2 4 

2019044 3/14/2019 F A 6/3/2020 3 3 6 

2019045 3/14/2019 M A 6/3/2020 2 2 4 

2019046 3/14/2019 F A 6/3/2020 2 1 3 

2019048 3/14/2019 F A 6/3/2020 1 0 1 

2019049 3/27/2019 M B 6/3/2020 3 3 6 

2019050 3/27/2019 M B 6/3/2020 3 3 6 

2019051 3/27/2019 F B 6/3/2020 2 3 5 

2019053 7/8/2019 F C 6/30/2020 2 1 3 

2019054 7/8/2019 F C 6/30/2020 2 3 5 

2019055 7/8/2019 F C N/A N/A N/A N/A 

2019056 7/8/2019 F C 6/30/2020 2 2 4 

2019057 7/8/2019 M C 6/30/2020 3 3 6 

2019059 7/8/2019 M C 6/30/2020 1 3 4 

2019060 7/8/2019 M C 6/30/2020 1 0 1 

2019061 7/8/2019 M C 6/30/2020 3 3 6 

2019062 7/8/2019 M C 6/30/2020 2 1 3 

2019063 7/8/2019 M C 6/30/2020 1 1 2 

2019064 7/24/2019 M C 6/30/2020 1 2 3 

2019065 7/24/2019 M D 8/4/2020 2 2 4 

2019066 7/24/2019 M D 8/4/2020 3 2 5 

2019067 7/24/2019 M D 8/4/2020 3 2 5 

2019068 7/24/2019 F D 8/4/2020 2 2 4 

2019069 7/24/2019 F D 8/4/2020 3 1 4 

2019070 7/24/2019 F D 8/4/2020 2 2 4 

2019071 3/14/2019 M D 8/4/2020 2 3 5 

 

 Dogs’ ability to locate a visually displaced reward (a ball) after delays of 10 or 40 s was 

measured using methods similar to Bray et al. [429], with the exception that non-mnemonic cues 

were controlled during the delay[430]. On each trial, the handler brought the dog to the starting 

position. The experimenter stood 2 m away, facing the dog, in the center of two opaque plastic 

cups (12 × 12 × 14 cm) placed upside down, 2 m apart (Figure 4.1A).  
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Figure 4.1 Memory performance in detection dogs at three developmental timepoints. (A) 

Schematic illustration of the working memory test. (B) Bar plots display the number of correct 

trials across 80 measurements. Dark blue bars represent correct trials after a 40-s delay interval, 

while light blue bars represent correct trials after a 10-s delay interval. Bars within gray-shaded 

boxes were selected for analysis among dogs that scored high and low on the memory test. (C) 

Violin plots illustrating microbial diversity (measured by Shannon index) for the high- and low-

performance groups at the species level. P-value assessed by Mann-Whitney U test. (D) 

Principal Coordinates Analysis (PCoA) plots of beta diversity between the high and low memory 

performance groups are generated based on the Bray-Curtis distance. P-value assessed by 

PERMANOVA test (Permutational multivariate analysis of variance). 

 

To begin the trial, the experimenter called the dog’s name, held up the reward, placed it 

underneath one of the two containers, and then stepped back and turned to face the back wall. 

Once the reward was hidden, the handler removed the dog from the room to the hallway for the 

duration of the delay. At the conclusion of the delay, the handler led the dog back to the starting 

position in the room and then released the dog, allowing 15 s to make a choice. Once the dog 
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chose a container (defined as the dog’s snout coming within 5 cm of the container), the 

experimenter lifted the cup to reveal its contents. After either making a choice or 15 s lapsed, the 

handler led the dog back to the starting position to begin the next trial. Six trials were conducted, 

with a 10-s delay on trials 1–3, and a 40-s delay on trials 4–6. The number of correct trials was 

recorded as the overall memory score (OMS). The position of the reward (left or right) was 

counterbalanced throughout the session. If a dog scored more than 50% correct, an odor control 

test was conducted at the conclusion of the session to ensure that dogs were not locating the 

reward using odor cues. The odor control test was identical to the test trials, except that dogs did 

not witness the baiting of the container (i.e., the container was pre-baited when the dog was out 

of the room). A camera (GoPro Hero Session) positioned in the corner of the room recorded all 

trials and was used for post-session inter-reliability coding. 

 

4.2.3 Statistical analysis 

The effects of age, litter, sex, and breed on OMS were assessed using the Mann-Whitney U test 

[431] and the Kruskal-Wallis test [432] in the R software [433]. A p-value of 0.05 represents a 

statistically significant difference. Mean and standard deviation (SD) were plotted 

in Figure 4.2A. We simulated the distribution of OMS under a null assumption that each dog 

makes a random choice during the memory tests, and whether the observed OMS distribution in 

this experience deviates from the null (no memory) was assessed by the non-parametric 

Kolmogorov-Smirnov test [434] implemented in R. 
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Figure 4.2 Distribution of overall memory score and effect of growth stage, sex, litter, and breed 

on the canine memory performance. (A) Barplot of the distribution of observed (orange) and 

simulated (blue) memory performance score measurements. The counts (y-axis) were plotted for 

each OMS category (x-axis). A simulation was performed in R, assuming a 50% chance of 

selecting the correct reward for each trial (N=1000 simulations). Non-parametric Kolmogorov-

Smirnov test was performed to compare the two distributions. (B) Barplot of memory 

performance score measurements conducted at T1 (puppy stage; Green), T2 (juvenile stage; 

Yellow), and T3 (young adult stage; Purple). Statistical significance was determined by the 

Mann-Whitney U test. (C) Barplot of memory performance scores across four litters and the two 

sexes. Both the Kruskal-Wallis test and pairwise Mann-Whitney U tests were performed to 

determine the statistical significance. (D) Barplot of memory performance scores between the 

two breeds enrolled in this study: purebred Labrador Retrievers and Labrador Retrievers crossed 

with German Wire-Haired Pointer. 

 

4.2.4 Fecal sample collection, microbial DNA extraction, and quality control 

Fecal samples were collected on the memory test day or a few days apart (N = 10 days average), 

by putting a sterile P1000 pipettor tip (upside-down) into the feces immediately after the dogs 
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defecated. The fecal samples were placed in sterile 1.5mL Eppendorf tubes and stored 

immediately in −80 C freezer. For microbial DNA purification, ∼200 mg fecal sample was 

homogenized by the PowerLyzer24 instrument (Qiagen, Germantown, MD, USA) in bead-

containing tubes provided in the AllPrep PowerFecal DNA/RNA kit (Qiagen, Germantown, MD, 

USA), and DNA samples were extracted according to the manufacturer’s protocol. DNA 

concentrations were measured on a Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA), and 

A260/A280 absorption ratios were assessed using a NanoDrop One C Microvolume 

Spectrophotometer (Thermo Scientific, Waltham, MA, USA). The size distribution was checked 

on TapeStation 4200 using Genomic ScreenTape (Agilent Technologies, Santa Clara, CA, USA). 

 

4.2.5 Whole-genome shotgun (WGS) metagenomic library preparation and sequencing 

To construct the WGS metagenomic library, 500 ng of extracted microbial DNA was used as 

input for each sample. The DNA samples were first fragmented to a target size of 550 bp using 

the M220 Focused-ultrasonicator (Covaris, Woburn, MA, USA). Subsequently, the sequencing 

library constructions were performed using NEBNext Ultra II DNA Library Prep Kit for 

Illumina (New England Biolabs, Ipswich, MA, USA), along with adaptors and primers provided 

by NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set 1 and Set 2). The final 

library concentrations were measured by Qubit 3.0 Fluorometer (Invitrogen, Carlsbad, CA, 

USA), and size distributions were checked using TapeStation 4200 System with the D1000 

ScreenTape (Agilent Technologies, Santa Clara, CA, USA). Finally, the pooled library was sent 

for sequencing on an Illumina NovaSeq6000 machine at 150-bp paired-end mode at Novogene 

(Novogene Corporation Inc., Sacramento, CA, USA) to achieve an average yield of 64 million 

reads per sample.  
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4.2.6 Metagenome data processing, alignment, and taxonomy annotation 

For the 27 dogs included in our study, we obtained a total of 1.8 billion, 1.8 billion, and 1.5 

billion Illumina reads, respectively, at the puppy stage, the juvenile stage, and the young adult 

stage (Table 4.3). The adapter reads and low-quality bases were trimmed by Trimmomatic 

version 0.36 [435]. The host-contaminated sequences were removed by mapping the trimmed 

reads to the dog reference genome (CanFam3.1) using Burrows-Wheeler Aligner (BWA) version 

0.7.17-r1188 [436]. The viral reads and rRNA sequences were deleted in the same way. The 

filtered reads were then aligned to the canine gut microbiome reference contigs (accession 

number JARCCX000000000), which were fully annotated using Kaiju version 1.7.3 [437] 

against the NCBI-NR database. The read counts were extracted using SAMtools version 1.6 

[438] and BEDTools version 2.30.0 [248]. Taxonomic abundances were normalized in a relative 

abundance format on a scale of 0 to 1 for subsequent metagenomic analysis. 

 

 

 

 

 

 

 

 

 

 



141 

 

Table 4.3 Whole-genome shotgun metagenomic sequencing yield and mapping percentages  

to the canine microbiome contigs. 

Dog ID 
Time 

point 

number of  

mapped reads 

after host removal 

% 

mapped 

reads 

Dog ID 
Time 

point 

number of  

mapped reads 

after host removal 

% 

mapped 

reads 

2019041 TP1 23,047,140 98.18% 2019057 TP2 45,885,206 99.30% 

2019042 TP1 108,270,774 98.76% 2019059 TP2 52,039,920 98.29% 

2019044 TP1 54,615,022 98.97% 2019060 TP2 59,515,922 99.29% 

2019045 TP1 76,179,112 98.88% 2019061 TP2 38,750,064 99.22% 

2019046 TP1 90,406,470 98.92% 2019062 TP2 60,527,504 98.45% 

2019048 TP1 74,005,086 99.28% 2019063 TP2 230,396,568 98.62% 

2019049 TP1 64,300,056 98.63% 2019064 TP2 53,049,088 97.29% 

2019050 TP1 44,443,476 97.42% 2019065 TP2 43,153,532 98.82% 

2019051 TP1 55,041,914 99.17% 2019066 TP2 37,567,050 98.34% 

2019053 TP1 103,611,990 95.99% 2019067 TP2 51,380,576 98.71% 

2019054 TP1 89,483,864 99.43% 2019068 TP2 50,239,984 98.45% 

2019055 TP1 90,826,474 99.21% 2019069 TP2 53,279,418 99.33% 

2019056 TP1 42,965,670 99.03% 2019070 TP2 45,835,280 97.96% 

2019057 TP1 55,546,368 99.39% 2019071 TP2 51,639,770 98.70% 

2019059 TP1 45,240,666 99.03% 2019041 TP3 84,509,216 97.63% 

2019060 TP1 35,049,778 99.25% 2019042 TP3 112,751,426 97.24% 

2019061 TP1 60,240,496 99.30% 2019044 TP3 49,109,446 98.89% 

2019062 TP1 60,329,292 98.45% 2019045 TP3 74,378,904 98.91% 

2019063 TP1 108,480,792 99.18% 2019046 TP3 64,156,198 99.29% 

2019064 TP1 49,544,058 97.52% 2019048 TP3 55,635,650 97.29% 

2019065 TP1 89,767,900 98.81% 2019049 TP3 68,661,036 99.28% 

2019066 TP1 53,032,176 98.25% 2019050 TP3 45,780,394 99.11% 

2019067 TP1 46,596,340 98.92% 2019051 TP3 63,370,802 99.02% 

2019068 TP1 59,119,436 98.67% 2019053 TP3 22,368,280 97.56% 

2019069 TP1 67,894,468 98.64% 2019054 TP3 56,830,994 99.18% 

2019070 TP1 61,070,672 98.08% 2019056 TP3 55,812,734 98.52% 

2019071 TP1 50,215,666 97.23% 2019057 TP3 66,104,436 99.38% 

2019041 TP2 110,261,654 97.54% 2019059 TP3 34,170,730 99.11% 

2019042 TP2 160,375,302 97.68% 2019060 TP3 51,526,808 99.07% 

2019044 TP2 46,318,488 99.18% 2019061 TP3 31,240,048 99.10% 

2019045 TP2 82,646,004 98.96% 2019062 TP3 51,181,700 98.09% 

2019046 TP2 91,791,700 99.16% 2019063 TP3 50,632,280 97.74% 

2019048 TP2 52,812,438 97.91% 2019064 TP3 57,738,412 97.16% 

2019049 TP2 56,585,706 99.29% 2019065 TP3 50,630,464 98.41% 

2019050 TP2 44,950,924 99.44% 2019066 TP3 43,250,144 97.67% 

2019051 TP2 42,287,624 99.21% 2019067 TP3 56,167,696 99.03% 

2019053 TP2 52,169,008 98.08% 2019068 TP3 59,033,762 98.10% 

2019054 TP2 38,860,196 95.06% 2019069 TP3 57,198,994 97.45% 

2019055 TP2 38,046,158 99.41% 2019070 TP3 50,792,036 97.92% 

2019056 TP2 67,026,560 98.05% 2019071 TP3 53,701,688 98.82% 
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4.2.7 Microbial diversity analysis 

R package vegan version 2.5.7 [250] was deployed to calculate the alpha- and beta-diversities of 

taxonomy profiles at the species level. Alpha-diversity of the microbial community was 

measured by Shannon index [251], while beta-diversity was assessed based on the Bray-Curtis 

dissimilarity [252]. Mann-Whitney U tests [431] were utilized to compare the alpha diversities of 

gut microbiomes from dogs of different litters, ages, sexes, and breeds. The cutoff for the null 

hypotheses was also set at 0.05. The beta diversities among gut microbiomes from different 

litter, age, sex, and breed groups were calculated using the Bray-Curtis distances. The beta 

diversity was analyzed by Principal Coordinate Analysis (PCoA) using Permutational 

multivariate analysis of variance (PERMANOVA) test [309], which is a permutation-based non-

parametric statistical test that tests the null hypothesis that there is no difference in distribution 

among groups of multiple variables. Function adonis2 from the R package vegan was used to 

perform the PERMANOVA tests.   

 

4.2.8 Identification of the most featured bacterial taxa between high and low memory 

performance groups 

LEfSe (Linear discriminant analysis Effect Size) version 1.1.2 was utilized to discover the most 

featured orders, families, genera, and species between the high and low memory performance 

groups. The analysis was conducted via Galaxy web application (http://huttenhower.org/galaxy) 

using default options (alpha = 0.05). Moreover, Mann-Whitney U tests [431] were performed on 

the taxonomy profiles of the high and low memory performance groups, to identify the species 

that exhibited significant differences in relative abundance. These biomarkers were displayed in 

http://huttenhower.org/galaxy
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heatmap plots, which were generated with R package pheatmap version 1.0.12.  

 

4.2.9 Correlation between bacterial taxa and overall memory score 

To estimate the correlation between the bacterial taxa and memory performance, we performed 

Spearman’s correlation test on the OMS and the abundance levels of the taxa across all 80 

measurements using the R software. 

 

4.2.10 Random forest regression analysis  

Random forest model [439] was used to predict the working memory score. The initial model 

included all microbiome composition, age, litter, sex, and breed as features. The importance 

score, which quantifies the impact of each feature on the accuracy of the model, was calculated. 

The most critical features with high importance scores were included in the final predictive 

model. R package Ranger version 0.15.1 was used to fit the random forest regression model, and 

ggplot2 version 3.4.2 was used to display the feature importance. The SHAP values [440] were 

then computed to interpret the predictive model. R package shapper, DALEX2, shapviz, and 

treeshap were used to compute and visualize the SHAP values of each feature. Positive SHAP 

value indicates a positive impact on the memory score while negative SHAP indicates a negative 

impact. The magnitude of SHAP represents the degree of impact of each feature on the model 

output, with a larger magnitude indicating a greater impact on the model output. 

 

4.2.11 Reconstruction of MAGs and qPCR validation of abundance differences for 

Bifidobacterium pseudolongum 
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To confirm the species identity of our findings and obtain bacterial genome sequences for 

validation, metaBAT2 version 2.15-2 [441] was used to bin metagenome-assembled genomes 

(MAGs) from the canine gut microbiome reference microbial contigs (accession number 

JARCCX000000000). The genome completeness and contamination were assessed using 

checkM version 1.2.2 [375]. To confirm the association between B. pseudolongum abundance 

and memory performance, we designed qPCR assay targeting the nusA gene, which is one of the 

universal single-copy gene families [442]. Prevotella copri, the most abundant species in the 

canine gut microbiome, was chosen as the control species because its abundance is the most 

stable across 80 metagenomes. The qPCR primers were synthesized by Eurofins (Eurofins 

Genomics Inc., Huntsville, AL, USA) after being designed in Oligo 7 software [377]. The 

forward primer sequence for P. copri is GCAACACGCTGAGTACATGA, and the reverse 

primer sequence is CCGTGAGGTAGACGAGAATG. The forward primer sequence for B. 

pseudolongum is AGCTTGGCCGCCAGACG, and the reverse primer sequence is 

TGATCGGACCTGGTGGTTCG. PCR product lengths are 200 bp and 244 bp, respectively, and 

they were confirmed by regular PCR, electrophoresis, and visualization on 2% agarose gel. For 

each qPCR reaction, 2 ng fecal DNA sample was mixed with PerfeCTa SYBR Green FastMix, 

Low ROX (Quantabio, Beverly, MA, USA), and nuclease-free water in a 96-well plate. The 

qPCR was carried out using a Bio-Rad C1000 Touch Thermal Cycler equipped with CFX96 

Real-Time PCR Detection Systems (Bio-Rad Laboratories, Hercules, CA, USA).  To quantify 

the expression level of B. pseudolongum in each sample, the Ct value difference between B. 

pseudolongum and P. copri was computed for relative quantification. Non-parametric Wilcoxon 

Rank Sum test and Spearman’s correlation test were performed on the log2 scale of the relative 

abundance to verify the WGS results. 
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4.2.12 Data and code availability 

The whole-genome shotgun metagenomic sequencing data are available at NCBI SRA (Short 

Read Archive) under accession number PRJNA936782. All code used in this study is available 

in GitHub (https://github.com/XuWangLab/2023_memory_and_canine_microbiome) or can be 

found on websites of corresponding software packages. 

 

4.3 Results 

4.3.1 Substantial variability was identified in canine memory performance at puppy, 

juvenile, and young adult stages  

Memory tests were conducted with 27 dogs born and raised in the AUCVM-CPS colony at three 

timepoints (Table 4.1). The number of correct trials was recorded as the overall memory score 

(OMS, ranging from 0 to 6; see Methods). The distribution of OMS significantly deviated from 

random guessing (p < 2.2 × 10−16, Kolmogorov-Smirnov test), confirming the presence of 

working memory (Figure 4.1A). The average OMS at the young adult stage (OMS mean ± SD = 

4.15 ± 1.26 and age mean ± SD = 13.23 ± 1.50 months) was higher than that at juvenile stage 

(OMS mean ± SD = 3.78 ± 0.82 and age mean ± SD = 5.26 ± 0.35 months) and puppy stages 

(OMS mean ± SD = 3.67 ± 0.83 and age mean ± SD = 3.17 ± 0.43 months).  The results showed 

an improvement in memory performance with age. However, the difference was not statistically 

significant when pairwise non-parametric tests were conducted (p > 0.05 for all comparisons, 

Mann-Whitney U tests), or when or the non-parametric group was performed (p = 0.08, Kruskal–

Wallis test; Figure 4.1B; Table 4.2). As expected, there was a slightly lower average number of 

correct trials (61.3%) associated with a longer (40 s) delay interval compared to the shorter (10 s) 

interval (67.5%), but the difference was not statistically significant (p > 0.05, Mann-Whitney U 

https://github.com/XuWangLab/2023_memory_and_canine_microbiome
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test and p = 0.16, Kruskal–Wallis test; Figure 4.1B). Memory scores did not differ significantly 

between sexes (Figure 4.1C) or breeds (Figure 4.1D). The Kruskal-Wallis test did not identify 

any significant differences among the litters (p > 0.05). When pairwise tests were performed 

between litters, litter B showed differences compared to litters A and C (nominal p < 0.05, 

Mann-Whitney U test; Figure 4.1C), but the significance did not withstand multiple testing 

corrections (adjusted p > 0.05 based on Bonferroni adjustment). All four litters were produced by 

genetically related breeders from the same extended pedigree, which partially controlled the 

genetic background. Therefore, substantial variations in memory scores cannot be explained by 

litter, sex, breed, or environmental effects. 

 

4.3.2 Microbial diversity in canine gut microbiome was not affected by sex or litter, and 

was only slightly lower in 3-month puppies 

To determine the influence of gut microbiome on canine memory performance, we performed 

WGS metagenomic sequencing in fecal samples collected at each memory test timepoint for all 

27 dogs (see Table 4.3 and Methods). The five most abundant bacterial phyla are Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria (Figure 4.3A), which is 

consistent with a previous report [392]. No between-sex differences in microbial alpha-diversity 

(Figure 4.3B; P=0.895, Mann-Whitney U test) or beta-diversity (Figure 4.3C; P=0.781, 

PERMANOVA test) were observed, suggesting lack of sexual dimorphism in the gut 

microbiome.  



147 

 

 

Figure 4.3 Effect of developmental stage, sex, litter, and breed on the canine gut microbiomes. 

(A) Barplots for phylum-level bacterial composition of 80 canine gut microbiomes ordered by 

timepoints (T1, puppy; T2, juvenile; T3, young adult stage) and litter identity (A, B, C, and D 

litters). (B) Boxplots for Shannon index of female and male microbiomes at the species level. 

(C) PCoA plot displaying the Bray-Curtis distances between the gut microbiomes of female and 

male canines at the species level. (D) Boxplots for Shannon index for the three stages at the 

species level. (E) PCoA plot showing the Bray-Curtis distances among gut microbiomes at three 

stages at the species level. (F) Boxplots for Shannon index for four litters at the species level. 

(G) Boxplots for Shannon index of gut microbiomes for six OMS (overall memory scores) 

groups measured by number of correct trials. (H) PCoA plot showing the Bray-Curtis distances 

among the canine gut microbiomes with different number of correct trials at the species level. 



148 

 

When microbial diversity was compared among the three stages, 3-month puppies had an 8.6% 

lower alpha-diversity compared to the juvenile stage (Figure 4.3D; P<0.001, Mann-Whitney U 

test) and difference in the beta diversity was significant among the stages (P=0.003, 

PERMANOVA test), but there was no separation on the Principal Coordinates Analysis (PCoA) 

plot with overlapped 95% confidence intervals (Figure 4.3E). The microbial alpha-diversity 

measured by Shannon index was not significantly different among four litters either (Figure 

4.3F; P>0.05, Mann-Whitney U test).  

 

4.3.3 Linear discriminant analysis revealed a single most featured bacterial species, 

Bifidobacterium pseudolongum, is associated with memory performance 

We investigated microbial diversity for measurement groups with the same overall memory 

scores. The only significant deviation we found was a slightly lower alpha-diversity in OMS1 

group (Figure 4.3G; P<0.05, Mann-Whitney U test), which could be due to a small number of 

measurements in this group (N=3; Figure 4.1B). Beta diversity analysis confirmed no separation 

based on OMS (Figure 4.3H; P=0.200, PERMANOVA test). To improve the power to detect 

microbiome differences, we defined a discovery set of eight dogs that had a high-OMS (OMS=6, 

high-OMS group) and eight dogs that has a low-OMS (OMS<=2, low-OMS group; Figure 4.1B). 

As expected, no significant differences were found in alpha diversity (P=0.328, Mann-Whitney 

U test; Figure 4.1C) or beta diversity (P=0.363, PERMANOVA test; Figure 4.1D). Collectively, 

these results suggest lack of any dysbiosis in the gut microbiome, as they are healthy dogs 

without any medical issues. With species-level resolution from the WGS metagenomic data, we 

performed linear discriminant analyses (LDA) between high-OMS and low-OMS groups on all 

bacterial taxonomical levels. At an LDA score cutoff of 3, the only significant species was 
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Bifidobacterium pseudolongum featured in high-OMS group, which drove the significance of its 

genus, family, and order (Figure 4.4A). When a less stringent LDA cutoff (LDA score<2) was 

used, B. criceti was also associated with high memory performance (Figure 4.4A), whereas 

Collinsella ihuae and the genus Holdemanella were negatively associated with memory 

performance (Figure 4.4A).  

 

 

Figure 4.4 Microbial composition differences in the canine gut microbiome between the high 

and low memory performance groups. (A) Linear Discriminant Analysis (LDA) plots show the 

most featured taxa in dogs that scored high and low on the memory test at the order (o_), family 

(f_), genus (g_), and species (s_) levels. (B and C) Violin plots illustrating the relative abundance 

of Bifidobacterium pseudolongum (B) and Bifidobacterium criceti (C) in dogs that scored high 

and low on the memory test. P-value assessed by Mann-Whitney U test. (D and E) Heatmaps 

illustrating the abundance of bacterial species enriched in dogs that scored high (D) and low (E) 

on the working memory test. 
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4.3.4 Other bacterial taxa differ in abundance between high-OMS and low-OMS groups in 

addition to B. pseudolongum 

To identify bacterial taxa with differential abundance between high-OMS and low-OMS groups, 

we performed non-parametric tests of relative abundance between groups. Among the significant 

taxa, B. pseudolongum had the highest abundance, accounting for 4.14% in high-OMS 

microbiome and 0.44% in low-OMS gut microbiome on average (Figure 4.4B; P=0.015, Mann-

Whitney U test). B. criceti, another bacterium positively associated with high memory 

performance in the LDA analysis (Figure 4.4A), was also significantly more abundant in the 

high-OMS group (Figure 4.4C; P=0.028, Mann-Whitney U test). A total of 45 species were 

significantly enriched in the high-OMS group (Figure 4.4B and 4.4D), and another 15 bacterial 

species were enriched in the low-OMS group (Figure 4.4C and 4.4E).  

 

4.3.5 Confirmation of memory performance associated microbial taxa using the 80 

metagenomes as a validation set 

For bacterial taxa showing abundance differences between high-OMS and low-OMS groups 

(Table 4.4), we quantified their relative abundance in the 80 metagenomes and correlated with 

OMS to determine significant correlations in the entire dataset. A total of 32 bacterial taxa were 

positively correlated with memory performance (false discovery rate FDR<0.1), and 8 taxa were 

negatively correlated (Figure 4.5A and Table 4.5).  
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Table 4.4 Bacterial taxa with significant abundance differences between high performers 

and low performers in short-term memory tests.  

Rank Name 
RA 

(OMS=6) 

RA 

(OMS<=2) 
P-value Log2 FC 

  

Order  Bifidobacteriales  5.3321%  1.0359%  0.0499  2.364   

Order  Chloroflexales  0.0013%  0.0002%  0.0070  2.462   

Order Pirellulales 0.0005% 0.0011% 0.0499 -1.315  

Family Bifidobacteriaceae 5.3320% 1.0359% 0.0499 2.364  

Genus Bifidobacterium 5.3217% 1.0314% 0.0499 2.367  

Genus Terrisporobacter 0.0253% 0.0126% 0.0148 1.002  

Genus Vagococcus 0.0037% 0.0015% 0.0207 1.261  

Genus Acetobacter 0.0029% 0.0010% 0.0499 1.596  

Genus Terribacillus 0.0029% 0.0003% 0.0148 3.161  

Genus Globicatella 0.0012% 0.0005% 0.0379 1.398  

Genus CandidatusLumbricidophila 0.0000% 0.0012% 0.0159 -9.603  

Genus Mailhella 0.0012% 0.0006% 0.0499 1.042  

Species  Eubacterium cellulosolvens 0.0034% 0.0009% 0.0379 1.885  

Species  Acetobacter sp. 46_36 0.0022% 0.0006% 0.0499 1.857  

Species  Acinetobacter sp. RIT592 0.0003% 0.0000% 0.0030 2.865  

Species  Alistipes sp. ZOR0009 0.0021% 0.0001% 0.0405 3.917  

Species  Bifidobacterium anseris 0.0005% 0.0000% 0.0165 5.488  

Species  Bifidobacterium castoris 0.0038% 0.0002% 0.0173 4.284  

Species  Bifidobacterium criceti 0.1898% 0.0057% 0.0281 5.063  

Species  Bifidobacterium dentium 0.0002% 0.0000% 0.0400 3.010  

Species  Bifidobacterium pseudolongum 4.1446% 0.4368% 0.0148 3.246  

Species  Bifidobacterium sp. GSD1FS 0.0409% 0.0042% 0.0281 3.270  

Species  Brevibacterium sp. JNUCC-42 0.0029% 0.0000% 0.0486 8.107  

Species  Gastranaerophilales bacterium HUM_17 0.0001% 0.0000% 0.0496 5.080  

Species  Candidatus Lumbricidophila eiseniae 0.0000% 0.0012% 0.0159 -9.603  

Species  Candidatus Yanofskybacteria bacterium 0.0001% 0.0000% 0.0207 1.359  

Species  Cellulosilyticum lentocellum 0.0010% 0.0000% 0.0047 4.514  

Species  Chitinophaga niastensis 0.0029% 0.0003% 0.0380 3.515  

Species  Clostridium celatum 0.0003% 0.0001% 0.0379 1.538  

Species  Clostridium isatidis 0.0035% 0.0001% 0.0310 4.589  

Species  Clostridium sp. Ade.TY 0.0001% 0.0000% 0.0129 3.262  

Species  Clostridium sp. D33t1_170424_F3 0.0000% 0.0001% 0.0499 -1.315  

Species  Clostridium sp. OM05-9 0.0001% 0.0002% 0.0281 -1.439  

Species  Clostridium sp. P21 0.0006% 0.0002% 0.0281 1.387  

Species  Clostridium sp. Sa3CUN1 0.0009% 0.0002% 0.0104 2.473  

Species  Clostridium tarantellae 0.0002% 0.0000% 0.0281 3.077  

Species  Cohnella thailandensis 0.0000% 0.0004% 0.0215 -7.424  

Species  Collinsella ihuae 0.0023% 0.0519% 0.0499 -4.475  

Species  Erysipelotrichaceae bacterium 21_3 0.0000% 0.0002% 0.0499 -2.051  

Species  Eubacterium sp. AF18-3 0.0006% 0.0013% 0.0499 -1.204  
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Table 4.4 Continued. 

Rank Name 
RA 

(OMS=6) 

RA 

(OMS<=2) 
P-value Log2 FC 

Species  Eubacterium sp. AM28-29 0.0123% 0.0258% 0.0379 -1.067 

Species  Eubacterium sp. TM05-53 0.0071% 0.0191% 0.0070 -1.419 

Species  Eubacterium xylanophilum 0.0117% 0.0006% 0.0281 4.271 

Species  Firmicutes bacterium CAG:95 0.0001% 0.0003% 0.0281 -1.974 

Species  Firmicutes bacterium HGW-Firmicutes-1 0.0001% 0.0001% 0.0499 1.285 

Species  Haemophilus haemoglobinophilus 0.0000% 0.0002% 0.0310 -4.478 

Species  Helicobacter pylori 0.0065% 0.0007% 0.0499 3.148 

Species  Lentilactobacillus otakiensis 0.0014% 0.0000% 0.0246 8.614 

Species  Leptospira noguchii 0.0001% 0.0000% 0.0240 5.033 

Species  Mailhella massiliensis 0.0012% 0.0006% 0.0499 1.042 

Species  Mariniphaga sediminis 0.0006% 0.0001% 0.0308 3.438 

Species  Methanobrevibacter cuticularis 0.0002% 0.0000% 0.0131 4.939 

Species  Methylicorpusculum oleiharenae 0.0001% 0.0000% 0.0355 4.263 

Species  Muribaculaceae bacterium Isolate-037 0.0007% 0.0000% 0.0400 6.528 

Species  Oenococcus oeni 0.0010% 0.0000% 0.0400 5.314 

Species  Parabacteroides sp. HGS0025 0.0001% 0.0002% 0.0486 -1.671 

Species  Pedobacter sp. ASV17 0.0000% 0.0002% 0.0496 -5.609 

Species  Pedobacter sp. eg 0.0000% 0.0003% 0.0070 -7.787 

Species  Peptoniphilus asaccharolyticus 0.0002% 0.0000% 0.0281 2.372 

Species  Peptoniphilus grossensis 0.0012% 0.0005% 0.0207 1.268 

Species  Prevotella sp. MA2016 0.0001% 0.0000% 0.0400 2.687 

Species  Proteobacteria bacterium 0.0013% 0.0004% 0.0070 1.781 

Species  Rhizobiaceae bacterium 0.0011% 0.0000% 0.0404 4.841 

Species  Romboutsia sp. 1001713B 0.0013% 0.0002% 0.0011 2.784 

Species  Ruminiclostridium cellulolyticum 0.0009% 0.0004% 0.0207 1.426 

Species  Saccharomonospora cyanea 0.0008% 0.0001% 0.0496 3.037 

Species  Siphoviridae sp. 0.0017% 0.0003% 0.0379 2.656 

Species  Streptococcus uberis 0.0015% 0.0033% 0.0499 -1.155 

Species  Streptomyces ambofaciens 0.0003% 0.0000% 0.0097 4.316 

Species  Thermodesulfitimonas autotrophica 0.0001% 0.0000% 0.0325 Inf 

Species  Thermoprotei archaeon 0.0011% 0.0001% 0.0308 3.697 

Species  Wenzhouxiangella sp. XN201 0.0001% 0.0000% 0.0298 5.999 
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Table 4.5 Bacterial taxa with significant positive or negative correlation between relative 

abundance and memory performance.  

Rank Name rho P-value FDR RA 

Order Bifidobacteriales 0.2978 0.0073 0.0282 3.8114% 

Order Chloroflexales* 0.3512 0.0014 0.0253 0.0007% 

Family Bifidobacteriaceae 0.2978 0.0073 0.0282 3.8114% 

Genus Bifidobacterium 0.2986 0.0071 0.0282 3.7999% 

Genus Candidatus Lumbricidophila -0.3094 0.0052 0.0282 0.0002% 

Genus Globicatella* 0.2911 0.0088 0.0295 0.0010% 

Genus Vagococcus* 0.2952 0.0078 0.0282 0.0031% 

Species Acinetobacter sp. RIT592* 0.2241 0.0457 0.0823  0.0001% 

Species Bifidobacterium anseris* 0.2346 0.0362 0.0686 0.0006% 

Species Bifidobacterium castoris* 0.3316 0.0027 0.0282 0.0019% 

Species Bifidobacterium criceti* 0.2228 0.0470 0.0825 0.1130% 

Species Bifidobacterium dentium* 0.3065 0.0057 0.0282 0.0001% 

Species Bifidobacterium pseudolongum* 0.3525 0.0013 0.0253 2.6134% 

Species Bifidobacterium sp. GSD1FS* 0.3021 0.0065 0.0282 0.0478% 

Species Brevibacterium sp. JNUCC-42* 0.3011 0.0066 0.0282 0.0005% 

Species Gastranaerophilales bacterium HUM_17* 0.2849 0.0104 0.0302 0.0000% 

Species Candidatus Lumbricidophila eiseniae* -0.3094 0.0052 0.0282 0.0002% 

Species Cellulosilyticum lentocellum* 0.2329 0.0376 0.0695 0.0007% 

Species Clostridium isatidis* 0.2525 0.0239 0.0491 0.0017% 

Species Clostridium sp. D33t1_170424_F3* -0.2887 0.0094 0.0295 0.0001% 

Species Clostridium sp. P21* 0.3069 0.0056 0.0282 0.0007% 

Species Clostridium sp. Sa3CUN1* 0.3363 0.0023 0.0282 0.0008% 

Species Cohnella thailandensis* -0.2634 0.0182 0.0398 0.0001% 

Species Eubacterium cellulosolvens* 0.2899 0.0091 0.0295 0.0023% 

Species Eubacterium xylanophilum* 0.3204 0.0038 0.0282 0.0057% 

Species Firmicutes bacterium HGW-Firmicutes-1* 0.2805 0.0117 0.0302 0.0001% 

Species Haemophilus haemoglobinophilus* -0.2688 0.0159 0.0382 0.0001% 

Species Lentilactobacillus otakiensis* 0.3023 0.0064 0.0282 0.0002% 

Species Leptospira noguchii* 0.2654 0.0173 0.0398 0.0000% 

Species Mariniphaga sediminis* 0.2512 0.0246 0.0492 0.0003% 

Species Methanobrevibacter cuticularis* 0.2840 0.0107 0.0302 0.0001% 

Species Muribaculaceae bacterium Isolate-037 (Harlan) * 0.2742 0.0138 0.0343 0.0006% 

Species Pedobacter sp. ASV17* -0.2966 0.0075 0.0282 0.0000% 

Species Pedobacter sp. eg* -0.3080 0.0054 0.0282 0.0001% 

Species Peptoniphilus grossensis* 0.2645 0.0178 0.0398 0.0012% 

Species Ruminiclostridium cellulolyticum* 0.2816 0.0114 0.0302 0.0006% 

Species Siphoviridae sp.* 0.2808 0.0116 0.0302 0.0009% 

Species Streptococcus uberis* -0.2387 0.0330 0.0642 0.0021% 

Species Streptomyces ambofaciens* 0.4091 0.0002 0.0119 0.0001% 

Species Thermoprotei archaeon* 0.2600 0.0199 0.0420 0.0003% 
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Among the 32 taxa associated with improved memory performance, nine were related to 

Bifidobacterium, including six species (B. pseudolongum, B. criceti, B. anseris, B. castoris, B. 

dentium, and B. sp. GSD1FS), Bifidobacterium genus, Bifidobacteriaceae family, and 

Bifidobacteriales order (Figure 4.5A). B. pseudolongum was the most abundant species in its 

genus, and it drove the significant at genus, family, and order levels (Figure 4.5B). In contrast, 

the second most abundant Bifidobacterium species, B. animalis, did not show significant 

differences between high-OMS and low-OMS groups (Figure 4.5B). The Spearman’s correlation 

coefficient (ρ) between B. pseudolongum and OMS was 0.352 (P=0.001; Figure 4.5C), which 

was the second highest among all significant taxa (Figure 4.5A). There were fewer taxa 

negatively correlated with OMS, including Pedobacter sp. ASV17 (Figure 4.5D and Figure 4.6).  



155 

 

 

Figure 4.5 Correlation between memory performance and bacterial taxa abundance in 80 

metagenomes. (A) Significant positive and negative correlations were found between the overall 

memory score (OMS) and taxa abundance (p < 0.05, FDR <0.10, Spearman's rank correlation 

test). The color of the dots represents the value of the Spearman correlation coefficient, and the 

dot is proportional to the relative abundance. (B) Alluvial plots demonstrate a significant 

increase in Bifidobacterium pseudolongum and Bifidobacterium criceti in the high-OMS group. 

No significant differences were observed among the other Bifidobacterium species. 

(C and D) Scatterplots between OMS and the relative abundance of B. pseudolongum 

(C) and Pedobacter sp. ASV17 (D). (E–G) Plots of relative bacterial abundance at 21 high-OMS 

and low-OMS pairs of time points in the same dog for qPCR (E) and whole-genome sequencing 

(WGS) metagenomic quantification (F) of B. pseudolongum and WGS metagenomic 

quantification of the control species Prevotella copri (G). P-value assessed by Wilcoxon signed 

rank test. 
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Figure 4.6 Correlation between memory performance and bacterial species abundance in the 

canine gut microbiome. Correlation plots and violin plots displaying the relationship between 

bacterial relative abundance (log2 scale) and the memory performance scores for Streptomyces 

ambofaciens (A), Vagococcus (B), Pedobacter sp. ASV17 (C), and Haemophilus 

haemoglobinophilus (D). 

 

 

4.3.6 Quantitative polymerase chain reaction validation confirmed that changes in 

Bifidobacterium pseudolongum abundance is associated with differences in working 

memory performance in the same dogs 

B. pseudolongum was associated with improved canine memory function in LDA analysis, 

differential abundance analysis, and correlation analysis. It is also abundant in the canine 

microbiome. To validate the intriguing finding using an independent technique, we performed 
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qPCR quantification of the nusA gene in B. pseudolongum, using Prevotella copri as a positive 

control, whose abundance is stable across all samples (see Methods).  

 

Figure 4.7 Quantitative PCR validation of Bifidobacterium pseudolongum across all 80 

microbiome samples. (A) Scatterplot of log2 relative abundances of Bifidobacterium 

pseudolongum from WGS metagenomic data and its log2 fold changes compared to control 

species Prevotella copri through quantitative PCR (qPCR). A fitted line based on linear 

regression model is shown in blue. （Spearman’s correlation coefficient ρ=0.732, P<0.0001). (B) 

Scatterplot of overall memory test scores (OMS) measured by number of correct trials and the 

Bifidobacterium pseudolongum relative expression volume from qPCR results. A fitted line 

based on linear regression model is shown in blue. (Spearman’s correlation coefficient ρ=0.335, 

P=0.0050). 

 

We observed high concordance between the qPCR measurements and the WGS metagenomic 

sequencing results (ρ=0.73, P<0.0001; Figure 4.7A), confirming high reproducibility and the 

significant positive correlation between B. pseudolongum and OMS (ρ=0.34, P=0.005; Figure 

4.7B). If the presence of B. pseudolongum were causal to the improved OMS, for the same dog 

with variable OMS, we expect to observe significant changes in B. pseudolongum abundance 

across different timepoints. A total of 21 discordant pairs (OMS>3 and OMS<=3) were 

identified, and the B. pseudolongum abundance was significantly higher at the high OMS 

timepoint (mean=4.12%) than the low OMS timepoint (mean=0.55%; P<0.05, Wilcoxon signed 
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rank test), which implied a potential causal relationship between B. pseudolongum and working 

memory performance (Figure 4.5E-G).  

 

4.3.7 Predictability of microbiome composition for working memory performance using 

random forest regression 

A predictive model has been developed to predict the working memory performance with 

microbiome composition serving as features in a random forest regression model. The initial 

model includes 36 bacterial taxa showing significant correlation with memory scores (Table 4.5), 

as well as additional variables such as age, sex, litter, and breed. A total of 17 taxa had high 

discriminatory power (important value greater than 3; Figure 4.8A), and they were included in 

the final predictive model. Age, litter, sex, and breed were found to have negligible 

discriminatory capability and, therefore, not incorporated into the model (Figure 4.8A). The 

predicted memory score was significantly correlated with the observed memory score (ρ=0.472, 

P<0.0001; Figure 4.8B). SHAP values (SHapley Additive exPlanations) were then employed to 

interpret the predictive model (Figure 4.8C). Among the final list of predictive taxa, higher OMS 

were associated with increased abundance of Bifidobacterium pseudolongum (Figure 4.8D) and 

decreased abundance of Pedobacter sp. ASV17 (Figure 4.8E).  
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Figure 4.8 Variable importance and predictability modeled by random forest regression using 31 

bacterial taxa with significant correlation with memory performance. (A) Feature importance 

scores computed using random forest. (B) Scatterplot of the observed memory score (x-axis) and 

predicted memory scores (y axis) using 17 taxa in the random forest regression. The fitted line is 

plotted in blue, with the confidence interval in gray. P-value assessed by Spearman's rank 

correlation test. (C) The impact of bacterial taxa (importance value >3) on the overall memory 

score is summarized by SHAP values. Color represents the relative abundance of bacterial taxa. 

(D and E) Scatterplot of SHAP values and the relative abundance of 

B. pseudolongum (D) and Pedobacter sp. ASV17 (E). The dots were color-coded based on the 

overall memory score. 
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4.4 Discussion and conclusion 

Domestic dogs share common social and environmental evolutionary history with humans and 

possess social and cognitive skills that are functional analogous to humans, making them an ideal 

model for translational and comparative research in cognitive neuroscience and behavioral 

genetics [443, 444]. In addition, these skills are particularly important for purpose-bred working 

dogs (e.g., detection dogs) to be successful in their work [445, 446]. However, cognitive and 

behavioral studies are challenging because these traits are heavily affected by the environment, 

experimenter, and other confounding factors. To address this, we measured working memory 

performance in 27 candidate detection dogs reared and maintained in controlled research setting 

and discovered significant variability in memory performance, even in the same dog across 

different timepoints. We concluded that the majority of phenotypic variation in canine memory 

capability cannot be explained by age, sex, or developmental stage, reflecting truly functional 

plasticity.  

 

Animal gut microbiome is known to modulate the brain function and cognitive abilities through 

the microbiota–gut–brain axis [422]. However, gut microbiome composition is affected by diet, 

age, household environment, and host genetics. Many previous studies suffered from insufficient 

resolution to identify microbial species differences. Using fecal samples collected from age 

matched detection dog candidates in the same extended pedigree under the same diet, we 

performed WGS metagenomic sequencing to quantify the microbial abundance and maximized 

the statistical power to detect microbiome correlates of canine memory performance.  

 

The phylum of Actinobacteria was shown to be negatively associated with canine memory 
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performance using dogs (N=29) with a large age range (3~13 years old, mean age 9.7) from 

diverse households and diverse breed backgrounds [428]. Since no specific bacterial species 

were significant in Kubnyi et al., it was unclear which microbes were driving the difference, and 

if the findings in phylum abundance variation were due to differences in age, sex, diet, breed, or 

other confounding factors. In our study, we focused on young dogs, and we did not find any 

significant correlation between memory performance and microbial diversity or phylum level 

composition. This lack of significant shifts in overall diversity and phylum abundance indicates 

that memory performance plasticity in young dogs is not caused by dysbiosis in the gut 

microbiome. This is expected because all enrolled animals in this study are healthy dogs. Thanks 

to the species resolution of WGS metagenomic sequencing and the experimental design that 

controls confounding factors, we were able to identify 41 microbial taxa that are significantly 

correlated with canine memory performance, revealing the microbiome influence of canine 

cognition at microbial species level for the first time. 

 

In specialized settings, such as military working dog (MWD) populations, there are inherent 

challenges in controlling confounding factors, such as sex, age, body condition scores (BCS), 

breeds, and GI issues. A larger sample size is required to achieve meaningful microbiome 

discovery. A recent study conducted by Craddock et al. [447], which involved 134 MWDs 

spanning five different breeds, successfully revealed correlations between microbiome 

composition and behavioral attributes, including aggression, motivation, obedience, sociability, 

and BCS. Notably, these statistical associations were predominantly identified at the genus level 

or within species groups that were linked to specific metabolic pathways. Enhancing the 

metagenomic sequencing yield (∼10 million reads per sample in the study by Craddock et al.) or 
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increasing the sample size could potentially enhance the ability to identify precise microbiome 

correlations at the species level. 

 

Among the microbiome correlates of memory performance that we discovered, the single most 

striking findings is Bifidobacterium pseudolongum. This particular species stands out as the only 

significant taxon identified through the linear discriminant analysis, which couples statistical 

significance with effect relevance. The positive correlation between the relative abundance 

of B. pseudolongum and improved memory score was subsequently validated using qPCR 

assays. As a well-known genus of probiotics, Bifidobacterium produces lactic and acetic acids 

through fermentation, providing benefit to host gut health [403]. B. pseudolongum is the 

immediate outgroup of the B. animalis clade [448, 449]. B. animalis did not show abundance 

differences between high-OMS and low-OMS groups. This implies a species-specific 

phenomenon, rather than an overarching genus effect.  Intriguingly, in a previous 

study, Bifidobacterium longum 1714, a remotely related Bifidobacterium species, was linked to 

reduced stress and enhanced memory in human subjects [450]. Further investigations suggest 

that the reduction of social stress is achieved by neural modulation[451], paving the way for the 

potential application of psychobiotics in enhancing human memory and ameliorating 

stress[452]. Nevertheless, in the canine microbiome, B. longum manifested a considerably lower 

mean abundance (0.02%) than B. pseudolongum (2.14%) and was not associated with working 

memory (p = 0.17) in our study. This distinction is not unexpected, given that the physiology is 

different between humans and canines. Therefore, findings centered on humans may not be 

directly to the canine microbiome. 
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Since dogs were domesticated ∼15,000 years ago, they have become valuable partners working 

with humans in hunting, guarding, herding, guiding, and odor detection. Beyond their working 

capabilities, dogs provide humans with loyal companionship. Improving memory abilities in 

puppies will help them learn better and quicker, which can significantly enhance dog 

socialization and training [445, 453]. In senior dogs, memory loss is commonly observed as part 

of the canine cognitive dysfunction (CCD) syndrome, which is a progressive neurological and 

behavioral disease associated with aging [454, 455]. Improving memory function will help both 

puppy development and longevity in dogs. Our results will inform the development of probiotics 

and fecal microbiota transplantation (FMT) techniques to improve canine memory and cognition 

during puppy development. Whether our findings will apply in older dogs remain unclear and 

future studies are needed to explore it. 
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CHAPTER 5  

Overall Conclusion and Future Direction 

This dissertation provides a comprehensive examination of the gut microbiota in obese cats and 

its potential connections to memory performance in dogs, utilizing advanced metagenomic 

sequencing techniques. The results reveal key insights into the gut microbiome characteristics of 

obese cats, highlighting a significant reduction in microbial diversity and identifying specific 

microbial species that can be used as potential indicators of obesity. In addition, the study 

establishes a novel link between gut microbiota composition and memory performance in dogs, 

suggesting that specific bacterial taxa may play a role in memory performance. 

 

To optimize the current fecal sampling methods for cats, we evaluated the impact of mineral oil 

lubrication during stool sample collection and compared the efficacy of two primary collection 

methods: using a fecal loop versus a litter box. We found that using mineral oil as a lubricant 

during fecal sample collection from cats does not affect the quality of the samples for gut 

microbiome analysis. We compared samples collected with and without lubrication and found no 

significant differences in microbial DNA yield, metagenomic sequencing yield, host 

contamination, or microbial diversity. This suggests that mineral oil can be used to improve 

animal welfare by reducing discomfort during sample collection without compromising the 

quality of the samples. We also found that while the fecal loop method resulted in a lower yield 

of microbial DNA, there were no significant differences in host contamination, virus 

contamination, microbial diversity, or relative taxonomy abundance between the two methods. 

Both methods were deemed reliable for microbiome research. The litter box method being less 
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invasive and more suitable for large-scale studies, while the fecal loop method provides a precise 

and sanitary collection technique, minimizing the risk of cross-contamination and exposure of 

anaerobes to oxygen. Optimizing fecal sampling methods for cats is important for advancing 

veterinary microbiome research, as it enhances the accuracy and reproducibility of microbiome 

data. It is critical for drawing reliable conclusions about feline health. These studies provide a 

foundation for standardized protocols, allowing researchers to better investigate the gut 

microbiota’s role in feline disease, health, and overall physiology. Improved sampling methods 

contribute to a more consistent microbiome profile. It is essential for the development of 

microbiome-based health strategies in veterinary medicine. 

 

To better characterize the gut microbiome of obese cats, we performed metagenomic analyses to 

assess microbial diversity, composition, and functional potential. The study concluded that obese 

cats have significantly decreased microbial diversity in their gut microbiota, indicating potential 

dysbiosis. A panel of seven significantly altered, highly abundant bacterial species was 

identified, which can serve as microbiome indicators of obesity. These findings provide new 

insights into the composition, abundance, and functional capacities of the obese cat microbiome, 

laying the groundwork for targeted microbiome interventions. This research could inform the 

development of innovative weight management and health strategies tailored for obese cats, 

potentially improving their quality of life and addressing obesity-related health issues more 

effectively.  

 

To establish a link between memory performance and the canine gut microbiome, we conducted 

a metagenomic analysis focusing on identifying specific microbial species associated with 
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memory performance in dogs. The study concluded that there is a significant correlation between 

the abundance of Bifidobacterium pseudolongum in the canine gut microbiome and enhanced 

memory performance in dogs. This research highlights the critical role of non-genetic factors, 

particularly the gut microbiome, in influencing memory. These findings open promising avenues 

for the development of psychobiotics designed to improve memory and learning in dogs, which 

may have broader implications for understanding and enhancing cognitive health through 

microbiota-targeted therapies.  

 

There are several avenues for future research to understand the role of the gut microbiome in 

feline obesity and canine cognitive function. One possible direction is to explore the mechanisms 

by which specific bacterial species affect obesity in cats and memory ability in dogs. Developing 

microbiome modulation strategies, such as probiotics, aimed at weight loss and cognitive 

enhancement could be a potential focus. Additionally, studying the effects of dietary 

interventions or prebiotics/probiotics on the gut microbiome and related health outcomes would 

provide valuable insights. Longitudinal studies can assess the long-term effects of microbiome 

alterations on obesity management in cats and memory and learning in dogs. Furthermore, given 

the similarities in microbiome changes observed across species, these studies highlight the 

potential to translate these findings to other animal species and even to humans. 
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