This Is AuburnElectronic Theses and Dissertations

Show simple item record

Iteration Methods for Approximation of Solutions of Nonlinear Equations in Banach Spaces


Metadata FieldValueLanguage
dc.contributor.advisorde Souza, Geraldo Soares
dc.contributor.advisorAbebe, Asheberen_US
dc.contributor.advisorGovil, Narendraen_US
dc.contributor.advisorHan, Yonshengen_US
dc.contributor.authorChidume, Chukwudien_US
dc.date.accessioned2008-09-09T22:37:30Z
dc.date.available2008-09-09T22:37:30Z
dc.date.issued2008-08-15en_US
dc.identifier.urihttp://hdl.handle.net/10415/1220
dc.description.abstractThe objective in this manuscript is to study some iterative methods used to approximate solutions of nonlinear equations in Banach Spaces. In particular, we study a Halperntype iterative scheme in relation to nonexpansive and asymptotically nonexpansive mappings and prove convergence theorems in both of these cases. We also study a hybrid steepest descent iterative scheme in relation to the variational inequality problem, and using this process, we prove convergence theorems for the approximation of the solution of the variational inequality problem in certain Banach spaces, in particular for Lp spaces.en_US
dc.language.isoen_USen_US
dc.subjectMathematics and Statisticsen_US
dc.titleIteration Methods for Approximation of Solutions of Nonlinear Equations in Banach Spacesen_US
dc.typeDissertationen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record