Show simple item record

dc.contributor.advisorKuperberg, Krystyna
dc.contributor.advisorMinc, Piotren_US
dc.contributor.advisorGruenhage, Garyen_US
dc.contributor.authorGammon, Kevinen_US
dc.date.accessioned2009-02-23T15:55:27Z
dc.date.available2009-02-23T15:55:27Z
dc.date.issued2008-12-15en_US
dc.identifier.urihttp://hdl.handle.net/10415/1485
dc.description.abstractThe Cartesian product of two spaces is called factorwise rigid if any self homeomorphism is a product homeomorphism. In 1983, D. Bellamy and J. Lysko proved that the Cartesian product of two pseudo-arcs is factorwise rigid. This argument relies on the chainability of the pseudo-arc and therefore does not easily generalize to the products involving pseudo-circles. In this paper the author proves that the Cartesian product of the pseudo-arc and pseudo-circle is factorwise rigid.en_US
dc.language.isoen_USen_US
dc.subjectMathematics and Statisticsen_US
dc.titleFactorwise Rigidity Involving Hereditarily Indecomposable Spacesen_US
dc.typeDissertationen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US


Files in this item

Show simple item record