This Is AuburnElectronic Theses and Dissertations

Show simple item record

The QR Algorithm for Eigenvalue Estimation: Theory and Experiments


Metadata FieldValueLanguage
dc.contributor.advisorPate, Thomas
dc.contributor.advisorTam, Tin Yauen_US
dc.contributor.advisorHolmes, John P.en_US
dc.contributor.authorFeng, Weien_US
dc.date.accessioned2009-02-23T15:55:29Z
dc.date.available2009-02-23T15:55:29Z
dc.date.issued2008-12-15en_US
dc.identifier.urihttp://hdl.handle.net/10415/1488
dc.description.abstractIn this thesis, we explore one of the most important numerical algorithms ever invented, the QR algorithm for computing matrix eigenvalues. First, we describe out notations and mathematical symbols used throughout the thesis in Chapter 1. Then we lay the ground work by stating and proving some basic lemmas in Chapter 2. Then in Chapter 3, we prove the convergence of the QR algorithm under the assumption of distinct magnitudes for all eigenvalues. This constraint is relaxed in Chapter 4, where we prove the convergence of the QR algorithm under the assumption of possibly equal magnitude eigenvalues. Finally, in Chapter 5, we present some numerical experiments to validate the conclusions drawn in this thesis.en_US
dc.language.isoen_USen_US
dc.subjectMathematics and Statisticsen_US
dc.titleThe QR Algorithm for Eigenvalue Estimation: Theory and Experimentsen_US
dc.typeThesisen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record