Show simple item record

dc.contributor.advisorTam, Tin-Yau
dc.contributor.authorThompson, Mary Clair
dc.date.accessioned2010-04-09T18:51:07Z
dc.date.available2010-04-09T18:51:07Z
dc.date.issued2010-04-09T18:51:07Z
dc.identifier.urihttp://hdl.handle.net/10415/2098
dc.description.abstractWe study the conjugacy theorems of Cartan subalgebras and Borel subalgebras of general Lie algebras. We present a history of the problem, along with two proofs of the theorems which stay completely within the realm of Lie algebras. The first is a reworking by Humphreys of an earlier proof, relying upon the ideas of Borel subalgebras and using double induction. The second proof is a newer proof presented by Michael which substantially simplifies the theory.en
dc.rightsEMBARGO_NOT_AUBURNen
dc.subjectMathematics and Statisticsen
dc.titleOn the Conjugacy Theorems of Cartan and Borel Subalgebrasen
dc.typethesisen
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US


Files in this item

Show simple item record