This Is AuburnElectronic Theses and Dissertations

Show simple item record

Development of Phage/Antibody Immobilized Magnetostrictive Biosensors


Metadata FieldValueLanguage
dc.contributor.advisorCheng, Zhongyang
dc.contributor.authorFu, Liling
dc.date.accessioned2010-05-03T16:22:36Z
dc.date.available2010-05-03T16:22:36Z
dc.date.issued2010-05-03T16:22:36Z
dc.identifier.urihttp://hdl.handle.net/10415/2134
dc.description.abstractThere is an urgent need for biosensors that are able to detect and quantify the presence of a small amount of pathogens in a real-time manner accurately and quickly to guide prevention efforts and assay food and water quality. Acoustic wave (AW) devices, whose performance is defined by mass sensitivity (Sm) and quality factor (Q value), have been extensively studied as high performance biosensor platforms. However, current AW devices still face some challenges such as the difficulty to be employed in liquid and low Q value in practical applications. The objective of this research is to develop magnetostrictive sensors which include milli/microcantilever type (MSMC) and particle type (MSP). Compared to other AW devices, MSMC exhibits the following advantages: 1) wireless/remote driving and sensing; 2) easy to fabricate; 3) works well in liquid; 4) exhibits a high Q value (> 500 in air). The fundamental study of the damping effect on MSMCs from the surrounding media including air and liquids were conducted to improve the Q value of MSMCs. The experiment results show that the Q value is dependent on the properties of surrounding media (e.g. viscosity, density), the geometry of the MSMCs, and the harmonic mode on the resonance behavior of MSMCs, etc. The phage-coated MSMC has high specificity and sensitivity even while used in water with a low concentration of targeted bacteria. Two currently developed phages, JRB7 and E2, respectively respond to Bacillus anthracis spores and Salmonella typhimurium, were employed as bio-recognition elements in this research. The phage-immobilized MSMC biosensors exhibited high performance and detection of limit was 5 x 104 cfu/ml for the MSMC in size of 1.4 x 0.8 x 0.035 mm. The MSMC-based biosensors were indicated as a very potential method for in-situ monitoring of the biological quality in water. The MSP combine antibody was used to detect Staphylococcus aureus in this experiment. The interface between MSPs and antibody was modified using Traut’s Reagent by introducing the sulfhydryl group. To improve the mass sensitivity of magnetostrictive biosensors, several blocking agents were used to resist the nonspecific adsorption of S. aureus on the surface of the magnetostrictive biosensors and the blocking effects were studied by using ELISA and SEM. The results showed casein was one of the best blocking agents to resist the nonspecific binding in this experiment. Casein blocked antibody immobilized MSP biosensors exhibited high sensitivity and the limit of detection is 102 cfu/ml.en
dc.rightsEMBARGO_NOT_AUBURNen
dc.subjectMaterials Engineeringen
dc.titleDevelopment of Phage/Antibody Immobilized Magnetostrictive Biosensorsen
dc.typedissertationen
dc.embargo.lengthMONTHS_WITHHELD:6en_US
dc.embargo.statusEMBARGOEDen_US
dc.embargo.enddate2010-11-03en_US

Files in this item

Show simple item record