Show simple item record

dc.contributor.advisorJenda, Overtoun
dc.contributor.advisorJohnson, Peteren_US
dc.contributor.advisorHoffman, Deanen_US
dc.contributor.advisorRodger, Chrisen_US
dc.contributor.authorTrimm, Janeten_US
dc.date.accessioned2008-09-09T21:15:54Z
dc.date.available2008-09-09T21:15:54Z
dc.date.issued2006-08-15en_US
dc.identifier.urihttp://hdl.handle.net/10415/273
dc.description.abstractGiven a set of relatively prime positive integers $\{a_1,a_2,\ldots, a_n\}$, after some point all positive integers are representable as a linear combination of the set with nonnegative coefficients. Which integer is the last one not so representable is the Frobenius problem, or the Frobenius stamp problem, and the number in question the Frobenius number of the set. While the two-variable solution is widely known, and the general solution is NP-hard, there have been several algorithmic solutions of the three-variable problem. Here we present a new bound for the Frobenius number of most relatively prime triples.en_US
dc.language.isoen_USen_US
dc.subjectMathematics and Statisticsen_US
dc.titleOn Frobenius numbers in three variablesen_US
dc.typeDissertationen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US


Files in this item

Show simple item record