Skip to Navigation
Auburn University Homepage
A-Z Index | Map | People Finder
Auburn University Logo
Electronic Theses and Dissertations
Skip to Main Content
Main Navigation 
  • AUETD Home
  • Graduate School
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   AUETD Home
  • View Item
  •   AUETD Home
  • View Item

Optimized Nonlinear Substrate Integrated Waveguide for Pulse Compression

View/Open
Extracted text (215.4Kb)
Main article (11.66Mb)
Date
2013-04-15
Author
Caudle, Byron
Type of Degree
dissertation
Department
Electrical Engineering
Metadata
Show full item record
Abstract
The time compression and associated frequency broadening of electromagnetic pulses has numerous applications in communication and radar systems. In this work, a new type of pulse compression device based on nonlinear ferroelectric materials in a substrate integrated waveguide (SIW) is proposed and simulated, with low temperature co-fired ceramic (LTCC) fabrication compatibility considered. The ferroelectric material Barium Strontium Titanate commonly used with tunable microwave components, is placed in vertical slabs within the SIW and driven with an input pulse into the nonlinear polarization region. The nonlinearity causes field amplitude dependent propagation velocity, resulting in a tendency for energy to 'pile-up' or compress in time. The fields within the SIW are simulated with a Finite Difference Time Domain (FDTD) method, and a Genetic Algorithm (GA) finds the optimal material configuration that maximizes pulse compression. Pulse compression of 58% is shown by simulation to be possible with the proposed design.
Files
Name:
CaudleDIS1.pdf.txt  
Size:
215.4Kb
Name:
CaudleDIS1.pdf  
Size:
11.66Mb
URI
http://hdl.handle.net/10415/3525

Browse

All of AUETDBy Issue DateAuthor / AdvisorTitlesDepartments

My Account

Login

Auburn University Libraries | 231 Mell Street | Auburn, Alabama 36849 | (334) 844-4500 or (800) 446-0387 |

 

Auburn University |Auburn, Alabama 36849 |(334) 844-4000 |

Website Feedback |Privacy |Copyright ©