Show simple item record

dc.contributor.advisorHoffman, Dean
dc.contributor.authorAggarwal, Manu
dc.date.accessioned2013-06-13T15:59:57Z
dc.date.available2013-06-13T15:59:57Z
dc.date.issued2013-06-13
dc.identifier.urihttp://hdl.handle.net/10415/3663
dc.description.abstractIn this thesis we analyze two papers, both by Dr. Stephen G. Hartke and Dr. Aparna W. Higginson, on maximum and minimum degrees of a graph $G$ under iterated line graph operations. Let $\Delta_{k}$ and $\delta_{k}$ denote the minimum and the maximum degrees, respectively, of the $k^{th}$ iterated line graph $L^{k}(G)$. It is shown that if $G$ is not a path, then, there exist integers $A$ and $B$ such that for all $k>A$, $\Delta_{k+1}=2\Delta_{k}-2$ and for all $k>B$, $\delta_{k+1}=2\delta_{k}-2$.en_US
dc.rightsEMBARGO_NOT_AUBURNen_US
dc.subjectMathematics and Statisticsen_US
dc.titleMaximum and minimum degree in iterated line graphsen_US
dc.typethesisen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US


Files in this item

Show simple item record