This Is AuburnElectronic Theses and Dissertations

Show simple item record

Some Geometry of Symmetrized Tensor Spaces


Metadata FieldValueLanguage
dc.contributor.advisorHolmes, Randall R.
dc.contributor.authorHarmon, Henry
dc.date.accessioned2014-05-01T20:44:16Z
dc.date.available2014-05-01T20:44:16Z
dc.date.issued2014-05-01
dc.identifier.urihttp://hdl.handle.net/10415/4097
dc.description.abstractIn this paper we investigate the geometry of symmetrized tensor spaces using a construct known as a coset space. We find that, for a group G, certain pairings of subgroups and irreducible characters give rise to crystallographic root systems. We also gain insight into the conditions under which a symmetrized tensor space has an o-basis.en_US
dc.rightsEMBARGO_NOT_AUBURNen_US
dc.subjectMathematics and Statisticsen_US
dc.titleSome Geometry of Symmetrized Tensor Spacesen_US
dc.typedissertationen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record