This Is AuburnElectronic Theses and Dissertations

Show simple item record

The Stone-Čech Compactification and the Number of Pairwise Nonhomeomorphic Subcontinua of β[0,∞)\[0,∞)


Metadata FieldValueLanguage
dc.contributor.advisorSmith, Michel
dc.contributor.advisorBaldwin, Stewart L.
dc.contributor.advisorGruenhage, Gary
dc.contributor.advisorMinc, Piotr
dc.contributor.authorLipham, David
dc.date.accessioned2014-05-02T14:01:27Z
dc.date.available2014-05-02T14:01:27Z
dc.date.issued2014-05-02
dc.identifier.urihttp://hdl.handle.net/10415/4110
dc.description.abstractAn introduction to the Stone-Čech compactification $\beta X$ of a normal topological space $X$ is given. The method of invariantly embedding linear orders into ultrapowers is used to find $2^{\mathfrak{c}}$ pairwise nonhomeomorphic continua in $\beta\mathbb{R}$, under the assumption that the Continuum Hypothesis fails.en_US
dc.rightsEMBARGO_NOT_AUBURNen_US
dc.subjectMathematics and Statisticsen_US
dc.titleThe Stone-Čech Compactification and the Number of Pairwise Nonhomeomorphic Subcontinua of β[0,∞)\[0,∞)en_US
dc.typethesisen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record