This Is AuburnElectronic Theses and Dissertations

Show simple item record

Generalization of Ky Fan-Amir-Moez-Horn-Mirsky's result on the eigenvalues and real singular values of a matrix


Metadata FieldValueLanguage
dc.contributor.advisorTam, Tin-Yau
dc.contributor.advisorHolmes, Randallen_US
dc.contributor.advisorLiao, Mingen_US
dc.contributor.advisorNylen, Peteren_US
dc.contributor.authorYan, Wenen_US
dc.date.accessioned2008-09-09T21:19:12Z
dc.date.available2008-09-09T21:19:12Z
dc.date.issued2005-12-15en_US
dc.identifier.urihttp://hdl.handle.net/10415/529
dc.description.abstractKy Fan's result states that the real part of the eigenvalues of an n by n com- plex matrix A is majorized by the eigenvalues of the Hermitian part of A. The converse was established by Amir-Moez and Horn, and Mirsky, independently. We extend the results in the context of complex semisimple Lie algebras. Inequalities associated with the classical complex Lie algebras are given. The real case is also discussed.en_US
dc.language.isoen_USen_US
dc.subjectMathematics and Statisticsen_US
dc.titleGeneralization of Ky Fan-Amir-Moez-Horn-Mirsky's result on the eigenvalues and real singular values of a matrixen_US
dc.typeDissertationen_US
dc.embargo.lengthNO_RESTRICTIONen_US
dc.embargo.statusNOT_EMBARGOEDen_US

Files in this item

Show simple item record