Skip to Navigation
Auburn University Homepage
A-Z Index | Map | People Finder
Auburn University Logo
Electronic Theses and Dissertations
Skip to Main Content
Main Navigation 
  • AUETD Home
  • Graduate School
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  •   AUETD Home
  • View Item
  •   AUETD Home
  • View Item

Characterization of Defeat of Weaponized Biological Spores via Heat Transfer

View/Open
Drew_Rolader_Thesis_final.pdf (4.498Mb)
Date
2016-12-09
Author
Rolader, Drew
Type of Degree
Master's Thesis
Department
Mechanical Engineering
Metadata
Show full item record
Abstract
During the past few decades, there has been concern that large amounts of weaponized Bacillus Anthracis (Ba) is being created and stored in 55 gallon barrels by potential adversaries of the United States. The most likely offensive solutions to deal with these stored agents is to just bomb the storage facility. While such an attack may prevent the Ba from being used as a weapon, it also could loft the agent into the air and disperse it into civilian populations. This “collateral damage” could kill thousands of innocent people. The objective of this thesis was to study a new low collateral damage method for defeating biological agents. Weaponized biological agents are typically in the form of spores. When inhaled, these spores vegetate and release toxins within the body. Only a very small amount of Ba spores inhaled can lead to death. For this thesis, two new methods to defeat a simulate for Ba spores (Bacillus Thuringiensis, Bt) were investigated. Both methods used thermite as a heat source inside of a barrel of agent simulate. The first method relies on the temperature generated by the thermite to kill the spores. The second method uses the heat from the thermite to burn the outer layer of the spores and the filler material. This burning releases sticky gasses throughout the barrel, and as they re-condense, these gases cause the spores to form clumps that are larger than the respirable limit. For this thesis, many experiments were performed and a theoretical model was developed. The aim was to use the experimental data to validate the numerical model and understand the basic phenomena occurring with simulate as it is exposed to high temperature. Temperature data was collected experimentally, and the model accurately predicted the measured distribution. In addition, the measured spatial distribution of the particle sizes in the mixture correlated very well with that predicted by the model. This analysis indicates the studied approach may be a viable solution to destroy weaponized biological agent in the future.
Files
Name:
Drew_Rolader_Thesis_final.pdf  
Size:
4.498Mb
URI
http://hdl.handle.net/10415/5505

Browse

All of AUETDBy Issue DateAuthor / AdvisorTitlesDepartments

My Account

Login

Auburn University Libraries | 231 Mell Street | Auburn, Alabama 36849 | (334) 844-4500 or (800) 446-0387 |

 

Auburn University |Auburn, Alabama 36849 |(334) 844-4000 |

Website Feedback |Privacy |Copyright ©