
SOME NECESSARY CONDITIONS FOR LIST COLORABILITY OF GRAPHS

AND A CONJECTURE ON COMPLETING PARTIAL LATIN SQUARES

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Benkam Benedict Bobga

Certificate of Approval:

Dean G. Hoffman,
Professor
Mathematics and Statistics

Peter D.Johnson Jr., Chair
Professor
Mathematics and Statistics

Overtoun M. Jenda,
Professor
Mathematics and Statistics

George T. Flowers,
Interim Dean
Graduate School



SOME NECESSARY CONDITIONS FOR LIST COLORABILITY OF GRAPHS

AND A CONJECTURE ON COMPLETING PARTIAL LATIN SQUARES

Benkam Benedict Bobga

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
December 19, 2008



SOME NECESSARY CONDITIONS FOR LIST COLORABILITY OF GRAPHS

AND A CONJECTURE ON COMPLETING PARTIAL LATIN SQUARES

Benkam Benedict Bobga

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii



Dissertation Abstract

SOME NECESSARY CONDITIONS FOR LIST COLORABILITY OF GRAPHS

AND A CONJECTURE ON COMPLETING PARTIAL LATIN SQUARES

Benkam Benedict Bobga

Doctor of Philosophy, December 19, 2008
(M.S., East Tennessee State University,–U.S.A 2005)

(M.Sc.,Buea University–Cameroon, 1998)
(B.Sc (Honors)., Buea University–Cameroon, 1996)

87 Typed Pages

Directed by Peter D. Johnson Jr.

Let C be an infinite set of symbols, F the collection of finite subsets of C. A function

L is a list assignment to a graph G if L assigns to each vertex of G a finite subset of C.

A proper L-coloring occurs when adjacent vertices are colored with different colors from

their corresponding lists. Interpreted as a theorem about proper list colorings of complete

graphs, P. Hall’s theorem on systems of distinct representatives inspires a generalization, a

necessary condition for proper colorings, known as Hall’s Condition (HC). The problem of

completing an n× n partial latin square (PLS) is a list coloring problem in which G is the

cartesian product of two n-cliques and L is determined in an obvious way.

Cropper’s problem is the question: does a completion exist whenever the associated

list coloring problem satisfies Hall’s Condition? One will show that HC is sufficient for com-

pletion of a PLS in several circumstances addressed in well established theorems, including

Ryser’s theorem. Generalizations of Cropper’s problem and refinements of HC for colorings

recently developed by Hilton, Johnson, Lehel et al, completes this dissertation.
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Chapter 1

INTRODUCTION AND BACKGROUND KNOWLEDGE

Graph List Coloring was introduced in the late 1970s independently by Vizing [20] with

the intention to study total colorings, and Erdös, Rubin and Taylor [9] with motivation from

Dinitz’s conjecture on n x n matrices. Many questions have been asked and answered in

this subject. Many questions remain unasked and some questions, though innocent looking,

are still open. In this work, one will give some answers and ask some questions concerning

a fairly recent departure in the world of list-colorings.

To better understand the concepts, let us start with some elementary definitions in

graph theory. The reader should refer to [8].

For a start, all our graphs are assumed to be both finite and simple. Allow a possibility

for a graph G to be the empty graph on n vertices, if it has no edges; this is not to be

confused with the ”nothing graph” Γ in which both the vertex and edge sets are empty.

A simple graph H = (V (H), E(H)) is called a subgraph of a graph G = (V (G), E(G))

if V (H)⊂ V (G) and E(H)⊂ E(G), where E is the edge set and V the vertex set.

H is a proper subgraph if at least one of the containments above is proper. A subgraph

H of graph G is called spanning subgraph whenever V (H) = V (G).

Let U ⊂ V (G) and let E(U) denote the subset of E(G) of all edges with both ends in

U . Then H = (U , E(U)) is called the subgraph of G induced by U , denoted at times by

G[U ]. In simple terms, an induced subgraph on a set of vertices U = {u1, u2, . . . , um} of a

graph G is the subgraph on vertex set U that contains every edge of G whose end points

are in U .
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A graph can also be induced by an edge set, E ⊂ E(G), in which case the vertex set

of the subgraph is just the set of ends of edges in E, with no additional vertices.

The line graph, L(G) of a graph G has the edges of G as its vertices; any two vertices

of of the line graph L (G) are adjacent if the edges in G to which they correspond have a

common vertex. Also, a graph H is said to be a line graph if there exists a graph G such

that H is isomorphic to L (G).

An independent set or a stable set of a graph G= (V , E) is a set of vertices I ⊂ V in

G no two of which are adjacent.

A maximal independent set will be an independent set of vertices such that adding

another vertex of V into I will force an edge. Thus for a maximal independent set, any

vertex from G not in the set is adjacent to at least one vertex in the maximal set.

A maximum independent set is a largest independent set of G. It is the largest amongst

all the maximal independent sets. A clique in a graph is a set of pairwise adjacent vertices.

I will now turn your attention to the concepts of Graph Colorings in general and List

Colorings in particular.

A vertex coloring (or proper vertex coloring, when emphasis is necessary), for a simple

graph G= (V , E), is a function φ : V (G) → C such that φ(u) 6= φ(v) whenever uv ∈ E(G),

where the collection C is a set of colors or symbols.

The independence number of a graph G is the maximum size of an independent set of

vertices.

A list assignment to a simple graph G is a function L : V (G) → F,

where F is the collection of all finite subsets of C. By a proper L-coloring of G, I will

mean a function ϕ : V (G) → C satisfying, for all u, v ∈ V ,

2



i). ϕ (u)∈ L (u)

ii). if u, v is an edge of G, then ϕ(u)6= ϕ(v) (i.e., ϕ is a proper vertex coloring of G ).

Condition (ii) is equivalent to the requirement that for each symbol σ ∈ C, the ”support”

of σ with respect to ϕ, defined by

ϕ−1(σ) = {v ∈ V |ϕ(v) = σ}

is an independent set of vertices.

Example 1.1

The following graph has a proper L-coloring, where L is indicated in the picture. G can be

�
�

�
�

�
�

�
�

�
��@

@
@

@
@

@
@

@
@

@@{b,c}

{a,b}

{a,b}

{a,c}

Z W

X Y

�

�

�

�

G:

Figure 1.1: K4 - minus - an edge with assigned list

list colored as follows: ϕ(X)= b, ϕ(Y)= a, ϕ(Z)= c, ϕ(W)= a

The choice number of a graph G, denoted ch(G) is the smallest integer j such that

there is a proper L-coloring of G whenever |L (v)| > j, for every vertex v ∈ V (G).
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Since the chromatic number X (G) is defined similarly with the list assignment con-

strained to be constant, clearly X (G) 6 ch(G) for every G. If ch(G) 6 k I will some times

say that G is k− choosable, or k list colorable.

The hall number of a graph G is the smallest positive integer m such that whenever

each list has size greater or equal to m and HC is satisfied, a proper L-coloring of G exists.

The next graph is the graph K3,3 minus two independent edges, which is the smallest

graph whose choice number (the smallest list length that guarantees a proper coloring) is

greater than its chromatic number.

Example 1.2

{b,c}

{a,b}

{a,c}

{a,c}

{a,b}

{b,c}

ZW

X Y

U V

R

T

�

�

�

� �

�

G:

Figure 1.2: K3,3minus two independent edges with a list assignment with lists of length 2
from which no proper coloring is possible.
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G is bipartite yet is not 2 list-colorable. Indeed, if vertex U is colored with color a, consider

the subgraph induced by the vertices {X,Y,U,V}= R, then the following coloring will

be forced: ϕ(X)= c and ϕ(V)= b. This leaves vertex Y not properly list colorable from

the given list because the only two colors on L(Y) have been taken up by its neighbors.

Similarly, if I let U to be colored with b and consider the subgraph induced by the vertices

{U,V,W,Z}= T, then the following coloring will also be forced: ϕ(W)= c and ϕ(V)= a.

Whence vertex Z can not be properly list colored from this list because the only two colors

on L(Z) have both been taken up by its neighbors. Thus this graph cannot be colored from

the given lists.

Theorem 1.1 P.Hall [12]

Suppose A1, A2, . . . , An are finite sets. There exist distinct representatives: a1, a2, . . . , an

such that ai ∈ Ai, i = 1, 2, . . . , n, if and only if for each J ⊂ {1, 2, . . . , n}, |
⋃

j∈J Aj | > |J |.

It was noticed in [14] that Hall’s theorem can be viewed as a theorem about list colorings

of cliques. Let V be the vertex set of the complete graph on n vertices, Kn , and let L be a

list assignment to V . Then because any two vertices of Kn are adjacent, a proper L-coloring

of Kn is a selection of distinct representatives from the sets L(v), v ∈ V , and vice versa.

Therefore, with V replacing the index set {1, 2, . . . , n}, and with the sets L(v) replacing the

sets Ai , Hall’s theorem may be restated as follows:

Hall’s Theorem, restated: Suppose L is a list assignment to a complete graph K with

vertex set V . Then there is a proper L-coloring of K if and only if for each U ⊂ V ,

|
⋃
u∈U

L(u)| > |U |.
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This leads to the so called Hall’s Condition (HC) for the existence of a proper L-coloring

in an arbitrary finite simple graph G, to which L might be a list assignment.

Suppose that L is a list assignment to G and let H be a subgraph of G. Let σ be a

color in C. Denote by Hσ (or H(σ,L)) the subgraph of H induced by the support set

{v ∈ V (H) | σ ∈ L(v)}.

Hall’s Condition is the following:

Hall’s Condition (HC) on G,L: For each subgraph H of graph G,

∑
σ∈C

α(Hσ) > |V (H)|, (1.1)

(where α in equation (1.1) is the vertex independence number).

Remark 1.1

Since removing edges does not lower the vertex independence number α, HC will be

satisfied if the inequality (1.1) holds for every induced subgraph H of G.

Hall’s Condition is a necessary condition for a proper L-coloring of G because in any

proper L-coloring of any subgraph H of G, α(H(σ,L)) is greater or equal to the number of

occurrences of σ in the coloring because the set of vertices on which σ appears in a proper

coloring is an independent set.

6



Remark 1.2

To show that a graph G and a list assignment L satisfy Hall’s Condition (HC), it suffices

to show that G−v is properly L-colorable for every vertex v ∈ V (G) and that the inequality

(1.1) in Hall’s condition holds for G itself.

Indeed, every induced subgraph H of G other than G itself is an induced subgraph

of G − v for some vertex v ∈ V (G). If G − v is properly L-colorable, then since HC is a

necessary condition for proper L-coloring, it must be that the inequality in HC holds for

every subgraph of G− v.

Remark 1.3

As a follow up of the restatement of Hall’s theorem, one should note that if U is a subset

of V (G), then the subgraph H of the complete graph K induced by U forms a clique. So

for each symbol σ ∈ C, α(H(σ,L)) = 1 if σ ∈
⋃

u∈U L(u), otherwise it is zero. That is, as

a function of σ, α(H(σ,L)) is the characteristic function of ∪u∈UL(u). Consequently, (1.1)

becomes

| ∪u∈U L(u)| =
∑
σ∈C

α(Hσ) > |V (H)| = |U |. (1.2)

Thus Hall’s Condition is equivalent to the condition in Hall’s theorem on the Systems

of Distinct Representatives (SDR) in the case of complete graphs. Therefore Hall’s theorem

can be restated: if K is a complete graph and L is a list assignment to K, then there is a

proper L-coloring of K if and only if K and L satisfy Hall’s Condition.

Example 1.3

Consider the four cycle, C4 with the given list assignment as shown below. First note
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{b,c}

{a,b}

{c}

{a,c}

ZW

X Y

�

�

�

�

G:

Figure 1.3: Four Cycle

that graph G is not properly list colorable from the given list because once I color the vertex

Z with c, both Y and W are forced to be colored a and b respectively. This leaves vertex

X without any available colors since we require adjacent vertices to be colored differently.

To show that HC holds, note that for every vertex v ∈ V (G), the graph G− v is properly

list colorable from the lists (which implies the desired inequality for every proper induced

subgraph H of G) and α(Ga) = α(Gb) = 1, α(Gc) = 2, hence the alpha sums equals the

order of G, 4. Thus Hall’s Condition is satisfied.

Theorem 1.2 Hilton and Johnson: [14] A graph G has the property that for all L, if

G, L satisfy Hall’s Condition then there is a proper L-coloring of G, if and only if every

block of G is a clique.
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Recall that a block of a graph G is a subgraph maximal with respect to being connected

and containing no cut-vertex.

Lemma 1.1 Hall’s Condition holds for G and L if and only if the inequality in Hall’s

Condition (equation (1.1)) holds for each connected induced subgraph of G.

Cropper’s Problem

Let G = Kn2Kn ≡ the line graph of Kn,n , normally represented as an n x n array of

cells. Let some cells of G be filled in with symbols from the set Cn = {1, 2, . . . , n}, so that

no symbol appears more than once in any row or column. So I have a partial latin square.

Let the list for an unfilled cell v(i, j) be defined in an obvious way as follows:

Cn - {symbols appearing in the filled cells in row i, column j}.

The list for a filled cell (of size one) will simply be the symbol in that cell.

Cropper posed the following question: is Hall’s Condition on such a graph G with such

a list assignment L sufficient for a proper L - coloring?

(Briefly, is Hall’s Condition on G and L sufficient for a completion of a partial latin

square?).

A theorem of Ryser’s answers in the affirmative Cropper’s question when the filled-in

parts of the partial latin square form a subrectangle.

Theorem 1.3 Ryser’s Theorem: [19]

An r×s latin rectangle R on n symbols σ1, σ2, . . . , σn can be completed to a latin square

of order n if and only if

NR (σi) > r+s−n for each i = 1, 2, . . . , n, where NR (σi) is the number of occurrences

of the symbol σi in R.

9



Theorem 1.4 Bobga, Hilton and Johnson: [2]

A latin rectangle on n symbols σ1, σ2, . . . , σn can be completed to a latin square of order

n if and only if inequality (1.1) holds for H = G = Kn2Kn.

This statement turns out to be ”equivalent” to Ryser’s Theorem, in the sense that each

theorem is easily derivable from the other. As a corollary, when the filled-in parts form a

subrectangle, Hall’s Condition on G and L implies completability.

Theorem 1.5 Bobga and Johnson: [2]

If the filled-in part of a partial latin square form a subrectangle minus one cell, then

Hall’s Condition on G and L is sufficient for completion of the partial latin square.

A proof of theorem (1.5) and a variant of theorem(1.4) will be given in chapter 2.

Part of what I will try to do is to recast results by Andersen and Hilton [1], Buchanan

and Ferencak [3], Rodger [18], and Hoffman [17] in the form: when the filled-in parts belong

to a certain class of configurations, Hall’s Condition on G and L suffices for completion.

(This is not exactly right, as will be explained; Hoffman’s result is an exception). In all

the other cases so far, the theorems say that not only is Hall’s Condition on G and L

sufficient, but that only a few instances of the inequality in Hall’s Condition suffice for

proper L-coloring of G (i.e. for a completion).

Inspired by Cropper’s problem are the following concepts, whose application to Crop-

per’s problem have not yet been found but are of independent interest.

Let G and L satisfy Hall’s Condition and let H be a subgraph of G. One will say that

H is an L-tight subgraph of G if

∑
σ∈C

α(H(σ,L)) = |V (H)| (1.3)

10



If H is non-induced but is L-tight, then the subgraph generated by the vertices of H will

also be L-tight. If H is L-tight, then in every proper L-coloring of H, every color σ has

to appear α(H(σ,L)) times; i.e. a maximum independent subset of V (Hσ) is colored σ for

each σ.

The next set of definitions will consist of different modifications to Hall’s Condition on

G and L. They are actually stronger than Hall’s Condition for an arbitrary graph G and

list assignment L. However, when the underlining graph is complete, then they all coincide;

each is equivalent to the existence of a proper L-coloring of the graph. Each definition

demands first that Hall’s Condition on G and L be satisfied (although this is not explicit

in the case of HC*, below).

A simple graph G is said to satisfy Hall’s Condition plus on G and L, denoted

HC+, if

(i) G and L satisfy HC, and

(ii) there is an indexed family [Sσ : σ ∈ C] of independent subsets of V (G) satisfying:

(a) Sσ lies in V (G(σ,L)) for all σ ∈ C (i.e., for all vertices v ∈ Sσ, σ ∈ L(v))

(b) for each L-tight subgraph H of G, |Sσ
⋂

V (H)| = α (H(σ,L)).

I shall call such a family [Sσ : σ ∈ C] an HC+ satisfying family .

A simple graph G is said to satisfy Hall’s Condition plus plus on G and L, denoted

HC++, if G and L satisfy HC+, and in some HC+ satisfying family [Sσ : σ ∈ C] of

independent subsets of V (G), the Sσ’s are pairwise disjoint. (That is, Sσ
⋂

Sτ = ∅ for

σ 6= τ).

If ϕ is a proper L-coloring of G, then the supports of σ ∈ C,

Sσ = ϕ−1(σ) = {v ∈ V |ϕ(v) = σ}, σ ∈ C (1.4)

11



form an HC++ satisfying family for G and L.

So HC++ (and hence HC+) is a necessary condition for a proper L-coloring of G.

The next definition is due to Jeno Lehel. It deals with the conditional independence

number of a graph relative to a subgraph.

For an induced subgraph H of G, the conditional independence number of graph G

with respect to H, denoted α(G|H), is the maximum cardinality of an independent set I of

V (G) such that |I
⋂

V (H)| = α(H).

This says that α(G|Γ) = α(G), where Γ is the ”NOTHING” graph.

A simple graph G with list assignment L is said to satisfy Hall’s Condition star ,

denoted HC*, if ∑
σ∈C

α(Hσ|Tσ) > |V (H)|, (1.5)

holds for every induced subgraph H of G and every induced L-tight subgraph T of H.

Consider the ”NOTHING” graph Γ to be an L-tight subgraph of any induced subgraph

H of G, and Γσ = Γ for each σ ∈ C.

Therefore if a simple graph G and list assignment L satisfy HC*, then they satisfy

Halls Condition.

A simple graph G with list assignment L is said to satisfy Hall’s Condition star star

(denoted HC**) if ∑
σ∈C

min
T/H

α(Hσ|Tσ) > |V (H)|, (1.6)

holds for every induced subgraph H of G, where the minimum is taken over all L-tight

induced subgraphs T of H.
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Because Γ is allowed as an induced tight subgraph of every graph for any list assignment,

we clearly have HC** =⇒ HC* =⇒ HC.

Certainly, since HC is a part of or implied by the requirements for HC♦ for ♦ ∈

{+,++, ∗, ∗∗}, it must be that each HC♦ =⇒ HC for ♦ ∈ {+,++, ∗, ∗∗}.

I will now show that HC** is a necessary condition for the existence of a proper

L-coloring of a graph G.

Theorem 1.6 HC** is a necessary condition for the existence of a proper L-coloring of

a graph G.

Proof: Suppose there exists such a proper L-coloring ϕ of a graph G; we show that

HC** holds. Let H be an induced subgraph of G, I will show that the inequality in equation

(1.6) holds.

Suppose T is an L-tight induced subgraph of H and suppose σ ∈ C. Then

∑
σ∈C

α(Tσ) = |V (T )|, (1.7)

and the number of times that σ appears as a color assigned by the function ϕ on T ,

i.e., |ϕ−1(σ)
⋂

V (T )|, is actually α(Tσ).

Therefore the number of times σ (for an arbitrary color σ) appears as a color in H

must satisfy the inequality

|ϕ−1(σ)
⋂

V (H)| 6 α(Hσ|Tσ) (1.8)

because ϕ−1(σ)
⋂

V (H) ⊆ V (Hσ) is an independent set of vertices of Hσ which extends (by

T being L-tight), a maximum independent set of vertices of Tσ.
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(Recall that the vertices in ϕ−1(σ)
⋂

V (H) have σ on their L list and α(Hσ|Tσ) is the

conditional independence number).

Since inequality (1.8) holds for every L-tight induced subgraph T of H, it must be that

|ϕ−1(σ)
⋂

V (H)| 6 min
T/H

α(Hσ|Tσ) (1.9)

=⇒
∑
σ∈C

|ϕ−1(σ)
⋂

V (H)| 6
∑
σ∈C

min
T/H

α(Hσ|Tσ) (1.10)

=⇒
∑
σ∈C

|V (H)| 6
∑
σ∈C

min
T/H

α(Hσ|Tσ) (1.11)

which establishes the inequality (1.6) and hence the claim of the theorem.

2

G is a Hall graph if whenever G, L satisfy HC, then there is a proper L-coloring of G.

Theorem 1.7 Hilton and Johnson: [14] G is Hall if and only if every block of G is a

clique.

(This is just a restatement of theorem 1.2).

Definition 1.1 G is a Hall+ graph if whenever G, L satisfy HC+, there is a proper

L-coloring of G.

Definition 1.2 G is a Hall++ graph if whenever G, L satisfy HC++, there is a proper

L-coloring of G.

Definition 1.3 G is a Hall* graph if whenever G, L satisfy HC*, there is a proper L-

coloring of G.
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Definition 1.4 Finally, G is a Hall** graph if whenever G, L satisfy HC**, there is a

proper L-coloring of G.

I shall investigate these graph properties with a view to finding analogues of theorem

1.7, and possibly connections between the properties, but it is early days in this area. I

shall, for example, prove that all cycles are Hall+. Also, it will be shown that if a clique

were to be attached to a Hall♦ graph at a cut-vertex, then the resulting graph will still

belong to Hall♦. This result holds for all ♦ ∈ { empty string, +, ++, *, ** }.

As to what happens when one joins two Hall♦ graphs with a cut-edge and whether or

not cycles were Hall* remain unanswered.

Lemma 1.2 Suppose that L is a list assignment to G, τ ∈ C and L̃ is obtained from L by

replacing τ in the lists on each component of G(τ,L) by a new color, for that component,

that does not appear in
⋃
L(v), where the union is taken over all v ∈ V (G).

Then:

(a) G and L satisfy HC ⇐⇒ G and L̃ satisfy HC;

(b) G and L satisfy HC+ ⇐⇒ G and L̃ satisfy HC+;

(c) G and L satisfy HC++ ⇐⇒ G and L̃ satisfy HC++;

(d) G and L satisfy HC* ⇐⇒ G and L̃ satisfy HC*;

(e) G and L satisfy HC** ⇐⇒ G and L̃ satisfy HC**;

(f) There is a proper L-coloring of G ⇐⇒ there is a proper L̃-coloring of G.

Proof: Parts (a), (b), (c), (d) and (e) depart from the observation that the indepen-

dence number of any graph is the sum of the independence numbers of its components.

From this it follows that if Hall’s Condition is satisfied, then a subgraph is tight if and only
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if each component of it is tight, and also T is L-tight if and only if it is L̃-tight. From there

the arguments become quite laborious but straight forward, and I will omit them.

The proof of part (f) is as follows:

If there exists a proper L-coloring of G, then replace each occurrence of τ with its

replacement on the vertex’s list in the formation of L̃. This will also be a proper L̃-coloring

of G.

Conversely, if there is a proper L̃-coloring of G, we proceed as above and replace each

color τ -clone by τ .

�

Corollary 1.1 G ∈ Hall ♦, where ♦ ∈ { empty string, +, ++, *, ** } ⇐⇒ G is L-

colorable for every L satisfying HC ♦ with G and such that for each color σ ∈ C, G(σ,L)

is connected.

Proof:

The forward part is clear by definition.

Conversely, suppose G satisfies the proposed less stringent requirement. Suppose L is a

list assignment for G that satisfies HC ♦ but for some colors, the support is not connected.

Then for one of those colors, one can modify L to L̃1 and if there is another different bad

color, one can repeat the procedure on L̃1 and get a new list say L̃2. This procedure can

be repeated as necessary. One then ends up with a new list assignment L̃ of the desired

properties (i.e. every color has connected support). By assumption, G is L̃-colorable.

Therefore, by repeated application of the backwards implication in (f) of lemma 1.2, G is

L-colorable. Therefore G ∈ Hall ♦.

�
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Chapter 2

CROPPER’S PROBLEM AND RECASTED RESULTS

2.1 Introduction to Cropper’s Problem

The problem of completing a partial n by n latin square is a List Coloring Problem

in which the graph is the cartesian product of two n-cliques and the lists are determined

in an obvious way by the filled-in cells. Hall’s Condition (fairly well known) is a necessary

condition on a graph with a list assignment for the existence of a proper coloring. Matt

Cropper some years ago asked whether Hall’s Condition is sufficient for the completion of

a PLS. I will show in this chapter that the answer is a ”yes” when the filled-in cells form

-a sub-rectangle, or

-a sub-rectangle minus one cell.

In the former case, Hall’s Condition implies Ryser’s Condition.

A partial latin square of order n is an n x n array of n2 cells in which the cells may

contain either 0 or 1 symbols, the symbols all lying in a set Cn = {1, 2, . . . , n} of n elements.

Furthermore, no symbol can occur in more than one cell in any row or column. If there are

no empty cells, then the partial latin square is a latin square.

Over the years there has been quite a considerable amount of interest in the question

of completing partial latin squares, ranging from, but not limited to, Ryser’s theorem [19],

Marshall Hall’s theorem [11], and the Evans’ Conjecture [10], to the result of C. Colbourn

[5] that it is an NP − complete problem to decide whether a partial latin square can be

completed.
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Before delving into the results for this section, I will state the results mentioned above

due to their importance in the studies of latin square completions. Marshall Hall used

Phillip Hall’s theorem (theorem 1.1) on SDR to prove the following important theorem on

latin square completion.

Theorem 2.1 Marshall Hall, 1945 [11] Every r by n latin rectangle, 0 6 r 6 n, on n

symbols, can be completed to a latin square of order n.

Proof: [7]

The cases r = 0 and r = n are both trivial. So it will be assumed that P is an r x n

latin rectangle, 0 < r < n. It will be shown that P can be extended to an (r + 1) x n latin

rectangle, and hence ultimately to a latin square of order n.

For 0 6 j 6 n, let Sj denote the set of all x ∈ {1,2,. . . ,n} such that x does not occur

in the column j of P . Note that | Sj | = n − r, and since P is a latin rectangle each x ∈

{1,2,. . . ,n} belongs to exactly n − r of the sets S1, S2, . . . , Sn. It will be shown that there

exists a SDR 〈 s1, s2, . . . , sn〉 for the collection S1, S2, . . . , Sn and consequently that the

(r + 1) x n latin rectangle P ∪{(r + 1, 1, s1), (r + 1, 2, s2),. . . , (r + 1, n, sn)} is an extension

of P .

Assume that such a System of Distinct Representatives does not exist. Then there exists

some k ∈ {1,2,. . . ,n} and some choice of Sj1, Sj2, . . . , Sjk for which | Sj1∪Sj2∪. . .∪Sjk |< k.

But then | Sj1 | + | Sj2 | + . . .+ | Sjk |= k(n−r) implies that there must exist some symbol

x ∈ {1,2,. . . ,n} occurring in more than n − r of the sets Sj1, Sj2, . . . , Sjk. However this is

a contradiction as each x ∈ {1,2,. . . ,n} belongs to exactly n − r of the sets S1, S2, . . . , Sn.

Hence a SDR must exist and so the r x n latin rectangle P can be extended to P ∪{(r +

1, 1, s1), (r+1, 2, s2),. . . , (r+1, n, sn)}. If P ∪{(r+1, 1, s1), (r+1, 2, s2),. . . , (r+1, n, sn)} is
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a latin square of order n the argument is complete, otherwise the above process is repeated

and P ∪{(r + 1, 1, s1), (r + 1, 2, s2),. . . , (r + 1, n, sn)} is extended to an (r + 2) x n latin

rectangle, and so on until a latin square is obtained. 2

The next two results are important in discussions relating to latin squares.

Conjecture 2.1 T.Evans’ Conjecture, 1960 [10] Every partial latin square of order n

containing at most n− 1 filled cells is completable.

The theorem of Ryser given in the introductory chapter is also important. Later in

this chapter, I shall restate it and use a lemma to establish it.

Theorem 2.2 Colbourn [5] Deciding whether a latin square can be completed is NP-

complete.

Example 2.1

1 3 4 8 2 {57} {56} {567}

4 2 1 3 8 {57} {56} {567}

5 6 3 1 7 {24}

7 5 2 4 6 {13}

6 7 8 2 5 {134}

{57} {57} 6 {123457}

{56} {56} 7 {123456}

{23} {14} {567} {567} {134} {123457} {123456} 8

Figure 2.1: An Incomplete PLS with some lists indicated

This PLS due to L. D. Anderson is incompletable and HC fails (and so it is not a

counter example to the conjecture that the answer in Cropper’s problem is yes!). Indeed,
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look at the four cells (1, 6), (1, 7), (2, 6), (2, 7). Note that 6 and 7 can each be used exactly

once and so 5 must be used twice. Thus each of rows 1, 2, columns 6, 7 will have a 5 on

it. A careful look at cells (6,3), (6,4), (7,3), (7,4) indicate that 6 and 7 will each be used

exactly once, leaving the 5 to be used twice to complete the 4 cells. Hence each of rows 6,

7, columns 3, 4 will also have a 5. Thus in any attempted completion row 8 and column 8

cannot have a 5. However, to fill up the 8 cells in row 8, every number has to be used once.

Hence one cannot complete the PLS.

To see that HC fails, consider the subgraph H induced by all the preassigned cells

together with the cells:

(1,6), (1,7), (2,6), (2,7), (6,3), (6,4), (7,3), (7,4) and (i, 8), (8, i) for i= 1, 2, · · · , 7.

Then | V (H) |= 50. Moreover, α(H1)=5, α(H2)=6, α(H3)=5, α(H4)=5, α(H5)=8,

α(H6)=8, α(H7)=8, α(H8)=4.

=⇒
∑
σ∈C

α(Hσ) = 49 < 50.

∑
σ∈C

α(Hσ) < |V (H)|

means that the inequality in HC fails and so HC is not satisfied for G.

�

Remark 2.1

If the inequality for HC does not hold for some set of cells, it must also not hold for

the subset of that set of cells consisting of the empty, unprescribed, cells. This is because

adding a prescribed cell to a set of cells increases both sides of the inequality 1.1 by exactly
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1. Thus we could simply have considered verifying HC only for the 22 cells within braces

(excluding the preassigned cells). The conclusion would have been the same.

2.2 Cropper’s Problem

Let G = Kn�Kn ≡ the line graph of Kn,n, normally represented as an n× n array of

cells.

Let some cells of G be filled in with symbols from the set {1, 2, 3, . . . , n} = Cn, with

the understanding that no symbol appears more than once in any row or column. So I have

a partial latin square. Below is an example with n = 7.

3 4 2

2 1

4

6

6 3

6 1 5

7 3 5

Figure 2.2: 7× 7 partial latin square.

This one was provided to us by A. J. W. Hilton, and is an example due to Ron Aharoni,

the significance of which A. J. W. H. has now forgotten. But this particular one was thought

to possibly have great significance in the work on Cropper’s problem. It is not completable.

We did spend quite some time in studying this example with the hope of using it as a counter
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example to the problem. However, it turned out that there is at least one ”bad” set of cells

(one that does not satisfies Hall’s Condition, see below) and so cannot serve as a counter

example. A. J. W. Hilton recently emailed us an example due to J. Goldwasser believed

to be a counter example to Cropper,s problem. If that were to be true, then Cropper’s

problem will be solved in the negative and the question will then become: when does HC

imply completability?

As stated in chapter 1, let the list for an unfilled cell v(i, j) be Cn\ {symbols appearing

in the filled cells in row i, column j}. The list for a filled cell (of size one) will simply be

the symbol in that cell. The list assignment corresponding to each cell in figure (2.2) is as

follows:

{1} {12} 7 3 5 {246} {1246}

{7} {237} {34} {24} 6 1 5

{157} 6 {45} {12457} {1247} {2457} 3

6 {12357} {345} {12457} {12347} {23457} {1247}

4 {12357} {356} {12567} {1237} {23567} {1267}

2 {357} 1 {4567} {347} {34567} {467}

3 4 2 {1567} {17} {567} {167}

Figure 2.3: A partial latin square with its accompanying list assignment.

To show that this cannot serve as a counter example to Cropper’s problem, I shall show

that there is a set of cells that satisfy the inequality in Hall’s condition. Such a set will be

referred to as a bad set. Note that any bad set remains bad if any of the preassigned cells

are added (or removed) from it. One such bad set is the following:
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{1} {12} //// //// //// //// ////

{7} {237} {34} //// //// //// ////

//// //// {45} //// //// //// ////

//// {12357} {345} {12457} {12347} {23457} {1247}

//// {12357} {356} {12567} {1237} {23567} {1267}

//// {357} //// {4567} {347} {34567} {467}

//// //// //// {1567} {17} {567} {167}

Figure 2.4: Bad set indicated by the lists from figure (2.2).

Hall’s inequality is not satisfied because letting (α(i) stand for α(Hi)), α(1) = 4, α(2) = 3,

α(3) = 4, α(4) = 3, α(5) = 4, α(6) = 3, α(7) = 5. Hence

7∑
σ=1

α(σ) = 26 < 27 = | V (H) | .

Theorem 2.3 The answer to the question in Cropper’s problem is ‘yes’ when the filled-in

cells form either

(i) a subrectangle, or

(ii) a subrectangle minus one cell.

We will see that the first case is “equivalent” to Ryser’s theorem [19]: An r × s latin

rectangle R on n symbols σ1, σ2, . . . , σn can be extended to a latin square of order n if and

only if NR(σi) > r + s−n for each i = 1, . . . , n, where NR(σi) is the number of occurrences

of the symbol σi in rectangle R.
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Proof:

First I show that HC implies completability for an n × n partial latin square, when

the filled-in parts form a sub-rectangle. (The proof is due to Hilton, 1988 [13], but this

statement of what was proved is new). WOLOG, the filled-in sub-rectangle R is in the

upper left hand corner of the partial latin square. Let G = Kn�Kn consist of four portions

as in Figure 2.5, with the filled-in part R of dimension r× s as in Ryser’s theorem. Assume

HC holds.

For σ ∈ Cn, α(Gσ) 6 α(G) = n. Therefore, Hall’s Condition applied to the graph

G implies the following: n2 >
∑

σ∈Cn
α(Gσ) > |V (G)| = n2, where the second inequality

results from HC with H = G.

Thus for each symbol σ ∈ Cn, α(Gσ) = n. A maximum independent set of vertices

(cells) in Gσ must have a representative from every row and column, and therefore must

contain a total of r −NR(σ) cells from A as well as s−NR(σ) cells from B. Therefore, for

all σ ∈ Cn,

n = α(Gσ) > NR(σ) + r −NR(σ) + s−NR(σ)

= r + s−NR(σ).

Hence, NR(σ) > r + s− n. Whence, G is completable by Ryser’s theorem.

It is worth noting that in case (i), completability was implied by the inequality in

Hall’s condition for only one choice of H, namely, the whole graph. We shall see a similar

phenomenon in the proof for Case (ii).

Before proceeding to that case, I will give another proof of the sub-rectangle case,

not essentially different from the proof just given, but which will be convenient to refer to
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A

B C

Rr

s

Figure 2.5: Rectangular blocks

later. This time, take H to be the copy of Kr�Kn represented by the first r rows of the

partial latin square. Since, for each i ∈ Cn, α(Hi) 6 α(H) = r, by the assumption that

HC is satisfied, |V (H)| = rn 6
∑n

i=1 α(Hi) 6 rn; therefore, α(Hi) = r for each i ∈ Cn.

Therefore a maximum independent set of cells in Hi must have a representative from each

of the r rows of H, and therefore i must occur on the lists of at least r − NR(i) cells in

different columns, in the last n − s columns of H. It follows that for each i ∈ {1, . . . , n},

r−NR(i) 6 n− s, which implies the condition in Ryser’s theorem and hence the claim (i).

Again the completability arises from the application of the inequality in Hall’s condition to

a single induced subgraph of the underlying graph G = Kn�Kn.

Now suppose that the filled-in parts of the partial latin square form a sub-rectangle

minus one cell. Permuting rows and columns, which amounts to merely renaming vertices

in the factors Kn of G = Kn�Kn, I can assume that the filled-in cells occupy R′, which is an

r× s rectangle in the upper left hand corner of the square, but with the (1, s) cell removed.

Let vij stand for the (i, j) cell, 1 6 i, j 6 n, and let R = {vij | 1 6 i 6 r, 1 6 j 6 s}, so

R′ = R\{v1s}. Let L denote the list assignment induced by the filled-in cells.
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First observe that L(v1s) 6= ∅, for, if L(v1s) = ∅, then taking H = {v1s} we would have∑
α∈Cn

α(H(σ,L)) = 0 < 1 = |V (H)|, contradicting the assumption that Hall’s condition is

satisfied. Next, I may as well suppose that for each σ ∈ L(v1s), the latin square cannot be

completed with σ in cell v1s. In view of the second proof of part (i) of the theorem, given

above, this means that if I fill v1s with σ and then define list assignment L′ by

L′(v1k) = L(v1k)\{σ}, s < k 6 n,L′(v1s) = {σ},L′(vis) = L(vis)\{σ}, r < i 6 n,

and L′ = L otherwise (since σ ∈ L(v1s), σ does not appear in any of the filled cells

v2s, . . . , vrs), it must be that the inequality in Hall’s condition does not hold for L′ and

the subgraph H = Kr�Kn of G induced by the vertices (cells) vij , 1 6 i 6 r, 1 6 j 6

n. That is,
∑

τ∈Cn
α(H(τ,L′)) < rn = |V (H)|. It must be, therefore, that for some

τ ∈ Cn, α(H(τ,L′)) < r = α(H). Since L satisfies Hall’s condition, by assumption, so∑
i∈Cn

α(H(i,L)) > rn, so α(H(i,L)) = r for all i ∈ Cn, and since, in H, L′ differs from

L only on the cells v1s, v1,s+1, . . . , v1n, where L′(v1s) = {σ} and L′(v1k) = L(v1k)\{σ},

s < k 6 n, it must be that τ ∈ L(v1s).

The fact that α(H(σ,L)) = r means that there is a choice of r cells, one from each row

of H, no two in the same column, which have σ on their L-list. Since σ does not occur in the

filled-in cells in column s, below v1s, in H (and I know that it does not because σ ∈ L(v1s)),

I can let v1s be one of those r cells. It follows that α(H(σ,L′)) = r, so τ ∈ L(v1s)\{σ}.

Further, it must be that for every choice of r independent cells from H bearing τ on their

L-list, v1s is the cell chosen from row 1. Consequently, letting H ′ = H − v1s, I have that

α(H ′(τ,L)) = r − 1.

Now, σ was an arbitrary element of L(v1s); letting τ now play the role just played by

σ, we deduce the existence of η ∈ L(v1s), η 6= τ , such that α(H ′(η,L)) = r − 1. Since
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α(H ′(i,L)) 6 α(H ′) = r for every i ∈ Cn, I have

∑
i∈Cn

α(H ′(i,L)) = α(H ′(τ,L)) + α(H ′(η,L)) +
∑

i∈Cn\{τ,η} α(H ′(i,L))

6 r − 1 + r − 1 + r(n− 2)

= rn− 2 < rn− 1 = |V (H ′)|,

contradicting the assumption that G and L satisfy Hall’s condition. So it must be that the

latin square can be completed by filling in v1s with a color from L(v1s) after all.

It is worth noting that while the completability in case (i) was implied by the inequality

in Hall’s condition for a single choice of H, either H = G or H = Kr�Kn, in case (ii)

the completability was implied by three instances of the inequality in Hall’s condition:

H = {v1s}, H = Kr�Kn, and H = Kr�Kn − v1s. (In all of this, by Kr�Kn, we mean of

course a particular choice of Kr�Kn in G, the one constituted by the first r rows of the

array).

2

2.3 Recasted Results

In this section, I will examine several theorems on completing PLS, as mentioned in the

introductory chapter, due to Buchanan and Ferencak [3], Andersen and Hilton [1], Rodger

[18] and a result of Hoffman [17] which deals with commutative latin squares. We shall

discover that each of them except Hoffman’s, possibly, can be restated in the form:

if the prescribed cells form such - and - such a configuration, then the satisfaction of the

inequality in Hall’s Condition for just a few special choices of induced subgraph(s) suffices

for the existence of a completion.
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2.3.1 Recasting

Is HC sufficient for the completion of a partial latin square? Most think no!

What I have found: in 6 different theorems giving necessary and sufficient conditions

for a partial latin square of a certain sort (i.e. with the prescribed cells filling a certain

configuration) to be completable, not only do the theorems confirm that HC suffices in

those cases, but in each case, a small number of the 2n2 − 1 inequalities constituting

HC suffices for completion.

I now present, in the form of a list, the re-casted results. I shall indicate the prescribed

cells and the H’s such that the inequality in HC for those H’s suffices for completability.

The proofs of the claims in 1 and 2 are given in section 2.2 above. The proofs of the

claims in parts 3,4,5 and 6 will use the well-known ancestor of Ryser’s Theorem, due to

Marshall Hall [11], theorem 2.1.

1. H.J. Ryser (1951 [19])

Prescribed cells or configuration: top left r × s sub-rectangle.

Cell set such that HC inequality implies completability: In section 2.2 it is shown that

either the full array of n2 cells, or the cells of the first r rows, are such that the HC inequality

(1.1) for the subgraph induced by those cells implies completability. There are numerous

other choices; for instance, the upper right r × (n − s) sub-rectangle will do the job. This

can be inferred from the proof in section 2.2 and the fact that in the case of the graph and

list assignment involved in a partial latin square, if inequality (1.1) holds for some H then

it will also hold for any subgraph obtained from H by adding or deleting prescribed cells.

Thus the inequality (1.1) for the upper right r × (n − s) sub-rectangle in a PLS in which

the prescribed cells occupy the upper left r × s sub-rectangle implies inequality (1.1) for
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H ≡ Kr2Kn, the first r rows, and by the proof of theorem 2.3 that implies that the PLS

is completable.

Here is a direct demonstration that (1.1) for H ≡ Kr2Kn−s, the upper right r×(n−s)

rectangle in a PLS with the cells of the upper left Kr2Ks prescribed, implies completability.

As in the proof of theorem 2.3, Ryser’s theorem will be the main engine of the proof.

Each i ∈ Cn appears on the lists of all the cells of r−NR(i) rows of H, and on no other

lists in H. (We appeal to the terminology in the proof of theorem 2.3). Therefore, Hi is

an (r −NR(i)) × (n − s) sub-rectangle of H, so α(Hi) = min[(r −NR(i)), (n − s)].

Therefore, assuming (1.1) holds for H, I have

|V (H)| = r(n− s) 6
∑
i∈Cn

α(Hi) 6
∑
i∈Cn

(r −NR(i))

=
∑
i∈Cn

r −
∑
i∈Cn

NR(i) = nr − rs = r(n− s).

Therefore, r − NR(i) = min[(r − NR(i)), (n − s)] for each i ∈ Cn. Thus, for each i,

r −NR(i) 6 n− s, which implies completability, by Ryser’s theorem. 2

2. B. B. Bobga and P. D. Johnson (2007 [2])

Prescribed cells or configuration: the upper left r by s sub-rectangle minus one cell.

Without loss of generality, the missing cell will be v1,s in the first row and the sth column.

Cell sets or subgraphs induced by them such that HC inequality implies completability:

H ∈
{
{v1,s},Kr2Kn, (Kr2Kn)− v1,s

}
, where Kr2Kn is in the first r rows.

See theorem 2.3 and its proof.

3. H.L. Buchanan and M. N. Ferencak (2000 [3])

Prescribed cells or configuration: first s rows together with the first d cells of row s+1.
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Cell sets such that HC inequality implies completability:

The H ′s here are precisely the 2(n−d)− 1 subgraphs induced by the non-empty subsets

of the set of the last n− d cells in row s + 1.

Proof:

What is to be proven is that the inequalities in Hall’s Condition for the described

choices of H suffice for the given PLS to have a completion.

By theorem 2.1, for completion, it suffices that the last n − d cells in row s + 1 be

properly filled from their lists, so that the result is an (s + 1)× n latin rectangle. Because

of the way the lists are formed, it therefore suffices that the clique on n−d vertices induced

by those n − d cells be properly colorable from their lists. But then the original theorem

of Phillip Hall [12], reconstrued to be about list-colorings of cliques, says that 2(n−d) − 1

inequalities constituting Hall’s condition in this case suffices for a completion.

2

4. H.L. Buchanan and M. N. Ferencak (2000 [3])

Prescribed cells: top right s × (n − d) sub-rectangle together with the first d cells of

row s + 1.

Cell sets such that HC inequality implies completability: The H ′s here are precisely

the 2(n−d) − 1 sets referred to in 3 above together with the upper left s× d sub-rectangle.

Proof:

Buchanan and Ferencak prove in [3] that one can complete this PLS if and only if the

following three conditions are satisfied:

1. There are no collections X of columns and
∑

of symbols such that

(i) the d prescribed symbols in row s + 1 lie in
∑

;
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RHs

s+1 X

n-dd

Figure 2.6: Rectangular blocks with R and C filled-in

(ii) X is contained in the set of columns d + 1 to n;

(iii) Every symbol σ in the set of all the symbols Cn \
∑

appears in each column in X

in the first s rows

(iv) |X| > |
∑
| − d.

2. Each symbol occurs (prescribed) at least s− d times in the first s rows.

3. No symbol occurring (prescribed) exactly s − d times in the first s rows also occurs in

the first d cells of row s + 1.

Condition 1 above was given by Buchanan and Ferencak as necessary and sufficient for

completion in case 3, above, and it is easy to see why. If there existed a set X of columns

and a set
∑

⊆ Cn satisfying (i)− (iv) under 1, just above, then the cells in row s + 1 in the

columns of X would have their lists contained in
∑
\ {symbols in the first d cells of row

s + 1}, so that |X| > |
∑
| − d constitutes a contradiction of one of the HC inequalities

associated with one of the 2(n−1) − 1 non-empty subsets of the last n− d cells in row s + 1.

Therefore, if all of those inequalities hold, then there are no such X and
∑

, and the first

condition is satisfied.
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Now let H be the subgraph of Kn2Kn consisting of the Ks2Kd depicted in the upper

left of the array. For each symbol σ ∈ Cn, let N(σ) be the number of appearances of σ in

the s× (n− d) rectangle R. Clearly, σ appears on the list of a cell in H if and only if the

cell is in one of the s−N(σ) rows in which σ does not appear in R, and σ does not appear

as the prescribed entry of row s + 1 in the column of the cell.

Therefore, Hσ is induced by the cells of a subrectangle of dimensions

(s−N(σ))× d if σ 6∈ D = {symbols appearing in the first d cells of row s + 1}, and of

dimensions (s − N(σ)) × (d − 1) if σ ∈ D. Thus α(Hσ) = min(s − N(σ), d) if σ 6∈ D and

α(Hσ) = min(s−N(σ), d− 1) if σ ∈ D. Inequality (1.1) for H implies

sd = |V (H)| 6
∑
σ∈Cn

α(Hσ) 6
∑
σ∈Cn

(s−N(σ)) = ns−
∑
σ∈Cn

N(σ) = ns−s(n−d) = sd. (2.1)

Since the ends of equation (2.1) are equal, the middles must also be equal. Hence all the

inequalities are equalities.

Hence s−N(σ) 6 d if σ 6∈ D and s−N(σ) 6 d− 1 if σ ∈ D, which imply 2 and

3 above.

2

5. L. D. Andersen and A. J. W. Hilton (1980 [1])

Prescribed cells or configuration: upper left r by s sub-rectangle, S, of a t by t array,

together with some or all of the cells (r + i, s + i), i = 1, 2, . . . , t − s, 0 < r < s < t; if

0 < r = s < t, the prescribed diagonal elements outside of R are in some or all of the

cells (r + i, s + i), i = 1, 2, . . . , t − s − 1. [Taking into account the equivalences afforded

by simultaneous row and column permutations, the last requirement really says that if
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0 < r = s < t, the prescription on the diagonal elements outside of R misses at least one

cell.]

Take H to be the r by (t− s) rectangle in the upper right of the array.

Proof:

For σ ∈ Ct, let NS(σ) denote the number of occurrences of σ in S and let f∗(σ) denote the

�
�· · · ·

�
�

HSr

t-r

t-ss

Figure 2.7: Rectangular blocks with S and local diagonals filled-in

number of occurrences of σ in the prescribed cells among those on the diagonal (r+ i, s+ i),

1 6 i 6 t− s, if r < s, or 1 6 i 6 t− s− 1, if r = s.

Note that ∑
σ∈Ct

f∗(σ) 6


t− s− 1, if r = s ;

t− s, if r < s .

Anderson and Hilton prove that the PLS with prescribed entries filling the rectangle S and

part of the diagonal outside of S, as described, can be completed to a Latin Square of order

t if and only if NS(σi) > r + s− t + f∗(σi) for each σ ∈ Ct.

For any symbol σ ∈ Ct, Hσ is induced by the cells in the (r−NS(σ))× (t− s− f∗(σ))

subrectangle formed by the intersection of the r − NS(σ) rows, among the first r rows, in

which σ does not appear in that row in S, and the t−s−f∗(σ) columns, among the last t−s
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columns, such that σ does not appear in that column in a prescribed cell on the diagonal

outside of S.

Therefore α(Hσ) = min(r −NS(σ), t− s− f∗(σ)) for each σ.

Then inequality (1.1) implies

r(t− s) = |V (H)| 6
∑

σ∈C α(Hσ) 6
∑

σ∈C(r −NS(σ))

=
∑

σ∈C r −
∑

σ∈C NS(σ) = tr − rs = r(t− s).

Ends equal means middles must also be equal. We conclude that for each σ,

r −NS(σ) 6 t− s− f∗(σ) ⇐⇒ NS(σ) > r + s− t + f∗(σ) as required.

2

6. C. A. Rodger (1984 [18])

Prescribed cells or configuration: the top left n by n subrectangle, R of a t by t array,

t > 2n + 1, together with all the main diagonal elements, (i, i) for i = n + 1, n + 2, . . . , t.

�
·
·
·
·D·

·
·
·
�

HRn

t-n

t-nn

Figure 2.8: t× t square with block R and main diagonal D filled-in

For σ ∈ Ct, let NR(σ) denote the number of occurrences of σ in R and let f(σ) denote

the number of occurrences of σ on the diagonal outside of R, in the cells (i, j), n+1 6 i 6 t.
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Rodger proves that a PLS with such a prescription configuration can be completed to

a LS of order t if and only if: [Andersen and Hilton’s requirement in part 5 above]

(i) NR(σ) > 2n− t + f(σ) for each σ ∈ Ct;

(ii) for each σ ∈ Ct, if NR(σ) = n then f(σ) 6= t− n− 1; and

(iii) if R is a LS on the symbols σ1, σ2, . . . , σn and t = 2n + 1, then
∑n

i=1 f(σi) 6= 1.

Consider V (H) = {v(i, j) : 1 6 i 6 n, n < j 6 t}.

Then |V (H)| = n(t− n).

For this choice of H, the inequality in Hall’s Condition will imply condition (i) of this

theorem; the proof is just like that in item 5, above, but I give it any way.

As in 5, for each symbol σ ∈ Ct, Hσ is an (n−NR(σ))× (t− n− f(σ)) subrectangle of

H.

Then for each σ ∈ Ct,

α(Hσ) = min(t− n− f(σ), n−NR(σ)).

If the inequality in 1.1 holds for H, then

n(t− n) 6
∑
σ∈Ct

α(Hσ) =
∑
σ∈Ct

min(t− n− f(σ), n−NR(σ))

6
∑
σ∈Ct

(n−NR(σ))

=
∑
σ∈Ct

n −
∑
σ∈Ct

NR(σ) = nt− n2 = n(t− n).

It then follows that min(t− n− f(σ), n−NR(σ)) = n−NR(σ)) for each σ; hence

n−NR(σ) 6 t− n− f(σ) for each σ, which is condition (i).
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Next I consider condition (ii). It is my claim that if the inequality (1.1) holds for each

H ∈ {column n + 1, column n + 2, . . . , column t}, then condition (ii) also holds.

Proof:

Suppose (ii) does not hold; then for some σ, NR(σ) = n and f(σ) = t− n− 1. Then σ

appears at all but one place on D, the part of the main diagonal outside R. Let H be the

column of the cell on D where σ does not appear. Then σ appears on no list on H and H

is a clique, hence α(Hσ) = 0 and α(Hτ ) 6 1 for all τ ∈ Ct.

So ∑
τ∈Ct

α(Hτ ) 6 t− 1 < t = |V (H)| .

This contradicts HC and so it must be that if HC holds, then condition (ii) holds.

Finally, consider condition (iii).

When t = 2n + 1, (iii) is guaranteed by the inequality (1.1) for the following choices

of H (notice there will be t− n of them in all):

H(k) = {v(i, j) : 1 6 j 6 n, n + 1 6 i 6 t} ∪ {v(i, j) : n + 1 6 i 6 t, 1 6 j 6 n}

∪{kth row} ∪ {kth column}, for k = n + 1, n + 2, . . . , t.

you have
∣∣V (H(k))

∣∣ = 2n(t−n) + 2(t−n) − 1 = 2n(n+1) + 2n + 1

because t = 2n + 1 ⇔ t− n = n + 1. I will show that if condition (iii) fails, then inequality

(1.1) for one of the H(k) will fail.

Suppose t = 2n + 1, and R is a latin square on the symbols σ1, σ2, . . . , σn, but∑n
i=1 f(σi) = 1. Then exactly one symbol σi, i ∈ {1, 2, . . . , n}, appears on D, and it

appears exactly once, say in the kth row and kth column as shown in figure 2.9 above.

Because R is a LS on σ1, σ2, . . . , σn, for 1 6 j 6 n, σj does not appear on the list of

any cell v(i, j), n + 1 6 i 6 t, 1 6 j 6 n or 1 6 i 6 n, n + 1 6 j 6 t.
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σi

R

A

Bn

t-n

t-n

k

k

n

Figure 2.9: t× t square with indicated H(k) filled-in

If j 6= i then σj appears on the lists of the cells of row k in columns n + 1, n + 2, . . . , t,

except row k, and the same for column k, so α(Hσj ) = 2. Clearly, α(Hσi) = 1. Letting

σn+1, . . . , σt denote the symbols in Ct \ {σ1, σ2, . . . , σn}, for n + 1 6 j 6 t it is easily seen

that Hσj consists of a (t−n−f(σj))×n sub-rectangle of the lower left (t−n)×n rectangle

A, together with an n× (t−n− f(σj)) subrectangle of the upper right n× (t−n) rectangle

B, together with t− n− f(σj)− 1 cells in each of row and column k, outside of A and B.

To see how to estimate α(Hσj ) in this case, assume that k = n + 1 (which could be

actually achieved by permuting rows and columns, an isomorphism of the graph). Then

α(Hσj ) is contained in the union of two rectangles, one (n + 1 − f(σj)) × (n + 1) and the

other (n + 1)× (n + 1− f(σj)). (Since t = 2n + 1, t− n = n + 1).

Therefore

α(Hσj ) 6 2min[n+1, n+1−f(σj)] = 2(n+1−f(σj)), for each j = n+1, . . . , 2n+1.

But if f(σj) = 0, α(Hσj ) 6 2n + 1 = 2(n + 1 − f(σj)) − 1 , because it is not

possible to find 2n + 2 independent cells in the union of A, B, row n + 1 and column n + 1.
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And f(σj) = 0 for some j ∈ {n + 1, . . . , 2n + 1}, because

2n+1∑
j=n+1

f(σj) = n + 1− 1 = n,

and there are n + 1 values of j summed over.

Therefore,

2n+1∑
j=1

α(Hσj ) =
n∑

j=1

α(Hσj ) +
2n+1∑

j=n+1

α(Hσj )

6 2(n− 1) + 1 + 2
2n+1∑

j=n+1

[(n + 1)− f(σj)]− 1

= 2n− 1 + 2(n + 1)2 − 2
2n+1∑

j=n+1

f(σj)− 1

= 2n− 1 + 2(n2 + 2n + 1)− 2n− 1

= 2n2 + 4n < 2n2 + 4n + 1 =
∣∣∣V (H(k))

∣∣∣
Thus

∑t
j=1 α(H(k)

σj ) <
∣∣V (H(k))

∣∣ which contradicts HC.

Thus for this choice of H(k), Hall’s Condition fails. By contraposition, one can then

conclude that if HC holds, then so also will condition (iii).

2
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There is one other result related to Cropper’s Problem that I wish to inspect.

7. D. G. Hoffman (1983 [17])

This theorem gives two necessary and sufficient conditions for a partial (incomplete)

commutative LS to be completable to a commutative LS. One is equivalent to the satisfac-

tion of an HC inequality for a choice of one H, but the other does not seem to arise from

any combination of the inequalities in HC.

Referring to figure 2.10, let c(i) be the number of appearances of the symbol i in all of

A, d(i) be the number of occurrences of the symbol i on the main diagonal of A, and t(i)

be the number of appearances of the symbol i along the tail of A. We have the following

theorem by Hoffman:

Theorem 2.4 D.G. Hoffman 1983:([17]) Let A be a commutative incomplete latin

square of size r and order n, with content c and diagonal d. Let t : N →N, with∑
i∈N t(i) = n− r. Then A can be embedded in a commutative latin square B with tail t if

and only if, for each i ∈ N, (1). d(i) + t(i) ≡ n(mod 2), and (2). 2r + t(i) 6 n + c(i).

Since this theorem is about completing partial commutative latin squares, it would

not finish off Cropper’s Problem if it turned out that Hall’s Condition is not sufficient for

completability in such circumstances, but such an example would bear on a more general

question:

which graphs G have the property that for every partial proper L-coloring of G with

X (G) colors, {1, 2, . . . ,X (G)}, there is an extension to a proper coloring of G with X (G)

colors whenever G and the list assignment L defined by the partial coloring in the obvious

way, (for an uncolored vertex v, I have: L(v) = {1, 2, . . . ,X (G)}-{colors on N (v)}) satisfy

Hall’s Condition?
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I will now show that the second condition of Hoffman’s result is equivalent to HC for

some prescribed set of vertices.

Proof:

�
·
·
·
· t(i)·

·
·
·
�

HAr

n-r

n-rr

Figure 2.10: n× n commutative square with block A and main diagonal filled-in

Referring to figure 2.10, given A and its tail (main diagonal outside A) prescribed, let

H be defined by

V (H) = {Vij : 1 6 i 6 r, r + 1 6 j 6 n}

I claim that the inequality in HC for this H will imply condition (2) : 2r+t(i) 6 n+c(i)

for each symbol i = 1, 2, . . . , n.

For each symbol i, we see that i appears on the lists in cells of r− c(i) rows of H where

they intersect n− r − t(i) columns.

So H(i,L) ≡ Hi is an (r − c(i))× (n− r − t(i)) rectangle.

=⇒ α(Hi) = min(r − c(i), n− r − t(i)) and so by HC, I have

|V (H)| = r(n− r) 6
n∑

i=1

α(Hi) =
n∑

i=1

min[r − c(i), n− r − t(i)]
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6
n∑

i=1

(r − c(i)) = nr −
n∑

i=1

c(i) = nr − r2 = r(n− r) = |V (H)| .

Since the ends are equal, it must be that all the inequalities between were actually

equalities. By termwise equality, it means that min(r−c(i), n−r− t(i))= (r−c(i) and so it

must be that r−c(i) 6 n−r−t(i)) for all symbol i = 1, 2, . . . , n. Thus (2) : 2r+t(i) 6 n+c(i)

for each symbol i is satisfied if the inequality for HC is satisfied for this choice of H.

2

The problem of completing a partial commutative latin square to a commutative latin

square is indeed a list-coloring problem in the same way that completing a partial latin

square to a latin square is, but the underlying graph is not Kn2Kn, nor are the lists gener-

ated from the prescribed cells just as they are in the P.L.S case. However, the underlying

graph in partial commutative latin square case is obtainable from Kn2Kn by adding edges,

and therefore the lists dictated by a partial prescription are subsets of the lists dictated

in Kn2Kn by the same prescription. Therefore, HC in the true partial commutative latin

square case implies HC in the Kn2Kn, or P.L.S., setting. Therefore, the preceding shows

that HC in the true partial commutative latin square case implies condition (2) in Hoffman’s

theorem. we doubt that it implies (1), which does not seem the sort of thing that could be

implied by a collection of inequalities, but the matter requires further investigation.

2.3.2 Hoffman’s Lemma

I will state and proof a result that will enable us give another proof of Ryser’s theorem.

This result is due to D.G Hoffman.

Lemma 2.1 Hoffman’s Lemma: Let G = Km�Kn ≡ the line graph of Km,n be an m by

n rectangular array of cells such that each cell holds exactly one symbol.
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Then one can permute within the rows (columns) to make the array G to become column

latin (respectively row latin) if and only if no symbol appears more than n times (respectively,

m times) in the m by n array.

G can be rearranged by permutations within lines to be both row and column latin if

and only if no symbol appears more than min(m,n) times.

Before giving a proof of this lemma, I will first give a remark, an example of the use of

the lemma, a corollary and a result of König.

By the pigeon hole principle,we remark that if there were n + 1 (respectively m + 1)

copies of a symbol σ in the m by n array G, then two of them will be forced to appear on

the same column (respectively, row). This will contradict latinness.

An application of this lemma is the following example.

Example 2.2

2 2 1 3 4 7

1 2 3 4 5 6

2 3 4 5 6 7

1 1 2 4 3 3

2 4 6 8 8 8

Figure 2.11: Randomly filled-in 5 × 6

Since each symbol appears not more than n = 6 times, one can make the array to be

column latin by permuting within each row.
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2 2 1 3 4 7

6 3 2 4 5 1

3 4 5 6 7 2

1 1 4 2 3 3

4 6 8 8 2 8

Figure 2.12: Column latin 5 × 6

However, there are more than m = 5 copies of the symbol 2. Hence the table cannot be

made row latin because one cannot place 6 copies of 2 in exactly 5 rows without duplicating

in some row.

If we modify this table to a new table in which no symbol appears more than 5 =

min(5, 6) times in the whole array, we see by Hoffman’s Lemma that the new array can be

made to become a latin rectangle as shown in our next example.

Example 2.3

Consider the array given by

1 2 1 3 4 7

1 2 3 4 5 6

2 3 4 5 6 7

1 1 2 4 3 3

2 4 6 8 8 8

Figure 2.13: Randomly filled-in 5 × 6 Rectangle
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By permuting within the rows, I get the following array which is column latin

2 7 1 3 1 4

6 3 2 4 5 1

3 4 5 6 7 2

1 1 4 2 3 3

4 6 8 8 2 8

2 7 8 3 1 4

6 3 2 4 5 1

3 4 1 6 7 2

1 6 4 2 3 8

4 1 5 8 2 3

Figure 2.14: 5 × 6 Latin Rectangle

The final latin rectangle results from permutations within the columns.

Theorem 2.5 König 1916:[8] If G is a bipartite multigraph with chromatic index X ′(G)

and maximum degree 4(G), then X ′(G) = 4(G).

Proof of Hoffman’s Lemma:

The ”only if” claim has been proven already.

Suppose each symbol appears no more than n times in the array. I aim to show that

one can permute within the rows to make the array column latin. Make a bipartite graph

as follows.

Each row has n entries, so n symbols appear in each row. Hence I get deg(ri) = n,

i = 1, 2, . . . ,m. deg(sj) = number of appearances of symbol sj in array, for j = 1, 2, . . . , k.

But each symbol appears no more than n times by hypothesis. Hence deg(sj) 6 n, for

j = 1, 2, . . . , k.
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◦
◦
◦
◦
·
·
·

c(t)
(∗)

•
·
·
◦

◦
◦
◦
◦
·
·
·
•
·
·
◦

r1

r2

r3

r4

ri

rm

s1

s2

s3

s4

sj

sk

Symbols in arrayRows in array

where (∗) stands for as many edges as appearances of symbol sj in row ri.

Figure 2.15: Rows ri and symbols sj in the array.

By theorem 2.5, X ′(G) = 4(G) = n as G is a bipartite multigraph. So I can properly

color the edges of this bipartite graph with n colors: c1, c2 . . . cn which in turn represent the

columns.

Now whenever an edge from row ri to symbol sj is colored ct, put one of the sj ’s in row

i in column t. Since the coloring is proper, only one symbol will appear in row i, column

t after this arrangement and, by the way the bipartite graph is defined, each row will still

contain the same numbers of the different symbols that it did before. That is, there has

been rearrangement only within each row.

2

2.3.3 Another look at Ryser’s Theorem

I now present another proof of the theorem of Ryser’s, a result that has been the

backbone of the section on recasted results.
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Theorem 2.6 Ryser’s Theorem: [19]

An r×s latin rectangle R on n symbols σ1, σ2, . . . , σn can be completed to a latin square

of order n if and only if NR (σi) > r + s− n for each i = 1, 2, . . . , n,

where NR (σi) is the number of occurrences of the symbol σi in R.

Proof : I need to complete the partial latin rectangle R to an r by n latin rectangle

on σ1, σ2, . . . , σn. By an old result of M.Hall, (Theorem 2.1) which can also be proved

using Hoffman’s Lemma 2.1, any r by n latin rectangle on n symbols can be completed

to a latin square. Complete each row to be of length n so that each row contains all n

symbols σ1, σ2, . . . , σn. One can then complete to an r by n latin rectangle if and only if

one can rearrange within the rows of the r by n − s block made by the first r rows, last

n− s columns, so that the result is (also) column latin. By Hoffman’s Lemma 2.1, one can

do this rearrangement if and only if for each i = 1, 2, . . . , n,, σi appears at most n− s times

in the array.

But σi appears in each row, so in all, it appears r times in the r by n array. In R, σi

appears NR(σi) times and so in the r by n− s block, it appears r−NR(σi) times. In the r

by n− s block, the ′n′ in Hoffman’s Lemma is the number of columns, n− s. Thus

the completion to an r × n latin rectangle is possible if and only if

r −NR(σi) 6 n− s ⇐⇒ NR (σi) > r + s− n, where n− s is the number of times

the symbol σi appears in the r by n− s rectangle.

2
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Chapter 3

HALL+ AND HALL++ GRAPHS

3.1 Introduction

In this chapter, I shall explore the relations that exist between HALL+ and HALL++

graphs and attempt answers to questions about obtaining new HALL+ and HALL++

graphs from old ones. I shall also look at a few graph theoretic operations that either

preserve or modify the property of a graph being HALL+ or HALL++.

The main result of this chapter is that the operation of attaching cliques to vertices

of HALL+ graphs yield a HALL+ graph, and the same for HALL++. I shall also

prove any induced subgraph of a HALL+ graph is HALL+, and the same holds for

HALL++. Hence the classes of HALL+ and HALL++ graphs have forbidden subgraph

characterizations.

3.2 Inclusion Property

I shall now try to build up a theory for HALL+ graphs that resembles that for HALL

graphs.

Recall that a simple graph G ∈ HALL+ if and only if for every list assignment L of

G, if G and L satisfy HC+, then there is a proper L-coloring of G.

Theorem 3.1 If G ∈ HALL, then G ∈ HALL+ and the converse is false. Thus HALL

( HALL+ ⊆ HALL++.
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Proof:

G ∈ HALL means whenever G and L satisfy HC, then there is a proper L-coloring

of G. Now suppose HC+ is satisfied for G and L. I wish to show that a proper L-coloring

for G exists. Since HC+ is satisfied, it follows that HC also holds for G and L. Hence

G ∈ HALL =⇒ there is a proper L-coloring for G. The same logic works for HALL+ ⊆

HALL++ because if G and L satisfy HC++, then G and L satisfy HC+ and so there

is a proper L-coloring of G as G ∈ HALL+. Hence G ∈ HALL++.

To complete the proof, I will give an example of a graph which is HALL+ but not

HALL. Consider G = C4. Then by a later result, proposition 3.3, G is HALL+. However,

by the characterization of Hall graphs in theorem 1.7, I know that C4 is not HALL.

2

Lemma 3.1 Let H be an induced subgraph of G with list assignment L. Suppose that H and

L satisfy HC+. Let L̃ be an extension of L to V (G) such that G and τ satisfy HC and any

L̃-tight subgraph of G is also an L-tight subgraph of H. Then any HC+ - satisfying family

[Sσ : σ ∈ C] for H and L is also an HC+ - satisfying family for G and L̃; in particular, G

and L̃ satisfy HC+.

Proof:

Since Sσ ⊆ V (H(σ,L )) ⊆ V (G(σ,L) for each symbol σ ∈ C, we see that Sσ must

belong to V (G(σ,L).

By assumption, any L̃-tight subgraph T of G is also an L-tight subgraph of H. So

∀σ ∈ C, T (σ, L̃) = T (σ,L) and so I can conclude that |Sσ
⋂

V (T )| = α (T (σ,L)) = α

(T (σ, L̃)).

2
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Proposition 3.1 If G ∈ HALL+, (respectively HALL++) and H is an induced subgraph

of G, then H ∈ HALL+ (respectively HALL++).

Proof:

I will do the proof for HALL+ only. The proof for HALL++ is very similar.

Let G ∈ HALL+. Then by definition, if G and L satisfy HC+, then there is a proper

L-coloring. Now take H induced in G as postulated and suppose that L is a list assignment

to H such that H and L satisfy HC+. The proof will be complete once I can show that

there is an L-coloring for H. Extend L to a list assignment L̃ of G by assigning huge lists

to the part of G outside of H, i.e. to the vertices in V (G)\V (H), huge enough so that G

and L̃ satisfy HC and any L̃-tight subgraph T of G will also be an L-tight subgraph of H.

Then by the result above, lemma 3.1, whatever the HC+-satisfying family [Sσ : σ ∈ C] was

for H and L, it is also an HC+-satisfying family for G and L̃. Therefore G has a proper

L̃-coloring, and therefore H has a proper L-coloring. 2
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Figure 3.1: G = K2 V K10 with assigned list.
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This example is due to Matt Cropper.

The graph G has no tight subgraphs and one cannot properly color. However, deleting

any vertex leaves a properly L-colorable graph. One can therefore check HC for G alone.

Since α(Gσ) = 4 for each symbol, we see that
∑

σ∈C α(Gσ) = 20 > 12 = |V (G)|,

and so HC is satisfied. Since there are no tight subgraphs, one can take Sσ = ∅,∀σ. Then

[Sσ;σ ∈ C] is an HC++ - satisfying family.

Conclude that G 6∈ Hall♦ for ♦ ∈ { empty string, +, ++, *, **}.

3.3 Forbidden Induced Subgraph Characterization

Let P be a property of graphs (such as being a Hall♦, where ♦ ∈ { empty string, +,

++, *, ** }).

Definition 3.1 I will say that P has a forbidden induced subgraph characterization if and

only if there is a collection Q of graphs such that a graph G has property P if and only if

G has no induced subgraph in the set Q.

In general, to see that a property P has an induced subgraph characterization, we check

whether or not property P is closed under the property of taking induced subgraphs.

Proposition 3.2 A property P of graphs (which some graphs actually have) has a forbidden

induced subgraph characterization if and only if the collection G(P) of graphs, defined by

G(P) = {G: G has property P} is closed under the operation of taking induced subgraphs.

Proof : The ”only if” part is true because if I is an induced subgraph of an induced

subgraph H of G, then I is also induced in G. Thus the collection is closed under taking

induced subgraphs, if P has forbidden induced subgraph characterization, for if G can

contain no induced subgraph belonging to Q, then neither can H.
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To see that the other implication is also true, suppose that G(P) is closed under taking

induced subgraphs and define the collection Q to be:

Q = {H | H is a graph that does not have property P, but ∀ v ∈ V (H), H − v ∈ G(P) }.

I will show that property P has a forbidden induced subgraph characterization, with

Q as the collection of forbidden induced subgraphs, whenever G(P) is closed under the

operation of taking induced subgraphs.

If the graph G has an induced subgraph H ∈ Q, then by hypothesis, G does not have

property P because G has an induced subgraph without property P. Suppose that G does

not have property P . I want to see that G has an induced subgraph in Q. If G − v has

property P for every vertex v ∈ V (G), then G itself is in Q and we are done. Otherwise,

G1 = G− v1 does not have property P, for some v1 ∈ V (G). If G1 − v has property P for

every v ∈ V (G1) then G1 ∈ Q and we are done. Otherwise, for some v2 ∈ V (G1), G1 − v2

= G− v1 − v2 does not have property P.

Continuing in this way, we have a sequence G1, G2, . . . of graphs, Gk = Gk−1 − vk for

some vk ∈ V (Gk−1), each without property P. The sequence much terminate at some graph

H = Gk, an induced subgraph of G with at least two vertices which does not have property

P but such that H−v does have property P for every v ∈ V (H); i.e., H ∈ Q. H must have

at least two vertices because by assumption G(P) is non-empty and closed under taking

induced subgraphs, so K1 has property P.

2

Of course, forbidden subgraphs exist, however, completely characterizing the minimal

set Q, can be a little more involving. This is left for further research.
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Corollary 3.1 [6] The class of Hall♦ graphs, for ♦ ∈ { empty string, +, ++, *, ** } has

a forbidden induced subgraph characterization.

This result says that if P is the property of being Hall, then there is a collection Q of

graphs such that a graph G is Hall if and only if G has no induced subgraph in the set Q.

Following is a characterization of HALL graphs. I do not yet have forbidden induced

subgraph characterizations for HALL+ and HALL++, and I do not know if the HALL*

or HALL** graphs have such a characterization.

For a start, let us restate the following equivalent results of Hilton and Johnson [15].

Theorem 3.2 [15] G ∈ Hall if and only if G has no induced Cn, n > 4 nor K4 -minus-

an-edge.

Question : What characterization similar to theorem 3.2 above can be stated for the

class of HALL+, HALL++ as well as HALL* and HALL** graphs?

3.4 Closure Property

We now have enough background knowledge of HALL+ graphs to tackle one of the

main results in this work.

Theorem 3.3 If a graph H ∈ Hall+, and a graph G is obtained from H by attaching a

clique to an arbitrary vertex v of H, then G ∈ HALL+. Thus the class of HALL+ graphs

is closed under attachment of cliques.

Lemma 3.2 Suppose K is a clique, L a list assignment to the graph K, and K and L

satisfy Hall’s Condition. Suppose further that H1,H2 are L-tight sub-cliques of K. Then

1). H0 = H1 ∩H2 is also L-tight.
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2). H3 = < H1 ∪H2 > is also L-tight.

It is clear that both H0 and H3 are cliques.

Proof of Lemma:

Since H3 is a clique, α(H3(σ,L)) as a function of the symbol σ is the characteristic

function of
⋃

v∈V (H3) L(v). This is true since the α value will either be 1 or 0 depending on

whether or not σ ∈ ∪L(v). That is,

α(H3(σ,L)) =


1, if σ ∈

⋃
v∈V (H3) L(v);

0, otherwise.
By Hall’s Condition on H3 and L, and the fact that

V (H3) = V (H1) ∪ V (H2), you have the following:

∑
σ∈C

α(H3(σ,L)) > |V (H3)| = |V (H1) ∪ V (H2)| . (3.1)

Also, α(H3(σ,L)) being a characteristic function

⇒
∑

σ∈C α(H3(σ,L)) =
∣∣∣⋃v∈V (H3) L(v)

∣∣∣ =
∣∣∣⋃v∈V (H1)∪V (H2) L(v)

∣∣∣
=

∣∣∣{ ⋃
v∈V (H1) L(v)}

⋃
{

⋃
v∈V (H2) L(v)}

∣∣∣
=

∣∣∣⋃v∈V (H1) L(v)
∣∣∣ +

∣∣∣⋃v∈V (H2) L(v)
∣∣∣ -

∣∣∣{ ⋃
v∈V (H1) L(v)}

⋂
{

⋃
v∈V (H2) L(v)}

∣∣∣
(*) 6 |V (H1)| + |V (H2)| -

∣∣∣{ ⋃
v∈V (H1)∩V (H2) L(v)}

∣∣∣
(**) 6 |V (H1)|+ |V (H2)| −

∣∣∣V (H1)
⋂

V (H2)
∣∣∣ =

∣∣∣V (H1)
⋃

V (H2)
∣∣∣ = |V (H3)| . (3.2)

[The inequality (*) is true since
∣∣∣⋃v∈V (Hi)

L(v))
∣∣∣ = |V (Hi)|, i = 1, 2 by the assumption of

tightness and {
⋃

v∈V (H1) L(v)}
⋂

{
⋃

v∈V (H2) L(v)} ⊇
⋃

v∈V (H1)∩V (H2) L(v).
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The inequality (**) is an application of HC to H0 = H1 ∩H2 = < V (H1) ∩ V (H2) >:∣∣∣⋃v∈V (H1)∩V (H2) L(v)
∣∣∣ > |V (H1)

⋂
V (H2)|].

From inequalities (3.1) and (3.2), we see that the ends are equal and so it must be that

the middles were also equal. Hence the inequalities in (*) and (**) are actually equalities.

Thus H3 is L-tight and H0 as well, implied by equality at (**).

2

By observing that Sσ∩V (H) ⊆ Sσ is an independent set of vertices, I have the following

lemma.

Lemma 3.3 If [Sσ : σ ∈ C] is an HC+ (or HC++) satisfying family for G and L, then

for any induced subgraph H of G, [Sσ∩V (H) : σ ∈ C] is also an HC+ (respectively HC++)

satisfying family for G and L.

Lemma 3.4 Suppose K is a clique with a list assignment L, and K and L satisfy HC.

Suppose that for some color τ , removing τ from K wherever it appears results in a list

assignment which does not satisfy HC with K. Then some subclique Kτ of K is L-tight.

Further, τ ∈ L(Kτ ).

Proof of theorem 3.3:

Suppose G and L satisfy HC+, and show that the new graph G has a proper L-

coloring. Let [Sσ : σ ∈ C] be an HC+ - satisfying family for G and L; H is HC+ and

K̂ is a clique, i.e. K̂ = Kn for some n > 2. Let K = K̂ − v ≡ Kn−1. Since H is an

induced subgraph of G, HC+ on G and L means HC+ on H and L. Thus there is a

proper L-coloring of H.
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Let P be the set of all colors that appear on the vertex of attachment, say the specific

vertex v, in the proper L-coloring of H.

H

•v

K̂

G:

Figure 3.2: Hall+ graph H, with an attached clique K̂

Define P as follows: P = {τ ∈ C | for some proper L-coloring ϕ of H, ϕ(v) = τ }.

For τ ∈ P arbitrary, if I remove τ from all the lists on K, then I may as well assume

that the resulting list assignment to K does not satisfy Hall’s Condition. This is so because

if the new list did satisfy Hall’s Condition, then K being a clique means I can color. If one

puts a coloring of K without using τ together with a proper L-coloring of H using τ at v,

you get an L-coloring of G. We therefore see from lemma 3.4 that for each τ ∈ P, there is

an L - tight subclique say Kτ with τ on its lists.

By lemma 3.2 above applied | P |-1 times successively, I see that Kp = <
⋃

τ∈P Kτ >

is L-tight and since the α value for each color σ is 1 (for cliques), we must have some vertex

of Kp in Sτ for each τ ∈ P (for all L-tight subgraphs). Thus ∀τ ∈ P, v 6∈ Sτ .

Now define a new list assignment L′ on the graph H as follows:

L′(v) = L(v)\P, and L′(u) = L(u) for u 6= v.
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Now H and L′ can not satisfy HC+ because if they did, then by H ∈ Hall+, there

exists a proper L′-coloring of H. But such a proper L′-coloring will also be a proper L-

coloring for H given that L and L′ coincide except at the vertex v and L′(v) ⊆ L(v). But

I have eliminated P on L′ i.e. the colors on L(v) that are in the proper L-colorings of H.

Hence there is no proper L′-coloring of H. Thus conclude that H and L′ do not satisfy

HC+.

Now consider the definition of HC+ and note that it has two parts: the existence of

HC on one hand and an HC+ satisfying family as the other part. Thus the failure of

HC+ for H and L′ means that at least one of the two parts in the definition must fail.

Case 1: If H and L′ do not satisfy HC, then for some induced subgraph H1 of H, the

following must be true: ∑
σ∈C

α(H1(σ,L′)) < |V (H1)| . (3.3)

But L and L′ are the same except at v. Also, H and L did satisfy HC and so the problem

must be at the vertex v itself. Thus, surely, H1 contains vertex v.

Let H2 = < H1 ∪ Kp > (see figure). This is a disjoint union because H1 ⊆ H and

Kp ⊆ K.

|V (H2)| = |V (H1)| + |V (Kp)| 6
∑
σ∈C

α(H2(σ,L)) (3.4)

6
∑
σ∈C

α(H1(σ,L′)) +
∑
σ∈C

α(Kp(σ,L)) (3.5)

=
∑
σ∈C

α(H1(σ,L′)) +
∣∣∪u∈Kp)L(u)

∣∣ (3.6)

=
∑
σ∈C

α(H1(σ,L′)) + |V (Kp)| (3.7)
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< |V (H1)| + |V (Kp)| (3.8)

Thus |V (H1)| + |V (Kp)| < |V (H1)| + |V (Kp)| which is a contradiction.

Thus H and L′ do satisfy HC but not HC+.

The inequality in (3.4) follows from the fact that G and L satisfy HC. The inequality

in (3.5) follows from the fact that the vertex independence number of a union is less than or

equal to that of its separate parts. Indeed, taking term by term sum, if a color σ 6∈ P, then

its independence number in H2 is less or equal to the sum of its independence number from

H1 and that from the clique Kp . However, if color σ ∈ P, then on its L-list, any maximum

independent set in H2(σ,L), if it contains the vertex v, it will not contain any vertex of

Kp. Thus I can trade v for one vertex from Kp to obtain a maximum independent set in

H2(σ,L) consisting of an independent set in H1(σ,L′) and a vertex of Kp. On the other

hand, a maximum independent set in H2(σ,L) not containing v is already of that form.

The details for (3.5) can be explained as follows: suppose U is a maximum independent

set in H2(σ,L). Let U1 = U ∩ V (H1), and U2 = U ∩ V (Kp). Then U2 has a maximum of

one vertex. If σ 6∈ P, then from above, H2(σ,L) = H2(σ,L′) and since by definition

|U1| 6 α(H1(σ,L′)) and |U2| 6 α(Kp(σ,L)),

=⇒ α(H2(σ,L)) = |U1| + |U2| 6 α(H1(σ,L′)) + α(Kp(σ,L)).

Now if σ ∈ P, then either v 6∈ U so that the inequality follows or v ∈ U in which case

U2 = ∅; I can replace vertex v with some vertex of Kp to get a new maximum independent

set.

The equality in (3.6) holds because Kp is an L-tight clique.

The equality in (3.7) follows because Kp is L-tight. Finally the strict equality in (3.8)

follows from (3.3).
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As a recap, we have proven that H and L′ do satisfy HC but not HC+. Hence the

problem must come from the HC+ satisfying family. I had Kp = <
⋃

τ∈P Kτ > to be an

L-tight sub-clique of K = K̂ − v ≡ Kn−1, for n > 2, with every color in P appearing in Kp.

For every color σ appearing in Kp, |Sσ
⋂

V (Kp)| = 1. So if σ ∈ P, then v 6∈ Sσ

because some u ∈ V (Kp) ∩ Sσ and u is adjacent to v. Hence v 6∈ Sσ.

There must be some L′ - tight subgraph, say Ĥ1 of H, such that for some color τ ∈ C,∣∣∣Sτ
⋂

V (Ĥ1(τ,L′))
∣∣∣ < α(Ĥ1(τ,L′)). Thus it must follow that v ∈ V (Ĥ1) because other than

on the vertex v, L and L′ coincide.

Now define G1 = < Ĥ1
⋃

Kp >. Our aim at this stage is to show that G1 is L- tight.

This is done by letting G1 play H2 in the first part of our proof above.

Claim: G1 is L - tight.

Proof :

H

•vHHH
HHH

HH
Ĥ1

K̂

G:

Figure 3.3: Hall+ graph H ⊃ Ĥ1 and clique K̂

|V (Ĥ1)| + |V (Kp)| = |V (G1)| 6
∑
σ∈C

α(G1(σ,L)) (3.9)

=
∑

σ∈C\P

α(G1(σ,L)) +
∑
σ∈P

α(G1(σ,L)) (3.10)
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6
∑

σ∈C\P

[α(Ĥ1(σ,L′)) + α(Kp(σ,L))] +
∑
σ∈P

[α(Ĥ1(σ,L′)) + α(Kp(σ,L))] (3.11)

=
∑
σ∈C

α(Ĥ1(σ,L′)) +
∑
σ∈C

α(Kp(σ,L)) = |V (Ĥ1)| + |V (Kp)| , (3.12)

where the inequality in (3.9) follows from Hall’s Condition on G1 and L, and (3.10) follows by

breaking set C into two disjoint sets. Finally, for (3.11), one note first that the independence

number of a union of two graphs is at most the sum of the separate independence numbers.

Also, the replacement of L by L′ in the first sum is a consequence of the fact that if σ 6∈ P,

then α(Ĥ1(σ,L′)) = α(Ĥ1(σ,L)). For the second sum, if σ ∈ P and you take a maximum

independent set in G1(σ,L); if v belongs to that set, then we can delete v and replace it

with some vertex of Kp (i.e. trade places). The second equality in (3.12) is as a result of

Ĥ1 being L′ - tight and Kp being L - tight.

Thus we see that the ends of the set of inequalities above are equal. Consequently, the

middle inequalities are forced to become equalities. Thus the inequality in (3.9) will become

an equality, giving |V (G1)| =
∑

σ∈C α(G1(σ,L)) and so G1 is L - tight. The claim

is thus established.

As a further consequence,

|Sσ
⋂

V (G1)| = α(G1(σ,L)) = α(Ĥ1(σ,L′)) + α(Kp(σ,L)), ∀σ ∈ C.

Recall that τ ∈ C is such that
∣∣∣Sτ

⋂
V (Ĥ1(τ,L′))

∣∣∣ < α(Ĥ1(τ,L′)). We will see

that the assumption of the existence of τ leads to a contradiction, which will finish the

proof.

First suppose that τ 6∈ P =⇒ Ĥ1(τ,L′) = Ĥ1(τ,L). We have∣∣∣Sτ
⋂

V (Ĥ1(τ,L′))
∣∣∣ + α(Kp(τ,L)) =

∣∣∣Sτ
⋂

V (Ĥ1(τ,L))
∣∣∣ + |Sτ

⋂
V (Kp(τ,L))|

= |Sτ
⋂

V (G1(τ,L))| = α(G1(τ,L)) = α(Ĥ1(τ,L′)) + α(Kp(τ,L))
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=⇒
∣∣∣Sτ

⋂
V (Ĥ1(τ,L′))

∣∣∣ = α(Ĥ1(τ,L′)), contradicting the original statement that∣∣∣Sτ
⋂

V (Ĥ1(τ,L′))
∣∣∣ < α(Ĥ1(τ,L′)).

Now suppose that τ ∈ P =⇒ v 6∈ Sτ .

=⇒
∣∣∣Sτ

⋂
V (Ĥ1(τ,L′))

∣∣∣ =
∣∣∣Sτ

⋂
V (Ĥ1(τ,L))

∣∣∣ , so the sequence of equalities just

above holds, and again I have a contradiction.

�

I will now state and prove a lemma that was stated in the introductory chapter.

Lemma 3.5 Hall’s Condition holds for G and L if and only if the inequality in Hall’s

Condition (equation (1.1)) holds for each connected induced subgraph of G.

Proof : If G and L satisfies Hall’s Condition, then the inequality holds for every subgraph

of G, and thus for every connected induced subgraph of G.

Now suppose the inequality in equation (1.1) holds for every induced subgraph of G.

If H is a subgraph of G, then H is a spanning subgraph of an induced subgraph Ĥ and for

each symbol σ ∈ C, H(σ,L) is a spanning subgraph of Ĥ(σ,L). Since H(σ,L) is either equal

to Ĥ(σ,L) or obtained from it by deleting edges, it follows that α(H(σ,L)) > α(Ĥ(σ,L)).

Therefore, using the assumption that the inequality defining HC holds for Ĥ, I have

∑
σ∈C

α(H(σ,L)) >
∑
σ∈C

α(Ĥ(σ,L)) > |V (Ĥ)| = |V (H)| . (3.13)

Now suppose that the inequality defining HC holds for every connected induced subgraph

of G. To show that it holds for every subgraph of G, it suffices to show that it holds for

every induced subgraph of G from above. Suppose that H is an induced subgraph of G with

components H1,H2, . . . ,Hk. Then H1,H2, . . . ,Hk are induced subgraphs of G and for each
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symbol σ ∈ C, H(σ,L) is the disjoint union of H1(σ,L),H2(σ,L), . . . ,Hk(σ,L). Therefore,

by the assumption,

∑
σ∈C

α(H(σ,L)) =
∑
σ∈C

k∑
i=1

α(Hi(σ,L)) =
k∑

i=1

∑
σ∈C

α(Hi(σ,L)) (3.14)

>
k∑

i=1

|V (Hi)| = |V (H)| . (3.15)

Hence, I have inequality (1.1) and hence the lemma.

2

Our next two results identifies two families of graphs that are always in the family of

Hall+ graphs.

First note that by a result of Changiz Eslahchi et al [4] and the definition of the hall

number given at the introduction, cycles with 4 or more vertices have hall number 2. This

means that if L is a list assignment to such a graph satisfying HC and |L(v)| > 2 for

all vertices v, then there is a proper L-coloring of the cycle.

Proposition 3.3 All cycles with 4 or more vertices are Hall+

Proof :

•
•

•
wv

u

Cn = G:

Figure 3.4: Cycle with n vertices, Cn
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Our aim is to show that if Cn, for n > 4 and L satisfy HC+, then there exists a proper

L-coloring.

Suppose Cn, for n > 4 and some list assignment L satisfy HC+ and let [Sσ;σ ∈ C] be

an HC+ - satisfying family for Cn and L. Then since the hall number of Cn is 2, for n > 4,

I may as well assume that some list is a singleton, say L(v) = {σ}. Then v ∈ Sσ. Let u, w

be the vertices on either side of v on Cn. Consider Cn− uv i.e. Cn-minus the edge between

vertex u and v. Then P = Cn−uv is a path, and so every block is a clique. Thus P satisfies

Hall’s Condition with L. So P has a proper L-coloring in which the vertex v is colored σ.

One may as well suppose, without loss of generality that in every proper L-coloring of P ,

the vertex u is always colored σ. Indeed, if there is some proper L-coloring of P in which

the vertex u is not colored with σ, then bring back the edge uv and get a proper L-coloring

of Cn and we will be done.

So if a new list assignment L′ is defined by L′(u) = L(u)\{σ} and L = L′ otherwise,

then P and L′ do not satisfy Hall’s Condition. So for some (connected) induced subgraph

H of P , I have
∑

τ∈C α(H(τ,L′)) < |V (H)|.

Conclude that

(i) u ∈ V (H) and H is L-tight (since bringing back σ at u increases the independence

number α(Hσ) by at most one).

Furthermore,(ii) u is in every maximum independent set H(σ,L).

So u ∈ Sσ and this is a contradiction because by assumption, L(v) = {σ} thus forcing

v ∈ Sσ. But then u ∈ Sσ and v ∈ Sσ is a contradiction as uv ∈ E(Cn). This forces us to

conclude that Cn ∈ Hall+. 2

Proposition 3.4 K4 - minus - an edge is Hall+.
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Figure 3.5: K4 - minus - an edge

Let L be a list assignment to G = K4 - minus - an edge, such that G and L satisfy

HC+. Then in particular, G and L satisfy HC. Since the hall number of G is 2, if I had

|L(v)| > 2, ∀v ∈ V (G), then there must be a proper L-coloring of G. Let us suppose

that L(v) = {σ} for some vertex v ∈ V (G) and let the collection [Sλ : λ ∈ C] be an HC+

- satisfying family for G and L. From here the proof is almost word for word like that of

Proposition 3.3; v has a neighbor u (in fact, there are two choices for u) such that G− uv

is Hall. Let L′ be defined as in the proof preceding, and everything goes through.

2

The next example shows that attaching two Hall+ graphs at one vertex does not

necessarily result to a Hall+ graph.

Example 3.2

Notice that G satisfies HC+ but cannot be properly colored.

Obviously, a graph G′ obtained by contracting an edge e of a clique G is still a clique.

Since Hall graphs are graphs with blocks being cliques, we see that contracting an edge of

a Hall graph results in a Hall graph.
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Figure 3.6: Attached Hall+ graphs at vertex v that does not yield a Hall+ graph

Question: Does the contraction of an edge of a Hall+ or Hall++ graph leave it in

the same category, as was the case of Hall graphs?
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Chapter 4

HALL* AND HALL** GRAPHS

4.1 Introduction

The main result in this chapter will be one similar to theorem 3.3 of the previous

chapter. Here, I shall similarly prove that if a graph H ∈ Hall* and a clique K̂ is attached

to a vertex v ∈ V (H), then the resulting graph G will also be Hall*. A deduction from

this will be a similar conclusion for Hall** graphs. For completeness, I will recall some

definitions stated earlier.

Definition 4.1 G is a Hall* graph if whenever G, L satisfy HC*, there is a proper L-

coloring of G.

Definition 4.2 G is a Hall** graph if whenever G, L satisfy HC**, there is a proper

L-coloring of G.

Example 4.1

Consider H to be the six 3 by 2 sub squares induced by the coordinates:

< (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2) > of the Aharoni-Hilton example, figure(2.2).

H has 19 L-tight induced subgraphs.

Indeed, let the list assignment on H be as in chapter 2. H and its list assignments are

shown in figure(4.1).
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{1} {1,2}

7 {2,3}

{1,5} 6

Figure 4.1: 3× 2 Rectangle of cells

The 19 L-tight induced subgraphs of H are as follows:

< (1, 1) >, < (2, 1) >, < (3, 2) >, < (1, 1), (1, 2) >, < (1, 1), (2, 1) >, < (1, 1), (3, 2) >,

< (1, 1), (3, 1) >, < (2, 1), (3, 2) >, < (1, 1), (1, 2), (2, 1) >, < (1, 1), (2, 1), (3, 1) >,

< (1, 1), (1, 2), (2, 2) >, < (1, 1), (1, 2), (3, 2) >, < (1, 1), (2, 1), (3, 2) >, < (1, 1), (3, 1), (3, 2) >,

< (1, 1), (1, 2), (2, 1), (2, 2) >, < (1, 1), (1, 2), (2, 1), (3, 2) >, < (1, 1), (2, 1), (3, 1), (3, 2) >,

< (1, 1), (1, 2), (2, 2), (3, 2) >, < (1, 1), (1, 2), (2, 1), (2, 2), (3, 2) >.

For instance, when T = < (1, 1), (1, 2), (2, 1), (2, 2), (3, 2) >, then α(T4) = 0 = α(T5), while

α(Tσ) = 1 for σ ∈ {1, 2, 3, 6, 7}. Thus

7∑
σ=1

α(Tσ) = 1 + 1 + 1 + 0 + 0 + 1 + 1 = 5 = | V (T ) | .

This shows that T is L-tight.

H is properly L-colorable because I can actually fill each cell using say,

ϕ((1, 1)) = 1, ϕ((1, 2)) = 2, ϕ((2, 1)) = 7, ϕ((2, 2)) = 3, ϕ((3, 1)) = 5, ϕ((3, 2)) = 6.

The fact that H is properly L-colorable implies that H and L satisfy HC**.

However, H is not HALL**, (and therefore not HALL*), as shown by the following

list assignment:
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{1,3} {2,3}

{1,2} {1,2}

{2,3} {1,3}

Figure 4.2: 3× 2 Rectangle of cells with no completion

This example demonstrates how tedious it can be to verify HC* or HC**. (In our

example, six cells have as many as 19 tight subgraphs. For the complete 7×7 in figure(2.2),

the number of tight subgraphs to be considered can be very large, and to verify HC* by

brute force, each L-tight subgraph must be considered together with every induced subgraph

containing it.) Thus HC* and HC** are of theoretical interest alone, so far.

4.2 Closure Property

I now state and prove the main result in this chapter.

Theorem 4.1 If a graph H ∈ Hall*, and a graph G is obtained from H by attaching a

clique to an arbitrary vertex v of H, then G ∈ HALL*. Thus the class of HALL* graphs

is closed under attachment of cliques. The same is true if Hall* is replaced by Hall**.

Notice that the statement is very similar to that of theorem(3.3) of the previous chapter.

I will build the proof with this in mind.

Proof:

Let K = K̂ − v ≡ Kn−1, for n > 2 and suppose L is a list assignment on G such that

G and L satisfy HC*. I must show that there is a proper L-coloring of G.

Assume the contrary. By lemma 3.1, every induced subgraph H of G with L restricted

on V (H) will satisfy HC*. Now suppose there is no proper L-coloring of G.
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H

•v

K̂

G:

Figure 4.3: Hall* graph H, with an attached clique K̂

Since H ⊆ G and G and L satisfy HC*, it must be that H and L restricted on V (H)

will satisfy HC*. Since H ∈ Hall*, it follows that there is a proper L coloring of H.

However, because there is no proper L-coloring of G for every proper L-coloring of H, if the

color on the vertex v is removed from the lists on V (K), then K and the new list assignment

do not satisfy HC.

Define the set of symbols P = {τ ∈ C | for some proper L-coloring ϕ of H, ϕ(v) = τ }

We therefore see from lemma 3.4 that for every symbol σ ∈ P, there is an L-tight

subclique of the clique K with σ appearing on its lists. Hence there is a tight complete

subgraph Kp of K with all colors of P on its lists. Now define a new list assignment L′ on

the graph H as follows:

L′(v) = L(v)\L(Kp), and L′(u) = L(u) for all u ∈ V (H − v).

Then it must be that H and L′ do not satisfy HC* because there is no proper L′-

coloring of H, but they do satisfy Hall’s condition by the argument for the analogous claim

in the proof of theorem (3.3) in chapter 3. I can therefore conclude this far that H and L′

so defined do satisfy HC but do not satisfy HC*.
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HC* failing means there is some induced subgraph H ′ of H and some L′-tight subgraph

T ′ of H ′ such that the inequality in HC* fails. Thus I have

∑
σ∈C

α(H ′(σ,L′) | T ′(σ,L′)) <
∣∣V (H ′)

∣∣ . (4.1)

Thus the vertex v must belong to H ′ since L′ = L on the graph H − v and H and L satisfy

HC*.

With v ∈ V (H ′) and T ′ ⊆ H ′, two cases arise: v ∈ V (T ′) and v 6∈ V (T ′).

H

•vH
HHH

HHHH

H ′

T ′

K̂

G:

Figure 4.4: Hall* graph H ⊃ H ′ ⊃ T ′, and clique K̂

Let H ′′ = < H ′ ∪Kp > be the subgraph induced by the disjoint union of H ′ and Kp

and let T ′′ = < T ′ ∪ Kp > be the subgraph induced by the disjoint union of T ′ and Kp.

Recalling that T ′ is an L′-tight subgraph of H ′, an induced subgraph of H containing the

vertex v, I have the following two claims:

Claim 1: T ′′ = < T ′ ∪Kp > is L-tight;

Claim 2:
∑

σ∈C α(H ′′(σ,L) | T ′′(σ,L)) < |V (H ′′)| .
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Note that if claim 2 holds, then it will contradict the hypothesis that G and L satisfy

HC*; hence I can conclude that theorem 4.1 is true.

Remark 4.1

Before getting into the proof, it is worth remarking that it is a fairly known result that

if each component of a graph G and a list assignment L satisfy HC, then G and L will

satisfy HC. Moreover, if each component is L-tight, then so too is the whole graph.

Proof of Claim 1:

If v 6∈ V (T ′), then L′ = L on T ′′ and so T ′′ must also be L-tight as the disjoint union

of two L-tight subgraphs. Now suppose v ∈ V (T ′). If the symbol σ 6∈ L(Kp) , then

α(T ′′(σ,L)) 6 α(T ′(σ,L)) + α(Kp(σ,L)) = α(T ′(σ,L′)) + α(Kp(σ,L)).

On the other hand, if σ ∈ L(Kp), then I will prove the following claim:

α(T ′′(σ,L)) 6 α(T ′(σ,L′)) + α(Kp(σ,L)).

Noting that Kp is a clique in which case α(Kp(σ,L)) = 1, one can equivalently prove

that

α(T ′′(σ,L)) 6 α(T ′(σ,L′)) + 1. (4.2)

Indeed, let W be a maximum independent set of vertices in T ′′(σ,L), then

Case (i): if v ∈ W , we see that W contains no vertices of the clique Kp and so W \{v}

is an independent set in T ′′(σ,L′) so |W \ {v}| = |W | − 1 6 α(T ′(σ,L′)

⇐⇒ |W | 6 α(T ′(σ,L′) + 1

and by the definition of W being a maximum independent set in T ′′(σ,L), it follows that

α(T ′′(σ,L)) 6 α(T ′(σ,L′)) + 1, which is equation (4.2).
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Case (ii): if v 6∈ W , then W consists of exactly one vertex of Kp together with an

independent set in T ′(σ,L′). This immediately gives |W | 6 α(T ′(σ,L′) + 1,

hence equation (4.2).

Finally, by Hall’s Condition and the definition of T ′′,

∣∣V (T ′′)
∣∣ 6

∑
σ∈C

α(T ′′(σ,L)) 6
∑
σ∈C

α(T ′(σ,L′)) +
∑
σ∈C

α(Kp(σ,L)) (4.3)

=
∣∣V (T ′)

∣∣ + |V (Kp)| =
∣∣V (T ′′)

∣∣ (4.4)

where the first equality in (4.4) follows because T ′ is L′-tight and Kp is L-tight and the last

equality follows from the fact that T ′′ = < T ′ ∪Kp >. Thus T ′′ is L-tight.

Proof of Claim 2:

I will aim at showing that

∑
σ∈C

α(H ′′(σ,L) | T ′′(σ,L)) <
∣∣V (H ′′)

∣∣ , (4.5)

which will contradict the assumption that G and L satisfy HC*.

∑
σ∈C

α(H ′′(σ,L) | T ′′(σ,L)) =
∑

σ∈C\L(Kp)

α(H ′′(σ,L) | T ′′(σ,L))+
∑

σ∈L(Kp)

α(H ′′(σ,L) | T ′′(σ,L))

(4.6)

=
∑

σ∈C\L(Kp)

α(H ′(σ,L′) | T ′(σ,L′)) +
∑

σ∈L(Kp)

α(H ′′(σ,L) | T ′′(σ,L)) (4.7)

6
∑

σ∈C\L(Kp)

α(H ′(σ,L′) | T ′(σ,L′)) +
∑

σ∈L(Kp)

α(H ′(σ,L′) | T ′(σ,L′))+ |L(Kp)| (4.8)

where the equality in (4.7) follows because if the symbol σ is not in L(Kp), then

H ′′(σ,L) = H ′(σ,L′) and T ′′(σ,L) = T ′(σ,L′).
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The inequality in (4.8) is a consequence of the following claim:

Claim:

If σ ∈ L(Kp), then

α(H ′′(σ,L) | T ′′(σ,L)) 6 α(H ′(σ,L′) | T ′(σ,L′)) + 1. (4.9)

Proof of Claim:

Suppose U is a maximum independent set of vertices in T ′′(σ,L) and W is an inde-

pendent set of vertices in H ′′(σ,L) containing the set U and suppose |W | = α(H ′′(σ,L) |

T ′′(σ,L)). If U contains a vertex x of Kp, then W does not contain the vertex v nor any

other vertex of Kp; same for U . So U ′ = U \ {x} is an independent set of vertices in

T ′(σ,L′), contained in W \ {x}, an independent set of vertices in H ′(σ,L′). I claim

that U ′ is a maximum independent set of vertices in T ′(σ,L′). For, if Ũ is any independent

set of vertices in T ′(σ,L′) then, since σ 6∈ L′(v), whence v 6∈ Ũ , it follows that Ũ ∪ {x} is

an independent set of vertices in T ′′(σ,L), whence∣∣∣Ũ ∪ {x}
∣∣∣ =

∣∣∣Ũ ∣∣∣ + 1 6 |U | = |U ′ ∪ {x}| = |U ′| + 1.

From the fact that U ′ = U \ {x} is an independent set of vertices of T ′(σ,L′)

contained in W \ {x}, an independent set of vertices in H ′(σ,L′), it follows that

|W \ {x}| = |W | − 1 = α(H ′′(σ,L) | T ′′(σ,L))− 1 6 α(H ′(σ,L′) | T ′(σ,L′))

⇐⇒ |W | 6 α(H ′(σ,L′) | T ′(σ,L′)) + 1.

Now if U does not contain a vertex of Kp, then since σ ∈ L(Kp), it must be that

v ∈ U because if v 6∈ U then adding a vertex of Kp to U would give a larger independent

set of vertices of T ′′(σ,L). Therefore v ∈ V (T ′(σ,L)) and since W is an independent set

containing U , it must be that W contains no vertices of Kp. Thus U\{v} is a maximum
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independent set of vertices in T ′(σ,L′) because if not, take say Ũ an independent set of

vertices in T ′(σ,L′) such that |U | > |U\{v}| . Then for any y ∈ Kp(σ,L), Ũ ∪ {y} is an

independent set of vertices in T ′′(σ,L) bigger than U , contrary to the assumption that U

is a maximum independent set of vertices in T ′′(σ,L).

Recalling that W \ {v} contains U \ {v} one can complete the prove of the claim as

follows:

|W \ {v}| = |W | − 1 6 α(H ′(σ,L′) | T ′(σ,L′))

⇐⇒ |W | 6 α(H ′(σ,L′) | T ′(σ,L′)) + 1 which is (4.9).

To complete the proof, note that the left hand side of (4.6) and the right hand side of

inequality (4.8) gives

∑
σ∈C

α(H ′′(σ,L) | T ′′(σ,L)) 6
∑
σ∈C

α(H ′(σ,L′) | T ′(σ,L′)) + |L(Kp)| (4.10)

<
∣∣V (H ′)

∣∣ + |V (Kp)| =
∣∣V (H ′′)

∣∣ . (4.11)

from (4.1) above coupled with the definition of H ′′ and Kp being a tight clique.

To get a corresponding proof for the Hall** case, we assume the notation of the

preceding proof and proceed as follows:

suppose L is a list assignment on G such that G and L satisfy HC**. One must show

that there is a proper L-coloring of G.

Assume the contrary. By lemma 3.1, every induced subgraph H of G with L restricted

on V (H) will satisfy HC**. Thus H and L satisfy HC** as G, L does.
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Since H ∈ Hall**, it follows that there is a proper L coloring of H. Now suppose

there is no proper L-coloring of G. Then for every proper L-coloring of H, if the color on v

is removed from the lists on V (K), then K and the new list assignment do not satisfy HC.

As before, define P = {τ ∈ C | for some proper L-coloring ϕ of H, ϕ(v) = τ }.

We therefore see from lemma 3.4 that for every symbol σ ∈ P, there is an L-tight

subclique of the clique K with σ appearing on its lists. Hence there is a tight complete

subgraph Kp of K with all colors of P on its lists.

Now define a new list assignment L′ on the graph H as follows:

L′(v) = L(v)\L(Kp), and L′(u) = L(u) for all u ∈ V (H − v). Then as in the claim in the

proof of theorem (3.3) I can conclude that H and L′ satisfy HC but do not satisfy HC**.

Hence there must be an induced subgraph H ′ of H and some L′-tight subgraph T ′ of

H ′ such that the inequality in HC** fails, i.e. such that

∑
σ∈C

min
T ′/H′

α(H ′(σ,L′)|T ′(σ,L′)) > |V (H ′)|, (4.12)

where the minimum is taken over each L′-tight subgraph T ′ of H ′.

Thus v ∈ V (H ′) since L′ = L on the graph H − v and H and L satisfy HC**.

With v ∈ V (H ′) and T ′ ⊆ H ′, either v ∈ V (T ′) and v 6∈ V (T ′).

As in the preceding proof, let H ′′ = < H ′∪Kp >; and for each T ′ an L′-tight subgraph

of H ′, let T ′′ = < T ′ ∪Kp >. Then by an argument similar to that in the preceding proof,

it must be that T ′′ is L-tight in H ′′.

Claim:

∑
σ∈C

mineT/H′′
α(H ′′(σ,L)|T̃ (σ,L)) < |V (H ′′)| = |V (H ′)|+ |V (Kp)|, (4.13)
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where the minimum is taken over each L-tight subgraph T̃ of H ′′.

This claim will contradict the hypothesis that G and L satisfy HC**; hence we can

conclude.

Indeed, by the preceding proof for equation 4.9, one conclude that for each σ ∈ L(Kp),

and each L′-tight subgraph T ′ of H ′,

α(H ′′(σ,L) | T ′′(σ,L)) 6 α(H ′(σ,L′) | T ′(σ,L′)) + 1. (4.14)

Taking minimum respectively over T̃ an L-tight subgraph of H ′′ or over T ′ an L′-tight

subgraph of H ′ for each symbol σ, and noting that T ′′ =< T ′ ∪Kp > one obtain

∑
σ∈C

mineT/H′′
α(H ′′(σ,L)|T̃ (σ,L)) 6

∑
σ∈C

min
T ′/H′

α(H ′′(σ,L)|T ′′(σ,L)) (4.15)

=
∑

σ∈C\L(Kp)

min
T ′/H′

α(H ′′(σ,L)|T ′′(σ,L)) +
∑

σ∈L(Kp)

min
T ′/H′

α(H ′′(σ,L)|T ′′(σ,L)) (4.16)

=
∑

σ∈C\L(Kp)

min
T ′/H′

α(H ′(σ,L′)|T ′(σ,L′)) +
∑

σ∈L(Kp)

min
T ′/H′

α(H ′′(σ,L)|T ′′(σ,L)) (4.17)

6
∑

σ∈C\L(Kp)

min
T ′/H′

α(H ′′(σ,L)|T ′′(σ,L)) +
∑

σ∈L(Kp)

min
T ′/H′

α(H ′(σ,L′)|T ′(σ,L′)) + |L(Kp)|

(4.18)

6
∑
σ∈C

min
T ′/H′

α(H ′(σ,L′)|T ′(σ,L′)) + |L(Kp)| (4.19)

<
∣∣V (H ′)

∣∣ + |V (Kp)| =
∣∣V (H ′′)

∣∣ . (4.20)

Where the inequality in (4.18) follows from (4.14) while inequalities (4.19) and (4.20) follows

from (4.1) given earlier coupled with the definition of H ′′ and Kp being a tight clique.

�
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Remark 4.2

One could rephrase the proof architecture by supposing that G, L satisfy HC and H,

L satisfy HC* (or respectively HC**) but there is no proper L-coloring of G. One then

show that G, L do not satisfy HC* (or respectively HC**).
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