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THESIS ABSTRACT 

APPLICATION OF GENERALIZED HAMILTONIAN DYNAMICS  

TO MODIFIED COULOMB POTENTIAL 

Julian Antolin Camarena 

Master of Science, December 19, 2008 
(B.S. University of Texas at El Paso, 2006) 

 

53 Typed Pages 

Directed by Eugene Oks 

 We apply Dirac’s generalized Hamiltonian dynamics (GHD), a purely classical 

formalism, to spinless particles under the influence of a binomial potential. The integrals 

of the motion for this potential were chosen as the constraints of GHD, and use Fradkin’s 

unit Runge vector in place of the Laplace-Runge-Lenz vector.  

A functional form of the unit Runge vector is derived for the binomial potential. It 

is shown in accordance with Oks and Uzer (2002) that a new kind of time dilation occurs 

for stable, nonradiating states. The primary result which is derived is that the energy of 

these classical stable states agrees exactly with the quantal results for the ground state and 

all states of odd values of the radial and angular harmonic numbers. 
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1.  INTRODUCTION 

 

In 1950, Dirac developed a generalized Hamiltonian dynamics (hereafter GHD) 

[1-3]. The conventional Hamiltonian dynamics is based on the assumption that the 

momenta are independent functions of velocities. Dirac analyzed a more general situation 

where momenta are not independent functions of velocities [1-3]. Physically, the GHD is 

a purely classical formalism for constrained systems; it incorporates the constraints into 

the Hamiltonian. Dirac designed the GHD with applications to quantum field theory in 

mind [3].  

The present work, where GHD is applied to atomic and molecular systems by 

choosing integrals of the motion as the constraints of the system, stems from a paper in 

which this idea was applied to hydrogenic atoms treated non-relativistically on the basis 

of the Coulomb potential [4]. Using this purely classical formalism, Oks and Uzer 

demonstrated the existence of non-radiating states and found their energy to be in exact 

agreement with the corresponding results of quantum mechanics. They employed two 

fundamental experimental facts, but did not “forcefully” quantize any physical quantity 

describing the atom. In particular, this amounted to classically deriving Bohr’s postulate 

on the quantization of the angular momentum rather than accepting it on an axiomatic 

basis.
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 It important to point out that the physics behind classical non-radiating states is a 

new kind of time-dilation found by Oks and Uzer. 

The content of this thesis differs from the above mentioned paper by Oks and 

Uzer in that the dynamics analyzed are of a more general nature: a term proportional to 

1/r2 is added to the Coulomb potential. This more complicated potential we call here the 

binomial potential. Then the generalized unit Laplace-Runge-Lenz vector [5,6], or as 

named by Fradkin, the unit Runge vector [5], is utilized instead of the classical Laplace-

Runge-Lenz vector. 

This binomial potential has interesting applications. The primary application 

considered here is to pionic atoms. We will classically obtain results corresponding to the 

solution of the quantal (relativistic) Klein-Gordon equation, which is appropriate because 

pions are spinless particles. Another application concerns the precession of planetary 

orbits: for this phenomenon Einstein’s equations of general relativity are equivalent to 

non-relativistic equations for the motion in the binomial potential [7]. We shall also 

briefly mention an application furnished by the description of the energy of nonradiating 

states of the so-called nanoplasmas [14]. 

An outline of the remainder of the thesis is in order: 

In section 2, we briefly outline Dirac’s generalized Hamiltonian dynamics. 

Section 3 serves to describe with more detail the applications of the binomial potential 

given in the above paragraph. In sections 4 and 5 we discuss the dynamical symmetries or 

Fradkin and the generalization of the Laplace-Runge-Lenz vector.  
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We present our new results in section 6 and appendices A, B, and C. Section 7, 

contains the conclusions. 



2.  DIRAC’S GENERALIZED HAMILTONIAN DYNAMICS. 

 

Dirac [1-3] considered a dynamical system of N degrees of freedom characterized 

by generalized coordinates qn and velocities 
dt

dqv n
n = , where n = 1, 2, ..., N. If the 

Lagrangian of the system is 

( )vqLL ,= ,               (2.1) 

then momenta are defined as 

n
n v

Lp
∂
∂

= .                                (2.2) 

Each of the quantities qn, vn, pn can be varied by δqn, δvn, δpn, respectively. The latter 

small quantities are of the order of ε, the variation being worked to the accuracy of  ε. As 

a result of the variation, eq. (2.2) would not be satisfied any more, since their right-hand 

side would differ from the corresponding left side by a quantity of the order of ε as can be 

seen from: 

( ) 0=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−= nnnn
n

n pvvp
v
HvL δδδ  

for an arbitrary variation in the momenta. In the above, Hamilton’s canonical equations 

of motion were invoked. Further, Dirac distinguished between two types of equations. To 

one type belong equations such as eqs. (2.2), which does not hold after the variation (he 
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called them "weak" equations). In what follows, for weak equations, adopting Dirac’s 

nomenclature, we use a different equality sign ≈  from the usual. Another type constitute 

equations such as eq. (2.1), which holds exactly even after the variation (he called them 

"strong" equations).  

If quantities ∂L/∂vn are not independent functions of velocities, one can exclude 

velocities vn from Eqs. (2.2) and obtain one or several weak equations 

                                            ( ) 0, ≈pqφ ,                            (2.3) 

containing only q and p. In his formalism, Dirac [1-3] used the following complete 

system of independent equations of the type (3): 

( ) 0, ≈pqmφ ,  ( )Mm ,...2,1= .   (2.4) 

Here the word "independent" means that neither of the φ’s can be expressed as a linear 

combination of the other φ’s with coefficient depending on q and p. The word "complete" 

means that any function of q and p, which would become zero allowing for eqs. (2.2) and 

which would change by ε under the variation, should be a linear combination of the 

functions φm(q, p)  from (4) with coefficients depending on q and p. 

Finally, proceeding from the Lagrangian to a Hamiltonian, Dirac [1-3] obtained 

the following central result: 

( ) ( )pqupqHH mmg ,, φ+=     (2.5) 

(here and below, the summation over a twice repeated suffix is understood). Equation 

(2.5) is a strong equation expressing a relation between the generalized Hamiltonian Hg 

and the conventional Hamiltonian H(q, p). Quantities um are coefficients to be 

determined. Generally, they are functions of q, v, and p; by using Eqs. (2.2), they could 
5 

 



be made functions of q and p. It should be emphasized that Hg ≈  H(q, p) would be only a 

weak equation - in distinction to Eq. (2.5).  

Equation (2.5) shows that the Hamiltonian is not uniquely determined, because a 

linear combination of φ’s may be added to it. Equations (2.4) are called constraints. The 

above distinction between constraints (i.e., weak equations) and strong equations can be 

reformulated as follows. 

Constraints must be employed in accordance to certain rules. Constraints can be 

added. Constraints can be multiplied by factors (depending on q and p), but only on the 

left side, so that these factors must not be used inside Poisson brackets. 

If f is some function of q and p, then 
dt
df  (i.e., a general equation of motion) in the Dirac's 

GHD is 

[ ] [ mm fuHf
dt
df φ,, += ] ,                      (2.6) 

where [f, g] is the Poisson bracket defined for two functions f and g of the canonical 

variables p and q as: 

[ ]
rrrr q

g
p
f

p
g

q
fgf

∂
∂

∂
∂

−
∂
∂

∂
∂

=, .                                         (2.7) 

where r is an index put to stress the fact that in general there will be several generalized 

coordinates and momenta. Here and throughout we adopt the summation convention so 

that a sum is understood over any repeated index unless it is explicitly stated otherwise. 

Substituting φm' in (2.6) instead of f and taking into account eqs. (2.4), one obtains: 

[ ] [ ] 0,, mmm ≈+ ′′ φφφ muH . (m’ = 1, 2, …, M).       (2.8) 

6 
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These consistency conditions allow determining the coefficients um. 

Last of all, we note that the GHD was designed by Dirac specifically for 

applications to quantum field theory [3], that is, for the purpose totally different from our 

purpose.



3. APPLICATIONS OF THE BINOMIAL POTENTIAL 

 

A. Pionic atoms described by the Klein-Gordon equation of relativistic quantum 

mechanics. 

Relativistic treatments of the hydrogenic atoms are typically presented working 

with the Dirac equation, which is a relativistic wave equation that is particularly suited 

well for spin-1/2 particles. However, in the literature one may also find a treatment of 

hydrogen and hydrogenlike atoms ignoring spin; that is, working with the Klein-Gordon 

equation (hereafter, the KG equation) [8,10-13]. 

The radial KG equation for the problem of the hydrogenic atom is given by: 

( ) 0)1(
4
12

2

2

2

2

=⎥
⎦

⎤
⎢
⎣

⎡ −+
−−++ RZll

d
dR

d
Rd

ρ
α

ρ
λ

ρρρ
.                               (3.1) 

where Z is the atomic number and 
137

12

≅=
hc

eα  is the fine structure constant. 

Thus, the radial KG equation for the Coulomb potential is equivalent to the radial 

Schrödinger equation for the binomial potential - λ/ρ - γ2/ρ2.  

For usual hydrogenic atoms, the fine structure splitting predicted by the KG 

equation is greater than what is observed experimentally [8]. However, for pionic atoms, 

the KG equation becomes exact. Indeed, the pionic atom is an exotic hydrogenic atom, 
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where the atomic electron is substituted by a negative pion. Negative pions are spinless 

particles of the same charge as electrons, but 273 times heavier than electrons. Due to the 

spinless nature of pions, the KG equation for pionic atoms becomes exact. 

 

B. Precession of planetary orbits 

In his seminal paper, Die Grundlange der allgemeinen Relativitästhoerie [7], 

Einstein showed that general relativistic effects perturb the Kepler potential by an 

additive term proportional to 1/r2 and used it to calculate the precession of Mercury’s 

orbit around the sun. His calculations for the precession yielded 43’’/century, which was 

later confirmed by observations. There are many good textbooks on general relativity that 

derive this result [15-17].  

 

C. Radiation of nonrelativistic particles in a central field 

Karnakov et al. [14] derive the spectrum and expressions for the intensity of 

dipole radiation for a classical nonrelativistic particle executing nonperiodic motion. The 

potential in which the particles under consideration move is of the form ( ) 2rr
rU βα

+−= . 

The authors of this paper apply their results to the description of the radiation and the 

absorption of a classical collisionless electron plasma in nanoparticles irradiated by an 

intense laser field. Also, they find the rate of collisionless absorption of electromagnetic 

wave energy in equilibrium isotropic nanoplasma.

9 
 



4. DYNAMICAL SYMMETRIES OF FRADKIN 

 

Fradkin [5] has shown that all classical dynamical problems of both the 

relativistic and non-relativistic type, dealing with a central potential, necessarily possess 

O(4) and SU(3). This led him to a generalization of the Runge-Lenz vector in the Kepler 

problem. Fradkin also found a generalization of the conserved symmetric tensor for the 

harmonic oscillator problem, and constructs a systematic way of imbedding the Lorentz 

and the SU(3) group in and infinite-dimensional Lie algebra. Here we will only be 

concerned with the results relating to the generalization of the Runge-Lenz vector and the 

construction of the elements of the Lie algebra of O(4) and SU(3) in terms of canonical 

variables. 

In the non-relativistic Kepler problem the force on the affected particle is an 

inverse square force given by: 

r
r

ˆ
2

λ
−=

•

p ; , 
•

= rp m
r

r r
=ˆ                                               (4.1) 

and the overdot denotes total differentiation with respect to time. In the Kepler problem, 

the Hamiltonian and the angular momentum (vector L and magnitude L2) are the 

conserved quantities. There also exists another conserved vector quantity, namely the 

Laplace-Runge-Lenz vector, or simply the Runge-Lenz vector. It is defined to be: 

( ) ( rmmE ˆ2 2
1

λ−×−= − LpA )                                                (4.2)
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For negative energies (E<0) A is a real vector. This vector, which is a constant of the 

motion, lies in the plane of the orbit and points from the center of motion to perihelion  

(that is, along the major axis from one focus to the closest point of the orbit); some 

authors refer to it as the eccentricity vector [10].  

Fradkin found, by differentiation via the standard Poisson bracket formalism, that 

for the Kepler problem, and indeed for all central potential problems, that A, L, and H 

satisfy the following closed Lie algebra: 

[ ] [ ]
[ ]
[ ]
[ ] kijkji

kijkji

kijkji

ii

LAA

AAL

LLL
HLHA

ε

ε

ε

=

=

=
==

,

,

,
0,,

                                                 (4.3) 

It is seen that the Lie algebra given above is isomorphic to that of the generator of the 

O(4) symmetry group, which is the group of orthogonal transformations representing 

rotations in four dimensions. Fradkin also concluded that if the existence of the Runge-

Lenz vector is simply to ensure that the plane of the motion is conserved, then it should 

always be possible to find a vector analogous to the Runge-Lenz vector for all central 

potentials. 

Fradkin proposed a generalization for the Runge-Lenz vector choosing 

 as a mutually orthogonal triad of unit vectors. This unit Runge vector is LrLr ˆˆ and ,ˆ ,ˆ ×

LrLrkLLkrrkk ˆˆ)ˆˆˆ(ˆ)ˆˆ(ˆ)ˆˆ(ˆ ××⋅+⋅+⋅= ,                                    (4.4) 
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but since the unit Runge vector is in the plane of the orbit and the angular momentum 

vector is perpendicular to the plane of motion, then the second term is identically zero 

( ).  may be chosen to be the direction from which the azimuthal angle θ is L⊥k̂ k̂



measured (with the positive sense given by a right-handed rotation about L̂ ), then we 

have: 

θθ sinˆˆˆ    and    cosˆˆ =×⋅=⋅ Lrkkr                                        (4.5) 

thus 

Lrrk ˆˆ)(sinˆ)(cosˆ ×+= θθ                                           (4.6) 

Defining u=1/r, we may write the following differential equation for u and the azimuthal 

angle θ in terms of the energy E, potential V and angular momentum L: 

( ) 2
2

2 2 uVE
L
m

d
du

−−⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛
θ

                                             (4.7) 

At this point we note the following relations and definition: 

( )
L

r
u
f

ELuf
p⋅

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

=

ˆ
sin

),,(cos 2

θ

θ
.                                                     (4.8) 

Further, the putting V=-λu for the potential of the Kepler problem, the orbit equation 

becomes: 

[ ] ( )muLmmELf λλθ −+==
− 22

122 )(2cos .                               (4.9) 

The unit Runge vector may be expressed as: 

Lp×
∂
∂

+⎥⎦
⎤

⎢⎣
⎡

∂
∂

−= −

u
fLr

u
fufk 2ˆˆ                                       (4.10) 

and it’s Poisson bracket with the total energy E (or, more importantly, the Hamiltonian) 

vanishes.  
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Lastly, all of its entries have mutually vanishing Poisson brackets and it satisfies 

the following relation with the angular momentum: 

                       [ ]  ;0,ˆ =Hki   [ ]  ;0ˆ,ˆ =ji kk    [ ] 3,2,1,,for    ;ˆˆ, == kjikkL kijkji ε .              (4.11) 
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5. FURTHER TOPICS ON THE GENERALIZATION OF THE LAPLACE-

RUNGE-LENZ VECTOR 

 

We now turn to a brief discussion of further results that were utilized in our work. 

They are the results of Holas and March [6] on a further treatment of the unit Runge 

vector of Fradkin discussed in the previous section. These results, however, are centered 

on the construction and time dependence of the vector itself rather than on the dynamical 

symmetries of central potentials or the algebras satisfied by the unit Runge vector. 

Holas and March using 

( ) rLrprLp ×
⋅

−=×
Lrr

L
22

2

                                              (5.1) 

they rewrite the unit Runge vector, eq. (4.10), as: 

( ) rL
u
f

Lr
rfk ˆˆˆ ˆ ×

∂
∂⋅

−=
rp                                               (5.2) 

where the function f is specified in the next section. This is the form of the unit Runge 

vector with which we shall work. 
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6. APPLICATION OF GENERALIZED HAMILTONIAN DYNAMICS 

TO THE BINOMIAL POTENTIAL 

 

In our work, the angular momentum vector and the unit Runge vector are 

constants of the motion for a centrally symmetric potential and consequently have 

vanishing Poisson brackets with the Hamiltonian for the system and are thus suitable 

constraints for the application of GHD. Following Oks and Uzer [4], the Hamiltonian for 

this system is: 

( ) ( 002

22
ˆˆ

22
kk

rr
ZepH g −⋅+−⋅+

Λ
+−= wLLu

μμ
),                             (6.1) 

where Λ is the strength of the binomial potential, Ze is the nuclear charge, e is the charge 

of an electron, μ is the reduced mass, u and w are the yet unknown constant vectors (to be 

determined later) of the GHD formalism, L0 and  are the values of the angular 

momentum and unit Runge vector in a particular state of the motion so that in those states 

0̂k

0LL ≈                                                              (6.2) 

and 

 .                                                                (6.3) 0
ˆˆ kk ≈
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We may define the following quantities: 

20

22

0

2

2

r
HH

r
ZepH

B μ

μ
Λ

+=

−=
                                                       (6.4) 

where the subscript B is for binomial. The consistency conditions for this system are: 

[ ]
[ ] 0,ˆ

0,

≈

≈

g

g

Hk

HL
.                                                         (6.5) 

First we must derive the form of the unit Runge vector in this problem. It is derived in 

Appendix A. We arrive at the result: 

( )
( )

rL
uu
ggf

gg
gg

gg
fg

Lr
r

gggg
ggk ˆˆ

 1
1

 1
ˆ

1
 1ˆ

3

3
3

2
0

2
0

0

0
2
0

22
0

2
0 ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

−
+

⋅
−

+++

+
=

rp .        (6.6) 

where 

2
0

22
0

2
0

1
 1

gggg
ggf
+++

+
= .                                              (6.7) 

and 

( )( )
( )

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+++

++
−

+++
=

∂
∂

u
g

gggg

ggggg
gggg

g
u
f

2
32

0
22

0
2

2
00

2
0

22
0

2
0

1

  1
1

,                  (6.8) 
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The functions  and are  defined in Appendix A. The unit Runge vector as appears in 

eq. (6.6) is a general result, valid for any value of the parameter 

g 0g

Λ . Hereafter, however, 

we only consider a small perturbation in the binomial potential such that . We 

therefore perform a Taylor series expansion about 

2L<<Λ

0=Λ and keep only terms linear in 

: Λ



0

)0( ˆˆˆ
=Λ

=Λ

Λ
Λ+=

d
kdkk                                               (6.9) 

where  denotes the unperturbed unit Runge vector, which, by definition, is equal to 

the normalized classical Laplace-Runge-Lenz vector. The derivative term is fully worked 

out in Appendix A. 

)0(ˆ =Λk

The next step is to calculate the Poisson brackets given in eq. (6.5) to arrive at a 

functional form of the consistency conditions and thus solve for the unknown vector 

coefficients u and w. We begin with the angular momentum bracket: 

[ ] [ ] ( )[ ] ([ )jjijjijiigi kkLwLLLu
r

LHLHL
j 0020

ˆˆ,,
2

,,, −+−+⎥
⎦

⎤
⎢
⎣

⎡ Λ
+=

μ
]              (6.10) 

clearly the first two terms vanish since the angular momentum is conserved in any 

centrally symmetric potential in the absence of external forces. We now have: 

[ ] 0ˆ, ≈×+×= kH g wLuL                                            (6.11) 

We now proceed to the calculation of the time derivative of the unit Runge vector 

via the Poisson bracket: 

[ ] [ ] ( )[ ] ( )[ ] 0ˆˆ,ˆ,ˆ
2

,ˆ,ˆ,ˆ 0020 ≈−+−+⎥
⎦

⎤
⎢
⎣

⎡ Λ
+= jjijjijiig kkkwLLku

r
kHkHk

iμ
.           (6.12) 

The following result is obtained: 

[ ] 0ˆ,ˆ ≈×= kHk g u                                                 (6.13) 

where A is that given in (6.3) with the identifications and the energy E as the 

Coulomb Hamiltonian. The magnitude of A is found to be: 

2Ze=λ
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2

2
021

Ze
LHA

μ
+=                                                      (6.14) 

We seek the unknown vector coefficients in the following form: 

0030201

0030201

ˆˆ
ˆˆ

LLw
LLu

×++=

×++=

kbbkb
kaaka

                                        (6.15) 

Substituting eq. (6.15) into eq. (6.11) yields: 

( ) ( ) 0ˆˆˆˆˆ
00030020003001 ≈××+×−××+× kkbkbkaka LLLLL .                (6.16) 

For this expression to vanish and from eq. (6.31) we conclude that 

0        and       33221 ==== baaba .                                 (6.17) 

We now have: 

0101

01

ˆ
ˆ      

Lw
u

akb
ka
+=

=
.                                                   (6.18) 

At this point it is required to find a1 and b1 in terms of the coordinates, momenta and 

integrals of the motion. It is first pointed out that Oks and Uzer [4] achieved this by 

calculation of the equations of motion of r and p. However, it is found that the use of the 

unit Runge vector makes these calculations very tedious and that an alternative is 

available. Instead, the coefficients sought may be found in a much simpler and 

straightforward manner by the calculation of the frequency of precession of the Runge-

Lenz vector which, by definition, is equivalent to the precession of the unit Runge vector. 

For the sake of completeness, the calculation of the equations of motion has been 

included in Appendix C. The calculations pertaining to the derivation of the frequency of 
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precession of the Laplace-Runge-Lenz vector and finding the unknown vector 

coefficients are given in Appendix B. 

We begin by recalling that for a vector that precesses in the plane of motion: 

dt
dD

Ddt
d

precessionprecession
1

=⇒×= ωDωD
                                 (6.19) 

since the frequency vector is perpendicular to the plane of the orbit. Also, it should be 

noted that from eq. (6.19) we need only deal with magnitudes and not vectors.  

It was already stated in the context of general relativity in section 3, that the appearance 

of the binary term in the Hamiltonian leads to a precession of the orbit. In particular, we 

are interested in the fact that the Runge-Lenz vector precesses, which put in physical 

terms means that the eccentricity of the orbit, given by 

2Ze
A

=ε                                                         (6.20) 

oscillates. Alternatively, we may say that for 0=Λ ,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Λ
−+=+= 22

2

2

2
02

2
2121

r
H

Ze
L

Ze
LHA B μμμ

                              (6.21) 

will oscillate. Following Oks and Uzer [4], we will investigate the case of radiationless 

states, i.e. states in which there are no transitions or other mechanisms that cause 

radiation of the electron in its orbit. These states should satisfy: 

0
2

=
dt

dA
.                                                                (6.22) 

This condition will impose further constraints on the coefficients we seek thus allowing 

to find them in terms of constants of the motion.  
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The calculation of the left side of eq. (6.22) is, of course, carried out through the 

Poisson bracket formalism and is given by the following expression: 
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where the first Poisson bracket is of the binomial Hamiltonian with the generalized 

Hamiltonian and must vanish since the binary potential is conservative, and the bracket 

containing the square of the angular momentum must necessarily vanish in a central 

potential. Since we are concerned only with the first order contributions in terms of Λ , 

then in the right side of Eq. (6.23) it is sufficient to calculate all factors next to Λ  in the 

zeroth order. The details of the calculations of eq. (6.23) are included in Appendix B. The 

result obtained for the frequency, hereafter the generalized frequency ωg, is: 
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The last step is to stress that the generalized frequency varies from the classical frequency 

by a factor of ( )00 ,1 LHB+ . This may be understood by the time transformation 

( )( )00 ,1 LHBttt +=′→                                            (6.25) 

which is a time dilation dependent upon b1, for if b1=0, the time would remain unaltered 

as B would vanish. Upon substitution of this scaled time into all calculations, all 
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quantities regain their standard functional form. This is in complete agreement with the 

results of Oks and Uzer in [4]. With eq. (6.25) in mind, we note that the generalized 

period of the motion of the electron about the nucleus is 

21 
 

)( 00 ,1 LHB
TTg +

= .                                                (6.26) 

At this point it is necessary to point out that the equations relevant to the results 

derived for the generalized frequency resulted independent of a1 and, therefore, without 

loss of generality we may set a1=0 in the generalized Hamiltonian. Also, as in Appendix 

B, we opt to substitute eq. (B.19) into the generalized Hamiltonian, this yields: 
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With the goal of a generalized frequency for non-radiating states of motion of the 

electron, we note that the generalized frequency of (6.24), following Oks and Uzer [4], 

may be rewritten as: 
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where, again, the quantities differ from their standard value by the factor 1+B. The last 

step of eq. (6.28) defines D.  

In (6.28) we see on the central results of the formalism: we may have generalized 

frequency vanish, i.e. ωg = 0 despite ω0 ≠ 0. This is in stark contrast to the classical 

formalism in which ωg= 0 if and only if H0 = 0, as can be seen in eq. (6.28) when B = 0. 

In this state B(H0,L0) = -1, and this is a stable, nonradiating state of the classical atom 

since there is no radiation and consequently no energy is lost throughout the motion. 

Of particular interest for the determination of B(H0,L0) is an experimental fact used by 

Oks and Uzer [4]. It is as follows: highly excited atoms primarily emit radiation at a non-

zero and finite frequency determined by the limit H0→0. Thus, it is expected that there 

exists a limiting value for the generalized frequency as the Coulomb Hamiltonian 

approaches zero. We have 
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and this yields: 
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the contribution of -1 is negligible since in the limit as H0 approaches zero, the ratio 

becomes much larger than 1.  

Now we consider a particular state of the motion in which there is no radiation 

from the electron and we have ωg = 0. In this state let H0=HS (the subscript S is for 

“stable”). We must have: 
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( ) 1,                 = −sS LHB ,                                                 (6.31)  
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Upon substitution of eqs. (6.32) and (6.33) into eq. (6.28) we arrive at: 

( ) ( )LHLH 0000 ,, SSgω ω −ω= .                                       (6.34)  

We find, then, that the average frequency in the classical process of radiation in a weakly 

bound state is given by: 
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where the final frequency is taken to vanish since there should no longer be any radiation 

in the final state of motion and ( ) ( )LHLH 0000 ,, SS

23 
 

ω>> . ω

At this point, in keeping with the development of the problem as in [4], we should 

introduce Planck’s hypothesis, whereby we assume that the smallest possible change in 

energy is proportional to the frequency of the motion, and the proportionality constant is 

the reduced Planck’s constant Jsh 341005.1
2

−×≈≡
π
h  in SI units. In our particular 

problem, however, this is not so simple because, as is established in Holas and March [6], 

the unit Runge vector is only piecewise continuous reflecting the well-known fact that the 

motion in the modified Coulomb potential is only conditionally periodic (as opposed to 



periodic). Given this fact, the relation between changes of the energy and of the angular 

momentum should be refined as follows: 

∫∫∫ Δ=Δ=Δ ωθ LdtLdEdt
00

θTTr

                                         (6.36) 

where Tr is the period of radial motion and Tθ is the period angular motion. Eq. is 

justified as the change in energy correlates with the change, in this case a decrease, of the 

size of the orbit. Therefore, the integral containing the energy is over the period of radial 

motion. On the right-hand side of eq. (6.36), the integral contains the angular momentum 

which is the variable canonically conjugate to the angular variable θ, therefore the 

integration is performed over the period of angular motion. 

Combining eq. (6.36) with Planck’s hypothesis we get: 
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In eq. (6.37), the change in energy must, of course, satisfy 

 ( SSgSS LHhhHHHE ,
2 00 ωω ==≈−=Δ )                              (6.38) 

 

 

or 

( SSS LHhH ,
2 0ω≈ ) .                                             (6.39) 

We note that on both sides of the eq. (6.39) only physical quantities pertaining to the 

stable states are present. Also, in eq. (6.37) we have 
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(note that as ,0→Λ 11 2 →
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γ , which implies that θTTr = , as known from the 

Coulomb potential) 

and therefore 
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where n,m = 1,2,3… . In the third step of eq. (6.41) we used the relation between the 

frequencies given in eq. (6.40) and we have substituted ( )SS LH ,0ω  for the term 

( )
2

θωω mn r + , which is the average of the two frequencies throughout the motion 

(hence the 1/2); and, further, the expression must be valid not only for the first harmonic, 

but for all occurring harmonics of the radial and angular frequencies, hence the integer 

factors n and m. We have also used: 
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We now take notice that from eq. (6.41) we may obtain an expression for the 

Hamiltonian in the radiationless state of motion in terms of the integers n and m, we find: 
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We compare this classically-derived result with the known quantal result as may be found 

in, say, Quantum Mechanics: Nonrelativistic Theory of Landau and Lifschitz [18] in 

problem 3 after section 36: 
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42
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+++

= l
l
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nh

eZH r
r
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where nr and ℓ are the radial and angular momentum quantum numbers, respectively. We 

see that in the quantal result, the ground state ( 0, =rnl ), agrees exactly with our derived 

expression for n,m=1. Furthermore, the correspondence between the quantal result and 

ours agrees for all odd n and m, i.e. when these integers are of the form n=2k+1 and 

m=2q+1, q,k=0,1,2…. We may identify n and m as the radial and angular harmonic 

numbers. 
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7. CONCLUSIONS 

 

We close with a brief recapitulation of the work put forth in the preceding.  

In the section of application, motivation was given for the use and interest of the 

binomial potential. The well-known and interesting applications mentioned were that of 

the solution to the Klein-Gordon equation governing the dynamics of pionic atoms; 

radiation of particles in nanoplasmas; and the advance of the perihelion of planets 

orbiting in a central potential as can be shown by means of general relativity. The main 

new results obtained for the binomial potential are as follows. 

1. We obtained an explicit expression for the additional (to the angular momentum) 

vector integral of the motion: the unit Runge-Lenz vector. 

2. Beginning with Dirac’s generalized Hamiltonian dynamics, a purely classical 

formalism, a (generalized) Hamiltonian was set up that described the dynamics of 

a spinless particle in a Coulomb potential perturbed by the presence of a binomial 

potential, i.e. one that varies inversely with the square of the distance from the 

center of force. With this Hamiltonian and the use of consistency conditions, in 

this case the necessity that the angular momentum, energy (Hamiltonian), and the 

unit Runge-Lenz vector be the seven conserved quantities of the central potential 

it was shown that the use of GHD leads to an effective time dilation.



3.  We derived classical energies of radiationless states in the system of bound 

spinless particles and found that they agree with quantum theory for the ground 

state and with all states of odd principle and angular momentum quantum 

numbers.  

4. We derived the explicit expression for the generalized Hamiltonian. It leads to a 

dynamics that is much richer than the usual classical dynamics. This can be seen 

from the many additional terms in the equations of motion derived in Appendix 

C. 

 

It is worth emphasizing some interesting physics of classical nonradiating stable 

states following Oks and Uzer [4]: In those states, 0==
dt
d

dt
d pr , so that 0)( rr =t  and 

, where  and  are some constant vectors. Thus, the particle (for example, 

the pion) is motionless, but its momentum is nonzero. This is not surprising: for example, 

for a charge in an electromagnetic field characterized by a vector potential A, it is also 

possible to have 

0)( pp =t 0r 0p

0=
−

=v
m
mc
e Ap

, while 0≠= Ap
mc
e . 

 

 

 

 

28 
 



29 
 

BIBLIOGRAPHY 

 

1. Dirac, P. A. M 1950 Canad. J. Math. 2, 129 

2. Dirac, P. A. M. 1958 Proc. R. Soc. A 246 326 

3. Dirac, P. A. M 1964 Lectures on Quantum Mechanics (New York: Academic). 

Reprinted by Dover Publications, 2001. 

4. Oks E. and Uzer T. 2002 J. Phys. B: At. Mol. Opt. Phys 35 165 

5. Fradkin D. M. 1967 Prog. Theor. Phys. 37 798 

6. Holas A. and March N. H. 1990 J. Phys. A: Math. Gen. 23 735 

7. Einstein A. 1916 Annalen der Physik 49. It is reprinted in The Principle of Relativity 

(Dover 1952) with other landmark papers by Weyl H., Lorentz H., and Minkowski H. 

8. Josephson J. 1980 Found. of Phys. 10 243 

9. Landau L. D.  and Lifschitz E. M. 1982 Mechanics 3rd Edition Butterworth-

Heinneman 

10. Sokolov A. A., Ternov I. M., and Zhukovskii V. Ch. 1984 1st edition Quantum 

Mechanics Mir Publishers. 

11. Greiner W. 1990 Relativistic Quantum Mechanics: Wave Equations  

12. Schiff L. I. 1968 Quantum Mechanics (International Pure and Applied Physics 

Series) 3rd edition McGraw-Hill Companies.



30 
 

13. Capri A. 2002 Relativistic Quantum Mechanics and Introduction to Quantum Field 

Theory 1st edition World Scientific Publishing Company.  

14. B. M. Karnakov, Ph. A. Korneev, and S. V. Popruzhenko 2008 J. of Exp. and Theor. 

Phys., 106, No. 4, 650 

15. Landau L. D. and Lifschitz E. M. 1980 Classical Theory of Fields 2nd Edition 

Butterworth-Heinneman 

16. Walecka J. D. 2007 Introduction to General Relativity 1st edition World Scientific 

Publishing Company 

17. Schutz S. 1985 A First Course in General Relativity Cambridge University Press. 

18. Landau L. D.  and Lifschitz E. M. 1981 Quantum Mechanics: Nonrelativistic Theory 

3rd Edition Butterworth-Heinneman 

 
 
 
 
 
 
 
 

 

 

 



APPENDIX A 

DERIVATION OF THE FUNCTIONAL FORM  

OF THE UNIT RUNGE VECTOR 

 

The function f, given by 
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where 

Λ−= 22 LLeff                                                            (A.2) 

is the effective angular momentum and shows a correction due to the binomial potential. 

The integral in eq. (A.1), upon the substitution of the Coulomb potential, may be 

rewritten as: 
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If we now introduce the substitutions  
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then the left-hand side of eq. (A.3), in the indefinite form of the integral, becomes: 
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after some simplifications. It is convenient to define 
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and thus eq. (A.5) reduces to: 
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Putting in the limits of integration yields: 
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It is convenient to define: 
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we may then write 
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Consequently, the partial derivative in the unit Runge vector becomes: 
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where 
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We may use the definitions (A.9) and (A.11) to rewrite eq. (A.13) and put it into 

eq. (A.12) to get the following compact form: 
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where the term in the second set of parenthesis is the simplification of 
u
g
∂
∂ . We thus 

arrive at: 
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This is a general result valid for any value of Λ . However, since we are 

considering a small perturbation in the binomial potential, such that , then we 

may perform a Taylor series expansion of the unit Runge vector with respect to 

2L<<Λ

Λ  about 

: 0=Λ
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where  denotes the unperturbed unit Runge vector, which, by definition, is equal to 

the normalized classical Laplace-Runge-Lenz vector. Differentiation with respect to 

yields: 
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The second term in the parenthesis is due to
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. We now proceed to 

calculate the above quantities. For the first term: 
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as can be seen in eq. (A.14); and 
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We find: 
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and  
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The second derivative term is found to be: 
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We note that substituting 0=Λ  amounts to the substitution in accordance with 

eq. (A.2).  

LLeff →
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APPENDIX B 

DERIVATION OF THE FREQUENCY OF PRECESSION  

OF THE LAPLACE-RUNGE-LENZ VECTOR 

 

We start by explicitly writing the generalized Hamiltonian in eq. (6.23), 

substituting the vectors u and w from eq. (6.18): 
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The Poisson bracket of the binomial term, which is simply a term inversely 

proportional to the square of the distance, with the generalized Hamiltonian (B.1) is, in 

accordance with eq. (6.23): 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡+

⋅
−

Λ
−=⎥⎦

⎤
⎢⎣
⎡Λ

−=
Ar

Ab
rZe

LH
rZe

L
dt

dA
g

Apr ,1ˆ2,1
201422

2

222

22

μμ
              (B.2) 

where we have made the substitution  

A
k A

==Λ )0(ˆ ,               

which is justified by definition; it has also been taken into account that the Poisson 

bracket of the binomial potential with the angular momentum vanishes and the bracket 
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with b1 must vanish as b1 is constant. It is worthwhile to recall that the quantities indexed 

by a 0 are constant and consequently may be factored out of any bracket in which they 

appear. In (B.2) we note that: 

( ) ⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡=⎥

⎦

⎤
⎢
⎣

⎡ −
j

jq
qjjqq

q A
rA

AA
A

rA
AA

r
AA

rAA
A

r
,1,11,1,11,1

232
2
1

222      (B.3) 
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since the second term of the bracket is zero because the coordinates and momenta are 

assumed to be independent of each other. Thus, the entire calculation of the frequency of 

oscillation of the Runge-Lenz vector has been reduced to the calculation of the derivative 

of the of the Runge-Lenz vector with respect to the momenta. This is as follows: 
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so that (B.4) becomes: 

( 2
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With the simple result found in (B.6), we may now calculate the last part of (B.4) 

in order to get a final form for (B.3). We have: 
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Then, finally, we arrive at: 
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This expression was significantly simplified in form by carrying out the dot product of 

the coordinates and momenta with the Runge-Lenz vector: 
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Furthermore, since our calculations are limited to the first order in terms of Λ, 

then every factor next to Λ in the right side of (B.8) can be calculated in the zeroth order 

in terms of Λ. Therefore it is legitimate to replace the quantities 1/r4 and 1/r3 in the right 

side of (B.8) by their averages over the unperturbed Kepler ellipse. 

These averages are determined as follows: 
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is the average orbital radius, and  
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We shall keep the definitions of the momentum and the eccentricity as in (B.11) for the 

sake of brevity, but it is to be understood that these quantities are in terms of constants of 

the motion. Now substitution of (B.11a,b) into (B.8) yields: 
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Next we find the frequency of precession. Since we calculated the time derivative 

of the square of the magnitude of the Runge-Lenz vector rather than the magnitude to the 

first power, we make a small correction to (B.12) to arrive at our desired result: 
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we therefore arrive at: 
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We may now rewrite this as: 
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where in the last step we substituted the expression for the eccentricity and the classical 

Runge-Lenz vector. We see that in for the case b1=0, we recover the well-known 

classical expression. Thus, the appearance of the function B(H0,L0) of eq. (B.18) is a 

result characteristic of Dirac’s formalism for the central potential as it depends directly 
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on b1, the one remaining coefficient from the formalism’s constant vectors introduced in 

the generalized Hamiltonian.  

Furthermore, we may solve for b1 in terms of the Coulomb Hamiltonian, the 

angular momentum and B: 
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or 

 ( )

A
L

AAeZeZ
AeZeZL

ALHBZeb 2
0

424284

24284
2

2
00

2

1

3248
328

,

−
++

+
=

μ                                    (B.18) 

in terms of the classical Runge-Lenz vector. We may now substitute this result into the 

generalized Hamiltonian to obtain: 
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Furthermore, since the equations relevant to all results are independent of a1, we may, 

without loss of generality, set a1=0, and the Hamiltonian reduces to: 
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The last step was obtained from substitution of (B.19), where we use the 

magnitude of the classical Runge-Lenz vector in terms of the Coulomb Hamiltonian and 

the angular momentum. Furthermore, it should be noted that the generalized Hamiltonian 

is expressed solely as a function of conserved quantities. 
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APPENDIX C 

DERIVATION OF THE EQUATIONS OF MOTION 

VIA THE POISSON BRACKET FORMALISM 

 

In classical mechanics the equations of motion for any quantity are given by the 

Poisson bracket of the quantity with the Hamiltonian for the system. In this formalism, 

this is extended to the generalized Hamiltonian for the system. Thus we have: 
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The equations of motion are known for the pure Coulomb potential, so we only 

have to calculate the term due to the binomial potential. The calculations yield: 

[ ] ( )[ ]

[ ]

[ ] ⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛
∂
∂−

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂⋅

∂
∂⋅

+
∂
∂

Λ
Λ+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛
∂
∂−

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂⋅

∂
∂⋅

+
∂
∂

+=

++=

j
q

iq
q

iq

j
q

iq
q

iq

jijjBi

rL
u
f

rL
prL

u
f

rLprL
rf

p
f

d
db

rL
u
f

rL
prL

u
f

rLprL
rf

p
fb

kxLakb
p

Hx i

ˆˆ            

ˆˆ            

ˆ,ˆ,

2

3

222

1

2

3

222

1
0

11
0

rprp

rprpp

δδ

δδ
μ

μ

(C.2) 

Here we have interchanged the order of differentiation since, by assumption, all functions 

involved are, at minimum, piecewise continuous and differentiable. 

 For the momentum we have:                                     
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(C.3) 

In eq. (C.3), we note that the dot product with the angular momentum, the coefficient of 

, vanishes in all terms except for the term with 1a ijδ . Furthermore, it is important to note 

that the equation of motion for the momentum and the position vector should be 

contained in the plane of motion, and therefore, the only acceptable value for  is zero 

because there occur no other terms proportional to  and the angular momentum that 

would make the expression perpendicular to the plane of the orbit vanish. In eqs. (C.2) 

and (C.3) only the derivatives of the vectors have been worked out fully, this is because 

the derivatives of scalar quantities are best dealt with as follows: 
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For the derivative with respect to the momentum, we find: 
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and similarly 
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After setting a1 to zero and carrying out the dot products, the equations of motion 

become: 
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(C.10) 

As expected, the equations of motion are coplanar with the position vector and the 

momentum vector. 
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