
Simultaneous Localization and Planning of Cooperative Air

Munitions via Dynamic Programming

Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee. This

thesis does not include proprietary or classified information.

Emily A. Doucette

Certificate of Approval:

John E. Cochran
Department Head and Professor
Aerospace Engineering

Andrew J. Sinclair, Chair
Assistant Professor
Aerospace Engineering

David A. Cicci
Professor
Aerospace Engineering

Joe F. Pittman
Interim Dean
Graduate School

Simultaneous Localization and Planning of Cooperative Air

Munitions via Dynamic Programming

Emily A. Doucette

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 10, 2008

Simultaneous Localization and Planning of Cooperative Air

Munitions via Dynamic Programming

Emily A. Doucette

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Emily Ann Doucette, daughter of Roland Jr. and Judith (Cusimano) Doucette,

was born September 30, 1984, in Metairie, Louisiana. She graduated from Pope John

Paul II Catholic High School as Valedictorian in 2002. She attended Auburn Univer-

sity in Auburn, Alabama, where she was chapter president of her sorority, Alpha Xi

Delta, and graduated magna cum laude with a Bachelor of Aerospace Engineering

degree in May 2006. She entered Graduate School at Auburn University, in August

2006.

iv

Thesis Abstract

Simultaneous Localization and Planning of Cooperative Air

Munitions via Dynamic Programming

Emily A. Doucette

Master of Science, May 10, 2008
(B.A.E., Auburn University, 2006)

80 Typed Pages

Directed by Andrew J. Sinclair

This work centers on the real-time trajectory planning for the cooperative con-

trol of two aerial munitions in a planar setting. One munition strikes the stationary

ground target and the other will serve as an observer. Sensor information from each

munition is assumed available, and the individual target-location estimates are fused

in a weighted least squares solution. The variance of this combined estimate is used

to define a cost function. The problem is posed to design munition trajectories that

minimize this cost function. This work describes the solution of the problem by a

dynamic-programming method. The dynamic-programming method establishes a set

of grid points for each munition to traverse based on the initial position of the mu-

nition relative to the target. The method determines the optimal path along those

points to minimize the value of the cost function and consequently decrease the value

of uncertainty in the estimate of the target location. The method is validated by com-

parison to known solutions computed by a variational method for sample solutions.

v

Numerical solutions are presented along with computational run times to indicate

that this method is effective in trajectory design and target location estimation.

vi

Acknowledgments

The author would like to acknowledge Dr. Andrew Sinclair for his guidance and

support throughout this work. The author would also like to thank Dr. David Jeffcoat

and the Munitions Directorate of Air Force Research Laboratory for the opportunity

to investigate this problem, and the Aerospace Engineering Department at Auburn

University for its support and financial assistance. Finally, the author would like to

bestow many thanks to her family and friends for their constant encouragement and

unwavering support.

vii

Style manual or journal used Journal of Approximation Theory (together with the

style known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty.

viii

Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Literature Review . 2
1.2 Optimal Control Theory . 5

1.2.1 Convexity . 7
1.3 Dynamic-Programming and Graph Theory 9

2 Development and Validation of Dynamic-Programming Routine 12
2.1 Method Development . 12
2.2 Validation Process . 12

3 Problem Definition 17

4 Application of Dynamic-Programming Approach 25

5 Estimation Performance 30
5.1 Estimation Results . 31

5.1.1 Problem 1 . 31
5.1.2 Problem 2 . 32

5.2 Discussion of Results . 33

6 Conclusions 34

Bibliography 36

Appendices 38

A FORTRAN Code Used for Dynamic-Programming 39

B MATLAB Code Used for Plots and Error Estimation 65

ix

List of Figures

1.1 (a) Convex set (b) Nonconvex set . 8

1.2 Convex function f . 9

1.3 Results from Textbook Example Validation 11

2.1 Results from Single Degree of Freedom Validation 16

3.1 Measurement of the target by the ith munition and the associated error
probability ellipse. 19

3.2 Investigation of cost function convexity with constant tF 24

3.3 Investigation of cost function convexity with constant heading, ψ1 and
ψ2 . 24

4.1 Example of (a) path grids and (b) DAG where n = 64 and m = 168 . 26

4.2 DAG where n = 64 and m = 168 . 27

4.3 Problem 1 SLAP trajectories from (a) variational and (b) DP methods. 28

4.4 Problem 2 SLAP trajectories from (a) variational and (b) DP methods. 28

5.1 Estimation errors using (a) Variational Method and (b) DP trajectories
with x2(0) = 100 ft, and y2(0) = −2000 ft. 32

5.2 Estimation errors using (a) Variational Method and (b) DP trajectories
with x2(0) = 0 ft, and y2(0) = 2000 ft. 33

x

List of Tables

3.1 Cost of Trial Solutions. 23

4.1 Cost for sample SLAP trajectories. 29

5.1 Area of one-sigma uncertainty ellipse. 32

xi

Chapter 1

Introduction

Research is in progress on the cooperative control of air armament designed to

detect, identify, and attack ground targets with minimal operator oversight. One

class of this type of armament is wide-area search munitions, which can be deployed

in an area of unknown targets. Current development is focused on possibilities of

enhancing munition capabilities through cooperative control. This problem of de-

signing an attack trajectory that enhances the ability to estimate the target location

will be referred to as simultaneous localization and planning (SLAP). Previous work

by Sinclair et al. solved the SLAP problem by variational methods [1]. This work

presents a method to drastically reduce the computational expense incurred in vari-

ational approaches to the SLAP problem by use of the dynamic-programming (DP)

method. The methods presented in this work will be illustrated for a planar problem

with two munitions and one stationary target.

In Chapter 2, the steps taken during the development of the dynamic-programming

routine will be discussed and the results of the validation process will be analyzed.

Chapter 3 presents models for the munition motion and sensor performance. Next in

Chapter 4, the SLAP trajectory design is posed as a DP problem. The performance

cost sensitivity to grid resolution is then investigated. Finally, the performance of

a target-location estimation algorithm is evaluated along the SLAP trajectories and

compared to alternative trajectories. This chapter presents past investigations of co-

operative control problems that played a role in the motivation for the DP approach,

1

an overview of general optimal control problems, the dynamic-programming method,

and graph theory used in this work.

1.1 Literature Review

Several aspects of the cooperative control of unmanned air vehicles have been

investigated. Important work exists in the literature on the problem of cooperative

search. In 2002, Chandler et al. presented the cooperative use of eight vehicles

to maximize the probability of correct target classification through the development

of templates and combination of views over various aspect angles. In this work, a

hierarchical distributed decision system is used to sequentially perform task assign-

ments through a market based bidding scheme, coordinate cooperative tasks, and

plan the optimal paths to view the targets. This method demonstrated significant

improvement in classification performance than that achieved when the vehicles oper-

ate independently [2]. The effect of cueing on the probability of target detection was

investigated by use of two searchers through the derivation from first principles using

a Markov chain analysis [3]. Additionally in 2005, Frew et al. developed guidance

laws for tracking a ground vehicle by an autonomous team of two air vehicles by the

construction of Lyapunov vector fields. This method used a second Lyaponuv vector

field to produce advantageous phasing of aircraft to follow an agile target [4].

The problem of cooperative search is related to that of the often investigated

problem of designing optimal trajectories for single observers. Fawcett used the

Cramer-Rao lower bound to investigate the effect of course maneuvers on bearings-

only range estimation. Although optimal observer trajectories were not designed, it

was shown by Monte Carlo simulations that for small amounts of noise, the variance

2

of the maximum likelihood estimator range estimate follows the Cramer-Rao lower

bound [5]. Hammel et al. derived observer paths in the context of continuous-time

bearing measurements with a performance index based on the determinant of the

Fisher information matrix (FIM). Because that formulation resulted in an optimal

control problem not suited for standard solution methods based on the minimum

principle, an approximate numerical solution based on the direct maximization of

the FIM was used [6]. Oshman and Davidson investigated Hammel’s problem by use

of direct optimal control numerical schemes, including two gradient-based numerical

procedures and differential inclusion. In addition to improving results, state con-

straints were also imposed on the observer trajectory to simulate the defense system

of a target [7].

Logothetis et al. compared two groups of suboptimal optimization techniques

for computing observer trajectories in bearings-only tracking. It was shown that the

approximate DP strategy yielded smaller range errors than one-step-ahead suboptimal

strategies, the smallest range error being produced by the DP method that minimized

the trace of the error covariance matrix at each time instant [8]. Passerieux and Van

Cappel generalized the constant speed observer trajectories to nonrectilinear segments

and computed the true optimal observer maneuvers for bearings-only tracking. The

Euler equations were established and resolved by a combination of analytical and

numerical methods and the performance index was based on minimizing an accuracy

criterion from the FIM [9].

Additional single observer trajectory optimization problems involve vision based

guidance. Frew and Rock recognized the strong relationship between the performance

of monocular vision based target tracking and camera motion. Camera paths were

3

designed in real time based on the predicted target state error covariance using a

pyramid, breadth-first search algorithm [10]. Wantanabe et al. studied vehicle guid-

ance design that utilized sensor trajectory optimization for monocular vision based

guidance. This method improved mission performance by minimizing a weighted sum

of guidance performance cost, control cost, and estimation cost [11].

The problem of planning optimal trajectories for cooperative observers has been

studied using collocation. Ousingsawat and Campbell developed a receding horizon

optimal control formulation to solve for trajectories that maximize information gath-

ered by the sensing vehicles. Important notes in this work were that nonsymmetric

sensors tend to triangulate as they approach the target and that the addition of a

third vehicle does not yield large performance improvement but does add redundancy

[12]. Grocholsky also defined information gathering as an optimal control problem

to quantify his results that explain the coupling and coordination of decentralized

decision makers. It was also shown that the use of static information structures lead

to sub-optimal yet efficient control strategies for the team [13].

The problem of cooperative attack was previously investigated using variational

methods [1]. This method yielded encouraging results, but was too computationally

expensive for online implementation. Coupled with the need for reduced compu-

tational expense and the results from Logothetis, it was determined that the ef-

fectiveness of the dynamic-programming method on the SLAP problem should be

investigated.

4

1.2 Optimal Control Theory

The primary focus of Applied Optimal Control Theory is the analysis and design

of complicated dynamic systems and the determination of effective ways to control

such systems. The mathematical statement of the optimal control problem consists

of descriptions of the system to be controlled, system constraints, the task to be

accomplished, and the criterion against which the performance is to be judged and

determined optimal [14].

The system to be controlled is expressed in a set of differential equations known

as the state equations. The state equation is typically a function of the state, x, the

control variable, u, and time, t, as shown in Eq. (1.1). Constraints often exist on

allowable values of state and control variables.

ẋ = f(x,u, t) (1.1)

The task is often dictated by a boundary condition on Eq. (1.1), such as a state

transition from a known initial state to a specified final state. The task is frequently

specified implicitly by the performance criterion, also known as the cost function.

The general form of a continuous cost function is given by Eq. (1.2).

J = φ(x(tF), tF) +

∫ tF

0

L(x,u, t)dt (1.2)

In Eq. (1.2), φ is a scalar-valued function of the cost associated with the terminal

state at time tF . The cost function L is also a scalar-valued function and depends

on the transient states and control effort. These functions are selected to emphasize

5

the importance of terminal condition, transient behavior, and the expended control

effort in the total cost function, J .

The next step to optimization is the definition of the Hamiltonian. This scalar-

valued function is important due to Pontryagin’s minimum principle that states the

optimal control u∗(t) is a member of the admissible control set U which minimizes

H at every time. The Lagrange multipliers λ are referred to as costates and measure

the sensitivity of the cost to the current value of the states.

H = L(x,u, t) + λTf(x,u, t) (1.3)

After defining the Hamiltonian, Eq. (1.3) is substituted into Eq. (1.2) to form

the augmented cost function Ja.

Ja = φ(x(tF)) +

∫ tF

0

(
H(x,u,λ, t)− λTẋ

)
dt (1.4)

Expanding the augmented cost function by taking the variation due to the states

δx and control δu yields δJa.

δJa =

(
∂φ

∂x(tF)

)T

δx(tF)

+

∫ tF

0

[
∂H

∂x

T

δx+
∂H

∂u

T

δu+
∂H

∂λ

T

δλ− ẋTδλ− λTδẋ

]
dt

6

This result can be integrated by parts.

δJa =

(
∂φ

∂x(tF)

)T

δx(tF)− λTδx
∣∣∣tF
0

+

∫ tF

0

[(
∂H

∂x
+ λ̇

)T

δx+
∂H

∂u

T

δu+

(
∂H

∂λ
− ẋ

)T

δλ

]
dt

By requiring the expressions in the integrand to go to zero for arbitrary variations

δx and δu, necessary conditions known as the Euler-Lagrange equations are formed.

λ̇ = −∂H
∂x

∂H

∂u
= 0 (1.5)

ẋ =
∂H

∂λ

The terms outside the integral yield the boundary conditions on the problem. Solution

of these necessary and boundary conditions is referred to as solving the optimal control

problem by indirect or variational methods.

1.2.1 Convexity

It is important to note the role of convexity in optimal control problems. If an

optimal control problem is convex, an optimal solution should yield a global mini-

mum, whereas the solution of a nonconvex optimal control problem may yield only a

local minimum. Convex sets and convex functions must be defined to determine the

convexity of an optimal control problem.

7

(a) (b)

Figure 1.1: (a) Convex set (b) Nonconvex set

A set C is convex if a line segment between any two points in the set lies in

the set, i .e. for any x1 , x2 ∈ C and any θ where 0 ≤ θ ≤ 1, convexity requires

θx1 + (1− θ)x2 ∈ C, as illustrated by Fig. 1.1.

A function f , shown in Fig. 1.2, is convex if and only if:

1. the domain of f is a convex set,

2. and the function evaluation of a linear interpolation of x1 and x2 must be less

than or equal to the linear interpolation of f(x1) and f(x2).

Given an optimization problem of minimizing the objective function f0 (x) subject

to inequality constraints fi(x) ≤ 0 and equality constraints aT
i x = bi, the problem is

convex if and only if:

1. f0 and fi are convex,

2. and the equality constraints are linear.

Given these definitions of convex sets, functions, and optimization problems, the

convexity of an optimal control problem may be determined. The general form of

8

Figure 1.2: Convex function f

an optimal control problem is to minimize the cost function J(x,u, t) subject to

state equations ẋ = f(x,u, t), equality constraints Ce(x,u, t) = 0, and inequality

constraints Ci(x,u, t) ≤ 0. The control variable u(t) is continuous in time, therefore

making this an infinite-dimensional optimization problem. If the states are written

as a function of the controls, the optimal control problem more closely resembles the

previous optimization problem. Therefore, the optimal control problem is convex if

J (u) and Ci(u) are convex and Ce(u) is linear [15].

1.3 Dynamic-Programming and Graph Theory

The dynamic-programming method was developed by Richard Bellman and oth-

ers in the 1950’s as a mathematical theory of multi-stage decision processes and is

used in economic, industrial, engineering, and military domains. This approach was

based on using functional equations and the principle of optimality during the onset

of the ever-growing field of digital computing. It provided versatility and numerical

solutions where the classical technique of the calculus of variations was lacking. The

9

calculus of variations and DP are complementary theories. The DP theory regards

the extremal curve as an envelope of tangents and attempts to determine the optimal

direction at each point on the extremal, while the calculus of variations considers the

extremal curve to be a locus of points and attempts to determine this curve by means

of a differential equation [16].

At the time of the inception of DP theory, there were two classes of methods

to solve nonlinear differential equations. The first class depended on a discrete ap-

proximation to the exact solution, while the second depended on deriving an exact

equation for a discrete approximation to the original continuous process. The latter

class of methods calls for choosing the values of a function y(x) at specific points over

the desired interval as opposed to choosing the function y(x) over a given interval.

This process is used in the DP method for trajectory optimization [16].

The dynamic-programming method discussed herein is based on a simple trajec-

tory optimization problem discussed by Bryson and Ho [17]. This problem, illustrated

by the grid in Fig. 1.3, requires a path from A to G that yields the minimal cost. The

grid is divided into vertical groupings of nodes referred to as subsets, here labeled

by the letters A-G. The optimal path will stem from A through subsets B-F, moving

always to the right, to G, the terminal point.

Each possible path segment has an associated cost, indicated by the number

along each edge of the grid. The algorithm uses a recursive summation of the costs

to determine the optimal path from the initial to the final position. The recursive

summation technique begins at G and marches backward to the next subset of nodes,

F, storing the optimal cost from each node in F to G. In this first case, these are

trivially computed: traveling from the upper point in F to G has a cost of 10 while

10

Figure 1.3: Results from Textbook Example Validation

the cost of traveling from the lower node in F to G yields a cost of 11. This process is

repeated at subset E. The upper, middle, and lower nodes of E have costs of 18, 16,

and 20 respectively. For each node, the optimal path through F is also stored. For

example, for the middle node of E the optimal path passes through the upper node

of F. This process of determining the optimal path to the terminal point continues

backward through each subset until the initial point A is reached, and therefore the

optimal path and cost are determined. In this algorithm, each path segment is only

evaluated once.

The graph formed by the n vertices and m edges of Fig. 1.3 is known as a

directed acyclic graph. A directed graph is obtained if a vertex p is connected to

another vertex q by edge e and the order of the vertices is prescribed, meaning the

vertex p is the tail of e and q is the head of e. Directed graphs containing no directed

circuits, or non-isolated vertices, are called acyclic graphs. The directed acyclic graphs

(DAG) resulting from DP trajectory optimization problems have solutions that can

be computed in O(m) time. In the next chapter, the concept of DP is compared to

the variational method in application to a single degree of freedom dynamic system.

11

Chapter 2

Development and Validation of Dynamic-Programming Routine

2.1 Method Development

Throughout the development of this routine, it was assumed that a fixed target

and variable initial conditions for each munition were to be considered. It should

be noted that in this method, a summation from a given node to the end point was

used. However, a summation from the initial point to a given node could have been

implemented, as both approaches yield the same path from A to B. Given the duality

of this problem, the backward-marching method was chosen based on the problem to

which it was to be applied, in which the target was fixed.

2.2 Validation Process

The dynamic programming algorithm was subjected to a dual validation process.

First, it was shown to reconstruct the correct optimal path and final cost from an

example grid with known costs. The solution is illustrated by the bold solid line in

Fig. 1.3.

The next step in the validation process was to apply the algorithm to a dynamic

system. A single degree of freedom system was chosen with a linear state equation,

12

quadratic cost function, and given initial and final states and times.

ẋ = ax+ bu (2.1)

J =

∫ tF

0

(
qx2 + ru2

)
dt (2.2)

For this problem, the optimal solution was computed analytically by the variational

method. By substituting the cost function defined in Eq. (2.11) into Eq. (1.3), the

Hamiltonian was determined.

H =
1

2
(qx2 + ru2) + λ(ax+ bu) (2.3)

Using the optimal control principles in Eq. (1.6), the necessary conditions for the

single degree of freedom problem were determined.

λ̇ = −(qx+ λa) (2.4)

0 = ru+ λb (2.5)

ẋ = ax+ bu (2.6)

Equation (2.5) was solved for the control u and the solution was substituted into

Eq. (2.6). This resulted in differential equations for the state, x , and costate, λ, in

13

terms of only x , λ, and the scalars a, b, q, and r.

 ẋ

λ̇

 =

 a − b2

r

−q −a


 x

λ

 (2.7)

The solution of this linear differential equation was used for comparison with the DP

solution. For implementation in the DP algorithm, constant control was assumed

along each edge of the grid. Using the given initial and final conditions on the state

and time, the state equation Eq. (2.1) was solved in terms of a constant k and the

control u.

xh = keat ; xp = −bu
a

(2.8)

x = keat − bu

a
(2.9)

Also, the path grid was symmetric about a reference line from the initial to the

final state. This allowed for the geometric determination of physical grid points and

the time step between grid points. Consequently, the constant k and the control u

necessary to travel between two grid points were determined by solving Eq. (2.10).

 x1

x2

 =

 eat1 − b
a

eat2 − b
a


 k

u

 (2.10)

14

The substitution of the constant control u and Eq. (2.9) into Eq. (2.11) provided an

analytical expression for the costs.

J =
1

2
ru2(t2 − t1) +

1

2
q

∫ t2

t1

(
keat − bu

a

)2

dt (2.11)

The integral in Eq. (2.11) may be expanded to obtain an expression of known variables

that was used to calculate the cost along each grid segment.

J =
1

2
ru2 (t2 − t1) +

1

2
q

(
k2

2a
e2at2 − 2k

b

a2
ueat2 +

b2

a2
u2t2

)
− 1

2
q

(
k2

2a
e2at1 − 2k

b

a2
ueat1 +

b2

a2
u2t1

)

Following the determination of the cost along each segment of the path grid, the

optimal path was determined by the DP method. Fig. 2.1 illustrates the solutions for

when the scalar variables a, b, q, and r are unity and the initial and final states and

times were x = 1 and 0 and t = 0 and 10, respectively. The DP trajectory follows

the same trend as that of the variational method. The true optimal cost in the this

case is J = 2.410. The solution found from the DP was J = 2.518. The performance

cost increase of 4.43% is relatively minor. Additionally, the computational run-time

was less than one second.

In Fig. 2.1, the circles illustrate the path defined by the dynamic programming

algorithm, and the solid line is a third order curve fit used for visualization. It

is clear that the DP method trajectory captures the trend of the variational method

trajectory, which is illustrated by the dashed line. Following such tests and validation,

the algorithm had been demonstrated in application to a dynamic system and in

15

Figure 2.1: Results from Single Degree of Freedom Validation

correct generation of a path with cost on the same order as known true solutions.

This motivated its application to the previously investigated complex dynamic system

described in the following chapter.

16

Chapter 3

Problem Definition

A scenario will be considered with the two-dimensional plane populated by two

munitions and a single fixed target. The state of each munition is given by its position

in two dimensional space, x1 = [x1 y1]
T and x2 = [x2 y2]

T. A constant-speed kine-

matic model is used to describe the motion of the munitions. The heading angles of

the munitions are ψ1 and ψ2, and the speed of each munition is v. Here, the heading

angles are treated as control variables.

ẋ1 = v cosψ1 ; ẋ2 = v cosψ2

ẏ1 = v sinψ1 ; ẏ2 = v sinψ2 (3.1)

ẋi = fi (ψi) , i ∈ {1, 2} (3.2)

Additionally, each munition is considered to carry a sensor that is capable of

measuring the target location in the xy plane. To design trajectories that improve

the estimation of the target location, a model is needed of the sensor measurements

and their uncertainties. The target has a position described by xT = [xT yT]T. The

measurement of this target location by each munition, z̃1 = [x̃T,1 ỹT,1]
T and z̃2 =

17

[x̃T,2 ỹT,2]
T, is modeled as shown below.

x̃T,1 = xT + wx,1(0, σx,1) ; x̃T,2 = xT + wx,2(0, σx,2)

ỹT,1 = yT + wy,1(0, σy,1) ; ỹT,2 = yT + wy,2(0, σy,2) (3.3)

The measurement errors from each munition are assumed to be independent of the

errors from the other munition. The x and y measurement errors from each indi-

vidual munition, however, are treated as correlated Gaussian random variables with

zero mean and standard deviations of σx,i and σy,i, where i ∈ {1, 2}. It is these un-

certainties that will drive the trajectory design, and they can be selected to model a

particular sensor design.

The error in the target-location measurements from an individual munition is

treated as following a zero-mean jointly-Gaussian distribution that is uncorrelated in

the down-range and cross-range directions, relative to the true target and munition

locations. The errors in these directions, wd,i(0, σd,i) and wc,i(0, σc,i), can therefore be

treated as independent Gaussian random variables. The standard deviations in the

down-range and cross-range directions are modeled as functions of the range from the

munition to the target.

σd,i = 0.1ri ; σc,i = 0.01ri (3.4)

This models a sensor that is more accurate when close to the target and more

accurate in the transverse direction than in the radial direction. The uncertainty in

the measurement of the target location by the ith munition is illustrated in Fig. 3.1.

18

Figure 3.1: Measurement of the target by the ith munition and the associated error
probability ellipse.

From the down-range and cross-range variables, the errors and the covariance

matrix in the x and y coordinates can be found.

 wx,i

wy,i

 =

 cos θi sin θi

− sin θi cos θi


 wd,i

wc,i

 (3.5)

Pi =

 σ2
x,i σxy,i

σxy,i σ2
y,i

 =

 cos θi sin θi

− sin θi cos θi


 σ2

d,i 0

0 σ2
c,i


 cos θi − sin θi

sin θi cos θi

 (3.6)

Here, θi is the bearing angle of the target relative to the ith munition. The range and

bearing angle for each target-munition pair are computed as shown below.

ri =

√
(xT − xi)

2 + (yT − yi)
2 (3.7)

19

θi = tan−1

(
yT − yi

xT − xi

)
(3.8)

The measurements provided by both munitions can be fused into a single in-

stantaneous estimate of the target location. This is done using a minimum-variance

least-squares estimator (MVLSE) [18, 19]. The measurements of the target location

from each munition are grouped into a measurement vector z̃ = [x̃T,1 ỹT,1 x̃T,2 ỹT,2]
T.

This produces a linear measurement model in terms of the target location.

z = HxT +w (3.9)

H =

 1 0 1 0

0 1 0 1


T

; w =

[
wx,1 wy,1 wx,2 wy,2

]T

(3.10)

Here, w is the vector of measurement errors. The covariance of this error vector is

given by arranging the covariances from each munition.

R =

 P1 0

0 P2

 (3.11)

The instantaneous MVLSE of the target location and the associated covariance are

given by the following.

x̂T =
(
HTR−1H

)−1
HTR−1z̃ (3.12)

20

P =
(
HTR−1H

)−1
(3.13)

Considering the first of Eqs. (3.10), the MVLSE reduces to the following.

x̂T =

 x̂T

ŷT

 =
(
P−1

1 + P−1
2

)−1 (
P−1

1 z̃1 + P−1
2 z̃2

)
(3.14)

More importantly for the current purposes, the covariance of this combined estimate

is related to the individual covariances of the measurements from each munition.

P =

 σ2
x σxy

σxy σ2
y

 =
(
P−1

1 + P−1
2

)−1
(3.15)

The covariance P now models the uncertainty in the combined target-location es-

timate based on the positioning of the two munitions relative to the target. The

task of designing trajectories for the munitions in order to enhance the estimation

performance can now be posed as the following optimal control problem. Consider

the state vector x = [x1 y1 x2 y2]
T. The heading angles of the munitions can be

organized into a control vector u = [ψ1 ψ2]
T. The state vector evolves according to

the state equation found by grouping Eq. (3.2), ẋ = f(u) = [fT
1 f

T
2]T. For boundary

conditions, the initial positions of the munitions will be considered a given, and the

final position of munition 1 is required to be the target location, x1(tF) = xT and

y1(tF) = yT . The final position of munition 2 is free.

21

The goal will be to find the trajectories that minimize the following cost function,

which is based on the MVLSE covariance.

J =

∫ tF

0

(
σ2

x + σ2
y

)
dt (3.16)

The variances of each target location are functions of the states describing the mu-

nition configuration. Clearly, this cost function emphasizes the uncertainty over the

entire trajectory.

Given the cost function in Eq. (3.16) subject to the state equation in Eq. (3.2)

and the equality constraints x1(tF) = xT and y1(tF) = yT , the convexity of the SLAP

problem may be determined. For the SLAP problem to be convex, the cost function

must be convex and the equality boundary conditions must be linear.

The convexity of the cost function will be numerically investigated for five trial

solutions, although these solutions will not satisfy the boundary conditions. For

the trial solutions, the given conditions are(xT , yT) = (0, 0), (x1, y1) = (0,−2000),

(x2, y2) = (2000, 0), v = 300, and ψ1 and ψ2 are constant during a trial.

Table 3.1 lists the resultant costs associated with each trial solution. Cases 1-3

exhibit convex behavior because the cost of Case 2 is below the linear interpolation

of the costs of Cases 1 and 3. However, when the final time is varied while the

heading angles remain the same between cases as in Cases 1, 4, and 5, the function

evaluation of Case 4 is greater than the linear interpolation of the costs of Cases 1

and 5. Therefore, the cost function J is found to be nonconvex. Figures 3.2 and 3.3

illustrate this behavior.

22

Table 3.1: Cost of Trial Solutions.

Case ψ1 ψ2 tF Cost
1 π/2 π 5 1.7326733× 103

2 π/2− 0.05 π − 0.05 5 1.7363854× 103

3 π/2− 0.1 π − 0.1 5 1.7475124× 103

4 π/2 π 5.1 1.7373327× 103

5 π/2 π 5.2 1.7414337× 103

Also, the equality constraints, which are functions of sine and cosine in Eq. (3.17),

are nonlinear by inspection. These characteristics demonstrate the nonconvexity of

the SLAP problem.

v

∫ tF

0

cosψ1dt = xT − x1(0)

v

∫ tF

0

sinψ1dt = yT − y1(0) (3.17)

The next chapter describes the process of applying the DP method to the SLAP

problem.

23

Figure 3.2: Investigation of cost function convexity with constant tF

Figure 3.3: Investigation of cost function convexity with constant heading, ψ1 and ψ2

24

Chapter 4

Application of Dynamic-Programming Approach

The SLAP problem has previously been solved by applying the variational method

discussed in Section 1.2, and the purpose of this work is to compare the results of the

DP method to those of the variational method [1]. The optimal control problem was

converted to a two point boundary value problem and solved by determining the ini-

tial costates with an iterative numerical solver in MATLAB. Although these solutions

yielded the optimal solution and demonstrated that significant improvements in the

target-location estimate could be achieved, the method was too computationally ex-

pensive for real-time implementation. This section describes solution of the problem

by dynamic programming, with the goal of reducing computational expense.

Whereas variational methods consider a continuous range of heading angles at

any instant in time, the approach considered here only allows a discrete number

of possible heading at discrete instants in time. The trajectories were limited to

two possible heading angles at each decision instant. Between decision points, the

trajectories follow constant headings. This discretization generates a grid of possible

trajectories, as illustrated in Fig. 4.1. This grid of physical points through which the

munitions may travel is referred to as the path grid.

The path grids were laid out for each munition and were structured such that they

were symmetric about a reference line from the initial state to the target location. The

expansion of this grid is variable about the reference line by an angle, α. Because the

results of the variational method showed that the munitions tended to approach the

target at orthogonal headings, the path grid was of variable width to allow for outward

25

(a) (b)

Figure 4.1: Example of (a) path grids and (b) DAG where n = 64 and m = 168

sweeps. The degree of expansion was determined based on the initial positions of the

munitions relative to the target. Munition 1 is constrained to hit the target, but the

grid for Munition 2 allows multiple possible terminal points.

The nodes were organized into subsets of nodes that could be reached in a given

amount of time. The time increment between layers was also assumed constant over

all layers. This time increment is calculated from the initial range of the munition that

will strike the target, which is assumed to always be the closer of the two munitions.

The same time step is used for both munitions in order to preserve synchronized

motion of the munitions.

This DP routine implements the Bellman-Ford model for trajectory optimiza-

tion through dynamic-programming in Fortran 77 on a 2GHz PC. The combinatorial

possibilities of physical node locations for the two munitions were used to form the

vertices of a DAG with n vertices and m edges. Each vertex represents a particular

location for each munition at a particular instant in time, and each edge corresponds

to the cost value associated with the munitions traveling between those particular

locations. These costs are calculated according to Eq. (3.16). The graph is directed

and acyclic because the paths must follow the flow of time.

26

Figure 4.2: DAG where n = 64 and m = 168

The vertices are arranged into subsets, where each subset represents a particular

instant in time. Once the cost along each edge of the DAG is computed, the algorithm

marches backward in time from the last layer of vertices to the first vertex to determine

the lowest possible cost and the path that produces it. At each subset, the optimal

path is computed by comparing the costs to proceed forward. That path and cost is

then stored and the algorithm works backwards to the preceding subset, continuing

this process until it reaches the initial vertex. The DAG associated with the path

grids in Fig. 4.1 is shown in Fig. 4.2. Because the DAG in Fig. 4.2 has seven terminal

vertices due to the free final state of Munition 2, the DP routine was run multiple

times, in each run one of the vertices was assumed to be the true terminal vertex.

The lowest resulting cost of the seven runs was then chosen as the optimal.

Example trajectories produced by the DP method are shown in Figs. 4.3 and 4.4

using n = 64 and m = 168. The DP trajectories are also compared to trajectories

27

(a) (b)

Figure 4.3: Problem 1 SLAP trajectories from (a) variational and (b) DP methods.

(a) (b)

Figure 4.4: Problem 2 SLAP trajectories from (a) variational and (b) DP methods.

computed from the variational method. A third-order curve fit was used to obtain

the smooth trajectories from the grid points of the path grids. The trends of the

DP trajectories capture those of the variational method. This is also evidenced in

minor increase in the final cost of approximately 7.75% in each problem, as shown

in Table 4.1. When paired with a computational run-time of 0.1 sec, compared to

many minutes for the variational method, these cost values confirm the effectiveness

of this method in solving the SLAP problem.

28

In implementing the DP method, the resolution of the path grids and the re-

sulting DAG must be selected. In order to determine an appropriate resolution, the

sensitivity of the cost to grid resolution was investigated. A lower resolution DAG

with n = 27 and m = 70 was created. The resulting increase in performance cost

for the considered problem was less than 1%, as shown in Table 4.1. Because the

process of refining the grid resolution would be nontrivial, this low sensitivity to grid

resolution did not motivate the investigation of resolutions greater than n = 64.

Table 4.1: Cost for sample SLAP trajectories.

Problem DP Method Cost DP Method Cost Variational Method Cost
n = 64 n = 27

1 1.7181× 104 1.7209× 104 1.59× 104

2 2.0317× 104 2.0318× 104 1.89× 104

29

Chapter 5

Estimation Performance

The impact of the trajectories on the target-location estimation can now be eval-

uated. Although the trajectories were designed using a cost function based on the

variances from a continuous MVLSE algorithm, the estimation performance will be

evaluated using a recursive minimum-variance least squares estimation (RMVLSE)

algorithm with discrete measurement updates. The estimates computed using the DP

trajectories are compared to estimates using the variational-method trajectories and

following trajectories from the initial conditions straight to the target location (STT

trajectory). In each case, noisy measurements were simulated using the measure-

ment model in Eq. (3.4). The measurements were generated by use of the RANDN

command in MATLAB to generate a normal distribution of random numbers.

The munition sensors were assumed to collect measurements of the target location

at a rate of 10 Hz. The RMVLSE algorithm operated as follows to determine the

estimate and the uncertainty at the kth time step [18, 19]. The current estimate is

computed as follows.

Kk = Pk−1H
T
(
HPk−1H

T +R
)−1

(5.1)

x̂
(T)
k = x̂

(T)
k−1 +Kk

(
z̃k −Hx̂(T)

k−1

)
(5.2)

30

The current covariance matrix is computed as shown.

Pk =

 σ2
x,k σxy,k

σxy,k σ2
y,k

 =
(
P−1

k−1 +HT
kR

−1
k Hk

)−1
(5.3)

To compare the estimation performance along the different trajectories, the size of

the one-sigma uncertainty ellipsoid in the target-location estimate can be used as a

metric. At the kth time step, this is given by the product of π with the square root

of the product of the eigenvalues of Pk. In particular, the ellipsoid size at tF − 2 sec

will be highlighted. Although tF is different for each trajectory, at this point in time

munition 1 is roughly 600 ft from the target.

Estimation performance will be compared for STT trajectories and SLAP trajec-

tories computed by the variational and dynamic-programming methods at two sets

of initial conditions. All DP results were computed with a mesh expansion angle α

of π/4.

5.1 Estimation Results

5.1.1 Problem 1

Using the initial condition of x1(0) = 0 ft, y1(0) = −2000 ft, x2(0) = 100 ft, and

y2(0) = −2000 ft, two munitions on STT trajectories generate a one-sigma uncer-

tainty ellipse at with an area of 39.7 ft2 at tF − 2 sec, with tF = 6.67 sec. When

the two munitions follow the SLAP trajectories shown in Fig. 4.3, the final times

increase to 8.09 sec and 9.43 sec for the variational method and DP method, respec-

tively. However, the area of the error ellipse is reduced as shown in Table 5.1. The

31

Table 5.1: Area of one-sigma uncertainty ellipse.

Problem STT Variational Method DP Method

1 39.7 ft2 9.1 ft2 24.5 ft2

2 40.8 ft2 9.3 ft2 23.5 ft2

(a) (b)

Figure 5.1: Estimation errors using (a) Variational Method and (b) DP trajectories
with x2(0) = 100 ft, and y2(0) = −2000 ft.

error histories for a sample simulation with noisy measurements and three-sigma er-

ror bounds (±3σx,k and ±3σy,k) generated by the RMVLSE algorithm are shown in

Fig. 5.1. Figure 5.1(a) shows the errors in the x and y estimates of the target location

using the variational method trajectories. Figure 5.1(b) show the errors using the DP

trajectories.

5.1.2 Problem 2

Moving munition 2 to the initial condition x2(0) = 0 ft, and y2(0) = 2000 ft

results in an uncertainty ellipse with an area of 40.8 ft2 for the STT trajectories,

9.3 ft2 for the variational method trajectories, and 23.5 ft2 for the DP trajectories.

32

(a) (b)

Figure 5.2: Estimation errors using (a) Variational Method and (b) DP trajectories
with x2(0) = 0 ft, and y2(0) = 2000 ft.

The final time for the STT trajectories and the DP trajectories remained the same

while that of the variational method increased to 8.21 sec. For these initial conditions,

the error histories for a sample simulation with noisy measurements and three-sigma

error bounds generated by the RMVLSE algorithm are shown in Fig. 5.2.

5.2 Discussion of Results

It is significant to note that in problems 1 and 2, the area of the estimation

uncertainty ellipse is decreased by the SLAP trajectories as compared to that of the

STT trajectories. However, the variational method trajectories improve the target-

location estimate more than the DP trajectories, as the DP trajectories have a slower

convergence rate. Although the performance cost of the DP trajectories was within

8% of that of the variational method, the area of the DP method’s uncertainty ellipse

was more than twice the size of that of the variational method at tF − 2 sec. This

shows the sensitivity of the size of the uncertainty ellipse to trajectory design and the

effect of the course grid structure used in the DP method.

33

Chapter 6

Conclusions

Careful trajectory design can have a significant impact on target-location estima-

tion. In this work, the DP approach was used to demonstrate that SLAP trajectories

are practical for real-time implementation. The advantage of this approach is that

discretization in both time and spatial coordinates results in a DAG that can be

solved in a deterministic amount of computation. This allows grid resolution to be

selected based on the available computational resources and desired performance.

The trajectories output by the DP method captured the trends of the variational

method and thus produced very similar performance costs. Both trajectories give

similar good performance in estimating the target location compared to the STT

trajectories, however the DP trajectory has slightly slower convergence than the vari-

ational method trajectories. This is due to the constant control between grid points

and course grid structure requiring the trajectory to remain symmetric.

The work described here also demonstrated several limitations to the DP method

of solving the SLAP problem. The need of keeping the motion of the muntions syn-

chronized forced the selection of a fixed final time. Also, even though the DP trajec-

tories were very similar in cost to the variational-method trajectories, the estimation

performance was very sensitive to the slight increase in cost.

More accurate target-location estimation could allow more accurate strike capa-

bility of targets that are difficult to detect. Further work is needed to demonstrate the

impact of these estimation enhancements on guidance and control performance. In

future implementations, heuristic methods may be developed based on insight gained

34

from solutions of the optimal control problem. The DP approach will still be a useful

development tool to cheaply investigate various solutions.

35

Bibliography

[1] Sinclair, A.J., Prazenica, R.J., and Jeffcoat, D.E., “Simultaneous Localization
and Planning for Cooperative Air Munitions”, In Murphey, R., Pardalos, P.M.,
eds.: 7th International Conference on Cooperative Control and Optimization,
Springer, New York (2007)

[2] P. R. Chandler, M. Pachter, K. E. Nygard, and D. Swaroop, “Cooperative Con-
trol for Target Classification”, In Murphey, R., Pardalos, P.M., eds.: Cooperative
Control and Optimization, Kluwer, Netherlands (2002) 1-19

[3] Jeffcoat, D.E., “Coupled detection rates: An introduction”, In Grundel, D., Mur-
phey, R., Pardalos, P.M., eds.: Theory and Algorithms for Cooperative Systems,
World Scientific, New Jersey (2004) 157-167

[4] Frew, E. and Lawrence, D., “Cooperative Stand-off Tracking of Moving Tar-
gets by a Team of Autonomous Aircraft”, In: AIAA Guidance, Navigation, and
Control Conference, San Fancisco, California (August 2005) AIAA-2005-6363

[5] Fawcett, J.A., “Effect of Course Maneuvers on Bearings-only Range Estimation”,
IEEE Transactions on Acoustics, Speech, and Signal Processing 36(8) (1988)
1193-1199

[6] Hammel, S.E., Liu, P.T., Hilliard, E.J., and Gong, K.F., “Optimal Observor Mo-
tion for Localization with Bearing Measurements”, Computers and Mathematics
with Applications 18(1-3) (1989) 171-180

[7] Oshman, Y. and Davidson, P., “Optimization of Observer Trajectories for
Bearings-only Target Localization” IEEE Transactions on Aerospace and Elec-
tronic Systems 35(3) (1999) 892-902

[8] Logothetis, A., Isaksson, A., and Evans, R.J., “Comparison of Suboptimal
Strategies for Optimal Own-ship Maneuvers in Bearings-only Tracking”, In:
American Control Conference, Phiadelphia, Pennsylvania (June 1998)

[9] Passerieux, J.M. and VanCappel, D., “Optimal Observer Maneuver for Bearings-
only Tracking”, IEEE Transactions on Aerospace and Electronic Systems 34(3)
(1998) 777-788

36

[10] Frew, E.W., and Rock, S.M., “Trajectory Generation for Constant Velocity Tar-
get Motion Estimation Using Monocular Vision”, In: IEEE International Con-
ference on Robotics & Automation, Taipei, Taiwan (September 2003)

[11] Watanabe, Y., Johnson, E.N., and Calise, A.J., “Vision-based Guidance Design
from Sensor Trajectory Optimization”, In: AIAA Guidance, Navigation, and
Control Conference, Keystone, Colorado (August 2006) AIAA-2006-6607

[12] Ousingsawat, J. and Campbell, M.E., “Optimal Cooperative Reconnaissance
Using Multiple Vehicles” Journal of Guidance, Control, and Dynamics 30(1)
(2007) 122-132

[13] Grocholsky, B., “Information-Theoretic Control of Multiple Sensor Platforms”,
PhD thesis, University of Sydney, Sydney, Australia (2002)

[14] Brogan, W.L., Modern Control Theory, Prentice Hall, NJ (1991)

[15] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University
Press, Cambridge, UK (2004)

[16] Bellman, R.E. and Dreyfus, S.E., Applied Dynamic Programming, Princeton Uni-
versity Press, Princeton, NJ (1962)

[17] Bryson, A.E. and Ho, Y-C., it Applied Optimal Control: Optimization, Estima-
tion, and Control, Hemisphere Publishing Corporation, Washington, DC (1975)

[18] Stengel, R.F., Optimal Control and Estimation, Dover, New York (1986)

[19] Crassidis, J.L. and Junkins, J.L., Optimal Estimation of Dynamic Systems,
Chapman & Hall/CRC, Boca Raton, Florida (2004)

37

Appendices

38

Appendix A

FORTRAN Code Used for Dynamic-Programming

program CoopControl

implicit double precision (a-h,o-z)

integer NEQ,B1,B2,C1,C2,Dp1,Dp2,E1,E2,F1,F2,G1,G2,nmax,l,count

parameter (NEQ = 5, NV = 2, l = 168, nmax = 4)

dimension Xsend(NEQ),D1(NEQ),D2(NEQ),D3(NEQ),psi(NV,2)

dimension costF2G(2,6,1,7),costE2F(3,5,2,6),costD2E(4,4,3,5)

dimension costB2C(2,2,3,3),costA2B(1,1,2,2),costC2D(3,3,4,4)

dimension costE(3,5,5),costD(4,4,7),costC(3,3,9),costA(1,1,13)

dimension costF(2,6,3),costB(2,2,11),theta(NV)

dimension param(10),grid(3*nmax**2-nmax,2),x(NV),y(NV)

dimension tcostA(1,1,13)

open(unit=30,file=’CoopControl.txt’)

open(unit=20,file=’timeron.txt’)

close(20)

!Initial Conditions

x1 = 0.d0

y1 = -2000.d0

x2 = 0.d0

y2 = 2000.d0

xT = 0.d0

yT = 0.d0

cost0 = 0.d0

t = 0.d0

v = 300.d0

pi = acos(-1.d0)

!Define Vehicle 1 as the closer Vehicle

r1 = sqrt(x1**2.d0 + y1**2.d0)

r2 = sqrt(x2**2.d0 + y2**2.d0)

39

if (r1.gt.r2) then

x(1) = x2

y(1) = y2

x(2) = x1

y(2) = y1

else

x(1) = x1

y(1) = y1

x(2) = x2

y(2) = y2

end if

!Vehicle Intial Position

grid(1,1) = x(1)

grid(1,2) = y(1)

grid(nmax**2+1,1) = x(2)

grid(nmax**2+1,2) = y(2)

!Determine Bearing Angle, Theta, and Mesh Expansion Angle, a

!==!

do i = 1,2 !number of vehicles

theta(i) = atan((yT-y(i))/(xT-x(i)))

if (xT.lt.x(i)) then

if (yT.gt.y(i)) then

theta(i) = pi + theta(i)

elseif (yT.lt.y(i)) then

theta(i) = -pi + theta(i)

else

theta(i) = pi

end if

elseif (yT.eq.y(i)) then

if (xT.le.x(i)) then

theta(i) = pi

end if

end if

end do

!determine mesh expansion angle, a

40

!==!

diff = abs(theta(1))-abs(theta(2))

!write(*,*) diff*180.d0/pi

if (abs(diff).eq.pi/2.d0) then

a = pi/7.d0

else

a = pi/3.d0

end if

!write(*,*) ’a’, a*180.d0/pi

!==!

param(1) = xT

param(2) = yT

param(3) = v

param(4) = a

!Time step is based on vehicle that strikes target, Veh1

dt = sqrt(x(1)**2.d0 + y(1)**2.d0)/6.d0/(v*cos(a))

dtcost = dt/20.d0

!Determine Heading Angle, Psi

!==!

do i = 1,NV

if (xT.ge.x(i)) then

if (yT.gt.y(i)) then

psi(i,1) = theta(i) + a

psi(i,2) = theta(i) - a

elseif (yT.lt.y(i)) then

psi(i,1) = theta(i) + a

psi(i,2) = theta(i) - a

else

psi(i,1) = theta(i) + a

psi(i,2) = theta(i) - a

end if

elseif (xT.lt.x(i)) then

if (yT.gt.y(i)) then

psi(i,2) = theta(i) - a

41

psi(i,1) = theta(i) + a

elseif (yT.lt.y(i)) then

psi(i,2) = theta(i) - a

psi(i,1) = theta(i) + a

else

psi(i,1) = -pi + a

psi(i,2) = pi - a

end if

end if

do j = 1,2

if (psi(i,j).lt.-pi) then

psi(i,j) = pi - (abs(psi(i,j))- pi)

end if

if (psi(i,j).gt.pi) then

psi(i,j) = -pi + (psi(i,j)-pi)

end if

end do

end do

!First Time Step, A to B

!==!

do i = 1,2 !heading choice for veh1

do j = 1,2 !heading choice for veh2

Xsend(1) = x(1)

Xsend(2) = y(1)

Xsend(3) = x(2)

Xsend(4) = y(2)

Xsend(5) = cost0

param(5) = psi(1,i)

param(6) = psi(2,j)

do jj = 1,20

call RK4(t,dtcost,NEQ,Xsend,param,D1,D2,D3)

end do

42

t = t - dt

if (j.eq.1) then

grid(i+1,1) = Xsend(1)

grid(i+1,2) = Xsend(2)

end if

if (i.eq.2) then

grid(j+17,1) = Xsend(3)

grid(j+17,2) = Xsend(4)

end if

CostA2B(1,1,i,j) = Xsend(5)

end do

end do

!Second Time Step, B to C

!==!

do i = 1,2

do j = 1,2

do m = 1,3

do n = 1,3

CostB2C(i,j,m,n) = -1.d0

end do

end do

end do

end do

t = t + dt

do i = 1,2 !initial point veh1

do ii = 1,2 !initial point veh2

do j = 1,2 !heading choice for veh1

do k = 1,2 !heading choice for veh2

x1 = grid(i+1,1)

y1 = grid(i+1,2)

x2 = grid(ii+nmax**2+1,1)

y2 = grid(ii+nmax**2+1,2)

Xsend(1) = x1

Xsend(2) = y1

Xsend(3) = x2

43

Xsend(4) = y2

Xsend(5) = cost0

param(5) = psi(1,j)

param(6) = psi(2,k)

do jj = 1,20

call RK4(t,dtcost,NEQ,Xsend,param,D1,D2,D3)

end do

t = t - dt

if (j.eq.1.and.k.eq.1) then

costB2C(i,ii,i,ii) = Xsend(5)

end if

if (j.eq.2.and.k.eq.1) then

costB2C(i,ii,i+1,ii) = Xsend(5)

end if

if (k.eq.2.and.j.eq.1) then

costB2C(i,ii,i,ii+1) = Xsend(5)

end if

if (j.eq.2.and.k.eq.2) then

costB2C(i,ii,i+1,ii+1) = Xsend(5)

end if

if (i.eq.1) then

if (k.eq.1) then

grid(j+3,1) = Xsend(1)

grid(j+3,2) = Xsend(2)

end if

if (ii.eq.1) then

grid(k+19,1) = Xsend(3)

grid(k+19,2) = Xsend(4)

end if

end if

if (i.eq.2) then

if (j.eq.2) then

grid(j+4,1) = Xsend(1)

grid(j+4,2) = Xsend(2)

end if

44

if (ii.eq.2) then

grid(k+20,1) = Xsend(3)

grid(k+20,2) = Xsend(4)

end if

end if

end do

end do

end do

end do

!Third Time Step, C to D

!==!

do i = 1,3

do j = 1,3

do m = 1,4

do n = 1,4

CostC2D(i,j,m,n) = -1.d0

end do

end do

end do

end do

t = t + dt

do i = 1,3 !initial point veh1

do ii = 1,3 !initial point veh2

do j = 1,2 !heading choice of veh1

do k = 1,2 !heading choice of veh2

x1 = grid(i+3,1) !i+#start points

y1 = grid(i+3,2)

x2 = grid(ii+19,1) !i+nmax**2+#start points

y2 = grid(ii+19,2)

Xsend(1) = x1

Xsend(2) = y1

Xsend(3) = x2

Xsend(4) = y2

Xsend(5) = cost0

param(5) = psi(1,j)

45

param(6) = psi(2,k)

if (i.eq.3.and.j.eq.1) then

end if

do jj = 1,20

call RK4(t,dtcost,NEQ,Xsend,param,D1,D2,D3)

end do

t = t - dt

if (j.eq.1.and.k.eq.1) then

costC2D(i,ii,i,ii) = Xsend(5)

end if

if (j.eq.2.and.k.eq.1) then

costC2D(i,ii,i+1,ii) = Xsend(5)

end if

if (k.eq.2.and.j.eq.1) then

costC2D(i,ii,i,ii+1) = Xsend(5)

end if

if (j.eq.2.and.k.eq.2) then

costC2D(i,ii,i+1,ii+1) = Xsend(5)

end if

if (i.eq.1) then

if (k.eq.1) then

grid(j+6,1) = Xsend(1)

grid(j+6,2) = Xsend(2)

end if

if (ii.eq.1) then

grid(k+22,1) = Xsend(3)

grid(k+22,2) = Xsend(4)

end if

end if

if (i.eq.3) then

if (k.eq.1) then

grid(j+8,1) = Xsend(1)

grid(j+8,2) = Xsend(2)

end if

if (ii.eq.3) then

grid(k+24,1) = Xsend(3)

grid(k+24,2) = Xsend(4)

46

end if

end if

end do

end do

end do

end do

!Fourth Time Step, D to E

!==!

do i = 1,4

do j = 1,4

do m = 1,3

do n = 1,5

CostD2E(i,j,m,n) = -1.d0

end do

end do

end do

end do

t = t + dt

do i = 1,4 !initial point veh1

do ii = 1,4 !initial point veh2

do j = 1,2 !heading choice veh1

do k = 1,2 !heading choice veh2

if (i.eq.1.and.j.eq.1) then

goto 75

end if

if (i.eq.4.and.j.eq.2) then

goto 75

end if

x1 = grid(i+6,1)

y1 = grid(i+6,2)

x2 = grid(ii+22,1)

y2 = grid(ii+22,2)

Xsend(1) = x1

Xsend(2) = y1

47

Xsend(3) = x2

Xsend(4) = y2

Xsend(5) = cost0

param(5) = psi(1,j)

param(6) = psi(2,k)

do jj = 1,20

call RK4(t,dtcost,NEQ,Xsend,param,D1,D2,D3)

end do

t = t - dt

if (i.eq.1.and.j.eq.2) then

costD2E(i,ii,i,ii-1+k) = Xsend(5)

goto 76

end if

if (i.eq.4.and.j.eq.1) then

costD2E(i,ii,i-1,ii-1+k) = Xsend(5)

goto 76

end if

if (j.eq.2.and.k.eq.1) then

costD2E(i,ii,i,ii) = Xsend(5)

goto 76

end if

if (k.eq.2.and.j.eq.1) then

costD2E(i,ii,i-1,ii+1) = Xsend(5)

goto 76

end if

if (j.eq.2.and.k.eq.2) then

costD2E(i,ii,i,ii+1) = Xsend(5)

goto 76

end if

if (j.eq.1.and.k.eq.1) then

costD2E(i,ii,i-1,ii) = Xsend(5)

goto 76

end if

76 continue

48

if (i.eq.1) then

if (ii.eq.1) then

grid(k+26,1) = Xsend(3)

grid(k+26,2) = Xsend(4)

end if

if (k.eq.1) then

grid(k+10,1) = Xsend(1)

grid(k+10,2) = Xsend(2)

end if

end if

if (i.eq.3) then

if (k.eq.1) then

grid(j+11,1) = Xsend(1)

grid(j+11,2) = Xsend(2)

end if

if (ii.eq.3) then

grid(k+28,1) = Xsend(3)

grid(k+28,2) = Xsend(4)

end if

end if

if (i.eq.4.and.ii.eq.4) then

grid(i+27,1) = Xsend(3)

grid(i+27,2) = Xsend(4)

end if

end do

75 continue

end do

end do

end do

!Fifth Time Step, E to F

!==!

do i = 1,3

do j = 1,5

do m = 1,2

do n = 1,6

CostE2F(i,j,m,n) = -1.d0

49

end do

end do

end do

end do

t = t + dt

do i = 1,3 !starting point veh1

do ii = 1,5 !starting point veh2

do j = 1,2 !heading for veh1

do k = 1,2 !heading for veh2

x1 = grid(i+10,1)

y1 = grid(i+10,2)

x2 = grid(ii+26,1)

y2 = grid(ii+26,2)

if(i.eq.1.and.j.eq.1.or.i.eq.3.and.j.eq.2) then

goto 26

end if

Xsend(1) = x1

Xsend(2) = y1

Xsend(3) = x2

Xsend(4) = y2

Xsend(5) = cost0

param(5) = psi(1,j)

param(6) = psi(2,k)

do jj = 1,20

call RK4(t,dtcost,NEQ,Xsend,param,D1,D2,D3)

end do

t = t - dt

if (i.eq.1.and.j.eq.2) then

costE2F(i,ii,i,ii-1+k) = Xsend(5)

goto 77

end if

if (i.eq.3.and.j.eq.1) then

costE2F(i,ii,i-1,ii-1+k) = Xsend(5)

goto 77

50

end if

if (j.eq.2.and.k.eq.1) then

costE2F(i,ii,i,ii) = Xsend(5)

goto 77

end if

if (k.eq.2.and.j.eq.1) then

costE2F(i,ii,i-1,ii+1) = Xsend(5)

goto 77

end if

if (j.eq.2.and.k.eq.2) then

costE2F(i,ii,i,ii+1) = Xsend(5)

goto 77

end if

if (j.eq.1.and.k.eq.1) then

costE2F(i,ii,i-1,ii) = Xsend(5)

goto 77

end if

77 continue

if (i.eq.2) then

grid(j+13,1) = Xsend(1)

grid(j+13,2) = Xsend(2)

end if

if (ii.eq.1.or.ii.eq.3.or.ii.eq.5) then

grid(ii+30+k,1) = Xsend(3)

grid(ii+30+k,2) = Xsend(4)

end if

end do

26 continue

end do

end do

end do

!Sixth Time Step, F to G

!==!

t = t + dt

do i = 1,2

51

do j = 1,6

!do m = 1,3

do n = 1,7

CostF2G(i,j,1,n) = -1.d0

end do

end do

end do

do i = 1,2 !initial point veh1

do ii = 1,6 !initial point veh2

do j = 1,2 !heading choice veh1

do k = 1,2 !heading choice veh2

x1 = grid(i+13,1)

y1 = grid(i+13,2)

x2 = grid(ii+31,1)

y2 = grid(ii+31,2)

if(i.eq.1.and.j.eq.1.or.i.eq.2.and.j.eq.2) then

goto 27

end if

Xsend(1) = x1

Xsend(2) = y1

Xsend(3) = x2

Xsend(4) = y2

Xsend(5) = cost0

param(5) = psi(1,j)

param(6) = psi(2,k)

do jj = 1,20

call RK4(t,dtcost,NEQ,Xsend,param,D1,D2,D3)

end do

t = t - dt

if (i.eq.1.and.j.eq.2) then

costF2G(i,ii,i,ii-1+k) = Xsend(5)

goto 78

end if

if (i.eq.2.and.j.eq.1) then

52

costF2G(i,ii,i-1,ii-1+k) = Xsend(5)

goto 78

end if

if (j.eq.2.and.k.eq.1) then

costF2G(i,ii,i,ii) = Xsend(5)

goto 78

end if

if (k.eq.2.and.j.eq.1) then

costF2G(i,ii,i-1,ii+1) = Xsend(5)

goto 78

end if

if (j.eq.2.and.k.eq.2) then

costF2G(i,ii,i,ii+1) = Xsend(5)

goto 78

end if

if (j.eq.1.and.k.eq.1) then

costF2G(i,ii,i-1,ii) = Xsend(5)

goto 78

end if

78 continue

if (i.eq.2.and.j.eq.1) then

grid(j+15,1) = Xsend(1)

grid(j+15,2) = Xsend(2)

end if

if (ii.eq.1.or.ii.eq.3.or.ii.eq.5.or.ii.eq.6) then

grid(ii+k+36,1) = Xsend(3)

grid(ii+k+36,2) = Xsend(4)

end if

end do

27 continue

end do

end do

end do

do i = 1,44

write(30,*) grid(i,1), grid(i,2)

end do

53

!==!

!DYNAMIC PROGRAMMING

!==!

t = t + dt

!Cost G2F

costA(1,1,1) = -1.d0

do k = 1,2*nmax-1 !G point for veh2

!==!

do i = 1,2 !F points veh1

do j = 1,6 !F points veh2

costF(i,j,1) = -1.d0

tempcost = costF2G(i,j,1,k)

if(costF(i,j,1).eq.-1.d0.and.tempcost.ne.-1.d0)then

costF(i,j,1) = tempcost

costF(i,j,2) = 1

costF(i,j,3) = k

elseif(tempcost.ne.-1.d0.and.tempcost.lt.costF(i,j,1))then

costF(i,j,1) = tempcost

costF(i,j,2) = 1

costF(i,j,3) = k

end if

end do

end do

!Cost F2E

!==!

do i = 1,3

do j = 1,5

costE(i,j,1) = -1.d0

do m = 1,2

do n = 1,6

if(costE2F(i,j,m,n).eq.-1.d0.or.costF(m,n,1).eq.-1.d0)then

tempcost = -1.d0

else

tempcost = costE2F(i,j,m,n)+costF(m,n,1)

end if

if(tempcost.ne.-1.d0.and.costE(i,j,1).eq.-1.d0)then

costE(i,j,1) = tempcost

54

costE(i,j,2) = m

costE(i,j,3) = n

costE(i,j,4) = costF(m,n,2)

costE(i,j,5) = costF(m,n,3)

elseif(tempcost.ne.-1.d0.and.tempcost.lt.costE(i,j,1))then

costE(i,j,1) = tempcost

costE(i,j,2) = m

costE(i,j,3) = n

costE(i,j,4) = costF(m,n,2)

costE(i,j,5) = costF(m,n,3)

end if

end do

end do

end do

end do

!Cost E2D

!==!

do i = 1,4

do j = 1,4

costD(i,j,1) = -1.d0

do m = 1,3

do n = 1,5

if(costD2E(i,j,m,n).eq.-1.d0.or.costE(m,n,1).eq.-1.d0)then

tempcost = -1.d0

else

tempcost = costD2E(i,j,m,n) + costE(m,n,1)

end if

if(tempcost.ne.-1.d0.and.costD(i,j,1).eq.-1.d0)then

costD(i,j,1) = tempcost

costD(i,j,2) = m

costD(i,j,3) = n

costD(i,j,4) = costE(m,n,2)

costD(i,j,5) = costE(m,n,3)

costD(i,j,6) = costE(m,n,4)

costD(i,j,7) = costE(m,n,5)

elseif(tempcost.ne.-1.d0.and.tempcost.lt.costD(i,j,1))then

costD(i,j,1) = tempcost

costD(i,j,2) = m

55

costD(i,j,3) = n

costD(i,j,4) = costE(m,n,2)

costD(i,j,5) = costE(m,n,3)

costD(i,j,6) = costE(m,n,4)

costD(i,j,7) = costE(m,n,5)

end if

end do

end do

end do

end do

!Cost D2C

!==!

do i = 1,3

do j = 1,3

costC(i,j,1) = -1.d0

do m = 1,4

do n = 1,4

if(costC2D(i,j,m,n).eq.-1.d0.or.costD(m,n,1).eq.-1.d0)then

tempcost = -1.d0

else

tempcost = costC2D(i,j,m,n) + costD(m,n,1)

end if

if(tempcost.ne.-1.d0.and.costC(i,j,1).eq.-1.d0)then

costC(i,j,1) = tempcost

costC(i,j,2) = m

costC(i,j,3) = n

costC(i,j,4) = costD(m,n,2)

costC(i,j,5) = costD(m,n,3)

costC(i,j,6) = costD(m,n,4)

costC(i,j,7) = costD(m,n,5)

costC(i,j,8) = costD(m,n,6)

costC(i,j,9) = costD(m,n,7)

elseif(tempcost.ne.-1.d0.and.tempcost.lt.costC(i,j,1))then

costC(i,j,1) = tempcost

costC(i,j,2) = m

costC(i,j,3) = n

costC(i,j,4) = costD(m,n,2)

56

costC(i,j,5) = costD(m,n,3)

costC(i,j,6) = costD(m,n,4)

costC(i,j,7) = costD(m,n,5)

costC(i,j,8) = costD(m,n,6)

costC(i,j,9) = costD(m,n,7)

end if

end do

end do

end do

end do

!Cost C2B

!==!

do i = 1,2

do j = 1,2

costB(i,j,1) = -1.d0

do m = 1,3

do n = 1,3

if(costB2C(i,j,m,n).eq.-1.d0.or.costC(m,n,1).eq.-1.d0)then

tempcost = -1.d0

else

tempcost = costB2C(i,j,m,n) + costC(m,n,1)

end if

if(tempcost.ne.-1.d0.and.costB(i,j,1).eq.-1.d0)then

costB(i,j,1) = tempcost

costB(i,j,2) = m

costB(i,j,3) = n

costB(i,j,4) = costC(m,n,2)

costB(i,j,5) = costC(m,n,3)

costB(i,j,6) = costC(m,n,4)

costB(i,j,7) = costC(m,n,5)

costB(i,j,8) = costC(m,n,6)

costB(i,j,9) = costC(m,n,7)

costB(i,j,10) = costC(m,n,8)

costB(i,j,11) = costC(m,n,9)

elseif(tempcost.ne.-1.d0.and.tempcost.lt.costB(i,j,1))then

costB(i,j,1) = tempcost

costB(i,j,2) = m

costB(i,j,3) = n

57

costB(i,j,4) = costC(m,n,2)

costB(i,j,5) = costC(m,n,3)

costB(i,j,6) = costC(m,n,4)

costB(i,j,7) = costC(m,n,5)

costB(i,j,8) = costC(m,n,6)

costB(i,j,9) = costC(m,n,7)

costB(i,j,10) = costC(m,n,8)

costB(i,j,11) = costC(m,n,9)

end if

end do

end do

end do

end do

!CostB2A

!==!

tcostA(1,1,1) = -1.d0

i = 1

j = 1

do m = 1,2

do n = 1,2

if(costA2B(i,j,m,n).eq.-1.d0.or.costB(m,n,1).eq.-1.d0)then

tempcost = -1.d0

else

tempcost = costA2B(i,j,m,n) + costB(m,n,1)

end if

if(tempcost.ne.-1.d0.and.tcostA(1,1,1).eq.-1.d0)then

tcostA(i,j,1) = tempcost

tcostA(i,j,2) = m

tcostA(i,j,3) = n

tcostA(i,j,4) = costB(m,n,2)

tcostA(i,j,5) = costB(m,n,3)

tcostA(i,j,6) = costB(m,n,4)

tcostA(i,j,7) = costB(m,n,5)

tcostA(i,j,8) = costB(m,n,6)

tcostA(i,j,9) = costB(m,n,7)

tcostA(i,j,10) = costB(m,n,8)

tcostA(i,j,11) = costB(m,n,9)

tcostA(i,j,12) = costB(m,n,10)

58

tcostA(i,j,13) = costB(m,n,11)

elseif(tempcost.ne.-1.d0.and.tempcost.lt.tcostA(1,1,1))then

tcostA(i,j,1) = tempcost

tcostA(i,j,2) = m

tcostA(i,j,3) = n

tcostA(i,j,4) = costB(m,n,2)

tcostA(i,j,5) = costB(m,n,3)

tcostA(i,j,6) = costB(m,n,4)

tcostA(i,j,7) = costB(m,n,5)

tcostA(i,j,8) = costB(m,n,6)

tcostA(i,j,9) = costB(m,n,7)

tcostA(i,j,10) = costB(m,n,8)

tcostA(i,j,11) = costB(m,n,9)

tcostA(i,j,12) = costB(m,n,10)

tcostA(i,j,13) = costB(m,n,11)

end if

end do

end do

if(costA(1,1,1).eq.-1.d0)then

do i = 1,13

costA(1,1,i) = tcostA(1,1,i)

end do

elseif(tcostA(1,1,1).lt.costA(1,1,1))then

do i = 1,13

costA(1,1,i) = tcostA(1,1,i)

end do

end if

end do !k loop

costmin = costA(1,1,1)

write(*,*) ’The minimum cost is ’, costmin

B1 = int(costA(1,1,2))

B2 = int(costA(1,1,3))

C1 = int(costA(1,1,4))

C2 = int(costA(1,1,5))

Dp1 = int(costA(1,1,6))

Dp2 = int(costA(1,1,7))

59

E1 = int(costA(1,1,8))

E2 = int(costA(1,1,9))

F1 = int(costA(1,1,10))

F2 = int(costA(1,1,11))

G1 = int(costA(1,1,12))

G2 = int(costA(1,1,13))

Bptx = grid(B1+1,1)

Bpty = grid(B1+1,2)

Cptx = grid(C1+3,1)

Cpty = grid(C1+3,2)

Dptx = grid(Dp1+6,1)

Dpty = grid(Dp1+6,2)

Eptx = grid(E1+10,1)

Epty = grid(E1+10,2)

Fptx = grid(F1+13,1)

Fpty = grid(F1+13,2)

V2Bx = grid(B2+17,1)

V2By = grid(B2+17,2)

V2Cx = grid(C2+19,1)

V2Cy = grid(C2+19,2)

V2Dx = grid(Dp2+22,1)

V2Dy = grid(Dp2+22,2)

V2Ex = grid(E2+26,1)

V2Ey = grid(E2+26,2)

V2Fx = grid(F2+31,1)

V2Fy = grid(F2+31,2)

V2Gx = grid(G2+37,1)

V2Gy = grid(G2+37,2)

write(30,*) grid(1,1), grid(1,2)

write(30,*) Bptx, Bpty

write(30,*) Cptx, Cpty

write(30,*) Dptx, Dpty

write(30,*) Eptx, Epty

write(30,*) Fptx, Fpty

write(30,*) xT, yT

write(30,*) grid(17,1), grid(17,2)

60

write(30,*) V2Bx, V2By

write(30,*) V2Cx, V2Cy

write(30,*) V2Dx, V2Dy

write(30,*) V2Ex, V2Ey

write(30,*) V2Fx, V2Fy

write(30,*) V2Gx, V2Gy

write(30,*) costmin, t

close(30)

open(unit=10,file=’timeroff.txt’)

close(10)

stop

end

!##!

!--------------------------SUBROUTINES---------------------------!

!##!

!RK(4,4) Subroutine

!==!

subroutine RK4(T,DT,NEQ,X,param,D1,D2,D3)

implicit double precision (a-h,o-z)

integer NEQ

dimension X(NEQ),D1(NEQ), D2(NEQ), D3(NEQ),param(10)

call deriv(X,D1,NEQ,param)

do i = 1,NEQ

D1(i) = D1(i)*DT

D2(i) = X(i) + 0.5d0*D1(i)

end do

! TT = T + 0.5d0*DT

call deriv(D2,D3,NEQ,param)

61

do i = 1,NEQ

D3(i) = D3(i)*DT

D1(i) = D1(i) + 2.0d0*D3(i)

D2(i) = X(i) + .5d0*D3(i)

end do

call deriv(D2,D3,NEQ,param)

do i = 1,NEQ

D3(i) = D3(i)*DT

D1(i) = D1(i) + 2.0d0*D3(i)

D2(i) = X(i) + D3(i)

end do

T = T + DT

call deriv(D2,D3,NEQ,param)

do i = 1,NEQ

X(i) = X(i) + (D1(i) + D3(i)*DT)/6.0d0

end do

return

end

!Derivative Subroutine

!==!

subroutine deriv(X,DX,NEQ,param)

implicit double precision (a-h,m-z)

integer NEQ

dimension X(NEQ), DX(NEQ),param(10)

v = param(3)

psi1 = param(5)

psi2 = param(6)

xT = param(1)

yT = param(2)

param(7) = X(1)

param(8) = X(2)

param(9) = X(3)

62

param(10)= X(4)

r1=sqrt((xT-X(1))**2.d0+(yT-X(2))**2.d0)

theta1=atan((yT-X(2))/(xT-X(1))) !bearing measured by vehicle1

r2=sqrt((xT-X(3))**2.d0+(yT-X(4))**2.d0)

theta2=atan((yT-X(4))/(xT-X(3))) !bearing measured by vehicle2

call thetafix(param,theta1,theta2)

sigmaxT =(101.d0*r1**2.d0*r2**4.d0+99.d0*r1**2.d0*r2**4.d0*cos(

&2.d0*theta1)+101.d0*r1**4.d0*r2**2.d0+99.d0*r1**4.d0*r2**2.d0*cos(

&2.d0*theta2))/(-980100.d0*r1**2.d0*r2**2.d0*cos(2.d0*theta1-2.d0*

&theta2)+20000.d0*r1**4.d0+20000.d0*r2**4.d0+1020100.d0*r1**2.d0*

&r2**2.d0)

sigmayT =(99.d0*r1**2.d0*r2**4.d0*cos(2.d0*theta1)-101.d0*r1**2.d0

&*r2**4.d0+99.d0*r1**4.d0*r2**2.d0*cos(2.d0*theta2)-101.d0*r1**

&4.d0*r2**2.d0)/(980100.d0*r1**2.d0*r2**2.d0*cos(2.d0*theta1-2.d0*

&theta2)-20000.d0*r1**4.d0-20000.d0*r2**4.d0-1020100.d0*r1**2.d0

&*r2**2.d0)

DX(1) = v*cos(psi1) !xdot1

DX(2) = v*sin(psi1) !ydot1

DX(3) = v*cos(psi2) !xdot2

DX(4) = v*sin(psi2) !ydot2

DX(5) = sigmaxT + sigmayT !Jdot

return

end

!Theta and Psi Subroutine

!==!

subroutine thetafix(param,theta1,theta2)

implicit double precision (a-h,o-z)

dimension param(10)

xT = param(1)

yT = param(2)

x1 = param(7)

63

y1 = param(8)

x2 = param(9)

y2 = param(10)

pi = acos(-1.d0)

if (xT.lt.x1) then

if (yT.ge.y1) then

theta1 = pi + theta1

else

theta1 = -pi + theta1

end if

end if

if (xT.lt.x2) then

if (yT.ge.y2) then

theta2 = pi + theta2

else

theta2 = -pi + theta2

end if

end if

return

end

64

Appendix B

MATLAB Code Used for Plots and Error Estimation

function coop2(pr,pb)
clc
close all

format long
dlmread('CoopControl.txt');
x = ans(1:58,1);
y = ans(1:58,2);
x01 = x(1);
y01 = y(1);
x02 = x(17);
y02 = y(17);

c = ans(59,1);
t = ans(59,2);
T = t;
clear ans;

for m = 1:6
if x(m+45)−x(m+44) > 0

f(m) = 1;
else

f(m) = −1;
end

end
if sum(f) == 6 | sum(f) == −6

polym = polyfit(x(45:51),y(45:51),pr);
xim = linspace(min(x(45:51)),max(x(45:51)),10*T);
yim = polyval(polym,xim);

else
polym = polyfit(y(45:51),x(45:51),pr);
yim = linspace(min(y(45:51)),max(y(45:51)),10*T);
xim = polyval(polym,yim);

end

for n = 1:6
if x(n+52)−x(n+51) > 0

g(n) = 1;
else

65

g(n) = −1;
end

end
if sum(g) == 6 | sum(g) == −6

polyn = polyfit(x(52:58),y(52:58),pb);
xin = linspace(min(x(52:58)),max(x(52:58)),10*T);
yin = polyval(polyn,xin);

else
polyn = polyfit(y(52:58),x(52:58),pb);
yin = linspace(min(y(52:58)),max(y(52:58)),10*T);
xin = polyval(polyn,yin);

end
xT = 0;
yT = 0;

% Create polynomial curve fit for vehicle one.
hold on
plot(xim,yim,'k','Linewidth',2)
s1 = [xim; yim]';
% Create polynomial curve fit for vehicle two.
hold on
plot(xin,yin,'k−−','Linewidth',2)
s2 = [xin;yin]';
% Recreate graph
figure
xlim([min(x)−abs(min(x)−max(x))/20 max(x)+abs(min(x)−max(x))/20])
ylim([min(y)−abs(min(y)−max(y))/20 max(y)+abs(min(y)−max(y))/20])
xlabel('x (ft)'); ylabel('y (ft)');
movie(ans)

xT = 0;
yT = 0;
x11 = xim;
y11 = yim;
x22 = xin;
y22 = yin;

numxs = length(x11);
step = T/(numxs−1);

%Properly order state from x0 to xT
if and(y02 > yT, y01 < yT)
for jj = 1:numxs

x2(jj) = x22(numxs−jj+1);
y2(jj) = y22(numxs−jj+1);
x1(jj) = x11(jj);
y1(jj) = y11(jj);

66

end
end
if and(y01 > yT, y02 < yT)
for ii = 1:numxs

x1(ii) = x11(numxs−ii+1);
y1(ii) = y11(numxs−ii+1);
x2(ii) = x22(ii);
y2(ii) = y22(ii);

end
end
if and(y01 > yT, y02 > yT)

for ii = 1:numxs
x1(ii) = x11(numxs−ii+1);
y1(ii) = y11(numxs−ii+1);
x2(ii) = x22(numxs−ii+1);
y2(ii) = y22(numxs−ii+1);
end

end
if and(y01<yT,y02<yT)

x1 = x11;
y1 = y11;
x2 = x22;
y2 = y22;

end

state1 = [x1; y1]';
state2 = [x2; y2]';

randn('state',500);

%Error Estimation

for k = 1:numxs
H = [eye(2);eye(2)];
theta1(k) = atan2((yT−y1(k)),(xT−x1(k)));
r1(k) = sqrt((xT−x1(k))ˆ2+(yT−y1(k))ˆ2);
sigd1(k) = 0.1*r1(k);
sigc1(k) = 0.01*r1(k);
wd1 = sigd1(k)*randn;
wc1 = sigc1(k)*randn;
cosp1 = [cos(theta1(k)) sin(theta1(k)); −sin(theta1(k)) cos(theta1(k))];
cosm1 = [cos(theta1(k)) −sin(theta1(k)); sin(theta1(k)) cos(theta1(k))];
xT1 = [xT;yT]+cosp1*[wd1;wc1]; %target seen by veh1
sigm1 = [.1*r1(k)ˆ2 0; 0 .01*r1(k)ˆ2];
P1 = cosp1*sigm1*cosm1; %uncertainty from veh1

67

%munition 2
theta2(k) = atan2((yT−y2(k)),(xT−x2(k)));
r2(k) = sqrt((xT−x2(k))ˆ2+(yT−y2(k))ˆ2);
sigd2(k) = 0.1*r2(k);
sigc2(k) = 0.01*r2(k);
wd2 = sigd2(k)*randn;
wc2 = sigc2(k)*randn;
cosp2 = [cos(theta2(k)) sin(theta2(k)); −sin(theta2(k)) cos(theta2(k))];
cosm2 = [cos(theta2(k)) −sin(theta2(k)); sin(theta2(k)) cos(theta2(k))];
xT2 = [xT;yT]+cosp2*[wd2;wc2]; %target seen by veh1
sigm2 = [sigd2(k)ˆ2 0; 0 sigc2(k)ˆ2];
P2 = cosp2*sigm2*cosm2; %uncertainty from veh2
R = [P1 zeros(2);zeros(2) P2];

if k == 1
P(:,:,k) = inv(inv(P1)+inv(P2));
xThat(:,k) = P(:,:,k)*(inv(P1)*xT1 + inv(P2)*xT2);
else
K=P(:,:,k−1)*H'*inv(H*P(:,:,k−1)*H'+R);
xThat(:,k) = xThat(:,k−1) + K*([xT1 ; xT2]−H*xThat(:,k−1));
P(:,:,k)=inv(inv(P(:,:,k−1))+H'*inv(R)*H);
Pkeigs = eig(P(:,:,k));
Area(k) = sqrt(Pkeigs(1)*Pkeigs(2))*pi;
end

sigx(k)=sqrt(P(1,1,k));
sigy(k)=sqrt(P(2,2,k));

end

theta1deg = theta1*180/pi;
theta2deg = theta2*180/pi;
thetas = [theta1deg; theta2deg]';
alength=length(Area);
ti = [0:step:T];
elipse = [ti; Area]';
tfmin2 = ti(length(ti)−20)
Atfmin2 = Area(length(Area)−20)

figure
subplot(2,1,1)
plot(ti,xThat(1,:),'k')
hold on
plot(ti,3*sigx,'k−−')
plot(ti,−3*sigx,'k−−')
ylabel('x (ft)')
%title('Estimation errors')

68

subplot(2,1,2)
plot(ti,xThat(2,:),'k')
hold on
plot(ti,3*sigy,'k−−')
plot(ti,−3*sigy,'k−−')
xlabel('time (sec)')
ylabel('y (ft)')
axis([0 T −100 100])

69

	List of Figures
	List of Tables
	1 Introduction
	1.1 Literature Review
	1.2 Optimal Control Theory
	1.2.1 Convexity

	1.3 Dynamic-Programming and Graph Theory

	2 Development and Validation of Dynamic-Programming Routine
	2.1 Method Development
	2.2 Validation Process

	3 Problem Definition
	4 Application of Dynamic-Programming Approach
	5 Estimation Performance
	5.1 Estimation Results
	5.1.1 Problem 1
	5.1.2 Problem 2

	5.2 Discussion of Results

	6 Conclusions
	Bibliography
	Appendices
	A FORTRAN Code Used for Dynamic-Programming
	B MATLAB Code Used for Plots and Error Estimation

