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Dissertation Abstract

Neural Enhancement for Multiobjective Optimization

Aaron Garrett

Doctor of Philosophy, May 10, 2008
(M.S., Jacksonville State University, 2002)
(B.S., Jacksonville State University, 1999)

219 Typed Pages

Directed by Gerry Dozier

In this work, a neural network approach is applied to multiobjective optimization prob-

lems in order to expand the set of optimal solutions. The network is trained using results

obtained from existing evolutionary multiobjective optimization approaches. The network

is then evaluated based on its performance against those same approaches when given

more processing time. The results are collected from a set of well-known benchmark mul-

tiobjective problems, and its performance is evaluated using various indicators from the

multiobjective optimization literature.

Preliminary experiments reveal the viability of this approach for expanding the set

of solutions to multiobjective problems. Further experiments prove that it is possible to

train the neural network in a reasonable time using heuristic methods. The results of this

training approach are shown to be very competitive with the underlying evolutionary mul-

tiobjective optimization approach that was used to produce the training set. Additional

experiments reveal the applicability of this approach across existing multiobjective opti-

mization approaches.
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Chapter 1

Introduction

Optimization problems are commonly found in real world applications. However, many

optimization problems involve multiple, often conflicting, objectives [1]. These multiobjec-

tive optimization problems are often much more difficult to solve than single-objective

problems. Typically, solutions to such problems are actually sets of solutions, each of which

represents a particular trade-off for the objectives in question [2]. The more elements in

such a set, the more options that are available as possible solutions [2].

Many multiobjective optimization techniques have been developed over the years [3],

and, most recently, evolutionary computation approaches have been applied with great

success [1]. Approaches like the vector evaluated genetic algorithm [1], the multiobjec-

tive particle swarm optimizer [4], the nondominated sorting genetic algorithm [5, 6], and

ParEGO [7] have all been shown to be effective. However, each of these approaches only

produce a small number of nondominated solutions in a given number of function eval-

uations. Increasing the size of this solution set has proven to be an extremely difficult

problem [8]. In this work, a neural network system is described that can, in essence, learn

the areas where nondominated solutions are found. In this way, many such solutions can

be generated without the need for a large number of function evaluations.
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1.1 Multiobjective Optimization

A multiobjective optimization problem is defined as follows [1]:

Minimize [f1(~x), f2(~x), · · · , fk(~x)]

subject to the m inequality constraints

gi(~x) ≤ 0 i = 1, 2, . . . , m

and the p equality constraints

hi(~x) = 0 i = 1, 2, . . . , p

where k is the number of objective functions and fi : Rn → R. The vector ~x = [x1, x2, . . . , xn]

is referred to as the vector of decision variables [1]. We wish to find the values x∗1, x
∗
2, . . . , x

∗
n

that yield the optimum values for all the objective functions.

Even with such a clean, mathematical definition, the difficulties that arise in multiob-

jective optimization are obvious. First and foremost, it is extremely unlikely (except in a

few, handpicked problems) that a single assignment of values for the decision variables will

yield an optimum value for all the objective functions. Instead, decision variable assign-

ments will represent “trade-offs” in the objective function values. The goal in multiobjective

optimization is to present the decision maker with a wide range of possible trade-offs so

that the best choice can be made for the situation at hand [2].
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1.1.1 An Example

In order to understand the complexities of multiobjective optimization, an example is

in order. Suppose the following functions are to be minimized:

f1 = x2

f2 = (x− 2)2

x ∈ [0, 2]

These objective functions are depicted in Figure 1.1. The best trade-off appears to occur

at x = 1.0, even though each objective function, if considered individually, would produce

minimum values at x = 0.0 and x = 2.0, respectively. In this case, intuition may be

somewhat misleading, depending on our definition of optimality in the context of multiple

objectives. When there are multiple possible trade-offs, it is important to clearly define

what it means for a solution to be optimal. The following subsections discuss three different

approaches for such a definition.

1.1.2 Aggregation-based Approach

Single-objective optimization methods have existed for hundreds of years [3]. In order

to leverage those methods, one approach for multiobjective optimization is to convert such

a problem into a single objective. This is called an aggregation-based approach [2] or an

aggregating function [1]. Typically, a weighted sum of the objective values is used as the new

scalar optimization function. For example, given objective functions fi(x) for i = 1, 2, . . . , k,
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Figure 1.1: Example Multiobjective Problem

the aggregating function F (x) would be

F (x) =
k∑

i=1

wifi(x)

where
k∑

i=1

wi = 1.

Such an approach produces only one solution for a given choice of weights. There-

fore, to produce multiple solutions (as is typically required for multiobjective optimization
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problems), the process must be repeated many times. Likewise, since good choices for the

weight values are often unknown, those values are usually varied before each new run [1].

One of the greatest benefits of using aggregating functions, as mentioned above, is that

there are many different single objective optimization methods that can be applied to the

transformed problem. However, there are drawbacks. One is, of course, the difficulty of

choosing appropriate weights for each objective. An even greater difficulty is that these

weighted sums can only generate portions of the Pareto optimal front that are convex [9].

If the Pareto optimal front is non-convex, then a weighted-sum approach will fail to find

the points that lie on the concave portion of the front [9]. Additionally, an even spread

of weights (for multiple runs of the optimizer) will often fail to produce an even spread

of points on the Pareto optimal front [9]. In fact, only curves fitting a specific shape will

produce an even spread of solutions given an even spread of weights [9]. There are also non-

linear aggregation-based approaches that have been used for multiobjective optimization.

These approaches are typically not limited by the convexity of the Pareto optimal front but

have been criticized by the multiobjective community [10], possibly because of the current

emphasis on Pareto preference.

1.1.3 Criterion-based Approach

Another approach to turn multiobjective problems into single objective problems is to

consider only one objective at a time. This is referred to as a criterion-based approach [2]

or lexicographic ordering [10]. In the simplest case, the objectives are ranked in order

of importance. The one that is considered most important is optimized first as a single

objective problem. Then, the next objective is optimized without decreasing the quality
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of the first. This process is repeated until all objectives have been considered. In a more

complex evolutionary approach, criterion based methods can be used to vary which objective

function will determine the selection of an individual [2]. In such cases, the choice of

objectives can be random or probabilistic according to a user-defined set of probabilities,

or those probabilities can be varied during the run of the algorithm [2].

1.1.4 Pareto-based Approach

Since solutions to multiobjective optimization problems actually represent trade-offs

between some objectives in favor of others, there is no clear way to define what is meant

by a “good” solution. To overcome this difficulty, another type of metric is used, known as

Pareto preference [10]. Using this metric, a solution s1 is said to dominate another solution

s2 if s1 is no worse than s2 in any objective and if s1 is strictly better than s2 in at least one

objective. In mathematical terms, solution s1 is said to dominate solution s2 if and only if

∀i, 1 ≤ i ≤ k, fi(s1) ≤ fi(s2)

and

∃p, 1 ≤ p ≤ k, fp(s1) < fp(s2).

The set of all globally nondominated solutions for a particular multiobjective problem

is referred to as the Pareto optimal set or the efficient set [10]. The image of the Pareto

optimal set under the objective functions is called the Pareto optimal frontier (or often just

the Pareto optimal front) [10]. Finally, since the global Pareto optimal set is often unknown,

most multiobjective optimization approaches actually produce a Pareto set approximation
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[2]. In this work, the term “Pareto optimal front” is used to refer both to the Pareto optimal

frontier as well as the approximation to the Pareto optimal frontier, where the particular

meaning will be clear from the context.

1.2 Evolutionary Computation

The beginnings of evolutionary computation (EC) can be traced back as far as the

late 1950’s, but it was the last two decades that saw truly exponential increases in the

amount of attention given to the field [11]. EC can be thought of more as a problem solving

strategy than a one-size-fits-all tool [11, 12]. At its core, an EC attempts to mimic the

biological process of evolution in order to solve a given problem [13]. This, consequently,

suggests that there should be a simulated analog to the biological process of reproduction

and some measure of or mechanism for survivability. Indeed, these must be defined for

any EC. However, before these processes can be defined, it is necessary first to define what

makes up an individual.

An individual is simply a candidate solution. As such, it can be represented in any way

that the designer chooses, and most representations are problem-specific. The manner in

which a candidate solution is represented is known as the genotype [11] (in keeping with the

biological analogy). Since two or more solutions must be compared with one another in order

to determine which is “better”, it is necessary to also have some measure of “goodness”,

which in the EC literature is known as the fitness of an individual [11]. The fitness is a

measure of how well one candidate solution solves a problem, sometimes in comparison to the

performance of other candidate solutions. Usually, candidate solutions cannot be compared

(and thus their fitness values cannot be assessed) by simply looking at the genotype values.
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Instead, the candidate solution undergoes a transformation to convert its genotype into the

corresponding phenotype [11], which can be thought of as its representation in the fitness

space.

To make this discussion more clear, an example is in order. Suppose we wish to find

the real value for −10 ≤ x ≤ 10 such that it minimizes the function

y = f(x) = x2.

(Clearly, the minimum value will occur when x = 0.) In the simplest case, we would say that

the x value represents the genotype of the candidate solution, and the set of all candidate

solutions is simply the line from −10 to 10. The phenotype for a given x value, in this case,

is also that same x value. (In other words, the mapping function between genotype space

and phenotype space is simply the identity function.) The phenotype space is simply all of

the possible values for x, which in this case is the curve representing f(x) = x2. The fitness

for a candidate solution x is simply the value of y at that point, y = x2. These concepts

are illustrated in Figure 1.2.

Once the representation is chosen, the evolutionary operators must be specified. These

operators define the mechanisms of variation and selection [11]. Variation determines how

new solutions are created from existing solutions (i.e., reproduction) and how existing so-

lutions are modified to explore new areas of the search space (i.e., mutation). Selection

determines how solutions are chosen to remain viable candidates or to participate in the

creation of new solutions. In some cases, one or more of these operators are simply identity

functions, which means that they have no actual function. However, when viewed in this

way, all of the EC approaches are simply variations on this basic theme [11].
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Figure 1.2: Example Minimization via Evolutionary Computation

The basic EC is presented in Listing 1.1. Here, Pt is a set of candidate solutions (the

population) at time t. Typically, the population is of a fixed size. The Evaluate() function

performs the mapping from genotype to phenotype space and assigns appropriate fitness

values to each individual in the population. The Variation() function takes the current

population and produces a set of new individuals, P ′
t . This function need not make use of

all of the individuals in the current population. Often, only a subset are chosen (internal to

the function) and used for variation. Finally, the Select() function performs the selection

of individuals (chosen from the union of the original and modified individuals) which will

make up the population in the next generation.
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ALGORITHM EvolutionaryComputation ()

t ← 0

Initialize(Pt) // Pt represents the population at time t

Evaluate(Pt)

functionEvaluations ← Size(Pt)

WHILE functionEvaluations < MAX_FUNCTION_EVALUATIONS LOOP

P ′t ← Variation(Pt) // P ′t represents the offspring

// of the population at time t

Evaluate(P ′t )

functionEvaluations ← functionEvaluations + Size(P ′t )

Pt+1 ← Select(Pt ∪ P ′t )

t ← t + 1

END LOOP

Listing 1.1: Basic Evolutionary Computation

An important point of which to take note here is that the number of function evaluations

is critical when comparing two evolutionary computation algorithms. A function evaluation

is simply one mapping from genotype to fitness. (The mapping is often called the evaluation

function or fitness function, so the term “function evaluations” is appropriate.) That is

the typical processing unit used in the EC literature when referring to the efficiency of a

particular algorithm.

According to Bäck et al [11], the majority of current evolutionary computation im-

plementations come from three different, but related, areas – genetic algorithms [14–17],

evolutionary programming [11, 18, 19], and evolution strategies [19, 20]. However, as stated

earlier, each area is defined by its choice of representation and/or operators. These choices

are discussed in the following sections.
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1.2.1 Genetic Algorithms

Genetic algorithms were first proposed by John Holland in the 1960’s [14] in an at-

tempt to leverage the power of natural selection to solve difficult optimization problems.

In the canonical genetic algorithm, sometimes referred to as the simple genetic algorithm

(SGA) [15,17], the genotype for a candidate solution is represented as a binary string. The

evaluation function is then a mapping from a binary string to some real-valued measure of

fitness (as determined from the phenotype). As in all EC approaches, the fitness function

is entirely problem-dependent.

The selection operator used in an SGA is fitness proportionate selection [15], sometimes

called “roulette wheel” selection. In this type of selection, the probability of selecting a

particular individual increases proportional to that individual’s fitness. In some sense, the

size of the individual’s “roulette wheel section” increases with its fitness. In this way, the

more fit an individual, the more likely it is to survive. However, this operator is stochastic,

so it is possible that even the strongest individual will not survive (and, likewise, the weakest

individual may survive).

A similar yet slightly more complex selection procedure is remainder stochastic selection

[15]. In this type of selection, any individual with an above average fitness is guaranteed

to participate in creating the next generation of individuals, and the remaining slots are

randomly assigned to individuals in a manner proportional to how well their fitness values

compare to the average fitness. In this setup, the objective fitness for an individual (as

determined by the fitness function) is modified to produce a relative fitness value as follows:

f r
i =

fi

f̄
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where f r
i is the relative fitness of individual i, fi is the objective fitness of individual i, and

f̄ is the average fitness of the current population.

Another popular selection method is tournament selection [15]. In this type of selec-

tion, a subset of candidate solutions is chosen from the existing population against each of

which the individual in question is compared (as if that individual is competing in a single-

elimination tournament against all individuals in the subset). If the individual’s fitness is

better than all candidate solutions in the subset, then that individual is selected. The size

of the subset (often called the tournament size [15]) can be used to control the selection

pressure [15].

For instance, suppose that a particular individual has a relative fitness of 2.36. Then

that individual automatically gets 2 copies (from the whole part of the relative fitness) that

are allowed to participate in the reproduction phase. Additionally, the individual has a 36%

chance of being selected again to fill any remaining slot. In contrast, and individual with

a relative fitness of 0.75 would have no guaranteed copies in the reproduction phase, but it

would have a 75% chance to fill any remaining slots.

After selection is performed, the participating individuals undergo variation through

crossover and mutation. Each of these operators is performed according to some probability

of occurrence (typically denoted pc and pm, respectively) that must be specified as param-

eters to the system. The variation operators used in an SGA are single-point crossover [15]

and bit-flip mutation [15]. In single-point crossover, two individuals (i.e., binary strings)

are chosen, along with a single recombination point that determines the position in each

string that will be “cut”. The individuals are then recombined at that point to form two

new individuals. This can be understood more clearly in the following example (where the
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vertical bar represents the recombination point):

Parent A: XXXXXXX | XX

Parent B: YYYYYYY | YY

Child 1: XXXXXXXYY

Child 2: YYYYYYYXX

This operation is applied to randomly selected parents with probability pc, which is

typically set to be a fairly high (e.g., 0.75) value. Bit-flip mutation simply means that each

bit in a newly created binary string is changed to the opposite value with probability pm,

which is typically set to be a very low (e.g., 0.01) value.

The resultant population is made up entirely of the newly-created offspring. This is

known as generational replacement [11], which means that no individuals from the previous

generation are allowed to survive to the succeeding generations. This type of selection strat-

egy (where here we mean survivor selection instead of parent selection) can be augmented

with elitism [11], which would allow some proportion (as determined by system parame-

ters) of the most fit individuals to survive into the next generation. Additionally, some

genetic algorithms make use of steady-state replacement [11], in which only one offspring is

created in a given generation, and this offspring always replaces the least-fit individual in

the current population.

1.2.2 Evolutionary Programming

In the early 1960’s, Lawrence Fogel attempted to use simulated evolution, which he

called Evolutionary Programming (EP), to create artificial intelligence [18, 19]. In this
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seminal work, finite state machines (FSMs) were evolved to predict future symbols from a

given input stream [19]. Using a FSM representation of the individuals in the population

required novel variation operators. The following operators were used in the work: changing

an output symbol, changing a state transition, adding a state, deleting a state, and changing

a state. The fitness of a given FSM was determined by how accurate its predictions were,

given the sequence of input symbols. More recently, EP approaches have been applied

to real-valued, continuous optimization problems, but these approaches are similar to the

approaches used in Evolutionary Strategies [19], which are discussed below.

1.2.3 Evolution Strategies

At the same time that Holland was developing the genetic algorithm, Rechenberg was

independently discovering a technique for using natural selection for optimization problems,

which he termed evolution strategies [20]. The simplest version of an evolution strategy

(ES) is what is known as a two-membered ES [20] or, more commonly, a (1+1)-ES. In

this scenario, a single individual, represented as a vector of real values, comprises the

population. At each generation, that individual is mutated (the variation operator) along

each dimension using a Gaussian distribution with zero mean and a given variance (provided

as a parameter to the system) to produce an offspring. The fitness values for both the parent

and the offspring are compared, and the better of the two individuals is allowed to become

the parent in the next generation.

It was discovered [20] that online adjustment of the mutation rate (i.e., the variance

of the normal distribution) could provide better performance. This online adjustment is

known as the 1
5 success rule [20], which states that around 1

5 of the mutations should be
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successful. If the actual number of successful mutations is greater than 1
5 , increase the

variance. If the number is less than 1
5 , decrease the variance.

In addition to online adjustment of the variance, more sophisticated versions of evolu-

tionary strategies can also include the particular variance as a part of the genotype to be

evolved [20]. It is also possible to evolve and use a different variance along each dimension

of the problem [20], thus allowing the search for a solution to conform more appropriately to

the topology of the search space. When variances are included in the genotype, an additional

parameter is needed to serve as the variance used to mutate the evolved variances.

The (1+1)-ES did not truly make use of the idea of a population of individuals, so

this concept was generalized and extended to yield the (µ + 1)-ES [20]. In this system,

a population of µ individuals is maintained in each generation. Additionally, a reproduc-

tion operator is included that selects two (or more) individuals from this population and

recombines them to form a new individual. This recombination is simply a random selec-

tion of each component from the parents. Once the new individual is created, it undergoes

mutation as mentioned above. Finally, each offspring is added to the population if it is

better than the least fit individual, producing the new population for the next generation.

This approach can be and has been [20], of course, extended to a (µ + λ)-ES, in which µ

individuals produce λ offspring. The best µ individuals of the µ + λ individuals are then

chosen to survive.

It is also possible to provide somewhat of an analog to the generational replacement of

a GA within an ES. This approach is known as a (µ, λ)-ES (where λ must be greater than

or equal to µ) [20]. In such a scenario, the µ individuals are used to create λ offspring, and
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from those offspring only, µ individuals are chosen to comprise the population in the next

generation.

1.2.4 Particle Swarm Optimization

In addition to the evolutionary computation techniques described above, another na-

ture-inspired optimization algorithm has also been applied to multiobjective optimiza-

tion problems. A technique called Particle Swarm Optimization (PSO) was developed by

Kennedy and Eberhart in 1995 [21]. Inspired by the movement of bird flocks and insect

swarms, they attempted to develop a model of swarm behavior that could be used to solve

optimization problems. To create the analogy, they imagined a flock of birds flying around

in search of a corn field. Each bird was capable of remembering the best location it had

found, and each was capable of knowing the best location that any of the birds had found.

The birds were allowed to fly around while being pulled toward both their individual best

locations and the flock’s best location. Kennedy and Eberhart found that their simulation

of this analogy produced very realistic-looking behavior in their virtual flocks [21].

In the PSO model presented in [21] and expanded in [22], each particle is composed

of three vectors: x, p, and v. These represent the particle’s current location, best location

found, and velocity, respectively. These vectors are each of the same dimensionality as the

search space. Additionally, each particle maintains a two values – one corresponding to the

fitness of the x vector and the other to the fitness of the p vector.

As the particles in the swarm move around the search space, their velocities are first

updated according to the following equation:

vid = vid + ϕ1R1(pid − xid) + ϕ2R2(gid − xid)
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In this equation, vid is the velocity of the ith particle along the dth dimension. The g vector

represents the best location found by the flock, and R1 and R2 are uniform random values

chosen from the interval [0, 1]. Finally, ϕ1 and ϕ2 are two constants that control the influence

of the personal best and the global best locations, respectively, on the particle’s velocity.

These values are often referred to as cognitive and social learning rates, respectively [22].

After the velocity vector is updated, the particle’s location is updated by applying the

following equation:

xid = xid + vid

At this point, the new location’s fitness is evaluated and compared to the fitness of the

particle’s personal best location. If the new location is better, then it also becomes the new

personal best location for the particle.

The topology for a swarm refers to the structure of the neighborhood for each particle.

In a star topology, all the particles exist in the same neighborhood, so the global best vector

represents the best location found by any particle in the swarm. In contrast, a ring topology

arranges the particles into overlapping neighborhoods of size η. The global best vector in

this type of topology represents the best location found by any particle in that particle’s

neighborhood.

In 1999, Maurice Clerc introduced an improvement to the equation for updating the

velocity of a particle [23]. He introduced a constant to be multiplied to the new veloc-

ity before updating the location of the particle. He called this constant the constriction

coefficient [23]. The calculation of this coefficient is as follows:

K =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣
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In this equation, ϕ = ϕ1 +ϕ2 and ϕ > 4. The constriction coefficient is used to restrain the

velocity vector of each particle so that it does not grow unbounded.

Finally, various other models have been proposed as alternatives to the so-called full

model presented above [24]. The cognitive-only model sets ϕ1 to 0, while the social-only

model sets ϕ2 to 0. A selfless model was also developed which was identical to the social-

only model except that a particle’s personal best was not included in the search for that

particle’s neighborhood’s global best [24].

1.2.5 Application to Multiobjective Optimization

The first application of evolutionary computation to the problem of multiobjective op-

timization was Schaffer’s Vector Evaluated Genetic Algorithm (VEGA) [25] in 1985 [26].

Since then, evolutionary multiobjective optimization has been an incredibly active area of

research [26]. This is due to the natural union of evolutionary computation and multiob-

jective optimization, which stems from the fact that EC algorithms are generally very good

optimizers and they work simultaneously on a set of candidate solutions (i.e., the popula-

tion) [26]. Since multiobjective optimization problems typically require a set of solutions,

rather than just a single solution, the final population from an EC algorithm provides just

such a set. The next chapter will discuss in detail several of the most popular evolutionary

multiobjective (EMO) algorithms.
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1.3 Neural Computation

Also inspired from natural phenomena, neural computation attempts to model the con-

nectionist learning that occurs within the brain in order to produce a computational learn-

ing/prediction system [27]. Examples of such systems include simple perceptrons [28, 29],

backpropagation feed-forward artificial neural networks [30], radial basis function networks

[31], and general regression neural networks [32]. Neural network approaches can accom-

plish unsupervised tasks, such as clustering and data mining, as well as supervised tasks,

such as function approximation and prediction.

1.3.1 Unsupervised Learning

Unsupervised learning [27] simply refers to learning in which the system is not given

the “right answer.” For example, it is not trained on pairs consisting of an input and

the desired output. Instead, the system is given a set of input patterns and is left to

find interesting patterns, regularities, or clusterings among them. In these systems, the

inputs are clustered together into categories according to how similar they are to the other

inputs in the dataset. Inputs that are similar enough (this similarity threshold is generally

controlled by parameters to the system) to one another are grouped into the same category.

The output from an unsupervised system for a given input is generally the category into

which the input was assigned. For this reason, an unsupervised system can be thought of

as a mapping from inputs to categories. There are a number of neural network systems

that perform unsupervised learning. Two examples include self-organizing maps [33] and

Adaptive Resonance Theory neural networks [34].
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1.3.2 Supervised Learning

Supervised learning [27] occurs when the learning algorithm is provided with a set of

inputs along with the corresponding correct outputs. The learning in this case involves an

algorithm that compares the system’s output with the correct (supervised) output. Hence,

the system is provided with a measure of error. Via many different learning approaches,

the system can be modified so as to minimize this error in order to produce correct outputs

for given inputs. Many neural network systems, such as backpropagation networks [30] and

general regression neural networks [32], make use of supervised learning.

1.3.3 Neural Network Basics

There are millions of neurons within the human brain [35], and each of these neurons

is connected to countless others. Thus, among the millions of neurons there are billions of

connections. With this arrangement, humans have the ability to learn enormous amounts

of information without forgetting things previously learned. In light of the current state of

artificial intelligence, this is a truly remarkable feat of evolution and biology. In an effort to

simulate such a learning mechanism, computer scientists have developed what are referred

to as neural networks, which are simply mathematical models, in the hopes that software

agents that embed this behavior can perform similarly to their biological counterparts. To

more adequately understand the model, however, it is important first to understand the

biological mechanism of learning.
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Biological Neurons

Each neuron has three basic parts – the axon, the soma, and the dendrites [35]. The

axon of a neuron is a long fibrous connector that carries the output of the neuron. The

soma is the cell body of the neuron. The dendrites are the receivers of the input from

other neurons. Axons are connected to the dendrites of many other neurons. Each axon

is separated from its connecting dendrite by a small gap known as a synapse [35]. Within

the axon, chemicals called neurotransmitters are stored [35]. When a signal is to be passed

from one neuron to another, a signal is sent from the soma down the axon, which triggers

the release of these neurotransmitters. They then flow across the synapse where they bind

to receptors on the dendrites of other neurons. If sufficient neurotransmitters are collected

by the synapse, a signal is sent to the soma of the receiving neuron [35]. It is important to

note that the firing pattern of neurons is “all or none”, which means that their output can

be considered binary.

When novel inputs trigger learning within neurons, those neurons undergo a change.

The efficiency of transmission of signals between neurons is increased or decreased in order

to minimize the error [35]. This modulation of the transmission efficiency is accomplished

by increasing or decreasing the amount of neurotransmitter found in the synapse between

neurons. To illustrate this idea, imagine that each neuron, rather than conducting electro-

chemical signals, actually conducted water. Each neuron would receive water through its

dendrites, and it would transmit water through its axon. (Imagine that there are tiny valves

at the end of the axon that connect the neuron to the dendrites of its neighbors.) When

learning occurs within a neuron, the flow of water from that neuron to its neighbors is

modulated by changing the state of those valves. The more open the valve is, the more
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water will be passed on to the neighboring neurons. In this manner, learning may occur

within the brain by the changing the strength of signal transmission between neurons.

Artificial Neurons

If each neuron is considered to be an information-processing unit, then the human brain

can be thought of as a massively parallel computing machine [35]. Neural networks are

software implementations of the neural dynamics and connectivity within the human brain

[35]. A neural network is made up of neurons and the weighted connections between them.

These weighted connections provide the capability of modulating the signal transmission

between neurons. If the weight is high (e.g., the valve is completely open), then the signal

transmission from that neuron will be very strong. On the other hand, if the weight is low

(e.g., the valve is nearly closed), then the signal transmission from that neuron will be very

weak. Thus, by modifying these weights, the network is able to learn to perform a given

task.

Neural networks have two major components [35] – a function that determines at which

point a neuron should fire, known as an activation (or transfer) function, and a method

for updating the weights, often called the learning rule for the network. The activation

function defines how the neuron responds to the net input, which is simply the weighted

sum of all inputs into the neuron. For instance, it determines whether or not the neuron

should fire given a particular input. The learning rule takes the inputs, the output, and

the expected output as parameters. If the expected output is not known, as it would be for

unsupervised networks, it is estimated in some way. The function then updates the weights

in such a way as to associate the given input with the expected (or estimated) output.
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1.4 Neural Enhancement

To perform the neural enhancement [8], a neural network is created using some of the

decision variables in the Pareto optimal set to predict the values for the remaining decision

variables in the set. In essence, the neural network is used to learn the mapping, in the

Pareto optimal set, from some subset of the decision variables to the remaining decision

variables. To more clearly understand the approach, consider the following analogy.

In the deserts of the southwestern United States, there are many plateaus and canyons.

In the deepest spots of these canyons lay hidden wealth that needed only to be mined. Once

news of these riches was released, thousands of people began to flock into the desert in search

of their fortunes. Each one knew that wealth was only found in the deepest spots, so they

quickly and carefully made their way down from the plateaus into the canyons. When they

were done exhausting each mine in an area, they would begin the process again, moving

downward if possible and moving towards their neighbors if not. This, as we will see, is

somewhat similar to how the EMO approaches operate. Multiple people are searching for

wealth in parallel, but each is unable to truly take advantage of the terrain information.

One day, word of the new gold rush reached a young man named Nemo, who also

was interested in making his fortune. He studied the reports, paying attention to the

locations in which mines had previously been found. After a little consideration, he realized

that, perhaps, all of the mines lay along some natural formation. More importantly, the

reports had given him enough information to make a crude map of the formation that

he could follow. So he set off for the desert and began to search. However, rather than

begin on the plateau and work his way down, he began in the canyons (the formation he

had discovered) and followed his own map. Since the map was not completely accurate,

23



he found himself climbing hills from time to time, but overall he was able to search the

canyons more efficiently because he knew how to follow them. This is similar to the manner

in which the neural enhancement system discussed in this work searches for solutions to

multiobjective problems.
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Chapter 2

Literature Review

This chapter provides the relevant background material from the evolutionary multi-

objective optimization (EMO) and neural computation literature.

2.1 Evolutionary Multiobjective Optimization

There have been many different evolutionary approaches to multiobjective optimization

proposed in the past two decades [36]. A small subset of these approaches has been chosen

for inclusion here. The algorithms presented below either have historical significance or are

commonly used at present as EMO techniques. For a more comprehensive survey of EMO

approaches, the reader should refer to [1, 2, 10,26,36–38].

2.1.1 Vector Evaluated Genetic Algorithm

The first application of evolutionary computation to multiobjective optimization was

Schaffer’s Vector Evaluated Genetic Algorithm (VEGA) [25]. His approach was to modify

the simple-GA to allow for multiple objective values. To do this, the selection procedure

was modified so that, given q objective functions, a population of N individuals would

generate q subpopulations of size N
q , each using a particular objective function as its fitness

measure. Then, these subpopulations would be shuffled together to form the new population

for the next generation. This approach has been shown [39] to be equivalent to an linear

aggregation approach where the weighting coefficients depend on the current population [37].

Additionally, the shuffling of the subpopulations tends to encourage what Schaffer called
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“speciation,” which means that the algorithm prefers individuals who are particularly good

at one or more of the objectives, rather than individuals that represent a balanced trade-off.

2.1.2 Multiobjective Genetic Algorithm

Inspired by the original VEGA concept, Fonseca and Fleming [37] developed a Mul-

tiobjective Genetic Algorithm (MOGA) that performs selection based on “rank,” where

the rank of an individual is defined to be one more than the number of individuals that

dominate it. (Thus, all nondominated individuals have rank 1.) Additionally, the authors

introduce an application of fitness sharing [40] for multiobjective optimization in order to

maintain diversity. Fitness sharing in this context means that individuals who are “near”

one another must share the resources (i.e., the fitness value) for that area. This implies

that highly fit individuals in less crowded areas will be preferred. In order to determine

“nearness”, a distance metric is employed (usually Euclidean) and a user-defined parameter,

σshare, is used to determine at what distance two individuals are considered to be “near

enough” to share the resources.

2.1.3 Niched Pareto Genetic Algorithm

In 1994, Horn et al. [41] developed a genetic algorithm for multiobjective optimization

that they termed the Niched Pareto Genetic Algorithm (NPGA). It uses a tournament-

type selection where two individuals are compared based on whether or not each dominates

or is dominated by a set of other individuals in the population. If there is a tie, fitness

sharing is used to determine the winner. Increasing or decreasing the size of this comparison

set allows the selection pressure to be tuned similar to the tournament size in regular

tournament selection. The niching in this algorithm is done through fitness sharing, where a
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distance function is used along with a neighborhood kernel (much like that used in a General

Regression Neural Network [32]). The fitness of an individual is inversely proportional to

the number of individuals “near” it. The algorithm was compared against VEGA [25] on

Schaffer’s F2 function [25], and it was also applied to a real-world problem of optimum

placement of well locations to detect groundwater contamination.

2.1.4 Nondominated Sorted Genetic Algorithm

The nondominated sorting genetic algorithm (NSGA) [5] was first introduced in 1994

by Srinivas and Deb as an evolutionary multiobjective optimizer. The NSGA algorithm

operated like a simple genetic algorithm except for the selection mechanism. There, the

individuals were ranked according to Pareto preference using multiple passes(i.e., the first

pass ranks all truly nondominated points, the second pass ranks all nondominated points

from the remainder, etc.). In each pass, the nondominated points are assigned a dummy

fitness value and points with the same fitness value undergo fitness sharing.

In 2002, Deb et al. introduced an improvement to NSGA that they termed NSGA-II [6].

NSGA-II uses a sorting routine that runs in O(MN2) time, rather than O(MN3) (where M

is the number of objectives and N is the population size). This routine is made possible by

the use of a new domination operator that relies on the idea of crowding distance instead of

using fitness sharing. This crowding distance ensures that the solutions adequately fill the

objective space. Finally, NSGA-II uses elitism, which allows good individuals to continue

to survive and reproduce.
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2.1.5 Pareto Archived Evolution Strategy

In [42], the authors present the Pareto Archived Evolution Strategy (PAES) algorithm

for multiobjective optimization. The PAES is a (1+1)-ES that uses an archive of Pareto

optimal solutions to aid in selection, just like the tournament selection of the NPGA. The

archive maintains a list of all current nondominated solutions and stores them in the form of

a d-dimensional adaptive grid, where d is the number of objectives. The grid is subdivided

recursively and is encoded by a tree structure. In this way, less crowded areas of the grid

are favored in the event of a tie (to maintain diversity).

The algorithm is compared with NPGA on five test functions [42], and is shown to com-

pare well, even though it is arguably the simplest algorithm for multiobjective optimization.

The results given are primarily qualitative (in the form of graphs for visual comparison),

but PAES tends to show less bias than NPGA towards any particular area of the Pareto

optimal front, though it is more noisy. The authors describe the conception of the idea as an

extension of local search approaches, such as tabu search [43] and simulated annealing [44].

2.1.6 Strength Pareto Evolutionary Algorithm

In 1999, Zitzler and Thiele [45] developed the Strength Pareto Evolutionary Algorithm

(SPEA). Their approach differs from those previously discussed in two major ways. First,

they use an external archive, much like in PAES, to determine the fitness of individuals in

the population. They define the strength of a nondominated solution i in the archive to be

the number of solutions in the population that are covered (i.e., dominated) by i. Using this

definition of the strength of an archive solution, they then define the fitness of all archive

solutions to simply be their strengths, and the fitness values of solutions in the population
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are calculated by the following function:

fj = 1 +
∑

i,iÂj

si.

Here, fj represents the fitness of individual j in the population, the operator Â represents

Pareto dominance (so i Â j means that i dominates j), and si represents the strength of

archive solution i. Note that in Zitzler’s and Thiele’s work low fitness values correspond

to high reproductive probabilities. This definition of fitness also inherently creates a form

of fitness sharing that does not require a niching parameter (like σshare in MOGA). Since

solutions that are dominated by only a few points are preferred over those that are domi-

nated by many, the population tends to converge to the Pareto optimal front with a more

uniform spread [45].

Zitzler and Thiele also used a clustering approach to keep the size of the external

archive bounded and to maintain a uniform distribution of points on the Pareto optimal

front (which, as mentioned above, causes the population to produce more uniformly dis-

tributed solutions). This was necessary given that the archive is used as part of the selection

mechanism. If it were allowed to grow unbounded, then the selection pressure may suffer.

The clustering algorithm used in their work was the average linkage method [46]. Using this

approach, initially each point in the archive represents a cluster. Then, the closest pair of

clusters is combined to form a new cluster, thus reducing the number by one. This process is

repeated until the desired number of clusters is reached. Afterwards, the individual in each

cluster that is nearest the centroid is selected to be retained as that cluster’s representative.

The authors compare the performance of the SPEA with that of VEGA, NPGA, NSGA,

and Hajela’s and Lin’s genetic algorithm (HLGA) [47], which uses weighted-sum aggregation
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where the weights are encoded into the genotype of the individual. Zitzler and Thiele show

that NSGA outperforms the remaining three algorithms (VEGA, NPGA, and HLGA) on

the 0/1-knapsack problem, but that SPEA outperforms all approaches, covering 100% of

the solutions found by the other approaches [45].

In 2002, Zitzler et al. produced an enhanced version of this algorithm, which they called

SPEA2 [48]. In this algorithm, the strength of a solution is calculated as in SPEA, except

that it is calculated for all members of both the population and the archive. Additionally, the

raw fitness of an individual is calculated based on the sum of the strengths of its dominators

in both the population and the archive (as opposed to SPEA, where only the strengths of

the archives were used). The raw fitness for an individual is summed with the density

information about that individual (i.e., how crowded the area around that individual is),

which is obtained using a variant of the k-nearest neighbor method [49]. This sum represents

the individual’s fitness.

The updating of the archive is also modified in SPEA2. First, all nondominated indi-

viduals in the current generation are placed in the archive for the next generation. If the

archive is not yet full, then the dominated individuals in the current generation are added

to the archive in a best-fitness-first manner until it is full. If the archive contains too many

individuals after the nondominated solutions are included, then a truncation procedure is

used (instead of the clustering approach used in SPEA). This procedure essentially itera-

tively removes the individual that has the minimum distance to some other individual (as

defined using the k-nearest neighbor metric) at each stage.
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2.1.7 Pareto Evelope-based Selection Algorithm

Corne et al. developed the Pareto Envelope-based Selection Algorithm (PESA) [50] in

2000. This approach also maintains an external archive of nondominated solutions. This

archive is to select individuals that will become parents as a part of the variation operator.

With probability pc (a user-defined parameter), two parents are selected from the archive

to undergo crossover to produce one offspring, which is then mutated. With probability

(1 − pc), one parent is selected to undergo mutation to create an offspring. The offspring

make up the new population, which is incorporated into the external archive at the beginning

of each generation. Binary tournament selection is used to select the participating parents

according to the lowest squeeze factor [50]. A grid system is used to break the objective

space into hypercubes, and the squeeze factor of an individual is defined to be the number

of individuals in the same hypercube. This provides a method for maintaining diversity in

the population, favoring less crowded areas of the Pareto optimal front.

The squeeze factor is also used to maintain a bound on the size of the external archive.

Whenever this bound is exceeded, old individuals are removed from the archive accord-

ing to a highest-squeeze-factor-first strategy. The new nondominated individuals from the

population always replace existing members in the archive in the case of an excess. If the

squeeze factors for two individuals are the same, ties are broken randomly.

The authors compared their PESA algorithm against SPEA and PAES on six test

functions taken from [51]. The results show that PESA was able to outperform the other

algorithms on most of the test functions at 1000, 5000, and 20000 function evaluations.

While not conclusive, these results suggest that PESA has the capability to compete with

some of the best EMO approaches.
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2.1.8 Micro-Genetic Algorithm for Multiobjective Optimization

Coello Coello and Pulido [52] developed the first micro-GA for multiobjective opti-

mization. A micro-GA is defined by a small population size (which was between 2 and 5

individuals in [52]) and small numbers of generations per run. After each run, the micro-GA

is started over again with a seeded population from some replaceable memory. This process

is then repeated as many times as desired.

The micro-GA system in [52] uses an external archive of nondominated points so that no

results from any of the runs are lost. They also use a population memory, which represents

a smaller archive that has both a non-replaceable and a replaceable portion (with sizes that

are user defined). The population memory is used to seed the initial population for each

run of the GA. The GA itself also uses elitism such that one nondominated solution in

each generation is allowed to survive into the next generation. When a run of the GA is

completed, at most two nondominated solutions from the GA’s final population are moved

into the external archive. If this archive is full, the new solutions replace older solutions

using a grid technique similar to that used in PAES [42]. Finally, two (possibly the same two)

nondominated solutions are moved into the replaceable portion of the population memory.

Coello Coello and Pulido have shown good results [52] using very small population sizes

(approximately 5) and function evaluations (150 to 1500) on five different test problems

from the literature. For each problem, they generated the actual Pareto optimal front using

exhaustive enumeration and compared it to the results of their micro-GA. Their results were

all qualitative (in the form of graphs of the generated fronts), but the micro-GA appeared

to perform very well.
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2.1.9 Multiobjective Particle Swarm Optimization

Several approaches to multiobjective optimization have made use of particle swarm

optimization approaches. In 2002, Coello Coello and Lechuga [4] developed a PSO for mul-

tiobjective optimization that operates normally except that the global (or neighborhood)

best particle is chosen from a repository of nondominated solutions. The repository is di-

vided into hypercubes (using the values of the objective functions for a particular solution

as its coordinates, much like in PAES [4]), and the probability of choosing a particular hy-

percube (using roulette wheel selection) is inversely proportional to the number of nondom-

inated solutions located there (to help maintain diversity). After a hypercube is selected,

a solution from that area is selected randomly from those available in the hypercube. The

performance of the MOPSO was compared with PAES and NSGA-II on three test prob-

lems from the EMO literature. The authors state that the multiobjective PSO (MOPSO)

remained competitive with the other approaches, even though it wasn’t necessarily better

in all cases, and it required lower computational time to converge to a set of solutions.

In 2004, Coello Coello et al. [53] developed a modified version of their original MOPSO

that included a constraint-handling mechanism and a mutation operator to aid in search

space exploration. Their approach also used the same adaptive grid technique that was

used for the micro-GA [52]. In order to deal with constrained optimization problems, the

concept of dominance was modified just like with the micro-GA so that a feasible solution

dominates an infeasible solutions, and, if both are infeasible, then the solution with the

fewest constraint violations dominates. The additional mutation operator essentially per-

forms random mutation on each dimension of the particle according to a specified mutation

rate. However, similar to simulated annealing approaches [44], this operator is applied with
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much less frequency as the swarm develops. In this way, the initial swarm is able to more

effectively explore the search space while the later swarm is allowed to converge.

Also in 2004, Mostaghim and Teich [54] used a particle swarm approach similar to that

used by Coello Coello et al. [4] to determine an initial Pareto optimal front. Once the initial

front is generated, each point in the archive is used as the local guide (or neighborhood best)

in a subswarm generated around that point. The subswarms are used to fill out the Pareto

optimal front to cover any gaps left by the initial swarm. This approach makes use of a

post-processing step that uses subswarms to provide a more fully defined Pareto optimal

front. The subswarm approach was compared to a Hybrid MOEA [55] on a real-world

antenna design problem, and the subswarm was shown to cover the Pareto optimal front

much faster than the Hybrid MOEA.

2.1.10 ParEGO

In 2005, Knowles presented a new EMO technique called ParEGO [7], which uses effi-

cient global optimization EGO [56] as a learning system to produce a model of the fitness

landscape. This model is necessary when dealing with expensive multiobjective functions

(such as very time-consuming experiments or experiments that must be performed using

specialized machinery that require trained operators). The EGO system attempts to learn

the model of the multiobjective function given some points on the Pareto optimal front.

Then, this model can be used in conjunction with an evolutionary algorithm to find minima,

which can then be checked using the expensive actual multiobjective optimization function.

Any multiobjective evolutionary algorithm can be used in this system, but Knowles de-

scribed the particular algorithm used to be a population-based steady-state EA using both
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crossover and mutation. He compared the results with those produced by NSGA-II on eight

different test functions. Only 250 function evaluations were used for each, but ParEGO was

shown to perform very well, outperforming NSGA-II in all cases.

2.2 Neural Computation

The following subsections describe in greater detail several modern neural network

techniques. Note that this list is in no way exhaustive. For a more comprehensive list of

neural network and machine learning approaches, the reader should refer to [49,57].

2.2.1 Perceptron

Many different types of neural networks have been designed and implemented by

researchers over the last 50 years [58]. Each has their particular strengths and weak-

nesses. Perhaps the easiest feed-forward network to understand is the perceptron neural

network [28]. The defining characteristic of a perceptron is that it contains only two layers

of neurons – the input layer and the output layer. The simplest form of a perceptron is

one that has some finite number of input neurons and only one output neuron. In this

neural network, there exist connections from each input to the output. Figure 2.1 displays

a perceptron with three input neurons and one output neuron. The output of the jth output

neuron of a perceptron is defined as follows [28]:

Oj = A

(∑

i

Iiwij

)

where Oj is the output of the jth output neuron, A(·) is the activation function, Ii is the

ith input to the network, and wij is the weight between the ith input to the jth output.
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Figure 2.1: Illustration of a Basic Perceptron

The activation function for the perceptron is a simple threshold function [27]. Such a

function takes the weighted input to the neuron (i.e., an L1 magnitude of the product of

the input and the weight vector) and determines whether or not this magnitude lies above

some threshold value. If so, the neuron fires. Otherwise, the neuron generates no output.

While the threshold value could be set by the network designer, in actual neural networks,

the value is determined by what is known as a bias neuron. A bias neuron is a neuron in

each layer of a network that always has a constant input of 1.0. When a bias is used, each

neuron is treated as if its threshold value is 0.0. In this way, the actual threshold value

for any neuron connected to the bias will be determined by the weight from the bias to

that neuron. For instance, in Figure 2.1, I1 could represent the bias neuron, which would

mean that it would have a constant input of 1.0. (Note that if such a system is used, the

perceptron in Figure 2.1 now only has two genuine input neurons.) In this case, the value of

weight w11 would represent the threshold value, and this weight would be allowed to change

during the learning phase.
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To carry out the learning phase, a learning rule must be specified. The learning rule

for a perceptron (often called the Perceptron Learning Rule) is defined as follows [28]:

wij = wij + Ii(Ti −Oi)

where wij represents the weight from input i to output j, Ii represents the ith input, Ti

represents the correct output (teaching signal) of node i, and Oi represents the actual output

of node i. Clearly, this learning rule will move the weight vector closer to the desired output

vector given the appropriate inputs.

While the simple perceptron is capable of learning many different types of inputs, its

effectiveness has been mathematically proven to be extremely limited [29]. It can only rep-

resent vectors that are linearly separable, which means that it must be possible to separate

different output classes with straight lines (or hyperplanes in higher dimensions). An ex-

ample of a function that is not linearly separable is the exclusive-or (XOR). This function

is displayed in Figure 2.2. In order for this function to be linearly separable, it must be

possible to separate the points for which the output is 0 from those where the output is 1

by using only a straight line. The graphical representation in Figure 2.2 makes it clear that

no such straight line exists.

2.2.2 Backpropagation Feed-forward Networks

It was discovered [30] that the limitations of the perceptron could be resolved by the

introduction of at least one additional layer, a so-called hidden layer, between the input

and output layers. Figure 2.3 illustrates such a neural network with three inputs, two

neurons in the hidden layer (typically referred to as hidden neurons), and one output neuron.
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Figure 2.2: Illustration of the Exclusive-Or Function

Because of this additional layer, these types of networks are often referred to as Multi-Layer

Perceptrons (MLPs) [49].

However, the introduction of this layer posed problems of its own because the creation

of a learning rule for such a network is a non-trivial matter. A learning rule had to be found

that could distribute weight changes appropriately across all those connections that led to

the error. The most popular such network in use today is known as the backpropagation

network [59, 60], because the learning rule it applies in essence propagates the blame back

through the network to each of the contributing weights as a function of their contribution

to the resulting error.

The backpropagation learning rule relies on gradient information in order to manipulate

the weight values so as to minimize the prediction error of the network. Since gradient
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information is required, it is important that a differentiable activation function be used. In

many cases, the sigmoid function is used. This function is defined as [60]

F (x) =
1

1− e−x
,

and whose first derivative is easily discovered to be [60]

F ′(x) = F (x)(1− F (x)).

For the output layer, the learning rule is [60]

wji = wji + α aj g′(ini)(Ti −Oi)

where wji is the weight from hidden node j to output node i, α is the learning rate, aj is

the output of the jth hidden neuron, g(·) represents the activation function, ini represents

the net input to the ith output neuron, Ti represents the correct output (teaching signal) of

node i, and Oi represents the actual output of node i.

For the hidden layer, the learning rule is [60]

wkj = wkj + α Ik g′(inj)
∑

i

(
wji(Ti −Oi) g′(ini)

)

where wkj is the weight from the kth input neuron to the jth hidden neuron, α is the

learning rate, Ik is the input to the kth input node, g(·) represents the activation function,

ini represents the net input to the ith output node,
∑

i is the summation across all neurons
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i which make up the layer above (i.e., the output layer) the jth layer, Ti represents the

correct output (teaching signal) of node i, and Oi represents the actual output of node i.

Figure 2.3: Illustration of a Backpropagation Neural Network

2.2.3 Radial Basis Function Networks

Radial basis function networks (RBFNs) [31, 49, 61] are often used as alternatives to

backpropagation neural networks [61]. A radial basis function network has three layers – an

input layer, a hidden layer, and an output layer. The input layer behaves just like the input

layer in an MLP. There are no weights connecting the input and hidden layers in an RBFN.

The hidden layer, however, is formed by clustering the input data into some user-defined
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number of clusters, where each node of the hidden layer represents one cluster’s centroid.

A localized receptive field [61] is centered on each of the cluster centroids, which simply

means that a significant response is generated from a cluster if the input falls “near” its

center in the input space. Finally, the output layer performs a linear combination of this

hidden layer activation and the weights between the hidden and output layers.

To make this discussion more precise, consider the following notation. Let Hi(·) denote

the receptive field of the ith hidden node, which is centered on ci. Let wij denote the weight

from hidden node i to output node j. The jth output of the RBFN on a given input x is

then

yj =
∑

i

(Hi(x)wij)

Note that, just as with the perceptron and MLP, a bias node H0(·) is used which always

produces an output of 1 for all inputs.

The most commonly used hidden layer function (i.e., the localized receptive field) is

the Gaussian kernel function:

Hi(x) = e
−||x−ci||2

2σ2
i

Here, || · || represents Euclidean distance, and σi is a smoothing parameter that specifies

the “width” of this receptive field. This function is radially symmetric, meaning that the

function produces an identical output for each input that lies the same distance from the

kernel center. This radial symmetry gave rise to the name “Radial Basis Function Network”.

(The kernel functions are sometimes called “basis” functions.)

Training an RBFN occurs in two stages [49]. First, the cluster centroids for the hidden

layer must be found. This is typically accomplished through an unsupervised clustering
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of the input data using a system such as k-means clustering [61]. Once the hidden layer

centroids are found, the σi value for each cluster is often set to the average distance be-

tween the center and the training patterns in the cluster [61]. The second stage of the

learning process involves finding the value of the hidden-output weights that minimize the

error. This is often done using the Least Mean Squares (LMS) algorithm [61], of which the

backpropagation learning rule is an extension.

2.2.4 General Regression Neural Networks

First introduced by Specht in 1991 [32], general regression neural networks (GRNNs)

can be viewed as an extension to the k-nearest neighbor approximation using a distance-

weighted average and a global neighborhood. A GRNN can also be viewed as Parzen window

method [61]. GRNNs are lazy learners [57] since they do not form a model of the training

set, choosing instead to store all training instances for future reference. The general form

for the output of a GRNN given n training inputs (xi, yi), 1 ≤ i ≤ n, is

F (x) =
∑n

i=1 (yid(x, xi))∑n
i=1 d(x, xi)

where d(·) is a weighting function, xi is a training input, and yi is the desired output for

input i.

Commonly, a Gaussian weighting function is used, just as with RBFNs:

d(x, y) = e
−||x−y||2

2σ2
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Once again, ||·|| represents Euclidean distance, and σ is a smoothing parameter that specifies

the neighborhood size. For the GRNN, it is possible for a different smoothing parameter

to be used for each training input, but this approach often leads to overfitting (as well as

an explosion of parameter values that must be determined). Therefore, typically a single

value for σ is used for all training inputs. Training a GRNN consists of merely finding the

value of the smoothing parameter σ that provides the minimum error.

2.3 Applications of Learning to Multiobjective Optimization

The author is unaware of any research from the literature that attempts to predict the

values of a subset of decision variables in the Pareto optimal set given the remaining decision

variables. However, Hatzakis and Wallace [62] used prediction in order to determine the

next location to search on the Pareto optimal set in order to find new optimal solutions

for time-dependent (i.e., dynamic) multiobjective optimization problems. They used a

predictor based on an autoregressive model to predict the next “likely” area to find optimal

solutions once the fitness landscape shifts. Their predictor determined two anchor points

on the Pareto optimal front using the time-series information of the previous anchor points.

The authors mention that “[o]ne might also fit an analytic curve which describes the Pareto

optimal set (the locus of the Pareto optimal front in variable space) and subsequently

forecast changes in the parameter values of this curve, instead of using specific points”.

In similar fashion, Knowles developed ParEGO [7], which uses efficient global optimiza-

tion (EGO) as a learning system to produce a model of the fitness landscape. In this work,

the system attempted to learn the model of an expensive multiobjective function given

some points on the Pareto optimal front. This allowed the use of the model to find minima,
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which could then be checked using the expensive actual multiobjective function. The results

were compared against those produced by NSGA-II on eight different test functions, and

ParEGO was shown to perform extremely well, even though only 250 function evaluations

were used.

Finally, Gaspar-Cunha and Vieira [63] use a neural network to perform an inverse

mapping from objective values to decision variables. In their work, they use an feedforward

artificial neural network (using backpropagation) to learn the relationship between the val-

ues of the objective functions and the decision variables. Their network is trained using the

Pareto optimal front found in the preceding generation, and new points are selected (in the

objective space) using a user-defined “offset” from the existing points in the Pareto optimal

front. These new points are passed through the neural network to produce new values for

the decision variables, which are then tested using the actual multiobjective function. Their

results on five test functions from the EMO literature show that this approach can produce

a Pareto optimal front using up to 40% fewer function evaluations than a typical EMO

approach. (However, in this work, they use their own EMO algorithm, called the Reduced

Pareto Set Genetic Algorithm (RPSGA) [64], rather than any of the more popular EMO

approaches.)

The work presented in this paper is an extension of Yapicioglu et al.’s work from [65].

It differs from the previously mentioned approaches in that prediction is used to model the

Pareto optimal set using a subset of the decision variables. In this way, the most promising

regions of the optimal set can be explored in order to more quickly discover nondominated

solutions. Rather than being concerned solely with dynamic or expensive multiobjective
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problems, this approach is applicable for all multiobjective problems and can be used with

any pre-existing set of nondominated solutions, no matter how they are generated.
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Chapter 3

Neural Enhancement for Multiobjective Optimization

The neural enhancement approach developed in this work, called Neural Enhancement

for Multiobjective Optimization (NEMO), seeks to learn the function that maps a given

subset of decision variables in the Pareto optimal set to the remaining decision variables.

The basic operation of the NEMO approach is first to allow an existing multiobjective

optimization approach to produce a set of solutions to a given problem. Then, that set

of solutions is used to train NEMO to learn the mapping among the decision variables.

Finally, NEMO can then be used to relieve the burden of producing additional solutions

from the underlying multiobjective optimization technique, which is often computationally

expensive.

The experiments conducted in this chapter are preliminary experiments to assess the

viability of the approach using a well-known evolutionary multiobjective optimization ap-

proach to produce the initial set of optimal solutions. For this work, NSGA-II [6] was used

to produce a preliminary set of optimal solutions for four benchmark problems from the

multiobjective optimization literature, as well as one real-world multiobjective optimiza-

tion problem. NSGA-II was used because it has been shown [6, 7, 53] to be a very effective

evolutionary multiobjective optimization approach. NEMO was then trained using these

sets, and the results were compared against the performance of NSGA-II on the same prob-

lems using the same number of function evaluations. The following sections describe the

experimental setup in more detail.
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3.1 Test Suite

In order to provide a thorough test of NEMO, a subset of four multiobjective benchmark

problems was taken from [7]. These problems were OKA2, DTLZ1a, DTLZ2a, and DTLZ4a.

Finally, the semi-desirable facility location problem (SDFLP) was included from [65] (where

it was cited as test case 1.1).

3.1.1 OKA2

The OKA2 test function uses three decision variables to minimize two objective func-

tions and is defined as follows:

f1 = x1

f2 = 1− 1
4π2

(x1 + π)2 + |x2 − 5 cos(x1)|
1
3 + |x3 − 5 sin(x1)|

1
3

x1 ∈ [−π, π]

x2, x3 ∈ [−5, 5]

The Pareto optimal set lies on a 3D spiral curve.
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3.1.2 DTLZ1a

The DTLZ1a test function makes use of six decision variables to minimize two objective

functions and is defined as follows:

f1 =
1
2
x1(1 + g)

f2 =
1
2
(1− x1)(1 + g)

g = 100

[
5 +

6∑

i=2

(
(xi − 0.5)2 − cos(2π(xi − 0.5))

)
]

xi ∈ [0, 1], i ∈ {1, . . . , 6}

The Pareto optimal set consists of all decision variables set to 0.5 except the first value,

which should come from [0, 1].

3.1.3 DTLZ2a

The DTLZ2a test function uses eight decision variables to minimize three objective

functions and is defined as follows:

f1 = (1 + g) cos(x1
π

2
) cos(x2

π

2
)

f2 = (1 + g) cos(x1
π

2
) sin(x2

π

2
)

f3 = sin(x1
π

2
)

g =
8∑

i=3

(xi − 0.5)2

xi ∈ [0, 1], i ∈ {1, . . . , 8}
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The Pareto optimal front for this function is one-eighth of a sphere centered at the origin

with a radius of 1. The Pareto optimal set consists of all decision variables set to 0.5 except

the first value, which should come from [0, 1].

3.1.4 DTLZ4a

The DTLZ4a test function uses eight decision variables to minimize three objective

functions and is defined as follows:

f1 = (1 + g) cos(x100
1

π

2
) cos(x100

2

π

2
)

f2 = (1 + g) cos(x100
1

π

2
) sin(x100

2

π

2
)

f3 = sin(x100
1

π

2
)

g =
8∑

i=3

(xi − 0.5)2

xi ∈ [0, 1], i ∈ {1, . . . , 8}

As with the previous problem, the Pareto optimal front for this function is one-eighth of

a sphere centered at the origin with a radius of 1. The Pareto optimal set consists of all

decision variables set to 0.5 except the first value, which should come from [0, 1].

3.1.5 SDFLP

The semi-desirable facility location problem deals with positioning a facility (such as

an airport or landfill) that is necessary for members of the community. However, the facility

itself produces an undesirable by-product (such as traffic or pollution) that the community

does not desire. The balance of desirable and undesirable effects leads to the multiobjective
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problem.

f1 =
7∑

i=1

(w1id(~x, ~ai))

f2 =
7∑

i=1

vi(~x, ~ai)

vi(~x, ~ai) =





200 if w2id(~x, ~ai) < 10

200− w2id(~x, ~ai) if 10 ≤ w2id(~x, ~ai) < 30

0 if 30 ≤ w2id(~x, ~ai)

x1, x2 ∈ [−20, 40]

~a = ((5, 20), (18, 8), (22, 16), (14, 17),

(7, 2), (5, 15), (12, 4))

~w1 = (5, 7, 2, 3, 6, 1, 5)

~w2 = (1, 1, 1, 1, 1, 1, 1)

Since the SDFLP is a real-world problem, its Pareto optimal set is unknown.

3.2 Performance Indicator

To evaluate the performance of NEMO, an indicator was developed that represents

the relative sizes of the resultant optimal sets. The yield ratio is simply the ratio of the

NEMO’s solutions versus NSGA-II’s solutions. It is a single unit-less value that represents

the proportion of NEMO solutions found compared to those of NSGA-II.
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3.3 NEMO — The Neural Enhancer

To perform the neural enhancement for each test problem, a general regression neural

network (GRNN) [32] was created using a subset of the decision variables in the Pareto set

approximation to predict the values for the remaining decision variables in the set. As dis-

cussed previously, the GRNN is used to learn the mapping, in the Pareto set approximation,

from some subset of the decision variables to the remaining decision variables.

For instance, given a multiobjective optimization problem with 5 decision variables,

d1, . . . , d5, NEMO first partitions the decision variables into two sets, I and O. For instance,

suppose that I contains d1 and d3, while O contains d2, d4, and d5. Then, a GRNN is created

using elements of I as inputs and producing elements of O as outputs. The GRNN is trained

using the elements from the original Pareto set approximation (as found by NSGA-II). Then,

values, call them i1 and i3, are generated uniformly from the range of each of the elements

of I. These values are then passed into the GRNN to produce the corresponding values

o2, o4, and o5 in set O. Finally, the generated solution < i1, o2, i3, o4, o5 > is passed to the

multiobjective function to discover the objective values associated with it. These values

determine whether the generated solution is nondominated.

A steady-state genetic algorithm (SSGA) [15] was used to evolve the subset of decision

variables to be used as inputs to the GRNN, as well as the value of the GRNN’s σ parameter.

Each individual in the population was represented by an array of binary values, one for each

decision variable representing its inclusion/exclusion as an input to the learning system, and

a single real-number value, representing the σ smoothing parameter for the GRNN. The

values available for the σ component of the individual was taken from the interval [0.01,

51



20.0]. The parameters chosen for the SSGA were shown experimentally to provide decent

performance and are detailed in Table 3.1.

Parameter Value
Population Size 100

Recombination Operator Uniform Crossover
Crossover Usage Rate 1.0
Mutation Operator Bit-flip (binary) and Gaussian (real)

Mutation Usage Rate 0.1 for both types
Gaussian Mutation Range 1.0

Function Evaluations 1500

Table 3.1: Parameters for Genetic Algorithm for Training NEMO

To evaluate each candidate solution, a GRNN was constructed using the appropriate

decision variables and σ value. The GRNN was then trained using the Pareto optimal set

for the given test problem. Then, the neural network was presented with 10 randomly

generated “inputs” and was asked to predict the corresponding “outputs”, which together

constituted a possible point in the Pareto optimal set. Each point was then evaluated using

the given test problem to produce values for the objective functions. Those values were

compared to the values in the Pareto-optimal front to determine whether the point should

be added, and, if so, whether it replaced any existing points in the Pareto-optimal front.

The fitness for the candidate solution (i.e., the GRNN parameters) was then taken to be

fitness = 2 · replaced + added.

Here, replaced represents the number of solutions in the original Pareto-optimal front that

were dominated by the 10 solutions generated by the neural network. Likewise, added
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represents the number of solutions generated by the neural network that were nondominated

in the original Pareto-optimal front. The intention of this fitness measure was to more

heavily favor neural networks capable of producing nondominated solutions in the existing

Pareto-optimal front. The GA was given a maximum of 1500 function evaluations in order

to find the best parameters for the GRNN.

After the appropriate parameters were found, the GRNN was used to predict 10000

values in the Pareto optimal set. To accomplish this, equally spaced points were chosen

along the entire range of the GRNN’s input dimensions and were passed to the neural

enhancer to determine the values along the remaining dimensions. (The distance between

points was chosen so that no more than 10000 values would be created.) Each value in

the predicted Pareto optimal set was then evaluated using the multiobjective test function.

The results are described below.

The implementation used for NSGA-II was taken from the EMOO repository [66] and

was implemented in C by Kalyanmoy Deb et. al. It was used without modification except to

add the problems from the test suite. It was successfully compiled under Borland version 5.5

and was executed on a Pentium 4 system running Windows XP. For each problem, NSGA-

II was initialized with the default parameters as detailed in the software — a population

size of 256, a crossover probability of 0.9, a mutation probability of 1
nd

where nd is the

number of decision variables, a distribution index for crossover of 10, and a distribution

index for polynomial mutation of 50. NSGA-II was allowed to run for 100 generations for

each problem in the test suite.
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3.4 Results

The following subsections describe the results of applying NEMO to the test suite.

These results are summarized in Table 3.2. In this table, the “NEMO Added” column

displays the number of solutions that were added by NEMO to the original Pareto optimal

front (produced by NSGA-II). Similarly, the “NEMO Replaced” column holds the number of

NEMO solutions that replaced at least one solution from the original Pareto-optimal front.

Finally, the “Yield Ratio” determines the relative effectiveness of NEMO versus NSGA-II,

as described previously.

Problem NSGA-II NEMO NEMO Merged Yield Input-Output σ
Front Added Replaced Front Ratio Assignment

DTLZ1 200 6926 2592 9638 47.6 IOOOOO 8.04
DTLZ2 481 7849 1486 9572 19.4 IIOOOOOO 1.41
DTLZ4 631 9991 9 10626 15.9 OIOOOOOO 3.78
OKA2 15 84 99 39 12.2 OOI 0.01
SDFLP 1259 616 279 2015 0.71 OI 0.61

Table 3.2: Summary of NEMO Results

3.4.1 DTLZ1a

For the DTLZ1a problem, the Pareto optimal front found using NSGA-II, consisting

of 200 points, is shown in red in Figure 3.1. A NEMO was created using the first decision

variable as input to predict the remaining 5 variables. The σ value was set to 8.04. The

results of generating 10000 points using the NEMO are shown in green in Figure 3.1. The

GRNN created 9999 non-dominated solutions in the predicted Pareto optimal front (which

means that only one of the predicted points was dominated by other predicted points).
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These predicted values were merged with the original values found by NSGA-II, allowing

the predicted values to dominate or be dominated by the original values, which yielded a

Pareto optimal front consisting of 9638 points.

3.4.2 DTLZ2a

For the DTLZ2a problem, the Pareto optimal front found using NSGA-II, consisting of

481 points, is shown in red in Figure 3.2. A NEMO was created using the first and second

decision variables as input to predict the remaining 6 variables, using a σ of 1.41. The

results of generating 10000 points using the NEMO are shown in green in Figure 3.2. There

were 10000 non-dominated points in the final predicted Pareto optimal front. When these

points were merged with the original Pareto optimal front, the final Pareto optimal front

consisted of 9572 points.

3.4.3 DTLZ4a

For the DTLZ4a problem, the Pareto optimal front found using NSGA-II, consisting of

631 points, is shown in red in Figure 3.3. A NEMO was created using the second decision

variable as input to predict the remaining 7 variables, using a σ of 3.78. The results of

generating 10000 points using the NEMO are shown in green in Figure 3.3. There were

9999 non-dominated points in the final predicted Pareto optimal front. Notice that the

predicted values for the third objective all lie in the range [0.02715, 0.02745]. When the

predicted and original values were merged, the final Pareto optimal front consisted of 10626

points.

Although the NEMO was able to generate over 15 times the number of nondominated

points that NSGA-II produced, the spread of those points was not sufficient. It was believed
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Figure 3.1: Overlay of Pareto optimal fronts for DTLZ1a from NSGA-II and GRNN
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Figure 3.2: Overlay of Pareto optimal fronts for DTLZ2a from NSGA-II and GRNN
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Figure 3.3: Overlay of Pareto optimal fronts for DTLZ4a from NSGA-II and GRNN

that the failure on this problem was that the smoothing parameter (σ) for the GRNN was

too large. A further experiment was conducted in which the smoothing parameter was

constrained to the interval [0.001, 0.00000001]. The result of this approach, using a σ of

0.000081, is shown in Figure 3.4. Here, it is clear that the coverage produced is much better

than in Figure 3.3.

3.4.4 OKA2

For the OKA2 problem, the Pareto optimal front found using NSGA-II, consisting of

15 points, is shown in red in Figure 3.5. The neural enhancer was created using the third

decision variable as input to predict the first 2 variables, using a σ of 0.01, which was

the lower bound used by the GA. The results of generating 10000 points using the neural

enhancer are shown in green in Figure 3.5. There were 39 non-dominated points in the final
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Figure 3.4: Overlay of Pareto optimal fronts for DTLZ4a from NSGA-II and GRNN using
small σ value

predicted Pareto optimal front. After the predicted and original values were merged, the

final Pareto optimal front also consisted of 39 points.

3.4.5 SDFLP

For the SDFLP problem, the Pareto optimal front found using NSGA-II, consisting

of 1259 points, is shown in red in Figure 3.6. The neural enhancer was created using the

second decision variable as input to predict the first, using a σ of 0.61. The results of

generating 10000 points using the neural enhancer are shown in green in Figure 3.6. There

were 3753 non-dominated points in the final predicted Pareto optimal front. After merging

the predicted and original values, the Pareto optimal front consisted of 2015 points.
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Figure 3.6: Overlay of Pareto optimal fronts for SDFLP from NSGA-II and GRNN
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3.5 Conclusions

The neural enhancement approach presented here has been shown to be quite effective

at expanding the Pareto optimal frontier for several benchmark multiobjective optimization

problems. For each problem, the NEMO approach produced over 10 times more solutions

than NSGA-II. However, the real-world problem tested proved more difficult. NEMO was

only able to produce about 70% of the solutions that NSGA-II produced. Even so, about

20% of those solutions replaced the solutions produced by NSGA-II.

Given the very promising results presented here, further work must be done to de-

termine their statistical significance. An extension of this study can also be made for

problems having more than three objectives. Additionally, work should be done to find a

more appropriate training approach for the GRNN, either through a better-tuned evolu-

tionary computation system or through a different training method such as leave-one-out

training. In this way, an acceptable smoothing parameter can be found more quickly, which

will provide greater performance for the neural enhancer. In addition to a more efficient

training algorithm, a computational time comparison should be made between NEMO and

NSGA-II.

60



Chapter 4

Neural Enhancement Training Algorithm

The results achieved in the previous chapter are promising. However, one of the most

important criticisms of the NEMO approach is the training time required to achieve success.

(This was a criticism discovered in the peer-reviewed comments for [8].) In order to improve

on this shortcoming, several experiments were conducted to determine whether a training

approach exists that could generate good results in an acceptable time.

To more accurately evaluate NEMO’s performance using the various training approach-

es, several modifications were made to the experimental setup described in the previous

chapter. First, five additional multiobjective optimization problems were added to the test

suite to provide a more thorough testbed for the NEMO approach. Second, the comparison

between NEMO and NSGA-II was modified so as to be as fair as possible to NSGA-II.

Previously, the results achieved by NEMO were compared against the original optimal

solutions found by NSGA-II. This seemed unfair because NEMO was able essentially to

benefit from the work already done by NSGA-II, giving it a “head start” toward producing

optimal solutions. To remedy this, NSGA-II was executed for a given set of function evalu-

ations, at which point the current optimal set found was stored and used to train NEMO.

NSGA-II was then allowed to execute for an additional set of function evaluations (the

same number given to NEMO). In this way, NEMO and NSGA-II could be compared from

the same baseline set of optimal solutions. Finally, four additional indicators were used to

compare the results of NEMO and NSGA-II to more clearly understand the strengths of

their performances.
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4.1 Test Suite

In order to test the neural enhancement system and the training approaches, all nine

multiobjective benchmark problems were taken from [7]. These problems were KNO1,

OKA1 [67], OKA2 [67], VLMOP2 [68], VLMOP3 [68], DTLZ1a, DTLZ2a, DTLZ4a, and

DTLZ7a. Finally, the semi-desirable facility location problem (SDFLP) was once again

included from [65] (where it was cited as test case 1.1).

4.1.1 KNO1

The KNO1 test function makes use of two decision variables to minimize two objective

functions and is defined as follows:

f1 = 20− r cos(φ)

f2 = 20− r sin(φ)

r = 9−
[
3 sin

(
5
2
(x1 + x2)2

)
+ 3 sin (4(x1 + x2)) + 5 sin (2(x1 + x2) + 2)

]

φ =
π

12
(x1 − x2 + 3)

x1, x2 ∈ [0, 3]

The Pareto optimal set consists of all pairs of decision variable values that sum to 4.4116.
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4.1.2 OKA1

The OKA1 test function makes use of two decision variables to minimize two objective

functions and is defined as follows:

f1 = x′1

f2 =
√

2π −
√
|x′1|+ 2

∣∣x′2 − 3 cos(x′1)− 3
∣∣ 1
3

x′1 = cos
( π

12

)
x1 − sin

( π

12

)
x2

x′2 = sin
( π

12

)
x1 + cos

( π

12

)
x2

x1 ∈
[
6 sin

( π

12

)
, 6 sin

( π

12

)
+ 2π cos

( π

12

)]

x2 ∈
[
−2π sin

( π

12

)
, 6 cos

( π

12

)]

The Pareto optima (i.e., the values in the efficient set) lie on the curve

x′2 = 3 cos(x′1) + 3, x′1 ∈ [0, 2π].
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4.1.3 OKA2

The OKA2 test function uses three decision variables to minimize two objective func-

tions and is defined as follows:

f1 = x1

f2 = 1− 1
4π2

(x1 + π)2 + |x2 − 5 cos(x1)|
1
3 + |x3 − 5 sin(x1)|

1
3

x1 ∈ [−π, π]

x2, x3 ∈ [−5, 5]

The Pareto optimal set lies on a 3D spiral curve.

4.1.4 VLMOP2

The VLMOP2 test function uses two decision variables to minimize two objective func-

tions and is defined as follows:

f1 = 1− exp

(
−

2∑

i=1

(
xi − 1√

2

)2
)

f2 = 1− exp

(
−

2∑

i=1

(
xi +

1√
2

)2
)

x1, x2 ∈ [−2, 2]

The Pareto optima lie on the diagonal passing from (−1√
n
, −1√

n
) to ( 1√

n
, 1√

n
).
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4.1.5 VLMOP3

The VLMOP3 test function uses two decision variables to minimize three objective

functions and is defined as follows:

f1 = 0.5(x2
1 + x2

2) + sin(x2
1 + x2

2)

f2 =
(3x1 − 2x2 + 4)2

8
+

(x1 − x2 + 1)2

27
+ 15

f3 =
1

x2
1 + x2

2 + 1
− 1.1 exp(−x2

1 − x2
2)

x1, x2 ∈ [−3, 3]

This test function has a disconnected Pareto optimal set.

4.1.6 DTLZ1a

The DTLZ1a test function makes use of six decision variables to minimize two objective

functions and is defined as follows:

f1 =
1
2
x1(1 + g)

f2 =
1
2
(1− x1)(1 + g)

g = 100

[
5 +

6∑

i=2

(
(xi − 0.5)2 − cos(2π(xi − 0.5))

)
]

xi ∈ [0, 1], i ∈ {1, . . . , 6}

The Pareto front for this function is the line f1 = −f2. The Pareto optimal set consists of

all decision variables set to 0.5 except the first value, which should come from [0, 1].
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4.1.7 DTLZ2a

The DTLZ2a test function uses eight decision variables to minimize three objective

functions and is defined as follows:

f1 = (1 + g) cos(x1
π

2
) cos(x2

π

2
)

f2 = (1 + g) cos(x1
π

2
) sin(x2

π

2
)

f3 = sin(x1
π

2
)

g =
8∑

i=3

(xi − 0.5)2

xi ∈ [0, 1], i ∈ {1, . . . , 8}

The Pareto optimal front for this function is one-eighth of a sphere centered at the origin

with a radius of 1. The Pareto optimal set consists of all decision variables set to 0.5 except

the first value, which should come from [0, 1].
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4.1.8 DTLZ4a

The DTLZ4a test function uses eight decision variables to minimize three objective

functions and is defined as follows:

f1 = (1 + g) cos(x100
1

π

2
) cos(x100

2

π

2
)

f2 = (1 + g) cos(x100
1

π

2
) sin(x100

2

π

2
)

f3 = sin(x100
1

π

2
)

g =
8∑

i=3

(xi − 0.5)2

xi ∈ [0, 1], i ∈ {1, . . . , 8}

The Pareto optimal front for this function is also one-eighth of a sphere centered at the

origin with a radius of 1. The Pareto optimal set consists of all decision variables set to 0.5

except the first value, which should come from [0, 1].
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4.1.9 DTLZ7a

The DTLZ7a test function uses eight decision variables to minimize three objective

functions and is defined as follows:

f1 = x1

f2 = x2

f3 = (1 + g)h

g = 1 +
9
6

8∑

i=3

xi

h = 3−
2∑

i=1

[
fi

1 + g
(1 + sin(3πfi))

]

xi ∈ [0, 1], i ∈ {1, . . . , 8}

4.1.10 SDFLP

The semi-desirable facility location problem deals with positioning a facility (such as

an airport or landfill) that is necessary for members of the community. However, the facility

itself produces an undesirable by-product (such as traffic or pollution) that the community

does not desire. The balance of desirable and undesirable effects leads to the multiobjective
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problem.

f1 =
7∑

i=1

(w1id(~x, ~ai))

f2 =
7∑

i=1

vi(~x, ~ai)

vi(~x, ~ai) =





200 if w2id(~x, ~ai) < 10

200− w2id(~x, ~ai) if 10 ≤ w2id(~x, ~ai) < 30

0 if 30 ≤ w2id(~x, ~ai)

x1, x2 ∈ [−20, 40]

~a = ((5, 20), (18, 8), (22, 16), (14, 17),

(7, 2), (5, 15), (12, 4))

~w1 = (5, 7, 2, 3, 6, 1, 5)

~w2 = (1, 1, 1, 1, 1, 1, 1)

Since the SDFLP is a real-world problem, its Pareto optimal set is unknown.

4.2 Performance Assessment

In the previous chapter, the only performance indicator used was the relative yield, or

yield ratio. However, it is clear that the yield ratio is only an indicator of the relative sizes

of the final Pareto optimal sets. This is not sufficient to adequately describe or compare

the resultant Pareto optimal sets and fronts.
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To overcome this limitation, five indicators were chosen as measures of success and

points of comparison between NEMO and NSGA-II – training time, yield ratio, spacing [69],

hypervolume, and binary ε+ [70]. These indicators are described in more detail in the

following sections. The work presented in [70–73] provide a more thorough discussion of

assessment indicators for evolutionary multiobjective optimization.

4.2.1 Training Time

The training time measures the total time required to train NEMO with the given

algorithm. This indicator does not take into account the time required to add solutions

to the existing Pareto front approximation. This is because doing so would unnecessarily

punish NEMO for generating many solutions. Therefore, only the actual training time is

taken into account. Additionally, the training time for NSGA-II was not collected. However,

all NSGA-II runs were completed in, at most, several seconds. Therefore, NEMO must also

be trainable in seconds if it is to be a legitimate alternative. As will be seen, the training

time for the GRNN using the best training approach found in these experiments has a

complexity of O(n), where n is the size of the training set.

4.2.2 Yield Ratio

As in the previous chapter, the yield ratio was calculated, though its definition was

expanded to allow for comparison of algorithms that use different numbers of function

evaluations. The yield of a multiobjective optimization (MO) algorithm is defined as the

ratio of solutions in the Pareto optimal front approximation to the number of function

evaluations used by the algorithm. The yield of a MO algorithm is expressed in units of

solutions per function evaluation. The yield ratio is a binary indicator that is simply the
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yield of one MO algorithm divided by the yield of another. For instance, if there are two

MO algorithms, A and B, then the yield ratio would be

Y R(A,B) =
yield(A)
yield(B)

.

In this way, the yield ratio is a unit-less measure of the number of solutions algorithm A

produces relative to algorithm B in the same number of function evaluations. For example,

a yield ratio of 2.0 means that algorithm A produces twice as many solutions as algorithm

B.

4.2.3 Spacing

Veldhuizen and Lamont [69] make use of the spacing indicator to measure the “spread”

or distribution of solutions throughout the Pareto optimal front. The indicator S is calcu-

lated as follows:

S =

√√√√ 1
n− 1

n∑

i=1

(d̄− di)2

where di = minj

(∑m
k=1

∣∣∣f i
k(~x)− f j

k(~x)
∣∣∣
)
, i, j = 1, . . . , n, m is the number of objectives, d̄ is

the mean of all di, and n is the number of vectors in the Pareto optimal front approximation.

Clearly, each di represents the L1 distance between solution i and the solution j that is

closest to i. Likewise, d̄ represents the mean of the closest distances for all solutions i. This

means that the spacing indicator represents the average deviation from this mean across all

solutions in the Pareto optimal set. With this indicator, a value of 0 would imply that the

solutions found are all equally spaced. The larger the value, the less uniformly distributed

the solutions tend to be.
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4.2.4 Hypervolume Indicator

In [70] and [7], the hypervolume indicator is described. This indicator is used to

measure the volume subsumed by a given Pareto optimal front. In essence, every solution

on a Pareto optimal front approximation can be seen as a lower corner of a hypervolume into

which no other Pareto optimal solution may fall. (The other solution would not be Pareto

optimal given that the first dominates it.) While this hypervolume is, in fact, infinite in

extent, it can be bounded by choosing any point dominated by it. In fact, it is possible [7]

to find a single suitable bounding point that can be applied to two different Pareto optimal

fronts in order to make their comparison possible.

To find a suitable bounding point, the minimum and maximum values must be found

along all dimensions (i.e., objectives) and across all given Pareto optimal front approxima-

tions. Then, given the minimum and maximum points, the bounding point ~b is determined

as follows:

bi = maxi + δ(maxi −mini), i = 1, . . . , k

where k is the number of objectives. For these experiments, δ was set to 0.01. This is

presented in algorithmic form in Listing 4.1.
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ALGORITHM BoundingPoint(front, δ)

// front is a set of Pareto optimal front approximations to be compared.

// Each front[i] is a Pareto optimal front approximation .

// numFronts is the number of fronts in the front set.

// numSolutions[i] is the number of solutions in front[i].

// δ is a user parameter that defaults to 0.01.

min ← CreateArray(numObjectives, 0)

max ← CreateArray(numObjectives, 0)

FOR o ← 0 TO numObjectives - 1 LOOP

FOR f ← 0 TO numFronts - 1 LOOP

FOR s ← 0 TO numSolutions[f ] - 1 LOOP

soln ← front[f ][s]

IF f = 0 AND s = 0 THEN

min[o] ← soln.output[o]

max[o] ← soln.output[o]

ELSE

IF soln.output[o] < min[0] THEN

min[o] ← soln.output[o]

ELSE IF soln.output[o] > max[0] THEN

max[o] ← soln.output[o]

END IF

END IF

END LOOP

END LOOP

END LOOP

boundingPoint ← CreatePoint(numObjectives, 0)

FOR i ← 0 TO numObjectives - 1 LOOP

boundingPoint[i] ← max[i] + δ * (max[i] - min[i])

END LOOP

return boundingPoint

Listing 4.1: Calculation of Bounding Point for Hypervolume Indicator
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4.2.5 Binary ε+ Indicator

The final indicator used in this work is the binary ε+ indicator [7,70]. This indicator is

needed to support the hypervolume indicator [7]. The hypervolume values do not immedi-

ately determine which Pareto set is better, and the bounding point chosen to calculate the

hypervolumes is, in some sense, arbitrary. In order to define this indicator, it is necessary

to make use of a comparison known as ε-dominance [7]. Given two solutions a and b, each

with k objectives,

a ¹ε+ b ≡ ai ≤ ε + bi ∀i = 1, . . . , k

Each binary ε+ indicator is actually a pair of numbers (IA, IB) calculated as follows:

IA = inf
ε∈<

{∀b ∈ B ∃a ∈ A : a ¹ε+ b}

IB = inf
ε∈<

{∀a ∈ A ∃b ∈ B : b ¹ε+ a}

In essence, IA is the smallest value for ε that can be added to every dimension of every

solution in B such that some solution is A dominates it. It may be considered something

like a “fudge factor” that can ensure that A dominates B. IB can be interpreted in a similar

fashion. (This definition assumes that all objectives are to be minimized. Maximization

problems can be handled similarly.)

The results of the binary ε+ indicator are conclusive in the event that either IA or

IB is positive and the other is not. In such a case, the nonpositive element (for instance,

IA) clearly dominates (in other words, A dominates B). However, In the event that both

elements IA and IB are positive, the indicator is inconclusive. However, the smaller of the
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two values can imply a very weak form of dominance given that it takes a smaller “fudge

factor” to create a Pareto-dominance situation.

4.3 Experimental Setup

Five different experiments were conducted to determine the effectiveness of various

training methods for NEMO. NSGA-II was run five times for each test problem, yielding

50 different Pareto optimal sets/fronts. NSGA-II was initialized with a population size of

256 individuals for each run, and it was given 100 generations to execute (for a total of

25600 function evaluations). At that point, the current Pareto optimal set/front was saved

(to be used for training NEMO), and NSGA-II was allowed to execute for an additional

100 generations (for a total of 51200 function evaluations). In this way, it was possible

to accurately compare NEMO against NSGA-II because both would be judged on their

performance after being given the results of the first 25600 function evaluations from NSGA-

II.

As in the previous chapter, the implementation used for NSGA-II was taken from the

EMOO repository [66] and was implemented in C by Kalyanmoy Deb et. al. It was used

without modification except to add the problems from the test suite. It was successfully

compiled under Borland version 5.5 and was executed on a Pentium 4 system running

Windows XP. For each problem, NSGA-II was initialized with the default parameters of

the software — a population size of 256, a crossover probability of 0.9, a mutation probability

of 1
nd

where nd is the number of decision variables, a distribution index for crossover of 10,

and a distribution index for polynomial mutation of 50.
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4.3.1 Evolve I/O and Evolve Single Sigma

A steady-state genetic algorithm (GA) was used to evolve the subset of decision vari-

ables to be used as inputs to the GRNN, as well as the value of the GRNN’s sigma parameter.

Each individual in the population was represented by an array of binary values, one for each

decision variable representing its inclusion/exclusion as an input to the learning system, and

a single real-number value, representing the σ smoothing parameter for the GRNN. The

values available for the σ component of the individual was taken from the interval [0.01,

20.0] (which was determined experimentally to produce decent performance). The GA was

created with a population size of 100, uniform crossover, bit-flip mutation on the binary seg-

ment of the chromosome, and Gaussian mutation on the real-coded segment. The crossover

usage rate was set to 1.0, the mutation rates for both types of mutations were set to 0.1,

and the mutation range for the Gaussian mutation was set to 1.0.

To evaluate a given candidate input/output assignment and σ value, the inputs and

outputs were used along with the σ value to construct a GRNN. This GRNN was trained

using 90% of the given Pareto optimal set and was then tested on the remaining 10%. (In

effect, the first element out of every 10 in the Pareto optimal set was used for testing.) The

mean squared error across the test set was used as the fitness value.

4.3.2 Heuristic I/O and Evolve Single Sigma

A very simple heuristic (described in Listing 4.2) was used to determine the particular

inputs and outputs that would be used by the GRNN. For each decision variable (i.e.,

candidate input/output) for a given problem, the variance of that variable in the training
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set was calculated. The decision variable with the highest variance was used as the input

in order to predict the remaining decision variables.

A steady-state GA was used to evolve the value of the GRNN’s σ parameter. Each

individual in the population was simply a single real-number value, representing the σ

smoothing parameter. As before, the allowed range of the σ value was given to be [0.01,

20.0]. The GA was created with a population size of 100, uniform crossover, and Gaussian

mutation. The crossover usage rate was set to 1.0, the mutation rate was set to 0.1, and

the mutation range was set to 1.0.

To evaluate a given candidate σ value, the pre-calculated inputs/outputs were used

along with the candidate value to construct a GRNN. This GRNN was trained using 90%

of the given Pareto optimal set and was then tested on the remaining 10%. The mean

squared error across the test set was used as the fitness value.
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ALGORITHM HeuristicIO(front, N , ioMask)

variance ← CreateArray(numDecisionV ars, 0.0)

FOR d ← 0 TO numDecisionV ars - 1 LOOP

sum ← 0

FOR i ← 0 TO N − 1 LOOP

sum ← sum + front[i].input[d]

END LOOP

mean ← sum
N

sum ← 0

sumSq ← 0

FOR i ← 0 TO N − 1 LOOP

sumSq ← sumSq + (front[i].input[d] - mean)2

sum ← sum + (front[i].input[d] - mean)

END LOOP

variance[d] ← sumSq−sum2

N(N−1)

END LOOP

largest ← FindLargest(variance)

Initialize(ioMask, numDecisionV ars, -1)

ioMask[largest] ← 1

Listing 4.2: Heuristic Calculation of I/O Values

4.3.3 Heuristic I/O and Evolve Multiple Sigmas

As in the previous section, this experiment used the same heuristic approach to find

the inputs and outputs of the GRNN. However, the GRNN here was created with a separate

σ smoothing parameter for each element of the training set. Therefore, the evolutionary

approach was slightly modified to allow a chromosome of length equal to that of the Pareto

optimal set produced by NSGA-II after 25600 function evaluations. As before each σ value
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was allowed to range between 0.01 and 20.0, inclusive. And, as before, evaluating a given set

of candidate σ values was accomplished by using a 9:1 training/testing ratio and calculating

the mean squared error on the test set.

4.3.4 Heuristic I/O and Heuristic Single Sigma

As before, the heuristic approach was used to calculate the inputs and outputs of the

GRNN. In this experiment, however, a heuristic approach was also applied to calculating

the σ values for the GRNN. This approach is described in Listing 4.3. Essentially, for each

point p in the Pareto optimal set, the distance from p to all the other points is calculated.

Then, the average distance between p and its K closest neighbors is used as the σ value for

element p. This is repeated for all points in the Pareto optimal set. Those calculated σ’s

are then averaged together to arrive at a single σ for the GRNN.
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ALGORITHM HeuristicSigma(front, ioMask, N , K, sigma)

count ← 0

FOR i ← 0 TO numDecisionV ars - 1 LOOP

IF ioMask[i] THEN

inputIndex[count] ← i

count ← count + 1

END IF

END LOOP

FOR i ← 0 TO N - 1 LOOP

distance ← CreateArray(N - 1, 0.0)

index ← 0

FOR j ← 0 TO N - 1 LOOP

IF i 6= j THEN

FOR d ← 0 TO count - 1 LOOP

distance[index] ← distance[index] +

(front[i].input[inputIndex[d]] - front[j].input[inputIndex[d]])2

END FOR

distance[index] ←
√

distance[index]

index ← index + 1

END IF

END FOR

SortAscending(distance)

FOR j ← 0 TO K - 1 LOOP

sigma[i] ← sigma[i] + distance[j]

END FOR

sigma[i] ← sigma[i]
K

END FOR

Listing 4.3: Heuristic Calculation of σ Values
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4.3.5 Heuristic I/O and Heuristic Multiple Sigmas

In this final experiment, the heuristic was used to determine the I/O mask, and the

heuristic in the previous section was used to find a σ value for each point in the Pareto

optimal set. However, the σ values found were used without being averaged together.

4.4 Results

Figures 4.1-4.6 provide graphical depictions of the results of each training algorithm on

each test problem, grouped according to the indicator in question. In these figures, the test

suite problems lie along the horizontal axis while the indicator values lie along the vertical

axis. Each problem is associated with five vertical bars, representing the performance of each

of the training approaches on that problem. In each figure, the results of the SDFLP problem

were omitted because the NSGA-II algorithm failed to produce any further solutions when

allowed to execute for another 100 generations. As Table 4.1 shows, however, the NEMO

approach (with all training approaches) found a great number of solutions in each case for

SDFLP compared to the original NSGA-II production (denoted ”NSGA-II (half)” in the

table).

For each training approach and test problem, the solutions found by NSGA-II and

NEMO are plotted for the first of the five runs. In each of these graphs, the NSGA-II

solutions are depicted in red while the NEMO solutions are in blue. These solutions are

those found only after the initial 100 generations of the NSGA-II algorithm. (This eliminates

the “clutter” of solutions that were the common foundation of both approaches and serves to

highlight their individual performances.) It is worth noting that these graphs were created
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by first plotting the NEMO results and then the NSGA-II results. This means that any

visible NEMO points certainly do not obscure any NSGA-II points.

Likewise, the efficient sets produced by NSGA-II and NEMO for the first run on prob-

lems KNO1, OKA1, VLMOP2, VLMOP3, and SDFLP are represented graphically for each

training approach. Only those five test problems are displayed, since they have only two de-

cision variables. The efficient set predicted by NEMO is represented in black, the NSGA-II

solutions in the efficient set are represented in red, and the NEMO solutions are represented

in blue.

File NSGA-II EIO-ESS HIO-ESS HIO-EMS HIO-HSS HIO-HMS
(half)

1 1502 5427 5297 12544 5439 6349
2 1482 6747 6136 12472 5231 6356
3 1510 6105 6130 12630 6046 6564
4 1498 6694 6694 12689 5440 6251
5 1519 10423 7320 12466 5933 7195

Average 1502.2 7079.2 6315.4 12560.2 5617.8 6543
St. Dev. 13.86 1944.13 751.04 97.95 352.1 381.91

Table 4.1: NEMO Solutions for SDFLP Compared with NSGA-II (half)

4.4.1 Evolve I/O and Evolve Single Sigma

The results of this approach on the first run are depicted in Figure 4.7. Figure 4.8

shows the efficient sets produced for this training approach. The results from all five runs

are provided in Appendix A as Table A.1.

The most relevant and important indicator for this approach is training time (Fig-

ure 4.1). Evolving I/O and sigma values takes much more time than the other approaches,

especially for DTLZ2a and DTLZ4a, requiring an average of more than 20 minutes to train.

82



kno1 oka1 oka2 vlmop2 vlmop3 dtlz1a dtlz2a dtlz4a dtlz7a

EIO−ESS
HIO−ESS
HIO−EMS
HIO−HSS
HIO−HMS

Problem

M
ea

n 
Tr

ai
ni

ng
 T

im
e 

(s
ec

s)

0
50

0
10

00
15

00

Figure 4.1: Comparison of Training Method Impact on Training Time with Standard Error
Bars.
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Figure 4.2: Comparison of Training Method Impact on Yield Ratio with Standard Error
Bars.
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Figure 4.3: Comparison of Training Method Impact on NEMO Spacing with Standard Error
Bars.
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Figure 4.4: Comparison of Training Method Impact on NEMO Hypervolume with Standard
Error Bars.
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Figure 4.5: Comparison of Training Method Impact on NSGA-NEMO Binary ε+ Indicator
with Standard Error Bars.
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Figure 4.6: Comparison of Training Method Impact on NEMO-NSGA Binary ε+ Indicator
with Standard Error Bars.
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In terms of yield ratio (Figure 4.2), this approach generally does no better than the other

approaches, and in many cases (OKA1, OKA2, DTLZ1a, DTLZ2a, DTLZ4a, and DTLZ7a)

it performs significantly worse. With spacing (Figure 4.3), this approach performs par-

ticularly poorly on OKA1, OKA2, DTLZ1a, DTLZ2a, and DTLZ7a. Finally, in terms of

hypervolume (Figure 4.4), evolving I/O and sigma values is unable to outperform other

approaches.

4.4.2 Heuristic I/O and Evolve Single Sigma

The results of this approach on the first run are depicted in Figure 4.9. Figure 4.10

shows the efficient sets produced for this training approach. The results from all five runs

are provided in Appendix A as Table A.2.

As with all of the evolutionary training approaches, the training time (Figure 4.1) is

very high when compared to the non-evolutionary approaches, especially for DTLZ2a and

DTLZ4a. In terms of yield ratio (Figure 4.2), this approach performs relatively well, on par

with the yield ratio of the non-evolutionary approaches. The spacing indicator (Figure 4.3)

reveals that this approach performs better than the previous one, but is outperformed by the

non-evolutionary approaches. Finally, in terms of hypervolume (Figure 4.4), this approach

has performance that is on par with the non-evolutionary approaches.

4.4.3 Heuristic I/O and Evolve Multiple Sigmas

The results of this approach on the first run are depicted in Figure 4.11. Figure 4.12

shows the efficient sets produced for this training approach. The results from all five runs

are provided in Appendix A as Table A.3.
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Figure 4.7: Results of Evolving I/O and Single Sigma on Test Suite
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Figure 4.8: Efficient Set Created by Evolving I/O and Single Sigma on Test Suite
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Figure 4.9: Results of Heuristic I/O and Evolving Single Sigma on Test Suite
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Figure 4.10: Efficient Set Created by Heuristic I/O and Evolving Single Sigma on Test Suite
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Just like the other evolutionary training approaches, the training time (Figure 4.1) is

very high when compared to the non-evolutionary approaches, especially for DTLZ2a and

DTLZ4a. In terms of yield ratio (Figure 4.2), this approach performs relatively well, on

par with the yield ratio of the non-evolutionary approaches, with the exception of KNO1

(where it performs very poorly) and OKA2 (where it performs remarkably well, achieving

a yield ratio of over 300). With the spacing indicator (Figure 4.3), this system outperforms

all other training approaches. Finally, in terms of hypervolume (Figure 4.4), this approach

performs well except on the KNO1 test problem.

4.4.4 Heuristic I/O and Heuristic Single Sigma

The results of this approach on the first run are depicted in Figure 4.13. Figure 4.14

shows the efficient sets produced for this training approach. The results from all five runs

are provided in Appendix A as Table A.4.

Clearly, the training time (Figure 4.1) for this and the next non-evolutionary approach

is quite low, averaging less than 2 seconds on all problems except DTLZ2a and DTLZ4a,

where it needed around 6 seconds to train. The yield ratio (Figure 4.2) is greater than

1 (which means that NEMO produced more solutions than NSGA-II) on all but three of

the test problems (OKA1, DTLZ4a, and DTLZ7a). For the spacing indicator (Figure 4.3),

this approach performs very well. It actually performs statistically better than NSGA-II on

four of the problems (KNO1, OKA2, VLMOP3, and DTLZ2a) and is only outperformed

on DTLZ1a. The hypervolume indicator (Figure 4.4) reveals that this approach outper-

forms NSGA-II on six of the problems (KNO1, OKA2, VLMOP2, VLMOP3, DTLZ1a, and

DTLZ2a) while being outperformed on only two problems (OKA1 and DTLZ4a). For the
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Figure 4.11: Results of Heuristic I/O and Evolving Multiple Sigmas on Test Suite

95



0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.
5

2.
0

2.
5

3.
0

Input 1

In
pu

t 2

NSGA−II
NEMO
Full Learner

(a) kno1

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Input 1

In
pu

t 2

NSGA−II
NEMO
Full Learner

(b) oka1

−2 −1 0 1 2

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

Input 1

In
pu

t 2

NSGA−II
NEMO
Full Learner

(c) vlmop2

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−3
−2

−1
0

1
2

3

Input 1

In
pu

t 2
NSGA−II
NEMO
Full Learner

(d) vlmop3

−20 −10 0 10 20 30 40

−9
.0

−8
.5

−8
.0

−7
.5

−7
.0

−6
.5

−6
.0

−5
.5

Input 1

In
pu

t 2

NSGA−II
NEMO
Full Learner

(e) sdflp

Figure 4.12: Efficient Set Created by Heuristic I/O and Evolving Multiple Sigmas on Test
Suite
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ε+ indicator, neither NSGA-II nor NEMO clearly outperforms the other on average, but

NSGA-II has a statistically significant lower value for this indicator on OKA2, DTLZ2a,

DTLZ4a, and DTLZ7a.

4.4.5 Heuristic I/O and Heuristic Multiple Sigmas

The results of this approach on the first run are depicted in Figure 4.15. Figure 4.16

shows the efficient sets produced for this training approach. The results from all five runs

are provided in Appendix A as Table A.5.

Once again, the training time (Figure 4.1) for this non-evolutionary approach is quite

low, averaging less than 2 seconds on all problems except DTLZ2a and DTLZ4a, where it

needed around 6 seconds to train. The yield ratio (Figure 4.2) is greater than 1 (which

means that NEMO produced more solutions than NSGA-II) on all test problems, reaching

over 4 (which means 4 times the number of NSGA-II solutions) on 6 of the 10 problems. As

with the previous non-evolutionary approach, the spacing indicator (Figure 4.3) reveals that

NEMO trained with this approach is statistically better than NSGA-II on KNO1, OKA2,

VLMOP3, and DTLZ2a, while being outperformed on DTLZ1a. For the hypervolume

indicator, NEMO with this training approach is statistically superior to NSGA-II on KNO1,

VLMOP2, VLMOP3, DTLZ1a, and DTLZ2a, while being outperformed on none of the

problems. As before, for the ε+ indicator, neither NSGA-II nor NEMO clearly outperforms

the other on average, but NSGA-II has a statistically significant lower value for this indicator

on OKA2, DTLZ2a, DTLZ4a, and DTLZ7a.
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Figure 4.13: Results of Heuristic I/O and Heuristic Single Sigma on Test Suite
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Figure 4.14: Efficient Set Created by Heuristic I/O and Heuristic Single Sigma on Test
Suite
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Figure 4.15: Results of Heuristic I/O and Heuristic Multiple Sigmas on Test Suite
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Figure 4.16: Efficient Set Created by Heuristic I/O and Heuristic Multiple Sigmas on Test
Suite
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4.5 Conclusions

These experiments reveal several aspects of the NEMO approach. First, the non-

evolutionary training approaches are superior to the evolutionary approaches in terms of

training time, which is clearly the most important indicator for this comparison. Second,

the heuristic I/O and heuristic multiple sigmas (HIO-HMS) training approach is superior

to the other non-evolutionary approach in the remaining indicators. Third, NEMO trained

with HIO-HMS more often outperforms NSGA-II on all indicators except for ε+. Finally,

the ε+ indicator revealed that neither NEMO nor NSGA-II clearly outperformed the other.

Using the HIO-HMS training algorithm to produce a NEMO is the most effective

approach, taking only a few seconds to train. Such a NEMO can be quite competitive

with NSGA-II in all indicators. Most importantly, it can even produce many times more

solutions than NSGA-II for most of the test problems considered here.
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Chapter 5

Neural Enhancement Using Other Foundational

Optimization Algorithms

In the previous chapter, the NEMO approach was shown to be practical and effective

in expanding the set of optimal solutions found by NSGA-II. It seems reasonable to expect

that similar results would arise by using a different optimization algorithm to produce the

training set for NEMO. However, it is important to determine whether NEMO can perform

as well when attached to other optimization approaches. There may be aspects of certain

optimization techniques that enable NEMO to perform even more successful enhancement

of the Pareto optimal set. Or it may be that NEMO requires a certain level of success from

the underlying optimization algorithm in order to have any measure of success of its own.

In this chapter, two additional multiobjective optimization approaches are considered

– Pareto Archived Evolution Strategies (PAES) [42] and Multiobjective Particle Swarm

Optimization (MOPSO) [4,53]. These two approaches differ both from NSGA-II and from

one another in interesting ways. First, PAES is an evolutionary approach, like NSGA-II,

but it is not a population-based evolutionary system, being based on the simple {1+1}

evolution strategy [20]. Likewise, the MOPSO approach is population-based, like NSGA-

II, but it is not truly an evolutionary system since it does not explicitly use evolutionary

operators such as recombination or mutation. The results achieved by using each of these

algorithms to train NEMO are compared to one another and to the previous results from

NSGA-II.
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5.1 Test Suite

The set of multiobjective optimization problems from the previous chapter was also

used for this experiment. These are the nine multiobjective benchmark problems taken from

[7] – KNO1, OKA1, OKA2 [67], VLMOP2, VLMOP3 [68], DTLZ1a, DTLZ2a, DTLZ4a,

and DTLZ7a – and the semi-desirable facility location problem (SDFLP) [65].

5.2 Performance Assessment

As with the test suite, most of the performance indicators from the previous chapter

were used in this experiment as well. These indicators were spacing [69], hypervolume [70],

and binary ε+ [70]. These indicators were described in detail in the previous chapter and,

thus, will not be discussed again here. However, the yield ratio that was used in the previous

chapter was not used for this work. Instead, only the sizes of the resultant Pareto optimal

frontiers were used.

For each indicator, the two Pareto optimal frontiers under comparison were merged

to determine the number of solutions from each that would remain nondominated. This

approach reduces the size of the Pareto optimal frontiers under comparison, but a side effect

is that sometimes the resultant Pareto frontier for a particular approach is empty. In such

a case, it is possible for the value of the indicators to be undefined (such as the yield ratio).

In the following sections, those situations will be acknowledged when necessary.

5.3 Experimental Setup

Three evolutionary multiobjective optimization approaches – NSGA-II, MOPSO, and

PAES – were used to produce the training sets for NEMO. As in the previous chapter,
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each EMO approach was allowed 25600 function evaluations after which the current Pareto

optimal set was saved to be used for training. Then, the EMO was allowed to continue

for another 25600 function evaluations (51200 total). The subsections below describe the

implementations of the EMO approaches used.

Three different NEMOs were then created using those training sets – NEMONSGA−II ,

NEMOMOPSO, and NEMOPAES . Each NEMO was allowed 25600 function evaluations

to expand the training set for comparison with the EMO-only approach. As before, each

NEMO consisted of a general regression neural network [32] trained using heuristic ap-

proaches for finding the input/output assignment and multiple σ values.

In order to determine statistical significance, each EMO was used to produce 30 differ-

ent Pareto optimal fronts (using a different pseudorandom seed each time) on each of the

10 problems in the test suite. Therefore, 30 different runs were generated, each yielding

three different EMOs and three different NEMOs.

5.3.1 NSGA-II

The implementation used for NSGA-II was the same as was used in the previous chap-

ters. For each problem, NSGA-II was initialized using the software’s default parameters as

specified in Table 5.1.

5.3.2 PAES

The implementation used for PAES was based on C source code from Joshua Knowles’

professional website [74]. This code was re-implemented in C++ by the author for these

experiments using object-oriented programming techniques to make it more modular. The
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Problem Population Crossover Mutation Crossover Mutation
Size Probability Probability Distribution Distribution

Index Index

kno1 256 0.9 0.5 10 50
oka1 256 0.9 0.5 10 50
oka2 256 0.9 0.3333 10 50

vlmop2 256 0.9 0.5 10 50
vlmop3 256 0.9 0.5 10 50
dtlz1a 256 0.9 0.1667 10 50
dtlz2a 256 0.9 0.125 10 50
dtlz4a 256 0.9 0.125 10 50
dtlz7a 256 0.9 0.125 10 50
sdflp 256 0.9 0.5 10 50

Table 5.1: Parameters for NSGA-II

new implementation was tested against Knowles’ existing code to ensure a correct imple-

mentation. It was successfully compiled under Borland version 5.5 and was executed on

a Pentium 4 system running Windows XP. For each problem, PAES was initialized with

parameters as illustrated in Table 5.2.

5.3.3 MOPSO

The implementation used for MOPSO was based on C source code from the EMOO

repository [75]. As with the PAES source code, this code was re-implemented in C++ by

the author for these experiments using object-oriented programming techniques. The new

implementation was tested against the original code to ensure a correct implementation.

It was successfully compiled under Borland version 5.5 and was executed on a Pentium 4

system running Windows XP. For all problems, MOPSO was initialized with a population
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Problem Population Archive Grid Mutation Mutation
Size Size Divisions Usage Rate Range

kno1 100 100 5 0.1 0.2
oka1 100 100 5 0.1 0.001
oka2 100 100 5 0.1 0.001

vlmop2 100 100 5 0.1 0.1
vlmop3 100 100 5 0.1 0.1
dtlz1a 100 100 5 0.1 0.001
dtlz2a 100 100 5 0.1 0.1
dtlz4a 100 100 5 0.1 0.01
dtlz7a 100 100 5 0.1 0.01
sdflp 100 100 5 0.1 0.1

Table 5.2: Parameters for PAES

size of 100, an archive size of 100, cognitive and social rates of 1.0, an inertia weight of 0.4,

and 30 grid divisions. Mutation was also used on the population as described in [53] with

a mutation rate of 0.1.

5.4 Results

The results from this experiment consist of six Pareto optimal sets – one from each of

the EMOs and one from each of the NEMOs. In order to analyze these sets and calculate the

performance indicators, it was necessary to consider them pairwise as one EMO versus one

NEMO. The Pareto optimal sets from each pair were “merged” to determine the solutions

that “survived”, and only those solutions were kept in each optimal set for comparison.

Additionally, the hypervolume indicator requires a bounding point for comparison, and

such a bounding point must be calculated using a pair of optimal sets.
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Once the indicators were calculated for each of the 30 runs on a given pairing, the mean

and standard deviation were calculated for the sizes of the Pareto optimal sets, the spacing

indicator, and the hypervolume indicator. The median and interquartile range (IQR) were

calculated for the binary ε+ indicator instead of the mean and standard deviation. This

is because a median of less than 0 for the ε+ indicator means that the indicator was

less than 0 for at least 50% of the runs. Finally, tests for statistical significance were

performed. Because there is no evidence to suggest that the distribution of the indicators

is approximately normal, a Mann-Whitney rank-sum test was used to test for statistical

significance. In the following nine sections, each pairwise comparison is analyzed.

For each pairwise comparison described below, tables are provided that display the

average indicator values for the Pareto optimal front size, spacing indicator, and hypervol-

ume indicator for each problem in the test suite, along with the p-value from the rank-sum

test. To make the analysis more accessible, if p < 0.05, the statistically dominant average

in each table is boldfaced and underlined. Additionally, tables are given that show the me-

dian and interquartile ranges for the binary ε+ indicator, along with the p-value from the

rank-sum test (with similar boldfacing and underlining denoting statistical significance).

Likewise, figures are provided that display the average and standard errors of the optimal

front sizes, spacing, hypervolume indicators, and the median and standard errors of the

binary ε+ indicators, for each problem except SDFLP. It was removed from the figures

because the indicator values produced by NEMO were, in many cases, so large that the

graph was rendered essentially useless for the remaining problems in the test suite.
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5.4.1 NSGA-II versus NEMONSGA−II

This comparison is identical to the final experiment in the previous chapter. However,

in this case, 30 runs were used to ensure statistical significance. Tables 5.3-5.5 show the

average Pareto optimal front size, spacing indicator, and hypervolume indicators, while Ta-

ble 5.6 shows the median and interquartile ranges for the binary ε+ indicator. Additionally,

Figures 5.1-5.4 display the average and standard errors of the optimal front sizes, spacing,

hypervolume indicators, and the median and standard errors of the binary ε+ indicators.

As was seen previously, NEMONSGA−II greatly outperforms NSGA-II in terms of

Pareto optimal set size. It also outperforms NSGA-II on the spacing and hypervolume

indicators for most problems in the test suite. However, on the binary ε+ indicator, NSGA-

II outperforms NEMONSGA−II on most problems, but it specifically dominates on OKA2,

where it achieves a negative median value.

Problem NSGA-II NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 611.57 19.04 9856.07 201.07 3.00E-011
oka1 795.53 234.77 239.1 102.12 7.38E-011
oka2 29.17 7.48 2.97 9.73 3.17E-010

vlmop2 2526.03 41.17 8434.1 149.72 3.00E-011
vlmop3 2016.47 1182.48 10211.1 562.54 3.02E-011
dtlz1a 2210.1 229.07 7867.37 1180.86 3.02E-011
dtlz2a 162.43 44.68 10874.63 38.69 3.00E-011
dtlz4a 3467.77 2012.24 7327.6 1348.46 3.50E-009
dtlz7a 4274.87 1294.04 3639.5 725.25 0.19
sdflp 1236.1 36.35 5318.03 440.75 3.01E-011

Table 5.3: Pareto Size Indicators for NSGA-II and NEMONSGA−II
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Figure 5.1: Pareto Size Indicators for NSGA-II and NEMONSGA−II with Standard Error
Bars.
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Problem NSGA-II NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 0.02 0 0 0 4.15E-014
oka1 0.06 0.04 0.12 0.15 0.02
oka2 0.49 0.33 0.06 0.26 2.95E-010

vlmop2 0 0 0 0 NaN
vlmop3 0.01 0 0 0 5.36E-009
dtlz1a 0 0 0 0 NaN
dtlz2a 0.06 0.02 0.01 0 4.50E-012
dtlz4a 0.01 0.01 0.01 0 0.16
dtlz7a 0.03 0.03 0.03 0.02 0.76
sdflp 2.36 2.23 2.27 0.4 0.53

Table 5.4: Spacing Indicators for NSGA-II and NEMONSGA−II

Problem NSGA-II NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 18242.5 782.66 350345.27 6445.41 3.02E-011
oka1 943.09 353.19 276.74 127.2 5.97E-009
oka2 11.6 4.45 1.59 4.41 2.14E-009

vlmop2 237.79 3.85 655.41 9.28 3.02E-011
vlmop3 2155.04 1314.66 6592.21 728.88 3.02E-011
dtlz1a 99.34 13.51 331.46 69.83 3.02E-011
dtlz2a 10.41 3.6 769.54 201.72 3.02E-011
dtlz4a 285.93 213.42 478.05 197.55 0
dtlz7a 3932.94 2409.43 3118.31 2098.3 0.13
sdflp 135300000 4549725.27 6.81E+008 70958462.84 2.94E-011

Table 5.5: Hypervolume Indicators for NSGA-II and NEMONSGA−II
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Figure 5.2: Spacing Indicators for NSGA-II and NEMONSGA−II with Standard Error Bars.
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Figure 5.3: Hypervolume Indicators for NSGA-II and NEMONSGA−II with Standard Error
Bars.
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Figure 5.4: ε+ Indicators for NSGA-II and NEMONSGA−II with Standard Error Bars.
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Problem NSGA-II NEMONSGA−II p-value
Median IQR Median IQR

kno1 0.08 0.02 0.06 0.04 0.01
oka1 0.03 0.06 0.19 1.64 4.14E-010
oka2 -1 1.04 0 3.14 6.63E-005

vlmop2 0 0 0 0 NaN
vlmop3 0.01 0 0 0.01 0
dtlz1a 0 0 0.04 0.02 1.09E-012
dtlz2a 0.09 0.03 0.27 0.25 1.73E-009
dtlz4a 0.02 0.01 0.03 0.03 0.01
dtlz7a 0.01 0.01 0.03 0.01 3.24E-012
sdflp 170 168.14 0 0 1.20E-012

Table 5.6: ε+ Indicators for NSGA-II and NEMONSGA−II

115



5.4.2 NSGA-II versus NEMOMOPSO

In this comparison, MOPSO was used as the underlying EMO algorithm to train

NEMO. Those results were compared against NSGA-II. Tables 5.7-5.9 show the average

Pareto optimal front size, spacing indicator, and hypervolume indicator, and Table 5.10

shows the median and interquartile ranges for the binary ε+ indicator. Figures 5.5-5.8 dis-

play the average and standard errors of the optimal front sizes, spacing, and hypervolume

indicators, and the median and standard errors of the binary ε+ indicators.

In terms of the size of the Pareto optimal set, NEMOMOPSO outperforms NSGA-II

in 60% of the problems in the test suite. It outperforms NSGA-II in terms of the spacing

indicator on 50% of the problems, while being outperformed on only 30% of the problems.

For the hypervolume indicator, NEMOMOPSO outperforms NSGA-II in 60% of the prob-

lems in the test suite. However as before, on the binary ε+ indicator, NSGA-II outperforms

NEMOMOPSO on 60% of the problems. While it never dominates NEMOMOPSO conclu-

sively (i.e., attaining a negative value for ε+), NSGA-II does very well compared to the

NEMO approach in terms of this indicator.

5.4.3 NSGA-II versus NEMOPAES

In this comparison, PAES was used as the underlying EMO algorithm to train NEMO

and compared against NSGA-II. This comparison is interesting in that NSGA-II has been

shown to consistently outperform PAES in a head-to-head comparison [6]. If NEMOPAES

is capable of even competing with NSGA-II, then the power of the NEMO approach will be

realized.

116



Problem NSGA-II NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 206.53 317.78 9916.73 3011.68 9.72E-010
oka1 793.83 160.03 14.4 8.05 2.94E-011
oka2 28.47 7.55 3.3 4.09 1.94E-011

vlmop2 101.43 29.16 10898.03 29.14 3.01E-011
vlmop3 881.03 823.62 10118.83 823.56 3.02E-011
dtlz1a 1726.8 933.24 7252.73 3817.22 8.88E-006
dtlz2a 3891.13 2143.89 7105 2143.56 3.32E-006
dtlz4a 3605.77 3694.08 920.63 1395.93 0.01
dtlz7a 5333.2 1423.7 1261.3 2849.29 1.73E-007
sdflp 1196.33 33.13 2399.1 382.7 3.01E-011

Table 5.7: Pareto Size Indicators for NSGA-II and NEMOMOPSO

Problem NSGA-II NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 0.21 0.16 0.01 0.01 5.58E-010
oka1 0.06 0.04 0.3 0.36 0.02
oka2 0.2 0.26 0.65 1.07 0.01

vlmop2 0.01 0 0 0 6.11E-014
vlmop3 0.02 0.01 0 0 6.27E-010
dtlz1a 0 0 9.20E-008 5.04E-007 1
dtlz2a 0.01 0 0 0.01 1.29E-007
dtlz4a 0.02 0.03 0.01 0.01 0.18
dtlz7a 0.02 0.02 0.16 0.18 1.16E-005
sdflp 4.35 1.55 0.82 0.91 3.86E-007

Table 5.8: Spacing Indicators for NSGA-II and NEMOMOPSO
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Figure 5.5: Pareto Size Indicators for NSGA-II and NEMONSGA−II with Standard Error
Bars.
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Figure 5.6: Spacing Indicators for NSGA-II and NEMONSGA−II with Standard Error Bars.
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Problem NSGA-II NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 6169.27 10544.5 347121.6 104564.27 1.41E-009
oka1 947.34 317.35 15.75 9.68 8.15E-011
oka2 13.37 5.56 0.82 1.52 4.13E-011

vlmop2 8.46 2.06 872.23 10.12 3.01E-011
vlmop3 1060.54 830.44 5508.68 1283.84 3.02E-011
dtlz1a 74.38 42.44 310.36 157.96 6.28E-006
dtlz2a 303.52 199.25 434.55 126.85 0
dtlz4a 235.6 243.77 52.96 105.58 0
dtlz7a 4308.02 3040.91 236.97 513.52 2.67E-009
sdflp 132700000 3524789.06 287100000 54732169.2 2.94E-011

Table 5.9: Hypervolume Indicators for NSGA-II and NEMOMOPSO

Problem NSGA-II NEMOMOPSO p-value
Median IQR Median IQR

kno1 0.51 0.59 0.14 0.33 0.01
oka1 0.05 0.04 2.26 0.04 3.72E-011
oka2 2.84 3.76 0.88 0.35 0.37

vlmop2 0.03 0.01 0 0 7.50E-013
vlmop3 0.02 0.02 0.01 0.02 0.08
dtlz1a 0 0 0.07 0.15 1.31E-010
dtlz2a 0.02 0.02 0.59 0.03 2.03E-011
dtlz4a 0.02 0.05 0.26 0.34 0
dtlz7a 8.03E-006 3.33E-005 2.25 1.6 5.54E-010
sdflp 1.9 2.46 170.11 0.19 2.72E-010

Table 5.10: ε+ Indicators for NSGA-II and NEMOMOPSO
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Figure 5.7: Hypervolume Indicators for NSGA-II and NEMONSGA−II with Standard Error
Bars.
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Figure 5.8: ε+ Indicators for NSGA-II and NEMONSGA−II with Standard Error Bars.
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Tables 5.11-5.13 show the average Pareto optimal front size, spacing indicator, and

hypervolume indicator for each problem in the test suite, while Table 5.14 shows the median

and interquartile ranges for the binary ε+ indicator. Likewise, Figures 5.9-5.12 display the

average and standard errors of the optimal front sizes, spacing, and hypervolume indicators,

and the median and standard errors of the binary ε+ indicators.

In terms of the size of the Pareto optimal set, NEMOPAES outperforms NSGA-II in

50% of the problems in the test suite. It outperforms NSGA-II in terms of the spacing

indicator on 40% of the problems, while being outperformed on only 30% of the problems.

For the hypervolume indicator, NEMOPAES outperforms NSGA-II in 50% of the problems

in the test suite. However, on the binary ε+ indicator, NSGA-II outperforms NEMOPAES

on 80% of the problems. While it never dominates NEMOPAES conclusively (i.e., attaining

a negative value for ε+), NSGA-II does very well compared to the NEMO approach in terms

of this indicator.

Problem NSGA-II NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 863.67 126.84 5788.2 2295.89 1.07E-007
oka1 721.83 105.15 11.1 10.98 2.98E-011
oka2 29.03 7.82 1.13 0.35 4.03E-012

vlmop2 2412.37 42.36 8097.97 121.75 3.01E-011
vlmop3 465.83 172.62 10533.8 172.51 3.01E-011
dtlz1a 2756.23 244.18 806.47 288.01 3.02E-011
dtlz2a 2795.47 357.41 8203.43 357.41 3.02E-011
dtlz4a 7863.73 4430.74 4.3 4.92 0
dtlz7a 5609.97 387.23 2764.8 1453.37 1.20E-008
sdflp 1027.97 30.6 3592.17 326.18 3.02E-011

Table 5.11: Pareto Size Indicators for NSGA-II and NEMOPAES
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Figure 5.9: Pareto Size Indicators for NSGA-II and NEMOPAES with Standard Error Bars.
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Problem NSGA-II NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 0.01 0.01 0.02 0.04 0
oka1 0.05 0.04 0.5 0.58 0.02
oka2 0.37 0.33 0 0 1.19E-012

vlmop2 0 0 0 0 NaN
vlmop3 0.02 0.01 0 0 5.09E-013
dtlz1a 0 0 13.64 11.3 2.07E-011
dtlz2a 0.01 0 0 0 3.78E-010
dtlz4a 0.01 0 0.28 0.45 0.34
dtlz7a 0.01 0.01 0.01 0 0.01
sdflp 3.59 2.37 1.17 1.24 5.25E-007

Table 5.12: Spacing Indicators for NSGA-II and NEMOPAES

Problem NSGA-II NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 27593.36 4615.17 210057.82 82407.67 1.07E-007
oka1 857.13 231.13 11.31 12.66 3.02E-011
oka2 46.9 45.1 0.26 0.81 3.17E-011

vlmop2 228.48 3.74 613.15 9.89 3.02E-011
vlmop3 678.68 204.08 5379.99 313.68 3.02E-011
dtlz1a 253036.69 197674.82 4718.41 5041.25 0
dtlz2a 185.34 35.88 372.58 27.55 3.02E-011
dtlz4a 709.54 510.14 0.04 0.07 8.30E-005
dtlz7a 1194.34 1587.76 1044.37 1483.07 0
sdflp 115466666.67 4023494.22 404233333.33 42154627.78 2.95E-011

Table 5.13: Hypervolume Indicators for NSGA-II and NEMOPAES
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Figure 5.10: Spacing Indicators for NSGA-II and NEMOPAES with Standard Error Bars.
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Figure 5.11: Hypervolume Indicators for NSGA-II and NEMOPAES with Standard Error
Bars.
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Figure 5.12: ε+ Indicators for NSGA-II and NEMOPAES with Standard Error Bars.
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Problem NSGA-II NEMOPAES p-value
Median IQR Median IQR

kno1 0.07 0.02 0.16 0.07 1.77E-009
oka1 0.11 2.18 0.69 1.79 0
oka2 2.65E-006 3.03 1.31 1.55 0.05

vlmop2 0 0 0 0 NaN
vlmop3 0.02 0.01 0.01 0 8.43E-007
dtlz1a 0 0 0.48 0.01 8.73E-013
dtlz2a 0.02 0 0.57 0.06 8.99E-012
dtlz4a 0.03 0.02 1 0.02 0
dtlz7a 0.01 0.01 2.61 0.08 1.22E-011
sdflp 4.07 167.66 170.04 165.96 0.02

Table 5.14: ε+ Indicators for NSGA-II and NEMOPAES

5.4.4 MOPSO versus NEMONSGA−II

In this comparison, NSGA-II was used as the underlying EMO algorithm to train

NEMO and compared against MOPSO. Tables 5.15-5.17 show the average Pareto optimal

front size, spacing indicator, and hypervolume indicator, and Table 5.18 shows the median

and interquartile ranges for the binary ε+ indicator. Figures 5.13-5.16 display the average

and standard errors of the optimal front sizes, spacing, and hypervolume indicators, and

the median and standard errors of the binary ε+ indicators.

Not surprisingly, NEMONSGA−II outperforms MOPSO in 80% of the problems in terms

of the size of the Pareto optimal set. It outperforms MOPSO in terms of the spacing indi-

cator on 40% of the problems, while being outperformed on only 20% of the problems. For

the hypervolume indicator, NEMONSGA−II outperforms MOPSO in 80% of the problems
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in the test suite. Finally, on the binary ε+ indicator, NEMONSGA=II outperforms MOPSO

on 60% of the problems (though without any conclusive results).

Problem MOPSO NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 5693.4 1244.95 5252.57 1162.38 0
oka1 31.07 14.89 484.17 122.62 3.45E-010
oka2 5.5 6.78 35.07 28.16 1.80E-009

vlmop2 4047.77 186.34 6952 186.3 3.02E-011
vlmop3 1491.77 378.88 9507.6 378.6 3.02E-011
dtlz1a 5152.43 3118.65 5801.17 3139.25 0.67
dtlz2a 48.1 50.4 10950.9 50.4 2.93E-011
dtlz4a 357.2 361.53 7817.9 1521.3 3.02E-011
dtlz7a 488.53 1323.81 5565.4 712.02 5.76E-011
sdflp 954.3 49.87 4446.3 428.86 3.01E-011

Table 5.15: Pareto Size Indicators for MOPSO and NEMONSGA−II

5.4.5 MOPSO versus NEMOMOPSO

In this comparison, MOPSO was used as the underlying EMO algorithm to train NEMO

and compared against standard MOPSO. This is similar to the experiment carried out in the

previous chapter in which NSGA-II was used as the underlying EMO. Like that experiment,

this one is a “pure” evaluation of the NEMO approach since it uses the same EMO for

the training set and for the comparative set. Tables 5.19-5.21 show the average Pareto

optimal front size, spacing indicator, and hypervolume indicator, and Table 5.22 shows the

median and interquartile ranges for the binary ε+ indicator. Additionally, Figures 5.17-5.20

display the average and standard errors of the optimal front sizes, spacing, and hypervolume

indicators, and the median and standard errors of the binary ε+ indicators.
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Figure 5.13: Pareto Size Indicators for MOPSO and NEMONSGA−II with Standard Error
Bars.
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Problem MOPSO NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 0 0 0.01 0.01 3.34E-011
oka1 0.15 0.19 0.09 0.1 0.74
oka2 0.85 0.97 0.35 0.51 0.5

vlmop2 0 0 0 0 NaN
vlmop3 0.01 0 0 0 1.55E-013
dtlz1a 0 0.01 0 0 0.63
dtlz2a 0.04 0.04 0.01 0 1.10E-005
dtlz4a 0.04 0.04 0.01 0 0
dtlz7a 0.15 0.18 0.02 0.02 0
sdflp 1.41 1.43 2.26 0.82 0

Table 5.16: Spacing Indicators for MOPSO and NEMONSGA−II

Problem MOPSO NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 212313.37 46357.67 179715.17 39159.2 2.88E-006
oka1 34.49 19.32 594.16 231.79 2.39E-008
oka2 1.78 2.72 12.52 9.71 1.23E-009

vlmop2 390.29 18.48 526.68 12.57 3.02E-011
vlmop3 837.76 264.35 6549.11 597.26 3.02E-011
dtlz1a 274.52 165.17 205.67 137.71 0.09
dtlz2a 1.42 1.69 619.68 165.65 2.95E-011
dtlz4a 19.27 22.32 452.21 126.93 3.02E-011
dtlz7a 119.61 353.65 4547.41 3695.88 1.46E-010
sdflp 96530000 3838565.64 560366666.67 66567302.39 3.01E-011

Table 5.17: Hypervolume Indicators for MOPSO and NEMONSGA−II
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Figure 5.14: Spacing Indicators for MOPSO and NEMONSGA−II with Standard Error Bars.
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Figure 5.15: Hypervolume Indicators for MOPSO and NEMONSGA−II with Standard Error
Bars.
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Figure 5.16: ε+ Indicators for MOPSO and NEMONSGA−II with Standard Error Bars.
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Problem MOPSO NEMONSGA−II p-value
Median IQR Median IQR

kno1 0.01 0.01 0.1 0.08 3.39E-010
oka1 2.25 0.06 0.04 0.05 2.75E-011
oka2 0.75 0.39 3.01 3.65 0.32

vlmop2 0 0 0 0 0.33
vlmop3 0.05 0.04 0.01 0 1.24E-010
dtlz1a 0 0 0.05 0.05 4.56E-007
dtlz2a 0.77 0.19 0.06 0.1 1.30E-006
dtlz4a 0.26 0.38 0.05 0.06 1.30E-010
dtlz7a 2.91 1.5 2.17E-005 0.01 3.67E-009
sdflp 170.11 0.2 1.58 0.9 2.03E-010

Table 5.18: ε+ Indicators for MOPSO and NEMONSGA−II

Not surprisingly, NEMOMOPSO outperforms MOPSO in 70% of the problems in terms

of the size of the Pareto optimal set. It outperforms MOPSO in terms of the spacing

indicator on 60% of the problems, while being outperformed on none of the problems. For

the hypervolume indicator, NEMOMOPSO outperforms MOPSO in 60% of the problems in

the test suite. Finally, on the binary ε+ indicator, MOPSO outperforms NEMOMOPSO on

60% of the problems (though without any conclusive results).

5.4.6 MOPSO versus NEMOPAES

In this comparison, PAES was used as the underlying EMO algorithm to train NEMO

and compared against MOPSO. Tables 5.23-5.25 show the average Pareto optimal front

size, spacing indicator, and hypervolume indicator, while Table 5.26 shows the median and

interquartile ranges for the binary ε+ indicator. Figures 5.21-5.24 display the average and
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Problem MOPSO NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 1476.47 1037.93 9433.67 2353.51 9.75E-010
oka1 63.5 28.31 38.2 21.7 0
oka2 14.23 19.13 13.93 32.04 0.44

vlmop2 2597.33 172.99 10539.07 74.36 3.02E-011
vlmop3 1339.73 1547.22 10508.97 778.98 3.02E-011
dtlz1a 3799.57 2007.53 6382.9 3376.67 0
dtlz2a 2114.17 1047.76 9097.13 1031.99 3.02E-011
dtlz4a 480.83 797.17 1131.8 1665.3 0.16
dtlz7a 3374.77 2372.77 9332.1 1951.78 9.52E-010
sdflp 1288.53 52.12 3567.2 430.29 3.01E-011

Table 5.19: Pareto Size Indicators for MOPSO and NEMOMOPSO

Problem MOPSO NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 0.02 0.01 0.01 0.01 2.41E-005
oka1 0.23 0.14 0.19 0.16 0.3
oka2 0.46 0.55 0.23 0.6 0.23

vlmop2 0 0 0 0 NaN
vlmop3 0.01 0.01 0 0 3.55E-011
dtlz1a 0 0 0 0.01 0.08
dtlz2a 0.02 0.01 0.01 0.01 1.15E-007
dtlz4a 0.02 0.02 0.01 0.01 0.05
dtlz7a 0.02 0.01 0.01 0.01 0
sdflp 4.8 0.1 1.94 1.29 2.98E-011

Table 5.20: Spacing Indicators for MOPSO and NEMOMOPSO
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Figure 5.17: Pareto Size Indicators for MOPSO and NEMOMOPSO with Standard Error
Bars.
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Figure 5.18: Spacing Indicators for MOPSO and NEMOMOPSO with Standard Error Bars.
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Problem MOPSO NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 51648.34 39912.43 320608.43 82603.25 8.10E-010
oka1 24.07 18.05 14.37 9.86 0.03
oka2 2.67 4.24 2.16 7.29 0.53

vlmop2 252.39 17.14 836.49 7.78 3.02E-011
vlmop3 898.78 962.6 5989.47 1244.66 3.02E-011
dtlz1a 191.58 111.35 244.04 134.87 0.08
dtlz2a 36.7 25.84 283.96 253.61 6.70E-011
dtlz4a 21.38 36.56 74.24 127.22 0.22
dtlz7a 91.89 139.85 958.32 1449.83 2.38E-007
sdflp 137833333.33 4202489.68 423766666.67 60634395.23 2.96E-011

Table 5.21: Hypervolume Indicators for MOPSO and NEMOMOPSO

Problem MOPSO NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 0.05 0.02 0.3 0.33 1.21E-008
oka1 0.04 0.1 0.13 0.16 0
oka2 0 0.05 0.05 0.6 0.03

vlmop2 0 0 0 0 NaN
vlmop3 0.03 0.02 0 0.01 5.39E-011
dtlz1a 0 0 0.05 0.08 1.15E-012
dtlz2a 0.17 0.12 0.09 0.05 0
dtlz4a 0.01 0.02 0.24 0.49 0
dtlz7a 0.1 0.2 0 0.01 1.53E-008
sdflp 2.82 3.36 5.11 166.89 0

Table 5.22: ε+ Indicators for MOPSO and NEMOMOPSO
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Figure 5.19: Hypervolume Indicators for MOPSO and NEMOMOPSO with Standard Error
Bars.

141



kno1 oka1 oka2 vlmop2 vlmop3 dtlz1a dtlz2a dtlz4a dtlz7a

mopso
NEMO−mopso

Problem

Ep
sil

on
 In

di
ca

to
r

−0
.2

0.
0

0.
2

0.
4

Figure 5.20: ε+ Indicators for MOPSO and NEMOMOPSO with Standard Error Bars.
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standard errors of the optimal front sizes, spacing, and hypervolume indicators, and the

median and standard errors of the binary ε+ indicators.

NEMOPAES outperforms MOPSO in 50% of the problems in terms of the size of the

Pareto optimal set. It outperforms MOPSO in terms of the spacing indicator on 40% of

the problems, while being outperformed on only 20% of the problems. For the hyper-

volume indicator, NEMOPAES outperforms MOPSO in 50% of the problems in the test

suite. Finally, on the binary ε+ indicator, MOPSO outperforms NEMOPAES on 40% of the

problems. On OKA2, the performance was conclusive, yielding a negative median value.

However, NEMOPAES was able to outperform MOPSO in 30% of the problems, though

none were conclusive.

Problem MOPSO NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 8009.97 2006.63 2411.07 1717.02 6.23E-009
oka1 41.87 25.26 20.1 19.47 6.01E-006
oka2 13.53 18.6 0.33 0.66 4.62E-009

vlmop2 4114.97 157.18 6884.6 157.21 3.02E-011
vlmop3 302.5 148.67 10697.1 148.54 3.01E-011
dtlz1a 8982.03 2029.81 1049.67 424.34 3.02E-011
dtlz2a 10.87 20.37 10988.23 20.43 2.30E-011
dtlz4a 1008.53 1410.45 16.93 24.28 0
dtlz7a 3561.6 2668.1 5525.1 1536.58 0.05
sdflp 951.23 43.88 4109.73 389.29 3.01E-011

Table 5.23: Pareto Size Indicators for MOPSO and NEMOPAES
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Figure 5.21: Pareto Size Indicators for MOPSO and NEMOPAES with Standard Error Bars.
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Problem MOPSO NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 0 0 0.04 0.07 9.44E-012
oka1 0.15 0.16 0.52 0.43 0
oka2 0.35 0.52 0 0 5.36E-006

vlmop2 0 0 0 0 NaN
vlmop3 0.04 0.01 0 0 8.53E-013
dtlz1a 3.86E-005 4.51E-005 6.88E-006 7.70E-006 0.37
dtlz2a 0.07 0.11 0 0 0
dtlz4a 0.01 0.01 0.17 0.26 0.32
dtlz7a 0.02 0.05 0 0 0.03
sdflp 2.79 2.35 1.72 1.21 0.06

Table 5.24: Spacing Indicators for MOPSO and NEMOPAES

Problem MOPSO NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 298118.9 74605.38 83326.47 61096.21 5.71E-009
oka1 22.79 10.72 13.76 13.02 0
oka2 1.27 2.01 0.03 0.14 2.40E-008

vlmop2 398.99 15.27 500.73 12.42 3.02E-011
vlmop3 291.23 152.77 5725.36 308.86 3.02E-011
dtlz1a 481.19 122.39 9.32 5.93 3.02E-011
dtlz2a 0.4 0.93 287.66 102.47 2.40E-011
dtlz4a 56.86 93.03 0.24 0.49 0
dtlz7a 48.84 94.38 635.55 633.14 1.00E-008
sdflp 101010000 3865796.08 4.68E+008 54288501.35 2.93E-011

Table 5.25: Hypervolume Indicators for MOPSO and NEMOPAES
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Figure 5.22: Spacing Indicators for MOPSO and NEMOPAES with Standard Error Bars.
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Figure 5.23: Hypervolume Indicators for MOPSO and NEMOPAES with Standard Error
Bars.
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Figure 5.24: ε+ Indicators for MOPSO and NEMOPAES with Standard Error Bars.
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Problem MOPSO NEMOPAES p-value
Median IQR Median IQR

kno1 0.01 0 0.3 0.24 2.19E-009
oka1 2.25 1.95 0.45 2.12 0.41
oka2 -1 0 0 0 6.08E-005

vlmop2 0 0 0 0 NaN
vlmop3 0.06 0.03 0.01 0.01 1.61E-011
dtlz1a 0 0.01 0.48 0.01 7.38E-012
dtlz2a 0.55 0.7 0.06 1.28 0
dtlz4a 0.07 0.07 0.99 0.07 0
dtlz7a 0.72 0.34 0.53 1.14 0.62
sdflp 170.02 148.99 1.91 168.64 0

Table 5.26: ε+ Indicators for MOPSO and NEMOPAES

5.4.7 PAES versus NEMONSGA−II

In this comparison, NSGA-II was used as the underlying EMO algorithm to train

NEMO and compared against PAES. Tables 5.27-5.29 show the average Pareto optimal

front size, spacing indicator, and hypervolume indicator, and Table 5.30 shows the median

and interquartile ranges for the binary ε+ indicator. Likewise, Figures 5.25-5.28 display the

average and standard errors of the optimal front sizes, spacing, and hypervolume indicators,

and the median and standard errors of the binary ε+ indicators.

NEMONSGA−II outperforms PAES in 100% of the problems in terms of the size of the

Pareto optimal set. It outperforms PAES in terms of the spacing indicator on 40% of the

problems, while being outperformed on only 10% of the problems. For the hypervolume

indicator, NEMONSGA−II outperforms PAES in 100% of the problems in the test suite.
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Finally, on the binary ε+ indicator, NEMONSGA−II outperforms PAES on 90% of the

problems, and, on DTLZ2a, its performance is conclusive.

Problem PAES NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 90.8 46.53 10397.27 153.92 3.01E-011
oka1 10.03 11.47 452.27 108.65 4.91E-011
oka2 1.17 0.46 46.13 47.29 4.07E-012

vlmop2 1050.27 33.96 8425.47 147.38 3.01E-011
vlmop3 1532.2 316.78 9465.67 315.62 3.02E-011
dtlz1a 1.7 2.35 10997.23 2.65 1.85E-011
dtlz2a 1.33 2.34 10997.67 2.34 9.85E-012
dtlz4a 4.63 4.44 8058 1439.77 2.74E-011
dtlz7a 471.77 117.47 4948.57 552.63 3.02E-011
sdflp 1053.37 50.2 4217.73 397.14 3.01E-011

Table 5.27: Pareto Size Indicators for PAES and NEMONSGA−II

5.4.8 PAES versus NEMOMOPSO

In this comparison, MOPSO was used as the underlying EMO algorithm to train NEMO

and compared against PAES. Tables 5.31-5.33 show the average Pareto optimal front size,

spacing indicator, and hypervolume indicator, and Table 5.34 shows the median and in-

terquartile ranges for the binary ε+ indicator. Figures 5.29-5.32 display the average and

standard errors of the optimal front sizes, spacing, and hypervolume indicators, and the

median and standard errors of the binary ε+ indicators.

NEMOMOPSO outperforms PAES in 100% of the problems in terms of the size of the

Pareto optimal set. It outperforms PAES in terms of the spacing indicator on 50% of the

problems, while being outperformed on only 10% of the problems. For the hypervolume
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Figure 5.25: Pareto Size Indicators for PAES and NEMONSGA−II with Standard Error
Bars.
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Problem PAES NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 0.63 2.34 0 0 4.09E-011
oka1 0.43 0.68 0.07 0.1 0.2
oka2 0.13 0.68 0.5 0.51 4.52E-011

vlmop2 0 0 0 0 NaN
vlmop3 0.01 0 0 0 8.70E-014
dtlz1a 0 0 0 0 0.16
dtlz2a 0.05 0.14 0.01 0 0
dtlz4a 0.03 0.16 0.01 0 8.19E-010
dtlz7a 0.01 0 0.01 0 NaN
sdflp 1.82 2 2 1.09 0.41

Table 5.28: Spacing Indicators for PAES and NEMONSGA−II

Problem PAES NEMONSGA−II p-value
Mean St. Dev. Mean St. Dev.

kno1 1649.12 793.33 369790.1 5840.04 3.02E-011
oka1 9.94 12.95 533.73 204.29 8.13E-011
oka2 0.84 1.99 74.6 79.76 3.57E-011

vlmop2 90.68 3.8 659.74 8.7 3.02E-011
vlmop3 644.47 192.35 6640.39 579.65 3.02E-011
dtlz1a 0.01 0.01 457.84 63.9 1.42E-011
dtlz2a 0.04 0.07 629.47 175.4 1.78E-011
dtlz4a 0.08 0.18 535.18 225.24 2.76E-011
dtlz7a 114.52 33.2 783.95 130.35 3.02E-011
sdflp 99226666.67 5360193.85 534733333.33 64608600.54 3.00E-011

Table 5.29: Hypervolume Indicators for PAES and NEMONSGA−II
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Figure 5.26: Spacing Indicators for PAES and NEMONSGA−II with Standard Error Bars.

153



kno1 oka1 oka2 vlmop2 vlmop3 dtlz1a dtlz2a dtlz4a dtlz7a

paes
NEMO−nsga2

Problem

Hy
pe

rv
ol

um
e 

In
di

ca
to

r

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

30
00

00
35

00
00

Figure 5.27: Hypervolume Indicators for PAES and NEMONSGA−II with Standard Error
Bars.
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Figure 5.28: ε+ Indicators for PAES and NEMONSGA−II with Standard Error Bars.
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Problem PAES NEMONSGA−II p-value
Median IQR Median IQR

kno1 0.53 0.21 0.04 0.04 9.24E-009
oka1 2.27 1.95 0.09 2.19 0
oka2 2.05 1.46 2.65E-006 0.11 0

vlmop2 0 0 0 0 NaN
vlmop3 0.04 0.03 0.01 0 4.95E-010
dtlz1a 0.48 0.49 0 1.01 1.95E-005
dtlz2a 0 0.77 -1 1.01 0
dtlz4a 1 0 0.05 0.02 1.52E-012
dtlz7a 2.6 0.05 0.02 0.01 1.28E-011
sdflp 170.06 0.1 2.42 8.46 1.15E-007

Table 5.30: ε+ Indicators for PAES and NEMONSGA−II

indicator, NEMONSGA−II outperforms PAES in 90% of the problems in the test suite.

Finally, on the binary ε+ indicator, NEMONSGA−II outperforms PAES on 90% of the

problems, and, on OKA2 and DTLZ1a, its performance is conclusive.

5.4.9 PAES versus NEMOPAES

In this comparison, PAES was used as the underlying EMO algorithm to train NEMO

and compared against standard PAES. Tables 5.35-5.37 show the average Pareto optimal

front size, spacing indicator, and hypervolume indicator, whereas Table 5.38 shows the

median and interquartile ranges for the binary ε+ indicator. Figures 5.33-5.36 display the

average and standard errors of the optimal front sizes, spacing, and hypervolume indicators,

and the median and standard errors of the binary ε+ indicators.

NEMOPAES outperforms PAES in 90% of the problems in terms of the size of the

Pareto optimal set. It outperforms PAES in terms of the spacing indicator on 50% of the
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Problem PAES NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 31.8 71.6 10060.5 2916.42 4.75E-010
oka1 15.97 15.06 29.3 21.37 0
oka2 0.17 0.46 28.23 57.68 9.55E-011

vlmop2 59.67 29.18 10939.6 29.17 2.96E-011
vlmop3 647.63 790.02 10352.07 789.89 3.02E-011
dtlz1a 19.5 45.23 10939.93 187.54 8.25E-012
dtlz2a 8.77 11.63 10990.23 11.63 2.78E-011
dtlz4a 4.37 3.12 1317.3 2005.47 0
dtlz7a 595.9 167.76 3916.77 3093.48 9.48E-006
sdflp 1233.97 46.2 2597.03 418.57 3.01E-011

Table 5.31: Pareto Size Indicators for PAES and NEMOMOPSO

Problem PAES NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 1.1 1.07 0.01 0.03 6.94E-007
oka1 0.31 0.38 0.22 0.25 0.81
oka2 0 0 0.3 0.5 5.35E-006

vlmop2 0.02 0.01 0 0 9.20E-013
vlmop3 0.04 0.03 0 0 1.10E-012
dtlz1a 0 0 6.20E-008 3.40E-007 0.54
dtlz2a 0.09 0.1 0 0 0
dtlz4a 0.02 0.05 0.01 0.01 0.78
dtlz7a 0.01 0 0.01 0.01 5.77E-005
sdflp 3.29 2.16 1.62 1.42 0.01

Table 5.32: Spacing Indicators for PAES and NEMOMOPSO
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Figure 5.29: Pareto Size Indicators for PAES and NEMOMOPSO with Standard Error Bars.

158



kno1 oka1 oka2 vlmop2 vlmop3 dtlz1a dtlz2a dtlz4a dtlz7a

paes
NEMO−mopso

Problem

Sp
ac

in
g 

In
di

ca
to

r

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 5.30: Spacing Indicators for PAES and NEMOMOPSO with Standard Error Bars.
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Problem PAES NEMOMOPSO p-value
Mean St. Dev. Mean St. Dev.

kno1 728.93 1951.34 339228.54 103995.7 5.81E-010
oka1 10.17 9.86 15.44 10.04 0.01
oka2 0.03 0.14 4.81 13.01 0

vlmop2 4.3 2.01 876.69 10.17 3.02E-011
vlmop3 402.55 343.97 5944.66 1253.2 3.02E-011
dtlz1a 0.15 0.35 384.34 93.13 1.10E-011
dtlz2a 0.37 0.58 332.32 217.45 2.90E-011
dtlz4a 0.04 0.05 84.31 152.2 0.01
dtlz7a 59.91 60.68 53.13 82.93 0.2
sdflp 122066666.67 5570447.47 314700000 56847739.77 2.97E-011

Table 5.33: Hypervolume Indicators for PAES and NEMOMOPSO

Problem PAES NEMOMOPSO p-value
Median IQR Median IQR

kno1 2.14 1.85 0.04 0.17 2.52E-006
oka1 2.29 2.02 0.35 2.08 0.01
oka2 0 0 -1 0 4.53E-008

vlmop2 0.05 0.02 0 0 9.62E-013
vlmop3 0.03 0.03 0.01 0.01 1.59E-009
dtlz1a 0 0.48 -1 1 1.69E-005
dtlz2a 0.58 0.34 0.29 0.37 0
dtlz4a 0.83 1.73 0.09 0.15 0.01
dtlz7a 0.87 0.94 0.69 0.59 0.05
sdflp 3.33 168.16 170.02 160.55 0

Table 5.34: ε+ Indicators for PAES and NEMOMOPSO
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Figure 5.31: Hypervolume Indicators for PAES and NEMOMOPSO with Standard Error
Bars.
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Figure 5.32: ε+ Indicators for PAES and NEMOMOPSO with Standard Error Bars.
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problems, while being outperformed on only 20% of the problems. For the hypervolume

indicator, NEMOPAES outperforms PAES in 70% of the problems in the test suite. Finally,

on the binary ε+ indicator, NEMOPAES outperforms PAES on 80% of the problems, and,

on DTLZ4a, its performance is conclusive.

Problem PAES NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 173.43 109.92 9488.5 2208.73 3.01E-011
oka1 748.6 1239.38 2255.7 3977.04 0.12
oka2 13.2 18.65 375.77 1802.26 0.05

vlmop2 1121.9 39.89 8487.3 104.74 3.00E-011
vlmop3 883.03 1029.59 10964.3 142.8 2.50E-011
dtlz1a 2.6 1.28 1830.17 1215.96 2.07E-011
dtlz2a 17.4 21.19 10998.6 0.86 2.08E-011
dtlz4a 1.03 2.55 68.77 47.63 4.57E-011
dtlz7a 515.2 85.42 5627.33 1578.23 3.02E-011
sdflp 1325.2 49.04 5014.7 391.87 3.01E-011

Table 5.35: Pareto Size Indicators for PAES and NEMOPAES

5.5 Conclusions

The results from these experiments reveal several important facts. First, the prelim-

inary results from the previous chapters are shown to hold up to statistical scrutiny. The

three experiments – NSGA-II versus NEMONSGA−II , MOPSO versus NEMOMOPSO, and

PAES versus NEMOPAES – reveal that the NEMO approach is very effective when used

on a given EMO algorithm to increase the size of the Pareto optimal set. The NEMO
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Figure 5.33: Pareto Size Indicators for PAES and NEMOPAES with Standard Error Bars.

164



Problem PAES NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 0.12 0.06 0.01 0.01 1.35E-011
oka1 0.21 0.31 0.31 0.3 0.27
oka2 0.18 0.56 0.05 0.07 0.62

vlmop2 0 0 0 0 NaN
vlmop3 0.02 0.01 0 0 2.05E-012
dtlz1a 0 0.01 0.01 0.01 0.03
dtlz2a 0.08 0.08 0 0 9.24E-007
dtlz4a 0.04 0.17 0.1 0.09 2.35E-005
dtlz7a 0.01 0 0 0 2.51E-011
sdflp 3.87 1.7 2.43 0.1 6.72E-005

Table 5.36: Spacing Indicators for PAES and NEMOPAES

Problem PAES NEMOPAES p-value
Mean St. Dev. Mean St. Dev.

kno1 3220.31 1983.64 334196.11 86365.77 3.02E-011
oka1 3384.32 6026.43 9868.94 18793.45 0.3
oka2 6.18 15.38 462.68 2427.21 0.49

vlmop2 98.91 4.09 647.98 8.77 3.02E-011
vlmop3 530.87 471.19 6016.88 283.83 3.02E-011
dtlz1a 17.03 14.25 31409.09 43608.72 3.01E-011
dtlz2a 0.27 0.48 262.03 73.22 2.95E-011
dtlz4a 2.12E-008 1.15E-007 3.30E-007 1.81E-006 0.99
dtlz7a 11.47 7.22 129.02 104.45 3.02E-011
sdflp 136300000 5298991.45 594100000 55494237.04 2.96E-011

Table 5.37: Hypervolume Indicators for PAES and NEMOPAES
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Figure 5.34: Spacing Indicators for PAES and NEMOPAES with Standard Error Bars.
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Figure 5.35: Hypervolume Indicators for PAES and NEMOPAES with Standard Error Bars.
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Figure 5.36: ε+ Indicators for PAES and NEMOPAES with Standard Error Bars.
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Problem PAES NEMOPAES p-value
Median IQR Median IQR

kno1 0.3 0.12 0 0.01 1.50E-011
oka1 0.16 2.24 0 0 7.16E-010
oka2 0 0.13 0 0.75 0

vlmop2 0 0 0 0 NaN
vlmop3 0.03 0.02 0 0 1.46E-012
dtlz1a 0.49 0.02 0 0 8.74E-013
dtlz2a 0.33 0.22 0 0 5.99E-009
dtlz4a 0 0 -1 0 5.76E-010
dtlz7a 0.03 0.11 0.01 0.01 1.06E-009
sdflp 3.8 8 0 0 1.21E-012

Table 5.38: ε+ Indicators for PAES and NEMOPAES

approach in these instances also appears to do well on all indicators except for the binary

ε+ indicator, which was, however, rarely conclusive.

Second, the NSGA-II versus NEMOMOPSO and NSGA-II versus NEMOPAES experi-

ments reveal that the NEMO approach is capable of taking a less successful EMO algorithm

and making it competitive with NSGA-II. This is especially true of PAES, which has been

shown to be outperformed by NSGA-II in head-to-head comparisons [6]. In this work,

however, NEMOPAES is shown to be very competitive with NSGA-II in the sizes of the

Pareto optimal sets, the spacing indicator, and the hypervolume indicator. This in itself is

a remarkable statement about the power of the NEMO approach.

Finally, these experiments reveal that the NEMO approach has difficulty yielding com-

petitive values for the ε+ indicator. In many of the experiments, the NEMO algorithm

performed well on all indicators except for the ε+ indicator. Further investigation is war-

ranted to determine whether this is a limitation of the NEMO approach or whether the
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ε+ indicator is simply not salient enough to be used as a basis for comparison without

additional indicators.
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Chapter 6

Conclusions and Future Work

The neural enhancement technique described in this work was developed in an effort to

learn the active areas of decision space where Pareto optimal solutions could be found. As

was discussed in the introduction and literature review, this technique is applied directly to

multiobjective optimization algorithms and relies heavily on neural network concepts. While

several researchers have made use of artificial intelligence or pattern recognition approaches

to assist with multiobjective optimization, the exhaustive literature survey conducted by

the author revealed no studies (except for [65], for which this work is an extension) that

attempt to solve the problem of learning promising areas of decision space.

In light of this absence of research, the first effort put forth in the current work was to

justify the use of the neural network technique by proving its effectiveness. It was shown

that the NEMO approach could produce many times more solutions than a very successful

existing EMO approach (NSGA-II). While this was a promising result, the experiment left

many unanswered questions. First and foremost, would it be possible to train the NEMO

in an acceptable period of time so as to make the approach computationally competitive

with the existing EMO approach? Second, would the NEMO approach perform well when

evaluated based on other indicators that take into account the shape and spread of the

Pareto optimal frontier, rather than just its size?

A final concern with the results of that first experiment involved the manner in which

the NEMO and EMO approaches were compared. In that experiment, the EMO approach

was given 25600 function evaluations, from which a training set was extracted. Then, the
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NEMO was trained on that set and was given an additional 25600 function evaluations to

expand its Pareto optimal frontier. Finally, its results were compared to those produced by

the EMO (essentially, the training set). This seemed extremely “unfair” to the EMO since

the NEMO was given a “head start.”

To address all of these concerns, a second experiment was carried out. In this ex-

periment, five different training algorithms for NEMO were evaluated and compared using

multiple indicators from the multiobjective optimization literature. Additionally, the train-

ing time was collected for each training approach. To alleviate the “unfair” comparison

mentioned above, a new methodology was enacted. In this experiment, the EMO was given

25600 function evaluations in order to produce a training set, but it was then given an

additional 25600 function evaluations in which to optimize that set even further. Likewise,

the NEMO was given 25600 function evaluations to improve and expand upon the training

set. The results from each after 51200 total function evaluations were then compared.

This second experiment generated extremely positive results. First, it led to the cre-

ation of heuristic training methods for the NEMO approach that produced training times

that were well in the range of the existing EMO approaches. Additionally, these heuristic

methods also generated NEMOs that generally outperformed the EMO in terms of relative

yield, spacing, and hypervolume. In terms of the binary ε+ indicator, the EMO approach

performed better, but often this better performance was not conclusive due to the nature

and limits of the ε+ indicator.

There were several relevant open issues generated from this experiment. First, while

the second experiment used 5 runs in an effort to generate statistical measures of success,
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it seemed necessary to repeat the EMO/NEMO comparison many times in order to deter-

mine statistical significance. Additionally, it remained to be seen whether the NEMO with

heuristic training approach could be used with other EMO algorithms with equal success.

Consequently, it was important to determine whether relatively “poor” EMO algorithms

could be bolstered by NEMO to make them competitive with “good” EMO algorithms.

Therefore, a final experiment was carried out that made use of the heuristically-

trained NEMO using training sets generated from NSGA-II (as before), MOPSO, and

PAES. The nine different pairwise comparisons were made (NEMONSGA−II/NSGA-II,

NEMONSGA−II/MOPSO, etc.), each using results collected across 30 different runs. When

analyzing the results in this experiment, several interesting observations were made. First,

the results from the previous experiments (essentially the NEMONSGA−II/NSGA-II com-

parison) were verified under statistical scrutiny. Second, the MOPSO and PAES EMO

algorithms were both enhanced by the use of the NEMO approach. (This observation

applies to the NEMOMOPSO/MOPSO and NEMOPAES/PAES comparisons.)

Most importantly, however, this final experiment revealed that the NEMO approach

could make less powerful EMO approaches competitive with powerful EMO algorithms.

In particular, it has been shown in [6] that NSGA-II outperforms PAES. However, we

show that NEMOPAES performs very well when compared to NSGA-II, making it certainly

competitive if not dominant. This is an exciting result that underscores the power of the

NEMO method.

It remains to be seen whether a different learning system might outperform the gen-

eral regression neural network when used as the NEMO learner. It seems unlikely that

a backpropagation feed-forward neural network would be successful, given the prohibitive
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computation time needed for training. However, it’s possible that an optimized radial ba-

sis function network might provide a legitimate alternative. In such a case, it would be

interesting to discover whether the particular strengths of the RBF network would provide

gains on certain types of multiobjective optimization problems. However, there may be

additional learning approaches that are equally or more effective. A thorough investigation

of this area is warranted.

Another very important direction for future work lies in finding the ideal point at which

to engage the NEMO approach. It should be clear that if the EMO is halted prematurely, the

NEMO will be trained on a poor representative Pareto optimal frontier. If given additional

function evaluations, the EMO will be much more likely to find solutions that dominate

those found by the NEMO. This is because NEMO operates “horizontally,” expanding

the Pareto optimal frontier, whereas the EMO operates “vertically,” attempting to find

solutions that are more optimal than the existing set. However, if the EMO is halted near

the actual Pareto optimal frontier, the NEMO can be engaged immediately to generate a

comprehensive sampling of the frontier. It is important to determine the point at which the

switch from EMO to NEMO should occur, including any metrics or indicators that might

provide some insight in this area.

If such a set of indicators could be found, it may then be possible to incorporate

the NEMO approach into an existing EMO algorithm so that it could expand solutions

on-line in order to give the EMO a better chance to find the Pareto optimal frontier.

However, without such indicators, the NEMO approach would almost certainly be a liability,

“wasting” function evaluations to fill out a sub-optimal Pareto frontier. It may, instead, be
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possible to use a NEMO approach periodically to generate promising areas of the search

space for the EMO to explore.

The results presented in this work, plus these future directions, reveal the wealth of

opportunity that the NEMO approach provides for multiobjective optimization. With the

multi-tasking, multi-cultural, multi-billion members of this 21st century society, there is

no doubt that single objective optimization will be unable to solve the complex problems

that globalization has created. Multiobjective optimization arises at the dawn of this era

as the answer to these difficult challenges, but it has challenges of its own to overcome.

It is in answer to some of those challenges that NEMO is offered, in the hopes of pushing

the limits of understanding a little further and making the world a little better, which is a

multiobjective problem in itself.
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Appendix A

Results from Training Algorithm Experiments

These tables display the results from the five training algorithm experiments from
Chapter 4. Each of them contain the average and standard deviation across all five runs,
as well as the p-values associated with the spacing, hypervolume, and binary ε+ indicators.
In each of those indicators, if p < 0.05, the average is boldfaced and underlined.
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