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Distributed computing has been used to overcome the limitations of single 

computer use.  However, the benefit of parallelizing computations may substantially 

reduce, if there is no well constructed mechanism to coordinate them.  In this respect, the 

task matching problem of mapping a class of independent tasks on heterogeneous 

computers is critical to increase system performance, especially if the purpose is to 

reduce the total completion time of tasks.  Mapping tasks to non-identical machines is a 

known NP-complete problem.  Many heuristic algorithms have been used to minimize 

the total completion time in parallel systems.  In this thesis, we take a novel approach by 

using Support Vector Machine (SVM) to dynamically schedule independent tasks to 

heterogeneous machines to minimize schedule length.  
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SVM learns from a set of input workload patterns or samples. It maps each 

sample to a predefined label.  Most learning samples of real world problems are non-

separable in multi-dimensional input space.  In our SVM, Radial Basis Function (RBF) 

Kernel is used to transform non-separable samples in multi-dimensional input space into 

high-dimensional feature space, where the samples are separable.  The SVM constructs a 

hyperplane with maximal margin between the positive and negative samples in the high 

dimensional feature space. This hyperplane is used to classify future mappings. 

We constructed a Support Vector Scheduler (SVS), which uses the SVM to map 

tasks to machines.  Using simulations we compared our algorithm against Early Fast (EF), 

Light Least (LL), and Round Robin (RR).  We found that the performance using SVM 

was similar to EF and better than LL and RR.  However, SVM is superior since it can 

dynamically adapt to changing inputs and machine characteristics. 
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1 INTRODUCTION 

A very large problem can be solved in distributed computing systems by 

decomposing the problem into small tasks, and distributing the workload fairly, and 

combining individual results to get a solution. However, as the amount of homogeneous 

parallelism in applications decreases, homogeneous systems cannot offer the desired 

speedups. Therefore, a suite of heterogeneous architectures to exploit the heterogeneity in 

computations has become a critical research issue [Khok93]. Heterogeneous computing 

(HC) is the well-coordinated use of a suite of diverse high-performance machines to 

provide super-speed processing for computationally intensive tasks with diverse 

computing needs. However, the benefit of parallelizing can diminish, if there is no well-

found mechanism to coordinate the resources. In this respect, the task-matching problem 

assigning independent tasks to the most suitable machines should be considered to 

achieve high performance, especially if the purpose of the system is to minimize the total 

completion time, or makespan[Brau01][Mahe99][Meht06][Page05][Fuji03]. In the 

general case, assigning independent tasks onto non-identical machines is known to be an 

NP-complete problem. So far, many studies have tried to solve the task matching 

problem [Brau01][Cho94][Hong04] 

[Mahe98][Brau01][Cho94][Hong04][Mahe98][Poje02][Min97][Brau98]. In [Brau01], 

eleven conventional heuristic algorithms for mapping a class of independent tasks onto 

heterogeneous distributed computing machines are compared. The type of heuristic 

methods can be categorized into static mode and dynamic mode. In static mode, all the 
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information necessary for scheduling, such as the expected task completion time of each 

machine, is known a priori. In contrast, the scheduling information in dynamic mode is 

not known until runtime. Furthermore,  dynamic mode is classified into direct mode and 

batch mode. In direct mode, a task is dispatched to the appropriate machine on arriving, 

but in batch mode, it waits until a dispatching event occurs [Mahe99]. In heuristic 

algorithms, the choice of which computers to execute which tasks is commonly 

determined using the knowledge of computer speeds for each task and the current load on 

each computer [Freu98]. On the other hand, load sharing algorithms consider the average 

behavior of total systems, focusing on increasing processor utilization by not allowing 

any processor to be idle. In [Kara02], classes of independent tasks are mapped onto the 

heterogeneous computing system using a load sharing algorithm. Similar to load sharing 

algorithms, load balancing algorithms aim at equalizing the processors’ workloads at the 

time of distribution in order to achieve the enhancement of system performance through 

system load balance. Load sharing algorithms, in contrast, focus on scattering heavy 

workloads into idle or light processors. Page and Naughton [Page05] use a genetic 

algorithm for dynamic task scheduling, in which a search for optimal schedules is made 

based on the theoretical optimal processing time. In this thesis, we introduce a new 

approach to solve the task mapping problem in which a machine learning technique is 

used for a direct task matching with the objective of minimizing the total task completion 

time. Furthermore, our task mapping scheduler is able to adapt to varying system 

environments by changing a decision model where computing powers can change 

suddenly with new computers joining or leaving the network. The decision for task 

mapping will be conducted based on the evaluation of Support Vector Machine (SVM). 
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For this research, we devised two simulator programs: a training data simulator (TDS), 

which creates training data for SVM and a Java simulator based on our Support Vector 

Scheduler (SVS) as well as three heuristic algorithms for benchmarking. We use the 

SVMlight, an implementation of Vapnik’s Support Vector Machine, which was written in 

C by Joakims [Scho99]. The remainder of this paper is organized as follows. In Section 2, 

we discuss research related to SVM. In Section 3, we review related scheduling heuristics. 

Section 4 is devoted to explaining our system framework in detail. In Section 5, the 

analysis of data obtained from simulation will be conducted and the SVS is compared 

against conventional heuristics such as Early Fast (EF), Round Robin (RR) and Light 

Least (LL) algorithms. Section 6 concludes by presenting a summary of our findings. 
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2 BACKGROUND 

Recently, SVMs have gained wide acceptance in the application of pattern 

recognition and data mining. SVMs were proposed by Vapnic et al [Burg98]. It has 

shown better performance than traditional learning machines such as Neural Network 

(NN) and Decision Tree (DT). Its running strategy embodies the principal of structural 

risk minimization (SRM) while the objective of neural networks is only based on the 

principal of empirical risk minimization (ERM).  Therefore, SVMs are able to possess 

high generalization ability while minimizing the training error. The subject of SVMs is 

said to have started in the late seventies but only recently it has gained attention with 

success in pattern recognition, object recognition, speaker identification, face detection, 

regression estimation and text categorization [Burg98]. SVMs are commonly used as a 

non-linear classifier through kernel trick, though it naturally was proposed as a linear 

classifier. So far, SVMs have rarely been used in the area of task scheduling, especially 

for direct task mapping. In [Gers04], a SVM is used for regression estimation to improve 

the repair strategy in which a complete schedule is found by iteratively repairing an 

incomplete schedule for solving a resource constrained project scheduling problem, 

known as NP-hard problem. Yi-Huung et al. [YiHu05] use a multi-class SVM in 

scheduling the Flexible Manufacturing System (FMS), in which the most suitable 

dispatching rule is decided by the SVM and task mapping is conducted according to this 

rule until it is replaced by a new dispatching rule. 
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3 TASK SCHEDULING ALGORITHM 

In this section, we will review heuristic and machine learning approaches for 

solving the task mapping problem.  

3.1 Heuristic Algorithm 

First, heuristic algorithms can be categorized into batch mode and immediate mode 

algorithms. In immediate mode, the task is mapped onto the machine immediately upon 

arrival, but in batch mode, it is not scheduled until a mapping event occurs.  

3.1.1 Immediate mode mapping heuristics 

The Minimum Completion Time (MCT) heuristic is a variant of the fast-greedy 

heuristic. It has been used as a benchmark for immediate mode [Mahe99]. MCT assigns 

each task to the machine on which the task will complete the earliest. Braun et al. 

[Brau01] compared 11 heuristic algorithms and found MCT to perform around the 

median of heuristics. MCT requires O(m) time to find the machine that can finish a task 

earliest, where m is the number of machines. In the Minimum Execution Time (MET) 

heuristic, as a job arrives, each task is assigned to the machine that provides the least 

execution time for that task. Although the MET heuristic is very simple with complexity 

O(m), it may result in severe imbalance in load across the machines [Brau01]. All the 

computing nodes in the cluster are examined to determine the node that gives the best 

execution time for the job. As mentioned, MET may result in load imbalance at some 

point because it does not consider the ready time of each machine. To handle this 



 

6

problem, SA (Switching Algorithm) has been proposed [Brau01]. SA switches from 

MET to MCT when load imbalance is detected. SA has the same complexity with MCT 

and its performance is close to MCT [Brau01]. K-percent Best (KPB) heuristic 

implements the idea that too much selection pressure may lead to a sub optimal solution 

since it suppresses the diversity of search. The parameter K determines the selection 

pressure. Therefore, in KPB, a subset of machines, in which K is less than 100, is 

selected based on the earliest completion time. A task is assigned to the machine in the 

reduced set whose completion time is the least. That is, KPB looks forward to achieving 

the improvement in the long run by considering task heterogeneity, instead of promptly 

expecting the current marginal improvement. In a similar way, Feasible Robust K-percent 

Best (FRKPB) first finds the feasible set of machines for the newly arrived task. From 

this set, FRKPB identifies the k-percent that has the smallest execution times for the task 

[Meht06]. In Opportunistic load balancing (OLB), a naïve O(n) algorithm [Arms98], each 

job is placed in order of arrival on the next available machine regardless of its completion 

time. The performance of OLB is worse than the other algorithms.  

3.1.2  Batch mode heuristics 

In batch mode, tasks are collected into a set that is examined for mapping at 

prescheduled times called mapping events. In immediate mode, they are mapped onto the 

machines immediately upon arrival. This mode enables the mapping heuristics to 

possibly make best decisions at every moment.  Because the heuristics have the resource 

requirement information for a whole meta-task, when the task arrival rate is high, there 

will be a sufficient number of tasks to keep the machines busy between the mapping 

events. 



 

7

 
The Min-Min heuristic algorithm[Brau01] uses an Expected Completion Time (ECT) 

table to make a decision for mapping a task onto a suitable machine. The ECT is defined 

as: 

 jijij REC +=                                         (3.1) 

The completion time of task i in machine j is calculated by adding the ready time of 

machine j to its ECT (3.1). Basically, a task is assigned to the machine that provides 

minimum completion time. When there is a contention for the same machine on which 

two or more tasks are eligible, a task is assigned to the machine that will result in the 

smallest change in ready time. In this algorithm, it is expected that smaller makespans 

can be obtained if a larger number of tasks are assigned to the machine that not only 

completes them earliest but also executes them fastest. Max-Min heuristic is similar to 

Min-Min except a task with maximum completion time is chosen among the candidate 

tasks whose completion time is minimum in all the machines. The Max-Min heuristic is 

likely to be better when there are more short tasks than long tasks since it can execute 

many short tasks concurrently along with the long task. The main idea of the Sufferage 

heuristic is to assign a task to a machine that would suffer most if it were not assigned to 

a machine. The Sufferage algorithm uses the same ECT table as it is used in Min-Min 

heuristic. The algorithm is described in Figure 1. The key point of the algorithm is to use 

the sufferage value in task mapping. That is, a machine is assigned to the task that would 

“suffer” most in terms of expected completion time if that particular machine is not 

assigned to it. When trying to assign a new arbitrary task to a machine that can complete 

the task earliest, the machine may be in the state of having a task already assigned. If the 

machine is in the state with a task assigned, a new task and an old task will contend for 
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the same machine. When tasks contend for the same machine, task assignment is 

determined by their sufferage value. The task replaced by the new task will come back to 

task queue and the new task will be removed from it.  

 
 
 
 

For all tasks 
For all machines 

Update ECT for all tasks 
 Find arbitrary a task with Earliest Completion time 

 
  If corresponding machine is already assigned a task 

then 
Calculate sufferage value 
A task with higher sufferage value is assigned 

else 
Assign a machine that gives the earliest 
completion time to a task tentatively. 

End If 
End For 

End For 
 

Figure 1 Sufferage Heuristic 
 

3.2 GA (Genetic Algorithm) 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the 

evolutionary ideas of natural selection and genetics. A group of individual solutions 

known as a population evolves by natural selection using various operators. Its basic 

procedure is described in Figure 2 
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Initialize Population 

Evaluate Population 

Loop until stopping condition not met 

Select parent 

Crossover 

Mutation 

    Create offspring 

  Evaluate offspring 

    Select survivors 

End Loop 

Figure 2 Genetic Algorithm Procedure 
 

In GA, selection is made according to the fitness of a population. The operators such as 

crossover and mutation are used to provide diversity in exploration. 

In [Page05] GA is used to minimize the makespan, and the algorithm outperforms six 

other heuristic algorithms (about 10% better than EF). Task scheduling problems in 

network computing environments are solved using GAs in [Dong02]. 

 

3.3 Load sharing algorithm 

In heterogeneous computing environments with two processors classes, fast and 

slow, job migration for distributing loads fairly over all  processors is performed from 

slow to fast processors using six scheduling strategies: Probabilistic (Pr), Probabilistic 

with Migration of Generic Jobs (PrM), Shortest Queue (SQ), Shortest Queue with 
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Migration of Generic Jobs (SQM), Least Expected Response Time for Generic Jobs-

Maximum Wait for Dedicated Jobs (LERT-MW), Least Expected Response Time for 

Generic Jobs-Maximum Wait for Dedicated Jobs with Migration (LERT-MWM) 

[Kara02]. In overall performance, SQ and SQM methods are better than all other methods. 

3.4 Machine Learning 

Scheduling plays an important role in production control for flexible manufacturing 

system (FMS), which involves several real-time decisions, such as part type and machine 

selection [YiHu05]. Consequently, a scheduled FMS is able to improve the machine 

utilization, enhance throughput, reduce the number of work-in-process (WIP), mean flow 

time, and the number of tardy parts. Assigning correct dispatching rules dynamically is 

critical for the scheduling problem. After receiving useful information from an FMS, a 

good scheduler should be able to make a right decision, i.e., output a right dispatching 

rule, for the next period to gain good performance. It needs as much expert knowledge 

stored in the scheduler as possible. Due to such reasons, machine learning technique, 

which is based on simulated sample data, has been used [YiHu05]. 
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4 DYNAMIC SCHEDULER USING SVM 

In this section, we will introduce our framework of task scheduling onto non-

identical machines. Our scheduler is focused on minimizing total completion time by 

using a Support Vector Machine (SVM) in mapping tasks directly onto suitable machines.  

First, we present an overview of the Support Vector Machine. 

4.1 Overview of SVM 

SVM is a supervised learning algorithm developed over the past decade by 

Vapnik and others [Vapn98]. The SVM algorithm addresses the general problem of 

learning. The binary version of the SVM attempts to discriminate data into two different 

classes.  It does so by constructing the optimal segregating hyperplane using a sample set 

of training data. Much of the SVM's power comes from its criterion of selecting a 

separating hyperplane when many other candidate planes may exist. In the optimal 

hyperplane, samples are separated with maximal margin. Statistical learning theory 

suggests that, for some classes of well-behaved data, the choice of the maximum margin 

hyperplane will lead to maximal generalization when predicting the classification of 

previously unseen examples [Vapn98]. The main element of support vector learning is to 

construct the optimal separating hyperplane. To construct the optimal hyperplane, we 

have to solve the quadratic programming (QP) problem: 

minimize ∑∑
==

−
N

i
i

N

ji
jijiQ

1
,

1,2
1 ααα                 

subject to the constraints 
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where, Q is an N x N matrix that depends on the training inputs ix , the labels iy , and the 

functional form of the SVM. We call this problem quadratic programming because the 

function to be minimized (called the objective function) depends on the iα quadratically, 

while iα only appears linearly in the constraints. Definitions and applications of ix , iy  and 

Q appear in the tutorial by Bruges [Burg98].  

The construction of an optimal hyperplane is depicted in Figure 3.  Here, a set of 

training instances are represented by circles and squares, which denote positive and 

negative samples respectively. In the left graph, the samples are shown in the non-linear 

inputspace where they are not separable linearly or by a hyperplane.  A mapping is 

performed to map the samples into the feature space using a non-linear mapping function, 

Φ, which transforms the multi-dimensional input space into a still higher dimensional 

feature space.  In the feature space, samples are separable linearly (using a hyperplane) as 

shown in Figure 3. An optimal hyperplane in the feature space separates the squares and 

circles with the maximum margin w. The points that lie on the parallel planes that are 

closest to the optimal hyperplane are called support vectors. 
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Figure 3 Mapping inputs on the multidimensional input space into high dimensional 
feature space 

4.2 System Design and Methodology 

In this section, we present our system framework in which task matching is 

conducted dynamically. As soon as a task arrives, the decision of which machine will 

process the arrived task is made by the SVM. 

4.2.1 System and Workload Models 

We consider a centralized heterogeneous distributed system in which a main 

scheduler is responsible for mapping tasks onto client machines. In this model, 

distributed machines are connected to a single server machine via high-speed network, 

and the server dispatches heterogeneous independent tasks, which arrive at Poisson 

arrival rate. 

Job arrival time is represented by an exponential random variable with a mean of 

1/ λ. The system design is shown in Figure 4. On task arrival, the Support Vector 

Scheduler (SVS) sends to the SVM the input vectors which are encoded with information 

about the ready time of each machine. The ready time changes at every task mapping.  

The SVM servers as an evaluator for the input vectors from SVS. Furthermore, the SVS 

Input space Feature space

φ

w
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dispatches incoming tasks onto the suitable machines based on the result of the 

evaluation. 

 
 

 
 

Figure 4 Task Scheduling System Framework 
 

4.2.2 SVS (Support Vector Scheduler) 

The process of constructing the scheduler is described in Figure. 5. The SV 

learner analyzes the training data and creates the SVM model. Then, the SV classifier 

constructs a decision function from the SVM model. Using the decision function, SV 

classifier evaluates an input vector from SVS. SVS conducts a task mapping, 

communicating with the SV classifier. 

 

SVM 

SVS 

In Out

M1 

M2 

Mn 

. 

. 

Task
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Figure 5 Support Vector Scheduler 
 
 

4.2.3 Generating Training Data 

The training data consist of a processor’s computing power, its ready time, and its 

label. Every label of training instances is either positive or negative. We generate the 

training data using our Training Data Simulator (TDS). TDS is a set of programmed 

Excel sheets.  It simulates the makespan using Excel sheets in which a set of computing 

power, ready time, and task is created randomly. The label of training instances is 

determined by the makespan. 

4.2.4 SV Learning 

Many real-world problems may not be separable linearly in multi-dimensional 

input space. In the case of the non-linear problem, we use a non-linear classifier for SV 

learning. One critical process of a non-linear classifier is to map the training data into 

high-dimensional feature space via the non-linear mapping functionΦ , create a non-

linear boundary at the same time, and construct maximal margin hyperplane in the feature 

space. 

Training 

Data 

SV 

Learner 

SVM 

Classifier 

SV 

Scheduler 

Input

The result of evaluation

SVM model
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If we use a Kernel function, we can conduct non-linear mapping without explicitly 

coordinating input vectors in feature space. This is the reason why we call it a 

computational shortcut. A sequence of processes of finding the optimal hyperplane is 

depicted in Figure 6. After the non-linear mapping function transforms the input vectors 

in multi-dimensional input space into high dimensional feature space via non-linear 

mapping function, we find the optimal hyperplane through the maximal margin 

optimization process. Ultimately, SV learning is the process of finding the support 

vectors which come to lie on the non-linear boundary. 

 

 

Figure 6 Non-linear mapping by Radial Basis Function (RBF) Kernel 
 

Input space Non-linear boundary 

Optimal hyperplane in feature space 

Φ

Maximal margin 
optimization 
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4.2.5 Task Matching Onto Non-identical Machines 

SVS dispatches incoming tasks onto non-identical machines by the evaluation 

result of the SV classifier. For a new task arriving, SVS generates input vectors based on 

the ready time of each machine.  The number of input vector is determined by the number 

of machines. That is, SVS should generate the same number of input vectors as machines. 

By pre-assigning a task into each machine, we can create a corresponding input vector for 

each mapping. The information of the ready time for each mapping is incorporated into 

input vectors. Figure 7 shows that the SVM evaluates the input vectors in feature space.  

 

 

Figure 7 Evaluating Input Vectors 
 

The decision of which machine to run a ready task is made as the result of evaluating 

input vectors. The machine that has the best evaluation runs the ready task. 

 

Input vectors 
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5 EXPERIMENT & RESULT ANALYSIS 

5.1 Experiment Procedure 

Task matching onto non-identical machines is simulated using our Java simulator 

and the task arrivals are modeled by a Poisson distribution process. The simulator 

implements Support Vector Scheduler (SVS) and three heuristic algorithms (EF,RR,LL). 

Heterogeneous independent tasks are simulated by generating random numbers to 

represent an instruction number of the meta-task. We created seven task sets, each of 

which has different task size, 100, 200, 500, 1000, 2000, 5000, and 10,000 respectively.  

We created three processor sets, the processor number of which is 4, 8, and 16, 

respectively. 

The processor is also simulated by generating a random number to represent its 

computing power. We created 30 different computing power sets. They are classified into 

2 groups based on the range of computing power. 15 out of 30 computing power sets 

ranges from 0 to 100 and other sets range from 0 to 1000. Thus, the experiment is 

classified into Experiment 1 and Experiment 2 according to the computing power sets. 

Each experiment is conducted on 7 different task sets and 3 different Processor sets. After 

conducting each experiment on our SVS and three heuristic algorithms, we average the 

results of each experiment separately. Next, the result of SVS will be compared with 

three heuristic algorithms. 
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In the following, our SVS and three heuristic algorithms are explained briefly. The 

Earliest First (EF) algorithm assigns a task to the machine that will finish it earliest. Its 

complexity is O(m) in the worst case, where m is the number of machines. The Lightest 

Load (LL) algorithm assigns a task preferentially to the machine with the lightest load. Its 

complexity is also O(m). The Round Robin (RR) algorithm assigns a task in a round 

robin manner, with complexity O(1). The SVS, evaluating the input vectors 

corresponding to each machine, has a complexity of O(m). 

5.2 Results & Analysis 

The experimental evaluation of the heuristics is performed only in immediate mode. 

SVS is compared with 3 immediate mode heuristics. The immediate mode heuristics 

consider only one task when they try to reduce the total completion time, and the 

schedule cannot change, once decided. The average makespan of four algorithms will be 

plotted. In Figure 8, each point corresponds to the average makespan of each algorithm 

for different task sizes. From Figure 8 and 9, the average makespan of all algorithms 

gradually increases, as the task size grows.  However, it can be noted that the degree of 

increase is much different according to the algorithm. Obviously, the shape of graph in 

SVS and EF changes slightly compared with LL and RR. Notably, LL undergoes a 

drastic deterioration of the performance in largest task size. In fact, the performance of 

SVS is very close to EF as shown in Figure 8. In Figure 9, the performance of all 

algorithms appears to be extremely similar to that in Figure 8, except the performance of 

LL declined distinctively from Experiment 1 of Figure 8.  In the experiment with 4 

processors, SVS and EF outperform LL and RR in all task sizes.  
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Figure 8 Makespan by task size in 4 processors (Experiment 1) 
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Figure 9 Makespan by task size in 4 processors (Experiment 2) 
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Figures 10 and 11 show the result from the experiment with 8 processors. Surprisingly, 

the SVS outperforms EF slightly in the largest task size for the first time as shown in 

Figure 10. However, the result reverses again in another experiment with different 

computing power sets (Figure 11).  It should be noted significantly in Figure 11 is that 

the performance of LL drops so dramatically that RR outperforms LL.  
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Figure 10 Makespan by task size in 8 processors (Experiment 1) 



 

22

Makespan in 8 Pprocessors

0

500

1000

1500

2000

2500

3000

100 200 500 1000 2000 5000 10000

Task Size

M
a
k
e
s
p
a
n EF

SV

LL

RR

 
Figure 11 Makespan by task size in 8 processors (Experiment 2) 

 
 

Fig. 12 and 13 show the result of 16 processors. From Figures 10, 11, 12, and 13, we can 
tell that the performance in 8 and 16 processors is extremely similar to each other. 
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Figure 12 Makespan by task size in 16 processors (Experiment 1) 
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Figure 13 Makespan by task size in 16 processors (Experiment 2) 
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On the whole, the experiment results show that EF and SVS outperform LL and RR in all 

task sizes. The performance of SVS is close to EF overall. Further, it can be noted that 

the number of processors does not have an impact on the performance, but varying 

computing power sets affect the performance of LL and RR. Lastly, we can infer that the 

total system performance is affected more by its organization of computing power than 

by the number of processors.  
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6 CONCLUSION 

In this thesis, we used a novel machine learning technology to solve the task 

matching problem of mapping a class of independent tasks onto the suitable machines. 

Using the Support Vector Machine (SVM), we analyzed the workload patterns of the 

total system in which a workload of each machine changes constantly when the machine 

consumes tasks.  By learning the mapping between the pattern and the corresponding 

makespan, the SVM is able to map incoming tasks to appropriate machines.  We trained 

the SVM using the data that our Training Data Simulator (TDS) created, and constructed 

a decision model to process unknown input vectors.  Our Support Vector Scheduler 

(SVS) and three conventional heuristics for mapping a class of independent tasks onto 

non-identical machines were compared under a variety of simulated environments.  Using 

simulations we compared our algorithm against Early Fast (EF), Light Least (LL), and 

Round Robin (RR). Results show that SVS gives a very close performance to EF in all 

processor sets and computing power sets.  However, SVM is superior since it can 

dynamically adept to changing inputs and machine characteristics. 

In this research, we used 10,000 samples, which were randomly generated, to 

construct a support vector model.  The learning capability of the SVM entirely depends 

on the samples.  In future works, we will study the relation between chosen samples and 

their corresponding performances.
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APPENDIX 

4 Processors of Experiment 1 

Algorithm 
#set Task size 

EF SV LL RR 

100.00  27.04 24.60 28.75  36.84 

200.00  51.96 47.01 52.09  79.56 

500.00  127.86 107.89 128.26  195.41 

1000.00  257.13 216.13 262.25  387.25 

2000.00  511.69 437.79 520.00  741.09 

5000.00  1298.90 1101.17 1326.34  1979.75 

set1 

10000.00  2612.99 2194.91 2666.72  3897.50 

100.00  12.48 14.79 21.82  34.68 

200.00  24.81 30.31 45.09  74.88 

500.00  58.24 65.20 106.15  183.91 

1000.00  118.18 136.76 221.38  364.47 

2000.00  241.45 268.63 446.29  697.50 

5000.00  613.26 720.83 1122.29  1863.29 

set2 

10000.00  1229.91 1431.49 2261.24  3668.24 

100.00  12.90 14.98 22.62  34.68 

200.00  24.56 30.01 47.06  74.88 

500.00  58.98 67.24 109.88  183.91 

1000.00  119.96 137.58 223.18  364.47 

2000.00  240.97 272.80 451.71  697.50 

5000.00  613.98 722.44 1118.68  1863.29 

set3 

10000.00  1224.65 1419.18 2254.88  3668.24 

100.00  27.04 24.60 28.75  36.84 

200.00  51.96 47.01 52.09  79.56 

500.00  127.86 107.89 128.26  195.41 

1000.00  257.13 216.13 262.25  387.25 

2000.00  511.69 437.79 520.00  741.09 

5000.00  1298.90 1101.17 1326.34  1979.75 

set4 

10000.00  2612.99 2194.91 2666.72  3897.50 

100.00  51.57 53.44 67.20  235.80 

200.00  99.76 110.30 116.60  509.20 

set5 

500.00  238.09 261.67 287.60  1250.60 
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1000.00  482.57 529.96 555.40  2478.40 

2000.00  967.26 1058.48 1128.00  4743.00 

5000.00  2474.59 2726.22 2862.00  12670.40 

10000.00  4968.60 5478.07 5723.80  24944.00 

100.00  25.53 22.63 37.73  107.18 

200.00  48.77 44.33 68.00  231.45 

500.00  118.51 108.06 157.73  568.45 

1000.00  240.89 209.24 315.09  1126.55 

2000.00  485.61 453.82 634.45  2155.91 

5000.00  1229.94 1110.00 1605.00  5759.27 

set6 

10000.00  2460.76 2280.09 3181.45  11338.18 

100.00  39.12 39.19 50.50  196.50 

200.00  74.89 80.81 94.00  424.33 

500.00  178.92 188.43 220.17  1042.17 

1000.00  362.24 388.83 451.50  2065.33 

2000.00  724.79 775.57 909.50  3952.50 

5000.00  1851.65 1986.74 2308.50  10558.67 

set7 

10000.00  3718.91 3989.30 4610.67  20786.67 

100.00  39.76 42.17 50.40  147.38 

200.00  75.10 82.48 93.13  318.25 

500.00  179.81 188.25 228.88  781.63 

1000.00  363.71 395.15 451.75  1549.00 

2000.00  729.87 779.15 911.50  2964.38 

5000.00  1865.53 1996.96 2313.50  7919.00 

set8 

10000.00  3747.22 4008.75 4592.13  15590.00 

100.00  41.62 46.93 55.88  147.38 

200.00  80.58 92.15 96.30  318.25 

500.00  191.44 215.11 234.50  781.63 

1000.00  387.31 442.07 487.50  1549.00 

2000.00  776.74 871.59 964.13  2964.38 

5000.00  1983.93 2259.52 2441.75  7919.00 

set9 

10000.00  3983.63 4499.59 4876.63  15590.00 

100.00  26.04 26.67 25.00  26.20 

200.00  50.08 50.52 50.13  58.69 

500.00  123.99 115.33 116.33  138.96 

1000.00  255.16 235.75 242.40  275.38 

2000.00  499.37 473.32 481.27  527.00 

5000.00  1293.40 1229.62 1218.09  1407.82 

set10 

10000.00  2572.88 2439.92 2450.29  2799.18 

set11 100.00  18.81 19.77 18.75  16.19 
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200.00  38.14 38.47 32.48  34.30 

500.00  90.41 94.03 80.42  81.29 

1000.00  179.73 184.24 156.73  160.94 

2000.00  367.34 376.09 324.77  319.64 

5000.00  951.72 932.19 796.49  822.75 

10000.00  1860.47 1862.80 1597.17  1635.88 

100.00  27.47 25.36 34.50  84.21 

200.00  50.91 49.58 66.07  181.86 

500.00  129.51 118.14 156.21  446.64 

1000.00  253.49 236.42 311.50  885.14 

2000.00  510.03 470.12 635.93  1693.93 

5000.00  1309.23 1207.27 1613.07  4525.14 

set12 

10000.00  2622.35 2411.16 3217.14  8908.57 

100.00  31.63 32.43 34.81  56.14 

200.00  62.11 61.33 71.62  121.24 

500.00  149.23 147.87 167.86  297.76 

1000.00  297.58 296.76 340.57  590.10 

2000.00  598.15 594.67 682.57  1129.29 

5000.00  1495.35 1523.41 1736.38  3016.76 

set13 

10000.00  2996.72 3065.78 3460.33  5939.05 

100.00  22.48 23.36 34.00  65.50 

200.00  44.21 42.04 55.28  141.44 

500.00  105.39 103.17 142.11  347.39 

1000.00  209.98 199.76 287.89  688.44 

2000.00  416.72 407.11 569.56  1317.50 

5000.00  1091.06 1029.69 1439.11  3519.56 

set14 

10000.00  2188.89 2089.83 2865.39  6928.89 

100.00  26.76 24.59 48.20  235.80 

200.00  53.68 49.57 75.20  509.20 

500.00  129.86 116.78 173.60  1250.60 

1000.00  264.29 235.60 367.40  2478.40 

2000.00  528.13 504.80 714.20  4743.00 

5000.00  1332.22 1269.40 1818.00  12670.40 

set15 

10000.00  2699.59 2612.80 3618.40  24944.00 
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The Average of 4 Processors in 

Experiment 1 Task size 

EF SV LL RR 

100 28.682559 29.033 37.260415 97.421

200 55.435881 57.061 67.676111 210.47

500 133.87278 133.67 162.53061 516.38

1000 269.9573 270.69 329.11915 1023.3

2000 540.65441 545.45 659.5912 1959.2

5000 1380.2431 1394.4 1669.7036 5231.7

10000 2766.7034 2798.6 3336.1965 10302
 

4 Processors of Experiment 2 

Algorithm 
Set# Task size 

EF SV LL RR 

100 12.899563 14.98333 22.61765 34.67647 

200 24.558952 30.00833 47.05882 74.88235 

500 58.978166 67.24167 109.8824 183.9118 

1000 119.9607 137.575 223.1765 364.4706 

2000 240.96507 272.8 451.7059 697.5 

5000 613.97817 722.4417 1118.676 1863.294 

set1 

10000 1224.6463 1419.183 2254.882 3668.235 

100 4.9915074 5.521127 46.4 235.8 

200 9.5711253 9.785915 67.4 509.2 

500 22.135881 24.84789 150 1250.6 

1000 45.600849 49.10704 297.6 2478.4 

2000 89.386412 96.28169 580.8 4743 

5000 233.2569 340.6 1458.8 12670.4 

set2 

10000 471.0276 1066.6 2929 24944 

100 8.1327801 8.716157 18.10204 12.03061 

200 15.93361 16.18672 33.55102 25.97959 

500 37.524017 40.67686 72.21429 63.80612 

1000 76.286307 83.41485 149.8265 126.449 

2000 152.46473 159.3493 300.4796 241.9898 

5000 390.0262 414.6201 741.5612 646.449 

set3 

10000 776.88797 827.0699 1525.745 1272.653 

100 6.5392562 8.246377 13.07377 9.663934 

200 13.301653 16.04831 27.22131 20.86885 

500 32.169421 40.31884 59.07377 51.2541 

1000 66.43595 79.92271 118.8689 101.5738 

set4 

2000 133.91116 160.57 244.0902 194.3852 
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5000 343.32645 423.7729 613.7295 519.2787 

10000 685.46901 837.2754 1240.254 1022.295 

100 6.0583554 8.842324 17.7931 13.55172 

200 12.421751 14.14938 33.24138 29.26437 

500 31.599469 34.08299 75.62069 71.87356 

1000 60.824934 72.52282 143.6552 142.4368 

2000 124.10345 144.2365 304.4598 272.5862 

5000 311.11141 369.1079 768.4598 728.1839 

set5 

10000 628.11141 724.1992 1534.437 1433.563 

100 9.0304569 9.418182 31 98.25 

200 17.507614 34.5 56.5 212.1667 

500 42.13198 107.0625 143.6667 521.0833 

1000 85.162437 220.9375 294.5 1032.667 

2000 171.20812 453.5 577.4167 1976.25 

5000 434.78934 1150.813 1442.917 5279.333 

set6 

10000 875.72843 2340.875 2893.5 10393.33 

100 4.0789474 5.171053 5.982332 4.166078 

200 8.3717172 9.644737 11.73498 8.996466 

500 19.945455 23.69474 25.34982 22.09541 

1000 41.262626 48.24474 52.79859 43.78799 

2000 80.624242 95.32368 103.6042 83.79859 

5000 210.18947 247.6947 264.0283 223.8587 

set7 

10000 413.69091 488.9737 539.636 440.7067 

100 5.0635359 5.795518 5.931973 4.010204 

200 9.6823204 10.60504 10.70748 8.659864 

500 21.008403 24.8232 23.55442 21.26871 

1000 43.237569 50.84314 49.80612 42.14966 

2000 86.914365 100.5798 101.6259 80.66327 

5000 220.86188 259.5994 256.4558 215.483 

set8 

10000 436.12431 521.2157 509.5 424.2177 

100 6.2092555 8.728395 16.65672 17.59701 

200 12.820926 17.2716 36.34328 38 

500 29 50.80247 88.16418 93.32836 

1000 59.072435 91.11111 159.0746 184.9552 

2000 116.50704 208.321 334.5672 353.9552 

5000 297.86117 521.9136 838.1343 945.5522 

set9 

10000 604.52515 1102.321 1689.045 1861.493 

100 6.0241228 6.085271 18.53731 17.59701 

200 11.778509 15.33333 36.80597 38 

set10 

500 27.776316 36.6124 84.29851 93.32836 
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1000 56.723684 71.48837 164.4925 184.9552 

2000 111.26535 155.3953 339.3284 353.9552 

5000 282.20175 400.3953 836.806 945.5522 

10000 573.80702 836.3023 1714.791 1861.493 

100 4.524173 5.318066 9.379888 6.586592 

200 9.311828 10.00509 17.44134 14.22346 

500 22.690323 22.80662 40.09497 34.93296 

1000 45.498925 46.64122 82.74302 69.22905 

2000 90.529032 94.99237 164.0503 132.486 

5000 230.14839 245.4758 423.3128 353.9218 

set11 

10000 461.18925 487.6031 849.7709 696.7598 

100 10.205607 12.50327 16.75532 12.54255 

200 19.523364 24.32026 29.84043 27.08511 

500 49.28972 55.95425 76.28723 66.52128 

1000 99.538941 114.9346 143.7766 131.8298 

2000 198.26791 226.6928 298 252.2872 

5000 508.83178 603.6536 742.8511 673.9574 

set12 

10000 1012.0156 1178.412 1498.574 1326.809 

100 6.3839662 6.268293 14.89916 9.907563 

200 11.49789 12.47154 24.95798 21.47154 

500 28.812236 32.45528 59.86179 52.54622 

1000 55.472574 62.73984 128.7563 104.1345 

2000 111.93671 133.4797 250.1513 199.2857 

5000 282.8038 330.2195 639.8908 532.3697 

set13 

10000 575.04008 696.7805 1267.815 1048.067 

100 7.4501279 7.477612 21.97727 26.79545 

200 12.936061 16.49254 41.88636 57.86364 

500 33.12532 39.88806 103.4773 142.1136 

1000 64.222506 81.50746 207.2955 281.6364 

2000 126.6266 181.2687 408.75 538.9773 

5000 326.93862 451.1791 1005.205 1439.818 

set14 

10000 656.68286 945.7313 2068.455 2834.545 

100 7.924581 8.009091 23.42424 35.72727 

200 14.122905 20.51818 46.93939 77.15152 

500 34.100559 50.28182 113.6061 189.4848 

1000 70.329609 107.4727 226.2121 375.5152 

2000 138.84358 223.4091 440.697 718.6364 

5000 359.03352 560.2273 1133.97 1919.758 

set15 

10000 714.71229 1196.964 2291.03 3779.394 
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The 8 Processors of Experiment 1 

Algorithm 
Set# Task size 

EF SV LL RR 

100.00  5.04 4.73 21.09 14.14  

200.00  9.22 9.70 46.26 29.98  

500.00  22.28 23.23 105.35 71.84  

1000.00  44.83 46.57 204.56 145.02  

2000.00  87.58 93.10 405.09 266.42  

5000.00  228.22 241.44 1021.05 718.74  

set 1 

10000.00  453.45 478.41 2056.44 1434.67  

100.00  4.77 5.32 21.02 14.14  

200.00  9.15 9.59 42.67 29.98  

500.00  21.53 23.16 100.77 71.84  

1000.00  44.74 46.96 204.77 145.02  

2000.00  88.05 93.80 403.19 266.42  

5000.00  229.34 240.72 1028.79 718.74  

set 2 

10000.00  451.99 476.01 2060.58 1434.67  

100.00  40.49 49.13 57.00 304.00  

200.00  73.98 91.96 114.50 644.50  

500.00  174.24 217.87 225.00 1544.50  

1000.00  347.91 438.06 433.50 3118.00  

2000.00  696.23 870.57 868.00 5728.00  

5000.00  1775.72 2203.19 2135.50 15453.00  

set 3 

10000.00  3564.72 4379.57 4279.50 30845.50  

100.00  22.37 23.94 27.75 38.00  

200.00  45.88 40.86 53.25 80.56  

500.00  109.17 98.99 128.80 193.06  

1000.00  219.19 201.36 259.63 389.75  

The Average of 4 Processors in Experiment 2 
Task size 

EF SV LL RR 

100.00  7.03 8.07 18.84 35.93  

200.00  13.56 17.16 34.78 77.59  

500.00  32.69 43.44 81.68 190.54  

1000.00  65.98 87.90 162.84 377.61  

2000.00  131.57 180.41 326.65 722.65  

5000.00  336.36 469.45 818.99 1930.48  

10000.00  673.98 977.97 1653.76 3800.50  
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2000.00  435.84 397.66 521.13 716.00  

5000.00  1109.10 1006.09 1301.63 1931.63  

10000.00  2214.90 2070.94 2601.75 3855.69  

100.00  26.91 24.66 55.00 608.00  

200.00  52.86 44.43 100.00 1289.00  

500.00  122.93 104.82 172.00 3089.00  

1000.00  251.66 215.84 324.00 6236.00  

2000.00  502.43 447.08 667.00 11456.00  

5000.00  1286.71 1138.88 1562.00 30906.00  

set 5 

10000.00  2566.87 2311.40 3140.00 61691.00  

100.00  20.16 18.58 29.40 60.80  

200.00  34.96 37.45 57.40 128.90  

500.00  80.74 88.68 140.50 308.90  

1000.00  163.04 176.06 275.20 623.60  

2000.00  334.65 346.22 547.10 1145.60  

5000.00  854.32 909.71 1368.50 3090.60  

set 6 

10000.00  1679.65 1784.46 2752.70 6169.10  

100.00  24.84 27.59 28.85 38.00  

200.00  50.80 48.98 52.25 80.56  

500.00  119.59 113.06 125.31 193.06  

1000.00  253.05 228.98 257.38 389.75  

2000.00  500.34 451.10 519.63 716.00  

5000.00  1265.66 1138.16 1307.00 1931.63  

set 7 

10000.00  2568.81 2267.18 2597.63 3855.69  

100.00  19.99 19.77 29.05 30.40  

200.00  38.01 38.01 49.95 64.45  

500.00  93.74 86.16 128.20 154.45  

1000.00  185.33 178.47 252.20 311.80  

2000.00  371.35 346.76 503.35 572.80  

5000.00  961.65 882.69 1263.90 1545.30  

set 8 

10000.00  1921.20 1778.29 2537.60 3084.55  

100.00  20.00 23.35 30.50 60.80  

200.00  43.29 41.85 58.40 128.90  

500.00  98.74 96.91 136.60 308.90  

1000.00  193.08 194.09 276.60 623.60  

2000.00  391.39 388.03 547.80 1145.60  

5000.00  999.53 966.00 1381.80 3090.60  

set 9 

10000.00  1991.48 1952.58 2749.20 6169.10  

100.00  26.54 24.52 27.76 28.95  set 10 

200.00  50.33 43.78 48.38 61.38  
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500.00  123.11 99.07 123.95 147.10  

1000.00  246.67 201.53 245.10 296.95  

2000.00  495.56 411.08 502.86 545.52  

5000.00  1257.31 1051.57 1251.67 1471.71  

10000.00  2512.82 2088.37 2495.95 2937.67  

100.00  23.33 22.80 28.47 35.76  

200.00  45.95 40.23 53.59 75.82  

500.00  111.58 97.43 131.06 181.71  

1000.00  232.55 192.08 262.24 366.82  

2000.00  468.15 386.45 513.29 673.88  

5000.00  1178.31 983.60 1295.94 1818.00  

set 11 

10000.00  2372.79 1955.21 2581.94 3628.88  

100.00  19.59 19.25 37.29 86.86  

200.00  40.57 39.97 69.86 184.14  

500.00  94.54 88.58 140.86 441.29  

1000.00  189.00 182.05 290.57 890.86  

2000.00  381.59 365.08 568.57 1636.57  

5000.00  990.15 922.34 1424.86 4415.14  

set 12 

10000.00  1961.03 1840.63 2829.57 8813.00  

100.00  19.91 20.65 32.25 76.00  

200.00  39.60 39.68 57.58 161.13  

500.00  96.51 94.53 140.38 386.13  

1000.00  193.28 184.53 280.88 779.50  

2000.00  397.25 370.85 565.88 1432.00  

5000.00  1016.81 936.16 1400.00 3863.25  

set 13 

10000.00  2036.88 1862.82 2815.13 7711.38  

100.00  18.39 19.87 23.68 19.35  

200.00  36.06 36.84 49.50 37.91  

500.00  83.52 89.10 112.44 90.85  

1000.00  170.61 182.56 228.53 183.41  

2000.00  347.52 363.55 444.62 336.94  

5000.00  871.99 913.51 1125.03 909.00  

set 14 

10000.00  1710.65 1853.08 2251.56 1814.44  

100.00  24.50 22.29 31.33 67.56  

200.00  50.23 41.56 57.86 143.22  

500.00  116.31 97.91 138.67 343.22  

1000.00  236.17 201.59 280.22 692.89  

2000.00  480.81 394.82 565.00 1272.89  

5000.00  1214.52 1002.80 1385.56 3434.00  

set 15 

10000.00  2421.73 2019.44 2786.22 6854.56  
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The Average of 8 Processors in 

Experiment 1 Task Size 

EF SV LL RR 

100.00  21.12  21.76 32.03 98.85 

200.00  41.39  40.32 60.76 209.36 

500.00  97.90  94.63 136.66 501.72 

1000.00  198.07  191.38 271.69 1012.87 

2000.00  398.58  381.74 542.83 1860.71 

5000.00  1015.96  969.12 1350.21 5019.82 

10000.00  2028.60  1941.23 2702.38 10019.99 
 

The 8 Processors of Experiment 2 

Algorithm 
Set# Task size 

EF SV LL RR 

100.00  4.77 5.32 21.02 14.14  

200.00  9.15 9.59 42.67 29.98  

500.00  21.53 23.16 100.77 71.84  

1000.00  44.74 46.96 204.77 145.02  

2000.00  88.05 93.80 403.19 266.42  

5000.00  229.34 240.72 1028.79 718.74  

set 1 

10000.00  451.99 476.01 2060.58 1434.67  

100.00  3.92 4.04 50.67 202.67  

200.00  7.95 8.52 84.33 429.67  

500.00  18.39 19.24 149.33 1029.67  

1000.00  37.34 39.26 302.33 2078.67  

2000.00  74.54 81.05 594.67 3818.67  

5000.00  188.02 204.58 1507.33 10302.00  

set 2 

10000.00  375.68 413.57 2963.00 20563.67  

100.00  6.99 7.80 25.84 24.32  

200.00  13.68 16.57 53.92 51.56  

500.00  33.24 40.06 120.56 123.56  

1000.00  66.65 76.11 250.60 249.44  

2000.00  134.73 153.01 486.52 458.24  

5000.00  345.75 395.99 1216.36 1236.24  

set 3 

10000.00  686.94 792.08 2402.72 2467.64  

100.00  4.49 4.77 31.00 33.78  

200.00  8.62 9.09 55.44 71.61  

set 4 

500.00  20.81 22.64 124.56 171.61  
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1000.00  42.00 44.76 262.39 346.44  

2000.00  83.16 88.66 513.33 636.44  

5000.00  215.48 234.21 1284.94 1717.00  

10000.00  428.89 460.99 2568.78 3427.28  

100.00  4.67 4.20 23.24 17.88  

200.00  8.65 8.50 47.47 37.91  

500.00  21.56 21.20 110.38 90.85  

1000.00  41.39 42.90 217.15 183.41  

2000.00  84.36 83.49 440.91 336.94  

5000.00  213.21 223.84 1108.18 909.00  

set 5 

10000.00  427.52 434.91 2254.15 1814.44  

100.00  4.32 4.88 37.67 101.33  

200.00  8.87 9.42 66.50 214.83  

500.00  21.20 22.77 148.83 514.83  

1000.00  43.21 46.92 290.17 1039.33  

2000.00  83.89 92.90 575.00 1909.33  

5000.00  218.02 240.83 1438.83 5151.00  

set 6 

10000.00  434.67 473.42 2873.17 10281.83  

100.00  4.88 5.23 34.44 67.56  

200.00  10.11 9.98 58.89 143.22  

500.00  23.04 24.13 137.67 343.22  

1000.00  46.81 48.07 281.44 692.89  

2000.00  94.35 95.88 563.67 1272.89  

5000.00  243.27 250.65 1391.33 3434.00  

set 7 

10000.00  484.18 494.27 2799.56 6854.56  

100.00  4.00 4.50 22.47 15.59  

200.00  7.50 8.13 43.79 33.05  

500.00  19.14 19.29 101.98 79.21  

1000.00  37.64 39.81 208.79 159.90  

2000.00  74.67 76.63 415.95 293.74  

5000.00  187.35 202.50 1071.15 792.46  

set 8 

10000.00  376.74 399.18 2103.23 1581.82  

100.00  5.19 4.78 37.29 86.86  

200.00  9.75 8.94 60.86 184.14  

500.00  23.76 21.76 148.57 441.29  

1000.00  46.34 45.65 297.71 890.86  

2000.00  95.98 91.03 571.14 1636.57  

5000.00  241.47 233.87 1433.43 4415.14  

set 9 

10000.00  484.31 460.69 2832.57 8813.00  

set 10 100.00  4.54 4.56 11.47 4.54  



 

41

200.00  8.76 10.02 24.42 9.62  

500.00  21.03 22.23 53.45 23.05  

1000.00  42.92 46.65 112.51 46.54  

2000.00  86.80 90.66 219.57 85.49  

5000.00  221.89 237.09 551.88 230.64  

10000.00  441.66 479.61 1128.03 460.38  

100.00  4.33 4.36 22.10 15.57  

200.00  8.28 8.06 45.37 31.44  

500.00  18.93 18.90 108.24 75.34  

1000.00  37.08 39.03 206.41 152.10  

2000.00  74.53 78.10 423.95 279.41  

5000.00  190.98 198.70 1047.07 753.80  

set 11 

10000.00  376.72 400.22 2123.61 1504.66  

100.00  4.47 4.29 19.73 11.69  

200.00  7.85 8.59 39.73 24.79  

500.00  19.53 20.71 95.02 59.40  

1000.00  38.91 42.15 192.08 119.92  

2000.00  77.39 83.12 389.08 220.31  

5000.00  200.06 210.16 985.40 594.35  

set 12 

10000.00  395.92 424.68 1943.35 1186.37  

100.00  6.61 8.31 17.22 9.30  

200.00  13.05 15.83 37.09 19.53  

500.00  31.88 36.65 83.09 46.80  

1000.00  65.12 74.95 161.14 94.48  

2000.00  132.42 145.97 333.56 173.58  

5000.00  338.34 388.86 847.86 468.27  

set 13 

10000.00  673.89 780.80 1719.56 934.71  

100.00  5.53 6.11 30.05 40.53  

200.00  11.14 11.40 57.27 85.93  

500.00  27.50 28.46 127.93 205.93  

1000.00  54.80 59.36 261.00 415.73  

2000.00  109.19 117.87 529.73 763.73  

5000.00  280.57 300.51 1326.13 2060.40  

set 14 

10000.00  558.19 599.05 2614.93 4112.73  

100.00  3.81 4.06 21.04 12.67  

200.00  7.67 8.00 41.48 26.85  

500.00  16.95 19.12 96.96 64.35  

1000.00  35.49 37.65 194.38 129.92  

2000.00  70.47 74.61 398.63 238.67  

set 15 

5000.00  182.41 195.43 1002.46 643.88  
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10000.00  364.92 391.85 2028.60 1285.23  
 

 

The Average of 8 Processors in 

Experiment 2 Task Size 

EF SV LL RR 

100.00  4.84  5.15 27.02 43.89 

200.00  9.40  10.04 50.62 92.94 

500.00  22.57  24.02 113.82 222.73 

1000.00  45.36  48.68 229.52 449.64 

2000.00  90.97  96.45 457.26 826.03 

5000.00  233.08  250.53 1149.41 2228.46 

10000.00  464.15  498.76 2294.39 4448.20 
 

 

The 16 Processors of Experiment 1 

Algorithm 
Set# Task size 

EF SV LL RR 

100.00  3.57 4.81 34.27 33.00  

200.00  6.31 9.02 62.45 78.73  

500.00  15.33 19.38 144.36 146.09  

1000.00  30.60 38.97 278.91 287.73  

2000.00  60.94 75.91 552.18 512.00  

5000.00  158.99 192.49 1366.09 1400.73  

set 1 

10000.00  313.71 383.73 2736.45 2878.00  

100.00  18.67 26.06 37.50 61.60  

200.00  35.07 48.99 68.17 173.20  

500.00  82.26 106.96 152.17 321.40  

1000.00  166.58 218.59 294.33 633.00  

2000.00  333.80 411.87 587.80 1124.20  

5000.00  854.54 1031.78 1444.80 2986.20  

set 2 

10000.00  1712.52 2011.21 2901.20 6183.80  

100.00  19.15 26.38 38.50 61.60  

200.00  35.97 49.68 71.67 173.20  

500.00  83.28 107.82 151.20 321.40  

1000.00  162.95 212.90 292.33 633.00  

set 3 

2000.00  337.48 416.66 582.00 1124.20  
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5000.00  865.59 1028.56 1441.20 2986.20  

10000.00  1701.99 2000.66 2908.80 6183.80  

100.00  18.11 26.37 58.00 154.00  

200.00  32.48 48.01 96.00 433.00  

500.00  77.44 108.07 177.00 803.50  

1000.00  164.09 204.36 331.50 1582.50  

2000.00  317.51 395.38 618.50 2810.50  

5000.00  834.57 1013.31 1492.00 7465.50  

set 4 

10000.00  1629.55 2019.03 3021.50 15459.50  

100.00  21.22 29.83 34.91 38.50  

200.00  37.92 56.22 63.50 108.25  

500.00  91.67 121.70 146.38 200.88  

1000.00  183.68 233.79 281.13 395.63  

2000.00  378.17 445.96 558.25 702.63  

5000.00  951.59 1100.08 1399.00 1866.38  

set 5 

10000.00  1875.61 2173.19 2811.00 3864.88  

100.00  17.11 26.17 50.67 102.67  

200.00  35.57 48.23 76.33 288.67  

500.00  80.55 108.57 168.33 535.67  

1000.00  159.61 205.04 300.33 1055.00  

2000.00  336.67 393.71 592.00 1873.67  

5000.00  846.66 979.34 1493.33 4977.00  

set 6 

10000.00  1685.74 1958.38 2954.00 10306.33  

100.00  18.34 26.20 55.00 308.00  

200.00  35.77 48.48 100.00 866.00  

500.00  80.13 106.00 171.00 1607.00  

1000.00  171.40 208.06 340.00 3165.00  

2000.00  338.30 399.03 686.00 5621.00  

5000.00  851.01 990.90 1561.00 14931.00  

set 7 

10000.00  1691.71 1965.99 3026.00 30919.00  

100.00  20.95 27.82 55.00 308.00  

200.00  35.50 48.36 100.00 866.00  

500.00  81.50 108.19 184.00 1607.00  

1000.00  170.99 206.79 341.00 3165.00  

2000.00  339.69 401.33 607.00 5621.00  

5000.00  877.53 1001.53 1553.00 14931.00  

set 8 

10000.00  1724.43 1969.60 3016.00 30919.00  

100.00  19.78 27.61 51.00 154.00  

200.00  42.02 52.79 70.00 433.00  

set 9 

500.00  97.58 119.29 162.00 803.50  
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1000.00  190.39 217.99 318.50 1582.50  

2000.00  368.13 421.58 602.50 2810.50  

5000.00  979.13 1047.56 1527.50 7465.50  

10000.00  1937.08 2077.10 2996.50 15459.50  

100.00  19.75 25.65 55.00 308.00  

200.00  35.45 49.47 100.00 866.00  

500.00  83.47 106.86 153.86 1607.00  

1000.00  164.55 211.99 359.00 3165.00  

2000.00  336.49 401.57 626.00 5621.00  

5000.00  843.28 964.05 1504.00 14931.00  

set 10 

10000.00  1691.12 1911.82 3041.00 30919.00  

100.00  17.46 24.16 31.10 30.80  

200.00  34.52 45.59 56.19 86.60  

500.00  77.85 103.72 135.40 160.70  

1000.00  157.22 199.82 278.70 316.50  

2000.00  310.08 383.79 551.60 562.10  

5000.00  797.34 967.18 1384.70 1493.10  

set 11 

10000.00  1612.86 1926.21 2754.60 3091.90  

100.00  19.66 28.85 34.80 36.30  

200.00  36.58 55.40 57.50 96.22  

500.00  85.94 119.04 140.22 178.56  

1000.00  179.57 230.14 281.00 351.67  

2000.00  362.22 423.80 558.33 624.56  

5000.00  919.28 1042.85 1398.67 1659.00  

set 12 

10000.00  1851.19 2071.13 2791.00 3435.44  

100.00  18.32 24.71 31.09 28.00  

200.00  33.28 47.92 56.91 78.73  

500.00  81.21 103.24 143.82 146.09  

1000.00  161.41 203.21 276.91 287.73  

2000.00  320.35 393.62 540.91 511.00  

5000.00  834.84 973.36 1377.18 1357.36  

set 13 

10000.00  1629.37 1975.48 2742.00 2810.82  

100.00  20.33 29.16 31.43 24.20  

200.00  39.07 55.94 52.71 61.86  

500.00  90.44 116.37 134.71 114.79  

1000.00  179.83 227.08 268.20 226.07  

2000.00  356.30 414.65 531.86 401.50  

5000.00  918.47 1009.31 1333.00 1066.50  

set 14 

10000.00  1845.16 1956.59 2669.93 2208.50  

set 15 100.00  20.84 32.54 38.75 77.00  
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200.00  43.06 60.98 63.50 216.50  

500.00  96.91 135.67 146.25 401.75  

1000.00  202.05 248.77 299.50 791.25  

2000.00  414.64 482.44 585.25 1405.25  

5000.00  1016.51 1217.21 1472.50 3732.75  

10000.00  2039.60 2410.35 2925.75 7729.75  
 

The Average of 16 Processors in Experiment 1 
Task Size 

EF SV LL RR 

100.00  18.22 25.76 42.47 115.04  

200.00  34.57 48.34 73.00 321.73  

500.00  80.37 106.06 154.05 597.02  

1000.00  162.99 204.50 302.76 1175.84  

2000.00  327.38 390.75 585.35 2088.34  

5000.00  836.62 970.63 1449.86 5549.95  

10000.00  1662.78 1920.70 2886.38 11491.28  
 

 

The 16 Processors of Experiment 2 

Algorithm 
Set# Task size 

EF SV LL RR 

100.00  3.36 4.93 33.82 33.00  

200.00  6.79 8.72 57.09 78.73  

500.00  15.27 20.52 141.82 146.09  

1000.00  30.77 37.62 273.00 287.73  

2000.00  61.63 76.39 553.64 512.00  

5000.00  156.80 192.88 1364.36 1400.73  

set 1 

10000.00  314.33 383.15 2747.45 2878.00  

100.00  3.96 5.21 19.98 6.06  

200.00  6.71 9.93 39.23 15.75  

500.00  16.15 21.52 90.20 29.22  

1000.00  32.56 41.06 189.85 57.55  

2000.00  64.61 86.69 371.18 102.20  

5000.00  165.50 235.59 945.89 271.47  

set 2 

10000.00  328.39 482.47 1901.78 562.16  

100.00  3.68 4.83 26.00 13.96  

200.00  6.83 9.15 51.44 34.64  

set 3 

500.00  16.92 20.74 120.46 64.28  
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1000.00  33.32 40.15 238.54 126.60  

2000.00  66.87 78.73 479.42 224.84  

5000.00  172.04 202.31 1219.16 597.24  

10000.00  338.00 409.25 2434.12 1236.76  

100.00  3.85 5.17 23.81 11.00  

200.00  7.50 9.76 48.58 27.94  

500.00  18.70 24.65 116.06 51.84  

1000.00  37.69 51.94 226.87 102.10  

2000.00  73.74 100.89 467.58 181.32  

5000.00  188.55 254.92 1139.23 481.65  

set 4 

10000.00  374.69 512.03 2292.68 997.39  

100.00  3.84 4.86 26.25 19.25  

200.00  7.33 9.05 52.69 54.13  

500.00  16.61 21.12 125.19 100.44  

1000.00  33.03 41.61 260.19 197.81  

2000.00  67.68 83.73 515.81 351.31  

5000.00  171.47 213.76 1298.88 933.19  

set 5 

10000.00  335.02 429.13 2621.19 1932.44  

100.00  3.85 5.05 26.46 23.69  

200.00  6.74 9.42 59.77 66.62  

500.00  15.98 20.17 133.15 123.62  

1000.00  31.81 42.01 269.77 243.46  

2000.00  63.62 79.90 540.00 432.38  

5000.00  165.28 204.47 1344.46 1148.54  

set 6 

10000.00  325.67 408.28 2686.77 2378.38  

100.00  3.99 5.63 29.40 15.40  

200.00  7.72 10.45 51.45 43.30  

500.00  19.13 23.77 128.20 80.35  

1000.00  37.85 49.80 250.25 158.25  

2000.00  75.92 96.73 508.10 281.05  

5000.00  194.65 249.74 1263.60 746.55  

set 7 

10000.00  383.18 495.11 2531.00 1545.95  

100.00  3.35 4.65 30.08 25.67  

200.00  6.69 8.67 54.58 72.17  

500.00  16.51 19.97 137.08 133.92  

1000.00  31.65 38.13 275.58 263.75  

2000.00  63.80 77.37 542.25 468.42  

5000.00  162.58 198.76 1357.17 1244.25  

set 8 

10000.00  324.46 395.93 2682.50 2576.58  

set 9 100.00  4.40 5.65 37.00 61.60  
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200.00  7.58 10.52 63.80 173.20  

500.00  18.55 24.36 143.80 321.40  

1000.00  37.20 46.51 289.20 633.00  

2000.00  76.68 91.80 589.20 1124.20  

5000.00  193.54 237.30 1450.00 2986.20  

10000.00  378.86 476.03 2895.00 6183.80  

100.00  4.06 5.75 21.30 8.32  

200.00  8.50 10.85 45.89 23.41  

500.00  19.87 25.39 105.16 43.43  

1000.00  39.40 55.54 215.86 85.54  

2000.00  77.99 104.69 427.73 151.92  

5000.00  203.60 269.79 1064.54 403.54  

set 10 

10000.00  406.32 538.59 2156.27 835.65  

100.00  3.48 4.67 26.06 18.12  

200.00  6.42 8.65 54.41 50.94  

500.00  15.13 19.85 124.29 94.53  

1000.00  30.35 37.96 252.65 186.18  

2000.00  60.99 75.11 512.47 330.65  

5000.00  154.92 188.04 1284.82 878.29  

set 11 

10000.00  309.30 376.32 2568.24 1818.76  

100.00  3.38 4.87 18.80 6.16  

200.00  6.45 9.08 40.42 17.32  

500.00  16.20 20.48 104.02 32.14  

1000.00  30.46 38.52 201.32 63.30  

2000.00  62.40 74.85 404.00 112.42  

5000.00  159.43 192.48 1000.28 298.62  

set 12 

10000.00  309.86 377.33 2016.94 618.38  

100.00  3.61 4.98 22.15 9.06  

200.00  6.66 9.22 47.41 25.47  

500.00  15.76 19.71 112.65 47.26  

1000.00  31.99 38.86 214.44 93.09  

2000.00  66.81 76.96 436.06 165.32  

5000.00  166.75 195.71 1129.76 439.15  

set 13 

10000.00  328.65 398.66 2254.03 909.38  

100.00  3.68 5.46 30.54 23.69  

200.00  7.39 9.84 55.38 66.62  

500.00  17.05 21.82 133.08 123.62  

1000.00  34.76 44.28 263.54 243.46  

2000.00  68.45 83.70 534.77 432.38  

set 14 

5000.00  177.31 214.00 1348.00 1148.54  
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10000.00  357.05 425.98 2681.69 2378.38  

100.00  3.88 4.90 14.71 3.85  

200.00  7.84 9.86 33.91 10.83  

500.00  17.62 22.26 77.31 20.09  

1000.00  35.19 44.06 157.49 39.56  

2000.00  70.82 84.88 311.86 70.26  

5000.00  182.89 222.51 796.38 186.64  

set 15 

10000.00  364.88 441.21 1598.90 386.49  
 

 

The Average of 16 Processors in Experiment 2 
Task Size 

EF SV LL RR 

100.00  3.76 5.11 25.76 18.59  

200.00  7.14 9.54 50.40 50.74  

500.00  17.03 21.76 119.50 94.15  

1000.00  33.87 43.20 238.57 185.42  

2000.00  68.13 84.83 479.60 329.38  

5000.00  174.35 218.15 1200.44 877.64  

10000.00  345.24 436.63 2404.57 1815.90  
 

 


