
DYNAMIC TASK SCHEDULING ONTO HETEROGENEOUS MACHINES

USING SUPPORT VECTOR MACHINE

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Yongwon Park

Certificate of Approval:

David Umphress Sanjeev Baskiyar, Chair
Associate Professor Associate Professor
Computer Science and Computer Science and
Software Engineering Software Engineering

Levent Yilmaz George T. Flowers
Assistant Professor Interim Dean
Computer Science and Graduate School
Software Engineering

ii

DYNAMIC TASK SCHEDULING ONTO HETEROGENEOUS MACHINES

USING SUPPORT VECTOR MACHINE

Yongwon Park

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 10, 2008

iii

DYNAMIC TASK SCHEDULING ONTO HETEROGENEOUS MACHINES

USING SUPPORT VECTOR MACHINE

Yongwon Park

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

 Signature of Author

 Date of Graduation

iv

THESIS ABSTRACT

DYNAMIC TASK SCHEDULING ONTO HETEROGENEOUS MACHINES

USING SUPPORT VECTOR MACHINE

Yongwon Park

Master of Science, May 10, 2008
(B.S., Kwangwoon University, 1997)

57 Typed pages

Directed by Sanjeev Baskiyar

Distributed computing has been used to overcome the limitations of single

computer use. However, the benefit of parallelizing computations may substantially

reduce, if there is no well constructed mechanism to coordinate them. In this respect, the

task matching problem of mapping a class of independent tasks on heterogeneous

computers is critical to increase system performance, especially if the purpose is to

reduce the total completion time of tasks. Mapping tasks to non-identical machines is a

known NP-complete problem. Many heuristic algorithms have been used to minimize

the total completion time in parallel systems. In this thesis, we take a novel approach by

using Support Vector Machine (SVM) to dynamically schedule independent tasks to

heterogeneous machines to minimize schedule length.

v

SVM learns from a set of input workload patterns or samples. It maps each

sample to a predefined label. Most learning samples of real world problems are non-

separable in multi-dimensional input space. In our SVM, Radial Basis Function (RBF)

Kernel is used to transform non-separable samples in multi-dimensional input space into

high-dimensional feature space, where the samples are separable. The SVM constructs a

hyperplane with maximal margin between the positive and negative samples in the high

dimensional feature space. This hyperplane is used to classify future mappings.

We constructed a Support Vector Scheduler (SVS), which uses the SVM to map

tasks to machines. Using simulations we compared our algorithm against Early Fast (EF),

Light Least (LL), and Round Robin (RR). We found that the performance using SVM

was similar to EF and better than LL and RR. However, SVM is superior since it can

dynamically adapt to changing inputs and machine characteristics.

vi

Style manual or journal used: IEEE style guide

Computer software used: Microsoft word 2003

vii

TABLE OF CONTENTS

LIST OF FIGURES ... ix

1 INTRODUCTION .. 1

2 BACKGROUND .. 4

3 TASK SCHEDULING ALGORITHM... 5

3.1 Heuristic Algorithm .. 5

3.1.1 Immediate mode mapping heuristics .. 5

3.1.2 Batch mode heuristics ... 6

3.2 GA (Genetic Algorithm) ... 8

3.3 Load sharing algorithm... 9

3.4 Machine Learning ... 10

4 DYNAMIC SCHEDULER USING SVM.. 11

4.1 Overview of SVM... 11

4.2 System Design and Methodology ... 13

4.2.1 System and Workload Models .. 13

4.2.2 SVS (Support Vector Scheduler) .. 14

4.2.3 Generating Training Data ... 15

4.2.4 SV Learning .. 15

4.2.5 Task Matching Onto Non-identical Machines.. 17

5 EXPERIMENT & RESULT ANALYSIS .. 18

viii

5.1 Experiment Procedure... 18

5.2 Results & Analysis.. 19

6 CONCLUSION... 25

REFERENCES ... 26

APPENDIX... 30

ix

LIST OF FIGURES

Figure 1 Sufferage Heuristic... 8

Figure 2 Genetic Algorithm Procedure... 9

Figure 3 Mapping inputs on the multidimensional input space into high dimensional

feature space.. 13

Figure 4 Task Scheduling System Framework ... 14

Figure 5 Support Vector Scheduler... 15

Figure 6 Non-linear mapping by Radial Basis Function (RBF) Kernel 16

Figure 7 Evaluating Input Vectors.. 17

1

1 INTRODUCTION

A very large problem can be solved in distributed computing systems by

decomposing the problem into small tasks, and distributing the workload fairly, and

combining individual results to get a solution. However, as the amount of homogeneous

parallelism in applications decreases, homogeneous systems cannot offer the desired

speedups. Therefore, a suite of heterogeneous architectures to exploit the heterogeneity in

computations has become a critical research issue [Khok93]. Heterogeneous computing

(HC) is the well-coordinated use of a suite of diverse high-performance machines to

provide super-speed processing for computationally intensive tasks with diverse

computing needs. However, the benefit of parallelizing can diminish, if there is no well-

found mechanism to coordinate the resources. In this respect, the task-matching problem

assigning independent tasks to the most suitable machines should be considered to

achieve high performance, especially if the purpose of the system is to minimize the total

completion time, or makespan[Brau01][Mahe99][Meht06][Page05][Fuji03]. In the

general case, assigning independent tasks onto non-identical machines is known to be an

NP-complete problem. So far, many studies have tried to solve the task matching

problem [Brau01][Cho94][Hong04]

[Mahe98][Brau01][Cho94][Hong04][Mahe98][Poje02][Min97][Brau98]. In [Brau01],

eleven conventional heuristic algorithms for mapping a class of independent tasks onto

heterogeneous distributed computing machines are compared. The type of heuristic

methods can be categorized into static mode and dynamic mode. In static mode, all the

2

information necessary for scheduling, such as the expected task completion time of each

machine, is known a priori. In contrast, the scheduling information in dynamic mode is

not known until runtime. Furthermore, dynamic mode is classified into direct mode and

batch mode. In direct mode, a task is dispatched to the appropriate machine on arriving,

but in batch mode, it waits until a dispatching event occurs [Mahe99]. In heuristic

algorithms, the choice of which computers to execute which tasks is commonly

determined using the knowledge of computer speeds for each task and the current load on

each computer [Freu98]. On the other hand, load sharing algorithms consider the average

behavior of total systems, focusing on increasing processor utilization by not allowing

any processor to be idle. In [Kara02], classes of independent tasks are mapped onto the

heterogeneous computing system using a load sharing algorithm. Similar to load sharing

algorithms, load balancing algorithms aim at equalizing the processors’ workloads at the

time of distribution in order to achieve the enhancement of system performance through

system load balance. Load sharing algorithms, in contrast, focus on scattering heavy

workloads into idle or light processors. Page and Naughton [Page05] use a genetic

algorithm for dynamic task scheduling, in which a search for optimal schedules is made

based on the theoretical optimal processing time. In this thesis, we introduce a new

approach to solve the task mapping problem in which a machine learning technique is

used for a direct task matching with the objective of minimizing the total task completion

time. Furthermore, our task mapping scheduler is able to adapt to varying system

environments by changing a decision model where computing powers can change

suddenly with new computers joining or leaving the network. The decision for task

mapping will be conducted based on the evaluation of Support Vector Machine (SVM).

3

For this research, we devised two simulator programs: a training data simulator (TDS),

which creates training data for SVM and a Java simulator based on our Support Vector

Scheduler (SVS) as well as three heuristic algorithms for benchmarking. We use the

SVMlight, an implementation of Vapnik’s Support Vector Machine, which was written in

C by Joakims [Scho99]. The remainder of this paper is organized as follows. In Section 2,

we discuss research related to SVM. In Section 3, we review related scheduling heuristics.

Section 4 is devoted to explaining our system framework in detail. In Section 5, the

analysis of data obtained from simulation will be conducted and the SVS is compared

against conventional heuristics such as Early Fast (EF), Round Robin (RR) and Light

Least (LL) algorithms. Section 6 concludes by presenting a summary of our findings.

4

2 BACKGROUND

Recently, SVMs have gained wide acceptance in the application of pattern

recognition and data mining. SVMs were proposed by Vapnic et al [Burg98]. It has

shown better performance than traditional learning machines such as Neural Network

(NN) and Decision Tree (DT). Its running strategy embodies the principal of structural

risk minimization (SRM) while the objective of neural networks is only based on the

principal of empirical risk minimization (ERM). Therefore, SVMs are able to possess

high generalization ability while minimizing the training error. The subject of SVMs is

said to have started in the late seventies but only recently it has gained attention with

success in pattern recognition, object recognition, speaker identification, face detection,

regression estimation and text categorization [Burg98]. SVMs are commonly used as a

non-linear classifier through kernel trick, though it naturally was proposed as a linear

classifier. So far, SVMs have rarely been used in the area of task scheduling, especially

for direct task mapping. In [Gers04], a SVM is used for regression estimation to improve

the repair strategy in which a complete schedule is found by iteratively repairing an

incomplete schedule for solving a resource constrained project scheduling problem,

known as NP-hard problem. Yi-Huung et al. [YiHu05] use a multi-class SVM in

scheduling the Flexible Manufacturing System (FMS), in which the most suitable

dispatching rule is decided by the SVM and task mapping is conducted according to this

rule until it is replaced by a new dispatching rule.

5

3 TASK SCHEDULING ALGORITHM

In this section, we will review heuristic and machine learning approaches for

solving the task mapping problem.

3.1 Heuristic Algorithm

First, heuristic algorithms can be categorized into batch mode and immediate mode

algorithms. In immediate mode, the task is mapped onto the machine immediately upon

arrival, but in batch mode, it is not scheduled until a mapping event occurs.

3.1.1 Immediate mode mapping heuristics

The Minimum Completion Time (MCT) heuristic is a variant of the fast-greedy

heuristic. It has been used as a benchmark for immediate mode [Mahe99]. MCT assigns

each task to the machine on which the task will complete the earliest. Braun et al.

[Brau01] compared 11 heuristic algorithms and found MCT to perform around the

median of heuristics. MCT requires O(m) time to find the machine that can finish a task

earliest, where m is the number of machines. In the Minimum Execution Time (MET)

heuristic, as a job arrives, each task is assigned to the machine that provides the least

execution time for that task. Although the MET heuristic is very simple with complexity

O(m), it may result in severe imbalance in load across the machines [Brau01]. All the

computing nodes in the cluster are examined to determine the node that gives the best

execution time for the job. As mentioned, MET may result in load imbalance at some

point because it does not consider the ready time of each machine. To handle this

6

problem, SA (Switching Algorithm) has been proposed [Brau01]. SA switches from

MET to MCT when load imbalance is detected. SA has the same complexity with MCT

and its performance is close to MCT [Brau01]. K-percent Best (KPB) heuristic

implements the idea that too much selection pressure may lead to a sub optimal solution

since it suppresses the diversity of search. The parameter K determines the selection

pressure. Therefore, in KPB, a subset of machines, in which K is less than 100, is

selected based on the earliest completion time. A task is assigned to the machine in the

reduced set whose completion time is the least. That is, KPB looks forward to achieving

the improvement in the long run by considering task heterogeneity, instead of promptly

expecting the current marginal improvement. In a similar way, Feasible Robust K-percent

Best (FRKPB) first finds the feasible set of machines for the newly arrived task. From

this set, FRKPB identifies the k-percent that has the smallest execution times for the task

[Meht06]. In Opportunistic load balancing (OLB), a naïve O(n) algorithm [Arms98], each

job is placed in order of arrival on the next available machine regardless of its completion

time. The performance of OLB is worse than the other algorithms.

3.1.2 Batch mode heuristics

In batch mode, tasks are collected into a set that is examined for mapping at

prescheduled times called mapping events. In immediate mode, they are mapped onto the

machines immediately upon arrival. This mode enables the mapping heuristics to

possibly make best decisions at every moment. Because the heuristics have the resource

requirement information for a whole meta-task, when the task arrival rate is high, there

will be a sufficient number of tasks to keep the machines busy between the mapping

events.

7

The Min-Min heuristic algorithm[Brau01] uses an Expected Completion Time (ECT)

table to make a decision for mapping a task onto a suitable machine. The ECT is defined

as:

 jijij REC += (3.1)

The completion time of task i in machine j is calculated by adding the ready time of

machine j to its ECT (3.1). Basically, a task is assigned to the machine that provides

minimum completion time. When there is a contention for the same machine on which

two or more tasks are eligible, a task is assigned to the machine that will result in the

smallest change in ready time. In this algorithm, it is expected that smaller makespans

can be obtained if a larger number of tasks are assigned to the machine that not only

completes them earliest but also executes them fastest. Max-Min heuristic is similar to

Min-Min except a task with maximum completion time is chosen among the candidate

tasks whose completion time is minimum in all the machines. The Max-Min heuristic is

likely to be better when there are more short tasks than long tasks since it can execute

many short tasks concurrently along with the long task. The main idea of the Sufferage

heuristic is to assign a task to a machine that would suffer most if it were not assigned to

a machine. The Sufferage algorithm uses the same ECT table as it is used in Min-Min

heuristic. The algorithm is described in Figure 1. The key point of the algorithm is to use

the sufferage value in task mapping. That is, a machine is assigned to the task that would

“suffer” most in terms of expected completion time if that particular machine is not

assigned to it. When trying to assign a new arbitrary task to a machine that can complete

the task earliest, the machine may be in the state of having a task already assigned. If the

machine is in the state with a task assigned, a new task and an old task will contend for

8

the same machine. When tasks contend for the same machine, task assignment is

determined by their sufferage value. The task replaced by the new task will come back to

task queue and the new task will be removed from it.

For all tasks
For all machines

Update ECT for all tasks
 Find arbitrary a task with Earliest Completion time

 If corresponding machine is already assigned a task

then
Calculate sufferage value
A task with higher sufferage value is assigned

else
Assign a machine that gives the earliest
completion time to a task tentatively.

End If
End For

End For

Figure 1 Sufferage Heuristic

3.2 GA (Genetic Algorithm)

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the

evolutionary ideas of natural selection and genetics. A group of individual solutions

known as a population evolves by natural selection using various operators. Its basic

procedure is described in Figure 2

9

Initialize Population

Evaluate Population

Loop until stopping condition not met

Select parent

Crossover

Mutation

 Create offspring

 Evaluate offspring

 Select survivors

End Loop

Figure 2 Genetic Algorithm Procedure

In GA, selection is made according to the fitness of a population. The operators such as

crossover and mutation are used to provide diversity in exploration.

In [Page05] GA is used to minimize the makespan, and the algorithm outperforms six

other heuristic algorithms (about 10% better than EF). Task scheduling problems in

network computing environments are solved using GAs in [Dong02].

3.3 Load sharing algorithm

In heterogeneous computing environments with two processors classes, fast and

slow, job migration for distributing loads fairly over all processors is performed from

slow to fast processors using six scheduling strategies: Probabilistic (Pr), Probabilistic

with Migration of Generic Jobs (PrM), Shortest Queue (SQ), Shortest Queue with

10

Migration of Generic Jobs (SQM), Least Expected Response Time for Generic Jobs-

Maximum Wait for Dedicated Jobs (LERT-MW), Least Expected Response Time for

Generic Jobs-Maximum Wait for Dedicated Jobs with Migration (LERT-MWM)

[Kara02]. In overall performance, SQ and SQM methods are better than all other methods.

3.4 Machine Learning

Scheduling plays an important role in production control for flexible manufacturing

system (FMS), which involves several real-time decisions, such as part type and machine

selection [YiHu05]. Consequently, a scheduled FMS is able to improve the machine

utilization, enhance throughput, reduce the number of work-in-process (WIP), mean flow

time, and the number of tardy parts. Assigning correct dispatching rules dynamically is

critical for the scheduling problem. After receiving useful information from an FMS, a

good scheduler should be able to make a right decision, i.e., output a right dispatching

rule, for the next period to gain good performance. It needs as much expert knowledge

stored in the scheduler as possible. Due to such reasons, machine learning technique,

which is based on simulated sample data, has been used [YiHu05].

11

4 DYNAMIC SCHEDULER USING SVM

In this section, we will introduce our framework of task scheduling onto non-

identical machines. Our scheduler is focused on minimizing total completion time by

using a Support Vector Machine (SVM) in mapping tasks directly onto suitable machines.

First, we present an overview of the Support Vector Machine.

4.1 Overview of SVM

SVM is a supervised learning algorithm developed over the past decade by

Vapnik and others [Vapn98]. The SVM algorithm addresses the general problem of

learning. The binary version of the SVM attempts to discriminate data into two different

classes. It does so by constructing the optimal segregating hyperplane using a sample set

of training data. Much of the SVM's power comes from its criterion of selecting a

separating hyperplane when many other candidate planes may exist. In the optimal

hyperplane, samples are separated with maximal margin. Statistical learning theory

suggests that, for some classes of well-behaved data, the choice of the maximum margin

hyperplane will lead to maximal generalization when predicting the classification of

previously unseen examples [Vapn98]. The main element of support vector learning is to

construct the optimal separating hyperplane. To construct the optimal hyperplane, we

have to solve the quadratic programming (QP) problem:

minimize ∑∑
==

−
N

i
i

N

ji
jijiQ

1
,

1,2
1 ααα

subject to the constraints

12

∑
=

=

≤≤
N

i
ii

i

y

C

1
0

0

α

α

where, Q is an N x N matrix that depends on the training inputs ix , the labels iy , and the

functional form of the SVM. We call this problem quadratic programming because the

function to be minimized (called the objective function) depends on the iα quadratically,

while iα only appears linearly in the constraints. Definitions and applications of ix , iy and

Q appear in the tutorial by Bruges [Burg98].

The construction of an optimal hyperplane is depicted in Figure 3. Here, a set of

training instances are represented by circles and squares, which denote positive and

negative samples respectively. In the left graph, the samples are shown in the non-linear

inputspace where they are not separable linearly or by a hyperplane. A mapping is

performed to map the samples into the feature space using a non-linear mapping function,

Φ, which transforms the multi-dimensional input space into a still higher dimensional

feature space. In the feature space, samples are separable linearly (using a hyperplane) as

shown in Figure 3. An optimal hyperplane in the feature space separates the squares and

circles with the maximum margin w. The points that lie on the parallel planes that are

closest to the optimal hyperplane are called support vectors.

13

Figure 3 Mapping inputs on the multidimensional input space into high dimensional
feature space

4.2 System Design and Methodology

In this section, we present our system framework in which task matching is

conducted dynamically. As soon as a task arrives, the decision of which machine will

process the arrived task is made by the SVM.

4.2.1 System and Workload Models

We consider a centralized heterogeneous distributed system in which a main

scheduler is responsible for mapping tasks onto client machines. In this model,

distributed machines are connected to a single server machine via high-speed network,

and the server dispatches heterogeneous independent tasks, which arrive at Poisson

arrival rate.

Job arrival time is represented by an exponential random variable with a mean of

1/ λ. The system design is shown in Figure 4. On task arrival, the Support Vector

Scheduler (SVS) sends to the SVM the input vectors which are encoded with information

about the ready time of each machine. The ready time changes at every task mapping.

The SVM servers as an evaluator for the input vectors from SVS. Furthermore, the SVS

Input space Feature space

φ

w

14

dispatches incoming tasks onto the suitable machines based on the result of the

evaluation.

Figure 4 Task Scheduling System Framework

4.2.2 SVS (Support Vector Scheduler)

The process of constructing the scheduler is described in Figure. 5. The SV

learner analyzes the training data and creates the SVM model. Then, the SV classifier

constructs a decision function from the SVM model. Using the decision function, SV

classifier evaluates an input vector from SVS. SVS conducts a task mapping,

communicating with the SV classifier.

SVM

SVS

In Out

M1

M2

Mn

.

.

Task

15

Figure 5 Support Vector Scheduler

4.2.3 Generating Training Data

The training data consist of a processor’s computing power, its ready time, and its

label. Every label of training instances is either positive or negative. We generate the

training data using our Training Data Simulator (TDS). TDS is a set of programmed

Excel sheets. It simulates the makespan using Excel sheets in which a set of computing

power, ready time, and task is created randomly. The label of training instances is

determined by the makespan.

4.2.4 SV Learning

Many real-world problems may not be separable linearly in multi-dimensional

input space. In the case of the non-linear problem, we use a non-linear classifier for SV

learning. One critical process of a non-linear classifier is to map the training data into

high-dimensional feature space via the non-linear mapping functionΦ , create a non-

linear boundary at the same time, and construct maximal margin hyperplane in the feature

space.

Training

Data

SV

Learner

SVM

Classifier

SV

Scheduler

Input

The result of evaluation

SVM model

16

If we use a Kernel function, we can conduct non-linear mapping without explicitly

coordinating input vectors in feature space. This is the reason why we call it a

computational shortcut. A sequence of processes of finding the optimal hyperplane is

depicted in Figure 6. After the non-linear mapping function transforms the input vectors

in multi-dimensional input space into high dimensional feature space via non-linear

mapping function, we find the optimal hyperplane through the maximal margin

optimization process. Ultimately, SV learning is the process of finding the support

vectors which come to lie on the non-linear boundary.

Figure 6 Non-linear mapping by Radial Basis Function (RBF) Kernel

Input space Non-linear boundary

Optimal hyperplane in feature space

Φ

Maximal margin
optimization

17

4.2.5 Task Matching Onto Non-identical Machines

SVS dispatches incoming tasks onto non-identical machines by the evaluation

result of the SV classifier. For a new task arriving, SVS generates input vectors based on

the ready time of each machine. The number of input vector is determined by the number

of machines. That is, SVS should generate the same number of input vectors as machines.

By pre-assigning a task into each machine, we can create a corresponding input vector for

each mapping. The information of the ready time for each mapping is incorporated into

input vectors. Figure 7 shows that the SVM evaluates the input vectors in feature space.

Figure 7 Evaluating Input Vectors

The decision of which machine to run a ready task is made as the result of evaluating

input vectors. The machine that has the best evaluation runs the ready task.

Input vectors

18

5 EXPERIMENT & RESULT ANALYSIS

5.1 Experiment Procedure

Task matching onto non-identical machines is simulated using our Java simulator

and the task arrivals are modeled by a Poisson distribution process. The simulator

implements Support Vector Scheduler (SVS) and three heuristic algorithms (EF,RR,LL).

Heterogeneous independent tasks are simulated by generating random numbers to

represent an instruction number of the meta-task. We created seven task sets, each of

which has different task size, 100, 200, 500, 1000, 2000, 5000, and 10,000 respectively.

We created three processor sets, the processor number of which is 4, 8, and 16,

respectively.

The processor is also simulated by generating a random number to represent its

computing power. We created 30 different computing power sets. They are classified into

2 groups based on the range of computing power. 15 out of 30 computing power sets

ranges from 0 to 100 and other sets range from 0 to 1000. Thus, the experiment is

classified into Experiment 1 and Experiment 2 according to the computing power sets.

Each experiment is conducted on 7 different task sets and 3 different Processor sets. After

conducting each experiment on our SVS and three heuristic algorithms, we average the

results of each experiment separately. Next, the result of SVS will be compared with

three heuristic algorithms.

19

In the following, our SVS and three heuristic algorithms are explained briefly. The

Earliest First (EF) algorithm assigns a task to the machine that will finish it earliest. Its

complexity is O(m) in the worst case, where m is the number of machines. The Lightest

Load (LL) algorithm assigns a task preferentially to the machine with the lightest load. Its

complexity is also O(m). The Round Robin (RR) algorithm assigns a task in a round

robin manner, with complexity O(1). The SVS, evaluating the input vectors

corresponding to each machine, has a complexity of O(m).

5.2 Results & Analysis

The experimental evaluation of the heuristics is performed only in immediate mode.

SVS is compared with 3 immediate mode heuristics. The immediate mode heuristics

consider only one task when they try to reduce the total completion time, and the

schedule cannot change, once decided. The average makespan of four algorithms will be

plotted. In Figure 8, each point corresponds to the average makespan of each algorithm

for different task sizes. From Figure 8 and 9, the average makespan of all algorithms

gradually increases, as the task size grows. However, it can be noted that the degree of

increase is much different according to the algorithm. Obviously, the shape of graph in

SVS and EF changes slightly compared with LL and RR. Notably, LL undergoes a

drastic deterioration of the performance in largest task size. In fact, the performance of

SVS is very close to EF as shown in Figure 8. In Figure 9, the performance of all

algorithms appears to be extremely similar to that in Figure 8, except the performance of

LL declined distinctively from Experiment 1 of Figure 8. In the experiment with 4

processors, SVS and EF outperform LL and RR in all task sizes.

20

Makespan in 4 Pprocessors

0

2000

4000

6000

8000

10000

12000

100 200 500 1000 2000 5000 10000

Task Size

M
a
k
e
s
p
a
n EF

SV

LL

RR

Figure 8 Makespan by task size in 4 processors (Experiment 1)

Makespan in 4 Pprocessors

0

500

1000

1500

2000

2500

3000

3500

100 200 500 1000 2000 5000 10000

Task Size

M
a
k
e
s
p
a
n EF

SV

LL

RR

Figure 9 Makespan by task size in 4 processors (Experiment 2)

21

Figures 10 and 11 show the result from the experiment with 8 processors. Surprisingly,

the SVS outperforms EF slightly in the largest task size for the first time as shown in

Figure 10. However, the result reverses again in another experiment with different

computing power sets (Figure 11). It should be noted significantly in Figure 11 is that

the performance of LL drops so dramatically that RR outperforms LL.

Makespan in 8 Pprocessors

0

2000

4000

6000

8000

10000

12000

100 200 500 1000 2000 5000 10000

Task Size

M
a
k
e
s
p
a
n EF

SV

LL

RR

Figure 10 Makespan by task size in 8 processors (Experiment 1)

22

Makespan in 8 Pprocessors

0

500

1000

1500

2000

2500

3000

100 200 500 1000 2000 5000 10000

Task Size

M
a
k
e
s
p
a
n EF

SV

LL

RR

Figure 11 Makespan by task size in 8 processors (Experiment 2)

Fig. 12 and 13 show the result of 16 processors. From Figures 10, 11, 12, and 13, we can
tell that the performance in 8 and 16 processors is extremely similar to each other.

23

Makespan in 16 Pprocessors

0

2000

4000

6000

8000

10000

12000

100 200 500 1000 2000 5000 10000

Task Size

M
a
k
e
s
p
a
n EF

SV

LL

RR

Figure 12 Makespan by task size in 16 processors (Experiment 1)

Makespan in 16 Pprocessors

0

500

1000

1500

2000

2500

3000

100 200 500 1000 2000 5000 10000

Task Size

M
a
k
e
s
p
a
n EF

SV

LL

RR

Figure 13 Makespan by task size in 16 processors (Experiment 2)

24

On the whole, the experiment results show that EF and SVS outperform LL and RR in all

task sizes. The performance of SVS is close to EF overall. Further, it can be noted that

the number of processors does not have an impact on the performance, but varying

computing power sets affect the performance of LL and RR. Lastly, we can infer that the

total system performance is affected more by its organization of computing power than

by the number of processors.

25

6 CONCLUSION

In this thesis, we used a novel machine learning technology to solve the task

matching problem of mapping a class of independent tasks onto the suitable machines.

Using the Support Vector Machine (SVM), we analyzed the workload patterns of the

total system in which a workload of each machine changes constantly when the machine

consumes tasks. By learning the mapping between the pattern and the corresponding

makespan, the SVM is able to map incoming tasks to appropriate machines. We trained

the SVM using the data that our Training Data Simulator (TDS) created, and constructed

a decision model to process unknown input vectors. Our Support Vector Scheduler

(SVS) and three conventional heuristics for mapping a class of independent tasks onto

non-identical machines were compared under a variety of simulated environments. Using

simulations we compared our algorithm against Early Fast (EF), Light Least (LL), and

Round Robin (RR). Results show that SVS gives a very close performance to EF in all

processor sets and computing power sets. However, SVM is superior since it can

dynamically adept to changing inputs and machine characteristics.

In this research, we used 10,000 samples, which were randomly generated, to

construct a support vector model. The learning capability of the SVM entirely depends

on the samples. In future works, we will study the relation between chosen samples and

their corresponding performances.

26

REFERENCES

[Khok93] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. L. Wang,

"Heterogeneous computing: challenges and opportunities," Computer, vol. 26, pp.

18-27, 1993.

[Brau01] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.

Reuther, J. P. Robertson, M. D. Theys, B. Yao, and D. Hensgen, "A comparison

of eleven static heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems," Journal of Parallel and

Distributed Computing, vol. 61, pp. 810-837, 2001.

[Mahe99] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund,

"Dynamic mapping of a class of independent tasks onto heterogeneous computing

systems," Journal of Parallel and Distributed Computing, vol. 59, pp. 107-131,

1999.

[Meht06] A. M. Mehta, J. Smith, H. J. Siegel, A. A. Maciejewski, A. Jayaseelan,

and B. Ye, "Dynamic resource management heuristics for minimizing makespan

while maintaining an acceptable level of robustness in an uncertain environment,"

Proceedings of the 12th International Conference on Parallel and Distributed

Systems, Volume 1, pp. 107-114, 2006.

[Page05] A. J. Page and T. J. Naughton, "Dynamic task scheduling using genetic

algorithms for heterogeneous distributed computing," Proceedings of 19th IEEE

27

International Parallel and Distributed Processing Symposium, pp. 189a-189a,

2005.

[Fuji03] N. Fujimoto and K. Hagihara, "Near-optimal dynamic task scheduling of

independent coarse-grained tasks onto a computational grid," Proceedings of

2003 International Conference on Parallel Processing, pp. 391-398, 2003.

[Cho94] S. Y. Cho and K. H. Park, "Dynamic task assignment in heterogeneous

linear array networks for metacomputing," Proceedings of the Heterogeneous

Computing Workshop, vol. 94, pp. 66-71, 1994.

[Hong04] B. Hong and V. K. Prasanna, "Distributed adaptive task allocation in

heterogeneous computing environments to maximize throughput," Proceedings of

18th International Parallel and Distributed Processing Symposium, 2004.

[Mahe98] M. Maheswaran and H. J. Siegel, "A dynamic matching and scheduling

algorithm for heterogeneous computing systems," Proceedings of the Seventh

Heterogeneous Computing Workshop, pp. 57, 1998.

[Poje02] C. Po-Jen and W. Chia-Hsin, "An efficient optimization technique for task

matching and scheduling in heterogeneous computing systems," Proceedings of

Parallel and Distributed Systems, 2002.

[Min97] T. Min, H. J. Siegel, J. K. Antonio, and Y. A. Li, "Minimizing the

application execution time through scheduling of subtasks and communication

traffic in a heterogeneous computing system," IEEE Transactions on Parallel and

Distributed Systems, vol. 8, pp. 857, 1997.

[Brau98] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I.

Reuther, J. P. Robertson, and M. D. Theys, "A taxonomy for describing matching

28

and scheduling heuristics formixed-machine heterogeneous computing systems,"

Proceedings of Seventeenth IEEE Symposium on Reliable Distributed Systems, pp.

330-335, 1998.

[Freu98] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D.

Hensgen, E. Keith, T. Kidd, M. Kussow, and J. D. Lima, "Scheduling resources in

multi-user, heterogeneous, computingenvironments with SmartNet," Proceedings

of 1998 Seventh Heterogeneous Computing Workshop, pp. 184-199, 1998.

[Kara02] H. D. Karatza and R. C. Hilzer, "Load sharing in heterogeneous

distributed systems," Proceedings of the 2002 Winter Simulation Conference,

2002.

[Scho99] B. Scholkopf, C. J. C. Burges, and A. J. Smola, "Advances in kernel

methods: Support Vector Learning," MIT Press, Cambridge, MA, 1999.

[Burg98] C. J. C. Burges, "A tutorial on support vector machines for pattern

recognition," Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998.

[Gers04] K. Gersmann and B. Hammer, "A reinforcement learning algorithm to

improve scheduling search heuristics with the svm," Proceedings of 2004 IEEE

International Joint Conference on Neural Networks, vol. 3, 2004.

[YiHu05] L. Yi-Hung, H. Han-Pang, and L. Yu-Sheng, "Dynamic scheduling of

flexible manufacturing system using support vector machines," Proceedings of

the 2005 IEEE, 2005.

[Arms98] R. Armstrong, D. Hensgen, and T. Kidd, "The relative performance of

various mapping algorithms is independent of sizable variances in run-time

29

predictions," 7th IEEE Heterogeneous Computing Workshop (HCW98), vol. 5,

1998.

[Dong02] L. Dongmei, L. Yuanxiang, and Y. Mingzhao, "A genetic algorithm for

task scheduling in network computing environment," Proceedings of Algorithms

and Architecture for Parallel Processing, 2002.

[Vapn98] V. N. Vapnik, Statistical Learning Theory: Wiley New York, pp. 401-567,

1998.

30

APPENDIX

4 Processors of Experiment 1

Algorithm
#set Task size

EF SV LL RR

100.00 27.04 24.60 28.75 36.84

200.00 51.96 47.01 52.09 79.56

500.00 127.86 107.89 128.26 195.41

1000.00 257.13 216.13 262.25 387.25

2000.00 511.69 437.79 520.00 741.09

5000.00 1298.90 1101.17 1326.34 1979.75

set1

10000.00 2612.99 2194.91 2666.72 3897.50

100.00 12.48 14.79 21.82 34.68

200.00 24.81 30.31 45.09 74.88

500.00 58.24 65.20 106.15 183.91

1000.00 118.18 136.76 221.38 364.47

2000.00 241.45 268.63 446.29 697.50

5000.00 613.26 720.83 1122.29 1863.29

set2

10000.00 1229.91 1431.49 2261.24 3668.24

100.00 12.90 14.98 22.62 34.68

200.00 24.56 30.01 47.06 74.88

500.00 58.98 67.24 109.88 183.91

1000.00 119.96 137.58 223.18 364.47

2000.00 240.97 272.80 451.71 697.50

5000.00 613.98 722.44 1118.68 1863.29

set3

10000.00 1224.65 1419.18 2254.88 3668.24

100.00 27.04 24.60 28.75 36.84

200.00 51.96 47.01 52.09 79.56

500.00 127.86 107.89 128.26 195.41

1000.00 257.13 216.13 262.25 387.25

2000.00 511.69 437.79 520.00 741.09

5000.00 1298.90 1101.17 1326.34 1979.75

set4

10000.00 2612.99 2194.91 2666.72 3897.50

100.00 51.57 53.44 67.20 235.80

200.00 99.76 110.30 116.60 509.20

set5

500.00 238.09 261.67 287.60 1250.60

31

1000.00 482.57 529.96 555.40 2478.40

2000.00 967.26 1058.48 1128.00 4743.00

5000.00 2474.59 2726.22 2862.00 12670.40

10000.00 4968.60 5478.07 5723.80 24944.00

100.00 25.53 22.63 37.73 107.18

200.00 48.77 44.33 68.00 231.45

500.00 118.51 108.06 157.73 568.45

1000.00 240.89 209.24 315.09 1126.55

2000.00 485.61 453.82 634.45 2155.91

5000.00 1229.94 1110.00 1605.00 5759.27

set6

10000.00 2460.76 2280.09 3181.45 11338.18

100.00 39.12 39.19 50.50 196.50

200.00 74.89 80.81 94.00 424.33

500.00 178.92 188.43 220.17 1042.17

1000.00 362.24 388.83 451.50 2065.33

2000.00 724.79 775.57 909.50 3952.50

5000.00 1851.65 1986.74 2308.50 10558.67

set7

10000.00 3718.91 3989.30 4610.67 20786.67

100.00 39.76 42.17 50.40 147.38

200.00 75.10 82.48 93.13 318.25

500.00 179.81 188.25 228.88 781.63

1000.00 363.71 395.15 451.75 1549.00

2000.00 729.87 779.15 911.50 2964.38

5000.00 1865.53 1996.96 2313.50 7919.00

set8

10000.00 3747.22 4008.75 4592.13 15590.00

100.00 41.62 46.93 55.88 147.38

200.00 80.58 92.15 96.30 318.25

500.00 191.44 215.11 234.50 781.63

1000.00 387.31 442.07 487.50 1549.00

2000.00 776.74 871.59 964.13 2964.38

5000.00 1983.93 2259.52 2441.75 7919.00

set9

10000.00 3983.63 4499.59 4876.63 15590.00

100.00 26.04 26.67 25.00 26.20

200.00 50.08 50.52 50.13 58.69

500.00 123.99 115.33 116.33 138.96

1000.00 255.16 235.75 242.40 275.38

2000.00 499.37 473.32 481.27 527.00

5000.00 1293.40 1229.62 1218.09 1407.82

set10

10000.00 2572.88 2439.92 2450.29 2799.18

set11 100.00 18.81 19.77 18.75 16.19

32

200.00 38.14 38.47 32.48 34.30

500.00 90.41 94.03 80.42 81.29

1000.00 179.73 184.24 156.73 160.94

2000.00 367.34 376.09 324.77 319.64

5000.00 951.72 932.19 796.49 822.75

10000.00 1860.47 1862.80 1597.17 1635.88

100.00 27.47 25.36 34.50 84.21

200.00 50.91 49.58 66.07 181.86

500.00 129.51 118.14 156.21 446.64

1000.00 253.49 236.42 311.50 885.14

2000.00 510.03 470.12 635.93 1693.93

5000.00 1309.23 1207.27 1613.07 4525.14

set12

10000.00 2622.35 2411.16 3217.14 8908.57

100.00 31.63 32.43 34.81 56.14

200.00 62.11 61.33 71.62 121.24

500.00 149.23 147.87 167.86 297.76

1000.00 297.58 296.76 340.57 590.10

2000.00 598.15 594.67 682.57 1129.29

5000.00 1495.35 1523.41 1736.38 3016.76

set13

10000.00 2996.72 3065.78 3460.33 5939.05

100.00 22.48 23.36 34.00 65.50

200.00 44.21 42.04 55.28 141.44

500.00 105.39 103.17 142.11 347.39

1000.00 209.98 199.76 287.89 688.44

2000.00 416.72 407.11 569.56 1317.50

5000.00 1091.06 1029.69 1439.11 3519.56

set14

10000.00 2188.89 2089.83 2865.39 6928.89

100.00 26.76 24.59 48.20 235.80

200.00 53.68 49.57 75.20 509.20

500.00 129.86 116.78 173.60 1250.60

1000.00 264.29 235.60 367.40 2478.40

2000.00 528.13 504.80 714.20 4743.00

5000.00 1332.22 1269.40 1818.00 12670.40

set15

10000.00 2699.59 2612.80 3618.40 24944.00

33

The Average of 4 Processors in

Experiment 1 Task size

EF SV LL RR

100 28.682559 29.033 37.260415 97.421

200 55.435881 57.061 67.676111 210.47

500 133.87278 133.67 162.53061 516.38

1000 269.9573 270.69 329.11915 1023.3

2000 540.65441 545.45 659.5912 1959.2

5000 1380.2431 1394.4 1669.7036 5231.7

10000 2766.7034 2798.6 3336.1965 10302

4 Processors of Experiment 2

Algorithm
Set# Task size

EF SV LL RR

100 12.899563 14.98333 22.61765 34.67647

200 24.558952 30.00833 47.05882 74.88235

500 58.978166 67.24167 109.8824 183.9118

1000 119.9607 137.575 223.1765 364.4706

2000 240.96507 272.8 451.7059 697.5

5000 613.97817 722.4417 1118.676 1863.294

set1

10000 1224.6463 1419.183 2254.882 3668.235

100 4.9915074 5.521127 46.4 235.8

200 9.5711253 9.785915 67.4 509.2

500 22.135881 24.84789 150 1250.6

1000 45.600849 49.10704 297.6 2478.4

2000 89.386412 96.28169 580.8 4743

5000 233.2569 340.6 1458.8 12670.4

set2

10000 471.0276 1066.6 2929 24944

100 8.1327801 8.716157 18.10204 12.03061

200 15.93361 16.18672 33.55102 25.97959

500 37.524017 40.67686 72.21429 63.80612

1000 76.286307 83.41485 149.8265 126.449

2000 152.46473 159.3493 300.4796 241.9898

5000 390.0262 414.6201 741.5612 646.449

set3

10000 776.88797 827.0699 1525.745 1272.653

100 6.5392562 8.246377 13.07377 9.663934

200 13.301653 16.04831 27.22131 20.86885

500 32.169421 40.31884 59.07377 51.2541

1000 66.43595 79.92271 118.8689 101.5738

set4

2000 133.91116 160.57 244.0902 194.3852

34

5000 343.32645 423.7729 613.7295 519.2787

10000 685.46901 837.2754 1240.254 1022.295

100 6.0583554 8.842324 17.7931 13.55172

200 12.421751 14.14938 33.24138 29.26437

500 31.599469 34.08299 75.62069 71.87356

1000 60.824934 72.52282 143.6552 142.4368

2000 124.10345 144.2365 304.4598 272.5862

5000 311.11141 369.1079 768.4598 728.1839

set5

10000 628.11141 724.1992 1534.437 1433.563

100 9.0304569 9.418182 31 98.25

200 17.507614 34.5 56.5 212.1667

500 42.13198 107.0625 143.6667 521.0833

1000 85.162437 220.9375 294.5 1032.667

2000 171.20812 453.5 577.4167 1976.25

5000 434.78934 1150.813 1442.917 5279.333

set6

10000 875.72843 2340.875 2893.5 10393.33

100 4.0789474 5.171053 5.982332 4.166078

200 8.3717172 9.644737 11.73498 8.996466

500 19.945455 23.69474 25.34982 22.09541

1000 41.262626 48.24474 52.79859 43.78799

2000 80.624242 95.32368 103.6042 83.79859

5000 210.18947 247.6947 264.0283 223.8587

set7

10000 413.69091 488.9737 539.636 440.7067

100 5.0635359 5.795518 5.931973 4.010204

200 9.6823204 10.60504 10.70748 8.659864

500 21.008403 24.8232 23.55442 21.26871

1000 43.237569 50.84314 49.80612 42.14966

2000 86.914365 100.5798 101.6259 80.66327

5000 220.86188 259.5994 256.4558 215.483

set8

10000 436.12431 521.2157 509.5 424.2177

100 6.2092555 8.728395 16.65672 17.59701

200 12.820926 17.2716 36.34328 38

500 29 50.80247 88.16418 93.32836

1000 59.072435 91.11111 159.0746 184.9552

2000 116.50704 208.321 334.5672 353.9552

5000 297.86117 521.9136 838.1343 945.5522

set9

10000 604.52515 1102.321 1689.045 1861.493

100 6.0241228 6.085271 18.53731 17.59701

200 11.778509 15.33333 36.80597 38

set10

500 27.776316 36.6124 84.29851 93.32836

35

1000 56.723684 71.48837 164.4925 184.9552

2000 111.26535 155.3953 339.3284 353.9552

5000 282.20175 400.3953 836.806 945.5522

10000 573.80702 836.3023 1714.791 1861.493

100 4.524173 5.318066 9.379888 6.586592

200 9.311828 10.00509 17.44134 14.22346

500 22.690323 22.80662 40.09497 34.93296

1000 45.498925 46.64122 82.74302 69.22905

2000 90.529032 94.99237 164.0503 132.486

5000 230.14839 245.4758 423.3128 353.9218

set11

10000 461.18925 487.6031 849.7709 696.7598

100 10.205607 12.50327 16.75532 12.54255

200 19.523364 24.32026 29.84043 27.08511

500 49.28972 55.95425 76.28723 66.52128

1000 99.538941 114.9346 143.7766 131.8298

2000 198.26791 226.6928 298 252.2872

5000 508.83178 603.6536 742.8511 673.9574

set12

10000 1012.0156 1178.412 1498.574 1326.809

100 6.3839662 6.268293 14.89916 9.907563

200 11.49789 12.47154 24.95798 21.47154

500 28.812236 32.45528 59.86179 52.54622

1000 55.472574 62.73984 128.7563 104.1345

2000 111.93671 133.4797 250.1513 199.2857

5000 282.8038 330.2195 639.8908 532.3697

set13

10000 575.04008 696.7805 1267.815 1048.067

100 7.4501279 7.477612 21.97727 26.79545

200 12.936061 16.49254 41.88636 57.86364

500 33.12532 39.88806 103.4773 142.1136

1000 64.222506 81.50746 207.2955 281.6364

2000 126.6266 181.2687 408.75 538.9773

5000 326.93862 451.1791 1005.205 1439.818

set14

10000 656.68286 945.7313 2068.455 2834.545

100 7.924581 8.009091 23.42424 35.72727

200 14.122905 20.51818 46.93939 77.15152

500 34.100559 50.28182 113.6061 189.4848

1000 70.329609 107.4727 226.2121 375.5152

2000 138.84358 223.4091 440.697 718.6364

5000 359.03352 560.2273 1133.97 1919.758

set15

10000 714.71229 1196.964 2291.03 3779.394

36

The 8 Processors of Experiment 1

Algorithm
Set# Task size

EF SV LL RR

100.00 5.04 4.73 21.09 14.14

200.00 9.22 9.70 46.26 29.98

500.00 22.28 23.23 105.35 71.84

1000.00 44.83 46.57 204.56 145.02

2000.00 87.58 93.10 405.09 266.42

5000.00 228.22 241.44 1021.05 718.74

set 1

10000.00 453.45 478.41 2056.44 1434.67

100.00 4.77 5.32 21.02 14.14

200.00 9.15 9.59 42.67 29.98

500.00 21.53 23.16 100.77 71.84

1000.00 44.74 46.96 204.77 145.02

2000.00 88.05 93.80 403.19 266.42

5000.00 229.34 240.72 1028.79 718.74

set 2

10000.00 451.99 476.01 2060.58 1434.67

100.00 40.49 49.13 57.00 304.00

200.00 73.98 91.96 114.50 644.50

500.00 174.24 217.87 225.00 1544.50

1000.00 347.91 438.06 433.50 3118.00

2000.00 696.23 870.57 868.00 5728.00

5000.00 1775.72 2203.19 2135.50 15453.00

set 3

10000.00 3564.72 4379.57 4279.50 30845.50

100.00 22.37 23.94 27.75 38.00

200.00 45.88 40.86 53.25 80.56

500.00 109.17 98.99 128.80 193.06

1000.00 219.19 201.36 259.63 389.75

The Average of 4 Processors in Experiment 2
Task size

EF SV LL RR

100.00 7.03 8.07 18.84 35.93

200.00 13.56 17.16 34.78 77.59

500.00 32.69 43.44 81.68 190.54

1000.00 65.98 87.90 162.84 377.61

2000.00 131.57 180.41 326.65 722.65

5000.00 336.36 469.45 818.99 1930.48

10000.00 673.98 977.97 1653.76 3800.50

37

2000.00 435.84 397.66 521.13 716.00

5000.00 1109.10 1006.09 1301.63 1931.63

10000.00 2214.90 2070.94 2601.75 3855.69

100.00 26.91 24.66 55.00 608.00

200.00 52.86 44.43 100.00 1289.00

500.00 122.93 104.82 172.00 3089.00

1000.00 251.66 215.84 324.00 6236.00

2000.00 502.43 447.08 667.00 11456.00

5000.00 1286.71 1138.88 1562.00 30906.00

set 5

10000.00 2566.87 2311.40 3140.00 61691.00

100.00 20.16 18.58 29.40 60.80

200.00 34.96 37.45 57.40 128.90

500.00 80.74 88.68 140.50 308.90

1000.00 163.04 176.06 275.20 623.60

2000.00 334.65 346.22 547.10 1145.60

5000.00 854.32 909.71 1368.50 3090.60

set 6

10000.00 1679.65 1784.46 2752.70 6169.10

100.00 24.84 27.59 28.85 38.00

200.00 50.80 48.98 52.25 80.56

500.00 119.59 113.06 125.31 193.06

1000.00 253.05 228.98 257.38 389.75

2000.00 500.34 451.10 519.63 716.00

5000.00 1265.66 1138.16 1307.00 1931.63

set 7

10000.00 2568.81 2267.18 2597.63 3855.69

100.00 19.99 19.77 29.05 30.40

200.00 38.01 38.01 49.95 64.45

500.00 93.74 86.16 128.20 154.45

1000.00 185.33 178.47 252.20 311.80

2000.00 371.35 346.76 503.35 572.80

5000.00 961.65 882.69 1263.90 1545.30

set 8

10000.00 1921.20 1778.29 2537.60 3084.55

100.00 20.00 23.35 30.50 60.80

200.00 43.29 41.85 58.40 128.90

500.00 98.74 96.91 136.60 308.90

1000.00 193.08 194.09 276.60 623.60

2000.00 391.39 388.03 547.80 1145.60

5000.00 999.53 966.00 1381.80 3090.60

set 9

10000.00 1991.48 1952.58 2749.20 6169.10

100.00 26.54 24.52 27.76 28.95 set 10

200.00 50.33 43.78 48.38 61.38

38

500.00 123.11 99.07 123.95 147.10

1000.00 246.67 201.53 245.10 296.95

2000.00 495.56 411.08 502.86 545.52

5000.00 1257.31 1051.57 1251.67 1471.71

10000.00 2512.82 2088.37 2495.95 2937.67

100.00 23.33 22.80 28.47 35.76

200.00 45.95 40.23 53.59 75.82

500.00 111.58 97.43 131.06 181.71

1000.00 232.55 192.08 262.24 366.82

2000.00 468.15 386.45 513.29 673.88

5000.00 1178.31 983.60 1295.94 1818.00

set 11

10000.00 2372.79 1955.21 2581.94 3628.88

100.00 19.59 19.25 37.29 86.86

200.00 40.57 39.97 69.86 184.14

500.00 94.54 88.58 140.86 441.29

1000.00 189.00 182.05 290.57 890.86

2000.00 381.59 365.08 568.57 1636.57

5000.00 990.15 922.34 1424.86 4415.14

set 12

10000.00 1961.03 1840.63 2829.57 8813.00

100.00 19.91 20.65 32.25 76.00

200.00 39.60 39.68 57.58 161.13

500.00 96.51 94.53 140.38 386.13

1000.00 193.28 184.53 280.88 779.50

2000.00 397.25 370.85 565.88 1432.00

5000.00 1016.81 936.16 1400.00 3863.25

set 13

10000.00 2036.88 1862.82 2815.13 7711.38

100.00 18.39 19.87 23.68 19.35

200.00 36.06 36.84 49.50 37.91

500.00 83.52 89.10 112.44 90.85

1000.00 170.61 182.56 228.53 183.41

2000.00 347.52 363.55 444.62 336.94

5000.00 871.99 913.51 1125.03 909.00

set 14

10000.00 1710.65 1853.08 2251.56 1814.44

100.00 24.50 22.29 31.33 67.56

200.00 50.23 41.56 57.86 143.22

500.00 116.31 97.91 138.67 343.22

1000.00 236.17 201.59 280.22 692.89

2000.00 480.81 394.82 565.00 1272.89

5000.00 1214.52 1002.80 1385.56 3434.00

set 15

10000.00 2421.73 2019.44 2786.22 6854.56

39

The Average of 8 Processors in

Experiment 1 Task Size

EF SV LL RR

100.00 21.12 21.76 32.03 98.85

200.00 41.39 40.32 60.76 209.36

500.00 97.90 94.63 136.66 501.72

1000.00 198.07 191.38 271.69 1012.87

2000.00 398.58 381.74 542.83 1860.71

5000.00 1015.96 969.12 1350.21 5019.82

10000.00 2028.60 1941.23 2702.38 10019.99

The 8 Processors of Experiment 2

Algorithm
Set# Task size

EF SV LL RR

100.00 4.77 5.32 21.02 14.14

200.00 9.15 9.59 42.67 29.98

500.00 21.53 23.16 100.77 71.84

1000.00 44.74 46.96 204.77 145.02

2000.00 88.05 93.80 403.19 266.42

5000.00 229.34 240.72 1028.79 718.74

set 1

10000.00 451.99 476.01 2060.58 1434.67

100.00 3.92 4.04 50.67 202.67

200.00 7.95 8.52 84.33 429.67

500.00 18.39 19.24 149.33 1029.67

1000.00 37.34 39.26 302.33 2078.67

2000.00 74.54 81.05 594.67 3818.67

5000.00 188.02 204.58 1507.33 10302.00

set 2

10000.00 375.68 413.57 2963.00 20563.67

100.00 6.99 7.80 25.84 24.32

200.00 13.68 16.57 53.92 51.56

500.00 33.24 40.06 120.56 123.56

1000.00 66.65 76.11 250.60 249.44

2000.00 134.73 153.01 486.52 458.24

5000.00 345.75 395.99 1216.36 1236.24

set 3

10000.00 686.94 792.08 2402.72 2467.64

100.00 4.49 4.77 31.00 33.78

200.00 8.62 9.09 55.44 71.61

set 4

500.00 20.81 22.64 124.56 171.61

40

1000.00 42.00 44.76 262.39 346.44

2000.00 83.16 88.66 513.33 636.44

5000.00 215.48 234.21 1284.94 1717.00

10000.00 428.89 460.99 2568.78 3427.28

100.00 4.67 4.20 23.24 17.88

200.00 8.65 8.50 47.47 37.91

500.00 21.56 21.20 110.38 90.85

1000.00 41.39 42.90 217.15 183.41

2000.00 84.36 83.49 440.91 336.94

5000.00 213.21 223.84 1108.18 909.00

set 5

10000.00 427.52 434.91 2254.15 1814.44

100.00 4.32 4.88 37.67 101.33

200.00 8.87 9.42 66.50 214.83

500.00 21.20 22.77 148.83 514.83

1000.00 43.21 46.92 290.17 1039.33

2000.00 83.89 92.90 575.00 1909.33

5000.00 218.02 240.83 1438.83 5151.00

set 6

10000.00 434.67 473.42 2873.17 10281.83

100.00 4.88 5.23 34.44 67.56

200.00 10.11 9.98 58.89 143.22

500.00 23.04 24.13 137.67 343.22

1000.00 46.81 48.07 281.44 692.89

2000.00 94.35 95.88 563.67 1272.89

5000.00 243.27 250.65 1391.33 3434.00

set 7

10000.00 484.18 494.27 2799.56 6854.56

100.00 4.00 4.50 22.47 15.59

200.00 7.50 8.13 43.79 33.05

500.00 19.14 19.29 101.98 79.21

1000.00 37.64 39.81 208.79 159.90

2000.00 74.67 76.63 415.95 293.74

5000.00 187.35 202.50 1071.15 792.46

set 8

10000.00 376.74 399.18 2103.23 1581.82

100.00 5.19 4.78 37.29 86.86

200.00 9.75 8.94 60.86 184.14

500.00 23.76 21.76 148.57 441.29

1000.00 46.34 45.65 297.71 890.86

2000.00 95.98 91.03 571.14 1636.57

5000.00 241.47 233.87 1433.43 4415.14

set 9

10000.00 484.31 460.69 2832.57 8813.00

set 10 100.00 4.54 4.56 11.47 4.54

41

200.00 8.76 10.02 24.42 9.62

500.00 21.03 22.23 53.45 23.05

1000.00 42.92 46.65 112.51 46.54

2000.00 86.80 90.66 219.57 85.49

5000.00 221.89 237.09 551.88 230.64

10000.00 441.66 479.61 1128.03 460.38

100.00 4.33 4.36 22.10 15.57

200.00 8.28 8.06 45.37 31.44

500.00 18.93 18.90 108.24 75.34

1000.00 37.08 39.03 206.41 152.10

2000.00 74.53 78.10 423.95 279.41

5000.00 190.98 198.70 1047.07 753.80

set 11

10000.00 376.72 400.22 2123.61 1504.66

100.00 4.47 4.29 19.73 11.69

200.00 7.85 8.59 39.73 24.79

500.00 19.53 20.71 95.02 59.40

1000.00 38.91 42.15 192.08 119.92

2000.00 77.39 83.12 389.08 220.31

5000.00 200.06 210.16 985.40 594.35

set 12

10000.00 395.92 424.68 1943.35 1186.37

100.00 6.61 8.31 17.22 9.30

200.00 13.05 15.83 37.09 19.53

500.00 31.88 36.65 83.09 46.80

1000.00 65.12 74.95 161.14 94.48

2000.00 132.42 145.97 333.56 173.58

5000.00 338.34 388.86 847.86 468.27

set 13

10000.00 673.89 780.80 1719.56 934.71

100.00 5.53 6.11 30.05 40.53

200.00 11.14 11.40 57.27 85.93

500.00 27.50 28.46 127.93 205.93

1000.00 54.80 59.36 261.00 415.73

2000.00 109.19 117.87 529.73 763.73

5000.00 280.57 300.51 1326.13 2060.40

set 14

10000.00 558.19 599.05 2614.93 4112.73

100.00 3.81 4.06 21.04 12.67

200.00 7.67 8.00 41.48 26.85

500.00 16.95 19.12 96.96 64.35

1000.00 35.49 37.65 194.38 129.92

2000.00 70.47 74.61 398.63 238.67

set 15

5000.00 182.41 195.43 1002.46 643.88

42

10000.00 364.92 391.85 2028.60 1285.23

The Average of 8 Processors in

Experiment 2 Task Size

EF SV LL RR

100.00 4.84 5.15 27.02 43.89

200.00 9.40 10.04 50.62 92.94

500.00 22.57 24.02 113.82 222.73

1000.00 45.36 48.68 229.52 449.64

2000.00 90.97 96.45 457.26 826.03

5000.00 233.08 250.53 1149.41 2228.46

10000.00 464.15 498.76 2294.39 4448.20

The 16 Processors of Experiment 1

Algorithm
Set# Task size

EF SV LL RR

100.00 3.57 4.81 34.27 33.00

200.00 6.31 9.02 62.45 78.73

500.00 15.33 19.38 144.36 146.09

1000.00 30.60 38.97 278.91 287.73

2000.00 60.94 75.91 552.18 512.00

5000.00 158.99 192.49 1366.09 1400.73

set 1

10000.00 313.71 383.73 2736.45 2878.00

100.00 18.67 26.06 37.50 61.60

200.00 35.07 48.99 68.17 173.20

500.00 82.26 106.96 152.17 321.40

1000.00 166.58 218.59 294.33 633.00

2000.00 333.80 411.87 587.80 1124.20

5000.00 854.54 1031.78 1444.80 2986.20

set 2

10000.00 1712.52 2011.21 2901.20 6183.80

100.00 19.15 26.38 38.50 61.60

200.00 35.97 49.68 71.67 173.20

500.00 83.28 107.82 151.20 321.40

1000.00 162.95 212.90 292.33 633.00

set 3

2000.00 337.48 416.66 582.00 1124.20

43

5000.00 865.59 1028.56 1441.20 2986.20

10000.00 1701.99 2000.66 2908.80 6183.80

100.00 18.11 26.37 58.00 154.00

200.00 32.48 48.01 96.00 433.00

500.00 77.44 108.07 177.00 803.50

1000.00 164.09 204.36 331.50 1582.50

2000.00 317.51 395.38 618.50 2810.50

5000.00 834.57 1013.31 1492.00 7465.50

set 4

10000.00 1629.55 2019.03 3021.50 15459.50

100.00 21.22 29.83 34.91 38.50

200.00 37.92 56.22 63.50 108.25

500.00 91.67 121.70 146.38 200.88

1000.00 183.68 233.79 281.13 395.63

2000.00 378.17 445.96 558.25 702.63

5000.00 951.59 1100.08 1399.00 1866.38

set 5

10000.00 1875.61 2173.19 2811.00 3864.88

100.00 17.11 26.17 50.67 102.67

200.00 35.57 48.23 76.33 288.67

500.00 80.55 108.57 168.33 535.67

1000.00 159.61 205.04 300.33 1055.00

2000.00 336.67 393.71 592.00 1873.67

5000.00 846.66 979.34 1493.33 4977.00

set 6

10000.00 1685.74 1958.38 2954.00 10306.33

100.00 18.34 26.20 55.00 308.00

200.00 35.77 48.48 100.00 866.00

500.00 80.13 106.00 171.00 1607.00

1000.00 171.40 208.06 340.00 3165.00

2000.00 338.30 399.03 686.00 5621.00

5000.00 851.01 990.90 1561.00 14931.00

set 7

10000.00 1691.71 1965.99 3026.00 30919.00

100.00 20.95 27.82 55.00 308.00

200.00 35.50 48.36 100.00 866.00

500.00 81.50 108.19 184.00 1607.00

1000.00 170.99 206.79 341.00 3165.00

2000.00 339.69 401.33 607.00 5621.00

5000.00 877.53 1001.53 1553.00 14931.00

set 8

10000.00 1724.43 1969.60 3016.00 30919.00

100.00 19.78 27.61 51.00 154.00

200.00 42.02 52.79 70.00 433.00

set 9

500.00 97.58 119.29 162.00 803.50

44

1000.00 190.39 217.99 318.50 1582.50

2000.00 368.13 421.58 602.50 2810.50

5000.00 979.13 1047.56 1527.50 7465.50

10000.00 1937.08 2077.10 2996.50 15459.50

100.00 19.75 25.65 55.00 308.00

200.00 35.45 49.47 100.00 866.00

500.00 83.47 106.86 153.86 1607.00

1000.00 164.55 211.99 359.00 3165.00

2000.00 336.49 401.57 626.00 5621.00

5000.00 843.28 964.05 1504.00 14931.00

set 10

10000.00 1691.12 1911.82 3041.00 30919.00

100.00 17.46 24.16 31.10 30.80

200.00 34.52 45.59 56.19 86.60

500.00 77.85 103.72 135.40 160.70

1000.00 157.22 199.82 278.70 316.50

2000.00 310.08 383.79 551.60 562.10

5000.00 797.34 967.18 1384.70 1493.10

set 11

10000.00 1612.86 1926.21 2754.60 3091.90

100.00 19.66 28.85 34.80 36.30

200.00 36.58 55.40 57.50 96.22

500.00 85.94 119.04 140.22 178.56

1000.00 179.57 230.14 281.00 351.67

2000.00 362.22 423.80 558.33 624.56

5000.00 919.28 1042.85 1398.67 1659.00

set 12

10000.00 1851.19 2071.13 2791.00 3435.44

100.00 18.32 24.71 31.09 28.00

200.00 33.28 47.92 56.91 78.73

500.00 81.21 103.24 143.82 146.09

1000.00 161.41 203.21 276.91 287.73

2000.00 320.35 393.62 540.91 511.00

5000.00 834.84 973.36 1377.18 1357.36

set 13

10000.00 1629.37 1975.48 2742.00 2810.82

100.00 20.33 29.16 31.43 24.20

200.00 39.07 55.94 52.71 61.86

500.00 90.44 116.37 134.71 114.79

1000.00 179.83 227.08 268.20 226.07

2000.00 356.30 414.65 531.86 401.50

5000.00 918.47 1009.31 1333.00 1066.50

set 14

10000.00 1845.16 1956.59 2669.93 2208.50

set 15 100.00 20.84 32.54 38.75 77.00

45

200.00 43.06 60.98 63.50 216.50

500.00 96.91 135.67 146.25 401.75

1000.00 202.05 248.77 299.50 791.25

2000.00 414.64 482.44 585.25 1405.25

5000.00 1016.51 1217.21 1472.50 3732.75

10000.00 2039.60 2410.35 2925.75 7729.75

The Average of 16 Processors in Experiment 1
Task Size

EF SV LL RR

100.00 18.22 25.76 42.47 115.04

200.00 34.57 48.34 73.00 321.73

500.00 80.37 106.06 154.05 597.02

1000.00 162.99 204.50 302.76 1175.84

2000.00 327.38 390.75 585.35 2088.34

5000.00 836.62 970.63 1449.86 5549.95

10000.00 1662.78 1920.70 2886.38 11491.28

The 16 Processors of Experiment 2

Algorithm
Set# Task size

EF SV LL RR

100.00 3.36 4.93 33.82 33.00

200.00 6.79 8.72 57.09 78.73

500.00 15.27 20.52 141.82 146.09

1000.00 30.77 37.62 273.00 287.73

2000.00 61.63 76.39 553.64 512.00

5000.00 156.80 192.88 1364.36 1400.73

set 1

10000.00 314.33 383.15 2747.45 2878.00

100.00 3.96 5.21 19.98 6.06

200.00 6.71 9.93 39.23 15.75

500.00 16.15 21.52 90.20 29.22

1000.00 32.56 41.06 189.85 57.55

2000.00 64.61 86.69 371.18 102.20

5000.00 165.50 235.59 945.89 271.47

set 2

10000.00 328.39 482.47 1901.78 562.16

100.00 3.68 4.83 26.00 13.96

200.00 6.83 9.15 51.44 34.64

set 3

500.00 16.92 20.74 120.46 64.28

46

1000.00 33.32 40.15 238.54 126.60

2000.00 66.87 78.73 479.42 224.84

5000.00 172.04 202.31 1219.16 597.24

10000.00 338.00 409.25 2434.12 1236.76

100.00 3.85 5.17 23.81 11.00

200.00 7.50 9.76 48.58 27.94

500.00 18.70 24.65 116.06 51.84

1000.00 37.69 51.94 226.87 102.10

2000.00 73.74 100.89 467.58 181.32

5000.00 188.55 254.92 1139.23 481.65

set 4

10000.00 374.69 512.03 2292.68 997.39

100.00 3.84 4.86 26.25 19.25

200.00 7.33 9.05 52.69 54.13

500.00 16.61 21.12 125.19 100.44

1000.00 33.03 41.61 260.19 197.81

2000.00 67.68 83.73 515.81 351.31

5000.00 171.47 213.76 1298.88 933.19

set 5

10000.00 335.02 429.13 2621.19 1932.44

100.00 3.85 5.05 26.46 23.69

200.00 6.74 9.42 59.77 66.62

500.00 15.98 20.17 133.15 123.62

1000.00 31.81 42.01 269.77 243.46

2000.00 63.62 79.90 540.00 432.38

5000.00 165.28 204.47 1344.46 1148.54

set 6

10000.00 325.67 408.28 2686.77 2378.38

100.00 3.99 5.63 29.40 15.40

200.00 7.72 10.45 51.45 43.30

500.00 19.13 23.77 128.20 80.35

1000.00 37.85 49.80 250.25 158.25

2000.00 75.92 96.73 508.10 281.05

5000.00 194.65 249.74 1263.60 746.55

set 7

10000.00 383.18 495.11 2531.00 1545.95

100.00 3.35 4.65 30.08 25.67

200.00 6.69 8.67 54.58 72.17

500.00 16.51 19.97 137.08 133.92

1000.00 31.65 38.13 275.58 263.75

2000.00 63.80 77.37 542.25 468.42

5000.00 162.58 198.76 1357.17 1244.25

set 8

10000.00 324.46 395.93 2682.50 2576.58

set 9 100.00 4.40 5.65 37.00 61.60

47

200.00 7.58 10.52 63.80 173.20

500.00 18.55 24.36 143.80 321.40

1000.00 37.20 46.51 289.20 633.00

2000.00 76.68 91.80 589.20 1124.20

5000.00 193.54 237.30 1450.00 2986.20

10000.00 378.86 476.03 2895.00 6183.80

100.00 4.06 5.75 21.30 8.32

200.00 8.50 10.85 45.89 23.41

500.00 19.87 25.39 105.16 43.43

1000.00 39.40 55.54 215.86 85.54

2000.00 77.99 104.69 427.73 151.92

5000.00 203.60 269.79 1064.54 403.54

set 10

10000.00 406.32 538.59 2156.27 835.65

100.00 3.48 4.67 26.06 18.12

200.00 6.42 8.65 54.41 50.94

500.00 15.13 19.85 124.29 94.53

1000.00 30.35 37.96 252.65 186.18

2000.00 60.99 75.11 512.47 330.65

5000.00 154.92 188.04 1284.82 878.29

set 11

10000.00 309.30 376.32 2568.24 1818.76

100.00 3.38 4.87 18.80 6.16

200.00 6.45 9.08 40.42 17.32

500.00 16.20 20.48 104.02 32.14

1000.00 30.46 38.52 201.32 63.30

2000.00 62.40 74.85 404.00 112.42

5000.00 159.43 192.48 1000.28 298.62

set 12

10000.00 309.86 377.33 2016.94 618.38

100.00 3.61 4.98 22.15 9.06

200.00 6.66 9.22 47.41 25.47

500.00 15.76 19.71 112.65 47.26

1000.00 31.99 38.86 214.44 93.09

2000.00 66.81 76.96 436.06 165.32

5000.00 166.75 195.71 1129.76 439.15

set 13

10000.00 328.65 398.66 2254.03 909.38

100.00 3.68 5.46 30.54 23.69

200.00 7.39 9.84 55.38 66.62

500.00 17.05 21.82 133.08 123.62

1000.00 34.76 44.28 263.54 243.46

2000.00 68.45 83.70 534.77 432.38

set 14

5000.00 177.31 214.00 1348.00 1148.54

48

10000.00 357.05 425.98 2681.69 2378.38

100.00 3.88 4.90 14.71 3.85

200.00 7.84 9.86 33.91 10.83

500.00 17.62 22.26 77.31 20.09

1000.00 35.19 44.06 157.49 39.56

2000.00 70.82 84.88 311.86 70.26

5000.00 182.89 222.51 796.38 186.64

set 15

10000.00 364.88 441.21 1598.90 386.49

The Average of 16 Processors in Experiment 2
Task Size

EF SV LL RR

100.00 3.76 5.11 25.76 18.59

200.00 7.14 9.54 50.40 50.74

500.00 17.03 21.76 119.50 94.15

1000.00 33.87 43.20 238.57 185.42

2000.00 68.13 84.83 479.60 329.38

5000.00 174.35 218.15 1200.44 877.64

10000.00 345.24 436.63 2404.57 1815.90

