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The nature of the wireless channels places fundamental limitations on the performance of wire-
less communication systems. In addition to the frequency-selectivity characteristics caused by mul-
tipath propagation, the high-rate wireless and mobile links often exhibit time-selectivity charac-
teristics caused by the user’'s mobility, so-called doubly-selective wireless channels. The quality
of channel acquisition has a major impact on the overall system performance. Therefore, reliable
estimation of doubly-selective channels is well motivated. Equalization is used at the receiver to
compensate for intersymbol interference created by multipath propagation and improve received
signal quality. Equalizers should be adaptive since the channel is time-varying.

In this dissertation, channel estimation and equalization for doubly-selective channels are con-
sidered in Chapter 2 (under single input single output models) and Chapter 3 (under multiple input
multiple output models), where the time-varying channel is assumed to be well described by basis
expansion models (BEM). Our focus is on time-multiplexed training for channel estimation where
the training symbols are periodically inserted and use all transmitted power during their transmis-

sion.



The linear equalization and decision feedback equalization (DFE) of doubly-selective channels
modeled via BEMs are introduced in Chapter 4. There has been much interest in designing time-
variant serial finite impulse response (FIR) linear and DFE equalizers using complex exponential
(CE-) BEMs for equalizers in addition to using CE-BEM for modeling the channel itself. In this
dissertation we show that the Kalman filter formulation of the linear equalizer and an alternative
formulation of the FIR DFE based on a CE-BEM channel model yields the same or an improved
BER at a lower computational cost, without incurring the approximation error inherent in CE-BEM
modeling of equalizers.

In Chapter 5, an adaptive channel estimation scheme, exploiting the oversampled complex
exponential basis expansion model (CE-BEM), is presented for doubly-selective channels where
we track the BEM coefficients via a multiple model approach in this dissertation. We propose to
use a multiple model framework where several candidate Doppler spread values are used to cover
the range from zero to an upper bound, which leads to multiple CE-BEM channel models, each
corresponding to an assumed value of the Doppler spread. Subsequently, the well known interacting
multiple model (IMM) algorithm is used for symbol detection based on multiple state-space models
corresponding to the multiple estimated channels.

Orthogonal Frequency-Division Multiplexing (OFDM), a digital multi-carrier modulation scheme,
has developed into a popular scheme for wideband wireless communication due to its high spec-
tral efficiency and simple equalization. We extend the optimum time-multiplexed training based
channel estimation introduced in Chapter 2 to OFDM systems under doubly-selective channels in
Chapter 6. Compared to the traditional frequency-domain training design, the main advantages of
time-domain training for OFDM system is that the information symbols are not contaminated by

the training symbols as in the frequency-domain training case.

Vi
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CHAPTER1

INTRODUCTION

The doubly-selective channel estimation and equalization algorithms described in this disser-
tation involve some background material in the wireless communication area. We will first briefly
introduce these topics in this chapter.

Starting with the characteristics and representations of wireless channels, two basis expansion
models (BEM) used in this dissertation are introduced and compared. The pros and cons of different
channel estimation and equalization approaches are then discussed. The fundamentals of the Viterbi
decoder, a commonly used information detector in this dissertation, and the principles of Orthogonal

Frequency-Division Multiplexing (OFDM) technology are also introduced.

1.1 Characteristics and Representations of Wireless Communication Channels

In wireless telecommunications, multipath is the propagation phenomenon that results in radio
signals’ reaching the receiving antenna by two or more paths. Causes of multipath include atmo-
spheric ducting, ionospheric reflection and refraction, and reflection from terrestrial objects, such
as mountains and buildings.

The effects of multipath include constructive and destructive interference, and phase shifting of
the signal. This causes Rayleigh fading, named after Lord Rayleigh. Rayleigh fading is a statistical
model for the effect of a propagation environment on a radio signal, such as that used by wireless
devices. It assumes that the power of a signal that has passed through such a transmission medium
(also called a communication channel) will vary randomly, or fade, according to a Rayleigh distri-

bution - the radial component of the sum of two uncorrelated Gaussian random variables. Rayleigh



fading is used to refer to the rapid fluctuations of the received signal in both dimensions — time and
frequency. If we assume that fading is caused by the superposition of a large number of independent
scattered components, then the in-phase and quadrature components of the received signal can be
assumed to be independent zero-mean Gaussian processes. The eAvefidipe received signal

has a Rayleigh probability density function (pdf) given by

fala):= N (1.2)

with o2 being the time-average power of the received signal before envelope detection. The phase
0 of the received signal is uniformly distributed with pdf

fo (0) = % 6c0,2m). (1.2)

The autocorrelation function of the received signal for two-dimensional isotropic scattering and an

omnidirectional receiving antenna is given by [17]
RA(T) = 02 cos(weT) Jo(wmT) (1.3)

wherew, is the carrier radian frequencyj(-) is the zero-order Bessel function of the first kind and
wm IS the maximum Doppler radian frequency spread. The autocorrelation function of the Rayleigh
fading channels is periodic in lag and its envelope decays slowly after the initial zero-crossing.

In a multipath propagation environment, several delayed and scaled versions of the transmitted
signal arrive at the receiver. The span of path delays is called delay spread. Delay spread causes

frequency-selective fading as the channel acts like a tapped delay line filter. Time-selective fading



due to scatter or transmitter/receiver motion results in a Doppler spread, i.e., a pure tone spreads
over a finite spectral bandwidth. The frequency- and time- selective Rayleigh fading channel is the

channel model we consider in this proposal.

1.1.1 Jakes’ Model

As described above, a Rayleigh fading channel itself can be modeled by generating the real
and imaginary parts of a complex number according to independent normal Gaussian variables.
Any model simulating the Rayleigh fading channel has to exhibit the statistical behaviors given in
(1.1) - (1.3).

In [34], Jakes popularized a time-varying model for Rayleigh fading based on summing sinu-

soids. The model supposes the received sigffalat timet is

L
g(t) = Ey Z C cos (wet + wpt cos Ap + ;) (1.4)
=1

where Ej is the amplitude of the transmitted cosine wagg,is a random variable representing
the attenuation of theth path, 4, is a random variable representing the angle of arrival of e
ray with respect to the direction of motion of the receivierjs a random variable representing the
phase shift undergone by th¢h ray. Note that the stochastic sigdl) representing the flat fading
signal can be characterized Bysets of tripleqC;, A;, ®;). The random variable§), A;, and®;

are assumed statistically independent.



To reduce the complexity, the simplified Jakes’ model selects:

1
C) = —, 1.5
! VI (1.5a)
27l
d; =0, (1.5¢)

wherel = 1,2, ..., L. Furthermore/ is of the formL = 4M + 2 whereM is a positive integer.

However, the simplifying relationships forced in (1.5) make this simulation model determinis-
tic and wide-sense nonstationary [53]. Various modifications of Jakes’ model have been proposed,
which we call the family of Jakes’ simulators. Among the Jakes’ simulator family, [81] is worthy
of mention since it generates a wide-sense stationary process and its second-order correlation statis-
tics match desired reference model (1.4) exactly. Following [81], the normalized low-pass fading

process of the statistical sum-of-sinusoids simulation model is defined by

X (t) = X (t) + X (t> > (1.6a)

5 M
X (t) = — Z cos (9;) cos (wmt cosag + @), (1.6b)

VM i

5 M
X (t) = — n (9;) cos (wmt cos ag + ¢) (1.6¢)

™

with
2nl — 1w+ 6
o] = T, = 1,2,...,M

whereqy, ¢;, andy; are statistically independent and uniformly distributed dver, ) for all [.

As M — oo, the envelopéX | is Rayleigh distributed and the phaSg (¢) is uniformly distributed



over[—m, m), for which the pdf’s are given by

fix| (z) = zexp (—f) , x>0,

fox (0)=—, 0e|-mm).

A minor defect, however, occurs in modél§a) whenw,, = 0 or the Doppler spread is small: A
Rayleigh distribution cannot be guaranteed [77]. This problem can be easily resolved by replacing
a common phase by ¢;, which is also uniformly distributed overr, ) for all {. The simulation

model is revised as [77]:

X (1) = Xe(t) +5Xs (1), (1.7a)
5 M

X (t) = T ZZ; cos (U;) cos (wmt cosa; + @) , (1.7b)
5 M

X (t) = T ; sin (9;) cos (wmt cos ag + ¢p) - (1.7¢)

1.1.2 Complex Exponential Basis Expansion Model (CE-BEM)

Statistical modeling of the channel is well motivated when time-varying path delays arise due
to a large number of scatterers. Deterministic basis expansion models have gained popularity for
wireless applications, especially when the multipath is caused by a few strong reflectors and path
delays exhibit variations due to the mobiles [26]. The time-varying taps are expressed as a super-
position of time-varying bases (complex exponentials when modeling Doppler effects) with time
invariant coefficients. By assigning time variations to the bases, rapidly fading channels with coher-

ence time as small as a few tens of symbols can be captured.



Consider a time-varying channel with impulse respol@er) (response at timeto an unit
impulse at time — 7) which includes transmit-receive filters as well as doubly-selective propagation
effects. Lets(¢) denote the complex baseband, continuous-time input signal (with symbol duration
Ts), andz(t) denote the complex baseband, continuous-time received signal. The noise-free re-

ceived signal(t) is the convolution ok(t) andh(t; 7) [41]:

z(t) = /000 h(t;T)s(t — T)dr. (1.8)

Let H(f;7) = [0 h(t;T)e 72™tdt be the Fourier transform df(t; 7); H(f;7) is the delay-
Doppler spreading function of the channel.|H(f;7)| =~ 0 for |r| > 74, thenry is called the
(multipath) delay-spread of the channelj & (f; )| ~ 0 for | f| > f4, the f; is called the Doppler
spread of the channel [13]. ¥{t), x(¢) andh(¢;7) in (1.8) are sampled at symbol rate, then by

[41], for t = nTy € [to, to + NT5), the sampled signal(n) := z(t)|:=7, has the representation

L
z(n) = Z h(n;l)s(n —1) (1.9)

=0

whereT; is the symbol duration. Over the block interval[&f, to + NT), the channel impulse
responsé(n; ) can be represented usiny- + 1 coefficients{w,(1) quO, which remain invariant
during this block but are allowed to change for the next block,@ad+ 1 Fourier basis functions
that are used to describe the temporal variation of the channel and are common for each block.

Then for the block ofty, tg + NTs), the discrete-time baseband equivalent channel model based on

complex exponential basis expansion can be described as [13, 41]:

h(n;l) = qu(l)ej“q”, (1.10)



where

Wq 1= 2%((1*%), q=0,1,...,Qr, (1.11a)
L:=|14/T], (1.11b)
Qr > 2[faNTs]. (1.11¢)

There are two slightly different CE-BEMs involved in this dissertation. One is referred to as the
critically-sampled CE-BEM because the BEM period equals the length of the observed window.
The other uses a longer BEM period and is thus referred to as the oversampled CE-BEM. Section
4.2.1 provides the reader more details about oversampled CE-BEM. Note that the basis functions in

critically-sampled CE-BEM are orthogonal, while in over-sampled CE-BEM they are not.

1.1.3 Discrete Prolate Spheroidal Basis Expansion Model (DPS-BEM)

It has been known that the Fourier basis function based CE-BEM model has the major draw-
back that the rectangular window associated with the discrete Fourier transform (DFT) introduces
spectral leakage [44], which results in the floor in the bit error rate (BER) [3]. In [76, 77], the BEM
coefficients are expanded by the orthogonal discrete prolate spheroidal (DPS) sequences resulting
in a basis expansion model (DPS-BEM). The DPS sequences have a double orthogonality prop-
erty: They are orthogonal over the finite g6t ..., N — 1} and the infinite sef—cc, ...,00} = Z
simultaneously. This remarkable property enables parameter estimation without the drawbacks of
windowing in the case of the Fourier basis expansion.

Let T, denote the symbol interval. For a channel with a multipath delay spreag séc
and a Doppler spread gf; Hz, vpmax := f41s is the maximum normalized Doppler bandwidth.

An ideal basis function should have at least two properties: It is band-limited to the normalized



frequency rangé- 14T, f4Ts]; its energy is time-concentrated in a certain time intej@aV — 1].

Thus, given the maximum normalized Doppler bandwidii; and the window sizeV, we seek a

sequence)(n) to maximize

DN P
oo [0

with the band-limited constraint

faTs ]
() = / W(f)eInf

_des

where

(1.12)

(1.13)

(1.14)

The DPS sequencds),(n)} give us the solution to the constrained maximization problem [58]. In

DPS-BEM, the DPS vectorg, := [14(0),...,104(N — 1)]T € RY (called Slepian sequences in

[77], which are time-windowed DPS sequences) with elemepts) for n € {0,..., N — 1}, are

eigenvectors of the matri€ ¢ RV*N  fulfilling [77]

C"bq = Aq'ﬁbtp

(1.15)

where\; > \; > --- > Ay are eigenvalues of matri¥'. The(y, z) entries in matrixC' are defined

as:

B Sin[27(y — 2)VDmax|
e =202

(1.16)
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Figure 1.1: Basis expansion modeling error comparison between CE-BEM and DPS-BEM models

wherey, z € {0, ..., N — 1}. In this case one take&gs > [2vpmax V| [77, 58].

1.1.4 Modeling Error Comparison between CE-BEM and DPS-BEM

In the following, we use generic notatios and,(n) to indicate that the expressions are
applicable to both CE-BEM and DPS-BEM basis functions. In a basis expansion representation

over a time-block: = {0, 1, ..., N — 1}, itis assumed that [26]

Q
h(n;l) = we(1)ibg(n). (1.17)

q=0



However, the true channel may not be exactly equal to this basis expansion since modeling error

always occurs, so that we have to revisd () as

Q
h(n;1) =) we(1)g(n) + erm(n; 1), (1.18)

q=0

whereepgn (n; 1) is the basis expansion modeling error. By the orthogonality principley: (n; 1)

should be orthogonal to the given basis S@&(n)}gzo when the square err@:ﬁfz_o1 e(n;1)|? is

minimized. Then

N—1 N-—1
D s D (n) = we (1) Y by (n)]. (1.19)
n=0 n=0

Since the orthogonal basis functions of CE-BEM and DPS-BEM sa¥igly ) |4, (n)]? = 1, the
BEM coefficient is derived as
N—-1
wy () = > hin; v (n). (1.20)

n=0

Based on1.19) and (1.20), the least squares approximation of the channel is given by

Q
h(n;1) =Y wy (g (n). (1.21)
q'=0

Fig. 1.1 shows the modeling error comparison between CE-BEM and DPS-BEM models. In
this example, an SISO doubly-selective Rayleigh fading channel defined in (1.7) that is based on the
modified Jakes model is considered. Since the Jakes model is more realistic as a practical wireless
channel, we are trying to approximate a 3-tap Jakes channel by two BEMs: CE-BEM and DPS-
BEM. We choose a data record length of 400 symb®ls= 25us, average oven, = 1000

realizations of randomly generated channels, and plot the channel estimation mean square error

10



(MSE), which is defined as:

MSE =

M, N— L
Z Z > llha ha(n; V)| (1.22)

=0

In Fig 1.1, the basis function dimensiofdg- and( ¢ change with the maximum Doppler bandwidth
Vbmax = fdaTs, and SNR20dB. From the results, we notice that the channel estimation MSE of
DPS-BEM is usually several orders of magnitude lower than that of the CE-BEM. Clearly DPS-

BEM is better than CE-BEM when approximating a band-limited time-varying channel.

1.2 Channel Estimation and Equalization Approaches

1.2.1 Channel Estimation Approaches

For channel state information (CSI) acquisition, three classes of approaches are available: the
training-based approach, the blind approach and the semi-blind approach. In the following, we
briefly describe these three approaches.

In conventional training-based approaches, training sequences (known to the receiver) are time-
multiplexed with the information sequence [21, 32, 63, 79]. Training symbols can be placed either
at the beginning of each burst (as a preamble) or regularly throughout the burst. In rapidly fading
or quasi-static fading channels, preamble-based training may not work well. This motivates em-
bedding training symbols in each transmitted block, instead of concentrating them at the preamble.
More recently, a superimposed training approach has been explored where the training sequences
are added (superimposed) at a low power to the information sequence at the transmitter before
modulation and transmission [65]. There is no loss in information rate, but the channel estima-

tion using superimposed training will be interfered with by information symbols. The conventional

11



time-multiplexed training approach is attractive especially when it decouples symbol detection from
channel estimation and thus simplifies the receiver implementation and relaxes the required channel
identifiability conditions [52].

Blind approaches have been proposed to mitigate the multipath effects in wireless commu-
nications. Blind equalization algorithms are usually based on optimization procedures trying to
minimize some nonlinear functional(s) of the received samples [66]. Compared with a training-
based approach, a blind approach avoids training and thus makes an efficient use of the available
bandwidth [66, 25]. But on the other hand, blind algorithms typically require longer data records
and entail higher complexity [66]. Other major drawbacks of blind approaches are the slow conver-
gence time of the equalizer and possible misconvergence which takes place when the convergence
process reaches a local minimum of the functional to be minimized. For certain applications these
disadvantages can be unacceptable.

Semi-blind approaches use a combination of training and blind cost functions. A training
sequence is used in a semi-blind approach. At the receiver, the channel estimation depends on both
the known training sequence and the unknown information sequence. This way, in addition to the
information carried by the training symbols, the unknown information sequence is also exploited
to enhance the channel estimation performance. Using a semi-blind approach allows the length of
the training sequence to be shortened compared to the traditional training-based approaches [27,
78]. Compared with training-based approaches and blind approaches, semi-blind approaches have a
relative better bandwidth efficientcy than training-based approaches and converge faster than blind

approaches.
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1.2.2 Equalization Approaches

With the emergence of next-generation wireless mobile communications, multimedia services
have increasing demands for high data rates and high mobility. The high data rates give rise to
frequency selectivity, while the mobility and carrier offset introduce time selectivity. To confront
the doubly-selective effects of wireless channels, equalizers are usually employed at the receiver
end. The existing equalizers can be divided into two types: block equalizers and serial equalizers.

The interest in block equalization can be motivated as follows. When transmission channels are
affected by both frequency and time selectivity, reliable communication can be achieved by dividing
the information data stream into short blocks and by adding a header of known data to each block.
The known symbols allow us to obtain the reliable channel identification and to prevent interference
between two adjacent blocks. Receiver processing can be carried out on a block-by-block basis so
that if the transmission channel does not change appreciably during the transmission of each block,
the receiver has to cope with the frequency selectivity only. Block equalization strategies are used
to compensate for this channel impairment [36, 18]. However, block equalizers are usually complex
to design since the inversion of a large matrix is required. Especially, since a doubly-selective
channel can not be diagonalized by a channel-independent transformation, the implementation of
block time-varying (TV) equalizers, which collect and process in blocks all the available data in the
received frame, leads to a very high computational complexity [5].

Serial equalizers process few data at a time and provide a flexible trade-off between complexity

and performance [66].

13



1.3 Optimal Maximum Likelihood Detector (Viterbi Decoder)

In a communication system, the role of channel estimation is to aid in extracting the desired
information data from the distorted receive symbols. Next we will briefly review the commonly
used symbol detection technique - Viterbi detector.

The Viterbi algorithm, originally introduced as a method for decoding convolutional codes,
has become one of the most commonly used detectors in digital communications. Forney [23] has
shown in 1972 that the algorithm solves maximum likelihood sequence detection (MLSD) of a
pulse amplitude modulated (PAM) sequence of symbols with finite intersymbol interference (ISI)
and memoryless noise. The algorithm has earned its place in almost every modern digital commu-
nications textbook where it is recognized as the optimal sequence detector for memoryless noise.

Consider a SIMO (single-input multiple-output) FIR (finite impulse response) linear channel
with R outputs and discrete-time impulse respohse; ). Let {s(n)} denote the input sequence

to the SIMO channel. The noisy channel output is given by

L

y(n) =Y h(n;l)s(n —1) +n(n) (1.23)

=0

whereL + 1 is the multipath channel length andn) is the white complex Gaussian noise. Assume
that the white Gaussian noisgn) is uncorrelated with{s(n)}, with meanE{n(n)} = 0 and
E{[n(n +1)][n(n)"} = 02Ird(r).

Givens(n), y(n) is a R-dim Gaussian random vector with megiy-_, h(l)s(n — I) and vari-

anceo%IR. The joint probability density function (pdf) af(n) given{s(n), s(n—1),...,s(n—L)}

14



I 2
1 1
p(y(n)|s(n),....s(n - L)) = (o) P T o2 y(n) = > h(n;l)s(n —1) (1.24)
woy) on —
wheres(n) = 0 for n < 0. The joint pdf of the random vectofgy(0), y(1), ..., y(IN — 1)}
given the transmitted sequengg0), s(1), ..., s(N —1)}is

1 1 L 2
- (ro)E “PY 752 y(n) - Zh(l)s(” —1) } ;
n=0 "7 K 1=0
1 N—-1 L 2
= (ro )V exp {02 Z y(n) — Zh(l)s(n —1) } . (1.25)
! T n=0 1=0

Taking the logarithm on both sides of the equation above, we have

In p(y(0),...,y(IN —1)|s(0),...,s(N —1))
2

N-1 L
1
= —NRln(moy) — — y(n) — Z h(n;l)s(n —1) (1.26)
T n=0 1=0
The ML (maximum likelihood) estimate of the input sequeteé)), ..., s(N — 1)} is the one

that maximizes

p(y(0),..,y(N = 1) [ 5(0),...,s(N = 1));

or equivalently maximizes

In p(y(0),...,y(N —1) | s(0),...,s(N —1));
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or minimizes the Euclidean distance

This MLSE (maximum likelihood sequence estimation) criterion is equivalent to the problem of
estimating the state of a discrete-time “finite-state machine”. In this case, the finite-state machine
is the discrete-time channel with coefficied#s(n; )} and its state at any timeis represented by

the L most recent input symbols
State, = (s(n), s(n—1),..., s(n—L+1))

wheres(n) = 0 for n < 0. If the input symbols ard/-ary, the finite-state machine has” states.
Consequently, the channel is described byvah-state trellis and the Viterbi algorithm may be used

to determine the most probable path through the trellis. In brief, we describe the Viterbi algorithm
in the following 3 steps:

Step 1 We begin withy(L), from which we compute tha/~+! metrics

L 2

y(n) = > h(n;1)s(n—1)

=

L
0

n=0

The M+1 possible sequences are divided idtd groups according to th&/” states. From each
group, we pick the one with the minimum metric, i.e., the most probable sequence, and assign to

the surviving sequence the metric

L 2

PMy(s(L), ..., s(1)) :{25? E:O

L

y(n) = > h(n;l)s(n—1)

=0
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The M — 1 remaining sequences from each of ihé groups are discarded.

Step 2 Upon reception ofy(L + n), n > 1, compute thel/ “+! metrics

2

L
y(L+n) =Y h(n;l)s(L+n-1)
=0

+ PM,—1(s(L+n—-1), ..., s(n)).

Again, theM L *! sequences are divided infd” groups corresponding to the” possible state
(s(L +n),...,s(n+ 1)) and the most probable sequence from each group is selected while the

otherM — 1 sequences are discarded. The surviving metrics are

PM,(s(L+n), ..., s(n+1))

2

= min

i + PMp_1(s(L+n—1), ..., s(n))

L
y(L+n)—> h(n;D)s(L+n-—1)
=0

1.27)
Step 3 If y(L + n) is the last received sample, from thé” survivor sequences, pick the one
as the ML (maximum likelihood) sequence estimator which has the minimum metric; otherwise, set

n =n + 1 and then go to step 2.

1.4 Orthogonal Frequency Division Multiplexing (OFDM)

Frequency division multiplexing is a technology that transmits multiple signals simultaneously
over a single transmission path, such as a cable or wireless system. Each signal travels within its
own unique frequency range (carrier), which is modulated by the data (text, voice, video, etc.).

Orthogonal frequency division multiplexing (OFDM) distributes the data over a large number
of subchannels that are spaced apart at precise frequencies (see Fig. 1.2). This spacing provides the

“orthogonality” in this technique which prevents the demodulators from seeing frequencies other
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Figure 1.2: Subchannels are 312 kHz wide in 802.11a and HyperLAN Il

than their own. The benefits of OFDM are high spectral efficiency, resiliency to radio frequency
(RF) interference, and lower multipath distortion. This is useful because in a typical terrestrial
broadcasting scenario there are multipath-channels (i.e. the transmitted signal arrives at the receiver
using various paths of different length). Since multiple versions of the signal interfere with each
other (intersymbol interference) it becomes very hard to extract the original information.

OFDM has already been included in digital audio/video broadcasting (DAB/DVB) standards
in Europe, and has been successfully applied to high-speed digital subscriber line (DSL) modems in
the United States. Recently, it has also been proposed for digital cable television systems and local
area mobile wireless networks, such as those specified in the IEEE802.11a, and the HIPERLAN/2
standards [15]. By implementing an inverse fast Fourier transform (IFFT) at the transmitter and
a fast Fourier transform (FFT) at the receiver, OFDM converts an intersymbol interference (I1SI)
channel into parallel ISI-free subchannels with gains equal to the channel’s frequency response val-
ues on the FFT grid. To eliminate interblock interference (IBI) between successive IFFT-processed
blocks, a cyclic prefix (CP) of length no less than the channel order is inserted per transmitted block.
Discarding the CP at the receiver not only suppresses IBI, but also converts the linear channel con-
volution into circular convolution, which facilitates diagonalization of the associated channel matrix

(see, e.g., [71]). An OFDM transceiver diagram is shown in Fig. 1.3.
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Figure 1.3: An OFDM transceiver diagram
1.5 Outline and Contribution

The dissertation is organized in the following chapters and the author’s contributions are as
follows:

Chapter 2: The channel estimation for doubly-selective channels is considered using time-
multiplexed training. The time-varying channel is assumed to be well-described by a basis expan-
sion model using discrete prolate spheroidal sequences as the bases (DPS-BEM). The popular linear
least squares and minimum mean-square-error approaches are exploited to estimate the basis expan-
sion coefficients. Computer simulations based on Monte Carlo runs are provided. With the channel
estimation MSE and bit error rate as the performance measures, we find that the channel estima-
tion based on DPS-BEM significantly outperforms the more widely used complex exponential basis

expansion model-based channel estimation.
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Certain aspects of pilot symbol aided modulation (PSAM) parameter design for DPS-BEM-
based doubly-selective channels is investigated, following the CE-BEM results in [41, 75]. The
optimum time-multiplexed training structure design based on an asymptotic DPS expression is pre-
sented by minimizing the DPS-BEM-based channel estimation MSE. The training power allocation
problem is also addressed in this chapter.

Chapter 3: The channel estimation approaches proposed in Chapter 2 are then extended to
multiuser MIMO systems in this chapter. We suppose there are multiple users at the transmit side,
and each user has one antenna.

Chapter 4: The conventional Kalman filter is used as a time-varying (TV) minimum mean-
square-error (MMSE) equalizer for doubly-selective channels. A formulation of FIR decision feed-
back equalizer is proposed for doubly-selective channels. The proposed equalizers have the main
advantages that they do not incur the approximation error inherent in BEM modeling of equalizers.
The BER performance and the computational complexity of the proposed design are investigated
by means of Monte Carlo computer simulations, and compared with the existing BEM-based TV
equalizers.

Chapter 5. An adaptive channel estimation scheme, exploiting the oversampled CE-BEM, is
presented for doubly-selective channels where we track the BEM coefficients via a multiple model
approach. In the past work the number of BEM coefficients used to model the doubly-selective
channels for channel estimation has been based on an upper bound on the channel Doppler spread.
The higher the Doppler spread, the more the number of BEM coefficients leading to a higher channel
estimation variance. In this chapter we propose to use a multiple model framework where several
candidate Doppler spread values are used to cover the range from zero to an upper bound, leading to

multiple CE-BEM channel models, each corresponding to an assumed value of the Doppler spread.

20



Subsequently the well known interacting multiple model (IMM) algorithm is used for symbol de-
tection based on multiple state-space models corresponding to the multiple estimated channels.

Chapter 6: The pilot-aided doubly-selective channel estimation for OFDM systems is con-
sidered in this chapter. The time-varying channel is described by CE-BEM or DPS-BEM. The
“optimum” training strategies proposed in Chapter 2 are applied to OFDM systems under doubly-
selective channels. Compared to the traditional frequency-domain training design, the main ad-
vantages of time-domain training for OFDM system is that the information symbols are not con-
taminated by the training symbols as in the frequency-domain training case. The performance of
frequency-domain training-based channel estimation and time-domain training-based channel esti-
mation is presented and compared.

Chapter 7: The dissertation concludes in Chapter 7 with future research topics suggested.
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CHAPTER 2
SISO DouBLY-SELECTIVE CHANNEL ESTIMATION USING DISCRETEPROLATE SPHEROIDAL

BASIS EXPANSION MODELS AND TIME-MULTIPLEXED TRAINING

2.1 Introduction

Doubly-selective channel estimation using complex exponential basis expansion model (CE-
BEM) and time-multiplexed training is considered in [41, 75], where CE-BEM based on Fourier
basis functions is applied to represent the time-variant channel. However, since the Fourier basis
expansion has the major drawback that the rectangular window associated with the discrete Fourier
transform (DFT) introduces spectral leakage [44], the bit error rate (BER) suffers an error floor [3,
76]. In [76, 77], the linear minimum mean-square-error (MMSE) channel estimation using discrete
prolate spheroidal (DPS) sequences is considered. It is shown that DPS-BEM-based approaches
significantly outperform CE-BEM-based approaches for the doubly-selective channel estimation
and data detection.

To acquire the channel state information at the receiver, training symbols are usually peri-
odically inserted during transmission, which is known as pilot symbol aided modulation (PSAM)
[16]. Optimization of the PSAM for CE-BEM based doubly-selective channel models has been
considered in [41, 75] where the time-multiplexed training sequence is designed to minimize the
channel estimation mean-square-error (MSE). In the case of CE-BEM with independent basis ex-
pansion coefficients, minimizing the channel estimation MSE is also shown (in [41, 75]) to be
equivalent to maximizing a lower bound on the estimated channel-based average capacity. No such
considerations are to be found in [76, 77] where the doubly-selective is represented by DPS-BEM.

The linear MMSE channel estimator for DPS-BEM-based MIMO-OFDM (multiple input multiple
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output-orthogonal frequency division multiplexing) doubly-selective channels is introduced in [49],
but the training design problem is not considered.

In this chapter, we consider the channel estimation for doubly-selective single input single
output (SISO) channels described by DPS-BEM. Both linear least squares (LS) and minimum mean-
square-error (MMSE) estimators are presented and compared.

Our system model is exactly as in [41] except that instead of CE-BEM as in [41] we use DPS-
BEM. In [41, 75], the linear MMSE channel estimator is used, which requires knowledge of the
noise variance and of the covariance matrix of the channel basis expansion coefficients. While the
former may be known at the receiver, the latter is seldom known. In [41], the latter is assumed to
be known and diagonal. For the Jakes’ model, the basis expansion coefficients for a given tap are
not mutually uncorrelated, hence the diagonal assumption does not always hold true. The linear LS
channel estimator does not need to know the covariance matrix or make any assumption regarding
its nature. On the other hand, the performance of the MMSE channel estimator is better than that of
the LS estimator; however, the difference is negligible at high SNRs. [41] does not consider the LS
channel estimation whereas [77] has used the LS channel estimator but not the MMSE estimator.

Certain aspects of PSAM parameter design for DPS-BEM-based doubly-selective channels
is also considered, following the CE-BEM results in [41, 75]. Since the Slepian sequences as a
solution to (1.15) are hard to work with analytically, we give asymptotic DPS expressions based on
some heuristic considerations. Then the optimum time-multiplexed training structure design based
on asymptotic DPS expressions is presented by minimizing the DPS-BEM-based channel estimation

MSE. The training power allocation problem is finally addressed.
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2.2 System Model

Consider a doubly-selective single input single output (SISO) finite impulse response (FIR)
linear channel. Lek(n;!) denote the symbol-rate impulse response (the channel response at time
n to a unit input at timen — [), wheren € [0,1,...,N — 1] andl € [0, L] capture the time-
and frequency- selectivity of the channel, respectively. Over a time-block of/éjzgiven NV

orthonormal functions of,(n), the following representation is always true

h(n;l) = wq(D)g(n), (2.1)

wherei, (n) is theg-th basis function and the basis expansion coeffiaigfit) is fixed over the data
block. As the above representation is not parsimonious, the following BEM is used to approximate

model @.1):
Q

heem(n;l) =Y we(1)iby(n), (2.2)

q=0
where only@ + 1 << N basis functions are involved. Hence, the channel modeling error can be

expressed as:
N-1

epen (n;1) = h(n;l) — hpem(n; 1) = Y we(1)vg(n). (2.3)
=Q+1

Let T denote the symbol interval. For a channel with a multipath delay spreag sdc and a

Doppler spread of; Hz, in the complex exponential basis expansion model (CE-BEM) [56, 38],
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one takes

P (n) elwan,
o = 2mlg— 2PN,
L = LTd/TsJ and QF = Q[Z/DmaXN—‘

wherevpmax 1= f4Ts is the maximum normalized Doppler bandwidth. After normalization to unit

norm, we have

1 on(a— n
¢((]F)(n) _ ﬁe(m(q Qr/2)n/N) (2.4)

In the discrete prolate spheroidal sequence-based BEM (DPS-BEM), the DPS mft)oe;
RY (called Slepian sequences in [77], which are time-windowed DPS sequences) with elements

9 (n) forn € {0, ..., N — 1}, are eigenvectors of the matitx € RV*N_fulfilling [77]
CplY =AY, (2.5)

where)\, are eigenvalues of matri'. The(y, z) entries in matrixC' are defined as:

cl, - sin[27(y — 2)VDmax|
v m(y — )

(2.6)

wherey, z € {0, ..., N — 1}. In this case one take€gs > [2vpnax V] [77, 58].
In the following, as in [77], we will use a general notation for the basis expansion quantities
Pe(n), @, wy, andh to indicate that all expressions are applicable to any set of orthonormal basis

functionsyy(n).
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Let {s(n)} denotes transmitter’s information sequence. Using the discrete-time baseband

equivalent channel model, the received sequence at the receive antenna can be written as

L

2(n) = hemw(n;1)s(n — 1) +n(n), (2.7)
1=0

wheren(n) is the additive complex Gaussian noise at the receive antenna, with zero-mean and

. 9 . . . )
varianceo, . Plugging .2) into (2.7), we can rewritez(n) as:

Q L
xz(n) = Z Pq(n) [ wg(l)s(n —1)| +n(n). (2.8)
0

q:O =

We consider block transmission as in [41], where transmitted symbols are collectéd into
blocks withs = [s(0),s(1),...,s(N — 1)]7 as the0th block and received(n)’s are also collect
into blocks withz = [2(0),z(1),...,#(N — 1)]T as0th block. To avoid inter-block interference
(IBI), as in [41], L guard zeros are inserted in each block at the transmitter. Then the matrix-vector

input-output relationship of2(8) is given by

Q

T = Z Dy W;ys +n, (2.9)
q=0

wheren is defined similarly tae, Dy, = diag[t,] with b := [104(0),9¢(1), ..., Yg(N — 1)), and
W,'sareN x N lower triangular Toeplitz matrices with 1st colurin,(0), wy(1), ..., wq(L),

0,...,0".
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2.3 Channel Estimation

Since,(n) are known by the receiver, the objective of the channel estimator is to find basis
expansion coefficients ir2(2) from the received samples corresponding to the training symbols.
The proposed channel estimation relies on time-multiplexed training symbols at known positions.

As in [41], each transmitted block consists ofJ segments (sub-blocks) of training and in-
formation symbols(n) andc(n), respectively, and each segment has the same length. Then the
general structure of is

s=[bl, el .. b] )T, (2.10)

whereb; with length N, andc; with length N, for all j € [1, J], denote training and information
symbol sub-blocks, respectively. Thereforé,= J(N, + N.) with N, > L. Let M = N, + N,
denote the sub-block size. Obviously, the fitstymbols in the “training part” of thgth subblock
of the received signal are contaminated by information symbols in the predgdingth subblock.
In the similar way, the firsL. symbols in the “information part” of thgth subblock of the received
signal are also contaminated by the ladraining symbols in the currerith subblock. In order to
avoid the inter-subblock interference (ISBI) so that the channel estimation is decoupled from data
detection, we will choose the first and the lassymbols in each training subblock to be zeros, as
in [41].

Defineb; := [b((j—1)M),b((j—1)M+1),...,b((j—1)M+N,—1)]"". Further defineD,;, . =
diag[tp, j] wherey, ; = [g((j — )M + L), g ((j —1)M + L+1), ..., 04((j — 1) M + N, — 1)]%.

Then the ISBI free received subblock can be written as

Q
Zy5 = Dy, ,Wybj + . (2.11)
q=0
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wherez) := [ay((j — V)M + L), 25((j — )M + L+ 1), ..,25((j — DM + Ny — 1|7, 75 i

defined similarly, andN, — L) x N, matrix W, is given by

W, = . (2.12)

Gathering training symbols per block, we obtain

Dy, Wb

Q
z=) 5 + 7. (2.13)
q=0

Dy, Wb,

According to the commutativity property of convolution, we ha¥b; = B,w, with w, :=

[wq(0), ..., wy(L)]T andB; a(N, — L) x (L + 1) Toeplitz matrix given by

bi(L) ... b; (0)
B; := : : , (2.14)

bi(Npy—1) ... bj(Ny—L—1)

whereb;(l) := b((j — 1)M + ). Therefore, £.13) can be rewritten as

xp, = Pw + ny, (2.15)
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with simple substitutions, where thé(N, — L)] x [(Q + 1)(L + 1)] matrix

Dwo,lBl DwQJBl
P = : : , (2.16)
D’lﬁO,JBJ DwQ’JBJ
and
w = [wl, wl, ...,'wg]T. (2.17)

2.3.1 Least-squares Channel Estimation

The linear least-squares (LS) channel estimator base®. bf) {s

wrs = ALs®y, (2.18)

whereArs = (#7®)~ 1@, Define the estimation error of BEM parametersias; := w — ws.

Then the covariance matrix @by is

L -1
R@LS = E[wLSw{IS] = 0727 (‘I)Hq)) . (2.19)
As a result, the MSE ofoy g is
O'%DLS =tr(Ryg) = O’%tl‘ [(@Hq))_l] . (2.20)
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Using [52, Lemma 1]g% _ is lower bounded by := K(Q + 1)(L + 1))

S S
1
2 2
0 kz_: <I>H<I> U”;[‘I’H‘I’]kk (2.21)

where the equality holds if and only # & is a diagonal matrix. By the arithmetic-geometric

mean inequality [31, p. 535],

. 1/8
[(I)H(I)]kk> (2.22)

S
1
2 2
"2 e, - (
k=1 )

e

where the equality holds if[<I>H<I>} . are all equal. Equivalently, we nedd’ ® to be a diagonal
matrix with all its diagonal entries equal.
2.3.2 Linear Minimum Mean-Square-Error Channel Estimation

The linear minimum mean-square-error (MMSE) channel estimator based1ihié

WMMSE = AMMSEZ, (2.23)

whereAyivse = o7 R,' + (@7 ®)~'®H. This estimator requireR,, := E [ww’] to be known
at the receiver. Define the estimation error of BEM parametetB\a§sg := w — wyvsg. Then

the covariance matrix afysg IS

-1
Rﬂ)MMSE = E['wMMSE'wl\h/}MSE] R_ 02 (‘I’Hq)) . (2.24)
n
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As a result, the MSE ofonvsk 1S

1
o2

O-?IJMMSE = tr(Rayyse) = tr [<R;1 + o (2.25)

<<I>H<I>>>_1

n

Since our analysis allows for correlated channels, the BEM coefficiey{t$ are not necessar-
ily independent. Eigen-decomposition B, yields R,, = U,,Q,, U, ' whereU_! = U!. Since
tr(AB) = tr(BA), (2.25) can be rewritten as

2 _
Oonmse = tr

-1
<Q;Ul + ;UJI(‘I’H@)UUJ) ] : (2.26)
n

Similar to 2.21), by [52, Lemma 1];735MMSE is lower bounded by

1
, y 2.27
Tinnse = ZZ: [Q;l + U%Ual({)HtI))Uw ) | )
n

2,0

where the equality holds if and onlytf,, ' (® ®)U,, is a diagonal matrix. This is true 7 ® is

a diagonal matrix with all its diagonal elements equal. Similar a8.21§-(2.22), o2 is lower

WMMSE

bounded by

Wl=

1
o2 > S x (2.28)
L L T
n

1,7
where the equality holds if and only ®,' + LU, (Ir ® (27®)) U,, is a diagonal matrix

n
with all its diagonal entries equal. Equivalently, we n@d® to be a diagonal matrix with all its
diagonal entries equal provided that diagofial has all its diagonal entries equal; unfortunately,

the latter is not necessarily true (at least for a channel tap with Jakes’ spectrum).
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2.3.3 Channel Estimation Error

Given estimated BEM parametets, () via LS or MMSE estimators, the channel impulse

response is then given by:

Q
hen(n;1) = g (1)tbg(n). (2.29)

q=0
There are two sources of channel estimation error: one is from the difference bétwegm;!)
andiLBEM(n; [), the other is from the channel modeling eregizyi(n; 1) in (2.3). Therefore, the

mean square value of channel estimation error is expressed as:
L
2 -1 7 2
o = N ZE HhBEM(n;l) - hBEM(n;l) —|—€BEM(n;l)H . (2.30)

Since the following orthogonality is true for both CE-BEM and DPS-BEM models

. H
E { [hBEM(n; 1) — hem(n; l)} eBEM (1; l)} =0, (2.31)
we have
1L
O']% = 0-12?1 +N_1 ZE{[eBEM(TL; l)]HeBEM(n;l)} . (2.32)
n=0 [=0
o2
BEM

The channel modeling errofi,; has an analytic expression from Niedzwiecki'’s results in [51]:
1 s
o~ - [ W)t (S ()} do (2.33)
T Jo
whereV (n, w) is the instantaneous parameter matching characteristics of a basis function estimator:

U(n,w) =1 —H(n,w)? (2.34)
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H(n,w) is the instantaneous frequency response of the basis expansion estimator:

N—-1 ‘ )
H(n,w) = fT(n) Y fln)e "),
n/=0
f(n) :== Wo(n), Y1 (n), ..., o (n)]", (2.35)

the power spectral densify;,;, (w) is derived from the autocorrelation bfn):

Rin(7) = E[h*(n+ 7)h(n)],

Run(T) = — Shi(w)e™T dw. (2.36)

—Tr

The modeling error for CE-BEM (referred to a%E) and DPS-BEM (referred to a%PS) models
are analyzed in [77]. We have also shown some simulation results earlier in Chapter 1 (Fig. 1.1).

For a 3-tap Jakes’ channef ¢ is several orders of magnitude smaller tly,.

2.4 Optimum Training Design

Observe from Z.21) that in order to achieve the lower boundaﬁLS, The LS estimator re-
quires® ® to be a diagonal matrix with all its diagonal entries equal. Observe feo2T) and

(2.28) that in order to achieve the lower bound @, The MMSE estimator also requires

MMSE’
& & to be a diagonal matrix to achiev&£7) and for both it and2,, to be diagonal with all their
respective diagonal entries equal to achievy). Unfortunately, in general, the diagorfal, does

not necessarily have all its diagonal entries equal. We will design the training schemes to make

&1 & to be a diagonal matrix with all its diagonal entries equal which will achieve the lower bound
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in (2.22) for the LS channel estimator and i227) (but not in @.28)) for the linear MMSE channel
estimator.

Suppose that we choose
1P = al(g41)(r+1) forsome a >0 (2.37)

Then by @.16) we must have

J

ZB;{DTIZ{;lJquQJBj = aI§(q1 - QQ). (238)
j=1

For CE-BEM, it turns out that [41]

J

= = 1
ZDinLijq%j = MINb—Lé(Lh —q2) (2.39)
j=1

Note that in [41], £.4) is not normalized; here it is. By2(16) and @.38), for all k’'s andgq’s, the

training sequence should be designed to satisfy

J

J
H pPH = = I _
> BI'D} Dy, ;Bj=7) D{ :Dy,;. (2.40)
J=1 j=1

Under @.39), following [41] and [75], we pickV;, = 2L + 1 andb! = [0], b, 07]" where0, is
a sizeL null column, in which cas@” & = ”WQ[I. Therefore, withP, := Jb* denoting the total

training power, we can obtaim = % (recall thatN = JM).
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Plugging @.37) into (2.22), (2.28) and @.32), the LS and MMSE lower bounds of channel

estimation error are derived as

2
4 Z%(LH)(Q +1) 4 o¢ (2.41)
his P F CE> .
(L+1)(Qr+1) P, 1
2 _ -1 9
Thavse tzl [)\t + O'%N:| + 0CRs (2.42)

where)\, is thet-th diagonal entry of matrif2,,, i.e. \; is thet-th eigenvalue ofR,,,.
For DPS-BEM, we will use “large’™N approximation from the Appendix A for DPS-BEM
basis functions to obtain an expression for the modeled part of channel estimation error. Using

heuristic asymptotic4.6), we can easily establish (note that asymptatic] corresponds ta2(4)

and (4.3))
J o L E
Z D"/)quijquj ~ MINb_Ld(ql - Q2) (243)
j=1

Therefore, for DPS-BEM mimicking2(41) and @.42), the lower bounds of channel estimation

error are

2
2 L Qs + 1)+ o 2 10
his Py DPS> .
(L+1)(Qs+1) .
2 ~ -1 9
Thanvse Z |:)\t + UTQ]N:| + obps- (2.45)

t=1

Remark 2.1 Note that £.43) is critical for (2.44) and @.45) to hold true and for the proposed
training designs to be valid. The asymptotic Slepian sequences.@) &re only “heuristic.” But
we can “verify” (2.43) by computing the results ir2(20) and @.22) numerically and compare them

with the results in4.44). This is done in Section 2.6.
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2.5 Training Power Allocation

We assume that the time-varying chanhéh; () is zero-mean, wide sense stationary «in
with fixed [) complex Gaussian with the same variamﬁe We also assume that the channel taps
are mutually independent, i.e(n; 1) is wide sense stationary uncorrelated scattering (WSSUS). To
simplify the expressions, in this section we assume that the channel modelinggsirpin (2.3) is
zero.

The received information symbols at the received antenna can be expressed as

L L
= h(n;l)e(n — 1)+ [h(n;1) = h(n; 1)]e(n — 1) + n(n), (2.46)
=0

=0

i=z.(n) )

whereh(n;1) = Zq o Wq(l)1he(n) is used for data detection. Therefore, the signal power is given

by

s

— P, agm) (Lt 1)0,%] : (2.47)
where the average power of information symbols is

Pe = E {|e(n)]’}, (2.48)
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and the effective noise power is:

afm(n) =F { [

= co}%(n) + U%,

2

L
> [h(n;1) = h(n;D]e(n — 1)
=0

whereo?(n) := Y Eu {E {)h(n; 1) — h(n: l>\2 ‘w}}, Define

Wl = [’wo(l), wl(l), ceny ’LUQ(Z)]T,

W = Wo, Wy, ... W],

By (2.17) and @.50), we can get the following relationship:

<
I
m
&

where

[

I
o
=
.©> :
N A
. :

(e

o

=

. ~
(a=)

—_

=) .
R AN
= .
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= (Q+D)(L41)x(Q+1)(L+1)

(2.49)

(2.50)

(2.51)

(2.52)



We also find thaE = is always an identity matrix. Them%(n) can be rewritten as
L ~ 2
2(n) =3 Eyw {E { ’h(n; ) — h(n; 1)‘ W}}
= tr {\Il(n)EW {COV{W, W!W}} \If(n)H} ) (2.54)

where

¢(n) = [wO(n)v () (’I’L), X @ﬁQ(n)],

U(n) = Iy @pn).

Based onZ.50) and @.51), we have

By {cov{W, WW}} = 2 Byy {cov{u, w|W}} =1, (2.55)
Ry

Based on the orthonormality f,(n), we have

N
Z \I'(n)H\I'(n) = I(L+1)(Q+1)' (256)

n=1

Therefore, the time-averagedﬁil over information subblocks in the current block is

(N — JN)™ Za 1> oi(n) = %tr {ER;E"} = %ag, (2.57)
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Similarly, the time averaged signal and noise powers turn out to be

_ 1 =
02 = 2 Tha(n) = Pelo + (L+ o],
n=1
1 N
6%77 =~ Z Jgn(n) = PCJ}% + 0727 (2.58)
n=1
Therefore, we obtain an effective average SNR #0t4) as
5.2
SNRg = —3°. (2.59)
g
xn

Define the total information power and received signal paer= JN,P. andP := P, +P,,

respectively. Define the training power overhead

P ,Pb

Our objective is to maximize SNR with respect gounder the constraint of a fixe®. Thus,

incorporating those constraint-carrying variables i2t6d{) and using the developed expression for

average signal and noise powers2rib0), we obtain the unconstrained cost

12+ (L + 1o 0.0

SNR4(8) = - :
(1JJ\BIZP ‘_7;% +0j

Using the lower bound of the LS estimator ih44) (due to the lower bound of the MMSE estimator,

the closed form of the optimal can not be obtained), we can explicitly write{9) as

182+ B+ fs
 gB+g (2.61)

SNR4(5)
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where

P(L+ 1)o7
fi= TN
P(L+ 1)o7 (L+1)(Q+1)o;
e Y N.J ’
(L+1)(Q+ 1o,
3= N.J )
, (L+1)(@Q+1);
g1 =0y — N.J :
(L+1)(Q+1)oy
N.J '

g2 = (2.62)

Setting the first derivative 3NR(3) with respect tgs to zero, we obtain a quadratic equation in

g

324993y fog2 — fag1 _ 0 (2.63)
g fig

with two roots, one of which is negati@ < 0), and hence is excluded. The other root is given by

g2
Bopt = =—
P g 93 f1

14 \/1Jr 91(fs91 — f292)] . (2.64)

2.6 Numerical Examples

In the following examples, we use binary phase shift keying (BPSK) and quadrature phase
shift keying (QPSK) modulation. Each transmitted block lias 10 subblocks, and each subblock
has N. = 30 information symbols andV, = 2L + 1 training symbols with optimal structure
[0r,b,0.], b > 0. A doubly-selective Rayleigh fading chanrigln; () is simulated according to
[77, 81] with the channel ordet = 2, carrier frequency o2GHz, data rate of 40 kbps, and thus,

symbol duratiorils = 25us. Therefore, each tap of the generated time-variant channel has a Jakes’
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—8— (2.20)
—&— (2.22) right hand side
—6— (2.41)
—— (2.44)

2
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-3
Vbmax x 10

Figure 2.1: Channel estimation errors (with and without modeling errors):Numerical results derived
from Qr = 2[Vpmae N| + 1 andQs = [2vpma N | + 1, SNR=20dB

spectrum; it is not generated using the assumed BEM modeling. Also, 3 taps of the channel are
mutually independent. Depending on different maximum Doppler spfggada varying maximum
normalized one-sided Doppler bandwidth,,.x = f4Ts can be derived. Givenp,.x, Jakes’
spectrum and other information, we can calculBtg and therefore2,, and\;s, needed inX.28),

(2.45) and elsewhere. The SNR refers to the ratio of total signal and training power to the total noise

power, each per block.

2.6.1 Example 1: Approximation Errors

As noted earlier in Remark 2.1, here we want to show the influence of approximation errors in
D%j when the true Slepian sequences instead of the approximatioA$irafe used. We compute

(2.20) and €.22) numerically with true Slepian sequences generate@lyy,(then compare them
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Figure 2.2: MSE lower bound comparison between £84) and MMSE @.45) estimators
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Figure 2.3: Comparison between the LS channel estimation MSE lower boud4ih 4nd simu-
lation results in2.65), Qs = [2vpmaxN | + 1
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Figure 2.4: Comparison between the MMSE channel estimation MSE lower boufdii) &nd
simulation results in2.65), Qs = [2Vpmax V] + 1

with (2.41) and @.44). For the parameters stated earlier in this sectiénlQ, N,=8, N.=30,

M = Ny + N.=38, N = JM =380) the results are shown in Fig. 2.1, where SNR=20dB and the
dimensiong)r = 2[Vpma: N+ 1 andQs = [2vpma. N | + 1 change with the maximum Doppler
bandwidth. [Here the minimur®@r = 2[vpmq.N| andQs = [2vpmq.IN'| are not taken since a
slightly higher values of)’s can significantly reduce the modeling error. This is suggested in [77]].
From Fig. 2.1 we see that the CE-BEM lower boundant{) is high due to “large” modeling error
O'%E even though the error for the modeled part is minimum, whereas the resut20n, (2.22)

and @.44) are close to each other due to “small” modeling eerf.q and “close-to- minimum”
(compare curves for2(20) (exact error) and.22) (lower bound)) error for the modeled part. [We

note thata]%PS anda%E were obtained via Monte Carlo averaging, similar to [77].]
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Figure 2.5: LS channel estimation MSE with varying maximum normalized Doppler bandwidth,
QS = [ZVDmaXN—| + 11QF = 2[VDmaxN-| +1

2.6.2 Example 2: DPS-BEM Channel Estimation Performance

In this case we pick = 1 in training. The LS and MMSE estimators are used to estimate
w, and then the channel is estimated as2r2{). Based onM, Monte Carlo runs, the channel

estimation MSE is calculated ak(corresponds to the kth run)

M, N—1

L
MSE = -1 > hk(nil) = hy(n; 1), (2.65)
k=1 n=0 =0

In Fig. 2.2, the lower bounds ir2(44) and @.45) are plotted using)s = 2 for f; = 40Hz
and usingQs = 3 for f; = 100Hz. [The MMSE bound needs;s which requires knowledge of
the Doppler spread. Note also that for bgth= 40Hz and f; = 100Hz, the minimumQgs =

[2vpmax V| are actuallyQs = 1 andQgs = 2, respectively; however, a slightly higher value of
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Figure 2.6: BER with varying maximum normalized Doppler bandwidth using BPSK modulation,
Qs = [2vpmaxN'| + 1,QF = 2[vpmax N | + 1

Qs = [2vpmaxN| + 1 = 3 for f; = 100Hz yields the smaller modeling error, which becomes
significant at high SNRs]. Then they are compared with the simulation results (averaged over 200
Monte Carlo runs) in Figs. 2.3 and 2.4 f¢§ = 40Hz and 100Hz; also shown ater bounds on

the simulation averages. It can be seen that the theoretical results are consistent with the simulation
results forf, =40Hz indicating that the optimal pilot design does minimize the channel MSE when
using DPS-BEM. Forf;=100 Hz, there is a “small gap” between theory and simulations at high
SNRs which is probably attributable to modeling error (“small” but nonzero). Furthermore, the
performance of the MMSE estimator outperforms that of the LS estimator at low SNR, and they

converge to each other at high SNR.
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Figure 2.7: BER with varying maximum normalized Doppler bandwidth using QPSK modulation,
QS = [QVDmaXN—| + LQF = 2[VDmaxJ\ﬂ +1

2.6.3 Example 3: CE-BEM versus DPS-BEM

In Fig. 2.5, the LS channel estimation MSE.@5) versus SNR under different maximum
Doppler bandwidthsL(g;zlax is for DPS-BEM,VI(DIZ[?&X is for CE-BEM) are plotted. It is clear that
the MSE of DPS-BEM is consistently smaller than that of CE-BEM. Fig. 2.6 takes BER (average
over 2000 Monte Carlo runs) as a performance measure to compare the performance between DPS-
BEM and CE-BEM. A Kalman filter formulation is used for information detection after the channel
estimation. Comparing with Fig. 2.5 makes it quite clear that the significantly reduced MSE for the

DPS-BEM channel estimation leads to a pronounced reduction in BER compared to the CE-BEM

case.
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Figure 2.8: Simulations-based BER verguor SNR=15dB

The plotting in Fig. 2.7 is exactly the same as Fig. 2.6 except that the information sequences
are QPSK signals. It is seen from Figs. 2.6 and 2.7 that the BER by using QPSK information

symbols are worse than that using BPSK symbols, as expected.

2.6.4 Example 4. Training Power Allocation

Here we vary training power (by varyirig with fixed total transmitted power. The BER versus
optimum based on simulation results (averaged over 1000 Monte Carlo runs) is shown in Fig. 2.8
for SNR=15dB where we used BPSK modulation and a Viterbi detector based on the estimated
channel for data detection. We also variagl,,.,, according to different maximum Doppler spread
f4- In Fig. 2.9, we plot the optimum theoretical valuesiofderived in @.64)) versus the received

signal SNR. Comparing Figs. 2.8 and 2.9, we see that the two show mutually consistent results
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Figure 2.9: Theoretical, (2.64) versus received signal SNR

supporting our theoretical results: the optimal (simulations ba8ddjerred from Fig. 2.8 is in

good agreement with the theoreti¢al,, of Fig. 2.9.

2.7 Conclusion

The channel estimation for doubly-selective channels was considered using time-multiplexed
training. The time-varying channel was assumed to be well-described by a basis expansion model
using discrete prolate spheroidal sequences as bases. Training designs for time-multiplexed training
based on minimization of the channel estimation mean-square-error were investigated. Both least
squares and minimum mean-square-error approaches were exploited to estimate the basis expansion

coefficients. Computer simulation examples were presented where the channel was generated via
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Jakes’ models with different Doppler spreads. In these examples the DPS-BEM model significantly

outperforms the more widely used complex exponential basis expansion model.
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CHAPTER3
MIMO D ouUBLY-SELECTIVE CHANNEL ESTIMATION USING DISCRETEPROLATE

SPHEROIDAL BASIS EXPANSION MODELS AND TIME-MULTIPLEXED TRAINING

3.1 Introduction

The prospect of extraordinary improvements in the capacity of wireless networks has drawn
considerable attention to multiple-input multiple-output (MIMO) communication techniques. MIMO
methods employ multiple transmitter and receiver antennas to increase the data rate and to achieve
spatial diversity. Traditionally, multiple antennas have been used on the receiver side to combat the
multipath fading. The receive antennas see independently faded versions of the same signal. The
receiver combines these signals so that the resultant signal exhibits considerably reduced amplitude
variability (fading) in comparison with the signal at any one antenna. This is called diversity gain.
Diversity is characterized by the number of independently fading branches, also known as the di-
versity order and is equal to the number of receive antennas in single-input-multiple output (SIMO)
channels. However, recent advances have shown that using multiple antennas at both the transmit-
ter and the receiver can significantly increase the data rate and improve the performance [22, 24].
By employing multiple transmitter antennas, multiple spatial channels are supported in the same
frequency band, thus data can be transmitted in parallel which results in an increased data rate.

In this chapter, the approaches proposed in Chapter 2 are extended to the MIMO system. We
consider the problem of channel estimation for the doubly-selective MIMO channels described by
DPS-BEM. Time-multiplexed training is used to estimate the channel. lllustrative simulation exam-
ples are provided to show the performance of channel estimation and data detection under a MIMO

system.
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3.2 Multiuser MIMO Channels

Consider a multiuser channel wifki users andr? receive antennas leading to a MIMO system
with K inputs andR outputs. Leth("*) (n; 1) denote the symbol-rate impulse response (the channel
response at time to a unit input at time, — [) of the doubly-selective MIMO FIR linear channels
between theith user’s transmit antenna and thi receive antenna, wherec [0,1,..., N — 1]
and! € [0, L] capture the time- and frequency- selectivity of the channel, respectively. In a general

basis expansion representation over a time-block, the following is always true:

N—

[y

w1 (n), (3.1)
q=0

wherey, (n) is theg-th basis function and the basis expansion coeffiaiéﬁf“)(l) is fixed over the
data block. As the above representation is not parsimonious, the following basis expansion model

is used to approximate model (3.1):

BEM (n;1) Zw(rk) J¥q(n (3.2)

where only@ + 1 <« N basis functions are involved. Hence, the channel modeling error between

() (n; 1) and ) (n; 1) can be expressed as:

61(37“;1\)/[(”3 1) == hrk) (n;1) — BEM ; Z w (n). (3.3)
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Let {sx(n)} denote thekth transmitter’s information sequence. The received sequence at the

rth receive antenna can be written as

K L
=3 2B s 1ysi(n — 1) + 0™ (n), (3.4)

k=11=0

wheren (") (n) is the additive complex Gaussian noise at ttfe receive antenna, with zero-mean

and variance2. Plugging (3.2) into (3.4), we can rewriié”) (n) as:
n

+ 7" (n). (3.5)

K Q
2" (n) = Zzwq [Z w(rk Dsk(n—1)

We consider block transmission as in [41], where transmitted symbols fdithh@ansmitter
are collected intaV x 1 blocks withs, = [sx(0), sx(1), ..., sx(N — 1)]7 as the0th block and
receivedz(") (n)’s are also collect into blocks witle(™) = [2(")(0), 2 (1),...,2")(N — 1)]7
0Oth block. To avoid inter-block interference (IBI), as in [41],guard zeros are inserted in each

block at the transmitter. Then the matrix-vector input-output relationship of (3.5) is given by

ZZD% Msp+n", (3.6)

k=1 q=0

wheren is defined similarly tac™), Dy, = diag[1,] with 15, := [14(0), ¥q(1), ..., 1hg(N — 1)],
andW,.""s areN x N lower triangular Toeplitz matrices with 1st colunﬁwff’k) (0), w{™ (1),

T
L wi(L),0,...,0
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3.3 Channel Estimation

As in [41], each transmitted block; consists ofJ segments (sub-blocks) of training and
information symbolsy(n) andci(n), respectively, and each segment has the same length. Then

the general structure &f; is

S = [bil,cﬂl, v bgj,cij]T, (3.7)
whereb,, ; with length NV, andc;, ; with length N, for all j € [1, J], denote training and informa-
tion symbol sub-blocks, respectively. Therefake= J(N,+ N.) with N, > L. Let M = Ny+ N,
denote the sub-block size. Obviously, the fitstymbols in the “training part” of théth subblock
of the received signal are contaminated by information symbols in the predgdingth subblock.

In the similar way, the firsL. symbols in the “information part” of th¢th subblock of the received
signal are also contaminated by the ladraining symbols in the currerith subblock. In order to
avoid the inter-subblock interference (ISBI) so that the channel estimation is decoupled from data
detection, we will choose the first and the lassymbols in each training subblock to be zeros, as
in [41].

Defineby, ; := [by((j —1)M), bk((j — 1)M +1), ..., bx((j — 1)M + N, — 1)]7. Further define
Dy, . = diag[tp, ;] wheres, j = [1hg((j — )M + L), ¢hg((j = )M + L+1), ..., 1g((j — )M +

N, — 1)]T. Then the ISBI free received subblock can be written as

K Q
) =33 Dy, Wb+ a7, (3.8)
k=1 q=0
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wherez) := [ay((j — V)M + L), 25((j — )M + L+ 1), ..,25((j — DM + Ny — 1|7, 75 i

defined similarly, and N, — L) x N, matrix W(I(T’k) is given by

r.k r.k
w[(l )(L) . w((] )(0)
Wk _

Gathering training symbols per block, we obtain

D%,qu(r’k)bk,l

K Q
z)=5"%" : +a". (3.9)

qu,J V_Vq(r’k)ka

According to the commutativity property of convolution, we ha@gf’"’k)bw = Bk,jw(r’k)

with w{™ = [wi(0), ..., w{™ ()T andBy. ; a(N, — L) x (L + 1) Toeplitz matrix given by

bii(L) ... bi.; (0)

bej(Ny —1) ... by j(Ny—L—1)

whereby, ;(1) := by ((j — 1)M +1). Therefore, (4.9) can be rewritten as

K
7 = 3 @ 4 A" = dw® + 7", (3.11)
k=1
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with simple substitutions, where thé(N, — L)] x [(Q + 1)(L + 1)] matrix

Dwole]%l DwQ,lBkyl
@k = )
_DTZJO,JB/C,J - Dd)Q,JBk,J_
P = [®,.., D] (3.12)
and _ i _ -
w(()r,k) ,w(r,l)
w(r,k) = , w(r) = . (313)
wgvk) wK)

Since the matrixp is common for all receivers, after collecting &@T’) andw ") for differentr, we
get

zp = (Ir ® ®)w + my, (3.14)

wherew is defined as
T
W= [T ... p@®T| | (3.15)

x;, andmn, are defined similarly.

3.3.1 Linear Least-Squares Channel Estimator

The linear least-squares (LS) channel estimator based on (3.14) is

wrs = ALsxy, (3.16)
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whereArs = (Ig ® (7 ®))~1(Ir ® ). Define the estimation error of BEM parameters as

wLs := w — WwLs, then the covariance matrix afy g is
~ ~ —1
Ry, = E[bLswfs] = o) (Ir @ (®7®)) . (3.17)
As a result, the MSE ofor g is

02, i= tr(Rayg) = o2t [(IR ® (<I>H<I>))_1} : (3.18)

wLs

Using [52, Lemma 1]g% _ is lower bounded by{ := K(Q + 1)(L + 1))

(3.19)

where the equality holds if and only &7 & is a diagonal matrix. By the arithmetic-geometric

mean inequality [33, p. 535],

7

g 1/8
) (3.20)

S
2 1 2
—_ >
Ran; cTFy RolS | @ra

(2 1,0

where the equality holds if[‘<I>H<I>] , are all equal. Equivalently, we nedef’ ® to be a diagonal

i

matrix with all its diagonal entries equal.

3.3.2 Linear MMSE Channel Estimator

The linear minimum mean-square-error (MMSE) channel estimator based on (3.14) is

WMMSE = AMMSETb, (3.21)
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where AMMSE =

(2R, + (Ir® (@H@)))_l (Ir ® ®). This estimator require®?,, :
E [wwH ] to be known at the receiver. Define the estimation error of BEM parametersask :

w — wyMmsE. Then the covariance matrix abypysg IS

,_ ~ ~H
Rayyysp = E[WymMsEWyvsE]
-1

= R;l+%(IR®(<I>H<I>)) : (3.22)
n

As a result, the MSE ofonvisk 1S

2 ._ ~
Owmmse ~— tr(RwMMSE )

-1
= tr [(Rwl + iz (Ir® (<I>H<I>))> ] (3.23)
In

Since our analysis allows for correlated channels, the BEM coefficia%t@(l) are not nec-

essarily independent. Eigen-decompositiondf yields R,, = U, 0, U, ! whereU,,!

=Ul.
Sincetr(AB) = tr(BA), (3.23) can be rewritten as

1 —1

s = 1T (le - ﬁUgl (Ir® (27 ®)) Uw> ] : (3.24)
n

Similar as in (3.19), by [52, Lemma :I'd.'l%l\/IMSE is lower bounded by
Ui%MMSE = Z . (3'25)
: [9;1 + ;—%Uu—,l (Ir ® (PH®)) U,

where the equality holds if and onlylf,, ! (Ir ® (2% ®)) U,, is a diagonal matrix. This is true if

" is a diagonal matrix with all its diagonal elements equal. Similar to (3.19)-(320), . is
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lower bounded by

o+

1
Q'+ QUw (Ir ®(¢>H‘I’))U}

Tpss > (BS) x T { (3.26)

where the equality holds if and only 2! + 2U '(Ir® (2" ®)) U, is a diagonal matrix
with all its diagonal entries equal. Equivalently, we n@d® to be a diagonal matrix with all its
diagonal entries equal provided that diagof¥al has all its diagonal entries equal; unfortunately,

the latter is not necessarily true (at least for a channel tap with Jakes’ spectrum).

3.3.3 Channel Estimation Error

After deriving the estimated BEM parametebé’”k l) by the LS or MMSE estimators, the

channel impulse response is then given by:

Q
BEM : Z (rk) (1 . (3.27)

q=0

Here we consider that the channel estimation error is from two sources: one is from the difference
betweenh ! (n;1) and Rk (n;1), the other is from the channel modelin erag’%k) (n;1) i
BEM BEM g am(nsl)in

(3.3). Therefore, the mean square error of channel estimation error is expressed as:

R K N-1 L
oZ=NT'Y NN E{thﬁklx)q(”;l) B (n3 1) + el (n; 1) H } (3.28)
1

Since the following orthogonality is true for both CE-BEM and DPS-BEM models
r.k rk H r.k
£ { ) - 5] el } o
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we have

L
Z E { {egﬁ?{(n; l)} " 6g’Ek134(n; l)} . (3.29)

2
*=O9BEM

For simulations presented in Section 3.6 we calcuidte,; by averaging over Monte Carlo runs.

3.4 Optimum Training Design

Observe from (3.19) that in order to achieve the lower boundfzgfs, The LS estimator re-
quires® ® to be a diagonal matrix with all its diagonal entries equal. Observe from (3.25) and

(3.26) that in order to achieve the lower boundogf

, The MMSE estimator also requires
MMSE

&1 to be a diagonal matrix to achieve (3.25), and for both it @qdto be diagonal with all their
respective diagonal entries equal to achieve (3.26). Unfortunately, in general, the d@gothaeds
not necessarily have all its diagonal entries equal. We will design the training schemes to make
&1 to be a diagonal matrix with all its diagonal entries equal which will achieve the lower bound
in (3.19) for the LS channel estimator and in (3.25) (but not in (3.26)) for the linear MMSE channel
estimator.

Suppose that we choose

ol for k1 = k2
(Q+1)(L+1)
ol P, = (3.30)

0 , for kl+# k2,
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or, equivalently

; _
21 Bl Dy,

J wa,ijqz,jBkzj =al , forkl=k2 gl =q2

J _
Ej:l Blﬁ, D]}

DI Dy iBraj =0 , forkl=k2,ql # q2 (3.31)

; _
>j=1 By Dy,

j ¢q17ijq27jBk27j =0 y for k1 75 k‘2, for all q

for somea > 0.

For CE-BEM, it is shown in [41] that

ﬁINb—L , for ql =¢q2

J
L
Y D, Dy = (3.32)
j=1 0 , for gl #q2

By (3.12) and (3.31), for alt’s andg’s, the training sequence should be designed to satisfy

J J
H pPH — — 17 _
ZBklij¢q17jD¢q27jBk2aj =7 D'lZ)ql,ijquj (3.33)
J=1 j=1

for somey > 0. Under (3.32), following [41] and [75], we pickV;, = K(L + 1) + K and
bg,j = [Ok(L—&—l)—lvbkvo(K—k)(L—‘,-l)—f—L] WhereOk(L+1)_1 is a Sizek(L + 1) — 1 null column, in
which case<I>kH<I>k = %I. Therefore, withPy;, := Jbi denoting the total training power from the

kth transmitter, we can obtaim = % (recall thatN = JM). Sincea should not be a function of

k, we takeb;, = b leading toPy, := P, for all k.
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Plugging (3.30) into (3.20), (3.26) and (3.29), the LS and MMSE lower bounds of channel

estimation error are derived as

2
0’2 :0-2~ _|_02 :%RK(L-FD(Q +1)+0_2 (334)
his wLs CE Pb F CE> .
RK(L41)(Qr+1) 11
2 2 2 11 9
UBMMSE = Tunse toce = [)\t + 0'72]]\7:| +0CRs (3.35)
t=1

where)\, is thet-th diagonal entry of matrif2,,, i.e. \; is thet-th eigenvalue ofR,,,.

For DPS-BEM, using the heuristic asymptotit.¢), we can easily establish

J Lr for gl = 2
e mwiv—-L0) q q
Y Dy, Dy = (3.36)
j=1

0 , for ql #q2.
Therefore, for DPS-BEM mimicking CE-BEM, the lower bounds of the channel estimation error
are

No?

2 _ n 2
Ths ~ P, REK(L+1)(Qs + 1) + opps, (3.37)
RK(L+1)(Qs+1) P 1
2 _ v 1 9
O-EMMSE B tz—; |:>\t + O‘%N:| + 0DPS- (3-38)

Remark 3.1. Note that (3.36) is critical for (3.37) and (3.38) to hold true and for the proposed
training designs to be valid. The asymptotic Slepian sequences.@) ére only “heuristic.” But
we can “verify” (3.36) by computing the results in (3.18) and (3.20) numerically and compare them

with the results in (3.37). This is done so in Sec. 3.6.
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3.5 Training Power Allocation

We assume that the time-varying chanh€t¥)(n;1) is zero-mean, WSS complex Gaussian
with the same variano@% for each tap. We also assume that the channel taps are mutually indepen-
dent, i.e.h("*) (n; 1) is WSSUS. To further simplify the analysis, we assume the channel correlation
matrices are the same across [1, ..., R]. The received information symbols at thih received

antenna can be expressed as

K L A K L
:ZZhrk (n;Dex(n —1) +ZZ Rk ( — hB) (s D)er(n = 1) + 5™ (n),
k=1 1=0 k=1 1=0
= (n) —ay(n)
(3.39)
whereh () (n; 1) = Z T )(l)zpq(n) is used for data detection. Therefore, similar to the single

user case in Section 2.5, the signal power of all receivers is given by

=P, [ai(n) + RK (L + 1)02} : (3.40)
where the average information power per user:

P.:=E {|C;€(n)|2} . (3.41)
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The effective noise power is:

D WP 1) = AU (s D]eg(n = 1)

2

+ RO’%

~ 2
whereo?(n) := Y000, 371, S Bu {E { ’h(r,k) (n:1) — hM (n; l)‘ ,w}}_ Define

) rk rk r,k
W = w0 0, 0™ @), OO
WR = W wirh | w R T
W = WD wr2) |y

W= W W@ wnT,
By (3.15) and (3.43), we can get the following relationship:

W = 0Ouw,
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where

)-

o).

[
I
: }h :

3.45
0 1 0.0 (3.45)
L L
AN A
o 0 0.0 1 0.0
- = (Q+D(LA+D) X (Q+1)(L+1)
and
O =1Ipx®E. (3.46)
We also find tha®’ @ is always an identity matrix. Them?h(n) can be rewritten as
R K L X 9
oin) =3 3 Y Ew {E {)h(’"’k) (n;1) — h"F) (n; l)‘ |W}}
r=1 k=1 1=0
= tr {\Il(n)EW {COV{W, W|W}} \Il(n)H} , (3.47)

where

Y(n) = [Po(n),¢1(n), ... Pq(n)],

W(n) = Igg+1) @P(n).
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Based on (3.43) and (3.44), we have

Eyw {COV{W, W\W}} = @ Fyy {cov{w, w|W}} 0. (3.48)
Ry

Based on the orthonormality @f,(n), we have

N
> W ()T ¥(n) = Tpg 1) Qr)- (3.49)

n=1

Therefore, the time—averaged@g over lengthN is

1
— -1 2 ~ —1 2 H 2
= (N - JN) En:aﬁ(n) ~N § o (n) —tr{G)RwG } = ~ 0o (3.50)
In a similar way, the time averaged signal and noise power can be expressed as

a2, = =% Z 02.(n) = P[o? + RK(L + 1)o7),

1 _
=% Z 02,(n) = Peo: + Roy. (3.51)

Therefore, we obtain an effective average SNR of (3.39) as

Qi

SNRy = —¢ (3.52)
g

rn

Define the total information power and received signal po®er= J NP, andP := P, +P.,

Py
PetPy

respectively. Define the training power overhegad= Our objective is to maximize SNR

with respect tg3 under the constraint of a fixel. Thus, incorporating those constraint-carrying
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variables into (3.52) and using the developed expression for average signal and noise powers in

(3.52), we obtain the unconstrained cost

LOP[52 + RK(L +1)0})]

SNRy(B) = —Ne . (3.53)

SN or + a3

Using the lower bound of the LS estimator in (3.37) (due to the lower bound of the MMSE estimator,

the closed form of the optimal can not be obtained), we can explicitly write (3.52) as

SNRy(3) = f152+f2ﬁ+f3’ (3.54)

918 + g2

where

_ PRK(L +1)a;,

fi= N.J ,
by PRK(L+1)oj,  RE(L+1)(Q+ 1o}
2T N.J N.J ’
£y = RK(L+1)(Q +1)o;
3 = NCJ ;
oo RK(L+1)(Q +1)o;
g NJ ’
RK(L+1)(Q+1)o;
g2 = N 1 (3.55)

Setting the first derivative SNR/(3) with respect tg3 to zero, we obtain a quadratic equationgin

f292 — fag

=0 (3.56)

82 +22p5 ¢
g1
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Figure 3.1: Channel estimation errors (with and without modeling errors): numerical results derived
fromQr = 2[vpmae N| + 1 andQs = [2vpma N | + 1, SNR=25dB

the two roots, one of which is negatiy8 < 0), and hence is excluded. The other root is given by

g2
ﬂopt =

9 93 f1

14 \/1Jr 91(fs91 — f292)] ‘ (3.57)

3.6 Numerical Examples

In the following examples we consider a multiuser system vliith= 2 users andR = 2
receivers. We use binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK)
modulation. Each transmitted block hés= 10 subblocks, and each subblock hss = 30 infor-

mation symbols andV, = 3L + 2 training symbols with optimal structur[é)k(LH)_l, b,
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Figure 3.2: MSE lower bound comparison between LS (3.37) and MMSE (3.38) estimators

N
— — 40Hz, Q_=2, simu, MSE
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- —y— - 100Hz, QS:3, simu, MSE+ao
. —A— . 100Hz, Qs=3’ simu, MSE-o
—o— 100Hz, Qs=3' LS Bound
-3

10 ‘ ‘ ‘
0 5 10 15 20 25 30
SNR(dB)

107k

Channel Estimation MSE

Figure 3.3: Comparison between channel estimation MSEs lower bound in (3.37) and simulation
results (3.58)
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Figure 3.4: Comparison between channel estimation MSEs lower bound in (3.38) and simulation
results (3.58)

Ok k)L +1)4+2). b > 0. A doubly-selective Rayleigh fading chanri€l**) (n; 1) is simulated ac-
cording to [77, 81] with channel orddt = 2, carrier frequency o2GHz, data rate of 40 kbps,

and thus, symbol duratiohy, = 25us. Therefore, each tap of the generated time-variant channel
has a Jakes’ spectrum; it is not generated using the assumed BEM modeling. Also, 3 taps of the
channel are mutually independent. Depending on different maximum Doppler sfseadvarying
maximum normalized one-sided Doppler bandwidtf... = f47s can be derived. Givenp,ax,

Jakes’ spectrum and other information, we can calculyteand therefore§2,, and \;s, needed in

(3.25), (3.38) and elsewhere. A Kalman filter formulation is used for information detection after
the channel estimation. The SNR referslt/(ar?7 where the information sequence power per user is

normalized to one and the channel power (per user) is also normalized to unity.
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Figure 3.5: Channel estimation MSE with varying maximum normalized Doppler bandwigths
2’7VDmamN—| andQS = [QVDmaxN—|

3.6.1 Example 1: Approximation Errors

As noted earlier in Remark 3.1, here we want to show the influence of approximation errors in
quvj when the true Slepian sequences instead of the approximatiodshare used. We com-
pute (3.18) and (3.20) numerically with true Slepian sequences generate@dbyl{en compare
them with (3.34) and (3.37). For the parameters stated earlier in this se¢td0,(N,=8, N.=30,
M = Ny + N.=38, N = JM =380) the results are shown in Fig. 3.1, where the dimensions
Qr = 2[VDmazN] @and Qs = [2vpmaeN| change with the maximum Doppler bandwidth and
SNR=25dB. From Fig. 3.1 we see that the CE-BEM lower bound in (3.34) is high due to “large”
modeling errors?, - even though the error for the modeled part is minimum, whereas the re-
sults in (3.18), (3.20) and (3.37) are close to each other due to “small” modelingogfrgrand

“close-to-minimum” (compare curves for (3.18) (exact error) and (3.20) (lower bound)) error for
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Figure 3.6: Channel estimation MSE with varying maximum normalized Doppler bandwigths
2[VDmamN—| +1 andQS = (QVDmaxN“ +1

the modeled part. [We note thaf . ando?, were obtained via Monte Carlo averaging, similar
asin[77].]
3.6.2 Example 2: Channel Estimation Performance

In this case we pick = 1 in training. The LS and MMSE estimators are used to estimate
w, and then the channel is estimatedi&s") (n; 1) = 12 " (1)1h4(n). Based onM, Monte

Carlo runs, the channel estimation MSE is calculated as

M, R K N-1 L .
MSE = (M,N)"" 3 "N NN SN RGP (n;0) — b (ns 1)) (3.58)
a=1r=1 k=1 n=0 [=0
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Figure 3.7: BER with varying maximum normalized Doppler bandwidth for BPSK modulation,
QF = 2[VpmazN| andQs = [2Vpmaz N |

In Fig. 3.2, the lower bounds in (3.37) and (3.38) are plotted ugigg= 2 for f; = 40Hz

and usingQs = 3 for f; = 100Hz. [The MMSE bound needs;s which requires knowledge of
the Doppler spread. Note also that for bgth= 40Hz and f; = 100Hz, the minimumQgs =
[2vpmax V| are actuallyQs = 1 andQgs = 2, respectively; however, a slightly higher value of
Qs = [2vpmaxN| + 1 = 3 for fy = 100Hz yields smaller modeling error which has been proved

in Example 1]. Then they are compared with the simulation results (averaged over 200 Monte Carlo
runs) in Figs. 3.3 and 3.4 fof; = 40Hz and 100Hz; also shown ater bounds on the simulation
averages. It can be seen that the theoretical results are consistent with the simulation results for
f4 =40Hz indicating that the optimal pilot design does minimize channel MSEs when using DPS-
BEM. For ;=100 Hz, there is a “small gap” between theory and simulations at high SNRs which

is probably attributable to modeling error (“small” but nonzero). Furthermore, the performance of
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Figure 3.8: BER with varying maximum normalized Doppler bandwidth for QPSK modulation,
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Figure 3.9: BER with varying maximum normalized Doppler bandwidth for BPSK modulation,
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Figure 3.10: BER with varying maximum normalized Doppler bandwidth for QPSK modulation,
QF = Q(VDmamNW +1 andQS = [2VDmaxN—| +1
MMSE estimator outperforms that of LS estimator at low SNR, and they converge to each other at

high SNR.

3.6.3 Example 3: CE-BEM versus DPS-BEM

In Fig. 3.5, the LS channel estimation MSE (3.58) versus SNR under different maximum
Doppler bandwidthstSH)lax is for DPS-BEM,;/](D?MX is for CE-BEM) are plotted. Itis clear that the
MSE of DPS-BEM is consistently smaller than that of CE-BEM. However, we notice that the chan-
nel estimation error based on DPS-BEM suffers an error floor, too. This can be alleviated by taking
Qs to be larger tha2vpmax V| at the cost of more computations, as Fig. 3.6 shows. Fig. 3.7 and

Fig. 3.9 take BER (average over 2000 Monte Carlo runs) as a performance measure to compare the

performance between DPS-BEM and CE-BEM. Comparing with Fig. 3.5 and Fig. 3.6 make it quite
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clear that the drastically reduced MSE for the DPS-BEM channel estimation leads to a pronounced
reduction in BER compared to the CE-BEM case. The BER performances under QPSK modulation

are plotted in Fig. 3.8 and Fig. 3.10, which are worse than those of BPSK modulation, as expected.

3.7 Conclusion

In this chapter, the channel estimation approaches and optimum training design proposed in
Chapter 2 were extended to multiuser MIMO system. lllustrative simulation examples were pro-
vided to show the performance of channel estimation and data detection under MIMO system. The
system model and performance analysis in Chapter 3 are consistent with those in Chapter 2. The
numerical results of MIMO system (Chapter 3) outperforms the SISO system (Chapter 2) due to the

diversity gain.
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CHAPTER4

TIME-VARYING EQUALIZATION FOR DOUBLY-SELECTIVE CHANNELS

4.1 Introduction

Well-known techniques of equalization include (a) linear equalization (LE), (b) decision feed-
back equalization (DFE), and (c) maximum likelihood sequence estimation (MLSE) [66]. Linear
equalizers are the simplest computationally whereas MLSE vyields (near-)optimum performance but
is computationally demanding. DFE typically provides a good compromise between complexity
and performance. In this chapter we consider LE and DFE for doubly-selective channels modeled
via basis expansion models (BEM).

Design of equalizers for wireless communication systems over doubly-selective channels has
been studied in the literature [26, 67, 45, 46, 3, 5, 68]. These equalizers may be divided into two
types: block equalizers and serial equalizers. The block equalizers are usually complex to design
since inversion of a large matrix is required. Especially, since a doubly-selective channel can not be
diagonalized by a channel-independent transformation, the implementation of block time-varying
(TV) equalizers, which collect and process in blocks all the available data in the received frame,
leads to a very high computational complexity [5]. On the other hand, serial equalizers are more
favored since they process few data at a time and provide a flexible trade-off between complexity
and performance [66]. The TV serial equalizers in [45, 46, 3, 5, 68] rely on a particular basis
expansion model (BEM) of the TV channel impulse response, hamely complex exponential (CE)
BEM, and the knowledge of the BEM coefficients at the receiver. Furthermore, they also use a
CE-BEM representation for the TV equalizer; therefore, when a low-order CE-BEM model is used

for the equalizer, it incurs an approximation error inherent in CE-BEM modeling of equalizers.

76



Thus, their performances are highly related to the choice of the number of BEM coefficients and the
equalizer order.

Itis well known that the Kalman filter, a linear recursive minimum mean-square-error (MMSE)
filter, is the best linear MMSE detector for a given detection delay. It provides a symbol detection
method of obtaining the true MMSE performance within an implementable structure having a fi-
nite number of filter weights. The Kalman filter has been widely used in channel estimation and
equalization over wireless channels [74]. In this chapter we exploit the Kalman filter as a TV linear
MMSE equalizer for doubly-selective channels. An alternative formulation of the FIR DFE based
on a CE-BEM channel model is also proposed for doubly-selective channels.

The main advantages of the proposed LE and DFE are fourfold: (i) The design process does not
rely on a specific basis expansion model for the underlying channel; therefore, it can be applied to
any doubly-selective channel model. (ii) The proposed equalizers rely solely on the channel model
and therefore, do not incur any approximation error inherent in CE-BEM modeling of equalizers.
(iii) Only one parameter, the equalizer delay, will influence the performance of the Kalman filter;
only three parameters, the equalizer delay, and feedforward and feedback filter lengths, will influ-
ence the performance of proposed DFE. (iv) The computational complexity in terms of the number
of flops turns out to be much lower than existing BEM-based TV equalizers. The simulation results
will show that the proposed equalizers can achieve the same or an improved bit error rate (BER)
performance than the equalizers in [45, 46, 3, 5, 68], without incurring the approximation error

inherent in BEM modeling of equalizers.
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4.2 Linear Equalization

4.2.1 System Model

Consider a doubly-selective finite impulse response (FIR) linear channel with single input and
multiple outputs (SIMO). The discrete time impulse respohié&(n; 1) denotes the time-varying
impulse response of channel that includes transmit-receive filters as well as doubly-selective propa-
gation effects between the transmit antenna andtthesceive antenna, wherec [0, 1, ..., N — 1]
and! € [0, L] capture the time- and frequency- selectivity of the channel, respectivelys(het
denote the transmitted symbols which is input to the SIMO channel, the received sequence at the

rth receive antenna can be written as

L
2 (n) = Z R (n; D s(n — 1) + 1" (n), 4.1)
=0

wheren(") (n) is the additive complex Gaussian noise at ttfe receive antenna, with zero-mean
and variance;.
In [45, 46, 3, 5, 68], the designs of TV equalizers depend on a BEM of the time-varying

channel, given by [26]:
Q
WO (n:0) = wf) (D (n), (4.2)
q=0

wherewf,”)(l) is the basis expansion model parameter (coefficient);) is the basis expansion
function, and? + 1 is the basis dimension that satisfd$py,ax N | < Q < N — 1 with vppyay the
maximum normalized Doppler bandwidth. The above model is valid over a bla¥ksyinbols over
which the BEM coefficients remain time-invariant. The BEM coefficients may change from block

to block. Therefore, we will refer to the equalizers of [45, 46, 3, 5, 68] as BEM-based equalizers.
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More specifically, the complex exponential basis functions [26] are used in [45, 46, 3, 5, 68], where
hy(n) = eI2m(a=Q/2)n/ P (4.3)

if P = N whereN is the block size in symbols, the CE-BEM is said to be critically sampled
whereas wherP > N, it is said to be oversampled [37]. The oversampling reduces frequency
spacing of complex exponentials and gives a better representation of the channel impulse response.

[68] usesP = 2N whereas [5] has used = N.

=R

Collecting the symbolgz(") (n)}::1 received by theR receivers into the vectar(n) :=

[z1(n), z2(n), ...,xr(n)]T € CE, we can obtain the matrix-vector form of (4.1):

L Q2
x(n) = Z Z wq(l)s(n — 1)el?™ P 4 y(n), (4.4)
=0 ¢=-Q/2
wherew, (1) := [w{" (1), ..., w{ )] € €T andn(n) := [p®(n), ...,n B (n)]% € CE,
If the input vector of a BEM-based equalizer of ordéiis defined ag/(n) := [z (n), 2" (n—

1),....,z7(n — L)]T e CRI'+1), the output of the equalizer can be written as:

5(n) = g™ (n)y(n), (4.5)

where the vectogy(n) € CRIL'+D) collects all the equalizer parameters ahis the equalization
delay.

The following model assumptions are considered throughout this chapter:
(H4.1): The information symbols(n) consists of zero-mean, finite-alphabet of independent and

identically distributed (i.i.d.) random variables, satisfyifid s(m)s*(n)} = a25(m — n).
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(H4.2): The measurement noig€) (n) in Eq. (3.1) is uncorrelated with(n), andE {n(m)n*(n)} =

a%é(m —n).

4.2.2 Existing Linear Time-Varying MMSE Equalizers

In [45, 46, 3, 5, 68] both zeroforcing and MMSE linear equalizers have been considered. Since
the Kalman filter yields a linear MMSE equalizer, in this section we will restrict ourselves to exist-
ing TV MMSE equalizers. First we briefly review two linear TV MMSE equalizers from [5] and
[68], respectively. The design of these equalizers assumes availability of the CE-BEM coefficients
wl”(1)s of the channel.

BLM Equalizer [5]

In [45, 46, 3, 5] one seeks

L'-d Q2 R

$(n) = Z Z Zgé,r)(l’)eﬂ”q/"/ljm(r) (n—1", (4.6)

U'=d qlziQ//2 r=1

where design parameters akd./, Q" and equalizer coefficien_r,éf) (I), invariantoven € {0,1, ...,

N — 1}. Notice that the structure of the equalizer is that of a CE-BEM. Define

T
g(r) = gE?Q//Q(_d)7 e gE?QI/Q(L/ - d)vg(,?Q//ngl(_d% ey g( l)/2(_d)7 ...,g(Q,)/Q(L/ - d):|
4.7)
and
T / /
Oblm = [g(l)T,g(Q)T, m’g(R)T c CRI+1D)(@+1) (4.8)
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The TV MMSE equalizer proposed in [45, 46, 3, 5](henceforth referred to as BLM) provides an
explicit frequency-domain representation, by turning a TV equalization problem into a simpler time-
invariant (T1) filtering design, which only involves the Tl basis expansion parameters of the doubly-
selective channel. The (TV MMSE) BLM equalizer can be expressed as [5]:

2 —1
g,
Goim = Hpim | Hiy Hyim(n) + ;gI(Q+Q’+1)(L+L’+1) €4 (4.9)

S

where thgR(Q'+1)(L'+1)] x [(Q+Q'+1)(L’+ L+ 1)] matrix Hy,y, collects TI BEM parameters
and TV complex exponential basis functions as given in Sec. V in{[8]{0, 1, ..., L + L'} is the
delay of the equalizer, anel; ¢ R(@T@+D(L'+L+1) js an unit vector with the element 1 in the
(d + 1)st position.

Computational Complexity The inverse in (4.9) require@(K?) flops (one flop is roughly
one multiply-and-accumulate operation) whéfe= (Q + Q' + 1)(L + L' + 1) andO(K?) =
K3+ 0.5K? +0.5K if one uses modified Cholesky decomposition (i.e. UD-decomposition) based
approach to matrix inverse ([28] Table 6.13). This has been called design complexity (equalizer
design) in [5]. For implementation of (4.6), one ne@dB(Q’+1)(L’'+1) flops; this has been called
implementation complexity in [5]. For numerical comparisons in Sec. 4.2.4, we assume that the
inverse of a positive-definite matrix has been computed via the modified Cholesky decomposition
method.

FRESH Equalizer [68]
The MMSE solution to the frequency-shift TV equalizer proposed in [68] (referred to as FRESH)
gives the canonical frequency-domain representation of the optimal norm TV-MMSE equalizers,

which leads the optimal FRESH equalizer design to construct the Tl Fourier coefficients of optimal
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equalizer weightg,: (). The discrete Fourier series (DFS) expansion relationship,efn) is:

v
L

Gopt (n) = gp,opt€j27mp/P- (4.10)

=3
Il
o

Estimation ofg,,(n) via estimation ofg, o, is discussed in [68] for zero-foring equalization with

a specified equalization delay. It is straightforward to modify the design to obtain a linear MMSE

equalizer; for instance, add the noise variance term to eq. (26) in [68] just as has been done in (4.9).
However, the implementation complexity of the FRESH representation of the optimal TV

MMSE equalizer maybe quite large for “large” values 8t Therefore, a low-complexity im-

plementation of the optimal FRESH equalizer (refer to as a sub-optimum FRESH method) is also

derived in [68] by evaluate onl§’ + 1 Fourier coefficients in (4.10), which is similar to that consid-

ered in BLM equalizer design. So the DFS expansion for sub-optimum FRESH equalizer is given

by
Q'/2

Gaubopt (M) = > Gpsubopte’ /T (4.11)
p=—Q’'/2

whereg,, subopt = Gp,opt FOrp = 0,1, ..., Q' /2 andgy, subopt = p+Popt fOrp = —1, -2, ..., —Q’/2.

Computational Complexity As discussed in [68], design complexity of both optimal and
suboptimal FRESH equalizers involvés- O[(L + L' + 1)3] + (Plog, P)(L + L' + 1) flops
whereO(K?) = K3 + 0.5K? + 0.5K when one uses a UD-decomposition approach to positive-
definite matrix inversion. For implementation, one nedd8P (L’ + 1) flops for optimal FRESH
andNR(Q' + 1)(L’ + 1) flops for suboptimal FRESH equalizer.

Remark 4.1: The design of both BLM and FRESH equalizers rely on the CE-BEM repre-

sentation of the channel. They assume that the BEM paramﬁé’@r(sz) are known at the receiver.

It is still not clear if these design methods apply to other basis expansion models. However, the
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simulation results in [5] illustrate that the BEM modeling errors have a significant influence on the
performance.
Remark 4.2: Three parameters have to be considered or optimized for BLM and FRESH equalizers

designd, L' andQ’.

4.2.3 Kalman Filter with Equalization Delay d

The Kalman filter has been widely used in channel estimation and equalization over wireless
channels; see [74] and references therein. It requires a state-space model of the underlying system.

Define the state vectat(n)
s(n) == [s(n),s(n —1),...,s(n — d)]T € C, (4.12)
the state transition matri® and the input vectof

O1x¢g O
P X c R(d+1)><(d+l)’ €= [17 led]T7 e R4+ (4.13)

I; 04y

and the observation matriid (n)
H(n) := [h(n;0),h(n; 1), ..., h(n; L), Oy 4—r)] € CTHD, (4.14)

whereh(n;1) := [hV(n,1),...,h B (n,1)]T € CE. Based on these definitions and the system

model in Section 4.2.1, we have ttime-invariant state equation:

s(n) = ®s(n — 1) + &s(n), (4.15)
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and thetime-varying observation equation

x(n) = H(n)s(n) + n(n). (4.16)

The Kalman filter algorithm is given as follows [74], [59] whe¥g:|n) denotes the linear MMSE
estimate ofs(n) based on observationsk), k = 1,2, ..., n.
Initialization: Attimen = 0, §(1]0) = E {s(1)} = 0 andV;(1|0) = 0214, .

Filtering: Attimen =1,2...

V.(n) = H(n)Vi(n|n — 1)H" (n) + 021, (4.17)
K(n) = Vi(nln — )H" (n)V; ! (n), (4.18)

z(n) = x(n) — H(n)3(nln — 1), (4.19)

8(n|n) = 8(n|n — 1) + K (n)z(n), (4.20)

Vi(nln) = [Ig41 — K(n)H(n)|Vs(nln — 1), (4.21)
Vi(n+1|n) = ®Vi(n|n)® + s2¢€ (4.22)
8(n+ 1|n) = ®3(nn). (4.23)

Sinces(n|n) = [3(n|n), 5(n — 1|n), ..., 5(n — d|n)]*, we extract its last terrd(n — d|n) as the

desired equalized output.

Remark 4.3: For Kalman filter, the design process does not rely on a particular basis expansion
model as long as the estimated/fitted channel impulse response is known at the receiver, so it can be

applied to any doubly-selective channel model.
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Table 4.1: Operation summary for Kalman filter

Operation flops
H(n)Vi(njn — 1) (d+1)°R
V.(n) Hd+1)R*+3(d+ DR
Vi(n)"'(n) R+ 1R24 1R
K(n) (d+1)R?
Vi(n|n) 2d+1)2R+3(d+ 1R
Total C=3(d+1)’R+3(d+1)R*+ (d+1)R+ R*+ 3R>+ 1R

Remark 4.4: Only one parameter, equalization delgyis needed for the Kalman filter design and
will influence its performance.
Design ComplexityComputationsin (4.17),(4.18),(4.21) and (4.22) comprise the design equa-
tions for Kalman filtering. Following Table 6.5 in [28], the required number of flogser time-step
are listed in Table 4.1. Therefore, for a transmitted block of 8izeymbols, one needS C flops.
Implementation Complexity Computations in (4.19),(4.20),and (4.23) comprise the imple-
mentation equations for Kalman filtering. The number of flops needed per time-st2f@re- 1)
where given the nature @b, (4.23) does not require any flops. Therefore, for a transmitted block
of size N symbols, one needsNV R(d + 1) flops. On the other hand, both BLM and suboptimal

FRESH equalizers requitd R(Q’ + 1)(L' + 1) flops each.

4.2.4 Numerical Examples

In this section, the BER performance and the computational complexity of the proposed Kalman
filter are investigated by means of Monte Carlo computer simulations, and compared with BEM-

based BLM [5] and FRESH [68] equalizers. For computational complexity calculations, we assume
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that the inverse of a positive-definite matrix has been computed via the modified Cholesky decom-
position method.

A random time- and frequency- selective Rayleigh fading channel is simulated according to
[81] with channel ordel. = 3 (4 taps). For different’s, h (n;1)’s are mutually independent, satisfy
Jakes’ model, and each tap is generated via the method of [81] given the symbol diiyatiahthe
Doppler spread,. It is important to point out that each channel tap follows the Jakes’ spectrum,
rather then the assumed BEM representation. The data were generated using the double-selective
channel described above. However, for equalizer design one needs CE-BEM representation of the
true channel; this was obtained by a least-squares fit of the assumed BEM to the true channel in
each Monte Carlo run, just as in [5] and [68], to obtain the BEM coefficients (which vary from
run-to-run). These BEM coefficients were used in the designs of [5] and [68], as well as in Kalman
filtering whereh(n;![) in (4.14) is generated via (4.2) with fitted BEM parameters ;1) in
(4.14) is not the true channel, but its BEM approximation). Note that one could have directly used
the Jakes’ channéi(n; () in the Kalman filter implementation of the linear MMSE equalizer unlike
the approaches of [5] and [68]. However, this would not be a fair comparison with the approaches of
[5] and [68]. Most importantly, this would not illustrate the effects of modeling errors since practical
channels are rarely Jakes’ channels although their use in simulations and analysis is widespread.

In all simulations, the transmitter transmits binary phase shift keying (BPSK) and quadrature
phase shift keying (QPSK) modulated symbols. The SNR refers to the energy per bit over one-sided

noise spectral density.
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Table 4.2: Computation complexity = 50, P = 2N = 100

Equalizer H Design Complexity(flops) [ Implementation Complexity(flops)
FRESH-OPT [68] P-O[L+ L' +1)%] + (Plogo P)(L + L' +1)2 = 171,939 NRP(L' + 1) = 70,000
FRESH-SUBOPT [68] P.-O[(L+ L 4+1)3] + (Plogo P)(L + L' +1)%2 = 171,939 | NR(Q' + 1)(L’ + 1) = 13,300
BLM [5] O(K3) = 12,193,565 NR(Q" + 1)(L" +1) = 13,300
Kalman filter (proposed) NC = 8,350 2NR(d+ 1) = 1,200

Example 1. BER versus SNR under Simulation Parameters in [68]

We consider the same simulation parameters as in [[68], Experiment 3], i.e., the block size
(number of information symbols) i& = 50, P = 2N (oversampled CE-BEM with a factor of
2), the number of receive antennBs= 2, symbol duratioril; = 160us, the maximum Doppler
spreadf; = 100Hz, the equalization delay = 5 symbols and) = 2| f;PTs| = 4. For BEM-
based equalizers (both BLM and FRESH), the equalizer akdet 6 and the number of Fourier
coefficients (equalizer BEM coefficient§) = 18, as in [[68], Experiment 3]. The BER averaged
over10,000 Monte Carlo runs versus SNR is shown in Fig. 4.1 for the four approaches: BLM [5],
optimum FRESH [68], suboptimum FRESH [68] and the proposed Kalman filter solution. Note
that the Kalman filter does not neéd or Q’. The results for BPSK modulation are plotted in Fig.
4.1. Itis seen from Fig. 4.1 that the performances of the four approaches are very close each other.
The computational complexity measured in terms of flops for entire block is shown in Table 4.2.
Notice that the Kalman filter requires significantly fewer flops than the other two approaches, both
for design as well as implementation.

Fig. 4.2 plots the BER versus SNR results for QPSK modulation, where the information se-
guences are QPSK signals. Although the performance of Kalman filter is slightly worse than the

other two equalizers at high SNR, the three approaches have similar performances in this case.
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Figure 4.1: BER performance versus SNR using BPSK modulation, averaged over 10,000 runs.
BLM denotes the method of [5]; FRESH-OPT and FRESH-SUBOPT are methods of\68]50,
P=100,Q=4,L=3,d=5,Q =18, L' =6

Table 4.3: Computation complexityy = 800, P = 2N = 1600

Equalizer H Design Complexity(flops) [ Implementation Complexity(flops)
FRESH-OPT [68] P-O[(L+ L' +1)3] + (Plogo P)(L + L' +1)% = 11,130,924 NRP(L' + 1) = 33,280,000
FRESH-SUBOPT [68] P.-O[(L+L"4+1)3] + (Plogo P)(L + L' +1)% = 11,130,924 | NR(Q' + 1)(L’ 4+ 1) = 274, 400

BLM [5] O(K3) = 37,989,672 NR(Q" + 1)(L" + 1) = 274, 400
Kalman filter (proposed) NC = 22,000 2NR(d + 1) = 35,200
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Figure 4.2: BER performance versus SNR using QPSK modulation, averaged over 10,000 runs

Example 2: BER versus SNR under Simulation Parameters in [5]

Now the simulation parameters in [[68], Fig. 11] are used whiére 800, R = 2, Ts = 25US,
fa = 100Hz,d = 10, L' = 12, andQ’ = 12. Two cases are considere: = 2N andP = N,
leading toQ is 8 and 4, respectively. The results are shown in Fig. 4.3 which were obtained by
carrying out 1000 Monte Carlo runs. Whéh = N, the performance of the Kalman filter and
BLM equalizer [5] are quite close to each other as in Fig. 4.1. The error floors at high SNR are
caused by the BEM channel modeling error. However, the Kalman filter significantly outperforms
the BLM equalizer [5] wher® = 2N, the case where the channel modeling errors in approximating
a Jakes’ channel with CE-BEM are significantly smaller compared the caBe-0fV: recall that
the data are generated via the true Jakes’ channel. The computational complexity measured in terms

of number of flops for entire block is shown in Table 4.3 for the cBse- 2N = 1600. Notice
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Figure 4.3: BER performance versus SNR using BPSK modulation, averaged over 1,000 runs. BLM
denotes the method of [5]; FRESH-OPT and FRESH-SUBOPT are methods of [68]. Kalman filter
is based orP = 800 when@ = 4 and onP = 1600 when@ = 8. P = N corresponds to critically
sampled CE-BEM and® = 2N corresponds to oversampled CE-BEM. = 800, P = 800 or
1600,Q =40orQ =8, L =3,d=10,Q' =12, L' =12

90



10 T
—— BLM, P=N, Q=4
- —&— Kalman, Q=4
10 —4A— BLM, P=2N, Q=8 |3
—*— Kalman, Q=8
107
10°F
14
w
@ -4
107 \
10°F
10°F
10_7 Il Il Il
0 5 10 15 20

SNR(dB)

Figure 4.4: BER performance versus SNR using QPSK modulation, averaged over 1,000 runs
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Figure 4.5: BER performance versus SNR For DPS-BEM and CE-BEM channel modeling using
Kalman filtering, BPSK modulation
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Figure 4.6: BER performance versus SNR For DPS-BEM and CE-BEM channel modeling using
Kalman filtering, QPSK modulation

again that the Kalman filter requires significantly fewer flops than the other two approaches, both
for design as well as implementation

In Fig. 4.4 the BER performances for QPSK modulation are plotted under two schemes: BLM
and Kalman filter. The results in Fig. 4.4 are very similar to Fig. 4.3, except that the BER by using

QPSK information symbols are worse than that using BPSK symbols, as expected.

Example 3: Performance of Kalman Filter Using DPS-BEM

Now we test the performance of the Kalman filer by using Discrete Prolate Spheroidal (DPS)
BEM , in addition to CE-BEM, in (4.3), for approximating the true Jakes’ channel. As we noted
earlier, the Kalman filter has the flexibility that it is not restricted to a particular BEM and can be

applied to any doubly-selective channel model. In Fig. 4.5, we compare the BER performances of
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the Kalman filter for CE-BEM and DPS-BEM cases by using the simulation parameters in Example
2. Itis known that the channel modeling error of DPS-BEM is several magnitudes smaller then that
of critically sampled P = N) CE-BEM [77], which is the reason why the BER performance of
DPS-BEM case is better then CE-BEM iBr= N, Q = 4. For the oversampling case 8f= 2N
and@ = 8, the performances of DPS-BEM and CE-BEM are very close to each other since the
modeling error differences are not so pronounced any more. This example shows the flexibility of
the Kalman filter: its application is not limited to the CE-BEM channel model unlike FRESH [68]
and BLM [5] equalizers.

Without loss of generality, in Fig. 4.6 we again plot the simulation results under QPSK modu-

lation where the information symbols are QPSK signals.

4.3 Decision Feedback Equalization

4.3.1 System Model

Consider a doubly-selective finite impulse response (FIR) linear channel with single input and
multiple outputs (SIMO), where the expressions of input and output of the SIMO channel are the
same as (4.1)-(4.4) in Section 4.2.1.

Consider an FIR DFE with equalization deldyfeedforward (FF) filter of length, and feed-
back (FB) filter of length,,. Let 5(n) be the “soft” estimate of symbaln) and lets(n) denote its

quantized (hard decision) value. Then the soft output of the DFE is given by

lf—l

Iy
$tn—d)y=>" fhma(n—m)—> by(n)i(n—d—k) (4.24)
m=0 k=1

93



where theR-column vectorsf,,(n)’s and scalardy(n)’s are the tap-gains of FF and FB time-
varying filters at timen. Note that both FF and FB filters are FIR. In the minimum mean-square
error (MMSE) design of DFE, one seeks the tap-gains to minimige(n — d) — 3(n — d)|*}. As
discussed in [2] and [57, Sec. 3.3], one first designs the FB filter assumingthat s(n) (i.e. no

decision errors), and then one designs the FF filter given the FB filter.

4.3.2 Time-Varying FIR MMSE DFEs

In this section we first briefly review the TV FIR MMSE DFE from [46],[3]. Then our pro-
posed formulation is presented. The design of these equalizers assumes availability of the CE-BEM

coefficientsw!” (1)s of the channel.

FIR MMSE DFE of [46],[3]

In [46],[3], one approximates time-varying FF and FB tap-gains via another sets of CE-BEMSs,

leading to

in—d) = S W) 1) 3 by (1")ed " F 5(n — d — 1)

(4.25)
where design parameters ately, I, Q', Q" and equalizer FF coefﬁcienﬁf) (I") and FB coef-
ficientsb, (1”), invariant ovem € {0,1,..., N — 1}. Notice that the structure of the FF and FB
parts of the equalizer is that of a CE-BEM.

The design equations may be found in [46],[3]; in particular, see [46, Sec. 5.2]. The TV
FIR MMSE DFE proposed in [46],[3] (henceforth referred to as BLM: Barhumi, Leus, Moonen)

provides an explicit “frequency-domain” representation, by turning a TV equalization problem into
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a simpler time-invariant (TI) filtering design, which only involves the Tl basis expansion parameters
of the equalizer tap-gains. For details, we refer the reader to [46, Sec. 5.2].

We now provide details from [46, Sec. 5.2] (modified to conform to the notation in this paper).
Define the[l,(Q” + 1) + 1] x 1 vector
.y bQ//

=172 1

b=lbgr, b
2 o'b 2

T
P 7b1,1,b07lb7 s 7b0,1707 b—l,lb, .. '7b*1,17 .. '7b—Q” 1] ’
2 2

the[l;(Q' + 1)] x 1 vector

and the[RI;(Q' + 1)] x 1 vector

F=10r . fTr

Define thel; x [I; + L] Toeplitz matrix

Qiw" Q=w)
H() =
Qiw Q7w




and thelR(Q" + 1)l] x [(Q + Q" + 1)(I; + L)] matrix
M= [HOT, L H T "

whereQ? := diag{1,e/2/P ... e27U;=0/P} Define a[(Q" + 1)I;] x [(Q + Q' + 1)(L + )]

“selection” matrix

Iy @ Py
2

witha = (Q"+ 1)l +1,8=(Q+Q — Q") (L +15)/2,
Pl = [Ole[L—‘,-lf—l—lb—d)]’Ilb7Ole(d+1)]’

Py = (00, 41)x L1 1-t5—a)]> Ly +15 Oty 1) -

Let e denote thé(Q"” + 1), + 1] x 1 unit vector with a one in positioh+ I, + (Q"1,/2). Then the

MMSE DFE tap-gains are given by [46, Sec. 5.2]

1

- N e
bymse = TM,+SE — e, (4.26)
e Ry spe
Ruumse = P(o)*H"H +0.21)"" P, (4.27)
. - 0'2 -t

Computational Complexity:To design the feedforward and feedback filter coefficients, the

inverse in (4.28) and (4.26) requize? (K 3) flops (one flop is roughly one multiply-and-accumulate
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operation) wherl' = (Q+Q’'+1)(L+1¢) andO(K?) = K3+0.5K?+0.5K if one uses modified
Cholesky decomposition (i.e. UD-decomposition) based approach to matrix inverse [2, Table 6.13].
This has been called design complexity (equalizer design) in [3]. For implementation of (4.25),
one needsVR(Q’ + 1)l flops for feedforward part and¥ (Q” + 1)1, flops for feedback part; this

has been called implementation complexity in [3]. For numerical comparisons in Section 4.3.3, we
assume that the inverse of a positive-definite matrix has been computed via the modified Cholesky
decomposition method.

Remark 4.5: The design of BLM DFEs relies on CE-BEM representation of the channel. They
assume that the BEM parametewg) (1) are known at the receiver. It is not clear if these design
methods apply to other basis expansion models. However, the simulation results in [5] illustrate that
the BEM modeling errors have a significant influence on the equalizer performance.

Remark 4.6: Five parameters have to be considered or optimized for BLM DFE degjdp;

Iy, Q" andQ”.

Proposed MMSE DFE with Time-Varying Taps

Here we follow [2] (see also [57, Sec. 3.3]) where a time-invariant channel is considered. Their
results extend to time-varying channels in a straight-forward fashion; therefore, we simply state the
final results instead of repeating the entire derivation with obvious changes.

Using the estimated channel, the symbol decisions are made by an FIR MMSE-DFE [2]. Given
the lengths of the feedforward (FF) and the feedback (FB) filters ad [, respectively, the

estimate of the information symbol at tinnewith equalization delay is given by (4.24). Stack the
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inputs of the FF filter at time into a “tall” vector

T
zr(n) = |zl (n) ¥ (n-1) --- zl (n—1p+1)| >
and also defingy; (n) likewise. By (4.4), we have
xg(n) = H (n)syf(n)+ny (n) (4.29)
where ) )
h(n;0) --- h(n; L)
H (n) := (4.30)
h(n—1+1,0) --- h(n—=Ilf+1;L)
and
T
sp(n) == [s(n) s(n—1) --- s(n—lf—L—i—l)} :
We further define
T
sy (n) = [s(n—d) sin—d—-1) --- s(n—d—lb)] .

By the assumption thdts (n)} are i.i.d. with variance?2, and based on (4.29), we have

Ry (n):=FE {Sb (n) sgf (n)} = C’?Ilb—i-l»
R, (n) :=E {s}(n) m? (n)} = o?®HY (n),

R, (n) := E{xs (n) x? (n)} = o2H (n) H” (n) + JEIle
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where® .= 10, 1 1y.q Ij4a O(lb+1)><(lf+Ldlb1):|.

Let f (n) andb (n) denote the vectors of time-varying taps of FF and FB filters,

|

b(n):= [1 by (n) by(n) --- blb(n)r.

fn):

T
) £ £ )

Assuming the decision§s (n)} are correct and equal § (n)}, the FF and the FB time-varying

filters of the MMSE-DFE are given by [2]

Rileo
b = 94 - 4.31
MMSE (n) eOTRgleo ( )
funse (n) = Ry, (n) RE (n) buwisk (n) (4.32)
T
wheree := [1 00 --- 0} and
R; = R, (n)— Rs (n) R} (n) RZ (n). (4.33)

Computational Complexity:To design the proposed MMSE DFE, we need to compute the
inverse of aRl; x Rl; matrix to obtain the feedforward filter coefficients (as in eq. (4.32)), and we
need to compute the inverse oflg+ 1) x (I, + 1) matrix to obtain the feedback filter coefficients
(as in eq.(4.31)). Therefore, the required number of flo(igzl)3) + O((l, + 1)3).

The implementation complexity associated with eq. (4.24) requ¥r&$; flops for the feed-

forward part andV/, flops for the feedback part.
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Figure 4.7: BER performance versus SNR, averaged over 1,000 runs, BPSK signal.800,
P =1600,Q =8, L = 3,d=5,Q'=12,1;,=12,Q" = 4, [, = 3. R denotes the number of receive

antennas.

Remark 4.7: For the proposed MMSE DFE, the design process does not rely on a particular
basis expansion model as long as the estimated/fitted channel impulse response is known at the
receiver, so it can be applied to any doubly-selective channel model.

Remark 4.8: Only three parameters, equalization delawynd filter lengthd; and/,, are

needed for the proposed filter design and will influence its performance.

4.3.3 Numerical Examples

In this section, the BER performance of the proposed DFE solution are investigated by means
of Monte Carlo computer simulations, and compared with BEM-based BLM DFE solution of

[46],[3].
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Figure 4.8: BER performance versus SNR, averaged over 1,000 runs, BPSK signal.800,
P =1600,Q =8, L = 3,d=5,Q'=12,1;,=12,Q" = 4, [, = 3. R denotes the number of receive
antennas.

A random time- and frequency- selective Rayleigh fading channel is simulated according to
[81] with channel ordel. = 3 (4 taps). For different’s, h (n;1)’'s are mutually independent, satisfy
Jakes’ model, and each tap is generated via the method of [81] given the symbol diiyatiahthe
Doppler spread,. It is important to point out that each channel tap follows the Jakes’ spectrum,
rather then the assumed BEM representation. The data were generated using the double-selective
channel described above. However, for equalizer design one needs CE-BEM representation of the
true channel; this was obtained by a least-squares fit of the assumed BEM to the true channel in
each Monte Carlo run, just as in [46], [5] and [68], to obtain the BEM coefficients (which vary from
run-to-run). These BEM coefficients were used in the designs of [46],[3] and [5], as well as in our

proposed DFE solution.
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Table 4.4: Computation complexity

Equalizer Design Flops| Implementation Flops
BLM DFE [46],[3] || 62,611,290 261,600
Proposed DFE 14,198 21,600

In our simulations, the transmitter transmits binary or quaternary phase shift keying (BPSK/
QPSK) modulated symbols. The SNR refers to the energy per symbol over one-sided noise spectral
density.

We consider the simulation parameters quite similar to those in [46],[3] and [5, Fig. 11], i.e.,
the block size (number of information symbols)¥s= 800, P = 2N (oversampled CE-BEM with
a factor of 2), the number of receive antenfias- 1, 2, symbol duratiorf’; = 25 us, the maximum
Doppler spread; = 100H z, the equalization delay = 5 symbols andl = 2[f;PTs] = 8.
For BEM-based equalizers (both BLM LE and BLM DFE), the equalizer lengths- 12 and
I, = 3 with corresponding number of Fourier coefficients (equalizer BEM coefficiéptsy 12
and@” = 4. The BER averaged over 1,000 Monte Carlo runs versus SNR is shown in Fig. 4.7 for
the three approaches when using BPSK signal: BLM DFE [46],[3], BLM LE [5], and our proposed
DFE solution. Note that our formulation does not négdor Q”. It is seen from Fig. 4.7 that the
DFE solutions outperform the LE solution, and the performance improves with increasing number
of receive antennag. Furthermore, our proposed solution outperforms the BEM-based DFE of
[46],[3]. The computational complexity measured in terms of number of flops for the entire block is
shown in Table 4.4. Notice that our DFE formulation requires far fewer flops than the BEM-based
DFE of [46],[3].

Finally, Fig. 4.8 shows the BER results for QPSK signals for the same set of parameters as for

Fig. 4.7. We see comparative performance similar to Fig. 4.7 in Fig. 4.8.
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4.4 Conclusion

In this chapter, we exploited the conventional Kalman filter and DFEs as time-varying mini-
mum mean-square-error equalizer for doubly-selective channels modeled via basis expansion mod-
els (BEM). Recently there has been much interest in designing time-variant serial FIR (finite im-
pulse response) linear equalizers and FIR DFEs using complex exponential (CE) BEMs for equal-
izers in addition to using CE-BEM for modeling the channel itself. We showed that a Kalman filter
formulation of the linear equalizer and an alternative formulation of the FIR DFE based on a CE-
BEM channel model yields same or improved BER at a much lower computational cost, without

incurring the approximation error inherent in CE-BEM modeling of equalizers.
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CHAPTERDS
A MULTIPLE MODEL APPROACHTO DOUBLY-SELECTIVE CHANNEL ESTIMATION USING

EXPONENTIAL BASIS MODELS

5.1 Introduction

In order to “accurately” model the underlying doubly-selective channel, the number of BEM
coefficients used to model the doubly-selective channels for channel estimation has been based on
an upper bound on the channel Doppler spread. The higher the Doppler spread, the more the number
of BEM coefficients, which leads to a higher channel estimation variance. This, in turn, leads to
higher bit error rate (BER) when the estimated channel is used for data detection and the actual
Doppler spread is (much) less than the upper bound.

In this chapter we propose to use a multiple model framework where several candidate Doppler
spread values are used to cover the range from zero to an upper bound, leading to multiple CE-BEM
channel models, each corresponding to an assumed value of the Doppler spread. Subsequently the
well known interacting multiple model (IMM) algorithm [11] is used for symbol detection based on
multiple state-space models corresponding to the multiple estimated channels.

The multiple model (or hybrid system) approach assumes the system to be in one of a finite
number of models (i.e., that is described by one out of a finite number of models). Each model
is characterized by its parameters — the models differ in Doppler spread here. For each model a
filter 'matched” to its parameters is yielding model-conditioned estimates and covariances. A mode
probability calculator — a Bayesian model comparator — updates the probability of each mode
using the likehood function (innovations) of each filter and the prior probability of each model. Then

an estimate combiner computes the overall estimate and the associated covariance as the weighted
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sum of the model-conditioned estimates and the corresponding covariance — via the (Gaussian)
mixture equations. Among all the multiple model approaches, the interacting multiple model is
considered to be the best compromise between complexity and performance. The IMM approach
computes the state estimate that accounts for each possible current model using a suitable mixing
of the previous model conditioned estimate depending on the current model.

In this chapter an adaptive channel estimation scheme, exploiting the over-sampled complex
exponential basis expansion model (CE-BEM), is presented for doubly-selective channels where we
track the BEM coefficients via the multiple model approach. The chapter is organized as follows.
First, the system model and objectives are provided. Second, the IMM algorithm and configura-
tion are briefly summarized. The performances of the proposed design are finally illustrated by

simulation examples.

5.2 System Model and Objectives

5.2.1 System Model

Consider a doubly-selective (time- and frequency-selective) FIR (finite impulse response) lin-
ear channel. Lefs (n)} denotes a scalar sequence which is the input to time-varying channels with
the discrete-time respongé (n; 1)} (the channel response at timdo a unit input at time: — [).

Then the symbol-rate noisy channel output at ttrereceive antenna is given by (= 0,1, .. ;
r=12....R)

L
y D (n) =Y B (m;D)s(n — 1) + 0" (n) (5.1)
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wherev(") (n) is the zero-mean white complex-Gaussian noise with variafjcéVe assume that
{h(” (n; l)} (» = 1,..., R) represents a wide-sense stationary uncorrelated scattering (WSSUS)
vector channel [54].

In CE-BEM [26, 48, 37], over thé-th block consisting of an observation window 6f;

symbols, the channel is representedigs:& (k — 1)1s)

WO (nil) =Y " w{D(D)ea", n=ng, ..., o+ Tp — 1, (5.2)
q=1
where one chooses £ 0,1,..., L, andK is an integer)
T:=KTg, K>1, Q>2[fTT,]+1, (5.3)
27
wq::?[q—(Q—i—l)/Q}, g=1,2,...,0Q, (5.4)
L:=|my/Ts], (5.5)

T4 and f; are respectively the delay spread and the Doppler spread,.asdhe symbol duration.

The BEM coefficientsU((f)(l)’s remain invariant during this block, but are allowed to change at the
next block, and the Fourier basis functiohs“s"} (¢ = 1,2,..., Q) are common for each block.

If the delay spread,; and the Doppler spreaf]; of the channel (or at least their upper-bounds)
are known, one can infer the basis functions of the CE-BEM [48]. Treating the basis functions as
known, estimation of a time-varying process is reduced to estimating the invariant coefficients over
a block of lengthl’s symbols. Note that the BEM periodTs= KTz whereas the block size &3
symbols. IfK > 1 (e.g. K = 2 or K = 3), then the Doppler spectrum is said to be over-sampled

[37] compared to the cas€ = 1 where the Doppler spectrum is said to be critically sampled. In

106



[26, 48] only K = 1 (henceforth called CE-BEM) is considered whereas [37] consiflers 2

(henceforth called over-sampled CE-BEM).

5.2.2 Block-Adaptive Channel Estimation [48]

Here we summarize the time-multiplexed training approach of [48]. In Sec. 5.4 we provide
simulation comparisons with results of [48]. In [48] each transmitted block of symbolg }fio’l
is segmented int@ subblocks of time-multiplexed training and information symbols. Each sub-

block is of equal length, symbols with/; information symbols and] training symbolsk, = l4+1;).

Tp—1
n=0 7

If s denotes a column-vector composed efn)} thens is arranged as

S = bg cg; b{ c{ e b£_1 C£—1 (56)

whereb, (p = 0,1,--- P — 1) is a column ofl; information symbols ana, is a column ofl;
training symbols. We clearly havEs = PI;,. Given (5.1) and CE-BEM (5.2), [48] has shown that

(5.6) is an optimum structure fd&f = 1 withl; =2L+ 1, P > @Q and

T
cp = [()TL“ ~ 0%] , v > 0. (5.7)

Thus, given a transmission block of sizg, (2L + 1) P symbols have to be devoted to training and
the remainindl’s — (2L + 1) P are available for information symbols. This design has been used

by others for oversampled CE-BEM also [37].
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Letn, := ply+lqg+L,(p =0,1,--- P—1), denote the location of (nonzerg} in the optimum

¢,’s in the P subblocks. Then by design, received signal (assuming timing synchronization)
y™ (ny, + 1) = yh " (ny + ;1) + 0 (ny + 1) (5.8)

fori =0,1,---, L. Using (5.2) in thesg(™ (np +1)’s, one can uniquely solve fonc(f)(l)’s via a
least-squares approach. The channel estimates are given by the CE-BEM (5.2) using the estimated

BEM coefficients.

5.2.3 Objectives

Suppose that we collect the received signal over a time interval efmbols. We wish to
estimate the time-variant channel using a channel model and time-multiplexed training (such as
that discussed in Sec. 5.2.2 and [48]), and subsequently using the estimated channel, estimate the
information symbols. For CE-BEM, if we choo§eas the block size, then in gener@livalue will
be very high requiring estimation of a large number of parameters, thereby degrading the channel
estimation performance. If we dividg into blocks of sizeT’z, and then fit CE-BEM block by
block, we need smallép. This is the solution considered in this chapter (and also [48]). In practical
situations, over a largg, the actual Doppler spredf is likely to vary. Absent any prior knowledge,

a commonly used solution [48, 37] is to use an upper bound on the anticifiaibdsed on the
maximum vehicle speed, e.g.) and pi€kaccordingly. In this chapter we investigate a multiple
model framework where several candidate Doppler spread values are used to cover the range from
zero to an upper bound, leading to multiple CE-BEM channel models, each corresponding to an
assumed value of the Doppler spread. Multiple model approach has been extensively used in target

tracking applications [11, 7, 64] and more recently, has been used for tracking dispersive DS-CDMA
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channels using multiple autoregressive (AR) models in [30]. In this chapter we propose to use such

an approach in conjunction with BEM’s.

5.3 Multiple Model Approach

5.3.1 Multiple Models

Let f4. denote an upper bound on the anticipated Doppler spfgatet f; 1, fa2,..., fam
denote ourM candidate Doppler spreads and dgt,, 1 < m < M, denote the corresponding
values of@) from (5.3). Then we havé/ candidate channel impulse responses indexeak lmyer

the k-th block consisting of an observation windowB% symbols,

Qm
R (s 1) = 3wl (1)ed“om = g, g, + 1, .., i+ T — 1. (5.9)
q=0

We will use a Kalman filter with equalization deldyor data detection using the estimated channel.

Define

O1><d 0
d = ,
Id del
F - [1701><d]T7
Hd(”) = [h(m) (TL, O)’ h(m) (n7 1)7 ceey h(m) (nv L)7 ORX(de)L
R (n;1) =[BT (n,0), . R (D) (5.10)
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wheren(n) is defined just ag(n) and integerd > L. Assume data symbols are zero-mean and
white. If s (n) is a data symbol, we have(n) := 0, 5§ (n) := s (n); if s(n) is a training symbol,
5(n):=s(n), s (n) := 0. Then the underlying state-space model corresponding tathehannel

is given by the state and the measurement equations

sq(n)=®s4(n—1)+Ts(n)+Ts(n), (5.11)
y (n) = Hy" (n) sq(n) +v(n). (5.12)

In (5.11)5(n) ands(n) are defined just as;(n).

Consider a set df’ received symbols divided up int® subblocks as in Sec. 5.2.2. For model
m, we estimate the BEM coefficientsém’r)(l) via the least-squares approach of Sec. 5.2.2 using
the training symbols. Then the estimated channel forrtlte model is given byfz(m”“) (n;l) =

S g™ (e,

5.3.2 Interacting Multiple Model Data Detection
Using theM estimated channels from each block of received symbols, we obtald thedels

with state equation (5.11) and measurement equation

y(n) = H™" (n) s4(n) +n(n), (5.13)

whereH'™ () is as in Section 5.3.1 with™) (n; 1) replaced with estimateld™ (n; 7). Now our
task is to estimats,(n) giveny(k), k < n, and theM models specified by (5.11) and (5.13). In

(5.13) we treat ™ (n) as trueH ™ (n).
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Table 5.1: Summary of the IMM algorithm (one cycle)

Interaction (i,j = 1,2,--- M):
predicted mode probabilitys; (k) = >, pijui(k — 1)
mixing probability: u; ; = pijui(k — 1)/ p; (k)
Sogj(k — Lk = 1) = >_; 8ai(k — 1|k — 1)py;
Voaj(k — 1|k —1) =32, Vai(k — 1k — Dy + X
where the “spread-of-the-means” term in the mixing is
Xj =2 il8ai(k = 1k —1) = Soq; (k — 1]k — 1)]
X[8qi(k — 1|k — 1) — 8oqj (k — 1|k — 1)]7 1y
Filtering (i, =1,2,--- M):
845(k|k — 1) = @304 (k — 1|k — 1) + T'5(k)
Vyi(klk — 1) = ®Vog(k — 1|k — 1)@ 4 o21TT
measurement residuad; = y(k) — Hy;sq4i(k|k — 1)
residual cov..D; = HY 'V (k|k — WHYY + 0215
fliter gain: G; = Vy;(k|k — 1)H§j)HD;1
84j(k|k) = 8qi(k[k — 1) + G, z;
Vyi(klk) = Vy(klk — 1) — G;D;GY
likelihood function:A; = [det(rD;)] e = D5 %
mode probabilityy; (k) = sl

i Mg A

Combination:
sa(k{k) = 32, 845 (kIR)
Va(klk) = X, Vig(klk)y + X
where the “spread-of-the means” term in combination is

X = 35[0 (klk) — sa(klk)][8ai(k|k) — 8a(k[k)]" i (k)
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We propose to use the IMM algorithm [11] to estimatgn). In order to do this, in keeping
with [11], we allow transitions among the models (this also allows consideration of time-varying
f4) where these transitions are governed by a first-order homogeneous Markov chain with transition
probabilitiesp;, i, € {1,2,..., M}, Y11, pi; = 1. The data symbols input to the chanagh)
are treated as Gaussian random variables. The operation of IMM algorithm in one cycle is summa-
rized in Table 5.1 where? = 02 = E{|s(n)|?} for information symbol~= 0 for training symbol.
Table 1 provides one-cycle (one time sample update) of the IMM algorithm. The required initial-
ization for the algorithm is as follows: at timle = 0, 5(1/0) = E{s(1)} = 0 and its covariance
V3(1|0) = 02I,4,1. Having obtained the IMM estimat&;(n|n) of sy(n), we estimates(n) with

equalization delay by quantizing thed + 1)st component 0f;(n|n).

5.4 Numerical Examples

A random time- and frequency-selective Rayleigh fading channel is considered. We+take
(3 taps) in (5.1), number of receive antenias- 2, andh(") (n; 1) are zero-mean, complex Gaussian
with variances? = 1/ (L + 1). For different’s andr’s, h(")(n;1)’s are mutually independent and
satisfy the Jakes’ model. To this end, we simulated each single tap following [81] (with a correction
in the appendix of [77]).

We consider a communication system with carrier frequenc¥@Hz, data rate ofl0 kBd
(kilo-Bauds), thereford; = 25 us, and a varying Doppler spredd in the range of) Hz to 200 Hz,
or the normalized Doppler spreggdT; from 0 to 0.005 (corresponding to a maximum mobile ve-
locity from 0 to 108 km /h). The additive noise was zero-mean complex white Gaussian. The
(receiver) SNR refers to the average energy per symbol over one-sided noise spectral density. The

time-multiplexed training scheme of [48] described in Sec. 5.2.2 is adopted, where during data
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Figure 5.1: IMM with three models, BER vs SNR with BPSK information symbols.

sessions the information sequences is modulated by BPSK or QPSK with unit power. The train-
ing session is described by (5.7) with= +/2L + 1 so that the average symbol power of training

sessions is equal to that of data sessions.

5.4.1 Example 1: IMM with Three Models

We generated a random doubly-selective channel as discussed earlier but with two different

profiles of varyingf,’s as follows:

1. f;=0Hzfor1 < n < 420, f;=100 Hz for421 < n < 840, f4=200 Hz for841 < n < 1260,
f4=100 Hz for1261 < n < 1680, f4=0 Hz for 1681 < n < 2100. We pickedK = 2,
Tp = 175 and P = 5. Each subblock has 35 symbols with 30 information symbols in the
beginning and 5 training symbols at the end (see Sec. 5.2.2). This channel is named as the

Step Shapdime-varying channel.
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Figure 5.2: IMM with three models, BER vs SNR with QPSK information symbols.

2. Now f; varies linearly fronOHz to 200Hz overl < n < 1050, and f; varies linearly from
200Hz to OHz over1051 < n < 2100. This channel is named as thenear Shape time-

varying channel.

Two variations on channel estimation schemes are compared using an equalizatieh-délay

1. Q Upper bound: We used a fixed) for all blocks withQQ=5= upper bound (denoted by “Q
upper bound” in the figs.). With 5 subblocks per non-overlapping block (total 60 blocks), we
estimated the channel for each block via the approach of Sec. 5.2.2. Then we used Kalman

filtering with d = 5 (no IMM) to detect the information symbols.

2. Proposed Multiple Model: Here we used overlapping blocks by shifting blocks by one
subblock. We used three models = 3 with Q1=1, (Q2=3 and@3=5. The channels are

estimated over one block, then we shifted to the right by one subblock (35 symbols), and
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estimated the 3 candidate channels again, and so on. For transition probability matrix we

picked i i
09 01 O
0.05 0.9 0.05
0. 0.1 0.9

which reflects the fact that transitions fpdo not jump over an intermediate value. The three

models had equal initial probabilities of3.

The bit error rate (BER) of each scheme was studied by averaging over 200 runs where in each
run, a symbol sequence of len@h00 is generated and fed into a random doubly-selective channel
generated with specifiefl;’s. The first70 symbols were discarded in evaluations. In Figs. 5.1 and
5.2, the performances of the two schemes under different SNR’s are compared for BPSK and QPSK
information sequences, respectively. It is readily seen that overestimating Doppler spread leads to
a performance deterioration compared to the proposed IMM approach relying on a multiple model

formulation.

5.4.2 Example 2: IMM with Two Models

In this example, the varying Doppler spreggis in the range of)lHz to 100Hz. Again two

variations on channel estimation schemes are compared:

1. Q Upper bound: We used a fixed) for all blocks withQ=3= upper bound (denoted by “Q
upper bound” in the figures). With 5 subblocks per non-overlapping block (total 50 blocks),
we estimated the channel for each block via the approach of Sec.5.2.2. Then we used Kalman

filtering with d = 5 (no IMM) to detect the information symbols.
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2. Proposed Multiple Model: Here we used overlapping blocks by shifting blocks by one sub-
block. We used two model&/ = 2 with ;=1 and()>=3. The channels are estimated over
one block, then we shifted to the right by one subblock (35 symbols), and estimated the 2

candidate channels again, and so on. For transition probability matrix we picked

0.9 0.1

0.1 09

The two models had equal initial probabilitiesiof2.

In all numerical results, the bit error rate (BER) of each scheme was studied by averaging over
200 runs where in each run, a symbol sequence of lefigih (total 50 blocks) is generated and

fed into a random doubly-selective channel generated with spegjfied

Step Shape Time-Varying Channel

We generate th&tep Shaperandom doubly-selective channel with varyirfg as follows:
fa=0Hzforl < n <584, f4=100 Hz for585 < n < 1168, andf;=0 Hz for1169 < n < 1750.

In Figs. 5.3 and 5.4, the performances of the two schemes under different SNR’s are compared
for BPSK and QPSK information sequences, respectively. It is readily seen that overestimating
Doppler spread leads to a performance deterioration. The proposed IMM approach relying on a
multiple model formulation provides a good performance improvement.

Fig. 5.5 plots how the average mode probabilifign Table 5.1) change with time. It can be
seen from the figure that model 24 = 3) that is supposed to capture larger Doppler frequency

can also capture model ( = 1 for f; = 0H z), while model 1 can not capture model 2.
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Linear Shape Time-Varying Channel

In this example thé&inear Shaperandom doubly-selective channel is generated with varying
falinearly: f;is from0OHz to 100Hz for 1 < n < 875, andf, is from 100Hz to 0Hz for 876 < n <
1750.

Again the performances of the two schemes under different SNR’s are compared in Fig. 5.6
and Fig. 5.7 for BPSK and QPSK information sequences, respectively. Fig. 5.8 plots how the

average mode probabilitigschange with time.

The Effect of Training Sequence on Mode Probability

How does the training sequence structure in (5.7) influence the mode probability is tested in
this example. The random channel is generated by fiing 0 for 1 < n < 1750 (frequency-
selective and time-invariant channel). Model 1 with= 1 and Model 2 withQ) = 3 are exploited
for symbol detection. Suppose the exact channel information regarding Model 1 and Model 2 is
available at the receiver. Clearly Model 1 should be the right model being chosen with higher mode
probabilities than Model 2.

In one case, the training symbols with structure as (5.7) are used. The resulting average mode
probability (averaged over 200 iterations) is plotted in Fig. 5.9. Similar to the plottings in Fig. 5.5
and Fig. 5.8, we see that the mode probabilities between blocks are inconsistent.

In the other case, no training symbols are inserted in the transmitted signal. The average mode
probability result is shown in Fig. 5.10. It is seen that the mode probabilities under this case are
consistently smooth. The comparison between Fig. 5.9 and Fig. 5.10 illustrates that the inserted

zeros in training structure (5.7) result in the inconsistency of mode probability.
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Figure 5.3: IMM with two models. BER vs SNR with BPSK information symbols. Step shape
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5.5 Conclusion

An adaptive channel estimation scheme, exploiting the oversampled complex exponential ba-
sis expansion model (CE-BEM), was presented for doubly-selective channels where we tracked the
BEM coefficients via a multiple model approach. In the past work the number of BEM coefficients
used to model the doubly-selective channels for channel estimation has been based on an upper
bound on the channel Doppler spread. The higher the Doppler spread, the more the number of BEM
coefficients, which leads to a higher channel estimation variance. In this chapter we proposed to use
a multiple model framework where several candidate Doppler spread values were used to cover the
range from zero to an upper bound, leading to multiple CE-BEM channel models, each correspond-
ing to an assumed value of the Doppler spread. Subsequently the well known interacting multiple
model (IMM) algorithm was used for symbol detection based on multiple state-space models cor-
responding to the multiple estimated channels. Numerical examples were presented to illustrate the
proposed approach. The results showed that the IMM approach relying on multiple models had a

better performance than traditional overestimating Doppler spread scheme.
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CHAPTERG
DOUBLY-SELECTIVE CHANNEL ESTIMATION FOR OFDM SYSTEMS USING DPS-BEM AND

TIME-MULTIPLEXED TRAINING
6.1 Introduction

Wireless multicarrier (MC) communication systems utilize multiple complex exponentials as
information-bearing carriers. MC transmissions thus retain their shape and orthogonality when
propagating through linear time-dispersive media. They were first conceived and implemented with
analog oscillators in the 60s [42, 83], but it was not until their all-digital implementation with the
Fast Fourier Transform (FFT), that their attractive features were unravelled and sparked widespread
interest for adoption in various single user and multiple access (MA) communication standards
[9]. Nowadays, MC systems such as the Orthogonal Frequency Division Multiplexing (OFDM)
are included in the Digital Audio/Video Broadcasting (DAB/DVB) standards in Europe while the
Discrete Multi-Tone (DMT), its wireline counterpart in the US, has been applied to high-speed
Digital Subscriber Line (DSL) modems over twisted pairs [10].

The pilot-aided doubly-selective channel estimation for OFDM systems is considered in [62],
where the channels are approximated by BEMs. The transceiver block diagram is shown in Fig.
6.1. Since the channel estimation is based on frequency-domain training, the receiver can find
no subcarrier that solely depends on pilots and thus is not contaminated by information symbols.

Due to time-variation, the resulting channel matrix (include IFFT and FFT) is no longer diagonal

_Tra|n|_ng IFET ‘CP /ZP e CP /zP FET Chann_el Symb_ol
insertion insertion removal estimation detection

Figure 6.1: OFDM transceiver block diagram in [62]
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IFFT _Traini_ng _CP /ZP channel CP /zP Chann_el FFT Sympol
insertion insertion removal estimation detection

Figure 6.2: Proposed OFDM transceiver block diagram

matrix, which results in the very complicated channel estimation or equalization procedure [6]. In
[62], a receiver window is used to suppress the out of band interference, and it is assumed that the
channel matrix is approximately banded after windowing. It is also not clear what is the “optimum”
strategy to place the frequency-domain training symbols. The linear MMSE channel estimator
for DPS-BEM-based MIMO-OFDM (multiple input multiple output-orthogonal frequency division
multiplexing) doubly-selective channels is introduced in [49], but their channel estimation suffers
from the frequency-domain training problem, too.

In this chapter, we will apply the optimum time-multiplexed training based channel estima-
tion introduced in Chapter 2 to OFDM systems under doubly-selective channels. The time-varying
channel is described by CE-BEM or DPS-BEM. The time-domain training clusters are inserted
after IFFT at the transmitter and the channel estimation proceeds before FFT at the receiver (see
Fig. 6.2). In this way, the “optimum” training strategy and the corresponding channel estima-
tion schemes proposed before can be directly applied to MIMO-OFDM systems. Compared to
frequency-domain training design, the main advantage of time-domain training for OFDM system is
that the information symbols are not contaminated by the training symbols as the frequency-domain
training. The performance of frequency-domain training-based channel estimation and time-domain

training-based channel estimation are compared by simulations.
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6.2 System Model

Fig. 6.2 depicts the proposed baseband block diagram of a cyclic prefix (CP)-OFDM system,

where thejth N, x 1 information block
éj = [C((] - 1>Nc)7c((j - 1)Nc + 1)7 70((] - 1)Nc + Nc - 1)]T (61)
is first precoded by the IFFT matrinV{ with (m, k)th entry
1 .
H _ 2nmk /N,
FNmi = 73 /Ne, 6.2)
to yield the so-called “time domain” block vector

Cj = Fjl\iéj. (63)

Then the training sequende of length IV, and cyclic prefix (CPxp, of length N, is inserted be-
tween eacle;. CP is inserted at the transmitter and discarded at the receiver to avoid the interblock
interference (IB) [72]. The entries of the resulting redundant bleck= [cp!, b7, cT] are finally

sent sequentially through the channel. Suppose there are tétalbcks for transmission. Then the

general structure of transmitted sigsalith length NV := N, + N, + N, is

s:=lepl, bi.cf ..., epy, by, cj]" (6.4)
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Consider the doubly-selective single input single output FIR linear channel, the same as in

Section 2.2. Then the matrix-vector input-output relationship is given by

Q

=) Dy W;s+mn, (6.5)
q=0

wherex := [2(0),z(1), ...,#(N — 1)]7, n is the zero-mean white complex-Gaussian noise defined
similarly tox, Dy, = diag[p4] With g := [1)4(0),14(1), ..., q(N — 1)]T, andW,’s areN x N
lower triangular Toeplitz matrices with 1st colurfn, (0), w,(1), . . ., wy(L),0, ..., 0]".

This system model in (6.5) is exactly the same a<if)( Comparing £.10) with (6.4), and
(2.9) with (6.5), we notice that the IBI free received signal is the same as that in Chapter 2 after CP
removal at the receiver. Therefore, the LS/MMSE channel estimator and optimum training design
presented in Chapter 2 can be directly applied here without any change. We will skip the theoretical

expressions which would be the same as in Chapter 2.

6.3 Doubly-Selective Channel Estimation for OFDM Systems Using Frequency-Domain Train-

ing [62]

Consider an OFDM system with/ subcarriers. The frequency domain transmitted signal is
defined as:

- _ T T T T T  TT
T = [t],uy,ty,uy - tp, up

wheret, (p = 1,2, - - - P) is a column of)/; training symbols an; is a column of\/,, information
symbols. LetV = (M, + M,,)P. Asillustrated in Fig 6.1, the OFDM symbdlis first modulated
by the IFFT operation

x = Filz. (6.6)
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We ignore the symbol index in (6.6) since only one OFDM symbol is considered.
The modulated symbat is then concatenated by a CP and sent over the channel. If the channel
is assumed to be time-varying (TV) and approximated by a BEM, as in [62], the received signals at

the receiver after CP removal and FFT operation is given by

y = FyR,HTx+v
Q
= Y DA+, (6.7)
q=0

whereTy,, := [In,,xn; Iv] andRey, := [0y« N, 1] @re CP insertion and CP removal matrices,
respectively;H represents the channel matrix in time-domains the zero-mean white complex-
Gaussian noiseD, is a circulant matrix whose first column is the frequency response aftthe

basis function
D, := Fydiag{«,} F{I (6.8)

and A, is a diagonal matrix whose diagonal is the frequency response of the BEM coefficients

corresponding to theth basis function [62]
A, = diag{F[wg0, ..., wsr]" }. (6.9)

F7, stands for the firsL 4 1 columns of the matrix’,;. The least squares (LS) channel estimator

can be achieved based on (6.7) as in [[62], Section IV. B].
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Due to the time-variation, the channel matrix in the frequency domain is no longer diagonal,
but approximately banded. Therefore, the channel estimation approach based on (6.7) suffers a large

estimation error especially with a high Doppler spread.

6.4 Numerical Examples

In this section, the numerical results of the proposed time-domain (TD) training channel es-
timation (Sec. 6.2, referred to as TDE) are given and compared with the frequency-domain (FD)
channel estimation (Sec. 6.3, referred to as FDE). We use binary phase shift keying (BPSK) modu-
lation in all examples.

To make a relatively fair comparison between TDE and FDE cases, we want to keep the same
transmission rates in both schemes. For TDE scheme, the OFDM syste¥ has0 subcarriers.

There areV, = 2L + 1 training symbols with optimal structuf®y,,b,0.], b > 0 in every OFDM

symbol andJ = 10 OFDM symbols are transmitted sequentially. For FDE scheme, an OFDM
system withM = (M, + M,,)P subcarriers is considered. The subcarriers that are reserved for
pilots are grouped i® = 10 equidistant clusters, each containiffy = 2L + 1 pilot tones. We

pick M, = 30. Inside each cluster, the scheme referred to as “frequency-domain Kronecker delta”
(FDKD) in [35] are exploited, where a nonzero pilot is located in the middle of the cluster with zero
guard bands on both sides. This equidistant pilot cluster scheme finds its practical advantage in [60]
although the channel follows the bathtub-shaped Doppler spectrum in that case. Another important
reason of using FDKD training pattern here is that it is convenient to keep the same transmission
rate with TDE scheme.

The doubly-selective Rayleigh fading channel is simulated according to [77, 81] with channel

orderL = 2, carrier frequency c2GHz, data rate of 40 kbps, and thus, symbol durafipe= 25us.
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Figure 6.3: LS Channel estimation MSE comparison between TDE and FDE with vatying.

Therefore, each tap of the generated time-variant channel has a Jakes’ spectrum; it is not gener-
ated using the assumed BEM modeling. Also, the 3 taps of the channel are mutually independent.
Depending on different maximum Doppler spre@d, a varying maximum normalized one-sided
Doppler bandwidthp.x = f4Ts can be derived, wheré; is the symbol duration. A Kalman

filter formulation is used for information detection after the channel estimation. The SNR refers

to 1/0% where the information sequence power is normalized to one and the channel power is also

normalized to unity.

6.4.1 Example 1: Channel Estimation Performance

In this example, the LS channel estimator is used in both TDE and FDE schemes to estimate
w, and then the channel is estimated as2i29). The channel estimation MSE is calculated as in

(2.65). Fig. 6.3 plots the channel estimation MSE (averaged over 200 Monte Carlo runs) versus
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SNR under different normalized maximum Doppler bandwidths, whfgre= 4 or 40Hz. It is
clear that the MSE of time-domain training channel estimation is consistently smaller than that of

frequency-domain training channel estimation.

6.4.2 Example 2: CE-BEM versus DPS-BEM

The LS channel estimator in Example 1 is based on the DPS-BEM channel model. In this
example we compare the LS channel estimation MSE of TDE under CE-BEM and DPS-BEM. Fig.
6.4 plots the MSEZ.65) versus SNR under different maximum Doppler bandwiduﬁ){m is for
CE-BEM, andv) s for DPS-BEM). Especially, we tak@ » = 2[vpmaz N for CE-BEM and
Qs = [2vpma:N| DPS-BEM. It is seen from Fig. 6.4 that the channel estimation performances
of DPS-BEM outperform that of CE-BEM for allp,,,... Fig. 6.5 takes BER (average over 2000
Monte Carlo runs) as a performance measure to compare the performance between DPS-BEM and
CE-BEM for TDE. Comparing with Fig. 6.4 makes it clear that the significantly reduced MSE of the

DPS-BEM channel estimation leads to a pronounced reduction in BER compared to the CE-BEM

case.

6.5 Conclusion

In this chapter, we applied the optimum time-multiplexed training based channel estimation in-
troduced in Chapter 2 to OFDM systems under doubly-selective channels. The time-varying channel
was described by CE-BEM or DPS-BEM. The time-domain training clusters are inserted after IFFT
at the transmitter and the channel estimation proceeds before FFT at the receiver. Compared to

frequency-domain training design, the main advantage of time-domain training for OFDM system
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is that the information symbols are not contaminated by the training symbols as in the frequency-

domain training case. The simulation results confirmed the claims.
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CHAPTERY

SUMMARY AND FUTURE WORK

With the emergence of next-generation wireless mobile communications, multimedia services
have placed increasing demands for high data rates and high mobility. The high data rates give
rise to frequency selectivity, while the mobility and carrier offset introduce time selectivity. In
this dissertation, the channel estimation and equalization for frequency-selective and time-selective

channel were considered.

7.1 Summary of Original Work

In Chapter 2, the channel estimation for single-input single-output frequency- and time- selec-
tive channels was considered using time-multiplexed training. The time-varying channel was as-
sumed to be well-described by a basis expansion model using discrete prolate spheroidal sequences
as bases (DPS-BEM). Both linear least squares and minimum mean-square-error approaches were
exploited to estimate the basis expansion coefficients. Training designs for time-multiplexed train-
ing based on minimization of channel estimation mean-square-error were investigated. The issue
of training power allocation was addressed. Then the proposed channel estimation approaches in
Chapter 2 was extended to multiuser multiple-input multiple-output doubly-selective channels in
Chapter 3.

The linear equalization and decision feedback equalization of doubly-selective channels mod-
eled via BEMs were introduced in Chapter 4. There has been much interest in designing time-
variant serial finite impulse response linear and DFE equalizers using complex exponential BEMs

for equalizers in addition to using CE-BEM for modeling the channel itself. We showed that the
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Kalman filter formulation of the linear equalizer and an alternative formulation of the FIR DFE
based on a CE-BEM channel model yields the same or improved BER at a lower computational
cost, without incurring the approximation error inherent in CE-BEM modeling of equalizers.

An adaptive channel estimation scheme, exploiting the oversampled complex exponential ba-
sis expansion model (CE-BEM), was presented for doubly-selective channels where we tracked
the BEM coefficients via a multiple model approach in Chapter 5. In the past work the number
of BEM coefficients used to model the doubly-selective channels for channel estimation has been
based on an upper bound on the channel Doppler spread. The higher the Doppler spread, the more
the number of BEM coefficients, which leads to a higher channel estimation variance. We proposed
to use a multiple model framework where several candidate Doppler spread values were used to
cover the range from zero to an upper bound, leading to multiple CE-BEM channel models, each
corresponding to an assumed value of the Doppler spread. Subsequently, the well known interact-
ing multiple model (IMM) algorithm was used for symbol detection based on multiple state-space
models corresponding to the multiple estimated channels.

Orthogonal Frequency-Division Multiplexing (OFDM), a digital multi-carrier modulation scheme,
has developed into a popular scheme for wideband wireless communication due to its high spec-
tral efficiency and simple equalization. In Chapter 7, we extended the optimum time-multiplexed
training-based channel estimation introduced in Chapter 2 to OFDM systems under a doubly-
selective channels. Compared to the traditional frequency-domain training design, the main ad-
vantage of time-domain training design for OFDM system is that the information symbols are not
contaminated by the training symbols as in the frequency-domain training case.

In all chapters, numerical examples based on computer simulations were presented to illustrate

the proposed approaches and confirm the conclusions.
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7.2 Possible Future Directions

So far we have assumed that the coefficients of basis expansion model (BEM) are fixed over
data blocks. In fact, the BEM coefficients may also undergo changes.

Instead of the basis expansion model, another way to model time-varying channels is via au-
toregressive (AR) process, particularly the first order AR process [19]. Supposh represents a
wide-sense stationary uncorrelated scattering (WSSUS) channel. It is common to use the following

first-order AR model to describe it:

h(n;1) = ah(n — 1;1) + n(n), (7.1)

where« is the AR coefficient, and the driving noisgn) is zero-mean complex Gaussian with
variancea?7 and statistically independent @f{n — 1;1). Assume that(n;!) is also zero-mean,

complex Gaussian with varianeg. Then

E{h(n;))h*(n —1;1)}, (7.2)

o2 =o2(1—|af?). (7.3)

It is a tractable model, where the channel is assumed to be Markovian; i.e., for the current channel
symbol, the effect of channel symbols other than the immediately preceding one is negligible [73].
This Markovian assumption has been verified for Rayleigh fading channels in [73], by considering
the mutual information between channel symbols. AR models describe temporal variation on a
symbol-by-symbol update basis, while BEMs depict the evolution of the channel over a period

(block) of time.
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An AR model is not appropriate for a fast fading channels because the channel tracking depends
on the inserted training. For information sessions, channel estimates can only be obtained based on
the results from the previous training session [40]. However, it could be a good way to track the basis
expansion coefficients in BEMs. Up to this point, we suppose that the basis expansion coefficients
are fixed over data blocks. In fact, the BEM coefficients may also undergo changes, but not as fast
as the channel variations.

In the next step, we will model the doubly-selective channel by exploiting the CE-BEM for the
overall time-variant channel and an AR model for the BEM coefficients. Recall the BEM model in

(2.2). Stack the BEM coefficients into vectors

wy = [w1 (1), ws(1), .. wq] - (7.4)

Suppose the whole data block is divided intgub-blocks, where the coefficient vector in (7.4) for
the jth sub-block(j = 1,2, ..., J) is denoted asv;(j) and updated every sub-block. Since a fading
channel well follows the Markov model, we further assume that the BEM coefficients of each block

are Markovian, too. The first-order AR process for BEM coefficients is then given by:

wi(j) = aw(j — 1) +m(j), (7.5)

wheren;(j) defined similar taw,;(5), is zero-mean complex Gaussian noise and statistically inde-
pendent ofw;(j — 1). Based on the AR model in (7.5), a Kalman filter can be applied to track the
BEM coefficient for each block. After deriving the estimated BEM coefficientsjtbrsub-block

w;(j), the estimated channel impulse response for the wjtblesub-block can be given, via the
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CE-BEM, as

h(n;l) = [e7«om e« edwem]Tapy(5). (7.6)

It would be interesting to explore this approach and compare it with our proposed approach.
Multiple Model Approach . In applying IMM we treated the estimated channel as the true

channel. It would be interesting to incorporate estimated channel statistics, e.g., estimation error

variance, into the IMM algorithm.
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APPENDIXA

AsYMPTOTICDPS-BEM/ S EPIAN SEQUENCES

The Slepian sequences as solutiont6)(are hard to work with analytically. Following [61,
Sec. 5.3.1] (in a different context), we will use asymptotic expressidnggrge”) based on some
heuristic considerations (as in [61, Sec. 5.3.1]). The entries in m@tian also be expressed as

27rVDmax .
! / e =2 gy, (A1)

Cl,. = 5
v 27r _QWVDmax

Define := 2vpmax aNdQs := N 3. Let 5 be chosen larger thay N so that we ge@)s > 1. (To
simplify the discussiong)s and N are assumed to be even integers in what follows.) For |Afge

we can approximate the integral id (1) as (v = %“p):

ool B ey (e 4
_Nzaﬁpa Np'_(b (A.2)
p=—Qs/2
wherea(w) := [1,e7™,...,e"N=D]T "and)\,s are theQ s + 1 largest eigenvalues of the matrix
Qs/2
C. Based ong.24), the eigenvectors of the matrX, are derived a{ \/Na( Np)}p}@g/2 with
eigenvalues-1. Therefore, ifCy is used to approximat€, the Slepian sequences ih%) and .5)

can be expressed as

1 ,
B8 (n) = ﬁeeww(q—czsm)n/m, (A.3)

[As noted in [61, Sec. 5.3.1{; does not approximat€’ in any rigorous sense.]
Obviously, the approximate Slepian sequencesgliB)are complex-valued. Since the Slepian

sequences are real, we want to find a matrix with real eigenvectors that can appraXitesed on
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Cy. SinceC is a real symmetric positive semi-definite matrix with real eigenvaltiest readily

follows thatg, := ﬁ(a + a*) andg; := ﬁ(a — a*) are also the eigenvectors 6%, and they
are real. From4.2), we notice that
27 2
“==p|=al|l—-—"<p]). A4
a ( Np> a ( NP) (A.4)

Therefore, we can rewrite the matit, as

0 27 L [ 27 ! 27 L [ 27
Co= > g (Np> 9g- <Np> + > g (Np> 9 (Np) : (A.5)

p=—Qs/2 p=—Qs/2

With this expression of matriCy, the normalized eigenvectors of matii%, are expressed as
{gT(%‘p)};:_QS/2 and {gi(zﬁp)};z_Qs/Q. Thus, the corresponding approximate Slepian se-

quences fon € {0,...,N — 1} are

Ui (n) = ﬁm(%@ ~ sy, ) = ﬁsqu - L) e

146



arg mxaxf ()
argmin f ()

cov {-}

APPENDIX B

MATHEMATICAL NOTATIONS

approximately equal to

Kronecker product

M x N all zeros matrix

lower case letters for scalars

integer ceiling ofu

integer floor ofa

maghnitude ot

lower case letters in bold face for column vectors
Frobenius norm of

upper case letters in bold face for matrices
complex conjugate oA

Moore-Penrose pseudo-inverse operation
complex conjugate transpose Af

transpose oA

(n, m)-th entry of A

upper case calligraphic letters for matrices
value ofz for which f (z) attains its maximum
value ofz for which f (z) attains its minimum

covariance operator
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Jo()
diag[a]
E{}

Kronecker delta function, defined as

1 ifn=0
6(n) =

0 ifn#0,teZ
the zero-order Bessel function of the first kind
diagonal matrix witha on its main diagonal
expectation operator
expectation operator with respectib
N x N identity matrix
maximum value operator
minimum value operator
big O notation:f (z) = O (g (x)) asz — a (a € RU £00),
iff |f(z)] <M |g(z)| asx — a for some constamt/ > 0
real field
trace of a square matriA

integer field

)
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AM

AR

AWGN

BEM

BER

BPSK

CE-BEM

CP

CsSl

DAB

DFS

DFT

DML

DMT

DPS

DPS-BEM

DS-CDMA

DSL

DVB

APPENDIXC

ABBREVIATIONS

amplitude modulation

auto-regressive

additive white Gaussian noise

basis expansion model

bit error rate

binary phase-shift keying

complex exponential basis expansion model
cyclic prefex

channel state information

digital audio broadcasting

discrete Fourier series DFS

discrete Fourier transform

deterministic maximum likelihood

discrete multi-tone

discrete prolate spheroidal

discrete prolate spheroidal basis expansion model
direct sequence - code division multiple access
digital subscriber line

digital video broadcasting
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FB feedback

FF feedforward

FFT fast Fourier transform

FIR finite impulse response
FM frequency modulation

IBI interblock interference
IMM interacting multiple model
ISBI inter-subblock interference
ISI inter-symbol interference
LS least squares

LTI linear time-invariant

MAC media access control

MC multicarrier

MIMO  multiple-input multiple-output

ML maximum likelihood

MLSE maximum likelihood sequence estimation
MSE mean square error

MMSE minimum mean square error

m.s. mean-square

MUI multiple-user interference
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NCMSE normalized channel mean square error

OFDM  orthogonal frequency division multiplexing

PAM pulse amplitude modulation
pdf probability density function
PN pseudo-noise

PSAM pilot symbol aided modulation
QPSK guadrature phase-shift keying
RF Radio Frequency

SIMO single-input multiple-output

SISO single-input single-output

SNR signal-to-noise ratio
TI time invariant

™ time-multiplexed

TV time-varying

WSSUS wide sense stationary uncorrelated scattering
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