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The nature of the wireless channels places fundamental limitations on the performance of wire-

less communication systems. In addition to the frequency-selectivity characteristics caused by mul-

tipath propagation, the high-rate wireless and mobile links often exhibit time-selectivity charac-

teristics caused by the user’s mobility, so-called doubly-selective wireless channels. The quality

of channel acquisition has a major impact on the overall system performance. Therefore, reliable

estimation of doubly-selective channels is well motivated. Equalization is used at the receiver to

compensate for intersymbol interference created by multipath propagation and improve received

signal quality. Equalizers should be adaptive since the channel is time-varying.

In this dissertation, channel estimation and equalization for doubly-selective channels are con-

sidered in Chapter 2 (under single input single output models) and Chapter 3 (under multiple input

multiple output models), where the time-varying channel is assumed to be well described by basis

expansion models (BEM). Our focus is on time-multiplexed training for channel estimation where

the training symbols are periodically inserted and use all transmitted power during their transmis-

sion.
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The linear equalization and decision feedback equalization (DFE) of doubly-selective channels

modeled via BEMs are introduced in Chapter 4. There has been much interest in designing time-

variant serial finite impulse response (FIR) linear and DFE equalizers using complex exponential

(CE-) BEMs for equalizers in addition to using CE-BEM for modeling the channel itself. In this

dissertation we show that the Kalman filter formulation of the linear equalizer and an alternative

formulation of the FIR DFE based on a CE-BEM channel model yields the same or an improved

BER at a lower computational cost, without incurring the approximation error inherent in CE-BEM

modeling of equalizers.

In Chapter 5, an adaptive channel estimation scheme, exploiting the oversampled complex

exponential basis expansion model (CE-BEM), is presented for doubly-selective channels where

we track the BEM coefficients via a multiple model approach in this dissertation. We propose to

use a multiple model framework where several candidate Doppler spread values are used to cover

the range from zero to an upper bound, which leads to multiple CE-BEM channel models, each

corresponding to an assumed value of the Doppler spread. Subsequently, the well known interacting

multiple model (IMM) algorithm is used for symbol detection based on multiple state-space models

corresponding to the multiple estimated channels.

Orthogonal Frequency-Division Multiplexing (OFDM), a digital multi-carrier modulation scheme,

has developed into a popular scheme for wideband wireless communication due to its high spec-

tral efficiency and simple equalization. We extend the optimum time-multiplexed training based

channel estimation introduced in Chapter 2 to OFDM systems under doubly-selective channels in

Chapter 6. Compared to the traditional frequency-domain training design, the main advantages of

time-domain training for OFDM system is that the information symbols are not contaminated by

the training symbols as in the frequency-domain training case.
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CHAPTER 1

INTRODUCTION

The doubly-selective channel estimation and equalization algorithms described in this disser-

tation involve some background material in the wireless communication area. We will first briefly

introduce these topics in this chapter.

Starting with the characteristics and representations of wireless channels, two basis expansion

models (BEM) used in this dissertation are introduced and compared. The pros and cons of different

channel estimation and equalization approaches are then discussed. The fundamentals of the Viterbi

decoder, a commonly used information detector in this dissertation, and the principles of Orthogonal

Frequency-Division Multiplexing (OFDM) technology are also introduced.

1.1 Characteristics and Representations of Wireless Communication Channels

In wireless telecommunications, multipath is the propagation phenomenon that results in radio

signals’ reaching the receiving antenna by two or more paths. Causes of multipath include atmo-

spheric ducting, ionospheric reflection and refraction, and reflection from terrestrial objects, such

as mountains and buildings.

The effects of multipath include constructive and destructive interference, and phase shifting of

the signal. This causes Rayleigh fading, named after Lord Rayleigh. Rayleigh fading is a statistical

model for the effect of a propagation environment on a radio signal, such as that used by wireless

devices. It assumes that the power of a signal that has passed through such a transmission medium

(also called a communication channel) will vary randomly, or fade, according to a Rayleigh distri-

bution - the radial component of the sum of two uncorrelated Gaussian random variables. Rayleigh

1



fading is used to refer to the rapid fluctuations of the received signal in both dimensions — time and

frequency. If we assume that fading is caused by the superposition of a large number of independent

scattered components, then the in-phase and quadrature components of the received signal can be

assumed to be independent zero-mean Gaussian processes. The envelopeA of the received signal

has a Rayleigh probability density function (pdf) given by

fA (a) :=





a
σ2 exp

(
− a2

2σ2

)
a ≥ 0,

0 a < 0
(1.1)

with σ2 being the time-average power of the received signal before envelope detection. The phase

θ of the received signal is uniformly distributed with pdf

fΘ (θ) :=
1
2π

, θ ∈ [0, 2π) . (1.2)

The autocorrelation function of the received signal for two-dimensional isotropic scattering and an

omnidirectional receiving antenna is given by [17]

RA(τ) = σ2 cos(ωcτ)J0(ωmτ) (1.3)

whereωc is the carrier radian frequency,J0(·) is the zero-order Bessel function of the first kind and

ωm is the maximum Doppler radian frequency spread. The autocorrelation function of the Rayleigh

fading channels is periodic in lag and its envelope decays slowly after the initial zero-crossing.

In a multipath propagation environment, several delayed and scaled versions of the transmitted

signal arrive at the receiver. The span of path delays is called delay spread. Delay spread causes

frequency-selective fading as the channel acts like a tapped delay line filter. Time-selective fading
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due to scatter or transmitter/receiver motion results in a Doppler spread, i.e., a pure tone spreads

over a finite spectral bandwidth. The frequency- and time- selective Rayleigh fading channel is the

channel model we consider in this proposal.

1.1.1 Jakes’ Model

As described above, a Rayleigh fading channel itself can be modeled by generating the real

and imaginary parts of a complex number according to independent normal Gaussian variables.

Any model simulating the Rayleigh fading channel has to exhibit the statistical behaviors given in

(1.1) - (1.3).

In [34], Jakes popularized a time-varying model for Rayleigh fading based on summing sinu-

soids. The model supposes the received signalg(t) at timet is

g(t) = E0

L∑

l=1

Cl cos (ωct + ωmt cos Al + Φl) (1.4)

whereE0 is the amplitude of the transmitted cosine wave,Cl is a random variable representing

the attenuation of thel-th path,Al is a random variable representing the angle of arrival of thel-th

ray with respect to the direction of motion of the receiver,Φl is a random variable representing the

phase shift undergone by thel-th ray. Note that the stochastic signalg (t) representing the flat fading

signal can be characterized byL sets of triples(Cl, Al,Φl). The random variablesCl, Al, andΦl

are assumed statistically independent.
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To reduce the complexity, the simplified Jakes’ model selects:

Cl =
1√
L

, (1.5a)

Al =
2πl

L
, (1.5b)

Φl = 0, (1.5c)

wherel = 1, 2, ..., L. Furthermore,L is of the formL = 4M + 2 whereM is a positive integer.

However, the simplifying relationships forced in (1.5) make this simulation model determinis-

tic and wide-sense nonstationary [53]. Various modifications of Jakes’ model have been proposed,

which we call the family of Jakes’ simulators. Among the Jakes’ simulator family, [81] is worthy

of mention since it generates a wide-sense stationary process and its second-order correlation statis-

tics match desired reference model (1.4) exactly. Following [81], the normalized low-pass fading

process of the statistical sum-of-sinusoids simulation model is defined by

X (t) = Xc (t) + jXs (t) , (1.6a)

Xc (t) =
2√
M

M∑

l=1

cos (ϑl) cos (ωmt cos αl + φ) , (1.6b)

Xs (t) =
2√
M

M∑

l=1

sin (ϑl) cos (ωmt cos αl + φ) (1.6c)

with

αl =
2πl − π + θ

4M
, l = 1, 2, ..., M

whereαl, φl, andϑl are statistically independent and uniformly distributed over[−π, π) for all l.

As M →∞, the envelope|X| is Rayleigh distributed and the phaseΘX (t) is uniformly distributed
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over[−π, π), for which the pdf’s are given by

f|X| (x) = x exp
(
−x2

2

)
, x ≥ 0,

fΘX
(θ) =

1
2π

, θ ∈ [−π, π) .

A minor defect, however, occurs in model (1.6a) whenωm = 0 or the Doppler spread is small: A

Rayleigh distribution cannot be guaranteed [77]. This problem can be easily resolved by replacing

a common phaseφ by φl, which is also uniformly distributed over[−π, π) for all l. The simulation

model is revised as [77]:

X (t) = Xc (t) + jXs (t) , (1.7a)

Xc (t) =
2√
M

M∑

l=1

cos (ϑl) cos (ωmt cos αl + φl) , (1.7b)

Xs (t) =
2√
M

M∑

l=1

sin (ϑl) cos (ωmt cos αl + φl) . (1.7c)

1.1.2 Complex Exponential Basis Expansion Model (CE-BEM)

Statistical modeling of the channel is well motivated when time-varying path delays arise due

to a large number of scatterers. Deterministic basis expansion models have gained popularity for

wireless applications, especially when the multipath is caused by a few strong reflectors and path

delays exhibit variations due to the mobiles [26]. The time-varying taps are expressed as a super-

position of time-varying bases (complex exponentials when modeling Doppler effects) with time

invariant coefficients. By assigning time variations to the bases, rapidly fading channels with coher-

ence time as small as a few tens of symbols can be captured.
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Consider a time-varying channel with impulse responseh(t; τ) (response at timet to an unit

impulse at timet−τ ) which includes transmit-receive filters as well as doubly-selective propagation

effects. Lets(t) denote the complex baseband, continuous-time input signal (with symbol duration

Ts), andx(t) denote the complex baseband, continuous-time received signal. The noise-free re-

ceived signalx(t) is the convolution ofs(t) andh(t; τ) [41]:

x(t) =
∫ ∞

0
h(t; τ)s(t− τ)dτ. (1.8)

Let H(f ; τ) =
∫∞
−∞ h(t; τ)e−j2πftdt be the Fourier transform ofh(t; τ); H(f ; τ) is the delay-

Doppler spreading function of the channel. If|H(f ; τ)| ≈ 0 for |τ | > τd, thenτd is called the

(multipath) delay-spread of the channel; if|H(f ; τ)| ≈ 0 for |f | > fd, thefd is called the Doppler

spread of the channel [13]. Ifs(t), x(t) andh(t; τ) in (1.8) are sampled at symbol rate, then by

[41], for t = nTs ∈ [t0, t0 + NTs), the sampled signalx(n) := x(t)|t=nTs has the representation

x(n) =
L∑

l=0

h(n; l)s(n− l) (1.9)

whereTs is the symbol duration. Over the block interval of[t0, t0 + NTs), the channel impulse

responseh(n; l) can be represented usingQF + 1 coefficients{wq(l)}QF
q=0, which remain invariant

during this block but are allowed to change for the next block, andQF + 1 Fourier basis functions

that are used to describe the temporal variation of the channel and are common for each block.

Then for the block of[t0, t0 +NTs), the discrete-time baseband equivalent channel model based on

complex exponential basis expansion can be described as [13, 41]:

h(n; l) =
QF∑

q=0

wq(l)ejωqn, (1.10)
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where

ωq :=
2π

T
(q − QF

2
), q = 0, 1, . . . , QF , (1.11a)

L := bτd/Tsc, (1.11b)

QF ≥ 2dfdNTse. (1.11c)

There are two slightly different CE-BEMs involved in this dissertation. One is referred to as the

critically-sampled CE-BEM because the BEM period equals the length of the observed window.

The other uses a longer BEM period and is thus referred to as the oversampled CE-BEM. Section

4.2.1 provides the reader more details about oversampled CE-BEM. Note that the basis functions in

critically-sampled CE-BEM are orthogonal, while in over-sampled CE-BEM they are not.

1.1.3 Discrete Prolate Spheroidal Basis Expansion Model (DPS-BEM)

It has been known that the Fourier basis function based CE-BEM model has the major draw-

back that the rectangular window associated with the discrete Fourier transform (DFT) introduces

spectral leakage [44], which results in the floor in the bit error rate (BER) [3]. In [76, 77], the BEM

coefficients are expanded by the orthogonal discrete prolate spheroidal (DPS) sequences resulting

in a basis expansion model (DPS-BEM). The DPS sequences have a double orthogonality prop-

erty: They are orthogonal over the finite set{0, ..., N − 1} and the infinite set{−∞, ...,∞} = Z

simultaneously. This remarkable property enables parameter estimation without the drawbacks of

windowing in the case of the Fourier basis expansion.

Let Ts denote the symbol interval. For a channel with a multipath delay spread ofτd sec

and a Doppler spread offd Hz, νDmax := fdTs is the maximum normalized Doppler bandwidth.

An ideal basis function should have at least two properties: It is band-limited to the normalized
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frequency range[−fdTs, fdTs]; its energy is time-concentrated in a certain time interval[0, N − 1].

Thus, given the maximum normalized Doppler bandwidthfdTs and the window sizeN , we seek a

sequenceψ(n) to maximize

λ =
∑N−1

n=0 |ψ(n)|2∑∞
m=−∞ |ψ(m)|2 (1.12)

with the band-limited constraint

ψ(n) =
∫ fdTs

−fdTs

Ψ(f)ej2πfndf (1.13)

where

Ψ(f) =
∞∑

m=−∞
ψ(m)e−j2πfm. (1.14)

The DPS sequences{ψq(n)} give us the solution to the constrained maximization problem [58]. In

DPS-BEM, the DPS vectorsψq := [ψq(0), ..., ψq(N − 1)]T ∈ RN (called Slepian sequences in

[77], which are time-windowed DPS sequences) with elementsψq(n) for n ∈ {0, ..., N − 1}, are

eigenvectors of the matrixC ∈ RN×N , fulfilling [77]

Cψq = λqψq, (1.15)

whereλ1 ≥ λ1 ≥ · · · ≥ λN are eigenvalues of matrixC. The(y, z) entries in matrixC are defined

as:

[C]y,z =
sin[2π(y − z)νDmax]

π(y − z)
, (1.16)
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Figure 1.1: Basis expansion modeling error comparison between CE-BEM and DPS-BEM models

wherey, z ∈ {0, ..., N − 1}. In this case one takesQS ≥ d2νDmaxNe [77, 58].

1.1.4 Modeling Error Comparison between CE-BEM and DPS-BEM

In the following, we use generic notationsQ andψq(n) to indicate that the expressions are

applicable to both CE-BEM and DPS-BEM basis functions. In a basis expansion representation

over a time-blockn = {0, 1, ..., N − 1}, it is assumed that [26]

h(n; l) =
Q∑

q=0

wq(l)ψq(n). (1.17)

9



However, the true channel may not be exactly equal to this basis expansion since modeling error

always occurs, so that we have to revise (1.17) as

h(n; l) =
Q∑

q=0

wq(l)ψq(n) + eBEM(n; l), (1.18)

whereeBEM(n; l) is the basis expansion modeling error. By the orthogonality principle,eBEM(n; l)

should be orthogonal to the given basis set{ψq(n)}Q
q=0 when the square error

∑N−1
n=0 |e(n; l)|2 is

minimized. Then
N−1∑

n=0

h(n; l)ψ∗q′(n) = wq′(l)
N−1∑

n=0

|ψq′(n)|2. (1.19)

Since the orthogonal basis functions of CE-BEM and DPS-BEM satisfy
∑N−1

n=0 |ψq′(n)|2 = 1, the

BEM coefficient is derived as

wq′(l) =
N−1∑

n=0

h(n; l)ψ∗q′(n). (1.20)

Based on (1.19) and (1.20), the least squares approximation of the channel is given by

ĥ(n; l) =
Q∑

q′=0

wq′(l)ψq′(n). (1.21)

Fig. 1.1 shows the modeling error comparison between CE-BEM and DPS-BEM models. In

this example, an SISO doubly-selective Rayleigh fading channel defined in (1.7) that is based on the

modified Jakes model is considered. Since the Jakes model is more realistic as a practical wireless

channel, we are trying to approximate a 3-tap Jakes channel by two BEMs: CE-BEM and DPS-

BEM. We choose a data record length of 400 symbols,Ts = 25µs, average overMα = 1000

realizations of randomly generated channels, and plot the channel estimation mean square error
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(MSE), which is defined as:

MSE :=
1

MαN

Mα∑

α=1

N−1∑

n=0

L∑

l=0

‖hα(n; l)− ĥα(n; l)‖2. (1.22)

In Fig 1.1, the basis function dimensionsQF andQS change with the maximum Doppler bandwidth

νDmax := fdTs, and SNR=20dB. From the results, we notice that the channel estimation MSE of

DPS-BEM is usually several orders of magnitude lower than that of the CE-BEM. Clearly DPS-

BEM is better than CE-BEM when approximating a band-limited time-varying channel.

1.2 Channel Estimation and Equalization Approaches

1.2.1 Channel Estimation Approaches

For channel state information (CSI) acquisition, three classes of approaches are available: the

training-based approach, the blind approach and the semi-blind approach. In the following, we

briefly describe these three approaches.

In conventional training-based approaches, training sequences (known to the receiver) are time-

multiplexed with the information sequence [21, 32, 63, 79]. Training symbols can be placed either

at the beginning of each burst (as a preamble) or regularly throughout the burst. In rapidly fading

or quasi-static fading channels, preamble-based training may not work well. This motivates em-

bedding training symbols in each transmitted block, instead of concentrating them at the preamble.

More recently, a superimposed training approach has been explored where the training sequences

are added (superimposed) at a low power to the information sequence at the transmitter before

modulation and transmission [65]. There is no loss in information rate, but the channel estima-

tion using superimposed training will be interfered with by information symbols. The conventional
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time-multiplexed training approach is attractive especially when it decouples symbol detection from

channel estimation and thus simplifies the receiver implementation and relaxes the required channel

identifiability conditions [52].

Blind approaches have been proposed to mitigate the multipath effects in wireless commu-

nications. Blind equalization algorithms are usually based on optimization procedures trying to

minimize some nonlinear functional(s) of the received samples [66]. Compared with a training-

based approach, a blind approach avoids training and thus makes an efficient use of the available

bandwidth [66, 25]. But on the other hand, blind algorithms typically require longer data records

and entail higher complexity [66]. Other major drawbacks of blind approaches are the slow conver-

gence time of the equalizer and possible misconvergence which takes place when the convergence

process reaches a local minimum of the functional to be minimized. For certain applications these

disadvantages can be unacceptable.

Semi-blind approaches use a combination of training and blind cost functions. A training

sequence is used in a semi-blind approach. At the receiver, the channel estimation depends on both

the known training sequence and the unknown information sequence. This way, in addition to the

information carried by the training symbols, the unknown information sequence is also exploited

to enhance the channel estimation performance. Using a semi-blind approach allows the length of

the training sequence to be shortened compared to the traditional training-based approaches [27,

78]. Compared with training-based approaches and blind approaches, semi-blind approaches have a

relative better bandwidth efficientcy than training-based approaches and converge faster than blind

approaches.
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1.2.2 Equalization Approaches

With the emergence of next-generation wireless mobile communications, multimedia services

have increasing demands for high data rates and high mobility. The high data rates give rise to

frequency selectivity, while the mobility and carrier offset introduce time selectivity. To confront

the doubly-selective effects of wireless channels, equalizers are usually employed at the receiver

end. The existing equalizers can be divided into two types: block equalizers and serial equalizers.

The interest in block equalization can be motivated as follows. When transmission channels are

affected by both frequency and time selectivity, reliable communication can be achieved by dividing

the information data stream into short blocks and by adding a header of known data to each block.

The known symbols allow us to obtain the reliable channel identification and to prevent interference

between two adjacent blocks. Receiver processing can be carried out on a block-by-block basis so

that if the transmission channel does not change appreciably during the transmission of each block,

the receiver has to cope with the frequency selectivity only. Block equalization strategies are used

to compensate for this channel impairment [36, 18]. However, block equalizers are usually complex

to design since the inversion of a large matrix is required. Especially, since a doubly-selective

channel can not be diagonalized by a channel-independent transformation, the implementation of

block time-varying (TV) equalizers, which collect and process in blocks all the available data in the

received frame, leads to a very high computational complexity [5].

Serial equalizers process few data at a time and provide a flexible trade-off between complexity

and performance [66].
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1.3 Optimal Maximum Likelihood Detector (Viterbi Decoder)

In a communication system, the role of channel estimation is to aid in extracting the desired

information data from the distorted receive symbols. Next we will briefly review the commonly

used symbol detection technique - Viterbi detector.

The Viterbi algorithm, originally introduced as a method for decoding convolutional codes,

has become one of the most commonly used detectors in digital communications. Forney [23] has

shown in 1972 that the algorithm solves maximum likelihood sequence detection (MLSD) of a

pulse amplitude modulated (PAM) sequence of symbols with finite intersymbol interference (ISI)

and memoryless noise. The algorithm has earned its place in almost every modern digital commu-

nications textbook where it is recognized as the optimal sequence detector for memoryless noise.

Consider a SIMO (single-input multiple-output) FIR (finite impulse response) linear channel

with R outputs and discrete-time impulse responseh(n; l). Let {s(n)} denote the input sequence

to the SIMO channel. The noisy channel output is given by

y(n) =
L∑

l=0

h(n; l)s(n− l) + η(n) (1.23)

whereL+1 is the multipath channel length andη(n) is the white complex Gaussian noise. Assume

that the white Gaussian noiseη(n) is uncorrelated with{s(n)}, with meanE{η(n)} = 0 and

E{[η(n + τ)][η(n)]H} = σ2
ηIRδ(τ).

Givens(n), y(n) is aR-dim Gaussian random vector with mean
∑L

l=0 h(l)s(n− l) and vari-

anceσ2
ηIR. The joint probability density function (pdf) ofy(n) given{s(n), s(n−1), . . . , s(n−L)}
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is

p(y(n)|s(n), . . . , s(n− L)) =
1

(πση)R
exp



−

1
σ2

η

∥∥∥∥∥y(n)−
L∑

l=0

h(n; l)s(n− l)

∥∥∥∥∥

2


 (1.24)

wheres(n) = 0 for n < 0. The joint pdf of the random vectors{y(0), y(1), . . . , y(N − 1)}

given the transmitted sequence{s(0), s(1), . . . , s(N − 1)} is

p(y(0), . . . ,y(N − 1)|s(0), . . . , s(N − 1))

=
N−1∏

n=0

1
(πση)R

exp



−

1
σ2

η

∥∥∥∥∥y(n)−
L∑

l=0

h(l)s(n− l)

∥∥∥∥∥

2


 ,

=
1

(πση)NR
exp



−

1
σ2

η

N−1∑

n=0

∥∥∥∥∥y(n)−
L∑

l=0

h(l)s(n− l)

∥∥∥∥∥

2


 . (1.25)

Taking the logarithm on both sides of the equation above, we have

ln p( y(0), . . . ,y(N − 1)|s(0), . . . , s(N − 1))

= −NR ln(πση)− 1
σ2

η

N−1∑

n=0

∥∥∥∥∥y(n)−
L∑

l=0

h(n; l)s(n− l)

∥∥∥∥∥

2

. (1.26)

The ML (maximum likelihood) estimate of the input sequence{s(0), . . . , s(N − 1)} is the one

that maximizes

p(y(0), . . . ,y(N − 1) | s(0), . . . , s(N − 1));

or equivalently maximizes

ln p(y(0), . . . ,y(N − 1) | s(0), . . . , s(N − 1));
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or minimizes the Euclidean distance

N−1∑

n=0

∥∥∥∥∥y(n)−
L∑

l=0

h(n; l)s(n− l)

∥∥∥∥∥

2

.

This MLSE (maximum likelihood sequence estimation) criterion is equivalent to the problem of

estimating the state of a discrete-time “finite-state machine”. In this case, the finite-state machine

is the discrete-time channel with coefficients{h(n; l)} and its state at any timen is represented by

theL most recent input symbols

Staten = ( s(n), s(n− 1), . . . , s(n− L + 1) )

wheres(n) = 0 for n < 0. If the input symbols areM -ary, the finite-state machine hasML states.

Consequently, the channel is described by anML-state trellis and the Viterbi algorithm may be used

to determine the most probable path through the trellis. In brief, we describe the Viterbi algorithm

in the following 3 steps:

Step 1. We begin withy(L), from which we compute theML+1 metrics

L∑

n=0

∥∥∥∥∥y(n)−
L∑

l=0

h(n; l)s(n− l)

∥∥∥∥∥

2

.

TheML+1 possible sequences are divided intoML groups according to theML states. From each

group, we pick the one with the minimum metric, i.e., the most probable sequence, and assign to

the surviving sequence the metric

PM0(s(L), . . . , s(1)) = min
s(0)





L∑

n=0

∥∥∥∥∥y(n)−
L∑

l=0

h(n; l)s(n− l)

∥∥∥∥∥

2


 .
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TheM − 1 remaining sequences from each of theML groups are discarded.

Step 2. Upon reception ofy(L + n), n ≥ 1, compute theML+1 metrics

∥∥∥∥∥y(L + n)−
L∑

l=0

h(n; l)s(L + n− l)

∥∥∥∥∥

2

+ PMn−1(s(L + n− 1), . . . , s(n)).

Again, theML+1 sequences are divided intoML groups corresponding to theML possible state

(s(L + n), . . . , s(n + 1)) and the most probable sequence from each group is selected while the

otherM − 1 sequences are discarded. The surviving metrics are

PMn(s(L + n), . . . , s(n + 1))

= min
s(n)





∥∥∥∥∥y(L + n)−
L∑

l=0

h(n; l)s(L + n− l)

∥∥∥∥∥

2

+ PMn−1(s(L + n− 1), . . . , s(n))



 .

(1.27)

Step 3. If y(L + n) is the last received sample, from theML survivor sequences, pick the one

as the ML (maximum likelihood) sequence estimator which has the minimum metric; otherwise, set

n = n + 1 and then go to step 2.

1.4 Orthogonal Frequency Division Multiplexing (OFDM)

Frequency division multiplexing is a technology that transmits multiple signals simultaneously

over a single transmission path, such as a cable or wireless system. Each signal travels within its

own unique frequency range (carrier), which is modulated by the data (text, voice, video, etc.).

Orthogonal frequency division multiplexing (OFDM) distributes the data over a large number

of subchannels that are spaced apart at precise frequencies (see Fig. 1.2). This spacing provides the

“orthogonality” in this technique which prevents the demodulators from seeing frequencies other
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Figure 1.2: Subchannels are 312 kHz wide in 802.11a and HyperLAN II

than their own. The benefits of OFDM are high spectral efficiency, resiliency to radio frequency

(RF) interference, and lower multipath distortion. This is useful because in a typical terrestrial

broadcasting scenario there are multipath-channels (i.e. the transmitted signal arrives at the receiver

using various paths of different length). Since multiple versions of the signal interfere with each

other (intersymbol interference) it becomes very hard to extract the original information.

OFDM has already been included in digital audio/video broadcasting (DAB/DVB) standards

in Europe, and has been successfully applied to high-speed digital subscriber line (DSL) modems in

the United States. Recently, it has also been proposed for digital cable television systems and local

area mobile wireless networks, such as those specified in the IEEE802.11a, and the HIPERLAN/2

standards [15]. By implementing an inverse fast Fourier transform (IFFT) at the transmitter and

a fast Fourier transform (FFT) at the receiver, OFDM converts an intersymbol interference (ISI)

channel into parallel ISI-free subchannels with gains equal to the channel’s frequency response val-

ues on the FFT grid. To eliminate interblock interference (IBI) between successive IFFT-processed

blocks, a cyclic prefix (CP) of length no less than the channel order is inserted per transmitted block.

Discarding the CP at the receiver not only suppresses IBI, but also converts the linear channel con-

volution into circular convolution, which facilitates diagonalization of the associated channel matrix

(see, e.g., [71]). An OFDM transceiver diagram is shown in Fig. 1.3.
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Figure 1.3: An OFDM transceiver diagram

1.5 Outline and Contribution

The dissertation is organized in the following chapters and the author’s contributions are as

follows:

Chapter 2: The channel estimation for doubly-selective channels is considered using time-

multiplexed training. The time-varying channel is assumed to be well-described by a basis expan-

sion model using discrete prolate spheroidal sequences as the bases (DPS-BEM). The popular linear

least squares and minimum mean-square-error approaches are exploited to estimate the basis expan-

sion coefficients. Computer simulations based on Monte Carlo runs are provided. With the channel

estimation MSE and bit error rate as the performance measures, we find that the channel estima-

tion based on DPS-BEM significantly outperforms the more widely used complex exponential basis

expansion model-based channel estimation.
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Certain aspects of pilot symbol aided modulation (PSAM) parameter design for DPS-BEM-

based doubly-selective channels is investigated, following the CE-BEM results in [41, 75]. The

optimum time-multiplexed training structure design based on an asymptotic DPS expression is pre-

sented by minimizing the DPS-BEM-based channel estimation MSE. The training power allocation

problem is also addressed in this chapter.

Chapter 3: The channel estimation approaches proposed in Chapter 2 are then extended to

multiuser MIMO systems in this chapter. We suppose there are multiple users at the transmit side,

and each user has one antenna.

Chapter 4: The conventional Kalman filter is used as a time-varying (TV) minimum mean-

square-error (MMSE) equalizer for doubly-selective channels. A formulation of FIR decision feed-

back equalizer is proposed for doubly-selective channels. The proposed equalizers have the main

advantages that they do not incur the approximation error inherent in BEM modeling of equalizers.

The BER performance and the computational complexity of the proposed design are investigated

by means of Monte Carlo computer simulations, and compared with the existing BEM-based TV

equalizers.

Chapter 5: An adaptive channel estimation scheme, exploiting the oversampled CE-BEM, is

presented for doubly-selective channels where we track the BEM coefficients via a multiple model

approach. In the past work the number of BEM coefficients used to model the doubly-selective

channels for channel estimation has been based on an upper bound on the channel Doppler spread.

The higher the Doppler spread, the more the number of BEM coefficients leading to a higher channel

estimation variance. In this chapter we propose to use a multiple model framework where several

candidate Doppler spread values are used to cover the range from zero to an upper bound, leading to

multiple CE-BEM channel models, each corresponding to an assumed value of the Doppler spread.
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Subsequently the well known interacting multiple model (IMM) algorithm is used for symbol de-

tection based on multiple state-space models corresponding to the multiple estimated channels.

Chapter 6: The pilot-aided doubly-selective channel estimation for OFDM systems is con-

sidered in this chapter. The time-varying channel is described by CE-BEM or DPS-BEM. The

“optimum” training strategies proposed in Chapter 2 are applied to OFDM systems under doubly-

selective channels. Compared to the traditional frequency-domain training design, the main ad-

vantages of time-domain training for OFDM system is that the information symbols are not con-

taminated by the training symbols as in the frequency-domain training case. The performance of

frequency-domain training-based channel estimation and time-domain training-based channel esti-

mation is presented and compared.

Chapter 7: The dissertation concludes in Chapter 7 with future research topics suggested.
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CHAPTER 2

SISO DOUBLY-SELECTIVE CHANNEL ESTIMATION USING DISCRETEPROLATE SPHEROIDAL

BASIS EXPANSION MODELS AND TIME-MULTIPLEXED TRAINING

2.1 Introduction

Doubly-selective channel estimation using complex exponential basis expansion model (CE-

BEM) and time-multiplexed training is considered in [41, 75], where CE-BEM based on Fourier

basis functions is applied to represent the time-variant channel. However, since the Fourier basis

expansion has the major drawback that the rectangular window associated with the discrete Fourier

transform (DFT) introduces spectral leakage [44], the bit error rate (BER) suffers an error floor [3,

76]. In [76, 77], the linear minimum mean-square-error (MMSE) channel estimation using discrete

prolate spheroidal (DPS) sequences is considered. It is shown that DPS-BEM-based approaches

significantly outperform CE-BEM-based approaches for the doubly-selective channel estimation

and data detection.

To acquire the channel state information at the receiver, training symbols are usually peri-

odically inserted during transmission, which is known as pilot symbol aided modulation (PSAM)

[16]. Optimization of the PSAM for CE-BEM based doubly-selective channel models has been

considered in [41, 75] where the time-multiplexed training sequence is designed to minimize the

channel estimation mean-square-error (MSE). In the case of CE-BEM with independent basis ex-

pansion coefficients, minimizing the channel estimation MSE is also shown (in [41, 75]) to be

equivalent to maximizing a lower bound on the estimated channel-based average capacity. No such

considerations are to be found in [76, 77] where the doubly-selective is represented by DPS-BEM.

The linear MMSE channel estimator for DPS-BEM-based MIMO-OFDM (multiple input multiple
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output-orthogonal frequency division multiplexing) doubly-selective channels is introduced in [49],

but the training design problem is not considered.

In this chapter, we consider the channel estimation for doubly-selective single input single

output (SISO) channels described by DPS-BEM. Both linear least squares (LS) and minimum mean-

square-error (MMSE) estimators are presented and compared.

Our system model is exactly as in [41] except that instead of CE-BEM as in [41] we use DPS-

BEM. In [41, 75], the linear MMSE channel estimator is used, which requires knowledge of the

noise variance and of the covariance matrix of the channel basis expansion coefficients. While the

former may be known at the receiver, the latter is seldom known. In [41], the latter is assumed to

be known and diagonal. For the Jakes’ model, the basis expansion coefficients for a given tap are

not mutually uncorrelated, hence the diagonal assumption does not always hold true. The linear LS

channel estimator does not need to know the covariance matrix or make any assumption regarding

its nature. On the other hand, the performance of the MMSE channel estimator is better than that of

the LS estimator; however, the difference is negligible at high SNRs. [41] does not consider the LS

channel estimation whereas [77] has used the LS channel estimator but not the MMSE estimator.

Certain aspects of PSAM parameter design for DPS-BEM-based doubly-selective channels

is also considered, following the CE-BEM results in [41, 75]. Since the Slepian sequences as a

solution to (1.15) are hard to work with analytically, we give asymptotic DPS expressions based on

some heuristic considerations. Then the optimum time-multiplexed training structure design based

on asymptotic DPS expressions is presented by minimizing the DPS-BEM-based channel estimation

MSE. The training power allocation problem is finally addressed.
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2.2 System Model

Consider a doubly-selective single input single output (SISO) finite impulse response (FIR)

linear channel. Leth(n; l) denote the symbol-rate impulse response (the channel response at time

n to a unit input at timen − l), wheren ∈ [0, 1, ..., N − 1] and l ∈ [0, L] capture the time-

and frequency- selectivity of the channel, respectively. Over a time-block of sizeN , given N

orthonormal functions ofψq(n), the following representation is always true

h(n; l) =
N−1∑

q=0

wq(l)ψq(n), (2.1)

whereψq(n) is theq-th basis function and the basis expansion coefficientwq(l) is fixed over the data

block. As the above representation is not parsimonious, the following BEM is used to approximate

model (2.1):

hBEM(n; l) =
Q∑

q=0

wq(l)ψq(n), (2.2)

where onlyQ + 1 << N basis functions are involved. Hence, the channel modeling error can be

expressed as:

eBEM(n; l) = h(n; l)− hBEM(n; l) =
N−1∑

q=Q+1

wq(l)ψq(n). (2.3)

Let Ts denote the symbol interval. For a channel with a multipath delay spread ofτd sec and a

Doppler spread offd Hz, in the complex exponential basis expansion model (CE-BEM) [56, 38],
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one takes

ψ(F )
q (n) := ejωqn,

ωq := 2π(q − QF

2
)/N,

L := bτd/Tsc and QF := 2dνDmaxNe

whereνDmax := fdTs is the maximum normalized Doppler bandwidth. After normalization to unit

norm, we have

ψ(F )
q (n) =

1√
N

e(i2π(q−QF /2)n/N). (2.4)

In the discrete prolate spheroidal sequence-based BEM (DPS-BEM), the DPS vectorsψ
(S)
q ∈

RN (called Slepian sequences in [77], which are time-windowed DPS sequences) with elements

ψ
(S)
q (n) for n ∈ {0, ..., N − 1}, are eigenvectors of the matrixC ∈ RN×N , fulfilling [77]

Cψ(S)
q = λqψ

(S)
q , (2.5)

whereλq are eigenvalues of matrixC. The(y, z) entries in matrixC are defined as:

[C]y,z =
sin[2π(y − z)νDmax]

π(y − z)
, (2.6)

wherey, z ∈ {0, ..., N − 1}. In this case one takesQS ≥ d2νDmaxNe [77, 58].

In the following, as in [77], we will use a general notation for the basis expansion quantities

ψq(n), Q, wq, andh to indicate that all expressions are applicable to any set of orthonormal basis

functionsψq(n).
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Let {s(n)} denotes transmitter’s information sequence. Using the discrete-time baseband

equivalent channel model, the received sequence at the receive antenna can be written as

x(n) =
L∑

l=0

hBEM(n; l)s(n− l) + η(n), (2.7)

whereη(n) is the additive complex Gaussian noise at the receive antenna, with zero-mean and

varianceσ2
η. Plugging (2.2) into (2.7), we can rewritex(n) as:

x(n) =
Q∑

q=0

ψq(n)

[
L∑

l=0

wq(l)s(n− l)

]
+ η(n). (2.8)

We consider block transmission as in [41], where transmitted symbols are collected intoN ×1

blocks withs = [s(0), s(1), ..., s(N − 1)]T as the0th block and receivedx(n)’s are also collect

into blocks withx = [x(0), x(1), ..., x(N − 1)]T as0th block. To avoid inter-block interference

(IBI), as in [41],L guard zeros are inserted in each block at the transmitter. Then the matrix-vector

input-output relationship of (2.8) is given by

x =
Q∑

q=0

DψqWqs + η, (2.9)

whereη is defined similarly tox, Dψq = diag[ψq] with ψq := [ψq(0), ψq(1), ..., ψq(N −1)]T , and

Wq ’s areN ×N lower triangular Toeplitz matrices with 1st column[wq(0), wq(1), . . . , wq(L),

0, . . . , 0]T .
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2.3 Channel Estimation

Sinceψq(n) are known by the receiver, the objective of the channel estimator is to find basis

expansion coefficients in (2.2) from the received samples corresponding to the training symbols.

The proposed channel estimation relies on time-multiplexed training symbols at known positions.

As in [41], each transmitted blocks consists ofJ segments (sub-blocks) of training and in-

formation symbolsb(n) andc(n), respectively, and each segment has the same length. Then the

general structure ofs is

s = [bT
1 , cT

1 , ..., bT
J , cT

J ]T , (2.10)

wherebj with lengthNb andcj with lengthNc, for all j ∈ [1, J ], denote training and information

symbol sub-blocks, respectively. Therefore,N = J(Nb + Nc) with Nb > L. Let M = Nb + Nc

denote the sub-block size. Obviously, the firstL symbols in the “training part” of thejth subblock

of the received signal are contaminated by information symbols in the preceding(j−1)th subblock.

In the similar way, the firstL symbols in the “information part” of thejth subblock of the received

signal are also contaminated by the lastL training symbols in the currentjth subblock. In order to

avoid the inter-subblock interference (ISBI) so that the channel estimation is decoupled from data

detection, we will choose the first and the lastL symbols in each training subblock to be zeros, as

in [41].

Definebj := [b((j−1)M), b((j−1)M+1), ..., b((j−1)M+Nb−1)]T . Further definēDψq,j
=

diag[ψ̄q,j ] whereψ̄q,j = [ψq((j−1)M +L), ψq((j−1)M +L+1), ..., ψq((j−1)M +Nb−1)]T .

Then the ISBI free received subblock can be written as

x̄b,j =
Q∑

q=0

D̄ψq,j
W̄qbj + η̄b,j , (2.11)
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wherex̄
(r)
b,j := [xb((j − 1)M + L), xb((j − 1)M + L + 1), ..., xb((j − 1)M + Nb − 1)]T , η̄b,j is

defined similarly, and(Nb − L)×Nb matrixW̄q is given by

W̄q =




wq(L) . . . wq(0)

... ... ...

wq(L) . . . wq(0)




. (2.12)

Gathering training symbols per block, we obtain

x̄b =
Q∑

q=0




D̄ψq,1W̄qb1

...

D̄ψq,J
W̄qbJ




+ η̄b. (2.13)

According to the commutativity property of convolution, we haveW̄qbj = Bjwq with wq :=

[wq(0), ..., wq(L)]T andBj a (Nb − L)× (L + 1) Toeplitz matrix given by

Bj :=




bj(L) . . . bj(0)
...

...
...

bj(Nb − 1) . . . bj(Nb − L− 1)




, (2.14)

wherebj(l) := b((j − 1)M + l). Therefore, (2.13) can be rewritten as

x̄b = Φw + η̄b, (2.15)
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with simple substitutions, where the[J(Nb − L)]× [(Q + 1)(L + 1)] matrix

Φ :=




D̄ψ0,1B1 ... D̄ψQ,1
B1

...
...

...

D̄ψ0,J
BJ . . . D̄ψQ,J

BJ




, (2.16)

and

w := [wT
0 ,wT

1 , ...,wT
Q]T . (2.17)

2.3.1 Least-squares Channel Estimation

The linear least-squares (LS) channel estimator based on (2.15) is

ŵLS = ΛLSx̄b, (2.18)

whereΛLS = (ΦHΦ)−1ΦH . Define the estimation error of BEM parameters asw̃LS := w− ŵLS.

Then the covariance matrix of̃wLS is

Rw̃LS := E[w̃LSw̃
H
LS] = σ2

η

(
ΦHΦ

)−1
. (2.19)

As a result, the MSE of̃wLS is

σ2
w̃LS

:= tr(Rw̃LS) = σ2
ηtr

[
(ΦHΦ)−1

]
. (2.20)

29



Using [52, Lemma 1],σ2
w̃LS

is lower bounded by (S := K(Q + 1)(L + 1))

σ2
w̃LS

≥ σ2
η

S∑

k=1

1
[(ΦHΦ)]k,k

= σ2
η

S∑

k=1

1
[ΦHΦ]k,k

(2.21)

where the equality holds if and only ifΦHΦ is a diagonal matrix. By the arithmetic-geometric

mean inequality [31, p. 535],

σ2
η

S∑

k=1

1
[ΦHΦ]k,k

≥ σ2
ηS

(
S∏

k=1

1
[ΦHΦ]k,k

)1/S

(2.22)

where the equality holds iff
[
ΦHΦ

]
k,k

are all equal. Equivalently, we needΦHΦ to be a diagonal

matrix with all its diagonal entries equal.

2.3.2 Linear Minimum Mean-Square-Error Channel Estimation

The linear minimum mean-square-error (MMSE) channel estimator based on (2.15) is

ŵMMSE = ΛMMSEx̄b, (2.23)

whereΛMMSE = σ2
ηR

−1
w + (ΦHΦ)−1ΦH . This estimator requiresRw := E

[
wwH

]
to be known

at the receiver. Define the estimation error of BEM parameters asw̃MMSE := w − ŵMMSE. Then

the covariance matrix of̃wMMSE is

Rw̃MMSE := E[w̃MMSEw̃H
MMSE] =

[
R−1

w +
1
σ2

η

(ΦHΦ)
]−1

. (2.24)

30



As a result, the MSE of̃wMMSE is

σ2
w̃MMSE

:= tr(Rw̃MMSE) = tr

[(
R−1

w +
1
σ2

η

(ΦHΦ)
)−1

]
. (2.25)

Since our analysis allows for correlated channels, the BEM coefficientswq(l) are not necessar-

ily independent. Eigen-decomposition ofRw yieldsRw = UwΩwU−1
w whereU−1

w = UH
w . Since

tr(AB) = tr(BA), (2.25) can be rewritten as

σ2
w̃MMSE

= tr

[(
Ω−1

w +
1
σ2

η

U−1
w (ΦHΦ)Uw

)−1
]

. (2.26)

Similar to (2.21), by [52, Lemma 1],σ2
w̃MMSE

is lower bounded by

σ2
w̃MMSE

≥
∑

i

1[
Ω−1

w + 1
σ2

η
U−1

w (ΦHΦ)Uw

]
i,i

(2.27)

where the equality holds if and only ifU−1
w (ΦHΦ)Uw is a diagonal matrix. This is true ifΦHΦ is

a diagonal matrix with all its diagonal elements equal. Similar as in (2.21)-(2.22), σ2
w̃MMSE

is lower

bounded by

σ2
w̃MMSE

≥ S ×




∏

i

1[
Ω−1

w + 1
σ2

η
U−1

w (ΦHΦ)Uw

]
i,i




1
S

(2.28)

where the equality holds if and only ifΩ−1
w + 1

σ2
η
U−1

w

(
IR ⊗ (ΦHΦ)

)
Uw is a diagonal matrix

with all its diagonal entries equal. Equivalently, we needΦHΦ to be a diagonal matrix with all its

diagonal entries equal provided that diagonalΩw has all its diagonal entries equal; unfortunately,

the latter is not necessarily true (at least for a channel tap with Jakes’ spectrum).
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2.3.3 Channel Estimation Error

Given estimated BEM parameterŝwq(l) via LS or MMSE estimators, the channel impulse

response is then given by:

ĥBEM(n; l) =
Q∑

q=0

ŵq(l)ψq(n). (2.29)

There are two sources of channel estimation error: one is from the difference betweenhBEM(n; l)

and ĥBEM(n; l), the other is from the channel modeling erroreBEM(n; l) in (2.3). Therefore, the

mean square value of channel estimation error is expressed as:

σ2
h̃

= N−1
N−1∑

n=0

L∑

l=0

E

{∥∥∥hBEM(n; l)− ĥBEM(n; l) + eBEM(n; l)
∥∥∥

2
}

. (2.30)

Since the following orthogonality is true for both CE-BEM and DPS-BEM models

E

{[
hBEM(n; l)− ĥBEM(n; l)

]H
eBEM(n; l)

}
= 0, (2.31)

we have

σ2
h̃

= σ2
w̃ + N−1

N−1∑

n=0

L∑

l=0

E
{

[eBEM(n; l)]H eBEM(n; l)
}

︸ ︷︷ ︸
σ2
BEM

. (2.32)

The channel modeling errorσ2
BEM has an analytic expression from Niedzwiecki’s results in [51]:

σ2
BEM ≈ 1

π

∫ π

0
Ψ(n, ω)tr {Shh(ω)} dω, (2.33)

whereΨ(n, ω) is the instantaneous parameter matching characteristics of a basis function estimator:

Ψ(n, ω) = |1−H(n, ω)|2, (2.34)
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H(n, ω) is the instantaneous frequency response of the basis expansion estimator:

H(n, ω) = fT (n)
N−1∑

n′=0

f(n)e−iω(n−n′),

f(n) := [ψ0(n), ψ1(n), ..., ψQ(n)]T , (2.35)

the power spectral densityShh(ω) is derived from the autocorrelation ofh(n):

Rhh(τ) := E [h∗(n + τ)h(n)] ,

Rhh(τ) =
1
2π

∫ π

−π
Shh(ω)eiωτdω. (2.36)

The modeling error for CE-BEM (referred to asσ2
CE) and DPS-BEM (referred to asσ2

DPS) models

are analyzed in [77]. We have also shown some simulation results earlier in Chapter 1 (Fig. 1.1).

For a 3-tap Jakes’ channel,σ2
DPS is several orders of magnitude smaller thanσ2

CE.

2.4 Optimum Training Design

Observe from (2.21) that in order to achieve the lower bound ofσ2
w̃LS

, The LS estimator re-

quiresΦHΦ to be a diagonal matrix with all its diagonal entries equal. Observe from (2.27) and

(2.28) that in order to achieve the lower bound ofσ2
w̃MMSE

, The MMSE estimator also requires

ΦHΦ to be a diagonal matrix to achieve (2.27) and for both it andΩw to be diagonal with all their

respective diagonal entries equal to achieve (2.28). Unfortunately, in general, the diagonalΩw does

not necessarily have all its diagonal entries equal. We will design the training schemes to make

ΦHΦ to be a diagonal matrix with all its diagonal entries equal which will achieve the lower bound
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in (2.22) for the LS channel estimator and in (2.27) (but not in (2.28)) for the linear MMSE channel

estimator.

Suppose that we choose

ΦHΦ = αI(Q+1)(L+1) for some α > 0 (2.37)

Then by (2.16) we must have

J∑

j=1

BH
j D̄H

ψq1,jD̄ψq2,jBj = αIδ(q1 − q2). (2.38)

For CE-BEM, it turns out that [41]

J∑

j=1

D̄H
ψq1,jD̄ψq2,j =

1
M

INb−Lδ(q1 − q2) (2.39)

Note that in [41], (2.4) is not normalized; here it is. By (2.16) and (2.38), for all k’s andq’s, the

training sequence should be designed to satisfy

J∑

j=1

BH
j D̄H

ψq1,jD̄ψq2,jBj = γ
J∑

j=1

D̄H
ψq1,jD̄ψq2,j . (2.40)

Under (2.39), following [41] and [75], we pickNb = 2L + 1 andbT
j = [0T

L, bk,0T
L]T where0L is

a sizeL null column, in which caseΦHΦ = b2

M I. Therefore, withPb := Jb2 denoting the total

training power, we can obtainα = Pb
N (recall thatN = JM ).
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Plugging (2.37) into (2.22), (2.28) and (2.32), the LS and MMSE lower bounds of channel

estimation error are derived as

σ2
h̃LS

=
Nσ2

η

Pb
(L + 1)(QF + 1) + σ2

CE, (2.41)

σ2
h̃MMSE

=
(L+1)(QF +1)∑

t=1

[
λ̌−1

t +
Pb

σ2
ηN

]−1

+ σ2
CE, (2.42)

whereλ̌t is thet-th diagonal entry of matrixΩw, i.e. λ̌t is thet-th eigenvalue ofRw.

For DPS-BEM, we will use “large”N approximation from the Appendix A for DPS-BEM

basis functions to obtain an expression for the modeled part of channel estimation error. Using

heuristic asymptotic (A.6), we can easily establish (note that asymptotic (A.6) corresponds to (2.4)

and (A.3))
J∑

j=1

D̄H
ψq1,jD̄ψq2,j ≈ 1

M
INb−Lδ(q1 − q2). (2.43)

Therefore, for DPS-BEM mimicking (2.41) and (2.42), the lower bounds of channel estimation

error are

σ2
h̃LS

≈ Nσ2
η

Pb
(L + 1)(QS + 1) + σ2

DPS, (2.44)

σ2
h̃MMSE

≈
(L+1)(QS+1)∑

t=1

[
λ̌−1

t +
Pb

σ2
ηN

]−1

+ σ2
DPS. (2.45)

Remark 2.1 Note that (2.43) is critical for (2.44) and (2.45) to hold true and for the proposed

training designs to be valid. The asymptotic Slepian sequences in (A.6) are only “heuristic.” But

we can “verify” (2.43) by computing the results in (2.20) and (2.22) numerically and compare them

with the results in (2.44). This is done in Section 2.6.
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2.5 Training Power Allocation

We assume that the time-varying channelh(n; l) is zero-mean, wide sense stationary (inn

with fixed l) complex Gaussian with the same varianceσ2
h. We also assume that the channel taps

are mutually independent, i.e.h(n; l) is wide sense stationary uncorrelated scattering (WSSUS). To

simplify the expressions, in this section we assume that the channel modeling erroreBEM in (2.3) is

zero.

The received information symbols at the received antenna can be expressed as

xc(n) =
L∑

l=0

ĥ(n; l)c(n− l)

︸ ︷︷ ︸
:=xs(n)

+
L∑

l=0

[h(n; l)− ĥ(n; l)]c(n− l) + η(n)

︸ ︷︷ ︸
=xη(n)

, (2.46)

whereĥ(n; l) =
∑Q

q=0 ŵq(l)ψq(n) is used for data detection. Therefore, the signal power is given

by

σ2
xs(n) := E

{|xs(n)|2}

= E








∣∣∣∣∣
L∑

l=0

ĥ(n; l)c(n− l)

∣∣∣∣∣

2







= P̄c

L∑

l=0

[
Ew

{
E

{∣∣∣h(n; l)− ĥ(n; l)
∣∣∣
2
|w

}}
+ E

{|h(n; l)|2}
]

= P̄c

[
σ2

h̃
(n) + (L + 1)σ2

h

]
, (2.47)

where the average power of information symbols is

P̄c := E
{|c(n)|2} , (2.48)
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and the effective noise power is:

σ2
xη(n) = E








∣∣∣∣∣
L∑

l=0

[h(n; l)− ĥ(n; l)]c(n− l)

∣∣∣∣∣

2





 + E

{|η(n)|2}

= P̄cσ
2
h̃
(n) + σ2

η, (2.49)

whereσ2
h̃
(n) :=

∑L
l=0 Ew

{
E

{∣∣∣h(n; l)− ĥ(n; l)
∣∣∣
2
|w

}}
. Define

Wl := [w0(l), w1(l), ..., wQ(l)]T ,

W := [W0,W1, ...,WL]T , (2.50)

By (2.17) and (2.50), we can get the following relationship:

W = Ξw, (2.51)

where

Ξ =




1
L︷︸︸︷

0...0 . . . . . .

0 0...0 1
L︷︸︸︷

0...0 . . . . . .

. . . . . . . . .

0 1
L︷︸︸︷

0...0 . . . . . . . . .

0 0
L︷︸︸︷

0...0 1
L︷︸︸︷

0...0 . . .

... ... ...

. . . . . . . . . . . . . . . 1




(Q+1)(L+1)×(Q+1)(L+1)

. (2.52)
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We also find thatΞHΞ is always an identity matrix. Thenσ2
h̃
(n) can be rewritten as

σ2
h̃
(n) =

L∑

l=0

EW

{
E

{∣∣∣h(n; l)− ĥ(n; l)
∣∣∣
2
|W

}}

= tr
{
Ψ(n)EW

{
cov{Ŵ, Ŵ|W}

}
Ψ(n)H

}
, (2.54)

where

ψ(n) := [ψ0(n), ψ1(n), ..., ψQ(n)],

Ψ(n) := I(L+1) ⊗ψ(n).

Based on (2.50) and (2.51), we have

EW
{

cov{Ŵ, Ŵ|W}
}

= ΞEW {cov{ŵ, ŵ|W}}︸ ︷︷ ︸
Rw̃

ΞH . (2.55)

Based on the orthonormality ofψq(n), we have

N∑

n=1

Ψ(n)HΨ(n) = I(L+1)(Q+1). (2.56)

Therefore, the time-averaged ofσ̄2
h̃

over information subblocks in the current block is

σ̄2
h̃

:= (N − JNb)−1
∑

n

σ2
h̃
(n) ≈ N−1

N−1∑

n=0

σ2
h̃
(n) =

1
N

tr
{
ΞRw̃ΞH

}
=

1
N

σ2
w̃ (2.57)
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Similarly, the time averaged signal and noise powers turn out to be

σ̄2
xs :=

1
N

N∑

n=1

σ2
xs(n) = P̄c[σ̄2

h̃
+ (L + 1)σ2

h],

σ̄2
xη :=

1
N

N∑

n=1

σ2
xη(n) = P̄cσ̄

2
h̃

+ σ2
η. (2.58)

Therefore, we obtain an effective average SNR for (2.46) as

SNRd =
σ̄2

xs

σ̄2
xη

. (2.59)

Define the total information power and received signal powerPc := JNcP̄c andP := Pb+Pc,

respectively. Define the training power overhead

β :=
Pb

Pc + Pb
.

Our objective is to maximize SNR with respect toβ under the constraint of a fixedP. Thus,

incorporating those constraint-carrying variables into (2.59) and using the developed expression for

average signal and noise powers in (2.59), we obtain the unconstrained cost

SNRd(β) =
(1−β)P

JNc
[σ̄2

h̃
+ (L + 1)σ2

h]
(1−β)P

JNc
σ̄2

h̃
+ σ2

η

. (2.60)

Using the lower bound of the LS estimator in (2.44) (due to the lower bound of the MMSE estimator,

the closed form of the optimalβ can not be obtained), we can explicitly write (2.59) as

SNRd(β) =
f1β

2 + f2β + f3

g1β + g2
, (2.61)
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where

f1 = −P(L + 1)σ2
h

NcJ
,

f2 =
P(L + 1)σ2

h

NcJ
− (L + 1)(Q + 1)σ2

η

NcJ
,

f3 =
(L + 1)(Q + 1)σ2

η

NcJ
,

g1 = σ2
η −

(L + 1)(Q + 1)σ2
η

NcJ
,

g2 =
(L + 1)(Q + 1)σ2

η

NcJ
. (2.62)

Setting the first derivative ofSNRd(β) with respect toβ to zero, we obtain a quadratic equation in

β

β2 + 2
g2

g1
β +

f2g2 − f3g1

f1g1
= 0 (2.63)

with two roots, one of which is negative(β < 0), and hence is excluded. The other root is given by

βopt =
g2

g1

[
−1 +

√
1 +

g1(f3g1 − f2g2)
g2
2f1

]
. (2.64)

2.6 Numerical Examples

In the following examples, we use binary phase shift keying (BPSK) and quadrature phase

shift keying (QPSK) modulation. Each transmitted block hasJ = 10 subblocks, and each subblock

hasNc = 30 information symbols andNb = 2L + 1 training symbols with optimal structure

[0L, b,0L], b > 0. A doubly-selective Rayleigh fading channelh(n; l) is simulated according to

[77, 81] with the channel orderL = 2, carrier frequency of2GHz, data rate of 40 kbps, and thus,

symbol durationTs = 25µs. Therefore, each tap of the generated time-variant channel has a Jakes’
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Figure 2.1: Channel estimation errors (with and without modeling errors):Numerical results derived
from QF = 2dνDmaxNe+ 1 andQS = d2νDmaxNe+ 1, SNR=20dB

spectrum; it is not generated using the assumed BEM modeling. Also, 3 taps of the channel are

mutually independent. Depending on different maximum Doppler spreadfds, a varying maximum

normalized one-sided Doppler bandwidthνDmax = fdTs can be derived. GivenνDmax, Jakes’

spectrum and other information, we can calculateRw and therefore,Ωw andλ̌ts, needed in (2.28),

(2.45) and elsewhere. The SNR refers to the ratio of total signal and training power to the total noise

power, each per block.

2.6.1 Example 1: Approximation Errors

As noted earlier in Remark 2.1, here we want to show the influence of approximation errors in

D̄ψq ,j when the true Slepian sequences instead of the approximations in (A.6) are used. We compute

(2.20) and (2.22) numerically with true Slepian sequences generated by (2.5), then compare them
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Figure 2.2: MSE lower bound comparison between LS (2.44) and MMSE (2.45) estimators
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Figure 2.3: Comparison between the LS channel estimation MSE lower bound in (2.44) and simu-
lation results in (2.65), QS = d2νDmaxNe+ 1
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Figure 2.4: Comparison between the MMSE channel estimation MSE lower bound in (2.45) and
simulation results in (2.65), QS = d2νDmaxNe+ 1

with (2.41) and (2.44). For the parameters stated earlier in this section (J=10, Nb=8, Nc=30,

M = Nb + Nc=38,N = JM =380) the results are shown in Fig. 2.1, where SNR=20dB and the

dimensionsQF = 2dνDmaxNe+1 andQS = d2νDmaxNe+1 change with the maximum Doppler

bandwidth. [Here the minimumQF = 2dνDmaxNe andQS = d2νDmaxNe are not taken since a

slightly higher values ofQ’s can significantly reduce the modeling error. This is suggested in [77]].

From Fig. 2.1 we see that the CE-BEM lower bound in (2.41) is high due to “large” modeling error

σ2
CE even though the error for the modeled part is minimum, whereas the results in (2.20), (2.22)

and (2.44) are close to each other due to “small” modeling errorσ2
DPS and “close-to- minimum”

(compare curves for (2.20) (exact error) and (2.22) (lower bound)) error for the modeled part. [We

note thatσ2
DPS andσ2

CE were obtained via Monte Carlo averaging, similar to [77].]
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Figure 2.5: LS channel estimation MSE with varying maximum normalized Doppler bandwidth,
QS = d2νDmaxNe+ 1,QF = 2dνDmaxNe+ 1

2.6.2 Example 2: DPS-BEM Channel Estimation Performance

In this case we pickb = 1 in training. The LS and MMSE estimators are used to estimate

w, and then the channel is estimated as in (2.29). Based onMr Monte Carlo runs, the channel

estimation MSE is calculated as (hk corresponds to the kth run)

MSE = (MrN)−1
Mr∑

k=1

N−1∑

n=0

L∑

l=0

|ĥk(n; l)− hk(n; l)|2. (2.65)

In Fig. 2.2, the lower bounds in (2.44) and (2.45) are plotted usingQS = 2 for fd = 40Hz

and usingQS = 3 for fd = 100Hz. [The MMSE bound needšλts which requires knowledge of

the Doppler spread. Note also that for bothfd = 40Hz andfd = 100Hz, the minimumQS =

d2νDmaxNe are actuallyQS = 1 andQS = 2, respectively; however, a slightly higher value of

44



0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

ν
Dmax
(S) =0.001

ν
Dmax
(S) =0.003

ν
Dmax
(S) =0.005

ν
Dmax
(F) =0.001

ν
Dmax
(F) =0.003

ν
Dmax
(F) =0.005

Figure 2.6: BER with varying maximum normalized Doppler bandwidth using BPSK modulation,
QS = d2νDmaxNe+ 1,QF = 2dνDmaxNe+ 1

QS = d2νDmaxNe + 1 = 3 for fd = 100Hz yields the smaller modeling error, which becomes

significant at high SNRs]. Then they are compared with the simulation results (averaged over 200

Monte Carlo runs) in Figs. 2.3 and 2.4 forfd = 40Hz and 100Hz; also shown are±σ bounds on

the simulation averages. It can be seen that the theoretical results are consistent with the simulation

results forfd =40Hz indicating that the optimal pilot design does minimize the channel MSE when

using DPS-BEM. Forfd=100 Hz, there is a “small gap” between theory and simulations at high

SNRs which is probably attributable to modeling error (“small” but nonzero). Furthermore, the

performance of the MMSE estimator outperforms that of the LS estimator at low SNR, and they

converge to each other at high SNR.
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Figure 2.7: BER with varying maximum normalized Doppler bandwidth using QPSK modulation,
QS = d2νDmaxNe+ 1,QF = 2dνDmaxNe+ 1

2.6.3 Example 3: CE-BEM versus DPS-BEM

In Fig. 2.5, the LS channel estimation MSE (2.65) versus SNR under different maximum

Doppler bandwidths (ν(S)
Dmax is for DPS-BEM,ν(F )

Dmax is for CE-BEM) are plotted. It is clear that

the MSE of DPS-BEM is consistently smaller than that of CE-BEM. Fig. 2.6 takes BER (average

over 2000 Monte Carlo runs) as a performance measure to compare the performance between DPS-

BEM and CE-BEM. A Kalman filter formulation is used for information detection after the channel

estimation. Comparing with Fig. 2.5 makes it quite clear that the significantly reduced MSE for the

DPS-BEM channel estimation leads to a pronounced reduction in BER compared to the CE-BEM

case.
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Figure 2.8: Simulations-based BER versusβ for SNR=15dB

The plotting in Fig. 2.7 is exactly the same as Fig. 2.6 except that the information sequences

are QPSK signals. It is seen from Figs. 2.6 and 2.7 that the BER by using QPSK information

symbols are worse than that using BPSK symbols, as expected.

2.6.4 Example 4. Training Power Allocation

Here we vary training power (by varyingb) with fixed total transmitted power. The BER versus

optimumβ based on simulation results (averaged over 1000 Monte Carlo runs) is shown in Fig. 2.8

for SNR=15dB where we used BPSK modulation and a Viterbi detector based on the estimated

channel for data detection. We also variedνDmax according to different maximum Doppler spread

fd. In Fig. 2.9, we plot the optimum theoretical values ofβ (derived in (2.64)) versus the received

signal SNR. Comparing Figs. 2.8 and 2.9, we see that the two show mutually consistent results

47



5 10 15 20 25 30
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

SNR(dB)

β o
p

t

vDmax=0.001
vDmax=0.003
vDmax=0.007
vDmax=0.01

Figure 2.9: Theoreticalβopt (2.64) versus received signal SNR

supporting our theoretical results: the optimal (simulations based)β inferred from Fig. 2.8 is in

good agreement with the theoreticalβopt of Fig. 2.9.

2.7 Conclusion

The channel estimation for doubly-selective channels was considered using time-multiplexed

training. The time-varying channel was assumed to be well-described by a basis expansion model

using discrete prolate spheroidal sequences as bases. Training designs for time-multiplexed training

based on minimization of the channel estimation mean-square-error were investigated. Both least

squares and minimum mean-square-error approaches were exploited to estimate the basis expansion

coefficients. Computer simulation examples were presented where the channel was generated via
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Jakes’ models with different Doppler spreads. In these examples the DPS-BEM model significantly

outperforms the more widely used complex exponential basis expansion model.
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CHAPTER 3

MIMO D OUBLY-SELECTIVE CHANNEL ESTIMATION USING DISCRETEPROLATE

SPHEROIDAL BASIS EXPANSION MODELS AND TIME-MULTIPLEXED TRAINING

3.1 Introduction

The prospect of extraordinary improvements in the capacity of wireless networks has drawn

considerable attention to multiple-input multiple-output (MIMO) communication techniques. MIMO

methods employ multiple transmitter and receiver antennas to increase the data rate and to achieve

spatial diversity. Traditionally, multiple antennas have been used on the receiver side to combat the

multipath fading. The receive antennas see independently faded versions of the same signal. The

receiver combines these signals so that the resultant signal exhibits considerably reduced amplitude

variability (fading) in comparison with the signal at any one antenna. This is called diversity gain.

Diversity is characterized by the number of independently fading branches, also known as the di-

versity order and is equal to the number of receive antennas in single-input-multiple output (SIMO)

channels. However, recent advances have shown that using multiple antennas at both the transmit-

ter and the receiver can significantly increase the data rate and improve the performance [22, 24].

By employing multiple transmitter antennas, multiple spatial channels are supported in the same

frequency band, thus data can be transmitted in parallel which results in an increased data rate.

In this chapter, the approaches proposed in Chapter 2 are extended to the MIMO system. We

consider the problem of channel estimation for the doubly-selective MIMO channels described by

DPS-BEM. Time-multiplexed training is used to estimate the channel. Illustrative simulation exam-

ples are provided to show the performance of channel estimation and data detection under a MIMO

system.
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3.2 Multiuser MIMO Channels

Consider a multiuser channel withK users andR receive antennas leading to a MIMO system

with K inputs andR outputs. Leth(r,k)(n; l) denote the symbol-rate impulse response (the channel

response at timen to a unit input at timen− l) of the doubly-selective MIMO FIR linear channels

between thekth user’s transmit antenna and therth receive antenna, wheren ∈ [0, 1, ..., N − 1]

andl ∈ [0, L] capture the time- and frequency- selectivity of the channel, respectively. In a general

basis expansion representation over a time-block, the following is always true:

h(r,k)(n; l) =
N−1∑

q=0

w(r,k)
q (l)ψq(n), (3.1)

whereψq(n) is theq-th basis function and the basis expansion coefficientw
(r,k)
q (l) is fixed over the

data block. As the above representation is not parsimonious, the following basis expansion model

is used to approximate model (3.1):

h
(r,k)
BEM(n; l) =

Q∑

q=0

w(r,k)
q (l)ψq(n), (3.2)

where onlyQ + 1 ¿ N basis functions are involved. Hence, the channel modeling error between

h(r,k)(n; l) andh
(r,k)
BEM(n; l) can be expressed as:

e
(r,k)
BEM(n; l) := h(r,k)(n; l)− h

(r,k)
BEM(n; l) =

N−1∑

q=Q+1

w(r,k)
q (l)ψq(n). (3.3)
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Let {sk(n)} denote thekth transmitter’s information sequence. The received sequence at the

rth receive antenna can be written as

x(r)(n) =
K∑

k=1

L∑

l=0

h(r,k)(n; l)sk(n− l) + η(r)(n), (3.4)

whereη(r)(n) is the additive complex Gaussian noise at therth receive antenna, with zero-mean

and varianceσ2
η. Plugging (3.2) into (3.4), we can rewritex(r)(n) as:

x(r)(n) =
K∑

k=1

Q∑

q=0

ψq(n)

[
L∑

l=0

w(r,k)
q (l)sk(n− l)

]
+ η(r)(n). (3.5)

We consider block transmission as in [41], where transmitted symbols for thekth transmitter

are collected intoN × 1 blocks withsk = [sk(0), sk(1), ..., sk(N − 1)]T as the0th block and

receivedx(r)(n)’s are also collect into blocks withx(r) = [x(r)(0), x(r)(1), ..., x(r)(N − 1)]T as

0th block. To avoid inter-block interference (IBI), as in [41],L guard zeros are inserted in each

block at the transmitter. Then the matrix-vector input-output relationship of (3.5) is given by

x(r) =
K∑

k=1

Q∑

q=0

DψqW
(r,k)
q sk + η(r), (3.6)

whereη(r) is defined similarly tox(r), Dψq = diag[ψq] with ψq := [ψq(0), ψq(1), ..., ψq(N − 1)],

andW
(r,k)
q s areN ×N lower triangular Toeplitz matrices with 1st column

[
w

(r,k)
q (0), w(r,k)

q (1),

. . . , w
(r,k)
q (L), 0, . . . , 0

]T
.
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3.3 Channel Estimation

As in [41], each transmitted blocksk consists ofJ segments (sub-blocks) of training and

information symbolsbk(n) andck(n), respectively, and each segment has the same length. Then

the general structure ofsk is

sk = [bT
k,1, c

T
k,1, ..., b

T
k,J , cT

k,J ]T , (3.7)

wherebk,j with lengthNb andck,j with lengthNc, for all j ∈ [1, J ], denote training and informa-

tion symbol sub-blocks, respectively. Therefore,N = J(Nb+Nc) with Nb > L. LetM = Nb+Nc

denote the sub-block size. Obviously, the firstL symbols in the “training part” of thejth subblock

of the received signal are contaminated by information symbols in the preceding(j−1)th subblock.

In the similar way, the firstL symbols in the “information part” of thejth subblock of the received

signal are also contaminated by the lastL training symbols in the currentjth subblock. In order to

avoid the inter-subblock interference (ISBI) so that the channel estimation is decoupled from data

detection, we will choose the first and the lastL symbols in each training subblock to be zeros, as

in [41].

Definebk,j := [bk((j−1)M), bk((j−1)M +1), ..., bk((j−1)M +Nb−1)]T . Further define

D̄ψq,j
= diag[ψ̄q,j ] whereψ̄q,j = [ψq((j − 1)M + L), ψq((j − 1)M + L + 1), ..., ψq((j − 1)M +

Nb − 1)]T . Then the ISBI free received subblock can be written as

x̄
(r)
b,j =

K∑

k=1

Q∑

q=0

D̄ψq,j
W̄ (r,k)

q bk,j + η̄
(r)
b,j , (3.8)
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wherex̄
(r)
b,j := [xb((j − 1)M + L), xb((j − 1)M + L + 1), ..., xb((j − 1)M + Nb − 1)]T , η̄b,j is

defined similarly, and(Nb − L)×Nb matrixW̄
(r,k)
q is given by

W̄ (r,k)
q =




w
(r,k)
q (L) . . . w

(r,k)
q (0)

...
...

...

w
(r,k)
q (L) . . . w

(r,k)
q (0)




.

Gathering training symbols per block, we obtain

x̄
(r)
b =

K∑

k=1

Q∑

q=0




D̄ψq,1W̄
(r,k)
q bk,1

...

D̄ψq,J
W̄

(r,k)
q bk,J




+ η̄
(r)
b . (3.9)

According to the commutativity property of convolution, we haveW̄
(r,k)
q bk,j = Bk,jw

(r,k)
q

with w
(r,k)
q := [w(r,k)

q (0), ..., w(r,k)
q (L)]T andBk,j a (Nb − L)× (L + 1) Toeplitz matrix given by

Bk,j :=




bk,j(L) . . . bk,j(0)
...

...
...

bk,j(Nb − 1) . . . bk,j(Nb − L− 1)




, (3.10)

wherebk,j(l) := bk((j − 1)M + l). Therefore, (4.9) can be rewritten as

x̄
(r)
b =

K∑

k=1

Φkw
(r,k) + η̄

(r)
b = Φw(r) + η̄

(r)
b , (3.11)

54



with simple substitutions, where the[J(Nb − L)]× [(Q + 1)(L + 1)] matrix

Φk :=




D̄ψ0,1Bk,1 ... D̄ψQ,1
Bk,1

...
...

...

D̄ψ0,J
Bk,J . . . D̄ψQ,J

Bk,J




,

Φ := [Φ1, ...,ΦK ] (3.12)

and

w(r,k) :=




w
(r,k)
0

...

w
(r,k)
Q




, w(r) :=




w(r,1)

...

w(r,K)




. (3.13)

Since the matrixΦ is common for all receivers, after collecting allx̄
(r)
b andw(r) for differentr, we

get

xb = (IR ⊗Φ)w + ηb, (3.14)

wherew is defined as

w :=
[
w(1)T · · · w(R)T

]T

, (3.15)

xb andηb are defined similarly.

3.3.1 Linear Least-Squares Channel Estimator

The linear least-squares (LS) channel estimator based on (3.14) is

ŵLS = ΛLSxb, (3.16)

55



whereΛLS = (IR ⊗ (ΦHΦ))−1(IR ⊗ ΦH). Define the estimation error of BEM parameters as

w̃LS := w − ŵLS, then the covariance matrix of̃wLS is

Rw̃LS := E[w̃LSw̃
H
LS] = σ2

η

(
IR ⊗ (ΦHΦ)

)−1
. (3.17)

As a result, the MSE of̃wLS is

σ2
w̃LS

:= tr(Rw̃LS) = σ2
ηtr

[(
IR ⊗ (ΦHΦ)

)−1
]
. (3.18)

Using [52, Lemma 1],σ2
w̃LS

is lower bounded by (S := K(Q + 1)(L + 1))

σ2
w̃LS

≥ σ2
η

RS∑

i=1

1
[IR ⊗ (ΦHΦ)]i,i

= Rσ2
η

S∑

i=1

1
[ΦHΦ]i,i

(3.19)

where the equality holds if and only ifΦHΦ is a diagonal matrix. By the arithmetic-geometric

mean inequality [33, p. 535],

Rσ2
η

S∑

i=1

1
[ΦHΦ]i,i

≥ Rσ2
ηS

(
S∏

i=1

1
[ΦHΦ]i,i

)1/S

(3.20)

where the equality holds iff
[
ΦHΦ

]
i,i

are all equal. Equivalently, we needΦHΦ to be a diagonal

matrix with all its diagonal entries equal.

3.3.2 Linear MMSE Channel Estimator

The linear minimum mean-square-error (MMSE) channel estimator based on (3.14) is

ŵMMSE = ΛMMSExb, (3.21)
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whereΛMMSE =
(
σ2

ηR
−1
w + (IR ⊗ (ΦHΦ))

)−1 (IR ⊗ ΦH). This estimator requiresRw :=

E
[
wwH

]
to be known at the receiver. Define the estimation error of BEM parameters asw̃MMSE :=

w − ŵMMSE. Then the covariance matrix of̃wMMSE is

Rw̃MMSE := E[w̃MMSEw̃H
MMSE]

=
[
R−1

w +
1
σ2

η

(
IR ⊗ (ΦHΦ)

)]−1

. (3.22)

As a result, the MSE of̃wMMSE is

σ2
w̃MMSE

:= tr(Rw̃MMSE)

= tr

[(
R−1

w +
1
σ2

η

(
IR ⊗ (ΦHΦ)

))−1
]

(3.23)

Since our analysis allows for correlated channels, the BEM coefficientsw
(r,k)
q (l) are not nec-

essarily independent. Eigen-decomposition ofRw yieldsRw = UwΩwU−1
w whereU−1

w = UH
w .

Sincetr(AB) = tr(BA), (3.23) can be rewritten as

σ2
w̃MMSE

= tr

[(
Ω−1

w +
1
σ2

η

U−1
w

(
IR ⊗ (ΦHΦ)

)
Uw

)−1
]

. (3.24)

Similar as in (3.19), by [52, Lemma 1],σ2
w̃MMSE

is lower bounded by

σ2
w̃MMSE

≥
∑

i

1[
Ω−1

w + 1
σ2

η
U−1

w (IR ⊗ (ΦHΦ))Uw

]
i,i

(3.25)

where the equality holds if and only ifU−1
w

(
IR ⊗ (ΦHΦ)

)
Uw is a diagonal matrix. This is true if

ΦHΦ is a diagonal matrix with all its diagonal elements equal. Similar to (3.19)-(3.20),σ2
w̃MMSE

is
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lower bounded by

σ2
w̃MMSE

≥ (RS)×




∏

i

1[
Ω−1

w + 1
σ2

η
U−1

w (IR ⊗ (ΦHΦ))Uw

]
i,i




1
RS

(3.26)

where the equality holds if and only ifΩ−1
w + 1

σ2
η
U−1

w

(
IR ⊗ (ΦHΦ)

)
Uw is a diagonal matrix

with all its diagonal entries equal. Equivalently, we needΦHΦ to be a diagonal matrix with all its

diagonal entries equal provided that diagonalΩw has all its diagonal entries equal; unfortunately,

the latter is not necessarily true (at least for a channel tap with Jakes’ spectrum).

3.3.3 Channel Estimation Error

After deriving the estimated BEM parametersŵ
(r,k)
q (l) by the LS or MMSE estimators, the

channel impulse response is then given by:

ĥ
(r,k)
BEM(n; l) =

Q∑

q=0

ŵ(r,k)
q (l)ψq(n). (3.27)

Here we consider that the channel estimation error is from two sources: one is from the difference

betweenh(r,k)
BEM(n; l) and ĥ

(r,k)
BEM(n; l), the other is from the channel modeling errore

(r,k)
BEM(n; l) in

(3.3). Therefore, the mean square error of channel estimation error is expressed as:

σ2
h̃

= N−1
R∑

r=1

K∑

k=1

N−1∑

n=0

L∑

l=1

E

{∥∥∥h
(r,k)
BEM(n; l)− ĥ

(r,k)
BEM(n; l) + e

(r,k)
BEM(n; l)

∥∥∥
2
}

. (3.28)

Since the following orthogonality is true for both CE-BEM and DPS-BEM models

E

{[
h

(r,k)
BEM(n; l)− ĥ

(r,k)
BEM(n; l)

]H
e
(r,k)
BEM(n; l)

}
= 0,
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we have

σ2
h̃

= σ2
w̃ + N−1

R∑

r=1

K∑

k=1

N−1∑

n=0

L∑

l=0

E

{[
e
(r,k)
BEM(n; l)

]H
e
(r,k)
BEM(n; l)

}

︸ ︷︷ ︸
:=σ2

BEM

. (3.29)

For simulations presented in Section 3.6 we calculateσ2
BEM by averaging over Monte Carlo runs.

3.4 Optimum Training Design

Observe from (3.19) that in order to achieve the lower bound ofσ2
w̃LS

, The LS estimator re-

quiresΦHΦ to be a diagonal matrix with all its diagonal entries equal. Observe from (3.25) and

(3.26) that in order to achieve the lower bound ofσ2
w̃MMSE

, The MMSE estimator also requires

ΦHΦ to be a diagonal matrix to achieve (3.25), and for both it andΩw to be diagonal with all their

respective diagonal entries equal to achieve (3.26). Unfortunately, in general, the diagonalΩw does

not necessarily have all its diagonal entries equal. We will design the training schemes to make

ΦHΦ to be a diagonal matrix with all its diagonal entries equal which will achieve the lower bound

in (3.19) for the LS channel estimator and in (3.25) (but not in (3.26)) for the linear MMSE channel

estimator.

Suppose that we choose

ΦH
k1Φk2 =





αI(Q+1)(L+1) , for k1 = k2

0 , for k1 6= k2,

(3.30)
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or, equivalently

∑J
j=1 BH

k1,jD̄
H
ψq1,jD̄ψq2,jBk2,j = αI , for k1 = k2, q1 = q2

∑J
j=1 BH

k1,jD̄
H
ψq1,jD̄ψq2,jBk2,j = 0 , for k1 = k2, q1 6= q2

∑J
j=1 BH

k1,jD̄
H
ψq1,jD̄ψq2,jBk2,j = 0 , for k1 6= k2, for all q

(3.31)

for someα > 0.

For CE-BEM, it is shown in [41] that

J∑

j=1

D̄H
ψq1,jD̄ψq2,j =





1
M INb−L , for q1 = q2

0 , for q1 6= q2
(3.32)

By (3.12) and (3.31), for allk’s andq’s, the training sequence should be designed to satisfy

J∑

j=1

BH
k1,jD̄

H
ψq1,jD̄ψq2,jBk2,j = γ

J∑

j=1

D̄H
ψq1,jD̄ψq2,j (3.33)

for someγ > 0. Under (3.32), following [41] and [75], we pickNb = K(L + 1) + K and

bT
k,j = [0k(L+1)−1, bk,0(K−k)(L+1)+L] where0k(L+1)−1 is a sizek(L + 1)− 1 null column, in

which caseΦH
k Φk = b2k

M I. Therefore, withPbk := Jb2
k denoting the total training power from the

kth transmitter, we can obtainα = Pbk
N (recall thatN = JM ). Sinceα should not be a function of

k, we takebk = b leading toPbk := Pb for all k.
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Plugging (3.30) into (3.20), (3.26) and (3.29), the LS and MMSE lower bounds of channel

estimation error are derived as

σ2
h̃LS

= σ2
w̃LS

+ σ2
CE =

Nσ2
η

Pb
RK(L + 1)(QF + 1) + σ2

CE, (3.34)

σ2
h̃MMSE

= σ2
w̃MMSE

+ σ2
CE =

RK(L+1)(QF +1)∑

t=1

[
λ̌−1

t +
Pb

σ2
ηN

]−1

+ σ2
CE, (3.35)

whereλ̌t is thet-th diagonal entry of matrixΩw, i.e. λ̌t is thet-th eigenvalue ofRw.

For DPS-BEM, using the heuristic asymptotic (A.6), we can easily establish

J∑

j=1

D̄H
ψq1,jD̄ψq2,j =





1
M I(Nb−L) , for q1 = q2

0 , for q1 6= q2.

(3.36)

Therefore, for DPS-BEM mimicking CE-BEM, the lower bounds of the channel estimation error

are

σ2
h̃LS

=
Nσ2

η

Pb
RK(L + 1)(QS + 1) + σ2

DPS, (3.37)

σ2
h̃MMSE

=
RK(L+1)(QS+1)∑

t=1

[
λ̌−1

t +
Pb

σ2
ηN

]−1

+ σ2
DPS. (3.38)

Remark 3.1. Note that (3.36) is critical for (3.37) and (3.38) to hold true and for the proposed

training designs to be valid. The asymptotic Slepian sequences in (A.6) are only “heuristic.” But

we can “verify” (3.36) by computing the results in (3.18) and (3.20) numerically and compare them

with the results in (3.37). This is done so in Sec. 3.6.
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3.5 Training Power Allocation

We assume that the time-varying channelh(r,k)(n; l) is zero-mean, WSS complex Gaussian

with the same varianceσ2
h for each tap. We also assume that the channel taps are mutually indepen-

dent, i.e.h(r,k)(n; l) is WSSUS. To further simplify the analysis, we assume the channel correlation

matrices are the same acrossr ∈ [1, ..., R]. The received information symbols at therth received

antenna can be expressed as

x(r)
c (n) =

K∑

k=1

L∑

l=0

ĥ(r,k)(n; l)ck(n− l)

︸ ︷︷ ︸
:=xs(n)

+
K∑

k=1

L∑

l=0

[h(r,k)(n; l)− ĥ(r,k)(n; l)]ck(n− l) + η(r)(n)

︸ ︷︷ ︸
=xη(n)

,

(3.39)

whereĥ(r,k)(n; l) =
∑Q

q=0 ŵ
(r,k)
q (l)ψq(n) is used for data detection. Therefore, similar to the single

user case in Section 2.5, the signal power of all receivers is given by

σ2
xs(n) =

R∑

r=1

E
{|xs(n)|2}

=
R∑

r=1

E





K∑

k=1




∣∣∣∣∣
L∑

l=0

ĥ(r,k)(n; l)ck(n− l)

∣∣∣∣∣

2







= P̄c

R∑

r=1

K∑

k=1

L∑

l=0

[
Ew

{
E

{∣∣∣h(r,k)(n; l)− ĥ(r,k)(n; l)
∣∣∣
2
|w

}}
+ E

{
|h(r,k)(n; l)|2

}]

= P̄c

[
σ2

h̃
(n) + RK(L + 1)σ2

h

]
, (3.40)

where the average information power per user:

P̄c := E
{|ck(n)|2} . (3.41)
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The effective noise power is:

σ2
xη(n) =

R∑

r=1

E





K∑

k=1




∣∣∣∣∣
L∑

l=0

[h(r,k)(n; l)− ĥ(r,k)(n; l)]ck(n− l)

∣∣∣∣∣

2





 +

R∑

r=1

E
{
|η(r)(n)|2

}

= P̄c

R∑

r=1

[
K∑

k=1

L∑

l=0

Ew

{
E

{∣∣∣h(r,k)(n; l)− ĥ(r,k)(n; l)
∣∣∣
2
|w

}}]
+ Rσ2

η

= P̄cσ
2
h̃
(n) + Rσ2

η (3.42)

whereσ2
h̃
(n) :=

∑R
r=1

∑K
k=1

∑L
l=0 Ew

{
E

{∣∣∣h(r,k)(n; l)− ĥ(r,k)(n; l)
∣∣∣
2
|w

}}
. Define

W(r,k)
l := [w(r,k)

0 (l), w(r,k)
1 (l), ..., w(r,k)

Q (l)]T ,

W(r,k) := [W(r,k)
0 ,W(r,k)

1 , ...,W(r,k)
L ]T ,

W(r) := [W(r,1),W(r,2), ...,W(r,K)]T ,

W := [W(1),W(2), ...,W(R)]T . (3.43)

By (3.15) and (3.43), we can get the following relationship:

W = Θw, (3.44)
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where

Ξ =




1
L︷︸︸︷

0...0 . . . . . .

0 0...0 1
L︷︸︸︷

0...0 . . . . . .

. . . . . . . . .

0 1
L︷︸︸︷

0...0 . . . . . . . . .

0 0
L︷︸︸︷

0...0 1
L︷︸︸︷

0...0 . . .

... ... ...

. . . . . . . . . . . . . . . 1




(Q+1)(L+1)×(Q+1)(L+1)

(3.45)

and

Θ = IRK ⊗Ξ. (3.46)

We also find thatΘHΘ is always an identity matrix. Thenσ2
h̃
(n) can be rewritten as

σ2
h̃
(n) =

R∑

r=1

K∑

k=1

L∑

l=0

EW

{
E

{∣∣∣h(r,k)(n; l)− ĥ(r,k)(n; l)
∣∣∣
2
|W

}}

= tr
{
Ψ(n)EW

{
cov{Ŵ, Ŵ|W}

}
Ψ(n)H

}
, (3.47)

where

ψ(n) := [ψ0(n), ψ1(n), ..., ψQ(n)],

Ψ(n) := IRK(L+1) ⊗ψ(n).
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Based on (3.43) and (3.44), we have

EW
{

cov{Ŵ, Ŵ|W}
}

= ΘEW {cov{ŵ, ŵ|W}}︸ ︷︷ ︸
Rw̃

ΘH . (3.48)

Based on the orthonormality ofψq(n), we have

N∑

n=1

Ψ(n)HΨ(n) = IRK(L+1)(Q+1). (3.49)

Therefore, the time-averaged ofσ̄2
h̃

over lengthN is

σ̄2
h̃

:= (N − JNb)−1
∑

n

σ2
h̃
(n) ≈ N−1

N−1∑

n=0

σ2
h̃
(n) =

1
N

tr
{
ΘRw̃ΘH

}
=

1
N

σ2
w̃. (3.50)

In a similar way, the time averaged signal and noise power can be expressed as

σ̄2
xc =

1
N

N∑

n=1

σ2
xc(n) = P̄c[σ̄2

h̃
+ RK(L + 1)σ2

h],

σ̄2
xn =

1
N

N∑

n=1

σ2
xn(n) = P̄cσ̄

2
h̃

+ Rσ2
η. (3.51)

Therefore, we obtain an effective average SNR of (3.39) as

SNRd =
σ̄2

xc

σ̄2
xn

. (3.52)

Define the total information power and received signal powerPc := JNcP̄c andP := Pb+Pc,

respectively. Define the training power overheadβ := Pb
Pc+Pb

. Our objective is to maximize SNR

with respect toβ under the constraint of a fixedP. Thus, incorporating those constraint-carrying
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variables into (3.52) and using the developed expression for average signal and noise powers in

(3.52), we obtain the unconstrained cost

SNRd(β) =
(1−β)P

JNc
[σ̄2

h̃
+ RK(L + 1)σ2

h]
(1−β)P

JNc
σ̄2

h̃
+ σ2

η

. (3.53)

Using the lower bound of the LS estimator in (3.37) (due to the lower bound of the MMSE estimator,

the closed form of the optimalβ can not be obtained), we can explicitly write (3.52) as

SNRd(β) =
f1β

2 + f2β + f3

g1β + g2
, (3.54)

where

f1 = −PRK(L + 1)σ2
h

NcJ
,

f2 =
PRK(L + 1)σ2

h

NcJ
− RK(L + 1)(Q + 1)σ2

η

NcJ
,

f3 =
RK(L + 1)(Q + 1)σ2

η

NcJ
,

g1 = σ2
η −

RK(L + 1)(Q + 1)σ2
η

NcJ
,

g2 =
RK(L + 1)(Q + 1)σ2

η

NcJ
. (3.55)

Setting the first derivative ofSNR(β) with respect toβ to zero, we obtain a quadratic equation inβ

β2 + 2
g2

g1
β +

f2g2 − f3g1

f1g1
= 0 (3.56)
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Figure 3.1: Channel estimation errors (with and without modeling errors): numerical results derived
from QF = 2dνDmaxNe+ 1 andQS = d2νDmaxNe+ 1, SNR=25dB

the two roots, one of which is negative(β < 0), and hence is excluded. The other root is given by

βopt =
g2

g1

[
−1 +

√
1 +

g1(f3g1 − f2g2)
g2
2f1

]
. (3.57)

3.6 Numerical Examples

In the following examples we consider a multiuser system withK = 2 users andR = 2

receivers. We use binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK)

modulation. Each transmitted block hasJ = 10 subblocks, and each subblock hasNc = 30 infor-

mation symbols andNb = 3L + 2 training symbols with optimal structure
[
0k(L+1)−1, b,
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Figure 3.2: MSE lower bound comparison between LS (3.37) and MMSE (3.38) estimators
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Figure 3.3: Comparison between channel estimation MSEs lower bound in (3.37) and simulation
results (3.58)
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Figure 3.4: Comparison between channel estimation MSEs lower bound in (3.38) and simulation
results (3.58)

0(K−k)(L+1)+L

]
, b > 0. A doubly-selective Rayleigh fading channelh(r,k)(n; l) is simulated ac-

cording to [77, 81] with channel orderL = 2, carrier frequency of2GHz, data rate of 40 kbps,

and thus, symbol durationTs = 25µs. Therefore, each tap of the generated time-variant channel

has a Jakes’ spectrum; it is not generated using the assumed BEM modeling. Also, 3 taps of the

channel are mutually independent. Depending on different maximum Doppler spreadfds, a varying

maximum normalized one-sided Doppler bandwidthνDmax = fdTs can be derived. GivenνDmax,

Jakes’ spectrum and other information, we can calculateRw and therefore,Ωw andλ̌ts, needed in

(3.25), (3.38) and elsewhere. A Kalman filter formulation is used for information detection after

the channel estimation. The SNR refers to1/σ2
η where the information sequence power per user is

normalized to one and the channel power (per user) is also normalized to unity.
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Figure 3.5: Channel estimation MSE with varying maximum normalized Doppler bandwidth,QF =
2dνDmaxNe andQS = d2νDmaxNe

3.6.1 Example 1: Approximation Errors

As noted earlier in Remark 3.1, here we want to show the influence of approximation errors in

D̄ψq ,j when the true Slepian sequences instead of the approximations in (A.6) are used. We com-

pute (3.18) and (3.20) numerically with true Slepian sequences generated by (2.5), then compare

them with (3.34) and (3.37). For the parameters stated earlier in this section (J=10,Nb=8, Nc=30,

M = Nb + Nc=38, N = JM =380) the results are shown in Fig. 3.1, where the dimensions

QF = 2dνDmaxNe andQS = d2νDmaxNe change with the maximum Doppler bandwidth and

SNR=25dB. From Fig. 3.1 we see that the CE-BEM lower bound in (3.34) is high due to “large”

modeling errorσ2
rmCE even though the error for the modeled part is minimum, whereas the re-

sults in (3.18), (3.20) and (3.37) are close to each other due to “small” modeling errorσ2
DPS and

“close-to-minimum” (compare curves for (3.18) (exact error) and (3.20) (lower bound)) error for
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Figure 3.6: Channel estimation MSE with varying maximum normalized Doppler bandwidth,QF =
2dνDmaxNe+ 1 andQS = d2νDmaxNe+ 1

the modeled part. [We note thatσ2
DPS andσ2

CE were obtained via Monte Carlo averaging, similar

as in [77].]

3.6.2 Example 2: Channel Estimation Performance

In this case we pickb = 1 in training. The LS and MMSE estimators are used to estimate

w, and then the channel is estimated asĥ(r,k)(n; l) =
∑Q

q=0 ŵ
(r,k)
q (l)ψq(n). Based onMr Monte

Carlo runs, the channel estimation MSE is calculated as

MSE = (MrN)−1
Mr∑

α=1

R∑

r=1

K∑

k=1

N−1∑

n=0

L∑

l=0

|ĥ(r,k)
α (n; l)− h(r,k)

α (n; l)|2. (3.58)
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Figure 3.7: BER with varying maximum normalized Doppler bandwidth for BPSK modulation,
QF = 2dνDmaxNe andQS = d2νDmaxNe

In Fig. 3.2, the lower bounds in (3.37) and (3.38) are plotted usingQS = 2 for fd = 40Hz

and usingQS = 3 for fd = 100Hz. [The MMSE bound needšλts which requires knowledge of

the Doppler spread. Note also that for bothfd = 40Hz andfd = 100Hz, the minimumQS =

d2νDmaxNe are actuallyQS = 1 andQS = 2, respectively; however, a slightly higher value of

QS = d2νDmaxNe + 1 = 3 for fd = 100Hz yields smaller modeling error which has been proved

in Example 1]. Then they are compared with the simulation results (averaged over 200 Monte Carlo

runs) in Figs. 3.3 and 3.4 forfd = 40Hz and 100Hz; also shown are±σ bounds on the simulation

averages. It can be seen that the theoretical results are consistent with the simulation results for

fd =40Hz indicating that the optimal pilot design does minimize channel MSEs when using DPS-

BEM. Forfd=100 Hz, there is a “small gap” between theory and simulations at high SNRs which

is probably attributable to modeling error (“small” but nonzero). Furthermore, the performance of
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Figure 3.8: BER with varying maximum normalized Doppler bandwidth for QPSK modulation,
QF = 2dνDmaxNe andQS = d2νDmaxNe
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Figure 3.10: BER with varying maximum normalized Doppler bandwidth for QPSK modulation,
QF = 2dνDmaxNe+ 1 andQS = d2νDmaxNe+ 1

MMSE estimator outperforms that of LS estimator at low SNR, and they converge to each other at

high SNR.

3.6.3 Example 3: CE-BEM versus DPS-BEM

In Fig. 3.5, the LS channel estimation MSE (3.58) versus SNR under different maximum

Doppler bandwidths (ν(S)
Dmax is for DPS-BEM,ν(F )

Dmax is for CE-BEM) are plotted. It is clear that the

MSE of DPS-BEM is consistently smaller than that of CE-BEM. However, we notice that the chan-

nel estimation error based on DPS-BEM suffers an error floor, too. This can be alleviated by taking

QS to be larger thand2νDmaxNe at the cost of more computations, as Fig. 3.6 shows. Fig. 3.7 and

Fig. 3.9 take BER (average over 2000 Monte Carlo runs) as a performance measure to compare the

performance between DPS-BEM and CE-BEM. Comparing with Fig. 3.5 and Fig. 3.6 make it quite
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clear that the drastically reduced MSE for the DPS-BEM channel estimation leads to a pronounced

reduction in BER compared to the CE-BEM case. The BER performances under QPSK modulation

are plotted in Fig. 3.8 and Fig. 3.10, which are worse than those of BPSK modulation, as expected.

3.7 Conclusion

In this chapter, the channel estimation approaches and optimum training design proposed in

Chapter 2 were extended to multiuser MIMO system. Illustrative simulation examples were pro-

vided to show the performance of channel estimation and data detection under MIMO system. The

system model and performance analysis in Chapter 3 are consistent with those in Chapter 2. The

numerical results of MIMO system (Chapter 3) outperforms the SISO system (Chapter 2) due to the

diversity gain.

75



CHAPTER 4

TIME-VARYING EQUALIZATION FOR DOUBLY-SELECTIVE CHANNELS

4.1 Introduction

Well-known techniques of equalization include (a) linear equalization (LE), (b) decision feed-

back equalization (DFE), and (c) maximum likelihood sequence estimation (MLSE) [66]. Linear

equalizers are the simplest computationally whereas MLSE yields (near-)optimum performance but

is computationally demanding. DFE typically provides a good compromise between complexity

and performance. In this chapter we consider LE and DFE for doubly-selective channels modeled

via basis expansion models (BEM).

Design of equalizers for wireless communication systems over doubly-selective channels has

been studied in the literature [26, 67, 45, 46, 3, 5, 68]. These equalizers may be divided into two

types: block equalizers and serial equalizers. The block equalizers are usually complex to design

since inversion of a large matrix is required. Especially, since a doubly-selective channel can not be

diagonalized by a channel-independent transformation, the implementation of block time-varying

(TV) equalizers, which collect and process in blocks all the available data in the received frame,

leads to a very high computational complexity [5]. On the other hand, serial equalizers are more

favored since they process few data at a time and provide a flexible trade-off between complexity

and performance [66]. The TV serial equalizers in [45, 46, 3, 5, 68] rely on a particular basis

expansion model (BEM) of the TV channel impulse response, namely complex exponential (CE)

BEM, and the knowledge of the BEM coefficients at the receiver. Furthermore, they also use a

CE-BEM representation for the TV equalizer; therefore, when a low-order CE-BEM model is used

for the equalizer, it incurs an approximation error inherent in CE-BEM modeling of equalizers.
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Thus, their performances are highly related to the choice of the number of BEM coefficients and the

equalizer order.

It is well known that the Kalman filter, a linear recursive minimum mean-square-error (MMSE)

filter, is the best linear MMSE detector for a given detection delay. It provides a symbol detection

method of obtaining the true MMSE performance within an implementable structure having a fi-

nite number of filter weights. The Kalman filter has been widely used in channel estimation and

equalization over wireless channels [74]. In this chapter we exploit the Kalman filter as a TV linear

MMSE equalizer for doubly-selective channels. An alternative formulation of the FIR DFE based

on a CE-BEM channel model is also proposed for doubly-selective channels.

The main advantages of the proposed LE and DFE are fourfold: (i) The design process does not

rely on a specific basis expansion model for the underlying channel; therefore, it can be applied to

any doubly-selective channel model. (ii) The proposed equalizers rely solely on the channel model

and therefore, do not incur any approximation error inherent in CE-BEM modeling of equalizers.

(iii) Only one parameter, the equalizer delay, will influence the performance of the Kalman filter;

only three parameters, the equalizer delay, and feedforward and feedback filter lengths, will influ-

ence the performance of proposed DFE. (iv) The computational complexity in terms of the number

of flops turns out to be much lower than existing BEM-based TV equalizers. The simulation results

will show that the proposed equalizers can achieve the same or an improved bit error rate (BER)

performance than the equalizers in [45, 46, 3, 5, 68], without incurring the approximation error

inherent in BEM modeling of equalizers.
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4.2 Linear Equalization

4.2.1 System Model

Consider a doubly-selective finite impulse response (FIR) linear channel with single input and

multiple outputs (SIMO). The discrete time impulse responseh(r)(n; l) denotes the time-varying

impulse response of channel that includes transmit-receive filters as well as doubly-selective propa-

gation effects between the transmit antenna and therth receive antenna, wheren ∈ [0, 1, ..., N − 1]

and l ∈ [0, L] capture the time- and frequency- selectivity of the channel, respectively. Lets(n)

denote the transmitted symbols which is input to the SIMO channel, the received sequence at the

rth receive antenna can be written as

x(r)(n) =
L∑

l=0

h(r)(n; l)s(n− l) + η(r)(n), (4.1)

whereη(r)(n) is the additive complex Gaussian noise at therth receive antenna, with zero-mean

and varianceσ2
η.

In [45, 46, 3, 5, 68], the designs of TV equalizers depend on a BEM of the time-varying

channel, given by [26]:

h(r)(n; l) =
Q∑

q=0

w(r)
q (l)ψq(n), (4.2)

wherew
(r)
q (l) is the basis expansion model parameter (coefficient),ψq(n) is the basis expansion

function, andQ + 1 is the basis dimension that satisfies2dνDmaxNe ≤ Q ≤ N − 1 with νDmax the

maximum normalized Doppler bandwidth. The above model is valid over a block ofN symbols over

which the BEM coefficients remain time-invariant. The BEM coefficients may change from block

to block. Therefore, we will refer to the equalizers of [45, 46, 3, 5, 68] as BEM-based equalizers.
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More specifically, the complex exponential basis functions [26] are used in [45, 46, 3, 5, 68], where

ψq(n) = ej2π(q−Q/2)n/P . (4.3)

if P = N whereN is the block size in symbols, the CE-BEM is said to be critically sampled

whereas whenP > N , it is said to be oversampled [37]. The oversampling reduces frequency

spacing of complex exponentials and gives a better representation of the channel impulse response.

[68] usesP = 2N whereas [5] has usedP = N .

Collecting the symbols
{
x(r)(n)

}r=R

r=1
received by theR receivers into the vectorx(n) :=

[x1(n), x2(n), ..., xR(n)]T ∈ CR, we can obtain the matrix-vector form of (4.1):

x(n) =
L∑

l=0

Q/2∑

q=−Q/2

wq(l)s(n− l)ej2πqn/P + η(n), (4.4)

wherewq(l) := [w(1)
q (l), ..., w(R)

q (l)]T ∈ CT andη(n) := [η(1)(n), ..., η(R)(n)]R ∈ CR.

If the input vector of a BEM-based equalizer of orderL′ is defined asy(n) := [xT (n),xT (n−

1), ...,xT (n− L′)]T ∈ CR(L′+1), the output of the equalizer can be written as:

ŝ(n) = gH(n)y(n), (4.5)

where the vectorg(n) ∈ CR(L′+1) collects all the equalizer parameters andd is the equalization

delay.

The following model assumptions are considered throughout this chapter:

(H4.1): The information symbolss(n) consists of zero-mean, finite-alphabet of independent and

identically distributed (i.i.d.) random variables, satisfyingE {s(m)s∗(n)} = σ2
sδ(m− n).
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(H4.2): The measurement noiseη(r)(n) in Eq. (3.1) is uncorrelated withs(n), andE {η(m)η∗(n)} =

σ2
ηδ(m− n).

4.2.2 Existing Linear Time-Varying MMSE Equalizers

In [45, 46, 3, 5, 68] both zeroforcing and MMSE linear equalizers have been considered. Since

the Kalman filter yields a linear MMSE equalizer, in this section we will restrict ourselves to exist-

ing TV MMSE equalizers. First we briefly review two linear TV MMSE equalizers from [5] and

[68], respectively. The design of these equalizers assumes availability of the CE-BEM coefficients

w
(r)
q (l)s of the channel.

BLM Equalizer [5]

In [45, 46, 3, 5] one seeks

ŝ(n) =
L′−d∑

l′=d

Q′/2∑

q′=−Q′/2

R∑

r=1

g
(r)
q′ (l′)ej2πq′n/P x(r)(n− l′), (4.6)

where design parameters ared, L′, Q′ and equalizer coefficientsg(r)
q′ (l′), invariant overn ∈ {0, 1, ...,

N − 1}. Notice that the structure of the equalizer is that of a CE-BEM. Define

g(r) :=
[
g
(r)
−Q′/2(−d), ..., g(r)

−Q′/2(L
′ − d), g(r)

−Q′/2+1(−d), ..., g(r)
Q′/2(−d), ..., g(r)

Q′/2(L
′ − d)

]T

(4.7)

and

gblm =
[
g(1)T , g(2)T , ..., g(R)T

]T
∈ CR(L′+1)(Q′+1). (4.8)
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The TV MMSE equalizer proposed in [45, 46, 3, 5](henceforth referred to as BLM) provides an

explicit frequency-domain representation, by turning a TV equalization problem into a simpler time-

invariant (TI) filtering design, which only involves the TI basis expansion parameters of the doubly-

selective channel. The (TV MMSE) BLM equalizer can be expressed as [5]:

gblm = Hblm

[
HH

blmHblm(n) +
σ2

η

σ2
s

I(Q+Q′+1)(L+L′+1)

]−1

ed (4.9)

where the[R(Q′+1)(L′+1)]×[(Q+Q′+1)(L′+L+1)] matrixHblm collects TI BEM parameters

and TV complex exponential basis functions as given in Sec. V in [5],d ∈ {0, 1, ..., L + L′} is the

delay of the equalizer, anded ∈ R(Q′+Q+1)(L′+L+1) is an unit vector with the element 1 in the

(d + 1)st position.

Computational Complexity: The inverse in (4.9) requiresO(K3) flops (one flop is roughly

one multiply-and-accumulate operation) whereK = (Q + Q′ + 1)(L + L′ + 1) andO(K3) =

K3 + 0.5K2 + 0.5K if one uses modified Cholesky decomposition (i.e. UD-decomposition) based

approach to matrix inverse ([28] Table 6.13). This has been called design complexity (equalizer

design) in [5]. For implementation of (4.6), one needsNR(Q′+1)(L′+1) flops; this has been called

implementation complexity in [5]. For numerical comparisons in Sec. 4.2.4, we assume that the

inverse of a positive-definite matrix has been computed via the modified Cholesky decomposition

method.

FRESH Equalizer [68]

The MMSE solution to the frequency-shift TV equalizer proposed in [68] (referred to as FRESH)

gives the canonical frequency-domain representation of the optimal norm TV-MMSE equalizers,

which leads the optimal FRESH equalizer design to construct the TI Fourier coefficients of optimal
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equalizer weightsgopt(n). The discrete Fourier series (DFS) expansion relationship ofgopt(n) is:

gopt(n) =
P−1∑

p=0

gp,opte
j2πnp/P . (4.10)

Estimation ofgopt(n) via estimation ofgp,opt is discussed in [68] for zero-foring equalization with

a specified equalization delay. It is straightforward to modify the design to obtain a linear MMSE

equalizer; for instance, add the noise variance term to eq. (26) in [68] just as has been done in (4.9).

However, the implementation complexity of the FRESH representation of the optimal TV

MMSE equalizer maybe quite large for “large” values ofN . Therefore, a low-complexity im-

plementation of the optimal FRESH equalizer (refer to as a sub-optimum FRESH method) is also

derived in [68] by evaluate onlyQ′+1 Fourier coefficients in (4.10), which is similar to that consid-

ered in BLM equalizer design. So the DFS expansion for sub-optimum FRESH equalizer is given

by

gsubopt(n) =
Q′/2∑

p=−Q′/2

gp,subopte
j2πnp/P (4.11)

wheregp,subopt = gp,opt for p = 0, 1, ..., Q′/2 andgp,subopt = gp+P,opt for p = −1,−2, ...,−Q′/2.

Computational Complexity: As discussed in [68], design complexity of both optimal and

suboptimal FRESH equalizers involvesP · O[(L + L′ + 1)3] + (P log2 P )(L + L′ + 1)2 flops

whereO(K3) = K3 + 0.5K2 + 0.5K when one uses a UD-decomposition approach to positive-

definite matrix inversion. For implementation, one needsNRP (L′ + 1) flops for optimal FRESH

andNR(Q′ + 1)(L′ + 1) flops for suboptimal FRESH equalizer.

Remark 4.1: The design of both BLM and FRESH equalizers rely on the CE-BEM repre-

sentation of the channel. They assume that the BEM parametersw
(r)
q (l) are known at the receiver.

It is still not clear if these design methods apply to other basis expansion models. However, the
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simulation results in [5] illustrate that the BEM modeling errors have a significant influence on the

performance.

Remark 4.2: Three parameters have to be considered or optimized for BLM and FRESH equalizers

design,d, L′ andQ′.

4.2.3 Kalman Filter with Equalization Delay d

The Kalman filter has been widely used in channel estimation and equalization over wireless

channels; see [74] and references therein. It requires a state-space model of the underlying system.

Define the state vectors(n)

s(n) := [s(n), s(n− 1), ..., s(n− d)]T ∈ Cd+1, (4.12)

the state transition matrixΦ and the input vectorξ

Φ :=



01×d 0

Id 0d×1


 ∈ R(d+1)×(d+1), ξ := [1,01×d]T ,∈ Rd+1 (4.13)

and the observation matrixH(n)

H(n) := [h(n; 0),h(n; 1), ...,h(n;L),0R×(d−L)] ∈ CR×(d+1), (4.14)

whereh(n; l) := [h(1)(n, l), ..., h(R)(n, l)]T ∈ CR. Based on these definitions and the system

model in Section 4.2.1, we have thetime-invariant state equation:

s(n) = Φs(n− 1) + ξs(n), (4.15)
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and thetime-varying observation equation:

x(n) = H(n)s(n) + η(n). (4.16)

The Kalman filter algorithm is given as follows [74], [59] whereŝ(n|n) denotes the linear MMSE

estimate ofs(n) based on observationsx(k), k = 1, 2, ..., n.

Initialization: At time n = 0, ŝ(1|0) = E {s(1)} = 0 andVŝ(1|0) = σ2
sId+1.

Filtering: At time n = 1, 2...

Vz(n) = H(n)Vŝ(n|n− 1)HH(n) + σ2
ηIR, (4.17)

K(n) = Vŝ(n|n− 1)HH(n)V −1
z (n), (4.18)

z(n) = x(n)−H(n)ŝ(n|n− 1), (4.19)

ŝ(n|n) = ŝ(n|n− 1) + K(n)z(n), (4.20)

Vŝ(n|n) = [Id+1 −K(n)H(n)]Vŝ(n|n− 1), (4.21)

Vŝ(n + 1|n) = ΦVŝ(n|n)ΦH + σ2
sξξH , (4.22)

ŝ(n + 1|n) = Φŝ(n|n). (4.23)

Sinceŝ(n|n) = [ŝ(n|n), ŝ(n − 1|n), ..., ŝ(n − d|n)]T , we extract its last term̂s(n − d|n) as the

desired equalized output.

Remark 4.3: For Kalman filter, the design process does not rely on a particular basis expansion

model as long as the estimated/fitted channel impulse response is known at the receiver, so it can be

applied to any doubly-selective channel model.
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Table 4.1: Operation summary for Kalman filter

Operation flops

H(n)Vŝ(n|n− 1) (d + 1)2R

Vz(n) 1
2(d + 1)R2 + 1

2(d + 1)R

Vz(n)−1(n) R3 + 1
2R2 + 1

2R

K(n) (d + 1)R2

Vŝ(n|n) 1
2(d + 1)2R + 1

2(d + 1)R

Total C = 3
2(d + 1)2R + 3

2(d + 1)R2 + (d + 1)R + R3 + 1
2R2 + 1

2R

Remark 4.4: Only one parameter, equalization delayd, is needed for the Kalman filter design and

will influence its performance.

Design Complexity: Computations in (4.17),(4.18),(4.21) and (4.22) comprise the design equa-

tions for Kalman filtering. Following Table 6.5 in [28], the required number of flopsC per time-step

are listed in Table 4.1. Therefore, for a transmitted block of sizeN symbols, one needsNC flops.

Implementation Complexity: Computations in (4.19),(4.20),and (4.23) comprise the imple-

mentation equations for Kalman filtering. The number of flops needed per time-step are2R(d + 1)

where given the nature ofΦ, (4.23) does not require any flops. Therefore, for a transmitted block

of sizeN symbols, one needs2NR(d + 1) flops. On the other hand, both BLM and suboptimal

FRESH equalizers requireNR(Q′ + 1)(L′ + 1) flops each.

4.2.4 Numerical Examples

In this section, the BER performance and the computational complexity of the proposed Kalman

filter are investigated by means of Monte Carlo computer simulations, and compared with BEM-

based BLM [5] and FRESH [68] equalizers. For computational complexity calculations, we assume
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that the inverse of a positive-definite matrix has been computed via the modified Cholesky decom-

position method.

A random time- and frequency- selective Rayleigh fading channel is simulated according to

[81] with channel orderL = 3 (4 taps). For differentl’s, h (n; l)’s are mutually independent, satisfy

Jakes’ model, and each tap is generated via the method of [81] given the symbol durationTs and the

Doppler spreadfd. It is important to point out that each channel tap follows the Jakes’ spectrum,

rather then the assumed BEM representation. The data were generated using the double-selective

channel described above. However, for equalizer design one needs CE-BEM representation of the

true channel; this was obtained by a least-squares fit of the assumed BEM to the true channel in

each Monte Carlo run, just as in [5] and [68], to obtain the BEM coefficients (which vary from

run-to-run). These BEM coefficients were used in the designs of [5] and [68], as well as in Kalman

filtering whereh(n; l) in (4.14) is generated via (4.2) with fitted BEM parameters (i.e.h(n; l) in

(4.14) is not the true channel, but its BEM approximation). Note that one could have directly used

the Jakes’ channelh(n; l) in the Kalman filter implementation of the linear MMSE equalizer unlike

the approaches of [5] and [68]. However, this would not be a fair comparison with the approaches of

[5] and [68]. Most importantly, this would not illustrate the effects of modeling errors since practical

channels are rarely Jakes’ channels although their use in simulations and analysis is widespread.

In all simulations, the transmitter transmits binary phase shift keying (BPSK) and quadrature

phase shift keying (QPSK) modulated symbols. The SNR refers to the energy per bit over one-sided

noise spectral density.
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Table 4.2: Computation complexity;N = 50, P = 2N = 100
Equalizer Design Complexity(flops) Implementation Complexity(flops)

FRESH-OPT [68] P · O[(L + L′ + 1)3] + (P log2P )(L + L′ + 1)2 = 171, 939 NRP (L′ + 1) = 70, 000

FRESH-SUBOPT [68] P · O[(L + L′ + 1)3] + (P log2P )(L + L′ + 1)2 = 171, 939 NR(Q′ + 1)(L′ + 1) = 13, 300

BLM [5] O(K3) = 12, 193, 565 NR(Q′ + 1)(L′ + 1) = 13, 300

Kalman filter (proposed) NC = 8, 350 2NR(d + 1) = 1, 200

Example 1: BER versus SNR under Simulation Parameters in [68]

We consider the same simulation parameters as in [[68], Experiment 3], i.e., the block size

(number of information symbols) isN = 50, P = 2N (oversampled CE-BEM with a factor of

2), the number of receive antennasR = 2, symbol durationTs = 160us, the maximum Doppler

spreadfd = 100Hz, the equalization delayd = 5 symbols andQ = 2dfdPTse = 4. For BEM-

based equalizers (both BLM and FRESH), the equalizer orderL′ = 6 and the number of Fourier

coefficients (equalizer BEM coefficients)Q′ = 18, as in [[68], Experiment 3]. The BER averaged

over10, 000 Monte Carlo runs versus SNR is shown in Fig. 4.1 for the four approaches: BLM [5],

optimum FRESH [68], suboptimum FRESH [68] and the proposed Kalman filter solution. Note

that the Kalman filter does not needL′ or Q′. The results for BPSK modulation are plotted in Fig.

4.1. It is seen from Fig. 4.1 that the performances of the four approaches are very close each other.

The computational complexity measured in terms of flops for entire block is shown in Table 4.2.

Notice that the Kalman filter requires significantly fewer flops than the other two approaches, both

for design as well as implementation.

Fig. 4.2 plots the BER versus SNR results for QPSK modulation, where the information se-

quences are QPSK signals. Although the performance of Kalman filter is slightly worse than the

other two equalizers at high SNR, the three approaches have similar performances in this case.
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Figure 4.1: BER performance versus SNR using BPSK modulation, averaged over 10,000 runs.
BLM denotes the method of [5]; FRESH-OPT and FRESH-SUBOPT are methods of [68].N = 50,
P = 100, Q = 4, L = 3, d = 5, Q′ = 18, L′ = 6

Table 4.3: Computation complexity;N = 800, P = 2N = 1600
Equalizer Design Complexity(flops) Implementation Complexity(flops)

FRESH-OPT [68] P · O[(L + L′ + 1)3] + (P log2P )(L + L′ + 1)2 = 11, 130, 924 NRP (L′ + 1) = 33, 280, 000

FRESH-SUBOPT [68] P · O[(L + L′ + 1)3] + (P log2P )(L + L′ + 1)2 = 11, 130, 924 NR(Q′ + 1)(L′ + 1) = 274, 400

BLM [5] O(K3) = 37, 989, 672 NR(Q′ + 1)(L′ + 1) = 274, 400

Kalman filter (proposed) NC = 22, 000 2NR(d + 1) = 35, 200
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Figure 4.2: BER performance versus SNR using QPSK modulation, averaged over 10,000 runs

Example 2: BER versus SNR under Simulation Parameters in [5]

Now the simulation parameters in [[68], Fig. 11] are used whereN = 800, R = 2, Ts = 25us,

fd = 100Hz, d = 10, L′ = 12, andQ′ = 12. Two cases are considered:P = 2N andP = N ,

leading toQ is 8 and 4, respectively. The results are shown in Fig. 4.3 which were obtained by

carrying out 1000 Monte Carlo runs. WhenP = N , the performance of the Kalman filter and

BLM equalizer [5] are quite close to each other as in Fig. 4.1. The error floors at high SNR are

caused by the BEM channel modeling error. However, the Kalman filter significantly outperforms

the BLM equalizer [5] whenP = 2N , the case where the channel modeling errors in approximating

a Jakes’ channel with CE-BEM are significantly smaller compared the case ofP = N : recall that

the data are generated via the true Jakes’ channel. The computational complexity measured in terms

of number of flops for entire block is shown in Table 4.3 for the caseP = 2N = 1600. Notice
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Figure 4.3: BER performance versus SNR using BPSK modulation, averaged over 1,000 runs. BLM
denotes the method of [5]; FRESH-OPT and FRESH-SUBOPT are methods of [68]. Kalman filter
is based onP = 800 whenQ = 4 and onP = 1600 whenQ = 8. P = N corresponds to critically
sampled CE-BEM andP = 2N corresponds to oversampled CE-BEM.N = 800, P = 800 or
1600, Q = 4 or Q = 8, L = 3, d = 10, Q′ = 12, L′ = 12
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Figure 4.4: BER performance versus SNR using QPSK modulation, averaged over 1,000 runs
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Figure 4.5: BER performance versus SNR For DPS-BEM and CE-BEM channel modeling using
Kalman filtering, BPSK modulation
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Figure 4.6: BER performance versus SNR For DPS-BEM and CE-BEM channel modeling using
Kalman filtering, QPSK modulation

again that the Kalman filter requires significantly fewer flops than the other two approaches, both

for design as well as implementation

In Fig. 4.4 the BER performances for QPSK modulation are plotted under two schemes: BLM

and Kalman filter. The results in Fig. 4.4 are very similar to Fig. 4.3, except that the BER by using

QPSK information symbols are worse than that using BPSK symbols, as expected.

Example 3: Performance of Kalman Filter Using DPS-BEM

Now we test the performance of the Kalman filer by using Discrete Prolate Spheroidal (DPS)

BEM , in addition to CE-BEM, in (4.3), for approximating the true Jakes’ channel. As we noted

earlier, the Kalman filter has the flexibility that it is not restricted to a particular BEM and can be

applied to any doubly-selective channel model. In Fig. 4.5, we compare the BER performances of
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the Kalman filter for CE-BEM and DPS-BEM cases by using the simulation parameters in Example

2. It is known that the channel modeling error of DPS-BEM is several magnitudes smaller then that

of critically sampled (P = N ) CE-BEM [77], which is the reason why the BER performance of

DPS-BEM case is better then CE-BEM forP = N , Q = 4. For the oversampling case ofP = 2N

andQ = 8, the performances of DPS-BEM and CE-BEM are very close to each other since the

modeling error differences are not so pronounced any more. This example shows the flexibility of

the Kalman filter: its application is not limited to the CE-BEM channel model unlike FRESH [68]

and BLM [5] equalizers.

Without loss of generality, in Fig. 4.6 we again plot the simulation results under QPSK modu-

lation where the information symbols are QPSK signals.

4.3 Decision Feedback Equalization

4.3.1 System Model

Consider a doubly-selective finite impulse response (FIR) linear channel with single input and

multiple outputs (SIMO), where the expressions of input and output of the SIMO channel are the

same as (4.1)-(4.4) in Section 4.2.1.

Consider an FIR DFE with equalization delayd, feedforward (FF) filter of lengthlf and feed-

back (FB) filter of lengthlb. Let ŝ(n) be the “soft” estimate of symbols(n) and lets̃(n) denote its

quantized (hard decision) value. Then the soft output of the DFE is given by

ŝ(n− d) =
lf−1∑

m=0

fT
m(n)x(n−m)−

lb∑

k=1

bk(n)s̃(n− d− k) (4.24)
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where theR-column vectorsfm(n)’s and scalarsbk(n)’s are the tap-gains of FF and FB time-

varying filters at timen. Note that both FF and FB filters are FIR. In the minimum mean-square

error (MMSE) design of DFE, one seeks the tap-gains to minimizeE{|s(n− d)− ŝ(n− d)|2}. As

discussed in [2] and [57, Sec. 3.3], one first designs the FB filter assuming thats̃(n) = s(n) (i.e. no

decision errors), and then one designs the FF filter given the FB filter.

4.3.2 Time-Varying FIR MMSE DFEs

In this section we first briefly review the TV FIR MMSE DFE from [46],[3]. Then our pro-

posed formulation is presented. The design of these equalizers assumes availability of the CE-BEM

coefficientsw(r)
q (l)s of the channel.

FIR MMSE DFE of [46],[3]

In [46],[3], one approximates time-varying FF and FB tap-gains via another sets of CE-BEMs,

leading to

ŝ(n− d) =
lf−1∑

l′=0

Q′
2∑

q′=−Q′
2

R∑

r=1

f
(r)
q′ (l′)ej 2πqn

P x(r)(n− l′)−
lb∑

l′′=1

Q′′
2∑

q′′=−Q′′
2

bq′′(l′′)ej 2πqn
P s̃(n− d− l′′)

(4.25)

where design parameters ared, lf , lb, Q′, Q′′ and equalizer FF coefficientsf (r)
q′ (l′) and FB coef-

ficientsbq′′(l′′), invariant overn ∈ {0, 1, . . . , N − 1}. Notice that the structure of the FF and FB

parts of the equalizer is that of a CE-BEM.

The design equations may be found in [46],[3]; in particular, see [46, Sec. 5.2]. The TV

FIR MMSE DFE proposed in [46],[3] (henceforth referred to as BLM: Barhumi, Leus, Moonen)

provides an explicit “frequency-domain” representation, by turning a TV equalization problem into

94



a simpler time-invariant (TI) filtering design, which only involves the TI basis expansion parameters

of the equalizer tap-gains. For details, we refer the reader to [46, Sec. 5.2].

We now provide details from [46, Sec. 5.2] (modified to conform to the notation in this paper).

Define the[lb(Q′′ + 1) + 1]× 1 vector

b̃ = [bQ′′
2

,lb
, bQ′′

2
,lb−1

, . . . , bQ′′
2

,1
, . . . , b1,1, b0,lb , . . . , b0,1, 0, b−1,lb , . . . , b−1,1, . . . , b−Q′′

2
,1
]T ,

the[lf (Q′ + 1)]× 1 vector

f̃ (r) = [f (r)
Q′
2

,lf−1
, . . . , f

(r)
Q′
2

,0
, . . . , f

(r)
−Q′

2
,0
]T ,

and the[Rlf (Q′ + 1)]× 1 vector

f̃ = [f̃ (1)T , . . . , f̃ (R)T ]T .

Define thelf × [lf + L] Toeplitz matrix

W (r)
q :=




w
(r)
q (L) · · · w

(r)
q (0)

... ...

w
(r)
q (L) · · · w

(r)
q (0)




,

the[(Q′ + 1)lf ]× [(Q + Q′ + 1)(lf + L)] matrix

H(r) :=




Ω
Q
2 W

(r)
q · · · Ω

−Q
2 W

(r)
q

... ...

Ω
Q
2 W

(r)
q · · · Ω

−Q
2 W

(r)
q



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and the[R(Q′ + 1)lf ]× [(Q + Q′ + 1)(lf + L)] matrix

H :=
[
H(1)T , . . . ,H(R)T

]T
,

whereΩ := diag{1, ej2π/P , . . . , ej2π(lf−1)/P }. Define a[(Q′′ + 1)lf ] × [(Q + Q′ + 1)(L + lf )]

“selection” matrix

P :=




IQ′′
2

⊗ P1

0α×β P2 0α×β

IQ′′
2

⊗ P1




with α = (Q′′ + 1)lb + 1, β = (Q + Q′ −Q′′)(L + lf )/2,

P1 := [0lb×[L+lf−1−lb−d)], Ilb ,0lb×(d+1)],

P2 := [0(lb+1)×[L+lf−1−lb−d)], Ilb+1,0(lb+1)×d].

Let e denote the[(Q′′+ 1)lb + 1]× 1 unit vector with a one in position1 + lb + (Q′′lb/2). Then the

MMSE DFE tap-gains are given by [46, Sec. 5.2]

b̃MMSE =
R−1

MMSEe

eT R−1
MMSEe

− e, (4.26)

RMMSE = P
(
σ−2

η HHH + σ−2
s I

)−1
P H , (4.27)

f̃T
MMSE = b̃T

MMSEP

(
HHH +

σ2
η

σ2
s

I

)−1

HH . (4.28)

Computational Complexity:To design the feedforward and feedback filter coefficients, the

inverse in (4.28) and (4.26) require2·O(K3) flops (one flop is roughly one multiply-and-accumulate
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operation) whereK = (Q+Q′+1)(L+lf ) andO(K3) = K3+0.5K2+0.5K if one uses modified

Cholesky decomposition (i.e. UD-decomposition) based approach to matrix inverse [2, Table 6.13].

This has been called design complexity (equalizer design) in [3]. For implementation of (4.25),

one needsNR(Q′ + 1)lf flops for feedforward part andN(Q′′ + 1)lb flops for feedback part; this

has been called implementation complexity in [3]. For numerical comparisons in Section 4.3.3, we

assume that the inverse of a positive-definite matrix has been computed via the modified Cholesky

decomposition method.

Remark 4.5: The design of BLM DFEs relies on CE-BEM representation of the channel. They

assume that the BEM parametersw
(r)
q (l) are known at the receiver. It is not clear if these design

methods apply to other basis expansion models. However, the simulation results in [5] illustrate that

the BEM modeling errors have a significant influence on the equalizer performance.

Remark 4.6: Five parameters have to be considered or optimized for BLM DFE design:d, lf ,

lb, Q′ andQ′′.

Proposed MMSE DFE with Time-Varying Taps

Here we follow [2] (see also [57, Sec. 3.3]) where a time-invariant channel is considered. Their

results extend to time-varying channels in a straight-forward fashion; therefore, we simply state the

final results instead of repeating the entire derivation with obvious changes.

Using the estimated channel, the symbol decisions are made by an FIR MMSE-DFE [2]. Given

the lengths of the feedforward (FF) and the feedback (FB) filters aslf and lb respectively, the

estimate of the information symbol at timen with equalization delayd is given by (4.24). Stack the
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inputs of the FF filter at timen into a “tall” vector

xf (n) :=
[
xT (n) xT (n− 1) · · · xT (n− lf + 1)

]T

,

and also defineηf (n) likewise. By (4.4), we have

xf (n) = H (n) sf (n) + ηf (n) (4.29)

where

H (n) :=




h (n; 0) · · · h (n;L)

... ... ...

h (n− lf + 1; 0) · · · h (n− lf + 1;L)




(4.30)

and

sf (n) :=
[
s (n) s (n− 1) · · · s (n− lf − L + 1)

]T

.

We further define

sb (n) :=
[
s (n− d) s (n− d− 1) · · · s (n− d− lb)

]T

.

By the assumption that{s (n)} are i.i.d. with varianceσ2
s , and based on (4.29), we have

Rss (n) := E
{
sb (n) sH

b (n)
}

= σ2
sIlb+1,

Rsx (n) := E
{
sb (n) xH

f (n)
}

= σ2
sΦHH (n) ,

Rxx (n) := E
{
xf (n) xH

f (n)
}

= σ2
sH (n) HH (n) + σ2

vIRlf
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whereΦ :=
[
0(lb+1)×d Ilb+1 0(lb+1)×(lf+L−d−lb−1)

]
.

Let f (n) andb (n) denote the vectors of time-varying taps of FF and FB filters,

f (n) :=
[
fT

0 (n) fT
1 (n) · · · fT

lf−1 (n)

]T

,

b (n) :=
[
1 b1 (n) b2 (n) · · · blb (n)

]T

.

Assuming the decisions{s̃ (n)} are correct and equal to{s (n)}, the FF and the FB time-varying

filters of the MMSE-DFE are given by [2]

bMMSE (n) =
R−1

δ e0

eT
0 R−1

δ e0

, (4.31)

fMMSE (n) = R−1
xx (n) RH

sx (n) bMMSE (n) (4.32)

wheree0 :=
[
1 0 0 · · · 0

]T

and

Rδ := Rss (n)−Rsx (n) R−1
xx (n) RH

sx (n) . (4.33)

Computational Complexity:To design the proposed MMSE DFE, we need to compute the

inverse of aRlf ×Rlf matrix to obtain the feedforward filter coefficients (as in eq. (4.32)), and we

need to compute the inverse of a(lb + 1)× (lb + 1) matrix to obtain the feedback filter coefficients

(as in eq.(4.31)). Therefore, the required number of flops isO((Rlf )3) +O((lb + 1)3).

The implementation complexity associated with eq. (4.24) requiresNRlf flops for the feed-

forward part andNlb flops for the feedback part.
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Figure 4.7: BER performance versus SNR, averaged over 1,000 runs, BPSK signal.N = 800,
P = 1600, Q = 8, L = 3, d=5, Q′=12, lf=12,Q′′ = 4, lb = 3. R denotes the number of receive
antennas.

Remark 4.7: For the proposed MMSE DFE, the design process does not rely on a particular

basis expansion model as long as the estimated/fitted channel impulse response is known at the

receiver, so it can be applied to any doubly-selective channel model.

Remark 4.8: Only three parameters, equalization delayd and filter lengthslf and lb, are

needed for the proposed filter design and will influence its performance.

4.3.3 Numerical Examples

In this section, the BER performance of the proposed DFE solution are investigated by means

of Monte Carlo computer simulations, and compared with BEM-based BLM DFE solution of

[46],[3].
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Figure 4.8: BER performance versus SNR, averaged over 1,000 runs, BPSK signal.N = 800,
P = 1600, Q = 8, L = 3, d=5, Q′=12, lf=12,Q′′ = 4, lb = 3. R denotes the number of receive
antennas.

A random time- and frequency- selective Rayleigh fading channel is simulated according to

[81] with channel orderL = 3 (4 taps). For differentl’s, h (n; l)’s are mutually independent, satisfy

Jakes’ model, and each tap is generated via the method of [81] given the symbol durationTs and the

Doppler spreadfd. It is important to point out that each channel tap follows the Jakes’ spectrum,

rather then the assumed BEM representation. The data were generated using the double-selective

channel described above. However, for equalizer design one needs CE-BEM representation of the

true channel; this was obtained by a least-squares fit of the assumed BEM to the true channel in

each Monte Carlo run, just as in [46], [5] and [68], to obtain the BEM coefficients (which vary from

run-to-run). These BEM coefficients were used in the designs of [46],[3] and [5], as well as in our

proposed DFE solution.
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Table 4.4: Computation complexity

Equalizer Design Flops Implementation Flops

BLM DFE [46],[3] 62,611,290 261,600

Proposed DFE 14,198 21,600

In our simulations, the transmitter transmits binary or quaternary phase shift keying (BPSK/

QPSK) modulated symbols. The SNR refers to the energy per symbol over one-sided noise spectral

density.

We consider the simulation parameters quite similar to those in [46],[3] and [5, Fig. 11], i.e.,

the block size (number of information symbols) isN = 800, P = 2N (oversampled CE-BEM with

a factor of 2), the number of receive antennasR = 1, 2, symbol durationTs = 25 µs, the maximum

Doppler spreadfd = 100Hz, the equalization delayd = 5 symbols andQ = 2dfdPTse = 8.

For BEM-based equalizers (both BLM LE and BLM DFE), the equalizer lengthslf = 12 and

lb = 3 with corresponding number of Fourier coefficients (equalizer BEM coefficients)Q′ = 12

andQ′′ = 4. The BER averaged over 1,000 Monte Carlo runs versus SNR is shown in Fig. 4.7 for

the three approaches when using BPSK signal: BLM DFE [46],[3], BLM LE [5], and our proposed

DFE solution. Note that our formulation does not needQ′ or Q′′. It is seen from Fig. 4.7 that the

DFE solutions outperform the LE solution, and the performance improves with increasing number

of receive antennasR. Furthermore, our proposed solution outperforms the BEM-based DFE of

[46],[3]. The computational complexity measured in terms of number of flops for the entire block is

shown in Table 4.4. Notice that our DFE formulation requires far fewer flops than the BEM-based

DFE of [46],[3].

Finally, Fig. 4.8 shows the BER results for QPSK signals for the same set of parameters as for

Fig. 4.7. We see comparative performance similar to Fig. 4.7 in Fig. 4.8.
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4.4 Conclusion

In this chapter, we exploited the conventional Kalman filter and DFEs as time-varying mini-

mum mean-square-error equalizer for doubly-selective channels modeled via basis expansion mod-

els (BEM). Recently there has been much interest in designing time-variant serial FIR (finite im-

pulse response) linear equalizers and FIR DFEs using complex exponential (CE) BEMs for equal-

izers in addition to using CE-BEM for modeling the channel itself. We showed that a Kalman filter

formulation of the linear equalizer and an alternative formulation of the FIR DFE based on a CE-

BEM channel model yields same or improved BER at a much lower computational cost, without

incurring the approximation error inherent in CE-BEM modeling of equalizers.
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CHAPTER 5

A M ULTIPLE MODEL APPROACHTO DOUBLY-SELECTIVE CHANNEL ESTIMATION USING

EXPONENTIAL BASIS MODELS

5.1 Introduction

In order to “accurately” model the underlying doubly-selective channel, the number of BEM

coefficients used to model the doubly-selective channels for channel estimation has been based on

an upper bound on the channel Doppler spread. The higher the Doppler spread, the more the number

of BEM coefficients, which leads to a higher channel estimation variance. This, in turn, leads to

higher bit error rate (BER) when the estimated channel is used for data detection and the actual

Doppler spread is (much) less than the upper bound.

In this chapter we propose to use a multiple model framework where several candidate Doppler

spread values are used to cover the range from zero to an upper bound, leading to multiple CE-BEM

channel models, each corresponding to an assumed value of the Doppler spread. Subsequently the

well known interacting multiple model (IMM) algorithm [11] is used for symbol detection based on

multiple state-space models corresponding to the multiple estimated channels.

The multiple model (or hybrid system) approach assumes the system to be in one of a finite

number of models (i.e., that is described by one out of a finite number of models). Each model

is characterized by its parameters — the models differ in Doppler spread here. For each model a

filter ”matched” to its parameters is yielding model-conditioned estimates and covariances. A mode

probability calculator — a Bayesian model comparator — updates the probability of each mode

using the likehood function (innovations) of each filter and the prior probability of each model. Then

an estimate combiner computes the overall estimate and the associated covariance as the weighted
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sum of the model-conditioned estimates and the corresponding covariance — via the (Gaussian)

mixture equations. Among all the multiple model approaches, the interacting multiple model is

considered to be the best compromise between complexity and performance. The IMM approach

computes the state estimate that accounts for each possible current model using a suitable mixing

of the previous model conditioned estimate depending on the current model.

In this chapter an adaptive channel estimation scheme, exploiting the over-sampled complex

exponential basis expansion model (CE-BEM), is presented for doubly-selective channels where we

track the BEM coefficients via the multiple model approach. The chapter is organized as follows.

First, the system model and objectives are provided. Second, the IMM algorithm and configura-

tion are briefly summarized. The performances of the proposed design are finally illustrated by

simulation examples.

5.2 System Model and Objectives

5.2.1 System Model

Consider a doubly-selective (time- and frequency-selective) FIR (finite impulse response) lin-

ear channel. Let{s (n)} denotes a scalar sequence which is the input to time-varying channels with

the discrete-time response{h (n; l)} (the channel response at timen to a unit input at timen − l).

Then the symbol-rate noisy channel output at therth receive antenna is given by (n = 0, 1, . . .;

r = 1, 2, . . . , R)

y(r)(n) =
L∑

l=0

h(r)(n; l)s(n− l) + η(r)(n) (5.1)
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wherev(r)(n) is the zero-mean white complex-Gaussian noise with varianceσ2
v . We assume that

{
h(r)(n; l)

}
(r = 1, . . . , R) represents a wide-sense stationary uncorrelated scattering (WSSUS)

vector channel [54].

In CE-BEM [26, 48, 37], over thek-th block consisting of an observation window ofTB

symbols, the channel is represented as (n̄k := (k − 1)TB)

h(r)(n; l) =
Q∑

q=1

w(r)
q (l)ejωqn, n = n̄k, . . . , n̄k + TB − 1, (5.2)

where one chooses (l = 0, 1, . . . , L, andK is an integer)

T := KTB, K ≥ 1, Q ≥ 2 dfdTTse+ 1, (5.3)

ωq :=
2π

T
[q − (Q + 1) /2] , q = 1, 2, . . . , Q, (5.4)

L := bτd/Tsc , (5.5)

τd andfd are respectively the delay spread and the Doppler spread, andTs is the symbol duration.

The BEM coefficientsw(r)
q (l)’s remain invariant during this block, but are allowed to change at the

next block, and the Fourier basis functions
{
ejωqn

}
(q = 1, 2, . . . , Q) are common for each block.

If the delay spreadτd and the Doppler spreadfd of the channel (or at least their upper-bounds)

are known, one can infer the basis functions of the CE-BEM [48]. Treating the basis functions as

known, estimation of a time-varying process is reduced to estimating the invariant coefficients over

a block of lengthTB symbols. Note that the BEM period isT = KTB whereas the block size isTB

symbols. IfK > 1 (e.g.K = 2 or K = 3), then the Doppler spectrum is said to be over-sampled

[37] compared to the caseK = 1 where the Doppler spectrum is said to be critically sampled. In
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[26, 48] onlyK = 1 (henceforth called CE-BEM) is considered whereas [37] considersK ≥ 2

(henceforth called over-sampled CE-BEM).

5.2.2 Block-Adaptive Channel Estimation [48]

Here we summarize the time-multiplexed training approach of [48]. In Sec. 5.4 we provide

simulation comparisons with results of [48]. In [48] each transmitted block of symbols{s(n)}TB−1
n=0

is segmented intoP subblocks of time-multiplexed training and information symbols. Each sub-

block is of equal lengthlb symbols withld information symbols andlt training symbols (lb = ld+lt).

If s denotes a column-vector composed of{s(n)}TB−1
n=0 , thens is arranged as

s :=
[
bT

0 cT
0 bT

1 cT
1 · · · bT

P−1 cT
P−1

]T

(5.6)

wherebp (p = 0, 1, · · ·P − 1) is a column ofld information symbols andcp is a column oflt

training symbols. We clearly haveTB = Plb. Given (5.1) and CE-BEM (5.2), [48] has shown that

(5.6) is an optimum structure forK = 1 with lt = 2L + 1, P ≥ Q and

cp :=
[
0T

L γ 0T
L

]T

, γ > 0. (5.7)

Thus, given a transmission block of sizeTB, (2L + 1)P symbols have to be devoted to training and

the remainingTB − (2L + 1)P are available for information symbols. This design has been used

by others for oversampled CE-BEM also [37].
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Letnp := plb+ld+L, (p = 0, 1, · · ·P−1), denote the location of (nonzero)γ’s in the optimum

cp’s in theP subblocks. Then by design, received signal (assuming timing synchronization)

y(r)(np + l) = γh(r)(np + l; l) + v(r)(np + l) (5.8)

for l = 0, 1, · · · , L. Using (5.2) in thesey(r)(np + l)’s, one can uniquely solve forw(r)
q (l)’s via a

least-squares approach. The channel estimates are given by the CE-BEM (5.2) using the estimated

BEM coefficients.

5.2.3 Objectives

Suppose that we collect the received signal over a time interval ofT̄ symbols. We wish to

estimate the time-variant channel using a channel model and time-multiplexed training (such as

that discussed in Sec. 5.2.2 and [48]), and subsequently using the estimated channel, estimate the

information symbols. For CE-BEM, if we choosēT as the block size, then in generalQ value will

be very high requiring estimation of a large number of parameters, thereby degrading the channel

estimation performance. If we dividēT into blocks of sizeTB, and then fit CE-BEM block by

block, we need smallerQ. This is the solution considered in this chapter (and also [48]). In practical

situations, over a largēT , the actual Doppler spreadfd is likely to vary. Absent any prior knowledge,

a commonly used solution [48, 37] is to use an upper bound on the anticipatedfd (based on the

maximum vehicle speed, e.g.) and pickQ accordingly. In this chapter we investigate a multiple

model framework where several candidate Doppler spread values are used to cover the range from

zero to an upper bound, leading to multiple CE-BEM channel models, each corresponding to an

assumed value of the Doppler spread. Multiple model approach has been extensively used in target

tracking applications [11, 7, 64] and more recently, has been used for tracking dispersive DS-CDMA
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channels using multiple autoregressive (AR) models in [30]. In this chapter we propose to use such

an approach in conjunction with BEM’s.

5.3 Multiple Model Approach

5.3.1 Multiple Models

Let fd,u denote an upper bound on the anticipated Doppler spreadfd. Let fd,1, fd,2,..., fd,M

denote ourM candidate Doppler spreads and letQm, 1 ≤ m ≤ M , denote the corresponding

values ofQ from (5.3). Then we haveM candidate channel impulse responses indexed bym over

thek-th block consisting of an observation window ofTB symbols,

h(m,r)(n; l) =
Qm∑

q=0

w(m,r)
q (l)ejωqn, n = n̄k, n̄k + 1, ..., n̄k + TB − 1. (5.9)

We will use a Kalman filter with equalization delayd for data detection using the estimated channel.

Define

y(n) := [y(1)(n), y(2)(n), ..., y(R)(n)]T ,

sd(n) := [s(n), s(n− 1), ..., s(n− d)]T ,

s̄(n) := E {s(n)} , s̃(n) := s(n)− s̄(n),

Φ :=



01×d 0

Id 0d×1


 ,

Γ := [1,01×d]T ,

Hd(n) := [h(m)(n; 0),h(m)(n; 1), ...,h(m)(n;L),0R×(d−L)],

h(m)(n; l) := [h(m,1)(n, l), ..., h(m,R)(n, l)]T , (5.10)
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whereη(n) is defined just asy(n) and integerd ≥ L. Assume data symbols are zero-mean and

white. If s (n) is a data symbol, we havēs (n) := 0, s̃ (n) := s (n); if s (n) is a training symbol,

s̄ (n) := s (n), s̃ (n) := 0. Then the underlying state-space model corresponding to themth channel

is given by the state and the measurement equations

sd (n) = Φsd (n− 1) + Γs̄ (n) + Γs̃ (n) , (5.11)

y (n) = H
(m)
d (n) sd (n) + v (n) . (5.12)

In (5.11)s̄(n) ands̃(n) are defined just assd(n).

Consider a set ofTB received symbols divided up intoP subblocks as in Sec. 5.2.2. For model

m, we estimate the BEM coefficientsw(m,r)
q (l) via the least-squares approach of Sec. 5.2.2 using

the training symbols. Then the estimated channel for themth model is given bŷh(m,r)(n; l) =
∑Qm

q=1 ŵ
(m,r)
q (l)ejωqn.

5.3.2 Interacting Multiple Model Data Detection

Using theM estimated channels from each block of received symbols, we obtain theM models

with state equation (5.11) and measurement equation

y(n) = Ĥ
(m)T
d (n) sd (n) + η (n) , (5.13)

whereĤ
(m)
d (n) is as in Section 5.3.1 withh(m) (n; l) replaced with estimated̂h(m) (n; l). Now our

task is to estimatesd(n) giveny(k), k ≤ n, and theM models specified by (5.11) and (5.13). In

(5.13) we treatĤ(m)
d (n) as trueH(m)

d (n).
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Table 5.1: Summary of the IMM algorithm (one cycle)

Interaction (i, j = 1, 2, · · ·M ):

predicted mode probability:µ−j (k) =
∑

i pijµi(k − 1)

mixing probability:µi|j = pijµi(k − 1)/µ−j (k)

ŝ0dj(k − 1|k − 1) =
∑

i ŝdi(k − 1|k − 1)µi|j

V0dj(k − 1|k − 1) =
∑

i Vdi(k − 1|k − 1)µi|j + Xj

where the “spread-of-the-means” term in the mixing is

Xj =
∑

i[ŝdi(k − 1|k − 1)− ŝ0dj(k − 1|k − 1)]

×[ŝdi(k − 1|k − 1)− ŝ0dj(k − 1|k − 1)]Hµi|j

Filtering (i, j = 1, 2, · · ·M ):

ŝdj(k|k − 1) = Φŝ0dj(k − 1|k − 1) + Γs̄(k)

Vdj(k|k − 1) = ΦV0dj(k − 1|k − 1)ΦH + σ2
s̃ΓΓT

measurement residual:zj = y(k)−Hdj ŝdj(k|k − 1)

residual cov.:Dj = H
(j)
d Vdj(k|k − 1)H(j)H

d + σ2
vIR

fliter gain:Gj = Vdj(k|k − 1)H(j)H
d D−1

j

ŝdj(k|k) = ŝdj(k|k − 1) + Gjzj

Vdj(k|k) = Vdj(k|k − 1)−GjDjG
H
j

likelihood function:Λj = [det(πDj)]−1e−zH
j D−1

j zj

mode probability:µj(k) =
µ−j ΛjP
i µ−i Λi

Combination:

ŝd(k|k) =
∑

j ŝdj(k|k)µj

Vd(k|k) =
∑

j Vdj(k|k)µj + X

where the “spread-of-the means” term in combination is

X =
∑

i[ŝdi(k|k)− ŝd(k|k)][ŝdi(k|k)− ŝd(k|k)]Hµi(k)
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We propose to use the IMM algorithm [11] to estimatesd(n). In order to do this, in keeping

with [11], we allow transitions among theM models (this also allows consideration of time-varying

fd) where these transitions are governed by a first-order homogeneous Markov chain with transition

probabilitiespij , i, j ∈ {1, 2, . . . , M}, ∑M
j=1 pij = 1. The data symbols input to the channels̃(n)

are treated as Gaussian random variables. The operation of IMM algorithm in one cycle is summa-

rized in Table 5.1 whereσ2
s̃ = σ2

s = E{|s(n)|2} for information symbol,= 0 for training symbol.

Table 1 provides one-cycle (one time sample update) of the IMM algorithm. The required initial-

ization for the algorithm is as follows: at timek = 0, ŝ(1|0) = E{s(1)} = 0 and its covariance

Vŝ(1|0) = σ2
sId+1. Having obtained the IMM estimatêsd(n|n) of sd(n), we estimates(n) with

equalization delayd by quantizing the(d + 1)st component of̂sd(n|n).

5.4 Numerical Examples

A random time- and frequency-selective Rayleigh fading channel is considered. We takeL = 2

(3 taps) in (5.1), number of receive antennasR = 2, andh(r)(n; l) are zero-mean, complex Gaussian

with varianceσ2
h = 1/ (L + 1). For differentl’s andr’s, h(r)(n; l)’s are mutually independent and

satisfy the Jakes’ model. To this end, we simulated each single tap following [81] (with a correction

in the appendix of [77]).

We consider a communication system with carrier frequency of2GHz, data rate of40 kBd

(kilo-Bauds), thereforeTs = 25 µs, and a varying Doppler spreadfd in the range of0Hz to 200Hz,

or the normalized Doppler spreadfdTs from 0 to 0.005 (corresponding to a maximum mobile ve-

locity from 0 to 108 km / h). The additive noise was zero-mean complex white Gaussian. The

(receiver) SNR refers to the average energy per symbol over one-sided noise spectral density. The

time-multiplexed training scheme of [48] described in Sec. 5.2.2 is adopted, where during data
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Figure 5.1: IMM with three models, BER vs SNR with BPSK information symbols.

sessions the information sequences is modulated by BPSK or QPSK with unit power. The train-

ing session is described by (5.7) withγ =
√

2L + 1 so that the average symbol power of training

sessions is equal to that of data sessions.

5.4.1 Example 1: IMM with Three Models

We generated a random doubly-selective channel as discussed earlier but with two different

profiles of varyingfd’s as follows:

1. fd=0 Hz for1 ≤ n ≤ 420, fd=100 Hz for421 ≤ n ≤ 840, fd=200 Hz for841 ≤ n ≤ 1260,

fd=100 Hz for1261 ≤ n ≤ 1680, fd=0 Hz for 1681 ≤ n ≤ 2100. We pickedK = 2,

TB = 175 andP = 5. Each subblock has 35 symbols with 30 information symbols in the

beginning and 5 training symbols at the end (see Sec. 5.2.2). This channel is named as the

Step Shapetime-varying channel.
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Figure 5.2: IMM with three models, BER vs SNR with QPSK information symbols.

2. Now fd varies linearly from0Hz to 200Hz over1 ≤ n ≤ 1050, andfd varies linearly from

200Hz to 0Hz over1051 ≤ n ≤ 2100. This channel is named as theLinear Shape time-

varying channel.

Two variations on channel estimation schemes are compared using an equalization delayd = 5:

1. Q Upper bound: We used a fixedQ for all blocks withQ=5= upper bound (denoted by “Q

upper bound” in the figs.). With 5 subblocks per non-overlapping block (total 60 blocks), we

estimated the channel for each block via the approach of Sec. 5.2.2. Then we used Kalman

filtering with d = 5 (no IMM) to detect the information symbols.

2. Proposed Multiple Model: Here we used overlapping blocks by shifting blocks by one

subblock. We used three modelsM = 3 with Q1=1, Q2=3 andQ3=5. The channels are

estimated over one block, then we shifted to the right by one subblock (35 symbols), and
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estimated the 3 candidate channels again, and so on. For transition probability matrix we

picked 


0.9 0.1 0

0.05 0.9 0.05

0. 0.1 0.9




which reflects the fact that transitions infd do not jump over an intermediate value. The three

models had equal initial probabilities of1/3.

The bit error rate (BER) of each scheme was studied by averaging over 200 runs where in each

run, a symbol sequence of length2100 is generated and fed into a random doubly-selective channel

generated with specifiedfd’s. The first70 symbols were discarded in evaluations. In Figs. 5.1 and

5.2, the performances of the two schemes under different SNR’s are compared for BPSK and QPSK

information sequences, respectively. It is readily seen that overestimating Doppler spread leads to

a performance deterioration compared to the proposed IMM approach relying on a multiple model

formulation.

5.4.2 Example 2: IMM with Two Models

In this example, the varying Doppler spreadfd is in the range of0Hz to 100Hz. Again two

variations on channel estimation schemes are compared:

1. Q Upper bound: We used a fixedQ for all blocks withQ=3= upper bound (denoted by “Q

upper bound” in the figures). With 5 subblocks per non-overlapping block (total 50 blocks),

we estimated the channel for each block via the approach of Sec.5.2.2. Then we used Kalman

filtering with d = 5 (no IMM) to detect the information symbols.
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2. Proposed Multiple Model: Here we used overlapping blocks by shifting blocks by one sub-

block. We used two modelsM = 2 with Q1=1 andQ2=3. The channels are estimated over

one block, then we shifted to the right by one subblock (35 symbols), and estimated the 2

candidate channels again, and so on. For transition probability matrix we picked




0.9 0.1

0.1 0.9




The two models had equal initial probabilities of1/2.

In all numerical results, the bit error rate (BER) of each scheme was studied by averaging over

200 runs where in each run, a symbol sequence of length1750 (total 50 blocks) is generated and

fed into a random doubly-selective channel generated with specifiedfd’s.

Step Shape Time-Varying Channel

We generate theStep Shaperandom doubly-selective channel with varyingfd as follows:

fd=0 Hz for1 ≤ n ≤ 584, fd=100 Hz for585 ≤ n ≤ 1168, andfd=0 Hz for1169 ≤ n ≤ 1750.

In Figs. 5.3 and 5.4, the performances of the two schemes under different SNR’s are compared

for BPSK and QPSK information sequences, respectively. It is readily seen that overestimating

Doppler spread leads to a performance deterioration. The proposed IMM approach relying on a

multiple model formulation provides a good performance improvement.

Fig. 5.5 plots how the average mode probabilitiesµ (in Table 5.1) change with time. It can be

seen from the figure that model 2 (Q2 = 3) that is supposed to capture larger Doppler frequency

can also capture model 1 (Q1 = 1 for fd = 0Hz), while model 1 can not capture model 2.
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Linear Shape Time-Varying Channel

In this example theLinear Shaperandom doubly-selective channel is generated with varying

fd linearly: fd is from0Hz to100Hz for 1 ≤ n ≤ 875, andfd is from100Hz to0Hz for 876 ≤ n ≤

1750.

Again the performances of the two schemes under different SNR’s are compared in Fig. 5.6

and Fig. 5.7 for BPSK and QPSK information sequences, respectively. Fig. 5.8 plots how the

average mode probabilitiesµ change with time.

The Effect of Training Sequence on Mode Probability

How does the training sequence structure in (5.7) influence the mode probability is tested in

this example. The random channel is generated by fixingfd = 0 for 1 ≤ n ≤ 1750 (frequency-

selective and time-invariant channel). Model 1 withQ = 1 and Model 2 withQ = 3 are exploited

for symbol detection. Suppose the exact channel information regarding Model 1 and Model 2 is

available at the receiver. Clearly Model 1 should be the right model being chosen with higher mode

probabilities than Model 2.

In one case, the training symbols with structure as (5.7) are used. The resulting average mode

probability (averaged over 200 iterations) is plotted in Fig. 5.9. Similar to the plottings in Fig. 5.5

and Fig. 5.8, we see that the mode probabilities between blocks are inconsistent.

In the other case, no training symbols are inserted in the transmitted signal. The average mode

probability result is shown in Fig. 5.10. It is seen that the mode probabilities under this case are

consistently smooth. The comparison between Fig. 5.9 and Fig. 5.10 illustrates that the inserted

zeros in training structure (5.7) result in the inconsistency of mode probability.
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Figure 5.5: Average mode probability of IMM. Step shape time-varying channel. SNR=20dB
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Figure 5.6: IMM with two models. BER vs SNR with BPSK information symbols. Linear Shape
Time-Varying Channel
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Figure 5.8: Average mode probability of IMM. Linear shape time-varying channel. SNR=20dB
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Figure 5.9: Average mode probability of IMM. Time-invariant channel. With training insertion.
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5.5 Conclusion

An adaptive channel estimation scheme, exploiting the oversampled complex exponential ba-

sis expansion model (CE-BEM), was presented for doubly-selective channels where we tracked the

BEM coefficients via a multiple model approach. In the past work the number of BEM coefficients

used to model the doubly-selective channels for channel estimation has been based on an upper

bound on the channel Doppler spread. The higher the Doppler spread, the more the number of BEM

coefficients, which leads to a higher channel estimation variance. In this chapter we proposed to use

a multiple model framework where several candidate Doppler spread values were used to cover the

range from zero to an upper bound, leading to multiple CE-BEM channel models, each correspond-

ing to an assumed value of the Doppler spread. Subsequently the well known interacting multiple

model (IMM) algorithm was used for symbol detection based on multiple state-space models cor-

responding to the multiple estimated channels. Numerical examples were presented to illustrate the

proposed approach. The results showed that the IMM approach relying on multiple models had a

better performance than traditional overestimating Doppler spread scheme.
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CHAPTER 6

DOUBLY-SELECTIVE CHANNEL ESTIMATION FOR OFDM SYSTEMS USING DPS-BEM AND

TIME-MULTIPLEXED TRAINING

6.1 Introduction

Wireless multicarrier (MC) communication systems utilize multiple complex exponentials as

information-bearing carriers. MC transmissions thus retain their shape and orthogonality when

propagating through linear time-dispersive media. They were first conceived and implemented with

analog oscillators in the 60s [42, 83], but it was not until their all-digital implementation with the

Fast Fourier Transform (FFT), that their attractive features were unravelled and sparked widespread

interest for adoption in various single user and multiple access (MA) communication standards

[9]. Nowadays, MC systems such as the Orthogonal Frequency Division Multiplexing (OFDM)

are included in the Digital Audio/Video Broadcasting (DAB/DVB) standards in Europe while the

Discrete Multi-Tone (DMT), its wireline counterpart in the US, has been applied to high-speed

Digital Subscriber Line (DSL) modems over twisted pairs [10].

The pilot-aided doubly-selective channel estimation for OFDM systems is considered in [62],

where the channels are approximated by BEMs. The transceiver block diagram is shown in Fig.

6.1. Since the channel estimation is based on frequency-domain training, the receiver can find

no subcarrier that solely depends on pilots and thus is not contaminated by information symbols.

Due to time-variation, the resulting channel matrix (include IFFT and FFT) is no longer diagonal

IFFT FFTCP /ZP 
insertion

CP /ZP 
removalchannel Channel 

estimation
Training 
insertion

Symbol 
detection

Figure 6.1: OFDM transceiver block diagram in [62]
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IFFT FFTCP /ZP 
insertion

CP /ZP 
removalchannel Channel 

estimation
Training 
insertion

Symbol 
detection

Figure 6.2: Proposed OFDM transceiver block diagram

matrix, which results in the very complicated channel estimation or equalization procedure [6]. In

[62], a receiver window is used to suppress the out of band interference, and it is assumed that the

channel matrix is approximately banded after windowing. It is also not clear what is the “optimum”

strategy to place the frequency-domain training symbols. The linear MMSE channel estimator

for DPS-BEM-based MIMO-OFDM (multiple input multiple output-orthogonal frequency division

multiplexing) doubly-selective channels is introduced in [49], but their channel estimation suffers

from the frequency-domain training problem, too.

In this chapter, we will apply the optimum time-multiplexed training based channel estima-

tion introduced in Chapter 2 to OFDM systems under doubly-selective channels. The time-varying

channel is described by CE-BEM or DPS-BEM. The time-domain training clusters are inserted

after IFFT at the transmitter and the channel estimation proceeds before FFT at the receiver (see

Fig. 6.2). In this way, the “optimum” training strategy and the corresponding channel estima-

tion schemes proposed before can be directly applied to MIMO-OFDM systems. Compared to

frequency-domain training design, the main advantage of time-domain training for OFDM system is

that the information symbols are not contaminated by the training symbols as the frequency-domain

training. The performance of frequency-domain training-based channel estimation and time-domain

training-based channel estimation are compared by simulations.
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6.2 System Model

Fig. 6.2 depicts the proposed baseband block diagram of a cyclic prefix (CP)-OFDM system,

where thejth Nc × 1 information block

c̃j := [c((j − 1)Nc), c((j − 1)Nc + 1), ..., c((j − 1)Nc + Nc − 1)]T (6.1)

is first precoded by the IFFT matrixF H
Nc

with (m, k)th entry

[
F H

Nc

]
m,k

=
1√
Nc

ej2πmk/Nc , (6.2)

to yield the so-called “time domain” block vector

cj = F H
Nc

c̃j . (6.3)

Then the training sequencebj of lengthNb and cyclic prefix (CP)cpj of lengthNcp is inserted be-

tween eachcj . CP is inserted at the transmitter and discarded at the receiver to avoid the interblock

interference (IBI) [72]. The entries of the resulting redundant blocksj := [cpT
j , bT

j , cT
j ] are finally

sent sequentially through the channel. Suppose there are totallyJ blocks for transmission. Then the

general structure of transmitted signals with lengthN := Ncp + Nb + Nc is

s := [cpT
1 , bT

1 , cT
1 , ..., cpT

J , bT
J , cT

J ]T . (6.4)
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Consider the doubly-selective single input single output FIR linear channel, the same as in

Section 2.2. Then the matrix-vector input-output relationship is given by

x =
Q∑

q=0

DψqWqs + η, (6.5)

wherex := [x(0), x(1), ..., x(N − 1)]T , η is the zero-mean white complex-Gaussian noise defined

similarly tox, Dψq = diag[ψq] with ψq := [ψq(0), ψq(1), ..., ψq(N − 1)]T , andWq ’s areN ×N

lower triangular Toeplitz matrices with 1st column[wq(0), wq(1), . . . , wq(L), 0, . . . , 0]T .

This system model in (6.5) is exactly the same as in (2.9). Comparing (2.10) with (6.4), and

(2.9) with (6.5), we notice that the IBI free received signal is the same as that in Chapter 2 after CP

removal at the receiver. Therefore, the LS/MMSE channel estimator and optimum training design

presented in Chapter 2 can be directly applied here without any change. We will skip the theoretical

expressions which would be the same as in Chapter 2.

6.3 Doubly-Selective Channel Estimation for OFDM Systems Using Frequency-Domain Train-

ing [62]

Consider an OFDM system withM subcarriers. The frequency domain transmitted signal is

defined as:

x̃ := [tT
1 ,uT

1 , tT
2 ,uT

2 · · · tT
P ,uT

P ]T

wheretp (p = 1, 2, · · ·P ) is a column ofMt training symbols anduj is a column ofMu information

symbols. LetM = (Mt + Mu)P . As illustrated in Fig 6.1, the OFDM symbol̃x is first modulated

by the IFFT operation

x = F H
M x̃. (6.6)
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We ignore the symbol index in (6.6) since only one OFDM symbol is considered.

The modulated symbolx is then concatenated by a CP and sent over the channel. If the channel

is assumed to be time-varying (TV) and approximated by a BEM, as in [62], the received signals at

the receiver after CP removal and FFT operation is given by

y = FMRcpHTcpx + v

=
Q∑

q=0

Dq∆qx̃ + v, (6.7)

whereTcp := [INcp×M ; IM ] andRcp := [0M×Ncp , IM ] are CP insertion and CP removal matrices,

respectively;H represents the channel matrix in time-domain;v is the zero-mean white complex-

Gaussian noise;Dq is a circulant matrix whose first column is the frequency response of theqth

basis function

Dq := FMdiag{ψq}F H
M (6.8)

and∆q is a diagonal matrix whose diagonal is the frequency response of the BEM coefficients

corresponding to theqth basis function [62]

∆q = diag{FL[wq,0, ..., wq,L]T }. (6.9)

FL stands for the firstL + 1 columns of the matrixFM . The least squares (LS) channel estimator

can be achieved based on (6.7) as in [[62], Section IV. B].
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Due to the time-variation, the channel matrix in the frequency domain is no longer diagonal,

but approximately banded. Therefore, the channel estimation approach based on (6.7) suffers a large

estimation error especially with a high Doppler spread.

6.4 Numerical Examples

In this section, the numerical results of the proposed time-domain (TD) training channel es-

timation (Sec. 6.2, referred to as TDE) are given and compared with the frequency-domain (FD)

channel estimation (Sec. 6.3, referred to as FDE). We use binary phase shift keying (BPSK) modu-

lation in all examples.

To make a relatively fair comparison between TDE and FDE cases, we want to keep the same

transmission rates in both schemes. For TDE scheme, the OFDM system hasNc = 30 subcarriers.

There areNb = 2L + 1 training symbols with optimal structure[0L, b,0L], b > 0 in every OFDM

symbol andJ = 10 OFDM symbols are transmitted sequentially. For FDE scheme, an OFDM

system withM = (Mt + Mu)P subcarriers is considered. The subcarriers that are reserved for

pilots are grouped inP = 10 equidistant clusters, each containingMt = 2L + 1 pilot tones. We

pick Mu = 30. Inside each cluster, the scheme referred to as “frequency-domain Kronecker delta”

(FDKD) in [35] are exploited, where a nonzero pilot is located in the middle of the cluster with zero

guard bands on both sides. This equidistant pilot cluster scheme finds its practical advantage in [60]

although the channel follows the bathtub-shaped Doppler spectrum in that case. Another important

reason of using FDKD training pattern here is that it is convenient to keep the same transmission

rate with TDE scheme.

The doubly-selective Rayleigh fading channel is simulated according to [77, 81] with channel

orderL = 2, carrier frequency of2GHz, data rate of 40 kbps, and thus, symbol durationTs = 25µs.
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Figure 6.3: LS Channel estimation MSE comparison between TDE and FDE with varyingνDmax

Therefore, each tap of the generated time-variant channel has a Jakes’ spectrum; it is not gener-

ated using the assumed BEM modeling. Also, the 3 taps of the channel are mutually independent.

Depending on different maximum Doppler spreadfds, a varying maximum normalized one-sided

Doppler bandwidthνDmax = fdTs can be derived, whereTs is the symbol duration. A Kalman

filter formulation is used for information detection after the channel estimation. The SNR refers

to 1/σ2
η where the information sequence power is normalized to one and the channel power is also

normalized to unity.

6.4.1 Example 1: Channel Estimation Performance

In this example, the LS channel estimator is used in both TDE and FDE schemes to estimate

w, and then the channel is estimated as in (2.29). The channel estimation MSE is calculated as in

(2.65). Fig. 6.3 plots the channel estimation MSE (averaged over 200 Monte Carlo runs) versus
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SNR under different normalized maximum Doppler bandwidths, wherefd = 4 or 40Hz. It is

clear that the MSE of time-domain training channel estimation is consistently smaller than that of

frequency-domain training channel estimation.

6.4.2 Example 2: CE-BEM versus DPS-BEM

The LS channel estimator in Example 1 is based on the DPS-BEM channel model. In this

example we compare the LS channel estimation MSE of TDE under CE-BEM and DPS-BEM. Fig.

6.4 plots the MSE (2.65) versus SNR under different maximum Doppler bandwidths (ν
(F )
Dmax is for

CE-BEM, andν(S)
Dmax is for DPS-BEM). Especially, we takeQF = 2dνDmaxNe for CE-BEM and

QS = d2νDmaxNe DPS-BEM. It is seen from Fig. 6.4 that the channel estimation performances

of DPS-BEM outperform that of CE-BEM for allνDmax. Fig. 6.5 takes BER (average over 2000

Monte Carlo runs) as a performance measure to compare the performance between DPS-BEM and

CE-BEM for TDE. Comparing with Fig. 6.4 makes it clear that the significantly reduced MSE of the

DPS-BEM channel estimation leads to a pronounced reduction in BER compared to the CE-BEM

case.

6.5 Conclusion

In this chapter, we applied the optimum time-multiplexed training based channel estimation in-

troduced in Chapter 2 to OFDM systems under doubly-selective channels. The time-varying channel

was described by CE-BEM or DPS-BEM. The time-domain training clusters are inserted after IFFT

at the transmitter and the channel estimation proceeds before FFT at the receiver. Compared to

frequency-domain training design, the main advantage of time-domain training for OFDM system

130



0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR(dB)

M
S

E

ν
Dmax
(S) =0.001

ν
Dmax
(S) =0.005

ν
Dmax
(F) =0.001

ν
Dmax
(F) =0.005

Figure 6.4: LS Channel estimation MSE comparison between DPS-BEM and CE-BEM with varying
νDmax, TDE

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

ν
Dmax
(S) =0.001

ν
Dmax
(S) =0.005

ν
Dmax
(F) =0.001

ν
Dmax
(F) =0.005

Figure 6.5: BER comparison between DPS-BEM and CE-BEM with varyingνDmax, TDE

131



is that the information symbols are not contaminated by the training symbols as in the frequency-

domain training case. The simulation results confirmed the claims.
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CHAPTER 7

SUMMARY AND FUTURE WORK

With the emergence of next-generation wireless mobile communications, multimedia services

have placed increasing demands for high data rates and high mobility. The high data rates give

rise to frequency selectivity, while the mobility and carrier offset introduce time selectivity. In

this dissertation, the channel estimation and equalization for frequency-selective and time-selective

channel were considered.

7.1 Summary of Original Work

In Chapter 2, the channel estimation for single-input single-output frequency- and time- selec-

tive channels was considered using time-multiplexed training. The time-varying channel was as-

sumed to be well-described by a basis expansion model using discrete prolate spheroidal sequences

as bases (DPS-BEM). Both linear least squares and minimum mean-square-error approaches were

exploited to estimate the basis expansion coefficients. Training designs for time-multiplexed train-

ing based on minimization of channel estimation mean-square-error were investigated. The issue

of training power allocation was addressed. Then the proposed channel estimation approaches in

Chapter 2 was extended to multiuser multiple-input multiple-output doubly-selective channels in

Chapter 3.

The linear equalization and decision feedback equalization of doubly-selective channels mod-

eled via BEMs were introduced in Chapter 4. There has been much interest in designing time-

variant serial finite impulse response linear and DFE equalizers using complex exponential BEMs

for equalizers in addition to using CE-BEM for modeling the channel itself. We showed that the

133



Kalman filter formulation of the linear equalizer and an alternative formulation of the FIR DFE

based on a CE-BEM channel model yields the same or improved BER at a lower computational

cost, without incurring the approximation error inherent in CE-BEM modeling of equalizers.

An adaptive channel estimation scheme, exploiting the oversampled complex exponential ba-

sis expansion model (CE-BEM), was presented for doubly-selective channels where we tracked

the BEM coefficients via a multiple model approach in Chapter 5. In the past work the number

of BEM coefficients used to model the doubly-selective channels for channel estimation has been

based on an upper bound on the channel Doppler spread. The higher the Doppler spread, the more

the number of BEM coefficients, which leads to a higher channel estimation variance. We proposed

to use a multiple model framework where several candidate Doppler spread values were used to

cover the range from zero to an upper bound, leading to multiple CE-BEM channel models, each

corresponding to an assumed value of the Doppler spread. Subsequently, the well known interact-

ing multiple model (IMM) algorithm was used for symbol detection based on multiple state-space

models corresponding to the multiple estimated channels.

Orthogonal Frequency-Division Multiplexing (OFDM), a digital multi-carrier modulation scheme,

has developed into a popular scheme for wideband wireless communication due to its high spec-

tral efficiency and simple equalization. In Chapter 7, we extended the optimum time-multiplexed

training-based channel estimation introduced in Chapter 2 to OFDM systems under a doubly-

selective channels. Compared to the traditional frequency-domain training design, the main ad-

vantage of time-domain training design for OFDM system is that the information symbols are not

contaminated by the training symbols as in the frequency-domain training case.

In all chapters, numerical examples based on computer simulations were presented to illustrate

the proposed approaches and confirm the conclusions.
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7.2 Possible Future Directions

So far we have assumed that the coefficients of basis expansion model (BEM) are fixed over

data blocks. In fact, the BEM coefficients may also undergo changes.

Instead of the basis expansion model, another way to model time-varying channels is via au-

toregressive (AR) process, particularly the first order AR process [19]. Supposeh(n; l) represents a

wide-sense stationary uncorrelated scattering (WSSUS) channel. It is common to use the following

first-order AR model to describe it:

h(n; l) = αh(n− 1; l) + η(n), (7.1)

whereα is the AR coefficient, and the driving noiseη(n) is zero-mean complex Gaussian with

varianceσ2
η and statistically independent ofh(n − 1; l). Assume thath(n; l) is also zero-mean,

complex Gaussian with varianceσ2
h. Then

α =
1
σ2

h

E {h(n; l)h∗(n− 1; l)} , (7.2)

σ2
η = σ2

h(1− |α|2). (7.3)

It is a tractable model, where the channel is assumed to be Markovian; i.e., for the current channel

symbol, the effect of channel symbols other than the immediately preceding one is negligible [73].

This Markovian assumption has been verified for Rayleigh fading channels in [73], by considering

the mutual information between channel symbols. AR models describe temporal variation on a

symbol-by-symbol update basis, while BEMs depict the evolution of the channel over a period

(block) of time.
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An AR model is not appropriate for a fast fading channels because the channel tracking depends

on the inserted training. For information sessions, channel estimates can only be obtained based on

the results from the previous training session [40]. However, it could be a good way to track the basis

expansion coefficients in BEMs. Up to this point, we suppose that the basis expansion coefficients

are fixed over data blocks. In fact, the BEM coefficients may also undergo changes, but not as fast

as the channel variations.

In the next step, we will model the doubly-selective channel by exploiting the CE-BEM for the

overall time-variant channel and an AR model for the BEM coefficients. Recall the BEM model in

(2.2). Stack the BEM coefficients into vectors

wl = [w1(l), w2(l), ..., wQ]T . (7.4)

Suppose the whole data block is divided intoJ sub-blocks, where the coefficient vector in (7.4) for

thejth sub-block(j = 1, 2, ..., J) is denoted aswl(j) and updated every sub-block. Since a fading

channel well follows the Markov model, we further assume that the BEM coefficients of each block

are Markovian, too. The first-order AR process for BEM coefficients is then given by:

wl(j) = αwl(j − 1) + ηl(j), (7.5)

whereηl(j) defined similar towl(j), is zero-mean complex Gaussian noise and statistically inde-

pendent ofwl(j − 1). Based on the AR model in (7.5), a Kalman filter can be applied to track the

BEM coefficient for each block. After deriving the estimated BEM coefficients forjth sub-block

ŵl(j), the estimated channel impulse response for the wholejth sub-block can be given, via the
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CE-BEM, as

ĥ(n; l) = [ejω0n, ejω1n, ..., ejωQn]T ŵl(j). (7.6)

It would be interesting to explore this approach and compare it with our proposed approach.

Multiple Model Approach . In applying IMM we treated the estimated channel as the true

channel. It would be interesting to incorporate estimated channel statistics, e.g., estimation error

variance, into the IMM algorithm.
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APPENDIX A

ASYMPTOTIC DPS-BEM/ SLEPIAN SEQUENCES

The Slepian sequences as solutions to (2.5) are hard to work with analytically. Following [61,

Sec. 5.3.1] (in a different context), we will use asymptotic expressions (N “large”) based on some

heuristic considerations (as in [61, Sec. 5.3.1]). The entries in matrixC can also be expressed as

[C]y,z =
1
2π

∫ 2πνDmax

−2πνDmax

e−i(y−z)ωdω. (A.1)

Defineβ := 2νDmax andQS := Nβ. Let β be chosen larger than1/N so that we getQS ≥ 1. (To

simplify the discussion,QS andN are assumed to be even integers in what follows.) For largeN ,

we can approximate the integral in (A.1) as (ω = 2π
N p):

C ' 1
N

QS/2∑

p=−QS/2

a

(
2π

N
p

)
a∗

(
2π

N
p

)
:= C0, (A.2)

wherea(ω) := [1, e−iω, ..., e−iω(N−1)]T , andλps are theQS + 1 largest eigenvalues of the matrix

C. Based on (2.24), the eigenvectors of the matrixC0 are derived as
{

1√
N

a(2π
N p)

}QS/2

p=−QS/2
with

eigenvalues±1. Therefore, ifC0 is used to approximateC, the Slepian sequences in (2.2) and (2.5)

can be expressed as

ψ(S)
q (n) =

1√
N

e(−i2π(q−QS/2)n/N). (A.3)

[As noted in [61, Sec. 5.3.1],C0 does not approximateC in any rigorous sense.]

Obviously, the approximate Slepian sequences in (A.3) are complex-valued. Since the Slepian

sequences are real, we want to find a matrix with real eigenvectors that can approximateC based on

145



C0. SinceC0 is a real symmetric positive semi-definite matrix with real eigenvalues±1, it readily

follows thatgr := 1
2
√

N
(a + a∗) andgi := 1

2i
√

N
(a− a∗) are also the eigenvectors ofC0 and they

are real. From (A.2), we notice that

a∗
(

2π

N
p

)
= a

(
−2π

N
p

)
. (A.4)

Therefore, we can rewrite the matrixC0 as

C0 =
0∑

p=−QS/2

gr

(
2π

N
p

)
g∗r

(
2π

N
p

)
+

1∑

p=−QS/2

gi

(
2π

N
p

)
g∗i

(
2π

N
p

)
. (A.5)

With this expression of matrixC0, the normalized eigenvectors of matrixC0 are expressed as

{
gr(2π

N p)
}0

p=−QS/2
and

{
gi(2π

N p)
}1

p=−QS/2
. Thus, the corresponding approximate Slepian se-

quences forn ∈ {0, ..., N − 1} are

ψ(S)
q,r (n) =

√
2
N

cos(2π(q − QS

2
)n/N), ψ

(S)
q,i (n) =

√
2
N

sin(2π(q − QS

2
)n/N). (A.6)
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APPENDIX B

MATHEMATICAL NOTATIONS

≈ approximately equal to

⊗ Kronecker product

0M×N M ×N all zeros matrix

a lower case letters for scalars

dae integer ceiling ofa

bac integer floor ofa

|a| magnitude ofa

a lower case letters in bold face for column vectors

‖a‖ Frobenius norm ofa

A upper case letters in bold face for matrices

A∗ complex conjugate ofA

A† Moore-Penrose pseudo-inverse operation

AH complex conjugate transpose ofA

AT transpose ofA

[A]n,m (n,m)-th entry ofA

A upper case calligraphic letters for matrices

arg max
x

f (x) value ofx for whichf (x) attains its maximum

arg min
x

f (x) value ofx for whichf (x) attains its minimum

cov {·} covariance operator
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δ(·) Kronecker delta function, defined as

δ (n) =





1 if n = 0

0 if n 6= 0, t ∈ Z

J0(·) the zero-order Bessel function of the first kind

diag[a] diagonal matrix witha on its main diagonal

E {·} expectation operator

EH {·} expectation operator with respect toH

IN N ×N identity matrix

max (·) maximum value operator

min (·) minimum value operator

O (·) big O notation:f (x) = O (g (x)) asx → a (a ∈ R ∪ ±∞),

iff |f (x)| ≤ M |g (x)| asx → a for some constantM > 0

R real field

tr {A} trace of a square matrixA

Z integer field

j
√−1
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APPENDIX C

ABBREVIATIONS

AM amplitude modulation

AR auto-regressive

AWGN additive white Gaussian noise

BEM basis expansion model

BER bit error rate

BPSK binary phase-shift keying

CE-BEM complex exponential basis expansion model

CP cyclic prefex

CSI channel state information

DAB digital audio broadcasting

DFS discrete Fourier series DFS

DFT discrete Fourier transform

DML deterministic maximum likelihood

DMT discrete multi-tone

DPS discrete prolate spheroidal

DPS-BEM discrete prolate spheroidal basis expansion model

DS-CDMA direct sequence - code division multiple access

DSL digital subscriber line

DVB digital video broadcasting
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FB feedback

FF feedforward

FFT fast Fourier transform

FIR finite impulse response

FM frequency modulation

IBI interblock interference

IMM interacting multiple model

ISBI inter-subblock interference

ISI inter-symbol interference

LS least squares

LTI linear time-invariant

MAC media access control

MC multicarrier

MIMO multiple-input multiple-output

ML maximum likelihood

MLSE maximum likelihood sequence estimation

MSE mean square error

MMSE minimum mean square error

m.s. mean-square

MUI multiple-user interference
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NCMSE normalized channel mean square error

OFDM orthogonal frequency division multiplexing

PAM pulse amplitude modulation

pdf probability density function

PN pseudo-noise

PSAM pilot symbol aided modulation

QPSK quadrature phase-shift keying

RF Radio Frequency

SIMO single-input multiple-output

SISO single-input single-output

SNR signal-to-noise ratio

TI time invariant

TM time-multiplexed

TV time-varying

WSSUS wide sense stationary uncorrelated scattering
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