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 Very large scale integration (VLSI) circuits use input/output (I/O) cells to both 

send and receive signals from external resources.  Field Programmable Gate Arrays 

(FPGAs) and System-on-Chips (SoCs) with FPGA cores offer increasingly complex I/O 

cell resources with new generations of device architectures.  I/O cells can often be 

grouped together to form I/O tiles that can support even more complex features.  The ever 

increasing complexity of I/O tiles is indicative of the need for a reliable testing 

methodology to ensure the functionality of device resources.  Built-in self-test (BIST) is 

one such testing methodology that incorporates the testing circuitry with the device under 

test.   

A total of 78 BIST configurations are developed to test the I/O tile logic resources 

and supported I/O standards in Xilinx Virtex-4 FPGAs.  The BIST configurations are 

implemented and verified on Virtex-4 FPGAs.  The BIST configurations are generated 
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for all Virtex-4 FPGAs.  The general BIST approach presented in this thesis is applicable 

to any FPGA or SoC with a FPGA core.  The BIST approach can be used for both 

manufacturing and system level testing for I/O tiles with both bonded and unbonded I/O 

buffers.    
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CHAPTER ONE 
 

INTRODUCTION 
 

 
Field Programmable Gate Arrays (FPGAs) and configurable System-on-Chips 

(SoCs) that use FPGA cores are reconfigurable devices that are becoming increasingly 

important for applications in radiation prone environments, such as space, as well as 

critical applications that cannot allow for system downtime or the transmission of 

erroneous data.  Circuits used in aircraft systems, for example, are susceptible to single 

event effects, in which a radiation particle can cause an error in system functionality [1].  

The ever increasing purposes such devices serve in these types of applications are 

indicative of the need for a reliable testing methodology to ensure the functionality of 

device resources. 

A harsh operating environment or critical system application, however, is not 

required to raise concern over the testing of FPGAs.  The basic reliability of FPGAs, like 

most chips created in a very large scale integration (VLSI) process, is decreasing as the 

complexity of such devices increases and the feature size decreases.  There can be errors 

at the design level, defects sustained during the manufacturing process, or even faults that 

occur during system operation [2].  The generally accepted Moore’s Law predicts that the 

transistor feature sizes on a VLSI chip reduce by as much as 10.5% each year, and 

consequently, the transistor density of a VLSI chip can increase by as much as 22.1% 

each year [3].  These trends indicate that the transistor count on VLSI chips can nearly 
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double each year, which is historically accurate.  One approach to testing is to use 

automatic test equipment (ATE).  However, ATE has proven to be expensive and 

complex.  Several design for testability (DFT) techniques, such as scan design and built-

in self-test (BIST), have been developed to try to overcome the high cost of ATE 

equipment while still providing an acceptable level of fault coverage for a device [2]. 

 
1.1 Overview of Field Programmable Gate Arrays (FPGAs) 
 
 On the most fundamental level, an FPGA can be described as a “general-purpose, 

multi-level programmable logic device that is customized in the package by the end 

users” [4].  FPGAs are widely used because of their ability to be programmed to 

implement any digital logic circuit.  A typical FPGA architecture consists of an array of 

programmable logic blocks (PLBs), Input/Output (I/O) cells, and a programmable 

interconnect network, as exemplified in Figure 1.1.  Xilinx Virtex-4 FPGAs also contain 

columns of other elements that may be configured to implement a system function, such 

as block RAMs (BRAMs) and digital signal processors (DSPs) [5].  The PLBs in FPGAs 

typically consist of look-up tables (LUTs), multiplexers, and flip-flops.  The PLBs are 

configured individually to implement low level digital logic.  Then, the PLB inputs and 

outputs are connected together via the programmable interconnect network, also known 

as the programmable routing network, to implement larger circuits [6].  The routing 

network also provides signal paths from the I/O cells to the PLBs.  The I/O cells provide 

a means for the FPGA to exchange information with external devices also implemented 

in a system or directly with system inputs and outputs.  In Virtex-4 devices, two I/O cells 

are grouped together to form an I/O tile [5].  
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Figure 1.1: Typical FPGA Architecture 
 

 The programmable interconnect network comprises segmented wiring that is 

connected or disconnected through the use of programmable interconnect points (PIPs).  

A basic PIP structure, illustrated in Figure 1.2, consists of a configuration memory bit 

that controls a transmission gate placed between two wire segments.  The configuration 

memory bit used to control the transmission gate is often implemented as either a static 

RAM (SRAM) bit or an antifuse.  While a SRAM bit can be set high or low throughout 

system use, consequently turning on or off the transmission gate, an antifuse permanently 

joins wire segments according if antifuse is blown.  There are several types of PIPs, 

including break-point PIPs, cross-point PIPs, multiplexer PIPs, and switch-box PIPs 

[2][7].   
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Configuration 
 Memory Bit 

Transmission 
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Figure 1.2: Basic PIP Structure 
 

The programmable routing network also consists of local routing, which 

interconnects PLBs to form larger circuits, and global routing comprising wire segments 

that span various lengths of PLBs.  Global routing consists of horizontal and vertical lines 

that make use of periodically placed buffers to prevent signal degradation [7].    

 
1.2 Overview of Input/Output Tiles (I/O Tiles)  
 

An I/O tile consists of two I/O cells in a Virtex-4 FPGA, as seen in Figure 1.3.  

An I/O cell typically consists of an I/O buffer, input logic (ILOGIC) circuitry, output 

logic (OLOGIC) circuitry, and supporting routing resources [8][9].  The ILOGIC 

component comprises flip-flops, multiplexers, PIPs, and routing resources used to 

communicate from the I/O buffer and to the internal device resources.  ILOGIC 

components only receive signals from the I/O buffer while both sending and receiving 

signals from the internal device resources.  An ILOGIC component also contains an input 

delay element (IDELAY or IODELAY), shown as a grey box in Figure 1.3, used to add a 

fixed delay time to a signal.  The OLOGIC component similarly comprises flip-flops, 

multiplexers, PIPs, and routing resources.  However, an OLOGIC component typically 

only receives signals from the internal device resources and sends signals to the I/O 

buffer.  The I/O buffer comprises a pad, an input buffer, a tri-state output buffer, various 

digital logic resources such as multiplexers or PIPs, routing resources, and various analog 
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logic resources such as pull-up or pull-down transistors [5][10].  The ILOGIC, OLOGIC, 

and I/O buffers can be configured to operate in various modes and standards (i.e. slew 

rate, drive strength, and input delay are adjustable).  Also, there are some additional 

connections between ILOGIC, OLOGIC, and I/O buffers that will be discussed in more 

detail in subsequent chapters. 
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Figure 1.3: Basic I/O Tile Architecture 
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The pad acts as the interface between the die and package, and can be bonded or 

unbonded.  A pad is considered bonded if it is wire-bonded to a pin or ball on the device 

package allowing communication between the pad and other system signals external to 

the FPGA.  An unbonded pad is not wire-bonded to a pin or ball on the device package 

and cannot communicate with external system signals.  However, the resources of an I/O 

cell with an unbonded pad may still be used by the FPGA to implement system functions 

[8][11].  Therefore, both I/O cells with bonded and unbonded pads should be functionally 

tested.         

 I/O tiles can operate in various modes as single-ended or differential primitives.  

When operating as single-ended primitives, the I/O cells of an I/O tile typically function 

independently.  When operating as differential primitives, the two I/O cells of an I/O tile 

are paired together to perform differential operations.  Both single-ended and differential 

primitives allow for I/O cells to be configured as input, output, or bidirectional cells 

[5][10].  Input cells use the input buffer and ILOGIC resources to communicate a signal 

from an external source to the internal resources of the FPGA.  In contrast, output cells 

use the output buffer and OLOGIC to communicate internal device signals off chip.  

Bidirectional cells use both ILOGIC and OLOGIC resources to allow internal FPGA 

resources to communicate both to and from the I/O buffers or external signals.    

 
1.3 Overview of Built-In Self-Test (BIST) 
 
 Historically, most DFT techniques aim to satisfy three principle goals: high fault 

coverage, fast testing speed, and low cost.  BIST is one such DFT technique that can 

satisfy these principle goals, as well as overcome several other major testing problems, 
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such as test generation and application.  BIST is a DFT technique in which the hardware 

for testing a device is built into or around the device itself [12].  Built-in hardware allows 

for increased controllability and observability of the potential faults in a device to be 

tested.  The basic methodology of BIST can be described as: “to design a circuit so that 

the circuit can test itself and determine whether it is ‘good’ or ‘bad’ (fault-free or faulty, 

respectively)” [2].    

 A basic BIST architecture, shown in Figure 1.4, typically consists of essential 

BIST circuitry and a circuit under test (CUT).  The essential BIST circuitry, shown as 

grey boxes in Figure 1.4, typically includes a test pattern generator (TPG), output 

response analyzer (ORA), and test controller [12].  The TPG generates a sequence of test 

patterns that are applied to the CUT to activate potential fault sites.  Then, the outputs of 

the CUT are compacted in the ORAs which in turn produces a Pass/Fail result [2].  The 

test controller can be used to implement a number a functions, such as starting the BIST, 

initializing the CUT, or providing an indication that the BIST has finished. 

 
 

Figure 1.4: Basic BIST Architecture 
 

 BIST for FPGAs, unlike BIST for most other circuitry, can be implemented such 

as not to incur system performance or area overhead penalties, meaning system execution 
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time remains high and DFT costs remain low.  Using only additional memory (external to 

the FPGA) to store BIST configurations, there is no additional circuitry permanently 

added into the FPGA design itself.  FPGAs are configured repeatedly with different BIST 

configurations stored in the external memory to test various resources of the FPGA [8].  

Consequently, BIST proves to be a testing technique for FPGAs that well satisfies the 

principal goals of DFT.     

 
1.4 Overview of Prior Work in Testing I/O Tiles 
 
 A number of BIST architectures have been developed to test the various resources 

of FPGAs.  However, there has been little focus on developing BIST approaches for 

FPGA I/O cells.  A BIST for I/O speed testing was developed in reference [13].  The 

architecture presented in reference [13] used a delay-locked loop based BIST to test the 

setup and hold times of chip I/O buffers and registers.  While effective for testing I/O 

speed, the architecture presented in reference [13] does not fully test the resources 

contained in I/O tiles.   

The most significant contributions to BIST for FPGA I/O resources were 

developed in references [8],[9],[14], and [15].  These references developed a general 

BIST approach applicable to any FPGA or SoC with an FPGA core.  PLBs are used to 

implement TPGs that supply test patterns to I/O cells.  The I/O cells are configured as 

bidirectional buffers such that they receive test patterns from the TPGs and send results to 

the ORAs.  The output responses of the I/O cells are then circularly compared with 

identically configured I/O cells by ORAs which are also implemented in PLBs 

[8][9][14][15].  References [8] and [9] suggest that 98.6% fault coverage can be obtained 
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with seven BIST configurations for the I/O cells of a Virtex-4 device. However, these are 

theoretical results based on simulations and have not been implemented in an actual 

Virtex-4 FPGA.   

 
1.5 Thesis Statement 
 
 FPGAs are ever increasing in transistor count and logic resources, lending them to 

be more susceptible to faults in manufacturing or system operation.  Also, as these 

increases occur, FPGAs become harder to test to ensure their functionality.  To date, little 

work has been done targeting the I/O tiles of Xilinx Virtex and Spartan series FPGAs.  

This thesis presents a general BIST architecture developed to test the functionality of the 

various resources present in I/O tiles of FPGAs as well as specific BIST configurations 

developed and implemented in Xilinx Virtex-4 devices.   

 The remainder of this thesis is organized as follows: Chapter 2 provides 

architectural details of Virtex-4 FPGAs, an overview of prior work in BIST for FPGAs, 

and previous work pertaining to I/O testing.  Chapter 3 presents BIST configurations 

developed specifically to test the I/O tiles present in Xilinx Virtex-4 FPGAs.  Chapter 4 

provides experimental results obtained from testing the configurations developed for 

Virtex-4 I/O tile BIST.  Finally, Chapter 5 provides a summary and conclusion of the 

thesis as well as suggestions for future research and application. 
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CHAPTER TWO 
 

BACKGROUND INFORMATION 
 
 
 This chapter provides an overview of FPGAs and BIST techniques that have been 

developed for them that are similar to the one presented in this thesis.  Chapter 2 begins 

with discussion of the architectural details of the Xilinx Virtex-4 FPGA, including the 

programmable logic blocks, block RAMs, digital signal processors, digital clock 

managers, I/O tiles, and programming interface.  The chapter then goes on to provide 

background on previous BIST techniques that have been developed for FPGAs, including 

BIST for programmable logic blocks, BIST for block RAMs, and BIST for I/O cells.  

Finally, the chapter concludes with a thesis restatement in greater detail than written 

previously.   

 
2.1 Virtex-4 Architecture 

Xilinx Virtex-4 FPGAs are fabricated on a 90-nm copper process using 300-mm 

wafer technology.  Each Virtex-4 FPGA contains a variety of configurable elements and 

embedded IP cores that are optimized to implement high-density and high-performance 

system designs.  Some of the components common to all Virtex-4 devices include: 

configurable logic blocks (CLBs) that provide combinatorial and sequential logic; block 

RAM modules; digital signal processors; digital clock managers that perform self-
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calibrating high-speed clock operations and clock distribution; and input/output tiles 

enhanced for source-synchronous applications in which the data clock is provided by the 

data source.  Each component is interconnected by an array of routing switches that form 

a hierarchical general routing matrix that supports high-speed system designs [5][16].  

Virtex-4 FPGAs are classified into three families: LX for high-performance logic 

applications; SX for high-performance DSP applications; and FX high-performance 

embedded platform applications.  Some device families include features in addition to the 

common features listed above.  For example, FX devices contain at least one PowerPC 

processor core.  FX devices also contain RocketIO Multi-Gigabit Transceivers that 

support up to 6.5 Gb/s data rates [17].  The three device families are further divided into 

package categories that define chip area and pinout specifications such as the maximum 

number of I/O pins.  Device area and general purpose I/O pin count ranges from 17x17 

mm in the SF363 with 240 maximum I/O pins, to 40x40 mm in the FF1517 package with 

768 maximum general purpose I/O pins [5][16][18].           

 
2.1.1 Virtex-4 Configurable Logic Blocks 

Virtex-4 FPGAs contain an array of NxM programmable logic blocks, also known 

as configurable logic blocks (CLBs), where N is the number of rows and M is the number 

of columns of CLBs.  Array sizes range from 64x24 CLBs in the LX15 to 192x116 CLBs 

in the LX200.  The CLB array is the main resource available on an FPGA for 

implementing combinatorial and sequential logic circuit designs.  Each CLB joins the 

interconnect network of the FPGA through the use of a switch matrix.   
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A single Virtex-4 CLB contains four interconnected slices, which are further 

grouped into pairs.  Each slice contains two logic function generators implemented as 4-

input look up tables.  A look up table is the basic unit of configurable logic and 

implements combinational logic as a 2nx1 memory, where n is the number of inputs, and 

each bit in the LUT memory corresponds to a configuration bit [4].  Each slice also 

contains two storage elements (flip-flop or latch), wide function multiplexers, carry logic, 

and arithmetic gates [5].         

 
2.1.2 Virtex-4 Block RAMs 

As with other components on a Virtex-4 FPGA, the total number of block RAM 

memories depends on the family and size of the device.  The number of BRAMs on a 

Virtex-4 range from 36 in a FX12 to 552 in a FX140 and are organized into columns on 

the FPGA.  A BRAM is equal in height to four Virtex-4 CLBs.  Virtex-4 BRAMs store 

18K bits of data, and act as true dual port RAMs with dual address and data input and 

output lines.  The memory array can be configured with different aspect ratios offering 

different numbers of data outputs and RAM word depths, word widths, and number of 

parity bits.  Typical aspect ratios range from 16Kx1 to 512Kx36.  The dual BRAM ports 

can be independently configured with different aspect ratios [5][19].  Virtex-4 BRAM 

memory content is defined or cleared by the configuration memory bitstream.   

 
2.1.3 Virtex-4 Digital Signal Processors 

Digital signal processors are used to analyze and manipulate signals by 

implementing digital signal processing algorithms.  They can also be configured to act as 

simple arithmetic circuits, such as counters.  Similarly to BRAMs, the DSPs on Virtex-4 
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devices are organized into vertical columns on the FPGA.  The number of DSPs on a 

Virtex-4 device ranges from 32 on a LX15 to 512 on a SX55.  There are two DSP slices 

in every DSP tile of a DSP column.  A DSP tile is equal in height to four Virtex-4 CLBs 

[20].   

 
2.1.4 Virtex-4 Digital Clock Managers 

Digital clock managers (DCMs) are used to produce or manage clock signals for a 

Virtex-4 FPGA.  The number of DCMs on a Virtex-4 device range from four on the 

LX15, to 20 on the FX140, and are always located in the center column of every Virtex-4 

device.  They provide powerful clock management features such as clock deskew, phase 

shifting, frequency synthesis, and dynamic reconfiguration. The DCMs are instantiated in 

a continuous calibration mode in every Virtex-4 configuration if not used in the user 

design to avoid the effects of negative-bias temperature instability [21].  The predicted 

motion vector (PMV) module is used to maintain unused DCM components set in a 

continuous auto calibration state. The PMV module is an on-chip oscillator that is not 

readily accessible to user designs.   

One of the most powerful features of a DCM is its ability to produce a clock 

signal that is some factor or fraction of its input clock signal.  Separate outputs of a DCM 

can be used to produce either multiplied or divided clocks, as seen in Table 2.1.  Some 

DCM clock outputs are used to produce a phase shifted clock relative to the input clock.  

For example, the CLK2X and CLK2X180 outputs provide a doubled clock frequency 

relative to that of the DCM input clock.  The CLK2X180 output phase shifts the clock 

signal by 180 degrees.  The CLKDV output produces a clock output signal frequency that 
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is a specified fraction of the DCM clock input frequency.  CLKFX and CLKFX180 

output a clock signal frequency that is derived from simultaneous frequency division and 

multiplication (specified by the user) of the DCM clock input frequency [5].   

Table 2.1: Virtex-4 Digital Clock Manager Clock Output Ports 

Clock Output Port CLKIN Frequency Adjustment Phase Shift 
CLK0 None 0° 
CLK90 None 90° 
CLK180 None 180° 
CLK270 None 270° 
CLK2X Multiplied by 2 0° 
CLK2X180 Multiplied by 2 180° 
CLKDV Divided by integer range 1.5 to16 0° 
CLKFX Multiplied by integer range 2 to 32 

Divided by integer range 1 to 32 
0° 

CLKFX180 Multiplied by integer range 2 to 32 
Divided by integer range 1 to 32 

180° 

 
 
2.1.5 Virtex-4 Input/Output Cells 

General purpose I/O cells provide a means for the internal logic of FPGAs to 

communicate with external sources.  Dedicated I/O cells, on the other hand, are also 

needed so that the FPGA has a means of being configured with a bitstream downloaded 

to the device.  Dedicated I/O cells in Virtex-4 devices include configuration pins, such as 

JTAG MODE, PROGRAM_B, DONE, etc., that are all contained within a dedicated I/O 

bank.  The dedicated I/O bank in Virtex-4 FPGAs is BANK 0 and contains a constant 

voltage supply, VCC_CONFIG, and operates at a LVCMOS level.  Bank 0 is located in the 

center column of Virtex-4 devices.  Dedicated I/O cells can not be used as general 

purpose I/O cells at any time during system operation.  Dual-purpose I/O cells, however, 

can operate as general purpose I/O cells after device configuration is completed.  
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Examples of dual-purpose I/O cells are the SelectMAP Data pins located in Bank 2 of a 

Virtex-4 device [22].      

General purpose I/O cells consist of input logic, output logic, and an I/O buffer, as 

seen in Figure 2.1.  The input logic, output logic, and I/O buffer can be configured to 

operate in input, output, or bidirectional mode.  When operating in input mode, an I/O 

cell uses the pad, input buffer, and input logic resources to communicate a signal from an 

external source to the internal resources of the FPGA.  In contrast, when operating in 

output mode, an I/O cell uses the output logic and output buffer to communicate internal 

device signals off chip.  When operating in bidirectional mode, an I/O cell uses both 

input and output logic resources to allow internal FPGA resources to communicate both 

to and from the I/O buffers or external signals.  The input and output signal pins 

connecting the I/O buffer to the input and output logic are labeled as T, O, and I in Figure 

2.1.  The input logic can either route I/O buffer data directly to internal device resources 

or perform various operations on the data before routing it to internal device resources.  

Data can be inverted, delayed, or sent via a registered or unregistered path through the 

use of flip-flops, multiplexers, delay elements, and inverters.  Output data logic can also 

perform various operations, such as inverting or registering, on data in the data path 

coming from internal device resources before it is routed to the I/O buffer.  Aside from 

the output data path, output logic typically supports a tri-state control data path.  The tri-

state data path allows the output buffer to be tri-stated, or put into a high impedance state.  

The output buffer is typically tri-stated when the I/O cell is used in an input only mode 

[8].   
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Figure 2.1: Example FPGA Input/Output Cell 

Most input and output signal properties are managed by the I/O buffer, such as 

output drive strength, pull, slew rate, and I/O standard.  The output drive strength 

parameter is chosen to match power and loading on the pad.  Pull transistors can be 

configured as pull-up, pull-down, or keeper mode.  Pull-up and pull-down modes supply 

a weak logic high or low, respectively, to the pad to maintain known voltage levels.  

Keeper mode retains the last known logic value until a definitive logic value arrives.  

Slew rate limits the rate of change of a signal.  I/O standards define specific voltage 

requirements for the I/O cell.  For example, I/O standards requiring a differential 

amplifier input may require an external reference voltage, VREF, to be supplied to the 

amplifier.  I/O standards also require a constant supply voltage, VCCO, to power all or part 

of the I/O cell.  VCCO is used to set the output voltage level of an output buffer [8][23].     

As previously stated, I/O cells in FPGAs often contain logic resources that can be 

used to implement a system function, much like the use of CLBs.  The logic resources 

contained in modern I/O cells of FPGAs can include flip-flops, latches, multiplexers, and 

even delays elements.  The logic in an I/O cell is often utilized to implement a system 

function even if no input or output from the FPGA is realized for that particular I/O cell.  
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Furthermore, the logic resources in I/O cells that are unbonded are also used to 

implement system functions, in which case there can be no input or output between the 

FPGA and external signals [8][11]. 

 
2.2 Details of Virtex-4 General Purpose Input/Output Tiles 

This thesis focuses on test development for Virtex-4 FPGA general purpose 

input/output tiles.  Virtex-4 I/O cells are grouped into I/O banks.  An I/O bank consists of 

32 tiles spanning 32 CLBs and two clock regions.  The number of I/O banks in a Virtex-4 

FPGA depends on the device family, as seen in Table 2.2.  Not every I/O bank contains 

general purpose I/O cells.  For example, Bank 0 in all Virtex-4 devices contains only 

configuration and dedicated signals [5]. 

Table 2.2: Virtex-4 I/O Tiles and I/O Banks for Various Device Families [16][18] 

Package SF363 FF668 FF1148 FF1513 FF672 FF1152 FF1517
Pins 240 448 768 960 352 576 768 

I/O 
Banks

LX15 120 160      9 
LX25 120 224      11 
LX40  224 320     13 
LX60  224 320     13 
LX80   384     15 
LX100   384 480    17 
LX160   384 480    17 
LX200    480    17 
SX25  160      9 
SX35  224      11 
SX55   320     13 
FX12 120 160      9 
FX20     160   9 
FX40     176 224  11 
FX60     176 288  13 
FX100      288 384 15 

 
 
 
 
 

I/O 
Tiles 
Per 

Device 

FX140       384 17 
 

A Virtex-4 I/O tile consists of two I/O cells, as seen in Figure 2.2.  The top and 

bottom I/O cells are sometimes referred to as master and slave, respectively.  The total 
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components of an I/O tile include: two ILOGICs used for input data; two OLOGICs used 

for output data; and two I/O buffers used for input and output data.  The two I/O buffers 

are connected together to support differential I/O standards that require a pair of inputs or 

outputs.  The ILOGIC components of an I/O tile are also connected together to support 

larger data widths in deserialization operations.  Similarly, the OLOGIC components of 

an I/O tile are connected together to support large data widths in serialization operations.  

The input clocks of the two ILOGIC or OLOGIC components in an I/O tile can be shared 

or not shared.  The set and reset (SR and REV, respectively) signals are shared between 

the ILOGIC components of an I/O tile.  Similarly, the SR and REV signals are shared 

between the OLOGIC components of a single I/O tile [5][10].  The architecture and 

functionality of all three types of components of a Virtex-4 I/O tile are discussed in detail 

in this section.   
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Figure 2.2: Virtex-4 I/O Tile Architecture Block Diagram [5] 
 
 

2.2.1 ILOGIC 

A Virtex-4 ILOGIC component, seen in Figure 2.3, contains logic resources to 

support both combinational and registered I/O and tristate output control.  An ILOGIC 

also contains optional inverters on most input signals and a programmable delay module 

for fine delay tuning.  The combinatorial path, seen as the non-shaded path from input to 

output in Figure 2.3, provides a direct connection from the I/O buffer input driver to the 
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FPGA internal resources [5].  This path contains minimal logic to propagate the signal 

including two multiplexers and a PIP.  The combinatorial path is sometimes referred to as 

a routethrough in this thesis. 
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Figure 2.3: Virtex-4 Input Logic (ILOGIC) Architecture [5] 
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An ILOGIC component contains four registers (flip-flops) to support a registered 

I/O data path, seen in the shaded region of Figure 2.3.  The initial output value of each 

register is set by the INIT_Q1, INIT_Q2, INIT_Q3, and INIT_Q4 attribute.  IFF1 can be 

used in single-data-rate (SDR) operation in which data is present on ILOGIC outputs 

after each clock cycle.  IFF1 can also be configured as a level sensitive latch or a D type 

flip-flop.  The remaining flip-flops, IFF2, IFF3, and IFF4, are used to implement double-

data-rate (DDR) input.  All four registers share a common active high clock enable 

signal, CE1, and synchronous or asynchronous set/reset via SR and REV signals.  The SR 

control sets the four registers into the states specified by SRVAL attributes.  The REV 

signal forces the four registers into the opposite states specified by the SRVAL attributes.  

The SRVAL values can be set for each register individually.  However, all registers are 

configured as having a synchronous or asynchronous SR signal, specified by the 

SRTYPE attribute.  The SR and REV signals are also shared with adjacent ILOGIC 

blocks [5].     

 Clock signals are not shared between adjacent ILOGIC  blocks.  All clock signals 

of a Virtex-4 I/O cell are fully multiplexed to prevent clock sharing.  For DDR mode, an 

ILOGIC uses only a single clock input.  The ILOGIC supports three modes of DDR 

operation: opposite-edge; same-edge; and same-edge pipelined.  These three modes of 

DDR operation use the flip-flops in various configurations.  In opposite-edge mode, IFF1 

and IFF2 are configured as rising-edge triggered with a common data input signal.  IFF2 

is supplied an inverted version of IFF1’s clock signal.  In this scheme, the ILOGIC is 

ready to pass data from its Q1 output on a rising clock edge and from its Q2 output on a 

falling clock edge.  In same-edge mode, IFF4 is configured as rising-edge triggered with 
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a non-inverted clock signal and is placed on the output path of IFF2.  This allows the 

ILOGIC to pass data on its Q1 and Q2 outputs on the same clock edge with only a one 

clock cycle separation for data on Q1 and Q2.  In same-edge pipelined mode, all four 

registers of the ILOGIC are used.     Same-edge pipelined mode is similar to same-edge 

mode, except that IFF3 is placed on the output of IFF1.  This allows for data to be present 

on Q1 and Q2 on the same clock edge [5]. 

 Each ILOGIC component contains a programmable input delay module, 

IDELAY, which can be applied to the both the combinational and registered data paths.  

The IDELAY module is a 64-tap wrap-around delay module that provides a guaranteed 

fixed tap resolution.  The IDELAY module is used for fine delay tuning of input signals 

independent of process, voltage, and temperature variation.  The module can be 

configured to operate in three different modes: DEFAULT; FIXED; and VARIABLE.  In 

DEFAULT mode, zero-hold time delay is applied.  In FIXED mode, a hold time 

corresponding to the specified tap value between 0 and 63 is applied.  Each tap represents 

an added 78 pico-second delay.  The VARIABLE mode also adds a hold time delay 

corresponding to the specified tap value.  However, in VARIABLE mode, the tap value 

can be incremented or decremented.  For either FIXED or VARAIABLE modes of 

operation to work correctly, an IDELAYCTRL module must be instantiated in any given 

I/O bank configured with such parameters.  The IDELAYCTRL elements continuously 

calibrate the individual IDELAY modules in each I/O bank.  To calibrate the IDELAY 

modules correctly, the IDELAYCTRL modules must be given a 200 MHz +- 10% 

reference clock signal [5]. 
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2.2.2 OLOGIC 

  Virtex-4 OLOGIC components, as seen in Figure 2.4, contain two sets of 

functionally equivalent registers.  The top set of three registers, TFF1, TFF2, and TFF3 as 

seen in the non-shaded region in Figure 2.4, is used for tristate control of the I/O buffer.  

The bottom set of registers, OFF1, OFF2, and OFF3 as seen in the shaded region of 

Figure 2.4, is used for output data.  The tristate register set shares a common active high 

clock enable, TCE.  Similarly, the data register set shares a common active high clock 

enable, OCE.  All six OLOGIC registers share common SR and REV signals with similar 

characteristics described for the ILOGIC.  Also, like the ILOGIC, the topmost flip-flop of 

each set can be used to implement a D-type flip-flop or level sensitive latch.  The 

remaining registers in each set are used to support output DDR.  SDR and DDR modes 

operate in the same manner as described for the ILOGIC.  However, unlike ILOGIC, the 

OLGIC resources do not have a fourth register to support same-edge pipelined mode.  

Output multiplexers are used to select between flip-flop data paths.  An OLOGIC also 

has optional inverters for control signal active levels [5].   



 

 
 

D
CE 
CK 

SR REV

Q
OFF3 

D
CE 
CK 

SR REV

Q
OFF2 

D
CE 
CK 

SR REV

Q
OFF1 

D
CE 
CK 

SR REV

Q
TFF3 

D
CE 
CK 

SR REV

Q
TFF2 

D
CE 
CK 

SR REV

Q
TFF1 

OFFDDR 

OFF1 

OFF2 

OFFDDR 

OFF1 

OFF2 

TFFDDR 

TFF1 

TFF2 

TFFDDR 

TFF1 

TFF2 

TFF1 
T1 

TMUX 

TFFDDRB 

TFFDDRA 

OFF1 
D1 

OMUX 

OFFDDRB 

OFFDDRA 

REVINV 

SRINV 

OCEINV 

D2INV 

D1INV 

TCEINV 

T2INV 

T1INV 

CLK2INV 

CLK1INV 

OSRUSED 

OREVUSED

TSRUSED 

TREVUSED 

O1USED 

T1USED 

D2 

D1 

CLK 

TCE 

T2 

T1 

OCE 

REV 

SR 

TQ

TFFDDRB 

TFFDDRA 

OFFDDRA 

OFFDDRB 

OQ 

INIT_OQ 

1 
0 

SRVAL_OQ 

1 
0 

SRTYPE_OQ 

async
sync

INIT_TQ 

1 
0 

SRVAL_TQ 

1 
0 

SRTYPE_TQ 

async
sync

OFF1 

LATCH 
FF 

TFF1 

LATCH 
FF 

Output  
Data Path

Tristate
Control 
Path

Figure 2.4: Virtex-4 Output Logic (OLOGIC) Architecture [5] 

 25



 

 26

2.2.3 SERDES 

ILOGIC and OLOGIC components can be configured as input serial-to-parallel 

logic resources (ISERDES) and or output parallel-to-serial logic resources (ORSERDES) 

components respectively.  ISERDES allow for high speed serial-to-parallel conversion of 

data input to the FPGA from external resources.  OSERDES allow for high speed 

parallel-to-serial data conversion for data output from the FPGA’s internal resources.  

The ISERDES and OSERDES components can operate in SDR mode with data widths of 

two, three, four, five, six, seven or eight.  They can also operate in DDR mode with data 

widths of four, six, eight, or ten.  ISERDES/OSERDES operate in master/slave mode 

when the two ISERDES/OSERDES blocks of each I/O tile are joined together via the 

shift lines to allow for parallel-to-serial/serial-to-parallel data conversion widths higher 

than six. 

An ISERDES component contains a serial input from the I/O buffer, SR and REV 

inputs, clock inputs, an input clock enable module, an IDELAY module with 

corresponding input control lines, a BITSLIP module, six registered outputs, a 

combinatorial output, and two shift lines.  The SR is an active high reset to the ISERDES.  

The REV line cannot be used and should be grounded.   

The clock signals of an ISERDES include a CLK, CLKDIV, and OCLK inputs.  

The CLK signal is used as the clock to the serial input data stream.  The CLKDIV signal 

is a divided version of the CLK signal used to control parallelization of the input data as 

well as the ISERDES sub modules.  The OCLK signal is a high speed clock line that can 

be used to implement high speed memory applications.  When the ISERDES is used in 

MEMORY mode, the OCLK is used to transfer strobe-based memory data on a 
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peripheral device to the free running clock domain of the FPGA.  The NETWORKING 

attribute of the ISERDES is used when I/O that does not require the OCLK is used.  The 

input clock enable module contains a multiplexer that switches between two registered 

clock enable signals on opposite edges of the CLKDIV signal.  The output of the clock 

enable module controls the clock enables of the input registers located in the ISERDES.  

The clock enable module can also be configured such that only one unregistered clock 

enable is selected to directly control the clock enables of the ISERDES input registers. 

The BITSLIP module can be used to shift output line data one bit at a time until 

the ISERDES output lines are synchronized or ordered correctly to properly reflect the 

serial input data.  When invoked, the BITSLIP operation is performed synchronous to the 

CLKDIV input causing the parallel outputs of the ISERDES to be shifted to allow every 

pattern of a repeating serial input.  The shifting pattern for SDR mode is: shift output 

pattern left one position every clock cycle.  The shifting pattern for DDR mode is: 

alternate between a shift left by one and a shift right by three positions.  The BITSLIP 

activation signal must be asserted for one and only one clock cycle and then deasserted 

for at least one clock cycle before performing another BITSLIP operation. There is a two 

clock cycle latency before a BITSLIP operation is reflected on the ISERDES outputs.  

The BITSLIP operation should be disabled when the parallel data is synchronized to the 

correct position on the ISERDES outputs [5].   

An OSERDES component also contains CLK, CLKDIV, SR, REV, and shift 

signals lines that are used as described for ISERDES.  In addition, OSERDES contain six 

registered data inputs, an active high output clock enable input, four active high parallel 
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tristate inputs, an active high tristate clock enable signal, a serialized data output, and a 

tristate data output. 

The SERDES mode of operation is demonstrated in Figure 2.5.  This example 

shows an OSERDES 4:1 operation in DDR mode with four tristate inputs.  At clock event 

one, the data present on D1-D4 (E, F, G, and H respectively) is captured on the rising 

edge of the CLKDIV signal.  Clock event two occurs at the next rising edge of the CLK 

signal, at which time the data captured at clock event one begins to be transmitted to the 

output signal.  A new data value is transmitted at each edge of the CLK signal in DDR 

mode.  Because this example shows 4:1 data serialization in DDR mode, the second clock 

event is a falling and rising edge after the first.  Note that the G data value from input D3 

is not transmitted to the output because the third tristate signal is a logic high value when 

the data is captured at clock event one.    



 

 

Figure 2.5: OSERDES 4:1 DDR Timing Diagram from [5] 

2.2.4 I/O Buffer 

The architecture of a Virtex-4 I/O buffer can be seen in Figure 2.6.  The I/O 

buffers support a wide variety of standard interfaces including both single-ended and 

differential I/O standards.  I/O buffers include programmable control of output drive 

strength, slew rate, and on-chip termination.  A Virtex-4 I/O buffer contains input, output, 

and tristate drivers.  The I/O buffer architecture consists of PIPs to activate or deactivate 
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I/O signals, an output buffer, an input buffer, and a PAD that is either bonded or 

unbonded.  The output buffer, OUTBUF, provides a data path from the OLOGIC to the 

PAD of an I/O cell.  The OUTBUF can also be tristated through the use of the active low 

tristate signal.  The input buffer, INBUF, allows a path for data coming from the PAD 

sent to the ILOGIC of an I/O cell.  The INBUF has a differential input to support I/O 

standards requiring differential operations, or single-ended standards requiring a voltage 

reference.  An I/O buffer also has a PADOUT line which connects directly to an adjacent 

I/O buffer’s differential input buffer to support complementary differential I/O standards 

[5].   
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Figure 2.6: Virtex-4 I/O Buffer Architecture [5] 
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Virtex-4 FPGAs support a total of 69 I/O standards that define various DC 

interface parameters.  The I/O buffers in every I/O bank of a Virtex-4 FPGA support all 

3.3V I/O standards.  However, many I/O standards have technical restrictions that limit 

the general use of the I/O buffers.  One restriction is that nine I/O standards do not 

support bidirectional mode of operation in the I/O buffer, including LVDS_25, 

LVDSEXT_25, ULVDS_25, LDT_25, RSDS_25, SSTL2_I_DCI, SSTL18_I_DCI, 

LVDS_25_DCI, and LVDSEXT_25_DCI [5]. 

There are four main types of Virtex-4 supported I/O standards, represented in 

Figure 2.7.  These four types include single-ended, single-ended requiring a voltage 

reference (VREF), complementary differential, and digitally controlled impedance (DCI) 

I/O standards.  The two grey dotted lines running the length of Figure 2.7 separate the 

source and destination I/O buffers used in each type of standard.  Figure 2.7(a) shows the 

connections of a single-ended standard, in which a single wire connects the output buffer 

of one device to the input buffer of another.  
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Figure 2.7: Types of Virtex-4 Supported I/O Standards.  (a) Single-Ended.  (b) Single-
Ended Requiring a VREF.  (c) Complementary Differential.  (d) DCI 

 
Single-ended I/O standards, such as HSTL and SSTL standards, require a 

reference voltage to be applied to the I/O buffer’s differential input buffer, as seen in 

Figure 2.7(b).   When using such a standard, one of every 16 general I/O buffers in an I/O 

bank must be configured as a VREF input.  The specific I/O buffer in every set of 16 that 
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must be configured as a VREF input for each Virtex-4 device and package is located in the 

bottom I/O cell of the fifth I/O tile row from the bottom edge in each I/O bank, as 

indicated in [24].  This VREF input is routed internally to the VREF pin of each differential 

input buffer in the set of 16 I/O buffers to which the VREF input is assigned [5].  If any 

one I/O buffer in a set of 16 is configured with a standard requiring a VREF, then the VREF 

pin associated with that set cannot be configured by the user.   The designer must supply 

the required VREF from an external source directly to each VREF input.  

Complementary differential I/O standards require two output buffers at the 

source, as seen in Figure 2.7(c).  Output buffers i and j send complemented data to an 

input buffer at the destination side.  In Virtex-4 devices, complementary differential I/O 

standards require the use of both I/O cells in an I/O tile.  Figure 2.8 demonstrates an I/O 

tile operating as a system input with a complementary differential standard.  A data line is 

supplied to the positive terminal of the input buffer and its complement (shown as a grey 

dotted line) is applied to the negative input of the buffer.  A master I/O cell contains the 

differential input buffer.  A slave I/O cell in the same I/O tile sends data to the differential 

input buffer of the master I/O cell via its PADOUT line.  In this configuration, logic high 

on the positive terminal and logic low on the negative terminal will produce logic high 

output, while the opposite arrangement of values will produce logic low output.  If the 

I/O tile were configured as an output operating with a complementary differential I/O 

standard, an OLOGIC can be used to complement the data line.  The data line would be 

sent out via one output buffer while its complement would be sent out via the other 

output buffer in the I/O tile.  
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Figure 2.8: Input I/O Tile with Complementary Differential I/O Standard 

Virtex-4 devices provide a DCI option for most I/O standards which facilitates 

line termination, as seen in Figure 2.7(d).  The characteristic impedance of the driven line 

in Figure 2.7(d) is represented by the Z element.  Some I/O standards require line 

termination to VCCO with resistance equal to the characteristic impedance of the driven 

line.  Still other I/O standards require line termination to VCCO/2 with resistance equal to 

the twice the characteristic impedance of the driven line.  To match the line impedance, 

DCI can provide both single and split termination resistors at the source, destination, or 

both the source and destination [5].   

The termination resistance used to control the DCI line impedance is set by 

adding external reference resistors to two multipurpose reference pins in each I/O bank 

configured with a DCI I/O standard.  The two DCI reference pins in each I/O bank 
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consist of VRN and VRP pins that must be pulled to VCCO and ground, respectively, by 

external reference resistors [5].  When using a DCI I/O standard with any one I/O buffer 

in an I/O bank, the user must not configure the two DCI reference pins of the given I/O 

bank so that they can be connected to external reference resistors.  Also, Banks one and 

two of a Virtex-4 device do not support DCI standards.  The VRN and VRP DCI reference 

I/O buffers are located in the tenth row from the bottom edge of each I/O bank, with the 

exception of banks in the center column, as specified in [24].   The VRN and VRP DCI 

reference I/O buffers of I/O banks in the center column are located in the second row 

from the bottom edge and second row from the top edge.  I/O banks one and two located 

in the center column above and below the center of every Virtex-4 package do not 

support DCI I/O standards.   

Table 2.3 lists the general purpose I/O buffers for bank seven of a Virtex-4 with 

package FF668.  The table demonstrates the location of the DCI reference resistor pins 

within the bank.  Table 2.3 also lists the location of the four VREF pins and two 

IDELAYCTRL modules in the bank.  The IDELAYCTRL modules are listed between 

rows as they are placed on the device.   The use of these pins and the testability of the 

various I/O standards will be discussed in greater detail in subsequent chapters. 
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Table 2.3: General Purpose I/O Bank 7 for Virtex-4 Package FF668 

Row Component Other 
Function 

Row Component Other 
Function 

0 I/O Buffer AD21  16 I/O Buffer AC24  
0 I/O Buffer AE21  16 I/O Buffer AC23  
1 I/O Buffer AE18  17 I/O Buffer AD23  
1 I/O Buffer AF18  17 I/O Buffer AD22  
2 I/O Buffer AF22  18 I/O Buffer AA23  
2 I/O Buffer AF21  18 I/O Buffer AB23  
3 I/O Buffer AB18  19 I/O Buffer AB22  
3 I/O Buffer AC18  19 I/O Buffer AC22  
4 I/O Buffer AC20 VREF 20 I/O Buffer Y23 VREF 
4 I/O Buffer AB20  20 I/O Buffer Y22  
5 I/O Buffer AA17  21 I/O Buffer AD26  
5 I/O Buffer Y17  21 I/O Buffer AD25  
6 I/O Buffer AA20  22 I/O Buffer AA26  
6 I/O Buffer AA19  22 I/O Buffer AB26  
7 I/O Buffer AC19  23 I/O Buffer AC26  
7 I/O Buffer AD19  23 I/O Buffer AC25  
 IDELAYCTRL IDELAY  IDELAYCTRL IDELAY 
8 I/O Buffer AB21  24 I/O Buffer Y24  
8 I/O Buffer AC21  24 I/O Buffer AA24  
9 I/O Buffer AD20 DCI VRN 25 I/O Buffer AB25  
9 I/O Buffer AE20 DCI VRP 25 I/O Buffer AB24  
10 I/O Buffer AE24  26 I/O Buffer Y26  
10 I/O Buffer AF24  26 I/O Buffer Y25  
11 I/O Buffer Y18  27 I/O Buffer V20  
11 I/O Buffer AA18  27 I/O Buffer W20  
12 I/O Buffer Y21 VREF 28 I/O Buffer W24 VREF 
12 I/O Buffer Y20  28 I/O Buffer W23  
13 I/O Buffer AE23  29 I/O Buffer W22  
13 I/O Buffer AF23  29 I/O Buffer W21  
14 I/O Buffer W19  30 I/O Buffer W26  
14 I/O Buffer Y19  30 I/O Buffer W25  
15 I/O Buffer AF20  31 I/O Buffer V22  
15 I/O Buffer AF19  31 I/O Buffer V21  

 
 
2.2.5 Programming Interface 

All Virtex-4 FPGAs contain four boundary scan (also known as JTAG) modules 

that conform to the IEEE 1149.1-2001 standard [19][22].  Boundary scan 
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implementations consist of four major signals: test clock input (TCK), test mode select 

(TMS), test data in (TDI), and test data out (TDO).  TCK provides the test clock signal.  

TDI receives serial test data and instructions.  TDO provides a serial output for test data 

and instructions [25].   

TMS signals are decoded by the test access port (TAP) controller to control test 

operations.  The TAP controller provides access to configuration and test support 

functions built into the FPGA, including INTEST and EXTEST features as described in 

[25].  The EXTEST feature can be used to test the buffers, pad, and tristate control of the 

I/O buffer.  However, the EXTEST feature only has access to the I/O buffer and cannot 

test the remaining logic of the I/O cell.  The INTEST feature can be used to test the 

programmable logic resources in an I/O cell.  However, the INTEST feature is supported 

by few FPGAs [9].  Virtex-4 FPGAs also allow boundary scan signals to be connected 

directly from the TAP to internal FPGA resources [19][22].      

 
2.3 Built-In Self-Test for FPGAs 

 The goal of a BIST developed for FPGAs is to test the FPGA components 

through a series of test configurations.  A test procedure for FPGA BIST typically 

consists of: 1) configure the FPGA with the BIST test circuitry including TPGs, blocks 

under test (BUTs), and ORAs; 2) initiate the BIST test circuitry; 3) the BIST circuitry 

generates test patterns with TPGs and sources them to the components under test; 4) 

generate a comparison based pass/fail indication with BIST circuitry ORAs; and 5) read a 

pass/fail indication from BIST circuitry ORAs [26].  FPGAs are configured repeatedly in 

this manner with different BIST configurations stored in the external memory to test 
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various resources and functionality of the device under test [8].  A group of BIST 

configurations that test a given component of the FPGA are sometimes collectively 

referred to as a test session [26][27].   

BIST has proven to be an effective technique for testing most major components 

of a FPGA.  For example, [27] presents a general BIST architecture aimed at testing 

PLBs.  The basic BIST architecture consists of alternating rows of PLBs that are 

configured as BUTs or ORAs, as seen in Figure 2.9.  Two identical TPGs are used to 

drive alternating rows or columns of logic blocks under test to ensure TPG functionality 

and test diagnostic resolution, as seen in Figure 2.9 (a).  The outputs of the BUTs are then 

compared by PLBs configured as ORAs.  Because exactly half of the PLBs are 

configured as BUTs, only two test sessions are required for the entire FPGA.  The 

floorplans of the two test sessions required are illustrated in Figure 2.9 (b) and (c).  When 

the first test session has completed, the PLBs that are BUTs in session one are 

reconfigured to be the TPGs and ORAs for session two [27].        



 

BIST Start/Reset 
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Figure 2.9: BIST Architecture presented in [27].  (a) TPG, BUT, ORA connections.      
(b) Floorplan for first test session.  (c) Floorplan for second test session. 

 
BIST has also proven effective for various FPGA cores.  For example, [19] 

presents a BIST approach for testing BRAMs in Virtex-4 devices.  The basic BRAM 

BIST architecture consists of CLBs configured as TPGs that source test patterns to 

BRAMs under test, as seen in Figure 2.10.  Again, two identical TPGs are used to drive 

alternating rows of BRAMs under test to ensure TPG functionality.  The outputs of the 

BRAMs under test are then circularly compared by CLBs configured as ORAs.  The 
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ORAs form a circular based comparison to enhance diagnostic resolution of a particular 

failing BUT or TPG.  As indicated by the arrows of Figure 2.10, the topmost BRAMs are 

compared with the bottommost BRAMs to complete the circular comparison chain [19]. 
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Center Line

= Core Under Test = ORA PLBs 

= TPG PLBs = unused PLBs 

Figure 2.10: BRAM BIST Architecture Presented in [19] 

BIST for FPGAs, unlike BIST for most other circuitry, can be implemented such 

as not to incur system performance or area overhead penalties, meaning system execution 

time remains high and DFT costs remain low.  Using only additional memory (external to 



 

the FPGA) to store BIST configurations, there is no additional circuitry permanently 

added into the FPGA design itself.  When the BIST test session is complete, the BIST 

circuitry is removed from the FPGA [8].       

 
2.4 Previous Work in I/O Testing 

 This thesis is primarily built upon the BIST work presented in [8][9][14][15].  In 

[8][14][15], a system level BIST architecture similar to those described for CLBs and 

BRAMs is presented for I/O cells of Atmel FPGAs.  The BIST architecture, as seen in 

Figure 2.11, consists of a single TPG implemented in PLBs sourcing test vectors to I/O 

cells under test.  Only a single TPG was implemented under the assumption that internal 

FPGA resources have already been tested.  The architecture presented in [9] added 

multiple identically configured TPGs that drive alternating I/O cells under test for 

improved fault detection as will be discussed in Chapter 3.   

Figure 2.11: BIST Architecture from [8], also representative of [14][15] 
 

The I/O cells are identically configured with bidirectional I/O buffers so that the 

output responses are sent back into the FPGA internal resources.  The output responses of 

the I/O cells are then compared by PLBs configured as ORAs.  Figure 2.12 shows the 
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ORA architecture used in [8][9][14][15].  The ORAs are configured such that the outputs 

of every I/O cell are compared with the outputs of their adjacent I/O cells.  This 

configuration is used to implement circular comparison for enhanced diagnostic 

resolution.  The ORA design contains shift data and shift mode lines to support 

connecting the ORAs as a scan chain or shift register similar to that of boundary scan.  

The shift lines can be used to shift test results out of the ORAs when the FPGA does not 

support CLB configuration memory read back.  The ORA design also contains feedback 

from the storage element flip-flop such that failure indications of logic high value due to 

mismatches in output responses as a result of faults are retained until the BIST results are 

read from the device [8][9][14][15].   

 
Figure 2.12: Comparison Based ORA Architecture [9] 

 
While presenting a general architecture applicable to any FPGA or SoC with a 

FPGA core, [8][9][14][15] only develop BIST configurations for the Atmel AT94K SoC 

and AT40K FPGA.  The AT94K and AT40K contain primary and secondary I/O buffers.  

An Atmel primary I/O buffer, as seen in Figure 2.13, consists of pull-up and pull-down 

transistors, input and output buffers, and input and output multiplexers.  The input buffer 

has four programmable delay settings.  The input buffer can also implement a Schmitt 

trigger circuit that helps filter input noise.  Another feature of the input buffer is the 

ability to support both TTL and CMOS voltage levels.  The output buffer has variable 

drive strength and tristate control.  Both the input and output portions of the I/O buffer 
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share access to the routing interconnect resources through the use of transmission gates 

[8][14].   

 
Figure 2.13: Primary I/O Buffer in Atmel FPGA [14] 

 
Secondary I/O buffers are similar in architecture to primary I/O buffers.  One 

difference between the two types of I/O buffers is the secondary I/O buffer has 6-input 

tristate and output multiplexers whereas the primary I/O buffer has 7-input multiplexers.   

Another difference is that the primary IO buffer has four transmission gates whereas the 

secondary I/O buffer only has two.  One final difference is that the primary and 

secondary I/O buffers have different connections to the internal PLBs.  Because of the 

similarity, secondary I/O buffers in Atmel devices can be thought of as a subset of 

primary I/O buffers [8][14].   

References [8][9][14][15] present 23 BIST configurations to obtain 100% stuck-at 

gate-level fault coverage.  This indicates that all gate-level faults located in the logic and 

routing resources of the primary and secondary I/O buffers can be detected.  The BIST 
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approaches presented can also detect major defects affecting the analog programmable 

features of the I/O buffers, such as pull-up, pull-down, and tristate termination.  However, 

the BIST approaches presented here cannot detect parametric faults such as delay or 

current sink and source capabilities. Overall, these BIST approaches provide the ability to 

perform tests at different frequencies and produce more reliable results than the 

conventionally accepted boundary scan testing [8][9][14][15].   

 
2.5 Thesis Restatement 

 This thesis presents a general BIST architecture developed to test the 

functionality of the various resources present in I/O tiles of FPGAs as well as specific 

configurations developed and implemented in Xilinx Virtex-4 devices.  This thesis builds 

on the work presented in [8][9][14][15].  However, this thesis offers several 

improvements over the previously discussed BIST approaches including the use of 

multiple TPGs for improved fault detection.  The TPGs are also implemented in BRAM 

memory for improved controllability.   

The thesis describes BIST configurations developed for testing the full 

functionality of Virtex-4 I/O tiles that use two I/O cells in conjunction with each other.  

This thesis first presents BIST configurations to test I/O tile logic resources, including 

ILOGIC, OLOGIC, SERDES, and I/O buffer resources.  Some new modes of operation 

are addressed, such as I/O tiles operating in master/slave ISERDES/OSERDES mode.  

The thesis then discusses BIST configurations developed to test Virtex-4 supported I/O 

standards.  This thesis explores the testability of all supported I/O standards, including 

single-ended, single-ended requiring a reference voltage, complementary differential, and 
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DCI standards.  A detailed description of the I/O tile BIST configurations developed will 

be given as well as experimental results obtained from their implementation.   
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CHAPTER THREE 
 

I/O TILE BIST FOR VIRTEX-4 FPGAS 
 
 
 This chapter describes the BIST configurations developed to test the logic and 

routing resources of I/O tiles in Virtex-4 FPGAs.  The chapter begins with a discussion of 

the BIST architecture that is common to all of the configurations developed, including 

TPGs and ORAs.  Section 3.2 describes the BIST configurations developed to test logic 

modules present in I/O tiles including ILOGIC, OLOGIC, SERDES, and I/O buffer 

resources.  Section 3.3 then describes BIST configurations developed to test the various 

I/O standards supported in Virtex-4 devices.  Finally, section 3.4 provides a summary of 

the Virtex-4 I/O tile BIST configurations. 

 
3.1 BIST Architecture 

 The basic BIST architecture used in all I/O tile BIST configurations is shown in 

Figure 3.1.  In this architecture, TPGs source test vectors to I/O tiles under test, which are 

configured with bidirectional I/O buffers.  The BIST architecture is similar to those 

presented in [8][14][15].  However, in this architecture a second set of TPGs is added.  

Multiple sets of TPGs drive alternating I/O tiles under test.  This TPG configuration 

avoids the assumption in previous I/O BIST approaches that internal FPGA resources are 

already known to be fault free.  The concern in a single TPG architecture is that a faulty 

TPG may skip test patterns necessary to detect faults in the I/O tiles such that they escape



 

detection.  If a TPG is faulty, every I/O tile that it drives will produce identical failures.  

This will occur because each I/O tile response produced by a faulty TPG is compared 

with an I/O tile response produced by an alternate TPG.  This assumes that the alternate 

TPG to that of the faulty TPG does not have an identical fault, the likeliness of which is 

very small.    
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Figure 3.1: Basic I/O Tile BIST Architecture 

The TPGs are implemented as one column of DSPs addressing two columns of 

BRAMs that store test vectors, as seen in Figure 3.1. There are two TPGs placed every 

four rows of CLBs or I/O tiles in a Virtex-4 device.  The use of two TPGs per four rows 
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of I/O tiles reduces signal loading in FPGAs with large numbers of rows.  The two TPGs 

drive alternating rows of I/O tiles in both the leftmost, middle, and rightmost columns of 

a device.  The BRAMs are either implemented with an aspect ratio of 16Kx1 or 512x36, 

depending on the BIST configuration developed.  The use of BRAMs to store test vectors 

allows for modification of the test vector set without having to modify the existing BIST 

architecture.  The output data lines of the BRAM TPGs drive both ILOGIC and OLOGIC 

components of an I/O tile. 

In each configuration, there is a single column containing one DSP for each 

BRAM.  Each DSP is configured as a counter such that its outputs, P0-P9, are connected 

to the D0B0-D0B9 address inputs of a BRAM TPG.  A DSP counter increments its count 

once per clock cycle.  The clock supplied to a DSP is the BIST clock generated from 

either a boundary scan clock or DCM divided clock, depending on the set of BIST 

configurations.  The remaining DSP signals and attributes are summarized below in 

Table 3.1.   
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 Table 3.1: DSP Signals and Attributes for All Configurations 

Signal/Attribute I/O/Attribute Connection Function 
A0-A17 Input GLOBAL 0 Multiplier A inputs 
B0 Input GLOBAL 1 Multiplier B input 
B1-b17 Input GLOBAL 0 Multiplier B inputs 
CARRYIN Input GLOBAL 0 Carry Input 
CARRYINSEL0 Input GLOBAL 0 Select Carry Source 
CARRYINSEL1 Input GLOBAL 0 Select Carry Source 
CEA Input GLOBAL 1 Hold AREG 
CEB Input GLOBAL 1 Hold BREG 
CECARRYIN Input GLOBAL 0 Hold Clock Enable 
CECINSUB Input GLOBAL 1 Hold SUBTRACTREG 
CECTRL Input GLOBAL 1 Hold CARRYINSELREG 
CEM Input GLOBAL 1 Hold MREG 
CEP Input GLOBAL 1 Hold PREG 
Clock Input BIST clock Clock 
OPMODE0-6 Input 1100010 X, Y, Z multiplexers 
RSTA Input GLOBAL 0 Reset AREG 
RSTB Input GLOBAL 0 Reset BREG 
RSTCARRYIN Input GLOBAL 0 Reset CARRYIN 
RSTCTRL Input GLOBAL 0 Reset SUBTRACTREG 
RSTM Input GLOBAL 0 Reset MREG 
RSTP Input GLOBAL 0 Reset PREG 
SUBTRACT Input GLOBAL 0 ADD/SUBTRACT 
P0-P9 Output D0B0-D0B9 Product Outputs 
MREG Attribute GLOBAL 1 Number of Pipeline Reg 
PREG Attribute GLOBAL 1 Number of Pipeline Reg 
Remaining Atts. Attribute GLOBAL 0 Various 

 
The ORAs are shown in Figure 3.2 where each output signal of every I/O tile 

under test is sent to an ORA comparator in its associated row as well as the row directly 

above it.  The topmost I/O tile in a column under test sends its output responses to ORA 

comparators in its associated row as well as the bottommost row under test.  This 

effectively forms a circular comparison chain where every output signal of an I/O tile 

under test is compared with the identical output signals of two other I/O tiles.  Any 

mismatch places a logic high value into the ORA flip-flop, where it is then retained by 
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the ORA feedback line until the pass/fail result is read at the end of the BIST sequence.  

The logic functions indicated are performed by a LUT in each slice.  Each slice contains 

two LUTs, and thus can be used to implement two ORAs.  The number of ORAs 

implemented depends on the set of BIST configurations.  When testing I/O tiles in the 

leftmost and center column of a device, the ORAs are implemented in CLBs beginning 

one column to the right of the I/O tiles under test, as seen in Figure 3.1.  When testing I/O 

tiles in the rightmost column of a device, the ORAs are implemented in CLBs beginning 

one column to the left of the I/O tiles under test. 

 

Figure 3.2: I/O Tile BIST ORA Architecture 

 Each set of BIST configurations instantiates at least one boundary scan module 

for the BIST sequence execution.  The boundary scan clock signal is sent to a clock 

buffer so that it can then be used as a global BIST clock in BIST configurations other 

than the SERDES configuration set.  The boundary scan TDI signal is used by the BIST 

configurations as a reset signal to various components, such as IDELAYCTRL modules.   

Each Virtex-4 I/O tile BIST configuration instantiates all of the IDELAYCTRL 

modules of the Virtex-4 device under test.  As stated in the previous chapter, the 

IDELAYCTRL elements continuously calibrate the individual IDELAY modules in each 

I/O bank and must be instantiated when using the IDELAY element in FIXED or 
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VARIABLE delay mode.  The IDELAYCTRL modules are supplied a reference clock, 

used for calibration, and a reset line from the boundary scan module TDI output.  The 

IDELAYCTRL modules are reset at the beginning of each BIST configuration, as 

recommended in [5].  The output of each IDELAYCTRL module indicates that the 

module has been reset.  The I/O tile BIST configurations developed in this thesis leave 

each IDELAYCTRL module output unconnected, as it is not necessary for a user design.     

 
3.2 Configurations to Test I/O Tile Logic Resources 

 The BIST configurations presented in this thesis can be divided into three main 

categories to test logic resources and I/O standards.  Section 3.2.1 describes the BIST 

configurations developed to test logic resources present in the ILOGIC, OLOGIC, and 

I/O buffer components.  Section 3.2.2 then describes BIST configurations developed to 

test the logic resources of ILOGIC and OLOGIC components when operating in 

SERDES mode, as well as remaining I/O buffer logic resources.  The BIST 

configurations developed to test the various I/O standards supported by the I/O buffers 

are discussed in Section 3.3. 

 
3.2.1 Configurations to Test ILOGIC, OLOGIC, and I/O Buffers 

The architectures of ILOGIC, OLOGIC, and I/O buffers in Virtex-4 FPGAs were 

described in Section 2.2.  Eight BIST configurations are required to test the ILOGIC and 

OLOGIC routing and logic resources.  This set of eight BIST configurations is also used 

to test various I/O buffer resources.  Tables 3.2, 3.3, and 3.4 in this section list what each 

of eight BIST configurations in this set test in terms of ILOGIC, OLOGIC, and I/O buffer 

logic resources.   
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Table 3.2 shows the various configuration modes of ILOGIC components tested 

by each of the eight BIST configurations.  Configurations one, two, and three test the 

majority of resources in the ILOGIC registered data path.  They test the synchronous 

functionality of all four flip-flops in the registered data path including INIT and SRVAL 

attributes.  They also test the SR, REV, CE1, and CLK inverters and functionality.  

Finally, they test the IFF3 and IFF4 selection of the Q1 and Q2 output multiplexers, 

respectively.  The next five configurations test the remainder of the ILOGIC resources 

using only the top two flip-flops of the registered data path, thus also testing the IFF1 and 

IFF2 selection of the Q1 and Q2 output multiplexers, respectively.  Configuration six 

tests the asynchronous latch capability of the IFF1 flip-flip.  Configurations seven and 

eight test the full functionality of the IDELAY module.  Configuration seven uses the 

IDELAY module with a fixed delay.  Configuration eight sets the IDELAY module in a 

variable delay mode, which also allows the TPG to increment and decrement the delay 

module values to test every delay value. 
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Table 3.2: Configuration Modes of ILOGIC Components 

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8 
DELAYMUX 1 0 0 0 1 1 0 0 
DELMUX 0 1 1 0 1 0 0 0 
D2OBYPSEL T T GND GND GND GND GND GND 
IMUX 0 1 0 1 1 1 1 1 
IFFDELMUX 1 0 1 1 0 0 1 0 
D2OFFBSEL T GND T GND T GND GND GND 
IFFMUX 1 0 1 0 0 1 0 1 
CE1INV CE1_B CE1 CE1_B CE1_B CE1_B CE1 CE1_B CE1_B 
CLKINV CLK CLK CLK_B CLK_B CLK_B CLK CLK_B CLK_B
SRINV SR SR SR_B SR_B SR_B SR SR_B SR_B 
REVINV REV REV REV_B REV_B REV_B REV REV_B REV_B
Q1MUX IFF3 IFF3 IFF3 IFF1 IFF1 IFF1 IFF1 IFF1 
Q2MUX IFF4 IFF4 IFF4 IFF2 IFF2 IFF2 IFF2 IFF2 
IFF1 FF FF FF FF FF Latch FF FF 
SRVAL[1:4] 0000 1111 1111 1111 0000 1111 1111 1111 
INIT[1:4] 0011 1111 0000 1111 1111 1111 1111 1111 
SRTYPE Sync Sync Sync Sync Sync Async Sync Sync 
CLKDIVINV DIV_B DIV_B DIV_B DIV_B DIV_B DIV_B DIV_B DIV 
DELAYVAL. 0 0 0 0 0 0 2 63 
DELAY 
TYPE Default Default Default Default Default Default Fixed Var. 

 
The eight configurations used to test ILOGIC components are also used to test 

OLOGIC resources.  At least four BIST configurations are required to test the four 

possible values of the TMUX and OMUX output multiplexers.  Table 3.3 below shows 

the various configuration modes of OLOGIC components tested by the eight BIST 

configurations.  Configurations four and five test the asynchronous latch functionality of 

the topmost flip-flops in both the tristate and output data paths.   Configurations three, 

four, and eight also test the combinatorial paths of the tristate and output data paths, thus 

testing the T1 and D1 selection of the TMUX and OMUX multiplexers, respectively.  As 

seen in Table 3.3, the remaining BIST configurations in this set test the various other 

OLOGIC resources and output multiplexer selections.  
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Table 3.3: Configuration Modes of OLOGIC Components 

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8 
T1INV T1_B T1 T1_B T1_B T1_B T1 T1 T1_B 
T2INV T2_B T2 T2_B T2_B T2_B T2 T2 T2_B 
TCEINV TCE_B TCE_B TCE_B TCE_B TCE TCE TCE_B TCE_B 
CLK1INV C C_B C_B C C_B C_B C_B C 
CLK2INV CLK_B CLK_B CLK_B CLK CLK CLK CLK_B CLK 
D1INV D1 D1_B D1_B D1_B D1_B D1 D1_B D1_B 
D2INV D2 D2_B D2 D2_B D2_B D2 D2_B D2_B 
OCEINV OCE_B OCE_B OCE OCE_B OCE_B OCE OCE_B OCE_B
SRINV SR SR_B SR SR_B SR SR_B SR SR_B 
REVINV REV REV_B REV REV_B REV_B REV_B REV REV_B
TFF1 FF FF FF Latch FF FF FF FF 
OFF1 FF FF FF FF Latch FF FF FF 
TMUX DRB DRA DRB TFF1 TFF1 DRA TFF1 T1 
OMUX DRB DRA D1 D1 OFF1 OFF1 DRB D1 
SRVALOQ 1 1 1 1 0 1 0 1 
SRVALTQ 1 1 0 0 1 0 0 0 
INITOQ 1 0 1 1 0 1 0 1 
INITTQ 1 0 0 0 0 1 0 0 
SRTYPEOQ Sync Sync Sync Async Sync Sync Sync Sync 
SRTYPETQ Sync Sync Sync Sync Async Sync Sync Sync 

 
The I/O buffer testing is limited by the bidirectional configuration the BIST 

architecture requires.  However, several of the I/O buffer logic resources can be tested 

with this set of eight BIST configurations, as seen in Table 3.4.  The I/O buffers are 

configured to operate in each of the slew and pull modes.  Five of the eight drive 

strengths are tested: 24, 4, 6, 2, 8.  The configurations that use PCI I/O standards do not 

support testing drive strengths.  The remaining drive strengths are tested in BIST 

configurations developed to test SERDES logic resources.  This set of BIST 

configurations also tests eight different I/O standards, including LVTLL, LVCMOS, and 

PCI standards.  The remainder of the I/O buffer attributes and standards are tested with 

BIST configurations discussed in the next two sections.   
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Table 3.4: Configuration Modes of I/O Buffer Components 

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8
PULL Keep. Down Pullup Keep. Down Pullup Keep. Keep. 
GTSATTR Off Disable Disable Off Disable Disable Off Off 
SLEW Slow Fast Slow Off Slow Off Fast Slow 
DIFFTERM NA NA NA NA NA NA NA NA 
DRIVE 24 4 6 Off 2 Off 8 Off 
DRIVE0MA Off Drive0 Drive0 Off Drive0 Drive0 Off Off 

IOATTR LVTTL 
LVCM- 
OS33 

LVCM- 
OS25 

PCI66 
-3 

LVCM- 
OS15 

PCI33 
-3 

LVCM- 
OS18 

PCI 
-X 

 
The architecture of the TPG BRAMs used to test ILOGIC, OLOGIC, and I/O 

buffer logic and routing resources is summarized in Table 3.5.  Address lines ADDRA4-

13 are incremented from a DSP counter once per clock cycle to set the next two bytes of 

BRAM data (test vectors) on the BRAM output bus.  The first two test vectors stored in 

the BRAM are constant logic highs used to test the INIT values.  The remaining BRAM 

test vector contents were generated using a twelve bit linear feedback shift register to 

provide pseudo-random patterns on the TPG outputs.  The linear feedback register used 

was designed with external feedback and a primitive polynomial of P(x) = 

x12+x6+x4+x3+1 to produce a maximal length pseudo-random sequence [2].  Because 

there are only ten address lines for each BRAM, only 1024 of the 4096 possible test 

vectors are used.  A program was developed, Vec2RAM, to convert the output values of 

the linear feedback shift register to hexadecimal BRAM contents.   
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Table 3.5: BRAM Signals and Attributes for ILOGIC, OLOGIC, and I/O Buffer Testing 

Signal/Attribute I/O/Attribute Connection Function 
ADDRA4-13 Input D0B0-D0B9 Addressing BRAM contents
CLKA Input BIST clock BRAM clock 
ENA Input GLOBAL 1 Enable output bus 
REGCEA Input GLOBAL 0 Enable output register 
SSRA Input GLOBAL 0 Set/Reset 
WEA0 Input GLOBAL 0 Write Enable 0  
WEA1 Input GLOBAL 0 Write Enable 0 
WEA2 Input GLOBAL 0 Write Enable 0 
WEA3 Input GLOBAL 0 Write Enable 0 
D0A0-D0A11 Output T0B0-T0B11 Data Output Bus 
CLKINV Attribute CLKA CLKA Inverter 
EXTENSION_A Attribute NONE Extended Mode 
DOA_REG Attribute 0 Pipeline Register 
INV_CLK_DOA Attribute FALSE Invert Pipeline Clock 
Read width Attribute 18 Output Bus width <15:0> 

 
Each TPG line from the BRAM output bus connects to one of the twelve inputs of 

ILOGICs or OLOGICs in an I/O tile.  Test vectors are then applied to each of the twelve 

connected inputs in an I/O tile.  Each of the three ILOGIC outputs is then sent to ORAs 

for comparison, as seen in Figure 3.3.  Because three outputs are being compared, this 

BIST configuration set requires six ORAs per I/O tile or row under test.  The six ORAs 

are implemented in three slices in the CLB directly adjacent to the I/O tile under test.  

The first slice of each CLB used for ORAs is not instantiated and will appear as two logic 

high values when read from the configuration memory.   All of the ORAs are contained 

within a single column for each column of I/O tiles under test.  Table 3.6 shows the 

positioning and connections of the TPGs and ORAs in relation to rows of I/O tiles under 

test.  The ORA positioning is read as 11 (slice not used) + 00 (slice one) + 00 (slice two) 

+ 00 (slice three), where each slice has two ORAs.  An “X” is used in Table 3.6 to mark 



 

the ORA that is monitoring the given I/O tile signal.  Signals from the top and bottom 

ILOGICs of a tile are distinguished as IOB0 and IOB1, respectively.   

To Row h

 57

 

Figure 3.3: I/O Tile to ORA Connections 
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Table 3.6: TPG and ORA Connections for ILOGIC, OLOGIC, and I/O Buffer Testing 

 Signal From To ORA Positioning
T0B0 TPG D0A0 ILOGIC CE1 NA 
T0B1 TPG D0A1 ILOGIC/OLOGIC REV NA 
T0B2 TPG D0A2 ILOGIC/OLOGIC SR NA 
T0B3 TPG D0A3 OLOGIC D1 NA 
T0B4 TPG D0A4 OLOGIC D2 NA 
T0B5 TPG D0A5 OOGIC OCE NA 
T0B6 TPG D0A6 OLOGIC TC NA 
T0B7 TPG D0A7 OLOGIC T1 NA 
T0B8 TPG D0A8 OLOGIC T2 NA 
T0B9 TPG D0A9 ILOGIC DLYINC NA 
T0B10 TPG D0A10 ILOGIC DLYRST NA 

 
 
 
 
 

To I/O 
Tile 

T0B11 TPG D0A11 ILOGIC DLYCE NA 
IOB0O ILOGIC O ORA S01 110X0000 
IOB0Q1 ILOGIC Q1 ORA S10 11000X00 
IOB0Q2 ILOGIC Q2 ORA S11 1100000X 
IOB1O ILOGIC O ORA S01 11X00000 
IOB1Q1 ILOGIC Q1 ORA S10 1100X000 

 
 

From I/O 
Tile 

IOB1Q2 ILOGIC Q2 ORA S11 110000X0 
 
To generate this first set of BIST configurations, template and modification 

programs were created.  The template program, V4iobist, generates an XDL file that 

establishes the entire BIST architecture, including the instantiation and placement of the 

TPGs, ORAs, DCMs, BSCAN, and I/O tile components as well as their interconnections.  

The template XDL file is then converted to an NCD file.  PAR is then used to route the 

NCD template design before it is converted back to XDL format.  A modification 

program, V4iobmod, modifies the XDL of the placed and routed template file.  The 

template XDL file is only modified to contain one of the eight new I/O tile configurations 

in the first BIST configuration set; placement and routing is left unchanged.  The newly 

modified XDL files for each of the eight BIST configurations can then be converted to 
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NCD files which can then be used to generate FPGA configuration memory 

programming files.  The remainder of this thesis refers to the eight BIST configurations 

presented in this section as IO9 through IO16. 

   
3.2.2 Configurations to Test SERDES  

 The number of configurations to test I/O tiles in a SERDES mode of operation is 

dominated by the various supported data widths.  A BIST configuration is required to test 

ISERDES/OSERDES components in each of the eight supported data widths.  Thus eight 

BIST configurations are used to test the ISERDES/OSERDES functionality.  

Template and modification programs were also created to generate this set of 

eight BIST configurations.  The template program, V4iobistios, generates XDL that 

establishes the placement and interconnection of the entire BIST architecture, including 

the TPGs, ORAs, DCMs, boundary scan modules, and I/O tile components.  Routing is 

performed using PAR via the procedure discussed in the previous section.  The 

modification program, V4iobmodios, modifies the XDL of the placed and routed template 

created with V4iobistios.  The template configuration is modified to reflect one of the 

eight new I/O tile SERDES configurations. 

Table 3.7 shows the various modes of ISERDES components and attributes that 

are tested in each of the eight BIST configurations.  Note that the configuration options 

and attributes shown in dark grey are already tested in the first set of configurations 

presented in Section 3.2.  However, several of them are tested again with this set of eight 

BIST configurations.          
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Table 3.7: BIST Configurations to Test ISERDES  
 

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8 
NUMCE 1 2 2 1 1 2 2 2 
DATARATE SDR SDR DDR SDR DDR SDR DDR SDR 
DATAWIDTH 2 3 4 5 6 7 8 10 
DELAY NONE IFD IBUF BOTH BOTH NONE IFD BOTH 
DELAYVAL. 0 2 4 8 1 0 16 63 
DELAYTYPE Def. Fixed Fixed Fixed Var. Def. Fixed Fixed 

MODE Master Master Master Master Master Master 
Master/ 
Slave 

Slave/ 
Master 

BITSLIPEN. True False True True True True True True 
INTERFACE Net. Mem. Mem. Net. Net. Net. Net. Net. 
INIT_Q1 0 1 0 0 0 0 1 0 
INIT_Q2 0 1 0 0 0 0 1 0 
INIT_Q3 0 1 1 0 0 0 1 0 
INIT_Q4 0 1 1 0 0 0 1 0 
SRVAL_Q1 0 1 1 1 0 0 1 1 
SRVAL_Q2 0 1 1 1 0 0 1 1 
SRVAL_Q3 0 1 1 1 1 0 1 1 
SRVAL_Q4 0 1 1 1 1 0 1 1 
CE1INV CE1 CE1_B CE1 CE1_B CE1 CE1_B CE1 CE1 
CE2INV CE2 CE2_B CE2_B CE2 CE2 CE2_B CE2_B CE2 
CLKINV CLK CLK CLK_B CLK_B CLK CLK CLK_B CLK 
CLKDIVINV DIV DIV DIV_B DIV_B DIV DIV DIV_B DIV 
OCLKINV CLK CLK CLK_B CLK_B CLK CLK CLK_B CLK 
REVINV REV REV REV REV REV REV REV REV 
SRINV SR SR_B SR_B SR SR SR_B SR_B SR 
SHIFTOUT1-2 
SERDESi,j Off Off Off Off Off Off 

On/ 
Off 

Off/ 
On 

SHIFTIN1-2 
SERDESi,j Off Off Off Off Off Off Off/On On/Off

 
Configurations two and three use a memory interface mode in which the OCLK is 

tested.  Configurations seven and eight use both ISERDES of an I/O tile together in a 

master/slave configuration.  Configuration seven uses a data width of eight with the top 

ISERDES in a tile configured as the master and the bottom ISERDES configured as the 

slave.  In this way, the routing of the SHIFTOUT lines of the top ISERDES and the 

SHIFTIN lines of the bottom ISERDES are tested.  Configuration eight tests the 
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maximum supported data width of ten with the top ISERDES configured as slave and the 

bottom ISERDES configured as master.  This alternating orientation tests the SHIFTOUT 

lines of the bottom ISERDES and the SHIFTIN lines of the top ISERDES.   

The same set of eight BIST configurations is used to test OSERDES components.  

Table 3.8 shows the various modes of OSERDES components and attributes that are 

tested in each of the eight BIST configurations.  As before, the configuration options and 

attributes shown in dark grey are already tested in the first set of configurations presented 

in Section 3.2.  However, several of them are tested again with this set of eight BIST 

configurations.          
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Table 3.8: BIST Configurations to Test OSERDES  
 

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8 
DATARATEOQ SDR SDR DDR SDR SDR SDR SDR SDR 
DATARATETQ DDR BUF DDR DDR SDR DDR SDR SDR 
DATAWIDTH 2 3 4 5 6 7 8 10 
MODE  
SERDESi,j Master Master Master Master Master Master 

Master/ 
Slave 

Slave/ 
Master 

TRISTATE 
WIDTH 4 1 2 2 1 4 1 1 
INIT_OQ 0 1 0 0 0 1 0 0 
INIT_TQ 0 1 0 0 0 1 0 0 
SRVAL_OQ 0 0 0 1 0 0 0 1 
SRVAL_TQ 0 0 0 1 0 0 0 1 
CLKINV CLK CLK CLK_B CLK_B CLK CLK CLK_B CLK_B
CLKDIVINV DIV DIV DIV_B DIV_B DIV DIV DIV_B DIV_B 
D1INV D1 D1_B D1 D1 D1 D1 D1 D1_B 
D2INV D2 D2 D2_B D2 D2 D2 D2 D2_B 
D3INV D3 D3 D3 D3_B D3 D3 D3 D3_B 
D4INV D4_B D4 D4 D4 D4 D4 D4 D4_B 
D5INV D5 D5 D5 D5 D5 D5_B D5 D5_B 
D6INV D6 D6 D6 D6 D6 D6 D6_B D6_B 
OCEINV OCE OCE OCE_B OCE_B OCE OCE OCE_B OCE_B
SRINV SR SR SR_B SR_B SR SR SR_B SR_B 
REVINV REV REV REV_B REV_B REV REV REV_B REV_B
T1INV T1 T1 T1 T1_B T1 T1 T1 T1 
T2INV T2 T2 T2 T2_B T2 T2 T2 T2 
T3INV T3 T3 T3 T3 T3 T3_B T3 T3 
T4INV T4 T4 T4 T4 T4 T4_B T4 T4 
TCEINV TCE TCE TCE_B TCE_B TCE TCE TCE_B TCE_B 
SHIFTIN1-2 
SERDESi,j Off Off Off Off Off Off 

Off/ 
On 

On/ 
Off 

SHIFTOUT1-2 
SERDESi,j Off Off Off Off Off Off 

On/ 
Off 

Off/ 
On 

 
Configurations one and six test all four of the tristate signals with a tristate width 

of four.  Configurations five and seven test SDR mode of the tristate and data paths with 

the tristate operating in a single width.  Configurations three and four test DDR mode of 

the tristate and data paths with the tristate operating in a double data width.  Finally, 

configurations seven and eight test the full data width supported in OSERDES 
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components as well as the shift routing with master/slave I/O tile configurations in both 

orientations.   

The BIST architecture required to test SERDES components is similar to the 

architecture developed for the previously discussed configurations.  Figure 3.4 illustrates  

an I/O cell configured as an ISERDES, OSERDES, and bidirectional I/O buffer.   Test 

patterns are applied to the six data inputs of the OSERDES component.  The tristate and 

data output responses of the OSERDES are then sent to an I/O buffer configured in a 

bidirectional mode of operation.  The I/O buffer sends serialized data back to the 

ISERDES components.  Finally, the ISERDES component deserializes the data and sends 

it to ORAs for comparison. 



 

ISERDES
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Figure 3.4: Virtex-4 I/O Cell in ISERDES/OSERDES Mode of Operation 
 
The main difference between this architecture and the previously discussed 

architecture is that SERDES components require more I/O tile input lines to be controlled 

by TPGs and more output lines to be monitored by ORAs.  The TPG test vector width for 

SERDES configurations is increased to 36 to allow for the 20 TPG outputs needed in 

SERDES testing.  This reduces the total test vector count to 512.  The connections of 

these TPG outputs are summarized in Table 3.9.   
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Table 3.9: TPG and ORA Connections for SERDES Testing 

 Signal From To ORA Positioning
T0B0 TPG D0A0 Synchronizer EN 0-1 NA 
T0B1 TPG D0A1 ISERDES CE1 NA 
T0B2 TPG D0A2 ISERDES CE2 NA 
T0B3 TPG D0A3 ISERDES DLYCE NA 
T0B4 TPG D0A4 ISERDES DLYINC NA 
T0B5 TPG D0A5 ISERDES DLYRST NA 
T0B6 TPG D0A6 ISERDES SR NA 
T0B7 TPG D0A7 OSERDES D1 NA 
T0B8 TPG D0A8 OSERDES D2 NA 
T0B9 TPG D0A9 OSERDES D3 NA 
T0B10 TPG D0A10 OSERDES D4 NA 
T0B11 TPG D0A11 OSERDES D5 NA 
T0B12 TPG D0A12 OSERDES D6 NA 
T0B13 TPG D0A13 OSERDES OCE NA 
T0B14 TPG D0A14 OSERDES T1 NA 
T0B15 TPG D0A15 OSERDES T2 NA 
T0B16 TPG D0A16 OSERDES T3 NA 
T0B17 TPG D0A17 OSERDES T4 NA 
T0B18 TPG D0A18 OSERDES TCE NA 
T0B19 TPG D0A19 TPG Bitslip 0-1 NA 
BITSLIP0 BITSLIP0 ISERDES0 BITSLIP NA 

 
 
 
 
 
 
 
 
 

To I/O 
Tile 

BITSLIP1 BITSLIP1 ISERDES1 BITSLIP NA 
IOB0O ISERDES O ORA C1 S00 0X000000 
IOB0Q1 ISERDES Q1 ORA C1 S01 000X0000 
IOB0Q2 ISERDES Q2 ORA C1 S10 00000X00 
IOB0Q3 ISERDES Q3 ORA C1 S11 0000000X 
IOB0Q4 ISERDES Q4 ORA C2 S00 110X0000 
IOB0Q5 ISERDES Q5 ORA C2 S01 11000X00 
IOB0Q6 ISERDES Q6 ORA C2 S10 1100000X 
IOB1O ISERDES O ORA C1 S00 X0000000 
IOB1Q1 ISERDES Q1 ORA C1 S01 00X00000 
IOB1Q2 ISERDES Q2 ORA C1 S10 0000X000 
IOB1Q3 ISERDES Q3 ORA C1 S11 000000X0 
IOB1Q4 ISERDES Q4 ORA C2 S01 11X00000 
IOB1Q5 ISERDES Q5 ORA C2 S10 1100X000 

 
 
 
 
 
 

From I/O 
Tile 

IOB1Q6 ISERDES Q6 ORA C2 S11 110000X0 
 

Table 3.9 also presents the connections from the I/O tiles under test to the 

monitoring ORAs.  Because up to 14 outputs from each I/O tile are being compared (one 
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combinatorial output and six registered outputs per I/O cell), this BIST configuration set 

requires 14 ORAs per I/O tile under test.  Connections from the I/O tiles under test to the 

ORAs are done in the same method presented in Figure 3.3.  The 14 ORAs are 

implemented in seven slices in two columns of CLBs adjacent to the I/O tile under test.  

The first column is directly adjacent to the column of I/O tiles under test and uses all four 

slices.  The ORA positioning in Table 3.9 for this column of ORAs is read as 00 (slice 

zero) + 00 (slice one) + 00 (slice two) + 00 (slice three), where each slice has two ORAs.  

The second column of ORAs is read as 11 (slice not used) + 00 (slice four) + 00 (slice 

five) + 00 (slice six), where each slice has two ORAs.  An “X” is used to mark the ORA 

that is monitoring the given I/O tile signal.  Signals from the top and bottom ISERDES of 

a tile are distinguished as IOB0 and IOB1, respectively.   

Another addition to the SERDES BIST architecture is the use of a DCM to 

produce a divided clock signal.  Both ISERDES and OSERDES require a clock input and 

a divided clock input, the value of which changes for each BIST configuration and is 

specified in V4iobmodios.  The divided clock line, CLKDIV, is also used as the BIST 

clock for every component in the architecture.  For each of the eight SERDES BIST 

configurations, the bottommost DCM in any Virtex-4 device, DCM0, is used to take a 

user supplied oscillator clock signal and produce the clock and divided clock signals.  

The DCM must be changed in each configuration to produce the correct divided clock 

ratio for each data width and rate of operation according to [5].  The eight BIST 

configurations to test SERDES logic resources, listed as one through eight above, require 

DCM clock divide values of two, three, four, five, six, seven, eight, and five, 

respectively.  The V4iobmodios program developed to modify SERDES BIST 



 

configurations one through eight reconfigures the DCM with the correct clock divide 

values.     

  Another difference with SERDES BIST configurations is that SERDES 

configurations implement a BISTSLIP synchronizer circuit, seen in Figure 3.5.  The 

synchronizer circuit oneshots the BITSLIP module to synchronize the data positioning on 

the ISERDES output lines.  The synchronizer circuit consists of three flip-flops (shown as 

X, Y, and Z), a four-input AND gate, and a two-input OR gate.  The three flip-flops form 

a shift register with each output being monitored by the four-input AND gate.  
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Figure 3.5: SERDES BIST BITSLIP Synchronizer Circuit 
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flip-flop X in the BITSLIP circuit monitors the Q3 output of the ISERDES component 
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that is supposed to have a logic low output when the BITSLIP operation is completed.  

During download the circuit is initialized with flip-flop Z containing logic high, as seen 

in Table 3.10, which strobes synchronous active high clear on the X, Y, and Z flip-flops 

on the first clock cycle of operation.  Then, if the data line being monitored by the X flip-

flop contains logic high, the logic high will be shifted through the flip-flops to perform a 

oneshot BITSLIP action.  If the ISERDES data line being monitored by the X flip-flop 

initializes as logic low, the synchronizer circuit will not oneshot the BITLSIP because the 

data is already in the correct location.   

Table 3.10: SERDES BITSLIP Synchronizer Circuit Timing 
 

Clock Cycle Init 1 2 3 4 5 6 7 8 9 
ISERDES D3 1 1 1 1 1 1 0 0 0 0 

X FF X 0 1 1 1 0 1 0 0 0 
Y FF X 0 0 1 1 0 0 1 0 0 
Z FF 1 0 0 0 1 0 0 0 1 0 

BITSLIP 0 0 0 1 0 0 0 0 0 0 
 
Assuming the BITSLIP operation has no more than two clock cycle latency, the 

worst case scenario is that the ISERDES’ output data lines will be synchronized in a 

maximum of 4(N-1) clock cycles where N is the number of parallel data bits.  A 

synchronizer enable line which is controlled by TPGs is one of the four inputs of the 

AND gate to allow the circuit to be disabled when testing SERDES functions other than 

the BITSLIP.  The output of the AND gate is supplied to a two-input OR gate that 

outputs the oneshot to the BITSLIP module.  The other input of the OR gate is controlled 

by BRAM TPG vectors, allowing further control and testing of the BITSLIP operation.  

Each BITSLIP synchronizer circuit is implemented in two slices and is replicated for 
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each ISERDES component under test to account for ISERDES components located in 

different areas of the Virtex-4 FPGA synchronizing at different times.   

 SERDES BIST configurations also implement a TDI logic circuit, seen in Figure 

3.6.  The TDI logic circuit is used to generate a BIST clock enable to the TPGs and 

ORAs.  The TDI logic circuit is used to manually enable the clock to the TPGs and 

ORAs, thus providing the BITSLIP synchronizer circuit time to align the ISERDES’ 

outputs.  The circuit is also used to generate the IDELAYCTRL RST control.  The circuit 

consists of an AND gate with inputs of TDI and SEL2 of a second boundary scan 

module, two flip-flops clocked by the divided clock signal from the DCM, and an 

inverter.  The user enables BIST execution by entering USR2 and toggling TDI high.  

When flip-flop I receives a logic high, the IDELAYCTRL RST will be released.  Flip-

flop J will receive the logic high on the next clock cycle to enable the BIST circuitry.  

Two flip-flops are used to synchronize the BIST clock enable signal with the BIST clock 

and to ensure that the IDELAYCTRL RST and BIST clock enable do not change on the 

same clock edge.  This architecture assumes that by the time the user can enter USR2 and 

toggle TDI high, the BITSLIP operations have completed.  When the BIST clock enable 

is asserted high, the TPGs can begin outputting test vectors other than the training pattern 

and the ORAs can begin monitoring the I/O tile responses.  The circuit requires a single 

CLB slice and is only implemented once in each BIST configuration.    
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Figure 3.6: SERDES BIST TDI Logic Circuit 

 
 
3.3 Configurations to Test I/O Standards  

 Table 3.11 lists each I/O standard and indicates whether it is single-ended or 

complementary differential.  Table 3.11 also indicates if an I/O standard requires a 

reference voltage, VREF.  The table also indicates if the I/O standard uses DCI.  Finally, 

Table 3.11 lists which I/O standards can be tested with each of the 70 required BIST 

configurations.  The nine I/O standards shown as grey boxes in Table 3.11 are not 

available for testing with this BIST architecture because they do not support a 

bidirectional mode of operation.  Complementary differential standards are listed twice in 

Table 3.11 because they must be tested in both directions.  As seen from the table, a total 

of 70 BIST configurations are required to test all of the various I/O standards supported 

by Virtex-4 I/O tiles that can be tested by BIST.  The first eight I/O standards are tested 

in the previously discussed set of BIST configurations, used to test logic resources. 
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Table 3.11: BIST Configurations to Test I/O Standards Independently 

I/O Standard Type VREF Cfg DCI I/O Standards Type VREF Cfg 
LVTTL SE N/R 1 LVDCI_33 SE N/R 36 
LVCMOS33 SE N/R 2 LVDCI_25 SE N/R 37 
LVCMOS25 SE N/R 3 LVDCI_18 SE N/R 38 
LVCMOS18 SE N/R 4 LVDCI_15 SE N/R 39 
LVCMOS15 SE N/R 5 LVDCI_DV2_25 SE N/R 40 
PCI_33_3 SE N/R 6 LVDCI_DV2_18 SE N/R 41 
PCI_66_3 SE N/R 7 LVDCI_DV2_15 SE N/R 42 
PCIX SE N/R 8 HSTL_II_T_DCI SER 0.75 43 
HSTL_I SER 0.75 9 HSTL_II_T_DCI_18 SER 0.9 44 
HSTL_II SER 0.75 10 SSTL2_II_T_DCI SER 1.25 45 
HSTL_III SER 0.9 11 SSTL18_II_T_DCI SER 0.9 46 
HSTL_IV SER 0.9 12 DIFF_SSTL2_II_DCI CD N/R 47 
HSTL_I_18 SER 0.9 13 DIFF_SSTL2_II_DCI CD N/R 48 
HSTL_II_18 SER 0.9 14 DIFF_SSTL18_II_DCI CD N/R 49 
HSTL_III_18 SER 1.1 15 DIFF_SSTL18_II_DCI CD N/R 50 
HSTL_IV_18 SER 1.1 16 DIFF_HSTL_II_DCI CD N/R 51 
HSTL_I_12 SER 0.6 17 DIFF_HSTL_II_DCI CD N/R 52 
GTL SER 0.8 18 DIFF_HSTL_II_DCI_18 CD N/R 53 
GTLP SER 1 19 DIFF_HSTL_II_DCI_18 CD N/R 54 
SSTL2_I SER 1.25 20 GTL_DCI SER 0.8 55 
SSTL2_II SER 1.25 21 GTLP_DCI SER 1 56 
SSTL18_I SER 0.9 22 HSTL_I_DCI SER 0.75 57 
SSTL18_II SER 0.9 23 HSTL_II_DCI SER 0.75 58 
LVPECL_25 CD N/R 24 HSTL_III_DCI SER 0.9 59 
LVPECL_25 CD N/R 25 HSTL_IV_DCI SER 0.9 60 
LVDS_25 CD N/R  NA HSTL_I_DCI_18 SER 0.9 61 
LVDSEXT_25 CD N/R  NA HSTL_II_DCI_18 SER 0.9 62 
BLVDS_25 CD N/R 26 HSTL_III_DCI_18 SER 1.1 63 
BLVDS_25 CD N/R 27 HSTL_IV_DCI_18 SER 1.1 64 
ULVDS_25 CD N/R  NA SSTL2_I_DCI SER 1.25  NA
LDT_25 CD N/R  NA SSTL2_II_DCI SER 1.25 65 
RSDS_25 CD N/R  NA SSTL18_I_DCI SER 0.9 NA 
DIFF_SSTL2_II CD N/R 28 SSTL18_II_DCI SER 0.9 66 
DIFF_SSTL2_II CD N/R 29 LVDS_25_DCI CD N/R  NA
DIFF_SSTL18_II CD N/R 30 LVDSEXT_25_DCI CD N/R  NA
DIFF_SSTL18_II CD N/R 31 HSLVDCI_33 SER Vcco/2 67 
DIFF_HSTL_II CD N/R 32 HSLVDCI_25 SER Vcco/2 68 
DIFF_HSTL_II CD N/R 33 HSLVDCI_18 SER Vcco/2 69 
DIFF_HSTL_II_18 CD N/R 34 HSLVDCI_15 SER Vcco/2 70 
DIFF_HSTL_II_18 CD N/R 35 Total Required Configurations 70 

SE = Single-Ended           SER = Single-Ended Requiring VREF   
CD = Complementary Differential 

 



 

The following sections describe the BIST architecture used to test each type of 

I/O standard.  Section 3.3.1 describes testing single-ended I/O standards, such as LVTTL 

and LVCMOS33.  Section 3.3.2 describes testing single-ended I/O standards that require 

a voltage reference, such as HSTL and SSTL.  Section 3.3.3 describes testing of 

complementary differential standards that require the use of both I/O buffers in an I/O 

tile, such as DIFF_HSTL and DIFF_SSTL.  Finally, Section 3.3.4 describes testing 

standards that use DCI line termination.   

 
3.3.1 Testing Single-Ended I/O Standards  

A V4iobist template file is used to test single-ended standards that do not require a 

reference voltage.  The template file is modified to contain the new I/O standard with a 

new modification program, V4iobrmod.  The I/O buffer configuration, shown in Figure 

3.7, is a simple bidirectional buffer that adopts a new I/O standard and removes any I/O 

buffer attributes.  The I/O buffer attributes, such as drive strength and slew rate, are 

removed because most I/O standards require that none be set.  Test patterns, shown as the 

dotted line in Figure 3.7, are sourced to the output buffer of an I/O cell and back into the 

FPGA through the input buffer. 
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Figure 3.7: I/O Tile BIST Configuration for Single-Ended I/O Standards 
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3.3.2 Testing Single-Ended I/O Standards Requiring a Reference Voltage 

A V4iobist template file is used to test single-ended I/O standards that require a 

reference voltage be supplied to the differential input buffer, as seen in Figure 3.8.  The 

same modification program, V4iobrmod, is used to modify the template file to reflect a 

new I/O standard with all other I/O attributes removed.   
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Figure 3.8: I/O Tile BIST Configuration for Single-Ended Standards Requiring a VREF 

The BIST architecture is identical for both configurations that test single-ended 

standards that require a VREF and standards that do not.  The difference between BIST 

configurations developed to test I/O standards that require a VREF and those that do not is 

that the assigned VREF pins for each I/O bank under test must not be configured.  There is 

one VREF pin assigned for every group of 16 I/O buffers in an I/O bank.  V4iobist 

optionally creates templates without VREF, DCI, or both VREF and DCI I/O buffers 

configured.  When executing the BIST configurations, a user must supply the VREF 

voltage level to the VREF pins of every I/O bank under test. 
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3.3.3 Testing Complementary Differential I/O Standards 

BIST configurations to test complementary differential I/O standards require two 

data lines to be supplied to the differential input buffer, as seen in Figure 3.9.  A TPG 

data line is supplied to the positive (non-inverting) terminal of the input buffer and its 

complement is applied to the negative (inverting) input of the buffer in a master I/O cell.  

The D1INV of an OLOGIC component is used in each I/O tile to produce the 

complemented TPG data line that is supplied to the slave I/O buffer.  The slave I/O cell 

then sends the complemented data to the differential input buffer of the master I/O cell 

via its PADOUT line.   
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Figure 3.9: I/O Tile BIST Configuration for Complementary Differential I/O Standards 

 The BIST architecture to test complementary differential I/O standards, shown in 

Figure 3.10, differs from the BIST architecture used to test single-ended I/O standards.  
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For each I/O tile, one OLOGIC component is instantiated in the slave I/O cell to 

complement TPG data.  The remaining OLOGIC and ILOGIC components of the I/O tile 

are instantiated as routethroughs.  The ILOGIC of the slave I/O cell is not used at all as it 

serves no function in complementary differential operation.  Another difference is that 

only two TPG lines are required for each I/O tile under test.  One TPG line is used to 

source test vectors to the data output pins of both I/O buffers in an I/O tile.  A second 

TPG line is used to source test vectors to the tristate control pins of both I/O buffers in an 

I/O tile.  One final difference is that only one ORA is required for each I/O tile as 

opposed to six used for the ILOGIC, OLOGIC, and I/O buffer BIST configuration set.   
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Figure 3.10: I/O Tile Components Used for Complementary Differential I/O Standards 

A second template generation program, V4iobistd, was created to generate the 

new I/O tile configuration and to facilitate these differences.  The program generates an 

XDL template file similar to that of V4iobist.  The TPGs and ORAs are generated 
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each I/O tile is routed to all six ORAs in each row and the six ORAs in the adjacent row.  

Therefore, if one I/O tile is faulty on every output line, then twelve corresponding ORAs 

will indicate failures.   

 The V4iobistd template generation program generates both orientations of an I/O 

tile configured with a complementary differential standard.  The first orientation template 

configures the top and bottom I/O cells of the tile as the master and slave, respectively.  

The second orientation reverses the master slave roles of the I/O cells under test.  Each 

orientation is required to test the separate PADOUT lines connecting the two I/O cells of 

an I/O tile.  Also, each orientation must be tested for all complementary differential 

standards because only one differential input buffer of the I/O tile is used per orientation.  

Table 3.11 lists all complementary differential standards twice to represent that they must 

be tested in both orientations.  After a V4iobistd generated XDL template is created and 

routed by PAR, V4iobrmod is used to modify the I/O standard for each separate required 

BIST configuration. 

 
3.3.4 Testing I/O Standards with Digitally Controlled Impedance  

I/O tile BIST configurations to test DCI I/O standards, such as HSTL_I_DCI, are 

generated in the same manner as their non-DCI counterparts, using a template from 

V4iobist or V4iobistd that removes DCI reference pins.  When executing DCI BIST 

configurations, the two DCI multipurpose reference pins, VRN and VRP, in each I/O bank 

must not be configured.  The VRN pin in each bank under test should be connected to 

VCCO by an external reference resistor equal to the characteristic impedance of the driven 

line.  Similarly, the VRP pin in each bank under test should be connected to ground by an 
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external reference resistor equal to the characteristic impedance of the driven line.  For 

DCI I/O standards that also require a reference voltage to the differential input buffer, the 

VREF pins in each I/O bank also must not be configured.  Therefore, if testing a full I/O 

bank with 32 I/O buffers operating in an I/O standard that requires both DCI and VREF 

inputs, a total of six I/O buffers in that bank cannot be tested with that BIST 

configuration.      

 
3.4 Summary of I/O Tile BIST Configurations 
 
 A set of 78 BIST configurations were developed to test Virtex-4 I/O tiles, as seen 

in Table 3.12.  The overall number of BIST configurations is dominated by the 69 

supported I/O standards.  Each single-ended I/O standard requires one individual BIST 

configuration.  Each complementary differential I/O standard requires two individual 

BIST configurations.  Nine of the I/O standards cannot be tested because they do not 

support a bidirectional mode of operation.  Thus, 70 total BIST configurations were 

developed to test the supported I/O standards.  This includes the eight configurations 

developed to test ILOGIC, OLOGIC, and I/O buffer logic resources.  The eight 

configurations developed to test SERDES components should also use the first eight I/O 

standards because they are the only ones that do not require pins be removed for voltage 

references or DCI resistors.  The experimental implementation of each of these BIST 

configurations is discussed in the next chapter. 
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Table 3.12: Summary of Virtex-4 I/O Tile BIST Configurations 

 
Cfg I/O Standard Target Cfg I/O Standard Target 
1 LVTTL SERDES 40 HSTL_II_T_DCI_18 SER Standard
2 LVCMOS33 SERDES 41 SSTL2_II_T_DCI SER Standard
3 LVCMOS25 SERDES 42 SSTL18_II_T_DCI SER Standard
4 LVCMOS18 SERDES 43 GTL_DCI SER Standard
5 LVCMOS15 SERDES 44 GTLP_DCI SER Standard
6 PCI_33_3 SERDES 45 HSTL_I_DCI SER Standard
7 PCI_66_3 SERDES 46 HSTL_II_DCI SER Standard
8 PCIX SERDES 47 HSTL_III_DCI SER Standard
9 LVTTL I/O LOGIC 48 HSTL_IV_DCI SER Standard
10 LVCMOS33 I/O LOGIC 49 HSTL_I_DCI_18 SER Standard
11 LVCMOS25 I/O LOGIC 50 HSTL_II_DCI_18 SER Standard
12 LVCMOS18 I/O LOGIC 51 HSTL_III_DCI_18 SER Standard
13 LVCMOS15 I/O LOGIC 52 HSTL_IV_DCI_18 SER Standard
14 PCI_33_3 I/O LOGIC 53 SSTL2_II_DCI SER Standard
15 PCI_66_3 I/O LOGIC 54 SSTL18_II_DCI SER Standard
16 PCIX I/O LOGIC 55 HSLVDCI_33 SER Standard
17 LVDCI_33 SE Standard 56 HSLVDCI_25 SER Standard
18 LVDCI_25 SE Standard 57 HSLVDCI_18 SER Standard
19 LVDCI_18 SE Standard 58 HSLVDCI_15 SER Standard
20 LVDCI_15 SE Standard 59 LVPECL_25 CD Standard 
21 LVDCI_DV2_25 SE Standard 60 BLVDS_25 CD Standard 
22 LVDCI_DV2_18 SE Standard 61 DIFF_SSTL2_II CD Standard 
23 LVDCI_DV2_15 SE Standard 62 DIFF_SSTL18_II CD Standard 
24 GTL SER Standard 63 DIFF_HSTL_II CD Standard 
25 GTLP SER Standard 64 DIFF_HSTL_II_18 CD Standard 
26 SSTL2_I SER Standard 65 LVPECL_25 CD Standard 
27 SSTL2_II SER Standard 66 BLVDS_25 CD Standard 
28 SSTL18_I SER Standard 67 DIFF_SSTL2_II CD Standard 
29 SSTL18_II SER Standard 68 DIFF_SSTL18_II CD Standard 
30 HSTL_I SER Standard 69 DIFF_HSTL_II CD Standard 
31 HSTL_II SER Standard 70 DIFF_HSTL_II_18 CD Standard 
32 HSTL_III SER Standard 71 DIFF_SSTL2_II_DCI CD Standard 
33 HSTL_IV SER Standard 72  DIFF_SSTL18_II_DCI CD Standard 
34 HSTL_I_18 SER Standard 73 DIFF_HSTL_II_DCI CD Standard 
35 HSTL_II_18 SER Standard 74 DIFF_HSTL_II_DCI_18 CD Standard 
36 HSTL_III_18 SER Standard 75 DIFF_SSTL2_II_DCI CD Standard 
37 HSTL_IV_18 SER Standard 76 DIFF_SSTL18_II_DCI CD Standard 
38 HSTL_I_12 SER Standard 77 DIFF_HSTL_II_DCI CD Standard 
39 HSTL_II_T_DCI SER Standard 78 DIFF_HSTL_II_DCI_18 CD Standard 

SE = Single-Ended             SER = Single-Ended Requiring VREF             

  CD = Complementary Differential 
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The BIST configurations in Table 3.12 are ordered by changes in BIST 

architecture to reduce partial reconfiguration file size.  The first eight configurations test 

SERDES mode components with the BIST architecture discussed in 3.2.2.  BIST 

configurations 9 through 58 use the same BIST architecture discussed in Section 3.2.1.  

Configurations 59 through 78 test complementary differential standards with the BIST 

architecture presented in Section 3.3.3.  The groups of complementary differential 

standards shaded in grey are repeated to test both orientations.  The DCI I/O standards are 

grouped together within each of the sets of configurations.   
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CHAPTER FOUR 
 

EXPERIMENTAL RESULTS 
 
 This chapter describes the implementation and testing of the I/O tile BIST 

configurations presented in Chapter 3.  The chapter aims to carefully explain which BIST 

configurations work as expected, and to explain the problems associated with those that 

do not.  For the BIST configurations that are not working, this chapter will provide a 

detailed account of generation errors or failing patterns associated with each 

configuration.  This chapter also details other experimental results observed as well as the 

capabilities and limitations of this BIST approach. 

 
4.1 Generating I/O Tile BIST Configurations 

 This section begins with a summary of the BIST programs used to generate all 78 

I/O tile BIST configurations.  Section 4.1.1 describes how the BIST programs function, 

as well as the command line options that are used to generate the BIST configurations.  

Section 4.1.2 provides an overview of the generation procedure for all 78 BIST 

configurations presented in Table 3.12 using the BIST programs developed and Xilinx 

ISE command line tools.  A complete description of the Xilinx ISE command line tools 

usage can be found in [5].       
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4.1.1 Summary of I/O Tile BIST Programs 

 There are three template generation programs and three template modification 

programs created for Virtex-4 I/O tile BIST.  The three template generation programs are 

V4iobistios, V4iobist, and V4iobistd.  Each of the three template programs follows the 

same basic procedure for generating a XDL template: 

1. Instantiate the components in the I/O tiles under test.  This also includes 

the routing between the I/O buffer and the ILOGIC and OLOGIC 

components. 

2. Instantiate the ORA slices (V4iobistios also instantiates BITSLIP 

synchronizer circuits at this point) 

3. Instantiate all of the IDELAYCTRLs 

4. Instantiate the BRAMs used for TPGs 

5. Route the TPGs to the I/O tiles under test 

6. Route the I/O tiles under test to the ORAs 

7. Instantiate the DSPs used to address the BRAMs 

8. Route the DSPs to the BRAM TPGs 

9. Instantiate the BSCAN modules (V4iobistios also instantiates the TDI 

logic BIST clock enable circuit at this point)  

10. Instantiate the DCMs and clock routing (V4iobistios also instantiates the 

on-board oscillator I/O buffer at this point) 

The command line options for V4iobistios and V4iobist are as follows:  

 <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part> <package> <pad>.  

The first command line option, <xdlfile>, is the user designated name for the template 
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file.  This name is appended automatically with the .xdl file extension.  The <startrow> 

<startcol> <endrow> <endcol> options allow the user to specify a start row and column 

beginning at the lower left end of the array as well as an end row and column ending at 

the upper right end of the area for I/O tiles to be tested.  The end row or column values 

are not included in the I/O tile instantiation.  The <dev> <part> <package> options 

support all valid Virtex-4 FX, LX, and SX device and package combinations, as specified 

in Chapter 2 and [5].  The final command line option, <pad> supports three possible 

values: “v” to specify that VREF pins should be removed, “d” to specify that DCI pins 

should be removed, and “b” to specify that both VREF and DCI pins should be removed.  

If the <pad> command line option is left blank, neither VREF nor DCI pins are removed.   

The command line options for V4iobistd are the same as those described for 

V4iobistios and V4iobist with one additional option, <configNum>, located in the 

command option sequence before the <pad> option.  The <configNum> option is used to 

specify which orientation of the complementary differential standard should be 

generated.  Two options are supported: “1” generates a master/slave orientation and “2” 

generates a slave/master orientation.  Master/slave or slave/master orientations configure 

complementary differential input buffer in the top or bottom I/O cell, respectively.  The 

“v” option should not be used in the <pad> command line option because complementary 

differential I/O standards do not require VREF pins to be removed.     

The three modification programs are V4iobmodios, V4iobmod, and V4iobrmod.  

Each of the three modification programs work by replacing the configuration settings for 

each component to be modified.  V4iobmodios and V4iobmod replace the ILOGIC, 

OLOGIC, and I/O buffer configuration data in each I/O tile under test.  V4iobrmod is 
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used for I/O standards and only replaces I/O buffer configuration data in each I/O cell 

under test.  V4iobmodios also replaces the DCM configuration data to reflect the proper 

data width clock division required for SERDES operation. 

The command line options for all three modification programs are as follows: 

<xdl_in> <xdl_out> <phase>.  The <xdl_in> <xdl_out> options are used to specify the 

XDL input file name to be modified and the modified XDL output file name to be 

created.  The .xdl file extension is not automatically appended to the specified names.  

The <phase> command line option for V4iobmodios and V4iobmod should be a value 

between one and eight, where each value is the SERDES or ILOGIC/OLOGIC BIST 

configuration to be generated, respectively.  The <phase> option for V4iobrmod should 

be a value between one and 69, where the value corresponds to the I/O standard in Figure 

2.6 by order of appearance.  The <phase> value required for each I/O standard can also 

be seen by typing only the name of the program in the command prompt.  

    
4.1.2 BIST Configuration Generation Procedure 

 The following procedure can be used to generate all 78 I/O tile BIST 

configurations for any Virtex-4 device and package.  The specific commands for each 

step can be found in the batch file of Appendix A. 

1. Generate all BIST configuration template XDL files 

a. V4iobistios – template file for SERDES configurations 

b. V4iobist – template file for ILOGIC/OLOGIC configurations 

c. V4iobist option d – template file for single-ended DCI I/O 

standards 
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d. V4iobist option v – template file for single-ended standards 

requiring VREF pins to be removed 

e. V4iobist option b – template file for I/O standards requiring both 

VREF and DCI pins to be removed 

f. V4iobistd option 1 – template file for master/slave complementary 

differential standards 

g. V4iobistd option 2- template file for slave/master complementary 

differential standards 

h. V4iobistd option 1  d – template file for master/slave 

complementary differential standards with DCI 

i. V4iobistd option 2 d – template file for slave/master 

complementary differential standards with DCI 

2. Convert template XDL files to NCD format using force option 

3. Run PAR on NCD template files without the placer option 

4. Convert routed NCD template files back to XDL format 

5. Modify the BIST template files to BIST configurations IO1 through IO78 

a. Modify V4iobistios XDL template file with V4iobmodios for BIST 

configurations IO1 through IO8 

b. Modify V4iobist XDL template file with V4iobmod for BIST 

configurations IO9 through IO16 

c. Modify V4iobist XDL template file with V4iobrmod for BIST 

configurations IO17 through IO18 
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d. Modify V4iobist option d template file with V4iobrmod for BIST 

configurations IO19 through IO25  

e. Modify V4iobist option v template file with V4iobrmod for BIST 

configurations IO26 through IO38  

f. Modify V4iobist option b template file with V4iobrmod for BIST 

configurations IO39 through IO58  

g. Modify V4iobistd option 1 template file with V4iobrmod for BIST 

configurations IO59, IO61, IO63, IO65, IO67, and IO69 

h. Modify V4iobistd option 2 template file with V4iobrmod for BIST 

configurations IO60, IO62, IO64, IO66, IO68, and IO70 

i. Modify V4iobistd option 1 d template file with V4iobrmod for 

BIST configurations IO71, IO73, IO75, and IO77 

j. Modify V4iobistd option 2 d template file with V4iobrmod for 

BIST configurations IO72, IO74, IO76, and IO78 

6. Convert all 78 newly modified XDL files to NCD format using the force 

option 

7. Generate configuration download files for all 78 NCD files 

8. Generate partial configuration files for IO2 through IO78 by comparing 

the programming file of IO(N) to the NCD file of IO(N+1), where 1 < N < 

79 

 The user has several options to consider when generating I/O tile BIST 

configurations.  IO1 can be generated as a full or compressed configuration programming 

file.  Steps 5-d, 5-e, and 5-f can use the IO10 configuration XDL as a template file, as 
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discussed in Chapter 3.  In order to accomplish this, the template files from steps 1-c, 1-d, 

and 1-e must first be modified to three distinct versions of IO10 with V4iobmod that can 

then be used in steps 5-d, 5-e, and 5-f, respectively.  The user also has the option of 

stopping at step 7 to generate full or compressed configurations instead of partial 

configurations.  One final step in the generation procedure that may be useful in verifying 

the BIST configurations would be to create a DRC error report for each of the 78 BIST 

configurations.  This can be seen in the batch file example presented in Appendix A.   

Figure 4.1 illustrates an I/O tile BIST configuration generated for a Virtex-4 FX 

20 FPGA.  Note the single DSP column and two BRAM TPG columns required to test all 

three columns of I/O tiles.  Also note that the BIST routing goes straight through the on-

chip Power PC module without conflict. 
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Figure 4.1: All I/O Buffers Under Test  of a Virtex-4 FX20 with One Power PC  

[Screenshot from Xilinx FPGA Editor] 
 
 

4.2 Executing I/O Tile BIST Configurations 

The execution of I/O tile BIST configurations is separated into two main groups: 

IO1 through IO8 and IO9 through IO78.  The two groups require different execution 

sequences due to architectural differences in the BIST configurations described in 

Chapter 3.  The differences in BIST ORA numbers and locations also require at least two 

separate configuration memory readbacks to retrieve the BIST results.  A readback is 

required at the end of each BIST configuration group when partial reconfigurations are 

used.  However, a readback is required at the end of each BIST configuration when 

 88



 

 89

partial reconfigurations are not used because the contents of the ORAs will be cleared 

with each download.  The following procedure summarizes executing I/O tile BIST 

configurations IO1 through IO8 used to test SERDES logic resources: 

1. Download the BIST configuration to the device 

2. Wait for BISTSLIP synchronizer circuits to finish.  This timing is 

specified in Section 3.2.2. 

3. Enter Test Logic Reset 

4. Toggle SEL2 high by entering USR2 instruction to the second boundary 

scan module 

5. Toggle TDI to logic high (this enables the TDI logic circuit) 

6. Wait for the all 512 TPG test vectors to be cycled through (this depends on 

the speed of the on-board oscillator used) 

7. Read back Pass/Fail results from ORAs (this step only has to be executed 

once at the end of running each group of BIST configurations if partial 

reconfiguration files are used) 

8. Repeat for each additional BIST configuration  

The following procedure summarizes executing I/O tile BIST configurations IO9 

through IO78 used to test ILOGIC, OLOGIC, and I/O buffer logic resources as well 

supported I/O standards: 

1. Supply VREF voltages or DCI resistors if required 

2. Download BIST configuration to the device 

3. Enter Test Logic Reset 

4. Toggle SEL1 high by entering USR1 of the first boundary scan module 
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5. Toggle TDI low to high for fifteen clock cycles to reset IDELAYCTRLs 

6. Execute 1024 BIST clock cycles on DRCK1 to cycle through all BRAM 

TPG test vectors 

7. Read back Pass/Fail results from ORAs (this step only has to be executed 

once at the end of running each group of BIST configurations if partial 

reconfiguration files are used) 

8. Repeat for each additional BIST configuration  

 
4.3 Experimental Results Obtained 

 The following sections describe the experimental results from generating all 78 

I/O tile BIST configurations for all FX, LX, and SX device and package combinations.  

These sections also describe the experimental results observed when executing the BIST 

configurations on both Virtex-4 SX 35 package FF668 and LX 60 package FF668 FPGAs 

on a HW-AFX-FF668-400 prototyping platform.  Section 4.3.1 describes the results 

obtained from generating and executing BIST configurations IO9 through IO16 used to 

test ILOGIC, OLOGIC, and I/O buffer logic resources.   Section 4.3.2 describes the 

results obtained from generating and executing BIST configurations IO1 through IO8 

used to test SERDES logic resources.  Finally, section 4.3.3 describes the results obtained 

from generating and executing BIST configurations IO17 through IO78.   

 
4.3.1 Configurations to Test ILOGIC, OLOGIC, and I/O Buffers 

I/O tile BIST configurations IO9 through IO16 produce several DRC errors 

during the generation process that can be ignored.  These errors are related to the input 

line of the IDELAY modules of the ILOGIC components.  The DRC errors report that the 
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pins DLYCE, DLYINC, and DLYRST of the IDELAY modules are used but have no 

child signals.  These DRC errors occur when the IDELAY module is used in a 

DEFAULT or FIXED mode in which the DLYCE, DLYINC, and DLYRST inputs are 

not used.  The errors are produced because the TPG routes signals to all of the IDELAY 

module input lines even when they are not being used by the module.  These errors can 

be ignored during the generation process because they do not affect the functionality of 

the BIST configurations.  

I/O tile BIST configurations IO9 through IO16 also produce several DRC 

warnings during the generation process that can be ignored during the BIST generation 

process.  The first warning states that the IDELAY module inputs discussed above will 

be ignored when the IDELAY module is acting in a DEFAULT or FIXED mode.  The 

other two warnings indicate that O1USED and T1USED PIPs of the OLOGIC 

components have dangling pins.  These warnings occur because the BIST configurations 

always turn on the O1USED and T1USED PIPs, regardless of whether they are being 

used by the configuration.  These warnings could be avoided if the V4iobmod program 

did not turn on the O1USED and T1USED PIPs when they are not required for the BIST 

configuration.         

 BIST configuration IO14 produces DRC errors that cannot be ignored during the 

generation process.  Configuration IO14 tests ILOGIC components with IFF1 configured 

as an asynchronous latch.  The DRC error produced for this configuration states that the 

ILOGIC components are configured illegally.  The errors also state that the remaining 

flip-flops in the ILOGIC component are required for operation in the latch configuration.  

It was observed that when the IO14 BIST configuration does not attempt to use IFF1 in 
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an asynchronous latch mode, the configuration generates without any DRC errors.  It 

should be noted that BIST configurations IO12 and IO13 test OLOGIC components with 

TFF1 and OFF1 configured as asynchronous latches, respectively.  However, these two 

BIST configurations do not produce DRC errors during generation.   

All of the BIST configurations produce passing ORA results, with the exception 

of IO14 that uses the ILOGIC IFF1 in an asynchronous latch mode.  The ORA failing 

pattern for IO14 indicates that the ORAs comparing only the latch output lines of the 

bottom ILOGIC components fail.  The exact ORA failure positioning can be read as 

“00010011” when referring to Table 3.6.  When the IFF1 component is configured as a 

flip-flop instead of an asynchronous latch, the BIST configuration produces passing ORA 

results.  The experimental results presented in this section indicate that BIST 

configurations IO9 through IO16 generate and function correctly, with the exception of 

testing the ILOGIC in an asynchronous latch mode.       

 
4.3.2 Configurations to Test SERDES Logic Resources  
 

No DRC errors are produced during the generation of SERDES BIST 

configurations IO1 through IO8.  Configurations IO1 through IO5 produce no DRC 

warnings.  Configurations IO6 through IO8 produce warnings of unexpected tristate 

widths for the SDR and DDR data widths assigned.  Configurations IO7 and IO8 warn of 

connecting the unused shift lines between master and slave SERDES components 

because V4iobmodios leaves the shift lines connected for all eight SERDES 

configurations.  These warnings do also do not affect the operation of the BIST 
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configurations and could be avoided by adjusting V4iobmodios to remove the shift line 

routing when it is unused.           

 The execution of the SERDES BIST configurations was performed on an SX35 

FPGA with package type FF668, and the failing results are summarized in Table 4.1.  

Various experiments were designed and performed to determine the cause of the failures.  

These experiments primarily consisted of probing internal signals to LEDs via I/O pins to 

examine the internal operation of the TPG, BITLSIP module, BISTSLIP synchronizer 

circuit, TDI logic circuit, and DCMs as well as the ISERDES and OSERDES themselves.  

While all of these circuits appeared to be functioning properly, the cause of the failures of 

the three BIST configurations during execution could not be determined.    

Table 4.1: SERDES BIST Execution Results 

Configuration Pass/Fail ORA Failure Pattern 
IO1 Pass  
IO2 Fail No recognizable pattern 
IO3 Fail No recognizable pattern 
IO4 Pass  
IO5 Pass  
IO6 Pass  
IO7 Fail DCI pin locations 
IO8 Pass  

 

4.3.3 Configurations to Test I/O Standards  

All BIST configurations for I/O standards have been generated and executed, 

including IO17 through IO78 in Table 3.12.  The I/O standards used in the first 16 BIST 

configurations were also generated from a V4iobrmod configuration template for 

execution testing.   
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No DRC errors or warnings, aside from those observed in the template file 

generation discussed previously, occurred when generating BIST configurations IO17 

through IO78.  The BIST configurations were executed on a Virtex-4 SX35 device with 

package type FF668.  Single-ended standards were tested on every I/O cell of the device.  

Single-ended standards requiring a VREF were tested on every I/O cell of the device, with 

the exception of the VREF I/O cells, of the device.  The VREF I/O cells were given the 

voltage level specified in Table 3.11 and [5].  Complementary differential standards were 

tested on every I/O cell of the device.  Both single-ended and complementary differential 

I/O standards using DCI were tested on every I/O cell of the device, with the exception of 

DCI reference resistor pins and I/O banks one and two.  The VRP and VRN DCI reference 

resistor pins of each bank were supplied 51 Ohm resistors.   

In each case, data lines connecting the I/O tiles under test to their respective 

ORAs were probed to LEDs on the development board.  It was observed that test vectors 

are sourced through the I/O buffers for each standard being tested.  It was also observed 

that each type of I/O standard produces passing ORA results, with exceptions for 

expected failures.   

 Single-ended I/O standards that require a VREF produce expected ORA failures in 

the ORAs rows associated with the removed VREF pins.  For example, Table 2.3 indicates 

that a VREF pin is located in the bottom I/O cell of row four in bank seven.  Removing this 

pin creates failures sent to the ORAs monitoring the ILOGIC O line of VREF I/O cell.  

This creates a single ORA failure in the same row as the VREF and row above it, or rows 

four and five in this example.  Therefore, there are two expected ORA failures per VREF 

pin or eight expected ORA failures per 32 rows of an I/O bank.     
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 Similarly, I/O standards that use DCI produce expected failures in the ORAs 

associated with the DCI VRP and VRN pins in the manner described for the VREF pins.  For 

example, the DCI pins for the I/O bank shown in Table 2.3 are both located in row nine.  

Executing a single-ended DCI BIST configuration on this bank produces two expected 

ORA failures in both rows nine and ten.  Therefore, there are four expected ORA failures 

per 32 rows of an I/O bank for single-ended DCI standards.  Executing a complementary 

differential DCI BIST configuration on this bank produces six expected failures in both 

rows nine and ten.    Therefore, there are twelve expected ORA failures per 32 rows of an 

I/O bank for single-ended DCI standards.  If a DCI standard that also requires a VREF is 

used, then the expected ORA failures of the DCI pins and VREF pins must both be 

accounted for.  The generation and execution results presented in this section indicate that 

I/O tile BIST configurations IO17 through IO78 function correctly.   

 
4.4 Capabilities and Limitations 

 The major capability of this BIST approach is the ability to detect catastrophic 

faults in routing, logic, and configuration memory bits.  Another of the capabilities of this 

BIST approach is that both bonded and unbonded I/O buffers can be tested, therefore it is 

a package independent test.  The BIST approach can be used to test both the logic 

resources and supported I/O standards associated with I/O tiles.  However, this BIST 

approach cannot test I/O standards that do not support a bidirectional mode of operation.  

This BIST approach can be used in both manufacturing and system level testing.  

However, the BIST approach is sensitive to system component connections.  System 

component connections must be able to operate in a tri-state mode to prevent back 
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driving that causes BIST failures.  The effect of back driving and system loading were 

observed in the work presented in [9].   

One of the limitations of this BIST approach is that it cannot detect all parametric 

faults associated with the I/O tiles.  For example, all of the I/O standards were 

experimentally tested with the same VREF voltage level of 0.5 Volts.  All of the DCI I/O 

standards were experimentally tested with reference resistor values of 51 Ohms.  In both 

cases, the majority of the I/O standards were tested outside of the specified standard VREF 

or DCI resistor value operating ranges.  However, in both experiments, every I/O 

standard produced passing ORA results.  This indicates that the VREF and DCI values do 

not have to be adjusted throughout the execution of the BIST configurations.  However, 

this also indicates that the BIST configurations are not robust enough to detect minor 

faults in VREF voltage levels and DCI resistor values. 

One of the limitations for testing Virtex-4 FPGAs is that the current I/O BIST 

generation programs currently rely on at least two columns of BRAMs for every four 

rows of I/O Buffers under test.  The Virtex-4 FX 12 FPGA contains only a single column 

of BRAMs in rows where the Power PC lies.  Therefore, current BIST configuration 

generation programs cannot test all of the I/O buffers on an FX 12 device, as seen in 

Figure 4.2 below.  The template programs could be adapted to generate a unique I/O 

BIST architecture for FX 12 devices.  The I/O Buffers in Power PC rows of all FX 

devices, other than the FX-12, can be tested.  This can also be observed in Figure 4.1, 

which illustrates an FX 20 containing only one Power PC with all I/O tiles under test.   
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Figure 4.2: Virtex-4 FX 12 I/O Buffers in Power PC Rows Not Under Test  

[Screenshot from Xilinx FPGA Editor] 
 
 

One final limitation of the currently developed BIST configurations is that only 

the SERDES configurations have been developed to operate at true system speeds.  Not 

testing all of the logic resources at high speeds greatly limits fault detection capabilities.  

For example, a fault injection simulation was run on the eight configurations presented in 

this thesis to test ILOGIC, OLOGIC, and I/O buffer logic resources.  The BIST 

configurations were executed using the boundary scan module clock, operating at 

approximately 50 KHz.  At this testing speed, only approximately 60% fault coverage 

was achieved for the ILOGIC, OLOGIC, and I/O buffer resources.  Faults such as slew 

rate and some of those associated with the IDELAY module were not detected because of 
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the slow testing speed.  Most of the remaining faults that were not detected were 

associated with the analog programming features, such as pull and drive strength.   
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CHAPTER FIVE 
 

SUMMARY AND CONCLUSION 
 
 This chapter provides summary and highlights of the work presented in this 

thesis.  Section 5.1 presents a summary of the BIST configurations developed to test 

Virtex-4 I/O tiles.  Section 5.2 describes areas of future research and development that 

can be done to improve the BIST configurations.  Finally, Section 5.3 describes the 

general application this I/O tile BIST approach to other FPGAs and SoCs with FPGA 

cores. 

 
5.1 Summary of Virtex-4 I/O Tile BIST 

 The work presented in this thesis develops BIST configurations for the I/O tiles of 

Virtex-4 FPGAs.  Eight configurations were developed to test the ILOGIC, OLOGIC, 

and I/O buffer logic resources.  Eight configurations were also developed to test the logic 

resources of ISERDES and OSERDES components.  A total of 70 BIST configurations 

were developed to test the Virtex-4 supported I/O standards, including single-ended, 

single-ended requiring a VREF, complementary differential, and DCI standards.  Eight 

configurations developed to test single-ended I/O standards were combined with the eight 

configurations to test ILOGIC, OLOGIC, and I/O buffer logic resources.  Thus, a total of 

78 BIST configurations were developed to test Virtex-4 I/O tiles.  The 78 BIST 

configurations are summarized in Table 3.12 in an order that aims to minimize partial 

reconfiguration programming file size.  
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The I/O tile BIST configurations presented in this thesis are package independent 

because they can be used to test both I/O tiles with bonded and unbonded I/O buffers.  

The BIST configurations can be used for both manufacturing and system level testing.  

When using the BIST configurations for system level testing, all connected outputs from 

external devices must be used in a tri-state mode to prevent back driving.  The BIST 

approach can be used to detect faults in the configuration memory bits associated with 

I/O tile logic, routing, and analog features.  However, the BIST configurations cannot 

detect all parametric faults that affect analog features, such as VREF voltage levels or DCI 

resistance values.       

This thesis also presents the process and results of generating and executing each 

of the 78 I/O tile BIST configurations.  The 78 BIST configurations were generated for 

every Virtex-4 device and package combination.  They were then downloaded and 

executed on Virtex-4 SX 35 and LX 60 devices.  The thesis outlines existing problems 

associated with a few of the BIST configurations developed to test logic resources in 

ILOGIC, OLOGIC, and SERDES components.  However, all BIST configurations 

developed to test I/O standards were shown to function correctly.  These BIST 

configurations will require future development for reliable use for manufacturing and 

system level testing.        

 
5.2 Areas of Future Research and Development 

The major area of future research and development for the work presented in this 

thesis is to debug and correct the BIST configurations designed to test logic resources.  

The first issue to be addressed is the problem associated with testing the ILOGIC 
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components in an asynchronous latch mode.  This problem exists in BIST configuration 

IO14.  The next issue to be addressed is to determine the remaining problems associated 

with the faulty SERDES BIST configurations.  The problematic SERDES BIST 

configurations are IO2, IO3, and IO7.  These SERDES BIST configurations do not 

function correctly when anything but the BITSLIP training pattern is used in the BRAM 

TPGs as test vectors.       

Another area of research and development for the work presented in this thesis is 

to consolidate BIST template and modification programs and to streamline BIST 

configuration generation.  When used for system level testing, I/O tile BIST 

configurations should be generated on a per I/O bank basis.  The user should then be 

given the opportunity to specify which I/O cells should not be included in the testing.  I/O 

cells that cannot be configured in a bidirectional mode or are connected to external 

system components that will cause back driving should not be included in the tests.  The 

user should also be able to define a clock to input a high speed external clock source.  

Currently, the batch file in Appendix A is used for generating the complete set of BIST 

configurations.  The BIST programs could be developed to generate such batch files 

automatically that could then be executed by the user.   

The BIST configurations should also be developed and generated such that they 

all can operate at true system speeds.  Currently, only the SERDES BIST configurations 

support using an on-board oscillator to provide a BIST clock.  The remaining BIST 

configurations rely on the boundary scan module to provide a clock, which is 

significantly slower.  Developing all of the BIST configurations such that they can 
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operate at faster speeds would improve not only the overall BIST testing execution time 

but also the level of fault detection that can be obtained.     

Another area of future research is to investigate the possibility of reducing the 

number of required I/O tile BIST configurations.  For example, it may be possible to 

reduce the eight configurations developed to test ILOGIC, OLOGIC, and I/O buffer logic 

resources to only five configurations.  A summary of the configuration settings for a 

reduced set is presented in Appendix B as three separate tables for the ILOGIC, 

OLOGIC, and I/O buffer components.  These configurations could be generated by 

modifying the V4iobmod program to reflect the configurations settings presented in the 

three tables.  A fault simulation and fault injection analysis should then be performed to 

ensure that the reduced set of five BIST configurations provides at least the same level of 

coverage as the existing set of eight.   

 
5.3 General Application to FPGAs and SoCs  

 The I/O tile BIST approach presented in this thesis is generally applicable to any 

FPGA or SoC with an FPGA core.  However, the BIST configurations need to change 

between manufacturers and devices.  For example, Xilinx Virtex-5 FPGAs have a similar 

I/O tile structure to the one presented in this thesis for Virtex-4 FPGAs.  Virtex-5 I/O 

tiles contain an ILOGIC, OLOGIC, and I/O buffer in each I/O cell that can also operate 

in a SERDES mode [10].  However, the I/O tile of a Virtex-5 FPGA has a different 

routing and component architecture.  For example, the IDELAY module is contained 

between the ILOGIC and OLOGIC components.  The BIST approaches and BIST 
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configuration template generation and modification programs presented in this thesis 

must be adapted for the architectural differences.   
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APPENDIX A 
 

BATCH FILE FOR GENERATING I/O TILE BIST CONFIGURATIONS 
 
echo ******************************************************************* 
echo * This batch file generates all 78 I/O tile BIST configurations for a Virtex-4 SX 35 
echo * FPGA.  This batch file can be used to generate I/O tile BIST configurations for 
echo * any Virtex-4 device and package by changing the device and package 
echo * specifications in the first section of code.   
echo ******************************************************************* 
 
echo Generate XDL template files 
echo Specify the device and package in this section 
v4iobistios serdes 0 0 15 1 sx 35 ff668 
v4iobist io 0 0 15 1 sx 35 ff668 
v4iobist iod 0 0 15 1 sx 35 ff668 d 
v4iobist iov 0 0 15 1 sx 35 ff668 v 
v4iobist iob 0 0 15 1 sx 35 ff668 b 
v4iobistd diff1 0 0 15 1 sx 35 ff668 1 
v4iobistd diff2 0 0 15 1 sx 35 ff668 2 
v4iobistd diff1d 0 0 15 1 sx 35 ff668 1 d 
v4iobistd diff2d 0 0 15 1 sx 35 ff668 2 d 
 
echo Convert XDL template files to NCD files 
xdl -xdl2ncd -force serdes 
xdl -xdl2ncd -force io  
xdl -xdl2ncd -force iod 
xdl -xdl2ncd -force iov 
xdl -xdl2ncd -force iob 
xdl -xdl2ncd -force diff1 
xdl -xdl2ncd -force diff2 
xdl -xdl2ncd -force diff1d 
xdl -xdl2ncd -force diff2d 
 
echo Route the NCD template files 
par -p -w serdes.ncd serdes.ncd 
par -p -w io.ncd io.ncd 
par -p -w iod.ncd iod.ncd 
par -p -w iov.ncd iov.ncd 
par -p -w iob.ncd iob.ncd 
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par -p -w diff1.ncd diff1.ncd 
par -p -w diff2.ncd diff2.ncd 
par -p -w diff1d.ncd diff1d.ncd 
par -p -w diff2d.ncd diff2d.ncd 
 
echo Convert routed NCD template files to XDL files 
xdl -ncd2xdl serdes 
xdl -ncd2xdl io  
xdl -ncd2xdl iod 
xdl -ncd2xdl iov 
xdl -ncd2xdl iob 
xdl -ncd2xdl diff1 
xdl -ncd2xdl diff2 
xdl -ncd2xdl diff1d 
xdl -ncd2xdl diff2d 
 
 
echo ******************************************** 
echo BIST configs IO1-IO8 
echo 1) SERDES  
v4iobmodios serdes.xdl io1.xdl 1 
v4iobmodios serdes.xdl io2.xdl 2 
v4iobmodios serdes.xdl io3.xdl 3 
v4iobmodios serdes.xdl io4.xdl 4 
v4iobmodios serdes.xdl io5.xdl 5 
v4iobmodios serdes.xdl io6.xdl 6 
v4iobmodios serdes.xdl io7.xdl 7 
v4iobmodios serdes.xdl io8.xdl 8 
 
echo ********************** 
echo BIST configs IO9-IO16 
echo 2) ILOGIC, OLOGIC, I/O Buffer Configs 
v4iobmod io.xdl io9.xdl 1 
v4iobmod io.xdl io10.xdl 2 
v4iobmod io.xdl io11.xdl 3 
v4iobmod io.xdl io12.xdl 4 
v4iobmod io.xdl io13.xdl 5 
v4iobmod io.xdl io14.xdl 6 
v4iobmod io.xdl io15.xdl 7 
v4iobmod io.xdl io16.xdl 8 
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echo ********************** 
echo BIST configs IO17-IO23 
echo 3) single-ended standards with DCI 
v4iobrmod iod.xdl io17.xdl 35 
v4iobrmod iod.xdl io18.xdl 36 
v4iobrmod iod.xdl io19.xdl 37 
v4iobrmod iod.xdl io20.xdl 38 
v4iobrmod iod.xdl io21.xdl 39 
v4iobrmod iod.xdl io22.xdl 40 
v4iobrmod iod.xdl io23.xdl 41 
 
echo ********************** 
echo BIST configs IO24-IO38 
echo 4) single-ended standards requiring Vref 
v4iobrmod iov.xdl io24.xdl 18 
v4iobrmod iov.xdl io25.xdl 19 
v4iobrmod iov.xdl io26.xdl 20 
v4iobrmod iov.xdl io27.xdl 21 
v4iobrmod iov.xdl io28.xdl 22 
v4iobrmod iov.xdl io29.xdl 23 
v4iobrmod iov.xdl io30.xdl 9 
v4iobrmod iov.xdl io31.xdl 10 
v4iobrmod iov.xdl io32.xdl 11 
v4iobrmod iov.xdl io33.xdl 12 
v4iobrmod iov.xdl io34.xdl 13 
v4iobrmod iov.xdl io35.xdl 14 
v4iobrmod iov.xdl io36.xdl 15 
v4iobrmod iov.xdl io37.xdl 16 
v4iobrmod iov.xdl io38.xdl 17 
 
echo ********************** 
echo BIST configs IO39-IO58 
echo 5) single-ended standards requiring Vref and DCI 
v4iobrmod iob.xdl io39.xdl 42 
v4iobrmod iob.xdl io40.xdl 43 
v4iobrmod iob.xdl io41.xdl 44 
v4iobrmod iob.xdl io42.xdl 45  
v4iobrmod iob.xdl io43.xdl 50 
v4iobrmod iob.xdl io44.xdl 51 
v4iobrmod iob.xdl io45.xdl 52  
v4iobrmod iob.xdl io46.xdl 53 
v4iobrmod iob.xdl io47.xdl 54 
v4iobrmod iob.xdl io48.xdl 55 
v4iobrmod iob.xdl io49.xdl 56 
v4iobrmod iob.xdl io50.xdl 57 
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v4iobrmod iob.xdl io51.xdl 58 
v4iobrmod iob.xdl io52.xdl 59 
v4iobrmod iob.xdl io53.xdl 61 
v4iobrmod iob.xdl io54.xdl 63 
v4iobrmod iob.xdl io55.xdl 66 
v4iobrmod iob.xdl io56.xdl 67 
v4iobrmod iob.xdl io57.xdl 68 
v4iobrmod iob.xdl io58.xdl 69 
 
echo ********************** 
echo BIST configs IO59-IO70 
echo 6) complementary differential standards 
v4iobrmod diff1.xdl io59.xdl 24 
v4iobrmod diff1.xdl io60.xdl 27 
v4iobrmod diff1.xdl io61.xdl 31 
v4iobrmod diff1.xdl io62.xdl 32 
v4iobrmod diff1.xdl io63.xdl 33  
v4iobrmod diff1.xdl io64.xdl 34  
v4iobrmod diff2.xdl io65.xdl 24 
v4iobrmod diff2.xdl io66.xdl 27 
v4iobrmod diff2.xdl io67.xdl 31 
v4iobrmod diff2.xdl io68.xdl 32 
v4iobrmod diff2.xdl io69.xdl 33 
v4iobrmod diff2.xdl io70.xdl 34 
 
echo ********************** 
echo BIST configs IO71-IO78 
echo 7) complementary differential standards with DCI 
v4iobrmod diff1d.xdl io71.xdl 46 
v4iobrmod diff1d.xdl io72.xdl 47 
v4iobrmod diff1d.xdl io73.xdl 48 
v4iobrmod diff1d.xdl io74.xdl 49 
v4iobrmod diff2d.xdl io75.xdl 46 
v4iobrmod diff2d.xdl io76.xdl 47 
v4iobrmod diff2d.xdl io77.xdl 48 
v4iobrmod diff2d.xdl io78.xdl 49 
 
 
 
echo ******************************************** 
echo Convert configurations to ncd 
xdl -xdl2ncd -force -nodrc io1 
xdl -xdl2ncd -force -nodrc io2 
xdl -xdl2ncd -force -nodrc io3 
xdl -xdl2ncd -force -nodrc io4 
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xdl -xdl2ncd -force -nodrc io5 
xdl -xdl2ncd -force -nodrc io6 
xdl -xdl2ncd -force -nodrc io7 
xdl -xdl2ncd -force -nodrc io8 
xdl -xdl2ncd -force -nodrc io9 
xdl -xdl2ncd -force -nodrc io10 
xdl -xdl2ncd -force -nodrc io11 
xdl -xdl2ncd -force -nodrc io12 
xdl -xdl2ncd -force -nodrc io13 
xdl -xdl2ncd -force -nodrc io14 
xdl -xdl2ncd -force -nodrc io15 
xdl -xdl2ncd -force -nodrc io16 
xdl -xdl2ncd -force -nodrc io17  
xdl -xdl2ncd -force -nodrc io18  
xdl -xdl2ncd -force -nodrc io19 
xdl -xdl2ncd -force -nodrc io20 
xdl -xdl2ncd -force -nodrc io21 
xdl -xdl2ncd -force -nodrc io22 
xdl -xdl2ncd -force -nodrc io23 
xdl -xdl2ncd -force -nodrc io24 
xdl -xdl2ncd -force -nodrc io25 
xdl -xdl2ncd -force -nodrc io26 
xdl -xdl2ncd -force -nodrc io27 
xdl -xdl2ncd -force -nodrc io28 
xdl -xdl2ncd -force -nodrc io29 
xdl -xdl2ncd -force -nodrc io30 
xdl -xdl2ncd -force -nodrc io31 
xdl -xdl2ncd -force -nodrc io32 
xdl -xdl2ncd -force -nodrc io33 
xdl -xdl2ncd -force -nodrc io34 
xdl -xdl2ncd -force -nodrc io35 
xdl -xdl2ncd -force -nodrc io36 
xdl -xdl2ncd -force -nodrc io37 
xdl -xdl2ncd -force -nodrc io38 
xdl -xdl2ncd -force -nodrc io39 
xdl -xdl2ncd -force -nodrc io40 
xdl -xdl2ncd -force -nodrc io41 
xdl -xdl2ncd -force -nodrc io42 
xdl -xdl2ncd -force -nodrc io43 
xdl -xdl2ncd -force -nodrc io44 
xdl -xdl2ncd -force -nodrc io45 
xdl -xdl2ncd -force -nodrc io46 
xdl -xdl2ncd -force -nodrc io47 
xdl -xdl2ncd -force -nodrc io48 
xdl -xdl2ncd -force -nodrc io49 
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xdl -xdl2ncd -force -nodrc io50 
xdl -xdl2ncd -force -nodrc io51 
xdl -xdl2ncd -force -nodrc io52 
xdl -xdl2ncd -force -nodrc io53 
xdl -xdl2ncd -force -nodrc io54 
xdl -xdl2ncd -force -nodrc io55 
xdl -xdl2ncd -force -nodrc io56 
xdl -xdl2ncd -force -nodrc io57 
xdl -xdl2ncd -force -nodrc io58 
xdl -xdl2ncd -force -nodrc io59 
xdl -xdl2ncd -force -nodrc io60 
xdl -xdl2ncd -force -nodrc io61 
xdl -xdl2ncd -force -nodrc io62 
xdl -xdl2ncd -force -nodrc io63 
xdl -xdl2ncd -force -nodrc io64 
xdl -xdl2ncd -force -nodrc io65 
xdl -xdl2ncd -force -nodrc io66 
xdl -xdl2ncd -force -nodrc io67 
xdl -xdl2ncd -force -nodrc io68 
xdl -xdl2ncd -force -nodrc io69 
xdl -xdl2ncd -force -nodrc io70 
xdl -xdl2ncd -force -nodrc io71 
xdl -xdl2ncd -force -nodrc io72 
xdl -xdl2ncd -force -nodrc io73 
xdl -xdl2ncd -force -nodrc io74 
xdl -xdl2ncd -force -nodrc io75 
xdl -xdl2ncd -force -nodrc io76 
xdl -xdl2ncd -force -nodrc io77 
xdl -xdl2ncd -force -nodrc io78 
       
    
       
echo ******************************************** 
echo Generate BIST configurations, -j must be removed to later generate partials  
echo  Only have to generate a few here for partials 
bitgen -d -w io1     
bitgen -d -w io2 
bitgen -d -w io3 
bitgen -d -w io4 
bitgen -d -w io5 
bitgen -d -w io6 
bitgen -d -w io7 
bitgen -d -w io8 
bitgen -d -w io9 
bitgen -d -w io10 
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bitgen -d -w io11 
bitgen -d -w io12 
bitgen -d -w io13 
bitgen -d -w io14 
bitgen -d -w io15 
bitgen -d -w io16 
bitgen -d -w io17 
bitgen -d -w io18 
bitgen -d -w io19 
bitgen -d -w io20 
bitgen -d -w io21 
bitgen -d -w io22 
bitgen -d -w io23 
bitgen -d -w io24 
bitgen -d -w io25 
bitgen -d -w io26 
bitgen -d -w io27 
bitgen -d -w io28 
bitgen -d -w io29 
bitgen -d -w io30 
bitgen -d -w io31 
bitgen -d -w io32 
bitgen -d -w io33 
bitgen -d -w io34 
bitgen -d -w io35 
bitgen -d -w io36 
bitgen -d -w io37 
bitgen -d -w io38 
bitgen -d -w io39 
bitgen -d -w io40 
bitgen -d -w io41 
bitgen -d -w io42 
bitgen -d -w io43 
bitgen -d -w io44 
bitgen -d -w io45 
bitgen -d -w io46 
bitgen -d -w io47 
bitgen -d -w io48 
bitgen -d -w io49 
bitgen -d -w io50 
bitgen -d -w io51 
bitgen -d -w io52 
bitgen -d -w io53 
bitgen -d -w io54 
bitgen -d -w io55 
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bitgen -d -w io56 
bitgen -d -w io57 
bitgen -d -w io58 
bitgen -d -w io59 
bitgen -d -w io60 
bitgen -d -w io61 
bitgen -d -w io62 
bitgen -d -w io63 
bitgen -d -w io64 
bitgen -d -w io65 
bitgen -d -w io66 
bitgen -d -w io67 
bitgen -d -w io68 
bitgen -d -w io69 
bitgen -d -w io70 
bitgen -d -w io71 
bitgen -d -w io72 
bitgen -d -w io73 
bitgen -d -w io74 
bitgen -d -w io75 
bitgen -d -w io76 
bitgen -d -w io77 
bitgen -d -w io78 
 
 
 
echo ******************************************** 
echo Generate partial BIST configurations for faster test time    
bitgen -d -j -b -w -r io1.bit io2.ncd io2p 
bitgen -d -j -b -w -r io2.bit io3.ncd io3p 
bitgen -d -j -b -w -r io3.bit io4.ncd io4p 
bitgen -d -j -b -w -r io4.bit io5.ncd io5p 
bitgen -d -j -b -w -r io5.bit io6.ncd io6p 
bitgen -d -j -b -w -r io6.bit io7.ncd io7p 
bitgen -d -j -b -w -r io7.bit io8.ncd io8p 
bitgen -d -j -b -w -r io8.bit io9.ncd io9p 
bitgen -d -j -b -w -r io9.bit io10.ncd io10p 
bitgen -d -j -b -w -r io10.bit io11.ncd io11p 
bitgen -d -j -b -w -r io11.bit io12.ncd io12p 
bitgen -d -j -b -w -r io12.bit io13.ncd io13p 
bitgen -d -j -b -w -r io13.bit io14.ncd io14p 
bitgen -d -j -b -w -r io14.bit io15.ncd io15p 
bitgen -d -j -b -w -r io15.bit io16.ncd io16p 
bitgen -d -j -b -w -r io16.bit io17.ncd io17p 
bitgen -d -j -b -w -r io17.bit io18.ncd io18p 
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bitgen -d -j -b -w -r io18.bit io19.ncd io19p 
bitgen -d -j -b -w -r io19.bit io20.ncd io20p 
bitgen -d -j -b -w -r io20.bit io21.ncd io21p 
bitgen -d -j -b -w -r io21.bit io22.ncd io22p 
bitgen -d -j -b -w -r io22.bit io23.ncd io23p 
bitgen -d -j -b -w -r io23.bit io24.ncd io24p 
bitgen -d -j -b -w -r io24.bit io25.ncd io25p 
bitgen -d -j -b -w -r io25.bit io26.ncd io26p 
bitgen -d -j -b -w -r io26.bit io27.ncd io27p 
bitgen -d -j -b -w -r io27.bit io28.ncd io28p 
bitgen -d -j -b -w -r io28.bit io29.ncd io29p 
bitgen -d -j -b -w -r io29.bit io30.ncd io30p 
bitgen -d -j -b -w -r io30.bit io31.ncd io31p 
bitgen -d -j -b -w -r io31.bit io32.ncd io32p 
bitgen -d -j -b -w -r io32.bit io33.ncd io33p 
bitgen -d -j -b -w -r io33.bit io34.ncd io34p 
bitgen -d -j -b -w -r io34.bit io35.ncd io35p 
bitgen -d -j -b -w -r io35.bit io36.ncd io36p 
bitgen -d -j -b -w -r io36.bit io37.ncd io37p 
bitgen -d -j -b -w -r io37.bit io38.ncd io38p 
bitgen -d -j -b -w -r io38.bit io39.ncd io39p 
bitgen -d -j -b -w -r io39.bit io40.ncd io40p 
bitgen -d -j -b -w -r io40.bit io41.ncd io41p 
bitgen -d -j -b -w -r io41.bit io42.ncd io42p 
bitgen -d -j -b -w -r io42.bit io43.ncd io43p 
bitgen -d -j -b -w -r io43.bit io44.ncd io44p 
bitgen -d -j -b -w -r io44.bit io45.ncd io45p 
bitgen -d -j -b -w -r io45.bit io46.ncd io46p 
bitgen -d -j -b -w -r io46.bit io47.ncd io47p 
bitgen -d -j -b -w -r io47.bit io48.ncd io48p 
bitgen -d -j -b -w -r io48.bit io49.ncd io49p 
bitgen -d -j -b -w -r io49.bit io50.ncd io50p 
bitgen -d -j -b -w -r io50.bit io51.ncd io51p 
bitgen -d -j -b -w -r io51.bit io52.ncd io52p 
bitgen -d -j -b -w -r io52.bit io53.ncd io53p 
bitgen -d -j -b -w -r io53.bit io54.ncd io54p 
bitgen -d -j -b -w -r io54.bit io55.ncd io55p 
bitgen -d -j -b -w -r io55.bit io56.ncd io56p 
bitgen -d -j -b -w -r io56.bit io57.ncd io57p 
bitgen -d -j -b -w -r io57.bit io58.ncd io58p 
bitgen -d -j -b -w -r io58.bit io59.ncd io59p 
bitgen -d -j -b -w -r io59.bit io60.ncd io60p 
bitgen -d -j -b -w -r io60.bit io61.ncd io61p 
bitgen -d -j -b -w -r io61.bit io62.ncd io62p 
bitgen -d -j -b -w -r io62.bit io63.ncd io63p 
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bitgen -d -j -b -w -r io63.bit io64.ncd io64p 
bitgen -d -j -b -w -r io64.bit io65.ncd io65p 
bitgen -d -j -b -w -r io65.bit io66.ncd io66p 
bitgen -d -j -b -w -r io66.bit io67.ncd io67p 
bitgen -d -j -b -w -r io67.bit io68.ncd io68p 
bitgen -d -j -b -w -r io68.bit io69.ncd io69p 
bitgen -d -j -b -w -r io69.bit io70.ncd io70p 
bitgen -d -j -b -w -r io70.bit io71.ncd io71p 
bitgen -d -j -b -w -r io71.bit io72.ncd io72p 
bitgen -d -j -b -w -r io72.bit io73.ncd io73p 
bitgen -d -j -b -w -r io73.bit io74.ncd io74p 
bitgen -d -j -b -w -r io74.bit io75.ncd io75p 
bitgen -d -j -b -w -r io75.bit io76.ncd io76p 
bitgen -d -j -b -w -r io76.bit io77.ncd io77p 
bitgen -d -j -b -w -r io77.bit io78.ncd io78p 
 
 
 
echo ******************************************** 
echo Generate DRC errors reports for review 
drc -s -v -o io1.tdr io1.ncd 
drc -s -v -o io2.tdr io2.ncd 
drc -s -v -o io3.tdr io3.ncd 
drc -s -v -o io4.tdr io4.ncd 
drc -s -v -o io5.tdr io5.ncd 
drc -s -v -o io6.tdr io6.ncd 
drc -s -v -o io7.tdr io7.ncd 
drc -s -v -o io8.tdr io8.ncd 
drc -s -v -o io9.tdr io9.ncd 
drc -s -v -o io10.tdr io10.ncd 
drc -s -v -o io11.tdr io11.ncd 
drc -s -v -o io12.tdr io12.ncd 
drc -s -v -o io13.tdr io13.ncd 
drc -s -v -o io14.tdr io14.ncd 
drc -s -v -o io15.tdr io15.ncd 
drc -s -v -o io16.tdr io16.ncd 
drc -s -v -o io17.tdr io17.ncd 
drc -s -v -o io18.tdr io18.ncd 
drc -s -v -o io19.tdr io19.ncd 
drc -s -v -o io20.tdr io20.ncd 
drc -s -v -o io21.tdr io21.ncd 
drc -s -v -o io22.tdr io22.ncd 
drc -s -v -o io23.tdr io23.ncd 
drc -s -v -o io24.tdr io24.ncd 
drc -s -v -o io25.tdr io25.ncd 
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drc -s -v -o io26.tdr io26.ncd 
drc -s -v -o io27.tdr io27.ncd 
drc -s -v -o io28.tdr io28.ncd 
drc -s -v -o io29.tdr io29.ncd 
drc -s -v -o io30.tdr io30.ncd 
drc -s -v -o io31.tdr io31.ncd 
drc -s -v -o io32.tdr io32.ncd 
drc -s -v -o io33.tdr io33.ncd 
drc -s -v -o io34.tdr io34.ncd 
drc -s -v -o io35.tdr io35.ncd 
drc -s -v -o io36.tdr io36.ncd 
drc -s -v -o io37.tdr io37.ncd 
drc -s -v -o io38.tdr io38.ncd 
drc -s -v -o io39.tdr io39.ncd 
drc -s -v -o io40.tdr io40.ncd 
drc -s -v -o io41.tdr io41.ncd 
drc -s -v -o io42.tdr io42.ncd 
drc -s -v -o io43.tdr io43.ncd 
drc -s -v -o io44.tdr io44.ncd 
drc -s -v -o io45.tdr io45.ncd 
drc -s -v -o io46.tdr io46.ncd 
drc -s -v -o io47.tdr io47.ncd 
drc -s -v -o io48.tdr io48.ncd 
drc -s -v -o io49.tdr io49.ncd 
drc -s -v -o io50.tdr io50.ncd 
drc -s -v -o io51.tdr io51.ncd 
drc -s -v -o io52.tdr io52.ncd 
drc -s -v -o io53.tdr io53.ncd 
drc -s -v -o io54.tdr io54.ncd 
drc -s -v -o io55.tdr io55.ncd 
drc -s -v -o io56.tdr io56.ncd 
drc -s -v -o io57.tdr io57.ncd 
drc -s -v -o io58.tdr io58.ncd 
drc -s -v -o io59.tdr io59.ncd 
drc -s -v -o io60.tdr io60.ncd 
drc -s -v -o io61.tdr io61.ncd 
drc -s -v -o io62.tdr io62.ncd 
drc -s -v -o io63.tdr io63.ncd 
drc -s -v -o io64.tdr io64.ncd 
drc -s -v -o io65.tdr io65.ncd 
drc -s -v -o io66.tdr io66.ncd 
drc -s -v -o io67.tdr io67.ncd 
drc -s -v -o io68.tdr io68.ncd 
drc -s -v -o io69.tdr io69.ncd 
drc -s -v -o io70.tdr io70.ncd 
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drc -s -v -o io71.tdr io71.ncd 
drc -s -v -o io72.tdr io72.ncd 
drc -s -v -o io73.tdr io73.ncd 
drc -s -v -o io74.tdr io74.ncd 
drc -s -v -o io75.tdr io75.ncd 
drc -s -v -o io76.tdr io76.ncd 
drc -s -v -o io77.tdr io77.ncd 
drc -s -v -o io78.tdr io78.ncd 
 
echo ******************************************************************* 
echo End of BIST configuration batch file for SX 35 
echo ******************************************************************* 
 
 
echo ******************************************************************* 
echo * The following code links this batch file to a similar but separate batch file used to 
echo * generate all 78 I/O tile BIST configurations for a Virtex-4 SX 55 FF1147.  This 
echo * method can be used to generate I/O tile BIST configurations for all Virtex-4  
echo * device and package combinations. 
cd.. 
cd sx55ff1148 
sx55ff1148.bat 
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APPENDIX B 
 

REDUCED CONFIGURATION FOR ILOGIC, OLOGIC, AND I/O BUFFERS  
 

Table B.1: Proposed Configuration Modes of ILOGIC Components 

Cfg. Bits Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 
DELAYMUX OFF 1 0 1 OFF 
DELMUX 1 0 0 0 OFF 
D2OBYPSEL OFF 1 OFF OFF GND 
IMUX 1 0 1 1 0 
IFFDELMUX 1 0 OFF 0 OFF 
D2OFFBSEL GND 1 GND 1 OFF 
IFFMUX 1 0 0 1 1 
CE1INV CE1 CE1_B CE1 CE1_B CE1 
CLKINV CLK CLK_B CLK CLK_B CLK 
SRINV SR SR_B SR SR_B SR 
REVINV REV REV_B REV REV_B REV 
Q1MUX IFF1 IFF3 IFF1 IFF1 IFF3 
Q2MUX IFF2 IFF4 IFF2 IFF2 IFF4 
IFF1 FF FF FF LATCH FF 
SRVAL[1:4] 1111 0000 0000 1100 0011 
INIT[1:4] 1111 0011 0000 0000 1100 
SRTYPE Sync Sync Sync Async Sync 
CLKDIVINV OFF OFF 0 1 OFF 
DELAYVAL. 0 0 2 63 0 
DELAY 
TYPE Default Default Fixed Variable Default 
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Table B.2: Proposed Configuration Modes of OLOGIC Components 

Cfg. Bits Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 
T1INV T1_B T1 T1_B T1 T1 
T2INV OFF OFF T2 T2_B OFF 
TCEINV OFF TCE TCE_B TCE TCE 
CLK1INV OFF CLK1 CLK1_B CLK1 CLK 
CLK2INV OFF CLK2 CLK2_B CLK2_B CLK 
D1INV D1_B D1 D1_B D1 D1 
D2INV OFF OFF D2 D2_B OFF 
OCEINV OFF OCE OCE_B OCE OCE 
SRINV OFF SR SR_B SR SR 
REVINV OFF REV REV_B REV_B REV 
TFF1 FF FF FF FF LATCH 
OFF1 FF FF FF FF LATCH 
TMUX T1 TFF1 TFFDDRA TFFDDRB TFF1 
OMUX D1  OFF1 OFFDDRA OFFDDRB OFF1 
SRVALOQ 0 1 0 1 0 
SRVALTQ 0 1 0 1 0 
INITOQ 0 0 0 1 0 
INITTQ 0 0 0 1 0 
SRTYPEOQ Sync Sync Sync Sync Async 
SRTYPETQ Sync Sync Sync Sync Async 

 
Table B.3: Proposed Configuration Modes of I/O Buffer Components 

Cfg. Bits Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 
PULL Keeper Down Pullup Keeper Down 
GTSATTR Off Disable Disable Off Disable 
SLEW Slow Fast Slow Off Slow 
DIFFTERM NA NA NA NA NA 
DRIVE 24 4 6 Off 2 
DRIVE0MA Off Drive0 Drive0 Off Drive0 

IOATTR LVTTL
LVCM- 
OS33 

LVCM- 
OS25 

PCI66 
-3 

LVCM- 
OS15 
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APPENDIX C 
 

LIST OF ACRONYMS 
 
 

ATE – Automatic Test Equipment 

BIST – Built-In Self-Test 

BUT – Block Under Test 

BRAM – Block Random Access Memory 

CD – Complementary Differential 

CLB – Configurable Logic Block 

CUT – Circuit Under Test 

DCI – Digitally Controlled Impedance 

DCM – Digital Clock Manager 

DDR – Double Data Rate 

DFT – Design for Testability 

DSP – Digital Signal Processor 

FF – Flip-Flop 

FPGA – Field Programmable Gate Array 

I/O – Input/Output 

IDELAY – Input Delay Module 

ILOGIC – Input Logic 

ISERDES – Input SERDES 
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LUT – Look-Up Table 

OLOGIC – Output Logic 

ORA – Output Response Analyzer 

OSERDES – Output SERDES 

PIP – Programmable Interconnect Point 

PLB – Programmable Logic Block 

PMV – Predicted Motion Vector 

REV – Reset 

SDR – Single Data Rate  

SE – Single-Ended 

SER – Single-Ended Requiring VREF 

SERDES – Serializer/Deserializer  

SoC – System-on-Chip 

SR – Set 

SRAM – Static Random Access Memory 

TPG – Test Pattern Generator 

VLSI – Very Large Scale Integration  

VREF – Reference Voltage  
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