

BUILT-IN SELF-TEST FOR INPUT/OUTPUT TILES IN FIELD PROGRAMMABLE GATE ARRAYS

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Lee W. Lerner

Certificate of Approval:

______________________________ _____________________________
Vishwani D. Agrawal Charles E. Stroud, Chair
Professor Professor
Electrical and Computer Engineering Electrical and Computer Engineering

______________________________ ______________________________
Victor P. Nelson Joe F. Pittman
Professor Interim Dean
Electrical and Computer Engineering Graduate School

BUILT-IN SELF-TEST FOR INPUT/OUTPUT TILES IN FIELD PROGRAMMABLE GATE ARRAYS

Lee W. Lerner

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 10, 2008

 iii

BUILT-IN SELF-TEST FOR INPUT/OUTPUT TILES IN FIELD PROGRAMMABLE GATE ARRAYS

Lee W. Lerner

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon the request of individuals or institutions and at their expense. The author reserves

all publication rights.

 Signature of the Author

Date of Graduation

 iv

VITA

 Lee W. Lerner, son of K. Lee and Brenda Lerner, was born in Dallas, Texas on

October 13, 1982. Lee is an IEEE published author and has also contributed to several

volumes on science, computer science, and technology for students at the high school and

early college level. In fall of 2003, he accepted a position at the NASA Kennedy Space

Center where he worked as a student co-op / engineer trainee in the Information

Technology and Communications Directorate. In spring 2006, he graduated from

Auburn University with a Bachelor of Electrical Engineering with a major focus in

Computer Engineering. Upon graduating, he began working on his Master of Science

degree at Auburn University under the advisement of Dr. Charles E. Stroud, a professor

and IEEE Fellow who has made significant contributions in the area of BIST for VLSI

devices. Lee also spent two months during summer 2007 working with graduate students

and professors at IIT Madras as well as Indian industry leaders to produce an

international case-study under a National Science Foundation grant. In August 2007, Lee

married author and editor, Alicia Cafferty Lerner, in Dublin.

 v

THESIS ABSTRACT

BUILT-IN SELF-TEST FOR INPUT/OUTPUT TILES IN FIELD PROGRAMMABLE GATE ARRAYS

Lee W. Lerner

Master of Science, May 10 2008
(B.E.E., Auburn University, 2006)

135 Typed Pages

Directed by Charles E. Stroud

 Very large scale integration (VLSI) circuits use input/output (I/O) cells to both

send and receive signals from external resources. Field Programmable Gate Arrays

(FPGAs) and System-on-Chips (SoCs) with FPGA cores offer increasingly complex I/O

cell resources with new generations of device architectures. I/O cells can often be

grouped together to form I/O tiles that can support even more complex features. The ever

increasing complexity of I/O tiles is indicative of the need for a reliable testing

methodology to ensure the functionality of device resources. Built-in self-test (BIST) is

one such testing methodology that incorporates the testing circuitry with the device under

test.

A total of 78 BIST configurations are developed to test the I/O tile logic resources

and supported I/O standards in Xilinx Virtex-4 FPGAs. The BIST configurations are

implemented and verified on Virtex-4 FPGAs. The BIST configurations are generated

 vi

for all Virtex-4 FPGAs. The general BIST approach presented in this thesis is applicable

to any FPGA or SoC with a FPGA core. The BIST approach can be used for both

manufacturing and system level testing for I/O tiles with both bonded and unbonded I/O

buffers.

 vii

ACKNOWLEDGEMENTS

 It is important to me to thank the many people who have made this thesis

possible. I would particularly like to thank Dr. Stroud for his encouragement, for sharing

his invaluable knowledge, and his guidance throughout my studies at Auburn University.

I would like to recognize Dr. Agrawal for his teachings, attitude towards science, and

overall inspiring demeanor. I would also like to thank Dr. Nelson, Dr. Singh, and the

remaining professors of the AU Electrical and Computer Engineering Department for

providing me with important teachings full of knowledge and wisdom. My educational

experience through this department is applicable both inside and outside of the

laboratory. I would like to acknowledge Bobby, Daniel, Jie, Mustafa, Sachin, and

Sudheer for their friendship and assistance throughout my research. I owe a special

thanks to Brad for putting in those late Friday nights that produced valuable contributions

to this thesis. My friends and family should also be recognized for their endless

encouragement and support. Notably: my father for teaching me how to handle any

situation; my mother for reassuring me that I was not dying, rather, just stressed; my

older sister, Adrienne, for relating her graduate school experience; my youngest sister,

Adeline, for her encouraging wit; and my sister, Amanda, for keeping my spirits high and

driving me to class when I did not feel like walking. Finally, I am indebted to my wife,

Alicia Cafferty Lerner, for sharing her love of everything that is good in life.

 viii

 Style manual or journal used Journal of Approximation Theory (together with
style known as “aums”). Bibliography follows IEEE transactions.

Computer software used The entire document, including text, figures, and tables,
was prepared using Microsoft Word.

 ix

TABLE OF CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xiii

1 INTRODUCTION ..1
 1.1 Overview of Field-Programmable Gate Arrays (FPGAs)2
 1.2 Overview of Input/Output Tiles (I/O Tiles)..4
 1.3 Overview of Built-In Self-Test (BIST)...6
 1.4 Overview of Prior Work in Testing I/O Tiles...8
 1.5 Thesis Statement ...9

2 BACKGROUND INFORMATION ..10
 2.1 Virtex-4 Architecture ..10
 2.1.1 Virtex-4 Configurable Logic Blocks ...11
 2.1.2 Virtex-4 Block RAMs..12
 2.1.3 Virtex-4 Digital Signal Processors...12
 2.1.4 Virtex-4 Digital Clock Managers...13
 2.1.5 Virtex-4 Input/Output Cells ...14
 2.2 Details of Virtex-4 General Purpose Input/Output Tiles17
 2.2.1 ILOGIC ..19
 2.2.2 OLOGIC...24
 2.2.3 SERDES ...26
 2.2.4 I/O Buffer ...29
 2.2.5 Programming Interface...36
 2.3 Built-In Self-Test for FPGAs..38
 2.4 Previous Work in I/O Testing ...41
 2.5 Thesis Restatement ...44

3 I/O TILE BIST FOR FPGAS..46
 3.1 BIST Architecture...46
 3.2 Configurations to Test I/O Tile Logic Resources ...51
 3.2.1 Configurations to Test ILOGIC, OLOGIC, and I/O Buffers.....................51
 3.2.2 Configurations to Test SERDES..59
 3.3 Configurations to Test I/O Standards ...70
 3.3.1 Testing Single-Ended I/O Standards ..72
 3.3.2 Testing Single-Ended I/O Standards Requiring a Reference Voltage ...73
 3.3.3 Testing Complementary Differential I/O Standards74
 3.3.4 Testing I/O Standards with Digitally Controlled Impedance.................77

 x

 3.4 Summary of I/O Tile BIST Configurations ..78

4 EXPERIMENTAL RESULTS...81
 4.1 Generating I/O Tile BIST Configurations ..81
 4.1.1 Summary of I/O Tile BIST Programs..82
 4.1.2 BIST Configuration Generation Procedure ...84
 4.2 Executing I/O Tile BIST Configurations..88
 4.3 Experimental Results Obtained...90
 4.3.1 Configurations to test ILOGIC, OLOGIC, and I/O Buffers...................90
 4.3.2 Configurations to Test SERDES Logic Resources92
 4.3.3 Configurations to Test I/O Standards...93
 4.4 Capabilities and Limitations ...95

5 SUMMARY AND CONCLUSION ..99
 5.1 Summary of Virtex-4 I/O Tile BIST...99
 5.2 Areas of Future Research and Development ..100
 5.3 General Application to FPGAs and SoCs...102

BIBLIOGRAPHY 104

APPENDICES 107

A BATCH FILE FOR GENERATING I/O TILE BIST CONFIGURATIONS 107

B REDUCED CONFIGURATIONS FOR ILOGIC, OLOGIC, AND I/O BUFFERS 119

C LIST OF ACRONYMS 121

 xi

LIST OF FIGURES

1.1 Typical FPGA Architecture ..3

1.2 Basic PIP Structure ...4

1.3 Basic I/O Tile Architecture...5

1.4 Basic BIST Architecture ...7

2.1 Example FPGA Input/Output Cell..16

2.2 Virtex-4 I/O Tile Architecture Block Diagram [5] ...19

2.3 Virtex-4 Input Logic (ILOGIC) Architecture [5] ...21

2.4 Virtex-4 Output Logic (OLOGIC) Architecture [5] ...25

2.5 OSERDES 4:1 DDR Timing Diagram from [5] ...29

2.6 Virtex-4 I/O Buffer Architecture [5]...30

2.7 Types of Virtex-4 Supported I/O Standards. (a) Single-Ended. (b) Single-Ended

Requiring a VREF. (c) Complementary Differential...32

2.8 Input I/O Tile with Complementary Differential I/O Standard34

2.9 BIST Architecture presented in [27]. (a) TPG, BUT, ORA connections.

 (b) Floorplan for first test session. (c) Floorplan for second test session.39

2.10 BRAM BIST Architecture Presented in [19]..40

2.11 BIST Architecture from [8], also representative of [14][15]....................................41

2.12 Comparison Based ORA Architecture [9] ..42

2.13 Primary I/O Buffer in Atmel FPGA [14]..43

 xii

3.1 Basic I/O Tile BIST Architecture ...47

3.2 I/O Tile BIST ORA Architecture..50

3.3 I/O Tile to ORA Connections ...57

3.4 Virtex-4 I/O Cell in ISERDES/OSERDES Mode of Operation64

3.5 SERDES BIST BITSLIP Synchronizer Circuit..67

3.6 SERDES BIST TDI Logic Circuit..70

3.7 I/O Tile BIST Configuration for Single-Ended I/O Standards72

3.8 I/O Tile BIST Configuration for Single-Ended Standards Requiring a VREF...........73

3.9 I/O Tile BIST Configuration for Complementary Differential I/O Standards74

3.10 I/O Tile Components Used for Complementary Differential I/O Standards76

4.1 All I/O Buffers Under Test of a Virtex-4 FX20 with One Power PC [Screenshot

from Xilinx FPGA Editor] ..88

4.2 Virtex-4 FX 12 I/O Buffers in Power PC Rows Not Under Test [Screenshot from

Xilinx FPGA Editor]...97

 xiii

LIST OF TABLES

2.1 Virtex-4 Digital Clock Manager Clock Output Ports ...14

2.2 Virtex-4 I/O Tiles and I/O Banks for Various Device Families [16][18].................17

2.3 General Purpose I/O Bank 7 for Virtex-4 Package FF66836

3.1 DSP Signals and Attributes for All Configurations..49

3.2 Configuration Modes of ILOGIC Components ..53

3.3 Configuration Modes of OLOGIC Components...54

3.4 Configuration Modes of I/O Buffer Components...55

3.5 BRAM Signals and Attributes for ILOGIC, OLOGIC, and I/O Buffer Testing56

3.6 TPG and ORA Connections for ILOGIC, OLOGIC, and I/O Buffer Testing..........58

3.7 BIST Configurations to Test ISERDES..60

3.8 BIST Configurations to Test OSERDES ..62

3.9 TPG and ORA Connections for SERDES Testing ...65

3.10 SERDES BITSLIP Synchronizer Circuit Timing...68

3.11 BIST Configurations to Test I/O Standards Independently......................................71

3.12 Summary of Virtex-4 I/O Tile BIST Configurations..79

4.1 SERDES BIST Execution Results ..93

B.1 Proposed Configuration Modes of ILOGIC Components119

B.2 Proposed Configuration Modes of OLOGIC Components.....................................120

B.3 Proposed Configuration Modes of I/O Buffer Components120

 1

CHAPTER ONE

INTRODUCTION

Field Programmable Gate Arrays (FPGAs) and configurable System-on-Chips

(SoCs) that use FPGA cores are reconfigurable devices that are becoming increasingly

important for applications in radiation prone environments, such as space, as well as

critical applications that cannot allow for system downtime or the transmission of

erroneous data. Circuits used in aircraft systems, for example, are susceptible to single

event effects, in which a radiation particle can cause an error in system functionality [1].

The ever increasing purposes such devices serve in these types of applications are

indicative of the need for a reliable testing methodology to ensure the functionality of

device resources.

A harsh operating environment or critical system application, however, is not

required to raise concern over the testing of FPGAs. The basic reliability of FPGAs, like

most chips created in a very large scale integration (VLSI) process, is decreasing as the

complexity of such devices increases and the feature size decreases. There can be errors

at the design level, defects sustained during the manufacturing process, or even faults that

occur during system operation [2]. The generally accepted Moore’s Law predicts that the

transistor feature sizes on a VLSI chip reduce by as much as 10.5% each year, and

consequently, the transistor density of a VLSI chip can increase by as much as 22.1%

each year [3]. These trends indicate that the transistor count on VLSI chips can nearly

 2

double each year, which is historically accurate. One approach to testing is to use

automatic test equipment (ATE). However, ATE has proven to be expensive and

complex. Several design for testability (DFT) techniques, such as scan design and built-

in self-test (BIST), have been developed to try to overcome the high cost of ATE

equipment while still providing an acceptable level of fault coverage for a device [2].

1.1 Overview of Field Programmable Gate Arrays (FPGAs)

 On the most fundamental level, an FPGA can be described as a “general-purpose,

multi-level programmable logic device that is customized in the package by the end

users” [4]. FPGAs are widely used because of their ability to be programmed to

implement any digital logic circuit. A typical FPGA architecture consists of an array of

programmable logic blocks (PLBs), Input/Output (I/O) cells, and a programmable

interconnect network, as exemplified in Figure 1.1. Xilinx Virtex-4 FPGAs also contain

columns of other elements that may be configured to implement a system function, such

as block RAMs (BRAMs) and digital signal processors (DSPs) [5]. The PLBs in FPGAs

typically consist of look-up tables (LUTs), multiplexers, and flip-flops. The PLBs are

configured individually to implement low level digital logic. Then, the PLB inputs and

outputs are connected together via the programmable interconnect network, also known

as the programmable routing network, to implement larger circuits [6]. The routing

network also provides signal paths from the I/O cells to the PLBs. The I/O cells provide

a means for the FPGA to exchange information with external devices also implemented

in a system or directly with system inputs and outputs. In Virtex-4 devices, two I/O cells

are grouped together to form an I/O tile [5].

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

Input/Output
Cell (I/O Cell)

Input/Output
Tile (I/O Tile)

Programmable
Interconnect
Network

Figure 1.1: Typical FPGA Architecture

 The programmable interconnect network comprises segmented wiring that is

connected or disconnected through the use of programmable interconnect points (PIPs).

A basic PIP structure, illustrated in Figure 1.2, consists of a configuration memory bit

that controls a transmission gate placed between two wire segments. The configuration

memory bit used to control the transmission gate is often implemented as either a static

RAM (SRAM) bit or an antifuse. While a SRAM bit can be set high or low throughout

system use, consequently turning on or off the transmission gate, an antifuse permanently

joins wire segments according if antifuse is blown. There are several types of PIPs,

including break-point PIPs, cross-point PIPs, multiplexer PIPs, and switch-box PIPs

[2][7].

 3

Wire Segment 2 Wire Segment 1

Configuration
 Memory Bit

Transmission
Gate

Figure 1.2: Basic PIP Structure

The programmable routing network also consists of local routing, which

interconnects PLBs to form larger circuits, and global routing comprising wire segments

that span various lengths of PLBs. Global routing consists of horizontal and vertical lines

that make use of periodically placed buffers to prevent signal degradation [7].

1.2 Overview of Input/Output Tiles (I/O Tiles)

An I/O tile consists of two I/O cells in a Virtex-4 FPGA, as seen in Figure 1.3.

An I/O cell typically consists of an I/O buffer, input logic (ILOGIC) circuitry, output

logic (OLOGIC) circuitry, and supporting routing resources [8][9]. The ILOGIC

component comprises flip-flops, multiplexers, PIPs, and routing resources used to

communicate from the I/O buffer and to the internal device resources. ILOGIC

components only receive signals from the I/O buffer while both sending and receiving

signals from the internal device resources. An ILOGIC component also contains an input

delay element (IDELAY or IODELAY), shown as a grey box in Figure 1.3, used to add a

fixed delay time to a signal. The OLOGIC component similarly comprises flip-flops,

multiplexers, PIPs, and routing resources. However, an OLOGIC component typically

only receives signals from the internal device resources and sends signals to the I/O

buffer. The I/O buffer comprises a pad, an input buffer, a tri-state output buffer, various

digital logic resources such as multiplexers or PIPs, routing resources, and various analog

 4

logic resources such as pull-up or pull-down transistors [5][10]. The ILOGIC, OLOGIC,

and I/O buffers can be configured to operate in various modes and standards (i.e. slew

rate, drive strength, and input delay are adjustable). Also, there are some additional

connections between ILOGIC, OLOGIC, and I/O buffers that will be discussed in more

detail in subsequent chapters.

To/From Device Resources

Input
Logic

(ILOGIC)

Output
Logic

(OLOGIC) From Device Resources

To/From Device Resources

Input
Logic

(ILOGIC)

Output
Logic

(OLOGIC) From Device Resources

I/O Cell

Input/Output
Buffer

(I/O Buffer)

Input/Output
Buffer

(I/O Buffer)

IDELAY

IDELAY

I/O Cell

Figure 1.3: Basic I/O Tile Architecture

 5

 6

The pad acts as the interface between the die and package, and can be bonded or

unbonded. A pad is considered bonded if it is wire-bonded to a pin or ball on the device

package allowing communication between the pad and other system signals external to

the FPGA. An unbonded pad is not wire-bonded to a pin or ball on the device package

and cannot communicate with external system signals. However, the resources of an I/O

cell with an unbonded pad may still be used by the FPGA to implement system functions

[8][11]. Therefore, both I/O cells with bonded and unbonded pads should be functionally

tested.

 I/O tiles can operate in various modes as single-ended or differential primitives.

When operating as single-ended primitives, the I/O cells of an I/O tile typically function

independently. When operating as differential primitives, the two I/O cells of an I/O tile

are paired together to perform differential operations. Both single-ended and differential

primitives allow for I/O cells to be configured as input, output, or bidirectional cells

[5][10]. Input cells use the input buffer and ILOGIC resources to communicate a signal

from an external source to the internal resources of the FPGA. In contrast, output cells

use the output buffer and OLOGIC to communicate internal device signals off chip.

Bidirectional cells use both ILOGIC and OLOGIC resources to allow internal FPGA

resources to communicate both to and from the I/O buffers or external signals.

1.3 Overview of Built-In Self-Test (BIST)

 Historically, most DFT techniques aim to satisfy three principle goals: high fault

coverage, fast testing speed, and low cost. BIST is one such DFT technique that can

satisfy these principle goals, as well as overcome several other major testing problems,

 7

such as test generation and application. BIST is a DFT technique in which the hardware

for testing a device is built into or around the device itself [12]. Built-in hardware allows

for increased controllability and observability of the potential faults in a device to be

tested. The basic methodology of BIST can be described as: “to design a circuit so that

the circuit can test itself and determine whether it is ‘good’ or ‘bad’ (fault-free or faulty,

respectively)” [2].

 A basic BIST architecture, shown in Figure 1.4, typically consists of essential

BIST circuitry and a circuit under test (CUT). The essential BIST circuitry, shown as

grey boxes in Figure 1.4, typically includes a test pattern generator (TPG), output

response analyzer (ORA), and test controller [12]. The TPG generates a sequence of test

patterns that are applied to the CUT to activate potential fault sites. Then, the outputs of

the CUT are compacted in the ORAs which in turn produces a Pass/Fail result [2]. The

test controller can be used to implement a number a functions, such as starting the BIST,

initializing the CUT, or providing an indication that the BIST has finished.

Figure 1.4: Basic BIST Architecture

 BIST for FPGAs, unlike BIST for most other circuitry, can be implemented such

as not to incur system performance or area overhead penalties, meaning system execution

Test Pattern
Generator (TPG)

Output Response
Analyzer (ORA)

BIST
Controller

Circuit
Under Test

(CUT)

Pass/Fail

 8

time remains high and DFT costs remain low. Using only additional memory (external to

the FPGA) to store BIST configurations, there is no additional circuitry permanently

added into the FPGA design itself. FPGAs are configured repeatedly with different BIST

configurations stored in the external memory to test various resources of the FPGA [8].

Consequently, BIST proves to be a testing technique for FPGAs that well satisfies the

principal goals of DFT.

1.4 Overview of Prior Work in Testing I/O Tiles

 A number of BIST architectures have been developed to test the various resources

of FPGAs. However, there has been little focus on developing BIST approaches for

FPGA I/O cells. A BIST for I/O speed testing was developed in reference [13]. The

architecture presented in reference [13] used a delay-locked loop based BIST to test the

setup and hold times of chip I/O buffers and registers. While effective for testing I/O

speed, the architecture presented in reference [13] does not fully test the resources

contained in I/O tiles.

The most significant contributions to BIST for FPGA I/O resources were

developed in references [8],[9],[14], and [15]. These references developed a general

BIST approach applicable to any FPGA or SoC with an FPGA core. PLBs are used to

implement TPGs that supply test patterns to I/O cells. The I/O cells are configured as

bidirectional buffers such that they receive test patterns from the TPGs and send results to

the ORAs. The output responses of the I/O cells are then circularly compared with

identically configured I/O cells by ORAs which are also implemented in PLBs

[8][9][14][15]. References [8] and [9] suggest that 98.6% fault coverage can be obtained

 9

with seven BIST configurations for the I/O cells of a Virtex-4 device. However, these are

theoretical results based on simulations and have not been implemented in an actual

Virtex-4 FPGA.

1.5 Thesis Statement

 FPGAs are ever increasing in transistor count and logic resources, lending them to

be more susceptible to faults in manufacturing or system operation. Also, as these

increases occur, FPGAs become harder to test to ensure their functionality. To date, little

work has been done targeting the I/O tiles of Xilinx Virtex and Spartan series FPGAs.

This thesis presents a general BIST architecture developed to test the functionality of the

various resources present in I/O tiles of FPGAs as well as specific BIST configurations

developed and implemented in Xilinx Virtex-4 devices.

 The remainder of this thesis is organized as follows: Chapter 2 provides

architectural details of Virtex-4 FPGAs, an overview of prior work in BIST for FPGAs,

and previous work pertaining to I/O testing. Chapter 3 presents BIST configurations

developed specifically to test the I/O tiles present in Xilinx Virtex-4 FPGAs. Chapter 4

provides experimental results obtained from testing the configurations developed for

Virtex-4 I/O tile BIST. Finally, Chapter 5 provides a summary and conclusion of the

thesis as well as suggestions for future research and application.

 10

CHAPTER TWO

BACKGROUND INFORMATION

 This chapter provides an overview of FPGAs and BIST techniques that have been

developed for them that are similar to the one presented in this thesis. Chapter 2 begins

with discussion of the architectural details of the Xilinx Virtex-4 FPGA, including the

programmable logic blocks, block RAMs, digital signal processors, digital clock

managers, I/O tiles, and programming interface. The chapter then goes on to provide

background on previous BIST techniques that have been developed for FPGAs, including

BIST for programmable logic blocks, BIST for block RAMs, and BIST for I/O cells.

Finally, the chapter concludes with a thesis restatement in greater detail than written

previously.

2.1 Virtex-4 Architecture

Xilinx Virtex-4 FPGAs are fabricated on a 90-nm copper process using 300-mm

wafer technology. Each Virtex-4 FPGA contains a variety of configurable elements and

embedded IP cores that are optimized to implement high-density and high-performance

system designs. Some of the components common to all Virtex-4 devices include:

configurable logic blocks (CLBs) that provide combinatorial and sequential logic; block

RAM modules; digital signal processors; digital clock managers that perform self-

 11

calibrating high-speed clock operations and clock distribution; and input/output tiles

enhanced for source-synchronous applications in which the data clock is provided by the

data source. Each component is interconnected by an array of routing switches that form

a hierarchical general routing matrix that supports high-speed system designs [5][16].

Virtex-4 FPGAs are classified into three families: LX for high-performance logic

applications; SX for high-performance DSP applications; and FX high-performance

embedded platform applications. Some device families include features in addition to the

common features listed above. For example, FX devices contain at least one PowerPC

processor core. FX devices also contain RocketIO Multi-Gigabit Transceivers that

support up to 6.5 Gb/s data rates [17]. The three device families are further divided into

package categories that define chip area and pinout specifications such as the maximum

number of I/O pins. Device area and general purpose I/O pin count ranges from 17x17

mm in the SF363 with 240 maximum I/O pins, to 40x40 mm in the FF1517 package with

768 maximum general purpose I/O pins [5][16][18].

2.1.1 Virtex-4 Configurable Logic Blocks

Virtex-4 FPGAs contain an array of NxM programmable logic blocks, also known

as configurable logic blocks (CLBs), where N is the number of rows and M is the number

of columns of CLBs. Array sizes range from 64x24 CLBs in the LX15 to 192x116 CLBs

in the LX200. The CLB array is the main resource available on an FPGA for

implementing combinatorial and sequential logic circuit designs. Each CLB joins the

interconnect network of the FPGA through the use of a switch matrix.

 12

A single Virtex-4 CLB contains four interconnected slices, which are further

grouped into pairs. Each slice contains two logic function generators implemented as 4-

input look up tables. A look up table is the basic unit of configurable logic and

implements combinational logic as a 2nx1 memory, where n is the number of inputs, and

each bit in the LUT memory corresponds to a configuration bit [4]. Each slice also

contains two storage elements (flip-flop or latch), wide function multiplexers, carry logic,

and arithmetic gates [5].

2.1.2 Virtex-4 Block RAMs

As with other components on a Virtex-4 FPGA, the total number of block RAM

memories depends on the family and size of the device. The number of BRAMs on a

Virtex-4 range from 36 in a FX12 to 552 in a FX140 and are organized into columns on

the FPGA. A BRAM is equal in height to four Virtex-4 CLBs. Virtex-4 BRAMs store

18K bits of data, and act as true dual port RAMs with dual address and data input and

output lines. The memory array can be configured with different aspect ratios offering

different numbers of data outputs and RAM word depths, word widths, and number of

parity bits. Typical aspect ratios range from 16Kx1 to 512Kx36. The dual BRAM ports

can be independently configured with different aspect ratios [5][19]. Virtex-4 BRAM

memory content is defined or cleared by the configuration memory bitstream.

2.1.3 Virtex-4 Digital Signal Processors

Digital signal processors are used to analyze and manipulate signals by

implementing digital signal processing algorithms. They can also be configured to act as

simple arithmetic circuits, such as counters. Similarly to BRAMs, the DSPs on Virtex-4

 13

devices are organized into vertical columns on the FPGA. The number of DSPs on a

Virtex-4 device ranges from 32 on a LX15 to 512 on a SX55. There are two DSP slices

in every DSP tile of a DSP column. A DSP tile is equal in height to four Virtex-4 CLBs

[20].

2.1.4 Virtex-4 Digital Clock Managers

Digital clock managers (DCMs) are used to produce or manage clock signals for a

Virtex-4 FPGA. The number of DCMs on a Virtex-4 device range from four on the

LX15, to 20 on the FX140, and are always located in the center column of every Virtex-4

device. They provide powerful clock management features such as clock deskew, phase

shifting, frequency synthesis, and dynamic reconfiguration. The DCMs are instantiated in

a continuous calibration mode in every Virtex-4 configuration if not used in the user

design to avoid the effects of negative-bias temperature instability [21]. The predicted

motion vector (PMV) module is used to maintain unused DCM components set in a

continuous auto calibration state. The PMV module is an on-chip oscillator that is not

readily accessible to user designs.

One of the most powerful features of a DCM is its ability to produce a clock

signal that is some factor or fraction of its input clock signal. Separate outputs of a DCM

can be used to produce either multiplied or divided clocks, as seen in Table 2.1. Some

DCM clock outputs are used to produce a phase shifted clock relative to the input clock.

For example, the CLK2X and CLK2X180 outputs provide a doubled clock frequency

relative to that of the DCM input clock. The CLK2X180 output phase shifts the clock

signal by 180 degrees. The CLKDV output produces a clock output signal frequency that

 14

is a specified fraction of the DCM clock input frequency. CLKFX and CLKFX180

output a clock signal frequency that is derived from simultaneous frequency division and

multiplication (specified by the user) of the DCM clock input frequency [5].

Table 2.1: Virtex-4 Digital Clock Manager Clock Output Ports

Clock Output Port CLKIN Frequency Adjustment Phase Shift
CLK0 None 0°
CLK90 None 90°
CLK180 None 180°
CLK270 None 270°
CLK2X Multiplied by 2 0°
CLK2X180 Multiplied by 2 180°
CLKDV Divided by integer range 1.5 to16 0°
CLKFX Multiplied by integer range 2 to 32

Divided by integer range 1 to 32
0°

CLKFX180 Multiplied by integer range 2 to 32
Divided by integer range 1 to 32

180°

2.1.5 Virtex-4 Input/Output Cells

General purpose I/O cells provide a means for the internal logic of FPGAs to

communicate with external sources. Dedicated I/O cells, on the other hand, are also

needed so that the FPGA has a means of being configured with a bitstream downloaded

to the device. Dedicated I/O cells in Virtex-4 devices include configuration pins, such as

JTAG MODE, PROGRAM_B, DONE, etc., that are all contained within a dedicated I/O

bank. The dedicated I/O bank in Virtex-4 FPGAs is BANK 0 and contains a constant

voltage supply, VCC_CONFIG, and operates at a LVCMOS level. Bank 0 is located in the

center column of Virtex-4 devices. Dedicated I/O cells can not be used as general

purpose I/O cells at any time during system operation. Dual-purpose I/O cells, however,

can operate as general purpose I/O cells after device configuration is completed.

 15

Examples of dual-purpose I/O cells are the SelectMAP Data pins located in Bank 2 of a

Virtex-4 device [22].

General purpose I/O cells consist of input logic, output logic, and an I/O buffer, as

seen in Figure 2.1. The input logic, output logic, and I/O buffer can be configured to

operate in input, output, or bidirectional mode. When operating in input mode, an I/O

cell uses the pad, input buffer, and input logic resources to communicate a signal from an

external source to the internal resources of the FPGA. In contrast, when operating in

output mode, an I/O cell uses the output logic and output buffer to communicate internal

device signals off chip. When operating in bidirectional mode, an I/O cell uses both

input and output logic resources to allow internal FPGA resources to communicate both

to and from the I/O buffers or external signals. The input and output signal pins

connecting the I/O buffer to the input and output logic are labeled as T, O, and I in Figure

2.1. The input logic can either route I/O buffer data directly to internal device resources

or perform various operations on the data before routing it to internal device resources.

Data can be inverted, delayed, or sent via a registered or unregistered path through the

use of flip-flops, multiplexers, delay elements, and inverters. Output data logic can also

perform various operations, such as inverting or registering, on data in the data path

coming from internal device resources before it is routed to the I/O buffer. Aside from

the output data path, output logic typically supports a tri-state control data path. The tri-

state data path allows the output buffer to be tri-stated, or put into a high impedance state.

The output buffer is typically tri-stated when the I/O cell is used in an input only mode

[8].

Input Logic Output Logic I/O Buffer

I

Input
Buffer

Output
Buffer

T

O

PAD

D Q
Output

FF

D Q
Tristate

FF D Q
Output

FF
M

M

M M = Multiplexer

Output
Data from
FPGA

Input
Data to
FPGA

Tristate
Ctrl from
FPGA

Figure 2.1: Example FPGA Input/Output Cell

Most input and output signal properties are managed by the I/O buffer, such as

output drive strength, pull, slew rate, and I/O standard. The output drive strength

parameter is chosen to match power and loading on the pad. Pull transistors can be

configured as pull-up, pull-down, or keeper mode. Pull-up and pull-down modes supply

a weak logic high or low, respectively, to the pad to maintain known voltage levels.

Keeper mode retains the last known logic value until a definitive logic value arrives.

Slew rate limits the rate of change of a signal. I/O standards define specific voltage

requirements for the I/O cell. For example, I/O standards requiring a differential

amplifier input may require an external reference voltage, VREF, to be supplied to the

amplifier. I/O standards also require a constant supply voltage, VCCO, to power all or part

of the I/O cell. VCCO is used to set the output voltage level of an output buffer [8][23].

As previously stated, I/O cells in FPGAs often contain logic resources that can be

used to implement a system function, much like the use of CLBs. The logic resources

contained in modern I/O cells of FPGAs can include flip-flops, latches, multiplexers, and

even delays elements. The logic in an I/O cell is often utilized to implement a system

function even if no input or output from the FPGA is realized for that particular I/O cell.

 16

 17

Furthermore, the logic resources in I/O cells that are unbonded are also used to

implement system functions, in which case there can be no input or output between the

FPGA and external signals [8][11].

2.2 Details of Virtex-4 General Purpose Input/Output Tiles

This thesis focuses on test development for Virtex-4 FPGA general purpose

input/output tiles. Virtex-4 I/O cells are grouped into I/O banks. An I/O bank consists of

32 tiles spanning 32 CLBs and two clock regions. The number of I/O banks in a Virtex-4

FPGA depends on the device family, as seen in Table 2.2. Not every I/O bank contains

general purpose I/O cells. For example, Bank 0 in all Virtex-4 devices contains only

configuration and dedicated signals [5].

Table 2.2: Virtex-4 I/O Tiles and I/O Banks for Various Device Families [16][18]

Package SF363 FF668 FF1148 FF1513 FF672 FF1152 FF1517
Pins 240 448 768 960 352 576 768

I/O
Banks

LX15 120 160 9
LX25 120 224 11
LX40 224 320 13
LX60 224 320 13
LX80 384 15
LX100 384 480 17
LX160 384 480 17
LX200 480 17
SX25 160 9
SX35 224 11
SX55 320 13
FX12 120 160 9
FX20 160 9
FX40 176 224 11
FX60 176 288 13
FX100 288 384 15

I/O
Tiles
Per

Device

FX140 384 17

A Virtex-4 I/O tile consists of two I/O cells, as seen in Figure 2.2. The top and

bottom I/O cells are sometimes referred to as master and slave, respectively. The total

 18

components of an I/O tile include: two ILOGICs used for input data; two OLOGICs used

for output data; and two I/O buffers used for input and output data. The two I/O buffers

are connected together to support differential I/O standards that require a pair of inputs or

outputs. The ILOGIC components of an I/O tile are also connected together to support

larger data widths in deserialization operations. Similarly, the OLOGIC components of

an I/O tile are connected together to support large data widths in serialization operations.

The input clocks of the two ILOGIC or OLOGIC components in an I/O tile can be shared

or not shared. The set and reset (SR and REV, respectively) signals are shared between

the ILOGIC components of an I/O tile. Similarly, the SR and REV signals are shared

between the OLOGIC components of a single I/O tile [5][10]. The architecture and

functionality of all three types of components of a Virtex-4 I/O tile are discussed in detail

in this section.

Input/Output
Buffer

(I/O Buffer)

Input/Output
Buffer

(I/O Buffer)

To/From Device Resources

Input
Logic

(ILOGIC)

Output
Logic

(OLOGIC) From Device Resources

To/From Device Resources

Input
Logic

(ILOGIC)

Output
Logic

(OLOGIC) From Device Resources

I/O Cell

I/O Cell

Figure 2.2: Virtex-4 I/O Tile Architecture Block Diagram [5]

2.2.1 ILOGIC

A Virtex-4 ILOGIC component, seen in Figure 2.3, contains logic resources to

support both combinational and registered I/O and tristate output control. An ILOGIC

also contains optional inverters on most input signals and a programmable delay module

for fine delay tuning. The combinatorial path, seen as the non-shaded path from input to

output in Figure 2.3, provides a direct connection from the I/O buffer input driver to the

 19

 20

FPGA internal resources [5]. This path contains minimal logic to propagate the signal

including two multiplexers and a PIP. The combinatorial path is sometimes referred to as

a routethrough in this thesis.

D
CE
CK

SR REV

Q
IFF1

D
CE
CK

SR REV

Q
IFF2

D
CE
CK

SR REV

Q
IFF3

D
CE
CK

SR REV

Q
IFF4

IDELMUX

D2OBYP_SEL

D2OBYP_SRC

IMUX

IFFDELMUX

D2OFFBYP_SEL
D2OFFBYP_SRC

IFFMUX

CE1INV
CE1

CLKINV
CLK

SRINV
SR

REVINV
REV

OFB

TFB

DLYINC

DLYRST

DLYCE

CLKDIVINV

CLKDIV

D
INC
RST

OUT
DELAYCHAIN

CK
CE

Q1MUX

Q2MUX

Q1

Q2

O
D

GND

GND

FIXED
VARIABLE

DEFAULT
IOBDELAY_TYPE

1
0

SRVAL_Q4

1
0

INIT_Q4

INIT_Q1

1
0

SRVAL_Q1

1
0

INIT_Q2

1
0

SRVAL_Q2

1
0

INIT_Q3

1
0

SRVAL_Q3

1
0

IOBDELAY_VALUE

1
0

3
2

5
4

7
6

9
8

11
10

13
12

15
14

17
16

19
18

21
20

23
22

25
24

27
26

29
28

31
30

33
32

35
34

37
36

39
38

41
40

43
42

45
44

47
46

49
48

51
50

53
52

55
54

57
56

59
58

61
60

63

IDELAYMUX

IFF1

LATCH
FF

Registered Data Path

62

async
sync

SRTYPE

IDELMUX1USED

Figure 2.3: Virtex-4 Input Logic (ILOGIC) Architecture [5]

 21

 22

An ILOGIC component contains four registers (flip-flops) to support a registered

I/O data path, seen in the shaded region of Figure 2.3. The initial output value of each

register is set by the INIT_Q1, INIT_Q2, INIT_Q3, and INIT_Q4 attribute. IFF1 can be

used in single-data-rate (SDR) operation in which data is present on ILOGIC outputs

after each clock cycle. IFF1 can also be configured as a level sensitive latch or a D type

flip-flop. The remaining flip-flops, IFF2, IFF3, and IFF4, are used to implement double-

data-rate (DDR) input. All four registers share a common active high clock enable

signal, CE1, and synchronous or asynchronous set/reset via SR and REV signals. The SR

control sets the four registers into the states specified by SRVAL attributes. The REV

signal forces the four registers into the opposite states specified by the SRVAL attributes.

The SRVAL values can be set for each register individually. However, all registers are

configured as having a synchronous or asynchronous SR signal, specified by the

SRTYPE attribute. The SR and REV signals are also shared with adjacent ILOGIC

blocks [5].

 Clock signals are not shared between adjacent ILOGIC blocks. All clock signals

of a Virtex-4 I/O cell are fully multiplexed to prevent clock sharing. For DDR mode, an

ILOGIC uses only a single clock input. The ILOGIC supports three modes of DDR

operation: opposite-edge; same-edge; and same-edge pipelined. These three modes of

DDR operation use the flip-flops in various configurations. In opposite-edge mode, IFF1

and IFF2 are configured as rising-edge triggered with a common data input signal. IFF2

is supplied an inverted version of IFF1’s clock signal. In this scheme, the ILOGIC is

ready to pass data from its Q1 output on a rising clock edge and from its Q2 output on a

falling clock edge. In same-edge mode, IFF4 is configured as rising-edge triggered with

 23

a non-inverted clock signal and is placed on the output path of IFF2. This allows the

ILOGIC to pass data on its Q1 and Q2 outputs on the same clock edge with only a one

clock cycle separation for data on Q1 and Q2. In same-edge pipelined mode, all four

registers of the ILOGIC are used. Same-edge pipelined mode is similar to same-edge

mode, except that IFF3 is placed on the output of IFF1. This allows for data to be present

on Q1 and Q2 on the same clock edge [5].

 Each ILOGIC component contains a programmable input delay module,

IDELAY, which can be applied to the both the combinational and registered data paths.

The IDELAY module is a 64-tap wrap-around delay module that provides a guaranteed

fixed tap resolution. The IDELAY module is used for fine delay tuning of input signals

independent of process, voltage, and temperature variation. The module can be

configured to operate in three different modes: DEFAULT; FIXED; and VARIABLE. In

DEFAULT mode, zero-hold time delay is applied. In FIXED mode, a hold time

corresponding to the specified tap value between 0 and 63 is applied. Each tap represents

an added 78 pico-second delay. The VARIABLE mode also adds a hold time delay

corresponding to the specified tap value. However, in VARIABLE mode, the tap value

can be incremented or decremented. For either FIXED or VARAIABLE modes of

operation to work correctly, an IDELAYCTRL module must be instantiated in any given

I/O bank configured with such parameters. The IDELAYCTRL elements continuously

calibrate the individual IDELAY modules in each I/O bank. To calibrate the IDELAY

modules correctly, the IDELAYCTRL modules must be given a 200 MHz +- 10%

reference clock signal [5].

 24

2.2.2 OLOGIC

 Virtex-4 OLOGIC components, as seen in Figure 2.4, contain two sets of

functionally equivalent registers. The top set of three registers, TFF1, TFF2, and TFF3 as

seen in the non-shaded region in Figure 2.4, is used for tristate control of the I/O buffer.

The bottom set of registers, OFF1, OFF2, and OFF3 as seen in the shaded region of

Figure 2.4, is used for output data. The tristate register set shares a common active high

clock enable, TCE. Similarly, the data register set shares a common active high clock

enable, OCE. All six OLOGIC registers share common SR and REV signals with similar

characteristics described for the ILOGIC. Also, like the ILOGIC, the topmost flip-flop of

each set can be used to implement a D-type flip-flop or level sensitive latch. The

remaining registers in each set are used to support output DDR. SDR and DDR modes

operate in the same manner as described for the ILOGIC. However, unlike ILOGIC, the

OLGIC resources do not have a fourth register to support same-edge pipelined mode.

Output multiplexers are used to select between flip-flop data paths. An OLOGIC also

has optional inverters for control signal active levels [5].

D
CE
CK

SR REV

Q
OFF3

D
CE
CK

SR REV

Q
OFF2

D
CE
CK

SR REV

Q
OFF1

D
CE
CK

SR REV

Q
TFF3

D
CE
CK

SR REV

Q
TFF2

D
CE
CK

SR REV

Q
TFF1

OFFDDR

OFF1

OFF2

OFFDDR

OFF1

OFF2

TFFDDR

TFF1

TFF2

TFFDDR

TFF1

TFF2

TFF1
T1

TMUX

TFFDDRB

TFFDDRA

OFF1
D1

OMUX

OFFDDRB

OFFDDRA

REVINV

SRINV

OCEINV

D2INV

D1INV

TCEINV

T2INV

T1INV

CLK2INV

CLK1INV

OSRUSED

OREVUSED

TSRUSED

TREVUSED

O1USED

T1USED

D2

D1

CLK

TCE

T2

T1

OCE

REV

SR

TQ

TFFDDRB

TFFDDRA

OFFDDRA

OFFDDRB

OQ

INIT_OQ

1
0

SRVAL_OQ

1
0

SRTYPE_OQ

async
sync

INIT_TQ

1
0

SRVAL_TQ

1
0

SRTYPE_TQ

async
sync

OFF1

LATCH
FF

TFF1

LATCH
FF

Output
Data Path

Tristate
Control
Path

Figure 2.4: Virtex-4 Output Logic (OLOGIC) Architecture [5]

 25

 26

2.2.3 SERDES

ILOGIC and OLOGIC components can be configured as input serial-to-parallel

logic resources (ISERDES) and or output parallel-to-serial logic resources (ORSERDES)

components respectively. ISERDES allow for high speed serial-to-parallel conversion of

data input to the FPGA from external resources. OSERDES allow for high speed

parallel-to-serial data conversion for data output from the FPGA’s internal resources.

The ISERDES and OSERDES components can operate in SDR mode with data widths of

two, three, four, five, six, seven or eight. They can also operate in DDR mode with data

widths of four, six, eight, or ten. ISERDES/OSERDES operate in master/slave mode

when the two ISERDES/OSERDES blocks of each I/O tile are joined together via the

shift lines to allow for parallel-to-serial/serial-to-parallel data conversion widths higher

than six.

An ISERDES component contains a serial input from the I/O buffer, SR and REV

inputs, clock inputs, an input clock enable module, an IDELAY module with

corresponding input control lines, a BITSLIP module, six registered outputs, a

combinatorial output, and two shift lines. The SR is an active high reset to the ISERDES.

The REV line cannot be used and should be grounded.

The clock signals of an ISERDES include a CLK, CLKDIV, and OCLK inputs.

The CLK signal is used as the clock to the serial input data stream. The CLKDIV signal

is a divided version of the CLK signal used to control parallelization of the input data as

well as the ISERDES sub modules. The OCLK signal is a high speed clock line that can

be used to implement high speed memory applications. When the ISERDES is used in

MEMORY mode, the OCLK is used to transfer strobe-based memory data on a

 27

peripheral device to the free running clock domain of the FPGA. The NETWORKING

attribute of the ISERDES is used when I/O that does not require the OCLK is used. The

input clock enable module contains a multiplexer that switches between two registered

clock enable signals on opposite edges of the CLKDIV signal. The output of the clock

enable module controls the clock enables of the input registers located in the ISERDES.

The clock enable module can also be configured such that only one unregistered clock

enable is selected to directly control the clock enables of the ISERDES input registers.

The BITSLIP module can be used to shift output line data one bit at a time until

the ISERDES output lines are synchronized or ordered correctly to properly reflect the

serial input data. When invoked, the BITSLIP operation is performed synchronous to the

CLKDIV input causing the parallel outputs of the ISERDES to be shifted to allow every

pattern of a repeating serial input. The shifting pattern for SDR mode is: shift output

pattern left one position every clock cycle. The shifting pattern for DDR mode is:

alternate between a shift left by one and a shift right by three positions. The BITSLIP

activation signal must be asserted for one and only one clock cycle and then deasserted

for at least one clock cycle before performing another BITSLIP operation. There is a two

clock cycle latency before a BITSLIP operation is reflected on the ISERDES outputs.

The BITSLIP operation should be disabled when the parallel data is synchronized to the

correct position on the ISERDES outputs [5].

An OSERDES component also contains CLK, CLKDIV, SR, REV, and shift

signals lines that are used as described for ISERDES. In addition, OSERDES contain six

registered data inputs, an active high output clock enable input, four active high parallel

 28

tristate inputs, an active high tristate clock enable signal, a serialized data output, and a

tristate data output.

The SERDES mode of operation is demonstrated in Figure 2.5. This example

shows an OSERDES 4:1 operation in DDR mode with four tristate inputs. At clock event

one, the data present on D1-D4 (E, F, G, and H respectively) is captured on the rising

edge of the CLKDIV signal. Clock event two occurs at the next rising edge of the CLK

signal, at which time the data captured at clock event one begins to be transmitted to the

output signal. A new data value is transmitted at each edge of the CLK signal in DDR

mode. Because this example shows 4:1 data serialization in DDR mode, the second clock

event is a falling and rising edge after the first. Note that the G data value from input D3

is not transmitted to the output because the third tristate signal is a logic high value when

the data is captured at clock event one.

Figure 2.5: OSERDES 4:1 DDR Timing Diagram from [5]

2.2.4 I/O Buffer

The architecture of a Virtex-4 I/O buffer can be seen in Figure 2.6. The I/O

buffers support a wide variety of standard interfaces including both single-ended and

differential I/O standards. I/O buffers include programmable control of output drive

strength, slew rate, and on-chip termination. A Virtex-4 I/O buffer contains input, output,

and tristate drivers. The I/O buffer architecture consists of PIPs to activate or deactivate

 29

I/O signals, an output buffer, an input buffer, and a PAD that is either bonded or

unbonded. The output buffer, OUTBUF, provides a data path from the OLOGIC to the

PAD of an I/O cell. The OUTBUF can also be tristated through the use of the active low

tristate signal. The input buffer, INBUF, allows a path for data coming from the PAD

sent to the ILOGIC of an I/O cell. The INBUF has a differential input to support I/O

standards requiring differential operations, or single-ended standards requiring a voltage

reference. An I/O buffer also has a PADOUT line which connects directly to an adjacent

I/O buffer’s differential input buffer to support complementary differential I/O standards

[5].

 30

Figure 2.6: Virtex-4 I/O Buffer Architecture [5]

LVTTL
LVCMOS33
LVCMOS25
LVCMOS18
LVCMOS15
PCI33_3
PCI66_3
PCIX
HSTL_I
HSTL_II
HSTL_III
HSTL_IV
HSTL_I_18
HSTL_II_18
HSTL_III_18
HSTL_IV_18
HSTL I 12

GTL
GTLP
SSTL2_I
SSTL2_II
SSTL18_I
SSTL18_II
LVPECL_25
LVDS_25
LVDSEXT_25
BLVDS_25
ULVDS_25
LDT_25
RSDS_25
DIFF_SSTL2_II
DIFF_SSTL18_II
DIFF_HSTL_II
DIFF HSTL II 18

LVDCI_33
LVDCI_25
LVDCI_18
LVDCI_15
LVDCI_DV2_25
LVDCI_DV2_18
LVDCI_DV2_15
HSTL_II_T_DCI
HSTL_II_T_DCI_18
SSTL2_II_T_DCI
SSTL18_II_T_DCI
DIFF_ SSTL2_II_T_DCI
DIFF_ SSTL18_II_T_DCI
DIFF_HSTL_II_DCI
DIFF_HSTL_II_DCI_18
GTL_DCI
GTLP DCI

HSTL_I_DCI
HSTL_II_DCI
HSTL_III_DCI
HSTL_IV_DCI
HSTL_I_DCI_18
HSTL_II_DCI_18
HSTL_III_DCI_18
HSTL_IV_DCI_18
SSTL2_I_DCI
SSTL2_II_DCI
SSTL18_I_DCI
SSTL18_II_DCI
LVDS_25_DCI
LVDSEXT_25_DCI
HSLVDCI_33
HSLVDCI_25
HSLVDCI_18
HSLVDCI_15

TERMINATED IO STANDARD IO STANDARD DRIVE SRENGTH

12
16
24

2
4
6
8

SLEW RATE
SLOW
FAST

PULL
KEEPER
PULLDOWN
PULLUP

DIFF TERM
TRUE
FALSE

DISABLE_GTS

PAD

TUSED

OUSED

PADOUTPADOUTUSED T

DIFFI INUSED

INBUFUSED O
I

OUTBUFDIFF IN INBUF

 31

Virtex-4 FPGAs support a total of 69 I/O standards that define various DC

interface parameters. The I/O buffers in every I/O bank of a Virtex-4 FPGA support all

3.3V I/O standards. However, many I/O standards have technical restrictions that limit

the general use of the I/O buffers. One restriction is that nine I/O standards do not

support bidirectional mode of operation in the I/O buffer, including LVDS_25,

LVDSEXT_25, ULVDS_25, LDT_25, RSDS_25, SSTL2_I_DCI, SSTL18_I_DCI,

LVDS_25_DCI, and LVDSEXT_25_DCI [5].

There are four main types of Virtex-4 supported I/O standards, represented in

Figure 2.7. These four types include single-ended, single-ended requiring a voltage

reference (VREF), complementary differential, and digitally controlled impedance (DCI)

I/O standards. The two grey dotted lines running the length of Figure 2.7 separate the

source and destination I/O buffers used in each type of standard. Figure 2.7(a) shows the

connections of a single-ended standard, in which a single wire connects the output buffer

of one device to the input buffer of another.

Source Lines Destination

Output Buffer
(a)

Input Buffer

Output Buffer
(b)

VREF Differential
Input Buffer

Output Buffer i

 32

Figure 2.7: Types of Virtex-4 Supported I/O Standards. (a) Single-Ended. (b) Single-
Ended Requiring a VREF. (c) Complementary Differential. (d) DCI

Single-ended I/O standards, such as HSTL and SSTL standards, require a

reference voltage to be applied to the I/O buffer’s differential input buffer, as seen in

Figure 2.7(b). When using such a standard, one of every 16 general I/O buffers in an I/O

bank must be configured as a VREF input. The specific I/O buffer in every set of 16 that

(d)

(c)

R

Output Buffer j
Differential
Input Buffer

VCCO

Input Buffer
z

R

Output Buffer
R

VCCO

R

 33

must be configured as a VREF input for each Virtex-4 device and package is located in the

bottom I/O cell of the fifth I/O tile row from the bottom edge in each I/O bank, as

indicated in [24]. This VREF input is routed internally to the VREF pin of each differential

input buffer in the set of 16 I/O buffers to which the VREF input is assigned [5]. If any

one I/O buffer in a set of 16 is configured with a standard requiring a VREF, then the VREF

pin associated with that set cannot be configured by the user. The designer must supply

the required VREF from an external source directly to each VREF input.

Complementary differential I/O standards require two output buffers at the

source, as seen in Figure 2.7(c). Output buffers i and j send complemented data to an

input buffer at the destination side. In Virtex-4 devices, complementary differential I/O

standards require the use of both I/O cells in an I/O tile. Figure 2.8 demonstrates an I/O

tile operating as a system input with a complementary differential standard. A data line is

supplied to the positive terminal of the input buffer and its complement (shown as a grey

dotted line) is applied to the negative input of the buffer. A master I/O cell contains the

differential input buffer. A slave I/O cell in the same I/O tile sends data to the differential

input buffer of the master I/O cell via its PADOUT line. In this configuration, logic high

on the positive terminal and logic low on the negative terminal will produce logic high

output, while the opposite arrangement of values will produce logic low output. If the

I/O tile were configured as an output operating with a complementary differential I/O

standard, an OLOGIC can be used to complement the data line. The data line would be

sent out via one output buffer while its complement would be sent out via the other

output buffer in the I/O tile.

 34

Figure 2.8: Input I/O Tile with Complementary Differential I/O Standard

Virtex-4 devices provide a DCI option for most I/O standards which facilitates

line termination, as seen in Figure 2.7(d). The characteristic impedance of the driven line

in Figure 2.7(d) is represented by the Z element. Some I/O standards require line

termination to VCCO with resistance equal to the characteristic impedance of the driven

line. Still other I/O standards require line termination to VCCO/2 with resistance equal to

the twice the characteristic impedance of the driven line. To match the line impedance,

DCI can provide both single and split termination resistors at the source, destination, or

both the source and destination [5].

The termination resistance used to control the DCI line impedance is set by

adding external reference resistors to two multipurpose reference pins in each I/O bank

configured with a DCI I/O standard. The two DCI reference pins in each I/O bank

TUSED

OUSED

DIFFI INUSED

PADOUTUSED

INBUFUSED

PADOUT

I

Differential
INBUF

OUTBUF

T

O

PAD

TUSED

OUSED

DIFFI INUSED

PADOUTUSED

INBUFUSED

PADOUT

INBUF
OUTBUF

PAD

I

T

O

 35

consist of VRN and VRP pins that must be pulled to VCCO and ground, respectively, by

external reference resistors [5]. When using a DCI I/O standard with any one I/O buffer

in an I/O bank, the user must not configure the two DCI reference pins of the given I/O

bank so that they can be connected to external reference resistors. Also, Banks one and

two of a Virtex-4 device do not support DCI standards. The VRN and VRP DCI reference

I/O buffers are located in the tenth row from the bottom edge of each I/O bank, with the

exception of banks in the center column, as specified in [24]. The VRN and VRP DCI

reference I/O buffers of I/O banks in the center column are located in the second row

from the bottom edge and second row from the top edge. I/O banks one and two located

in the center column above and below the center of every Virtex-4 package do not

support DCI I/O standards.

Table 2.3 lists the general purpose I/O buffers for bank seven of a Virtex-4 with

package FF668. The table demonstrates the location of the DCI reference resistor pins

within the bank. Table 2.3 also lists the location of the four VREF pins and two

IDELAYCTRL modules in the bank. The IDELAYCTRL modules are listed between

rows as they are placed on the device. The use of these pins and the testability of the

various I/O standards will be discussed in greater detail in subsequent chapters.

 36

Table 2.3: General Purpose I/O Bank 7 for Virtex-4 Package FF668

Row Component Other
Function

Row Component Other
Function

0 I/O Buffer AD21 16 I/O Buffer AC24
0 I/O Buffer AE21 16 I/O Buffer AC23
1 I/O Buffer AE18 17 I/O Buffer AD23
1 I/O Buffer AF18 17 I/O Buffer AD22
2 I/O Buffer AF22 18 I/O Buffer AA23
2 I/O Buffer AF21 18 I/O Buffer AB23
3 I/O Buffer AB18 19 I/O Buffer AB22
3 I/O Buffer AC18 19 I/O Buffer AC22
4 I/O Buffer AC20 VREF 20 I/O Buffer Y23 VREF
4 I/O Buffer AB20 20 I/O Buffer Y22
5 I/O Buffer AA17 21 I/O Buffer AD26
5 I/O Buffer Y17 21 I/O Buffer AD25
6 I/O Buffer AA20 22 I/O Buffer AA26
6 I/O Buffer AA19 22 I/O Buffer AB26
7 I/O Buffer AC19 23 I/O Buffer AC26
7 I/O Buffer AD19 23 I/O Buffer AC25
 IDELAYCTRL IDELAY IDELAYCTRL IDELAY
8 I/O Buffer AB21 24 I/O Buffer Y24
8 I/O Buffer AC21 24 I/O Buffer AA24
9 I/O Buffer AD20 DCI VRN 25 I/O Buffer AB25
9 I/O Buffer AE20 DCI VRP 25 I/O Buffer AB24
10 I/O Buffer AE24 26 I/O Buffer Y26
10 I/O Buffer AF24 26 I/O Buffer Y25
11 I/O Buffer Y18 27 I/O Buffer V20
11 I/O Buffer AA18 27 I/O Buffer W20
12 I/O Buffer Y21 VREF 28 I/O Buffer W24 VREF
12 I/O Buffer Y20 28 I/O Buffer W23
13 I/O Buffer AE23 29 I/O Buffer W22
13 I/O Buffer AF23 29 I/O Buffer W21
14 I/O Buffer W19 30 I/O Buffer W26
14 I/O Buffer Y19 30 I/O Buffer W25
15 I/O Buffer AF20 31 I/O Buffer V22
15 I/O Buffer AF19 31 I/O Buffer V21

2.2.5 Programming Interface

All Virtex-4 FPGAs contain four boundary scan (also known as JTAG) modules

that conform to the IEEE 1149.1-2001 standard [19][22]. Boundary scan

 37

implementations consist of four major signals: test clock input (TCK), test mode select

(TMS), test data in (TDI), and test data out (TDO). TCK provides the test clock signal.

TDI receives serial test data and instructions. TDO provides a serial output for test data

and instructions [25].

TMS signals are decoded by the test access port (TAP) controller to control test

operations. The TAP controller provides access to configuration and test support

functions built into the FPGA, including INTEST and EXTEST features as described in

[25]. The EXTEST feature can be used to test the buffers, pad, and tristate control of the

I/O buffer. However, the EXTEST feature only has access to the I/O buffer and cannot

test the remaining logic of the I/O cell. The INTEST feature can be used to test the

programmable logic resources in an I/O cell. However, the INTEST feature is supported

by few FPGAs [9]. Virtex-4 FPGAs also allow boundary scan signals to be connected

directly from the TAP to internal FPGA resources [19][22].

2.3 Built-In Self-Test for FPGAs

 The goal of a BIST developed for FPGAs is to test the FPGA components

through a series of test configurations. A test procedure for FPGA BIST typically

consists of: 1) configure the FPGA with the BIST test circuitry including TPGs, blocks

under test (BUTs), and ORAs; 2) initiate the BIST test circuitry; 3) the BIST circuitry

generates test patterns with TPGs and sources them to the components under test; 4)

generate a comparison based pass/fail indication with BIST circuitry ORAs; and 5) read a

pass/fail indication from BIST circuitry ORAs [26]. FPGAs are configured repeatedly in

this manner with different BIST configurations stored in the external memory to test

 38

various resources and functionality of the device under test [8]. A group of BIST

configurations that test a given component of the FPGA are sometimes collectively

referred to as a test session [26][27].

BIST has proven to be an effective technique for testing most major components

of a FPGA. For example, [27] presents a general BIST architecture aimed at testing

PLBs. The basic BIST architecture consists of alternating rows of PLBs that are

configured as BUTs or ORAs, as seen in Figure 2.9. Two identical TPGs are used to

drive alternating rows or columns of logic blocks under test to ensure TPG functionality

and test diagnostic resolution, as seen in Figure 2.9 (a). The outputs of the BUTs are then

compared by PLBs configured as ORAs. Because exactly half of the PLBs are

configured as BUTs, only two test sessions are required for the entire FPGA. The

floorplans of the two test sessions required are illustrated in Figure 2.9 (b) and (c). When

the first test session has completed, the PLBs that are BUTs in session one are

reconfigured to be the TPGs and ORAs for session two [27].

BIST Start/Reset

 39

Figure 2.9: BIST Architecture presented in [27]. (a) TPG, BUT, ORA connections.
(b) Floorplan for first test session. (c) Floorplan for second test session.

BIST has also proven effective for various FPGA cores. For example, [19]

presents a BIST approach for testing BRAMs in Virtex-4 devices. The basic BRAM

BIST architecture consists of CLBs configured as TPGs that source test patterns to

BRAMs under test, as seen in Figure 2.10. Again, two identical TPGs are used to drive

alternating rows of BRAMs under test to ensure TPG functionality. The outputs of the

BRAMs under test are then circularly compared by CLBs configured as ORAs. The

BIST Done

ORA ORA

BUT BUT

BUT BUT

ORA ORA

BUT BUT

BUT BUT

TPGTPG

a)
Pass/Fail

TPGs BUTs

BUTs ORAs

ORAs BUTs

BUTs ORAs

ORAs BUTs

BUTs ORAs

ORAs

BUTs

BUTs

TPGs

c) b)

ORAs form a circular based comparison to enhance diagnostic resolution of a particular

failing BUT or TPG. As indicated by the arrows of Figure 2.10, the topmost BRAMs are

compared with the bottommost BRAMs to complete the circular comparison chain [19].

 40

Center Line

= Core Under Test = ORA PLBs

= TPG PLBs = unused PLBs

Figure 2.10: BRAM BIST Architecture Presented in [19]

BIST for FPGAs, unlike BIST for most other circuitry, can be implemented such

as not to incur system performance or area overhead penalties, meaning system execution

time remains high and DFT costs remain low. Using only additional memory (external to

the FPGA) to store BIST configurations, there is no additional circuitry permanently

added into the FPGA design itself. When the BIST test session is complete, the BIST

circuitry is removed from the FPGA [8].

2.4 Previous Work in I/O Testing

 This thesis is primarily built upon the BIST work presented in [8][9][14][15]. In

[8][14][15], a system level BIST architecture similar to those described for CLBs and

BRAMs is presented for I/O cells of Atmel FPGAs. The BIST architecture, as seen in

Figure 2.11, consists of a single TPG implemented in PLBs sourcing test vectors to I/O

cells under test. Only a single TPG was implemented under the assumption that internal

FPGA resources have already been tested. The architecture presented in [9] added

multiple identically configured TPGs that drive alternating I/O cells under test for

improved fault detection as will be discussed in Chapter 3.

Figure 2.11: BIST Architecture from [8], also representative of [14][15]

The I/O cells are identically configured with bidirectional I/O buffers so that the

output responses are sent back into the FPGA internal resources. The output responses of

the I/O cells are then compared by PLBs configured as ORAs. Figure 2.12 shows the

 41

ORA architecture used in [8][9][14][15]. The ORAs are configured such that the outputs

of every I/O cell are compared with the outputs of their adjacent I/O cells. This

configuration is used to implement circular comparison for enhanced diagnostic

resolution. The ORA design contains shift data and shift mode lines to support

connecting the ORAs as a scan chain or shift register similar to that of boundary scan.

The shift lines can be used to shift test results out of the ORAs when the FPGA does not

support CLB configuration memory read back. The ORA design also contains feedback

from the storage element flip-flop such that failure indications of logic high value due to

mismatches in output responses as a result of faults are retained until the BIST results are

read from the device [8][9][14][15].

Figure 2.12: Comparison Based ORA Architecture [9]

While presenting a general architecture applicable to any FPGA or SoC with a

FPGA core, [8][9][14][15] only develop BIST configurations for the Atmel AT94K SoC

and AT40K FPGA. The AT94K and AT40K contain primary and secondary I/O buffers.

An Atmel primary I/O buffer, as seen in Figure 2.13, consists of pull-up and pull-down

transistors, input and output buffers, and input and output multiplexers. The input buffer

has four programmable delay settings. The input buffer can also implement a Schmitt

trigger circuit that helps filter input noise. Another feature of the input buffer is the

ability to support both TTL and CMOS voltage levels. The output buffer has variable

drive strength and tristate control. Both the input and output portions of the I/O buffer

 42

share access to the routing interconnect resources through the use of transmission gates

[8][14].

Figure 2.13: Primary I/O Buffer in Atmel FPGA [14]

Secondary I/O buffers are similar in architecture to primary I/O buffers. One

difference between the two types of I/O buffers is the secondary I/O buffer has 6-input

tristate and output multiplexers whereas the primary I/O buffer has 7-input multiplexers.

Another difference is that the primary IO buffer has four transmission gates whereas the

secondary I/O buffer only has two. One final difference is that the primary and

secondary I/O buffers have different connections to the internal PLBs. Because of the

similarity, secondary I/O buffers in Atmel devices can be thought of as a subset of

primary I/O buffers [8][14].

References [8][9][14][15] present 23 BIST configurations to obtain 100% stuck-at

gate-level fault coverage. This indicates that all gate-level faults located in the logic and

routing resources of the primary and secondary I/O buffers can be detected. The BIST

 43

 44

approaches presented can also detect major defects affecting the analog programmable

features of the I/O buffers, such as pull-up, pull-down, and tristate termination. However,

the BIST approaches presented here cannot detect parametric faults such as delay or

current sink and source capabilities. Overall, these BIST approaches provide the ability to

perform tests at different frequencies and produce more reliable results than the

conventionally accepted boundary scan testing [8][9][14][15].

2.5 Thesis Restatement

 This thesis presents a general BIST architecture developed to test the

functionality of the various resources present in I/O tiles of FPGAs as well as specific

configurations developed and implemented in Xilinx Virtex-4 devices. This thesis builds

on the work presented in [8][9][14][15]. However, this thesis offers several

improvements over the previously discussed BIST approaches including the use of

multiple TPGs for improved fault detection. The TPGs are also implemented in BRAM

memory for improved controllability.

The thesis describes BIST configurations developed for testing the full

functionality of Virtex-4 I/O tiles that use two I/O cells in conjunction with each other.

This thesis first presents BIST configurations to test I/O tile logic resources, including

ILOGIC, OLOGIC, SERDES, and I/O buffer resources. Some new modes of operation

are addressed, such as I/O tiles operating in master/slave ISERDES/OSERDES mode.

The thesis then discusses BIST configurations developed to test Virtex-4 supported I/O

standards. This thesis explores the testability of all supported I/O standards, including

single-ended, single-ended requiring a reference voltage, complementary differential, and

 45

DCI standards. A detailed description of the I/O tile BIST configurations developed will

be given as well as experimental results obtained from their implementation.

 46

CHAPTER THREE

I/O TILE BIST FOR VIRTEX-4 FPGAS

 This chapter describes the BIST configurations developed to test the logic and

routing resources of I/O tiles in Virtex-4 FPGAs. The chapter begins with a discussion of

the BIST architecture that is common to all of the configurations developed, including

TPGs and ORAs. Section 3.2 describes the BIST configurations developed to test logic

modules present in I/O tiles including ILOGIC, OLOGIC, SERDES, and I/O buffer

resources. Section 3.3 then describes BIST configurations developed to test the various

I/O standards supported in Virtex-4 devices. Finally, section 3.4 provides a summary of

the Virtex-4 I/O tile BIST configurations.

3.1 BIST Architecture

 The basic BIST architecture used in all I/O tile BIST configurations is shown in

Figure 3.1. In this architecture, TPGs source test vectors to I/O tiles under test, which are

configured with bidirectional I/O buffers. The BIST architecture is similar to those

presented in [8][14][15]. However, in this architecture a second set of TPGs is added.

Multiple sets of TPGs drive alternating I/O tiles under test. This TPG configuration

avoids the assumption in previous I/O BIST approaches that internal FPGA resources are

already known to be fault free. The concern in a single TPG architecture is that a faulty

TPG may skip test patterns necessary to detect faults in the I/O tiles such that they escape

detection. If a TPG is faulty, every I/O tile that it drives will produce identical failures.

This will occur because each I/O tile response produced by a faulty TPG is compared

with an I/O tile response produced by an alternate TPG. This assumes that the alternate

TPG to that of the faulty TPG does not have an identical fault, the likeliness of which is

very small.

 47

Figure 3.1: Basic I/O Tile BIST Architecture

The TPGs are implemented as one column of DSPs addressing two columns of

BRAMs that store test vectors, as seen in Figure 3.1. There are two TPGs placed every

four rows of CLBs or I/O tiles in a Virtex-4 device. The use of two TPGs per four rows

= DSP

= BRAM

= ORA

= I/O Tile

Row h

Row i

Row j

Row k

 48

of I/O tiles reduces signal loading in FPGAs with large numbers of rows. The two TPGs

drive alternating rows of I/O tiles in both the leftmost, middle, and rightmost columns of

a device. The BRAMs are either implemented with an aspect ratio of 16Kx1 or 512x36,

depending on the BIST configuration developed. The use of BRAMs to store test vectors

allows for modification of the test vector set without having to modify the existing BIST

architecture. The output data lines of the BRAM TPGs drive both ILOGIC and OLOGIC

components of an I/O tile.

In each configuration, there is a single column containing one DSP for each

BRAM. Each DSP is configured as a counter such that its outputs, P0-P9, are connected

to the D0B0-D0B9 address inputs of a BRAM TPG. A DSP counter increments its count

once per clock cycle. The clock supplied to a DSP is the BIST clock generated from

either a boundary scan clock or DCM divided clock, depending on the set of BIST

configurations. The remaining DSP signals and attributes are summarized below in

Table 3.1.

 49

 Table 3.1: DSP Signals and Attributes for All Configurations

Signal/Attribute I/O/Attribute Connection Function
A0-A17 Input GLOBAL 0 Multiplier A inputs
B0 Input GLOBAL 1 Multiplier B input
B1-b17 Input GLOBAL 0 Multiplier B inputs
CARRYIN Input GLOBAL 0 Carry Input
CARRYINSEL0 Input GLOBAL 0 Select Carry Source
CARRYINSEL1 Input GLOBAL 0 Select Carry Source
CEA Input GLOBAL 1 Hold AREG
CEB Input GLOBAL 1 Hold BREG
CECARRYIN Input GLOBAL 0 Hold Clock Enable
CECINSUB Input GLOBAL 1 Hold SUBTRACTREG
CECTRL Input GLOBAL 1 Hold CARRYINSELREG
CEM Input GLOBAL 1 Hold MREG
CEP Input GLOBAL 1 Hold PREG
Clock Input BIST clock Clock
OPMODE0-6 Input 1100010 X, Y, Z multiplexers
RSTA Input GLOBAL 0 Reset AREG
RSTB Input GLOBAL 0 Reset BREG
RSTCARRYIN Input GLOBAL 0 Reset CARRYIN
RSTCTRL Input GLOBAL 0 Reset SUBTRACTREG
RSTM Input GLOBAL 0 Reset MREG
RSTP Input GLOBAL 0 Reset PREG
SUBTRACT Input GLOBAL 0 ADD/SUBTRACT
P0-P9 Output D0B0-D0B9 Product Outputs
MREG Attribute GLOBAL 1 Number of Pipeline Reg
PREG Attribute GLOBAL 1 Number of Pipeline Reg
Remaining Atts. Attribute GLOBAL 0 Various

The ORAs are shown in Figure 3.2 where each output signal of every I/O tile

under test is sent to an ORA comparator in its associated row as well as the row directly

above it. The topmost I/O tile in a column under test sends its output responses to ORA

comparators in its associated row as well as the bottommost row under test. This

effectively forms a circular comparison chain where every output signal of an I/O tile

under test is compared with the identical output signals of two other I/O tiles. Any

mismatch places a logic high value into the ORA flip-flop, where it is then retained by

 50

the ORA feedback line until the pass/fail result is read at the end of the BIST sequence.

The logic functions indicated are performed by a LUT in each slice. Each slice contains

two LUTs, and thus can be used to implement two ORAs. The number of ORAs

implemented depends on the set of BIST configurations. When testing I/O tiles in the

leftmost and center column of a device, the ORAs are implemented in CLBs beginning

one column to the right of the I/O tiles under test, as seen in Figure 3.1. When testing I/O

tiles in the rightmost column of a device, the ORAs are implemented in CLBs beginning

one column to the left of the I/O tiles under test.

Figure 3.2: I/O Tile BIST ORA Architecture

 Each set of BIST configurations instantiates at least one boundary scan module

for the BIST sequence execution. The boundary scan clock signal is sent to a clock

buffer so that it can then be used as a global BIST clock in BIST configurations other

than the SERDES configuration set. The boundary scan TDI signal is used by the BIST

configurations as a reset signal to various components, such as IDELAYCTRL modules.

Each Virtex-4 I/O tile BIST configuration instantiates all of the IDELAYCTRL

modules of the Virtex-4 device under test. As stated in the previous chapter, the

IDELAYCTRL elements continuously calibrate the individual IDELAY modules in each

I/O bank and must be instantiated when using the IDELAY element in FIXED or

D Q
FF

INIT 0

I/O Tilei Output
I/O Tilej Output

Pass/Fail

ORA Feedback

BIST Clock

 51

VARIABLE delay mode. The IDELAYCTRL modules are supplied a reference clock,

used for calibration, and a reset line from the boundary scan module TDI output. The

IDELAYCTRL modules are reset at the beginning of each BIST configuration, as

recommended in [5]. The output of each IDELAYCTRL module indicates that the

module has been reset. The I/O tile BIST configurations developed in this thesis leave

each IDELAYCTRL module output unconnected, as it is not necessary for a user design.

3.2 Configurations to Test I/O Tile Logic Resources

 The BIST configurations presented in this thesis can be divided into three main

categories to test logic resources and I/O standards. Section 3.2.1 describes the BIST

configurations developed to test logic resources present in the ILOGIC, OLOGIC, and

I/O buffer components. Section 3.2.2 then describes BIST configurations developed to

test the logic resources of ILOGIC and OLOGIC components when operating in

SERDES mode, as well as remaining I/O buffer logic resources. The BIST

configurations developed to test the various I/O standards supported by the I/O buffers

are discussed in Section 3.3.

3.2.1 Configurations to Test ILOGIC, OLOGIC, and I/O Buffers

The architectures of ILOGIC, OLOGIC, and I/O buffers in Virtex-4 FPGAs were

described in Section 2.2. Eight BIST configurations are required to test the ILOGIC and

OLOGIC routing and logic resources. This set of eight BIST configurations is also used

to test various I/O buffer resources. Tables 3.2, 3.3, and 3.4 in this section list what each

of eight BIST configurations in this set test in terms of ILOGIC, OLOGIC, and I/O buffer

logic resources.

 52

Table 3.2 shows the various configuration modes of ILOGIC components tested

by each of the eight BIST configurations. Configurations one, two, and three test the

majority of resources in the ILOGIC registered data path. They test the synchronous

functionality of all four flip-flops in the registered data path including INIT and SRVAL

attributes. They also test the SR, REV, CE1, and CLK inverters and functionality.

Finally, they test the IFF3 and IFF4 selection of the Q1 and Q2 output multiplexers,

respectively. The next five configurations test the remainder of the ILOGIC resources

using only the top two flip-flops of the registered data path, thus also testing the IFF1 and

IFF2 selection of the Q1 and Q2 output multiplexers, respectively. Configuration six

tests the asynchronous latch capability of the IFF1 flip-flip. Configurations seven and

eight test the full functionality of the IDELAY module. Configuration seven uses the

IDELAY module with a fixed delay. Configuration eight sets the IDELAY module in a

variable delay mode, which also allows the TPG to increment and decrement the delay

module values to test every delay value.

 53

Table 3.2: Configuration Modes of ILOGIC Components

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8
DELAYMUX 1 0 0 0 1 1 0 0
DELMUX 0 1 1 0 1 0 0 0
D2OBYPSEL T T GND GND GND GND GND GND
IMUX 0 1 0 1 1 1 1 1
IFFDELMUX 1 0 1 1 0 0 1 0
D2OFFBSEL T GND T GND T GND GND GND
IFFMUX 1 0 1 0 0 1 0 1
CE1INV CE1_B CE1 CE1_B CE1_B CE1_B CE1 CE1_B CE1_B
CLKINV CLK CLK CLK_B CLK_B CLK_B CLK CLK_B CLK_B
SRINV SR SR SR_B SR_B SR_B SR SR_B SR_B
REVINV REV REV REV_B REV_B REV_B REV REV_B REV_B
Q1MUX IFF3 IFF3 IFF3 IFF1 IFF1 IFF1 IFF1 IFF1
Q2MUX IFF4 IFF4 IFF4 IFF2 IFF2 IFF2 IFF2 IFF2
IFF1 FF FF FF FF FF Latch FF FF
SRVAL[1:4] 0000 1111 1111 1111 0000 1111 1111 1111
INIT[1:4] 0011 1111 0000 1111 1111 1111 1111 1111
SRTYPE Sync Sync Sync Sync Sync Async Sync Sync
CLKDIVINV DIV_B DIV_B DIV_B DIV_B DIV_B DIV_B DIV_B DIV
DELAYVAL. 0 0 0 0 0 0 2 63
DELAY
TYPE Default Default Default Default Default Default Fixed Var.

The eight configurations used to test ILOGIC components are also used to test

OLOGIC resources. At least four BIST configurations are required to test the four

possible values of the TMUX and OMUX output multiplexers. Table 3.3 below shows

the various configuration modes of OLOGIC components tested by the eight BIST

configurations. Configurations four and five test the asynchronous latch functionality of

the topmost flip-flops in both the tristate and output data paths. Configurations three,

four, and eight also test the combinatorial paths of the tristate and output data paths, thus

testing the T1 and D1 selection of the TMUX and OMUX multiplexers, respectively. As

seen in Table 3.3, the remaining BIST configurations in this set test the various other

OLOGIC resources and output multiplexer selections.

 54

Table 3.3: Configuration Modes of OLOGIC Components

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8
T1INV T1_B T1 T1_B T1_B T1_B T1 T1 T1_B
T2INV T2_B T2 T2_B T2_B T2_B T2 T2 T2_B
TCEINV TCE_B TCE_B TCE_B TCE_B TCE TCE TCE_B TCE_B
CLK1INV C C_B C_B C C_B C_B C_B C
CLK2INV CLK_B CLK_B CLK_B CLK CLK CLK CLK_B CLK
D1INV D1 D1_B D1_B D1_B D1_B D1 D1_B D1_B
D2INV D2 D2_B D2 D2_B D2_B D2 D2_B D2_B
OCEINV OCE_B OCE_B OCE OCE_B OCE_B OCE OCE_B OCE_B
SRINV SR SR_B SR SR_B SR SR_B SR SR_B
REVINV REV REV_B REV REV_B REV_B REV_B REV REV_B
TFF1 FF FF FF Latch FF FF FF FF
OFF1 FF FF FF FF Latch FF FF FF
TMUX DRB DRA DRB TFF1 TFF1 DRA TFF1 T1
OMUX DRB DRA D1 D1 OFF1 OFF1 DRB D1
SRVALOQ 1 1 1 1 0 1 0 1
SRVALTQ 1 1 0 0 1 0 0 0
INITOQ 1 0 1 1 0 1 0 1
INITTQ 1 0 0 0 0 1 0 0
SRTYPEOQ Sync Sync Sync Async Sync Sync Sync Sync
SRTYPETQ Sync Sync Sync Sync Async Sync Sync Sync

The I/O buffer testing is limited by the bidirectional configuration the BIST

architecture requires. However, several of the I/O buffer logic resources can be tested

with this set of eight BIST configurations, as seen in Table 3.4. The I/O buffers are

configured to operate in each of the slew and pull modes. Five of the eight drive

strengths are tested: 24, 4, 6, 2, 8. The configurations that use PCI I/O standards do not

support testing drive strengths. The remaining drive strengths are tested in BIST

configurations developed to test SERDES logic resources. This set of BIST

configurations also tests eight different I/O standards, including LVTLL, LVCMOS, and

PCI standards. The remainder of the I/O buffer attributes and standards are tested with

BIST configurations discussed in the next two sections.

 55

Table 3.4: Configuration Modes of I/O Buffer Components

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8
PULL Keep. Down Pullup Keep. Down Pullup Keep. Keep.
GTSATTR Off Disable Disable Off Disable Disable Off Off
SLEW Slow Fast Slow Off Slow Off Fast Slow
DIFFTERM NA NA NA NA NA NA NA NA
DRIVE 24 4 6 Off 2 Off 8 Off
DRIVE0MA Off Drive0 Drive0 Off Drive0 Drive0 Off Off

IOATTR LVTTL
LVCM-
OS33

LVCM-
OS25

PCI66
-3

LVCM-
OS15

PCI33
-3

LVCM-
OS18

PCI
-X

The architecture of the TPG BRAMs used to test ILOGIC, OLOGIC, and I/O

buffer logic and routing resources is summarized in Table 3.5. Address lines ADDRA4-

13 are incremented from a DSP counter once per clock cycle to set the next two bytes of

BRAM data (test vectors) on the BRAM output bus. The first two test vectors stored in

the BRAM are constant logic highs used to test the INIT values. The remaining BRAM

test vector contents were generated using a twelve bit linear feedback shift register to

provide pseudo-random patterns on the TPG outputs. The linear feedback register used

was designed with external feedback and a primitive polynomial of P(x) =

x12+x6+x4+x3+1 to produce a maximal length pseudo-random sequence [2]. Because

there are only ten address lines for each BRAM, only 1024 of the 4096 possible test

vectors are used. A program was developed, Vec2RAM, to convert the output values of

the linear feedback shift register to hexadecimal BRAM contents.

 56

Table 3.5: BRAM Signals and Attributes for ILOGIC, OLOGIC, and I/O Buffer Testing

Signal/Attribute I/O/Attribute Connection Function
ADDRA4-13 Input D0B0-D0B9 Addressing BRAM contents
CLKA Input BIST clock BRAM clock
ENA Input GLOBAL 1 Enable output bus
REGCEA Input GLOBAL 0 Enable output register
SSRA Input GLOBAL 0 Set/Reset
WEA0 Input GLOBAL 0 Write Enable 0
WEA1 Input GLOBAL 0 Write Enable 0
WEA2 Input GLOBAL 0 Write Enable 0
WEA3 Input GLOBAL 0 Write Enable 0
D0A0-D0A11 Output T0B0-T0B11 Data Output Bus
CLKINV Attribute CLKA CLKA Inverter
EXTENSION_A Attribute NONE Extended Mode
DOA_REG Attribute 0 Pipeline Register
INV_CLK_DOA Attribute FALSE Invert Pipeline Clock
Read width Attribute 18 Output Bus width <15:0>

Each TPG line from the BRAM output bus connects to one of the twelve inputs of

ILOGICs or OLOGICs in an I/O tile. Test vectors are then applied to each of the twelve

connected inputs in an I/O tile. Each of the three ILOGIC outputs is then sent to ORAs

for comparison, as seen in Figure 3.3. Because three outputs are being compared, this

BIST configuration set requires six ORAs per I/O tile or row under test. The six ORAs

are implemented in three slices in the CLB directly adjacent to the I/O tile under test.

The first slice of each CLB used for ORAs is not instantiated and will appear as two logic

high values when read from the configuration memory. All of the ORAs are contained

within a single column for each column of I/O tiles under test. Table 3.6 shows the

positioning and connections of the TPGs and ORAs in relation to rows of I/O tiles under

test. The ORA positioning is read as 11 (slice not used) + 00 (slice one) + 00 (slice two)

+ 00 (slice three), where each slice has two ORAs. An “X” is used in Table 3.6 to mark

the ORA that is monitoring the given I/O tile signal. Signals from the top and bottom

ILOGICs of a tile are distinguished as IOB0 and IOB1, respectively.

To Row h

 57

Figure 3.3: I/O Tile to ORA Connections

ORA
ORA

ORA
ORA

ORA
ORA

CLB

I/O
Cell

IOB0

SLICE
NOT

USED

ORA
ORA

ORA
ORA

ORA
ORA

SLICE
NOT

USED

From Row k

O3
Slice 3O2

O1
Slice 2O3 I/O

O2 Cell
IOB1 Slice 1 O1

Slice 0

Row i

Row j
O3

I/O Slice 3O2 Cell
IOB0 O1

Slice 2O3
I/O O2 Cell

IOB1 Slice 1 O1

Slice 0

CLB

 58

Table 3.6: TPG and ORA Connections for ILOGIC, OLOGIC, and I/O Buffer Testing

 Signal From To ORA Positioning
T0B0 TPG D0A0 ILOGIC CE1 NA
T0B1 TPG D0A1 ILOGIC/OLOGIC REV NA
T0B2 TPG D0A2 ILOGIC/OLOGIC SR NA
T0B3 TPG D0A3 OLOGIC D1 NA
T0B4 TPG D0A4 OLOGIC D2 NA
T0B5 TPG D0A5 OOGIC OCE NA
T0B6 TPG D0A6 OLOGIC TC NA
T0B7 TPG D0A7 OLOGIC T1 NA
T0B8 TPG D0A8 OLOGIC T2 NA
T0B9 TPG D0A9 ILOGIC DLYINC NA
T0B10 TPG D0A10 ILOGIC DLYRST NA

To I/O
Tile

T0B11 TPG D0A11 ILOGIC DLYCE NA
IOB0O ILOGIC O ORA S01 110X0000
IOB0Q1 ILOGIC Q1 ORA S10 11000X00
IOB0Q2 ILOGIC Q2 ORA S11 1100000X
IOB1O ILOGIC O ORA S01 11X00000
IOB1Q1 ILOGIC Q1 ORA S10 1100X000

From I/O
Tile

IOB1Q2 ILOGIC Q2 ORA S11 110000X0

To generate this first set of BIST configurations, template and modification

programs were created. The template program, V4iobist, generates an XDL file that

establishes the entire BIST architecture, including the instantiation and placement of the

TPGs, ORAs, DCMs, BSCAN, and I/O tile components as well as their interconnections.

The template XDL file is then converted to an NCD file. PAR is then used to route the

NCD template design before it is converted back to XDL format. A modification

program, V4iobmod, modifies the XDL of the placed and routed template file. The

template XDL file is only modified to contain one of the eight new I/O tile configurations

in the first BIST configuration set; placement and routing is left unchanged. The newly

modified XDL files for each of the eight BIST configurations can then be converted to

 59

NCD files which can then be used to generate FPGA configuration memory

programming files. The remainder of this thesis refers to the eight BIST configurations

presented in this section as IO9 through IO16.

3.2.2 Configurations to Test SERDES

 The number of configurations to test I/O tiles in a SERDES mode of operation is

dominated by the various supported data widths. A BIST configuration is required to test

ISERDES/OSERDES components in each of the eight supported data widths. Thus eight

BIST configurations are used to test the ISERDES/OSERDES functionality.

Template and modification programs were also created to generate this set of

eight BIST configurations. The template program, V4iobistios, generates XDL that

establishes the placement and interconnection of the entire BIST architecture, including

the TPGs, ORAs, DCMs, boundary scan modules, and I/O tile components. Routing is

performed using PAR via the procedure discussed in the previous section. The

modification program, V4iobmodios, modifies the XDL of the placed and routed template

created with V4iobistios. The template configuration is modified to reflect one of the

eight new I/O tile SERDES configurations.

Table 3.7 shows the various modes of ISERDES components and attributes that

are tested in each of the eight BIST configurations. Note that the configuration options

and attributes shown in dark grey are already tested in the first set of configurations

presented in Section 3.2. However, several of them are tested again with this set of eight

BIST configurations.

 60

Table 3.7: BIST Configurations to Test ISERDES

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8
NUMCE 1 2 2 1 1 2 2 2
DATARATE SDR SDR DDR SDR DDR SDR DDR SDR
DATAWIDTH 2 3 4 5 6 7 8 10
DELAY NONE IFD IBUF BOTH BOTH NONE IFD BOTH
DELAYVAL. 0 2 4 8 1 0 16 63
DELAYTYPE Def. Fixed Fixed Fixed Var. Def. Fixed Fixed

MODE Master Master Master Master Master Master
Master/
Slave

Slave/
Master

BITSLIPEN. True False True True True True True True
INTERFACE Net. Mem. Mem. Net. Net. Net. Net. Net.
INIT_Q1 0 1 0 0 0 0 1 0
INIT_Q2 0 1 0 0 0 0 1 0
INIT_Q3 0 1 1 0 0 0 1 0
INIT_Q4 0 1 1 0 0 0 1 0
SRVAL_Q1 0 1 1 1 0 0 1 1
SRVAL_Q2 0 1 1 1 0 0 1 1
SRVAL_Q3 0 1 1 1 1 0 1 1
SRVAL_Q4 0 1 1 1 1 0 1 1
CE1INV CE1 CE1_B CE1 CE1_B CE1 CE1_B CE1 CE1
CE2INV CE2 CE2_B CE2_B CE2 CE2 CE2_B CE2_B CE2
CLKINV CLK CLK CLK_B CLK_B CLK CLK CLK_B CLK
CLKDIVINV DIV DIV DIV_B DIV_B DIV DIV DIV_B DIV
OCLKINV CLK CLK CLK_B CLK_B CLK CLK CLK_B CLK
REVINV REV REV REV REV REV REV REV REV
SRINV SR SR_B SR_B SR SR SR_B SR_B SR
SHIFTOUT1-2
SERDESi,j Off Off Off Off Off Off

On/
Off

Off/
On

SHIFTIN1-2
SERDESi,j Off Off Off Off Off Off Off/On On/Off

Configurations two and three use a memory interface mode in which the OCLK is

tested. Configurations seven and eight use both ISERDES of an I/O tile together in a

master/slave configuration. Configuration seven uses a data width of eight with the top

ISERDES in a tile configured as the master and the bottom ISERDES configured as the

slave. In this way, the routing of the SHIFTOUT lines of the top ISERDES and the

SHIFTIN lines of the bottom ISERDES are tested. Configuration eight tests the

 61

maximum supported data width of ten with the top ISERDES configured as slave and the

bottom ISERDES configured as master. This alternating orientation tests the SHIFTOUT

lines of the bottom ISERDES and the SHIFTIN lines of the top ISERDES.

The same set of eight BIST configurations is used to test OSERDES components.

Table 3.8 shows the various modes of OSERDES components and attributes that are

tested in each of the eight BIST configurations. As before, the configuration options and

attributes shown in dark grey are already tested in the first set of configurations presented

in Section 3.2. However, several of them are tested again with this set of eight BIST

configurations.

 62

Table 3.8: BIST Configurations to Test OSERDES

Resources Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5 Cfg. 6 Cfg. 7 Cfg. 8
DATARATEOQ SDR SDR DDR SDR SDR SDR SDR SDR
DATARATETQ DDR BUF DDR DDR SDR DDR SDR SDR
DATAWIDTH 2 3 4 5 6 7 8 10
MODE
SERDESi,j Master Master Master Master Master Master

Master/
Slave

Slave/
Master

TRISTATE
WIDTH 4 1 2 2 1 4 1 1
INIT_OQ 0 1 0 0 0 1 0 0
INIT_TQ 0 1 0 0 0 1 0 0
SRVAL_OQ 0 0 0 1 0 0 0 1
SRVAL_TQ 0 0 0 1 0 0 0 1
CLKINV CLK CLK CLK_B CLK_B CLK CLK CLK_B CLK_B
CLKDIVINV DIV DIV DIV_B DIV_B DIV DIV DIV_B DIV_B
D1INV D1 D1_B D1 D1 D1 D1 D1 D1_B
D2INV D2 D2 D2_B D2 D2 D2 D2 D2_B
D3INV D3 D3 D3 D3_B D3 D3 D3 D3_B
D4INV D4_B D4 D4 D4 D4 D4 D4 D4_B
D5INV D5 D5 D5 D5 D5 D5_B D5 D5_B
D6INV D6 D6 D6 D6 D6 D6 D6_B D6_B
OCEINV OCE OCE OCE_B OCE_B OCE OCE OCE_B OCE_B
SRINV SR SR SR_B SR_B SR SR SR_B SR_B
REVINV REV REV REV_B REV_B REV REV REV_B REV_B
T1INV T1 T1 T1 T1_B T1 T1 T1 T1
T2INV T2 T2 T2 T2_B T2 T2 T2 T2
T3INV T3 T3 T3 T3 T3 T3_B T3 T3
T4INV T4 T4 T4 T4 T4 T4_B T4 T4
TCEINV TCE TCE TCE_B TCE_B TCE TCE TCE_B TCE_B
SHIFTIN1-2
SERDESi,j Off Off Off Off Off Off

Off/
On

On/
Off

SHIFTOUT1-2
SERDESi,j Off Off Off Off Off Off

On/
Off

Off/
On

Configurations one and six test all four of the tristate signals with a tristate width

of four. Configurations five and seven test SDR mode of the tristate and data paths with

the tristate operating in a single width. Configurations three and four test DDR mode of

the tristate and data paths with the tristate operating in a double data width. Finally,

configurations seven and eight test the full data width supported in OSERDES

 63

components as well as the shift routing with master/slave I/O tile configurations in both

orientations.

The BIST architecture required to test SERDES components is similar to the

architecture developed for the previously discussed configurations. Figure 3.4 illustrates

an I/O cell configured as an ISERDES, OSERDES, and bidirectional I/O buffer. Test

patterns are applied to the six data inputs of the OSERDES component. The tristate and

data output responses of the OSERDES are then sent to an I/O buffer configured in a

bidirectional mode of operation. The I/O buffer sends serialized data back to the

ISERDES components. Finally, the ISERDES component deserializes the data and sends

it to ORAs for comparison.

ISERDES
O

 64

Figure 3.4: Virtex-4 I/O Cell in ISERDES/OSERDES Mode of Operation

The main difference between this architecture and the previously discussed

architecture is that SERDES components require more I/O tile input lines to be controlled

by TPGs and more output lines to be monitored by ORAs. The TPG test vector width for

SERDES configurations is increased to 36 to allow for the 20 TPG outputs needed in

SERDES testing. This reduces the total test vector count to 512. The connections of

these TPG outputs are summarized in Table 3.9.

Q1
Q2
Q3
Q4
Q5
Q6

D

D1
D2
D3
D4
D5
D6

OSERDES

Q

T1
T2
T3
T4

T

CLK
CLKDIV
OCE
REV
SHIFTIN1
SHIFTIN2
SR
TCE

SHIFTOUT1
SHIFTOUT2

SHIFTIN1
SHIFTIN2

SHIFTOUT1
SHIFTOUT2

CLK
CLKDIV
BITSLIP

CE1
CE2

DLYCE
DLYINC
DLYRST

SR
OCLK

REV

TO FPGA
INTERNAL

RESOURCES

FROM FPGA
INTERNAL

RESOURCES
Input
Buffer

Output
Buffer

PAD

FROM FPGA
INTERNAL
RESOURCETO OTHER

ISERDES
IN I/O TILE

I/O Buffer

TO OTHER
OSERDES IN

I/O TILE

 65

Table 3.9: TPG and ORA Connections for SERDES Testing

 Signal From To ORA Positioning
T0B0 TPG D0A0 Synchronizer EN 0-1 NA
T0B1 TPG D0A1 ISERDES CE1 NA
T0B2 TPG D0A2 ISERDES CE2 NA
T0B3 TPG D0A3 ISERDES DLYCE NA
T0B4 TPG D0A4 ISERDES DLYINC NA
T0B5 TPG D0A5 ISERDES DLYRST NA
T0B6 TPG D0A6 ISERDES SR NA
T0B7 TPG D0A7 OSERDES D1 NA
T0B8 TPG D0A8 OSERDES D2 NA
T0B9 TPG D0A9 OSERDES D3 NA
T0B10 TPG D0A10 OSERDES D4 NA
T0B11 TPG D0A11 OSERDES D5 NA
T0B12 TPG D0A12 OSERDES D6 NA
T0B13 TPG D0A13 OSERDES OCE NA
T0B14 TPG D0A14 OSERDES T1 NA
T0B15 TPG D0A15 OSERDES T2 NA
T0B16 TPG D0A16 OSERDES T3 NA
T0B17 TPG D0A17 OSERDES T4 NA
T0B18 TPG D0A18 OSERDES TCE NA
T0B19 TPG D0A19 TPG Bitslip 0-1 NA
BITSLIP0 BITSLIP0 ISERDES0 BITSLIP NA

To I/O
Tile

BITSLIP1 BITSLIP1 ISERDES1 BITSLIP NA
IOB0O ISERDES O ORA C1 S00 0X000000
IOB0Q1 ISERDES Q1 ORA C1 S01 000X0000
IOB0Q2 ISERDES Q2 ORA C1 S10 00000X00
IOB0Q3 ISERDES Q3 ORA C1 S11 0000000X
IOB0Q4 ISERDES Q4 ORA C2 S00 110X0000
IOB0Q5 ISERDES Q5 ORA C2 S01 11000X00
IOB0Q6 ISERDES Q6 ORA C2 S10 1100000X
IOB1O ISERDES O ORA C1 S00 X0000000
IOB1Q1 ISERDES Q1 ORA C1 S01 00X00000
IOB1Q2 ISERDES Q2 ORA C1 S10 0000X000
IOB1Q3 ISERDES Q3 ORA C1 S11 000000X0
IOB1Q4 ISERDES Q4 ORA C2 S01 11X00000
IOB1Q5 ISERDES Q5 ORA C2 S10 1100X000

From I/O
Tile

IOB1Q6 ISERDES Q6 ORA C2 S11 110000X0

Table 3.9 also presents the connections from the I/O tiles under test to the

monitoring ORAs. Because up to 14 outputs from each I/O tile are being compared (one

 66

combinatorial output and six registered outputs per I/O cell), this BIST configuration set

requires 14 ORAs per I/O tile under test. Connections from the I/O tiles under test to the

ORAs are done in the same method presented in Figure 3.3. The 14 ORAs are

implemented in seven slices in two columns of CLBs adjacent to the I/O tile under test.

The first column is directly adjacent to the column of I/O tiles under test and uses all four

slices. The ORA positioning in Table 3.9 for this column of ORAs is read as 00 (slice

zero) + 00 (slice one) + 00 (slice two) + 00 (slice three), where each slice has two ORAs.

The second column of ORAs is read as 11 (slice not used) + 00 (slice four) + 00 (slice

five) + 00 (slice six), where each slice has two ORAs. An “X” is used to mark the ORA

that is monitoring the given I/O tile signal. Signals from the top and bottom ISERDES of

a tile are distinguished as IOB0 and IOB1, respectively.

Another addition to the SERDES BIST architecture is the use of a DCM to

produce a divided clock signal. Both ISERDES and OSERDES require a clock input and

a divided clock input, the value of which changes for each BIST configuration and is

specified in V4iobmodios. The divided clock line, CLKDIV, is also used as the BIST

clock for every component in the architecture. For each of the eight SERDES BIST

configurations, the bottommost DCM in any Virtex-4 device, DCM0, is used to take a

user supplied oscillator clock signal and produce the clock and divided clock signals.

The DCM must be changed in each configuration to produce the correct divided clock

ratio for each data width and rate of operation according to [5]. The eight BIST

configurations to test SERDES logic resources, listed as one through eight above, require

DCM clock divide values of two, three, four, five, six, seven, eight, and five,

respectively. The V4iobmodios program developed to modify SERDES BIST

configurations one through eight reconfigures the DCM with the correct clock divide

values.

 Another difference with SERDES BIST configurations is that SERDES

configurations implement a BISTSLIP synchronizer circuit, seen in Figure 3.5. The

synchronizer circuit oneshots the BITSLIP module to synchronize the data positioning on

the ISERDES output lines. The synchronizer circuit consists of three flip-flops (shown as

X, Y, and Z), a four-input AND gate, and a two-input OR gate. The three flip-flops form

a shift register with each output being monitored by the four-input AND gate.

 67

Figure 3.5: SERDES BIST BITSLIP Synchronizer Circuit

With the exception of the first vector, the TPG test vectors were generated using a

32-bit LFSR with external feedback and primitive polynomial x32+x28+x27+x+1 to

provide a pseudo-random sequence. The first test vector stored in the TPG is used as a

training pattern for the ISERDES BITSLIP operation. The training pattern is 00001d81

hexadecimal or 00000000000000000001110110000001 binary, where the least

significant bit corresponds to T0B0 of the BRAM TPG outputs. In this training pattern,

the TPG line supplied to the OSERDES’ D3 data input line contains a logic low. The

TPG lines supplied to the D1, D2, D4, D5 and D6 inputs contain logic high values. The

remaining TPG lines can be either logic high or low for the training pattern. The input of

flip-flop X in the BITSLIP circuit monitors the Q3 output of the ISERDES component

D Q

CLR

D Q

CLR

D Q

CLR
X Y Z

Synchronizer EN
To
ISERDESISERDES D3

TPG BitslipCLKDIV

 68

that is supposed to have a logic low output when the BITSLIP operation is completed.

During download the circuit is initialized with flip-flop Z containing logic high, as seen

in Table 3.10, which strobes synchronous active high clear on the X, Y, and Z flip-flops

on the first clock cycle of operation. Then, if the data line being monitored by the X flip-

flop contains logic high, the logic high will be shifted through the flip-flops to perform a

oneshot BITSLIP action. If the ISERDES data line being monitored by the X flip-flop

initializes as logic low, the synchronizer circuit will not oneshot the BITLSIP because the

data is already in the correct location.

Table 3.10: SERDES BITSLIP Synchronizer Circuit Timing

Clock Cycle Init 1 2 3 4 5 6 7 8 9
ISERDES D3 1 1 1 1 1 1 0 0 0 0

X FF X 0 1 1 1 0 1 0 0 0
Y FF X 0 0 1 1 0 0 1 0 0
Z FF 1 0 0 0 1 0 0 0 1 0

BITSLIP 0 0 0 1 0 0 0 0 0 0

Assuming the BITSLIP operation has no more than two clock cycle latency, the

worst case scenario is that the ISERDES’ output data lines will be synchronized in a

maximum of 4(N-1) clock cycles where N is the number of parallel data bits. A

synchronizer enable line which is controlled by TPGs is one of the four inputs of the

AND gate to allow the circuit to be disabled when testing SERDES functions other than

the BITSLIP. The output of the AND gate is supplied to a two-input OR gate that

outputs the oneshot to the BITSLIP module. The other input of the OR gate is controlled

by BRAM TPG vectors, allowing further control and testing of the BITSLIP operation.

Each BITSLIP synchronizer circuit is implemented in two slices and is replicated for

 69

each ISERDES component under test to account for ISERDES components located in

different areas of the Virtex-4 FPGA synchronizing at different times.

 SERDES BIST configurations also implement a TDI logic circuit, seen in Figure

3.6. The TDI logic circuit is used to generate a BIST clock enable to the TPGs and

ORAs. The TDI logic circuit is used to manually enable the clock to the TPGs and

ORAs, thus providing the BITSLIP synchronizer circuit time to align the ISERDES’

outputs. The circuit is also used to generate the IDELAYCTRL RST control. The circuit

consists of an AND gate with inputs of TDI and SEL2 of a second boundary scan

module, two flip-flops clocked by the divided clock signal from the DCM, and an

inverter. The user enables BIST execution by entering USR2 and toggling TDI high.

When flip-flop I receives a logic high, the IDELAYCTRL RST will be released. Flip-

flop J will receive the logic high on the next clock cycle to enable the BIST circuitry.

Two flip-flops are used to synchronize the BIST clock enable signal with the BIST clock

and to ensure that the IDELAYCTRL RST and BIST clock enable do not change on the

same clock edge. This architecture assumes that by the time the user can enter USR2 and

toggle TDI high, the BITSLIP operations have completed. When the BIST clock enable

is asserted high, the TPGs can begin outputting test vectors other than the training pattern

and the ORAs can begin monitoring the I/O tile responses. The circuit requires a single

CLB slice and is only implemented once in each BIST configuration.

 70

Figure 3.6: SERDES BIST TDI Logic Circuit

3.3 Configurations to Test I/O Standards

 Table 3.11 lists each I/O standard and indicates whether it is single-ended or

complementary differential. Table 3.11 also indicates if an I/O standard requires a

reference voltage, VREF. The table also indicates if the I/O standard uses DCI. Finally,

Table 3.11 lists which I/O standards can be tested with each of the 70 required BIST

configurations. The nine I/O standards shown as grey boxes in Table 3.11 are not

available for testing with this BIST architecture because they do not support a

bidirectional mode of operation. Complementary differential standards are listed twice in

Table 3.11 because they must be tested in both directions. As seen from the table, a total

of 70 BIST configurations are required to test all of the various I/O standards supported

by Virtex-4 I/O tiles that can be tested by BIST. The first eight I/O standards are tested

in the previously discussed set of BIST configurations, used to test logic resources.

D Q

INIT0

D Q
I J

IDELAYCTRL RST
TDI

BIST CE SEL2

INIT0

CLKDIV

 71

Table 3.11: BIST Configurations to Test I/O Standards Independently

I/O Standard Type VREF Cfg DCI I/O Standards Type VREF Cfg
LVTTL SE N/R 1 LVDCI_33 SE N/R 36
LVCMOS33 SE N/R 2 LVDCI_25 SE N/R 37
LVCMOS25 SE N/R 3 LVDCI_18 SE N/R 38
LVCMOS18 SE N/R 4 LVDCI_15 SE N/R 39
LVCMOS15 SE N/R 5 LVDCI_DV2_25 SE N/R 40
PCI_33_3 SE N/R 6 LVDCI_DV2_18 SE N/R 41
PCI_66_3 SE N/R 7 LVDCI_DV2_15 SE N/R 42
PCIX SE N/R 8 HSTL_II_T_DCI SER 0.75 43
HSTL_I SER 0.75 9 HSTL_II_T_DCI_18 SER 0.9 44
HSTL_II SER 0.75 10 SSTL2_II_T_DCI SER 1.25 45
HSTL_III SER 0.9 11 SSTL18_II_T_DCI SER 0.9 46
HSTL_IV SER 0.9 12 DIFF_SSTL2_II_DCI CD N/R 47
HSTL_I_18 SER 0.9 13 DIFF_SSTL2_II_DCI CD N/R 48
HSTL_II_18 SER 0.9 14 DIFF_SSTL18_II_DCI CD N/R 49
HSTL_III_18 SER 1.1 15 DIFF_SSTL18_II_DCI CD N/R 50
HSTL_IV_18 SER 1.1 16 DIFF_HSTL_II_DCI CD N/R 51
HSTL_I_12 SER 0.6 17 DIFF_HSTL_II_DCI CD N/R 52
GTL SER 0.8 18 DIFF_HSTL_II_DCI_18 CD N/R 53
GTLP SER 1 19 DIFF_HSTL_II_DCI_18 CD N/R 54
SSTL2_I SER 1.25 20 GTL_DCI SER 0.8 55
SSTL2_II SER 1.25 21 GTLP_DCI SER 1 56
SSTL18_I SER 0.9 22 HSTL_I_DCI SER 0.75 57
SSTL18_II SER 0.9 23 HSTL_II_DCI SER 0.75 58
LVPECL_25 CD N/R 24 HSTL_III_DCI SER 0.9 59
LVPECL_25 CD N/R 25 HSTL_IV_DCI SER 0.9 60
LVDS_25 CD N/R NA HSTL_I_DCI_18 SER 0.9 61
LVDSEXT_25 CD N/R NA HSTL_II_DCI_18 SER 0.9 62
BLVDS_25 CD N/R 26 HSTL_III_DCI_18 SER 1.1 63
BLVDS_25 CD N/R 27 HSTL_IV_DCI_18 SER 1.1 64
ULVDS_25 CD N/R NA SSTL2_I_DCI SER 1.25 NA
LDT_25 CD N/R NA SSTL2_II_DCI SER 1.25 65
RSDS_25 CD N/R NA SSTL18_I_DCI SER 0.9 NA
DIFF_SSTL2_II CD N/R 28 SSTL18_II_DCI SER 0.9 66
DIFF_SSTL2_II CD N/R 29 LVDS_25_DCI CD N/R NA
DIFF_SSTL18_II CD N/R 30 LVDSEXT_25_DCI CD N/R NA
DIFF_SSTL18_II CD N/R 31 HSLVDCI_33 SER Vcco/2 67
DIFF_HSTL_II CD N/R 32 HSLVDCI_25 SER Vcco/2 68
DIFF_HSTL_II CD N/R 33 HSLVDCI_18 SER Vcco/2 69
DIFF_HSTL_II_18 CD N/R 34 HSLVDCI_15 SER Vcco/2 70
DIFF_HSTL_II_18 CD N/R 35 Total Required Configurations 70

SE = Single-Ended SER = Single-Ended Requiring VREF
CD = Complementary Differential

The following sections describe the BIST architecture used to test each type of

I/O standard. Section 3.3.1 describes testing single-ended I/O standards, such as LVTTL

and LVCMOS33. Section 3.3.2 describes testing single-ended I/O standards that require

a voltage reference, such as HSTL and SSTL. Section 3.3.3 describes testing of

complementary differential standards that require the use of both I/O buffers in an I/O

tile, such as DIFF_HSTL and DIFF_SSTL. Finally, Section 3.3.4 describes testing

standards that use DCI line termination.

3.3.1 Testing Single-Ended I/O Standards

A V4iobist template file is used to test single-ended standards that do not require a

reference voltage. The template file is modified to contain the new I/O standard with a

new modification program, V4iobrmod. The I/O buffer configuration, shown in Figure

3.7, is a simple bidirectional buffer that adopts a new I/O standard and removes any I/O

buffer attributes. The I/O buffer attributes, such as drive strength and slew rate, are

removed because most I/O standards require that none be set. Test patterns, shown as the

dotted line in Figure 3.7, are sourced to the output buffer of an I/O cell and back into the

FPGA through the input buffer.

PAD

 72

Figure 3.7: I/O Tile BIST Configuration for Single-Ended I/O Standards

TUSED

OUSED
PADOUTUSED

DIFFI INUSED
INBUFUSED

PADOUTT

I
O

OUTBUF
INBUF

3.3.2 Testing Single-Ended I/O Standards Requiring a Reference Voltage

A V4iobist template file is used to test single-ended I/O standards that require a

reference voltage be supplied to the differential input buffer, as seen in Figure 3.8. The

same modification program, V4iobrmod, is used to modify the template file to reflect a

new I/O standard with all other I/O attributes removed.

PAD

 73

Figure 3.8: I/O Tile BIST Configuration for Single-Ended Standards Requiring a VREF

The BIST architecture is identical for both configurations that test single-ended

standards that require a VREF and standards that do not. The difference between BIST

configurations developed to test I/O standards that require a VREF and those that do not is

that the assigned VREF pins for each I/O bank under test must not be configured. There is

one VREF pin assigned for every group of 16 I/O buffers in an I/O bank. V4iobist

optionally creates templates without VREF, DCI, or both VREF and DCI I/O buffers

configured. When executing the BIST configurations, a user must supply the VREF

voltage level to the VREF pins of every I/O bank under test.

TUSED

OUSED
PADOUTUSED

DIFFI INUSED
INBUFUSED

PADOUTT

I
O

OUTBUF
Differential
INBUF

VREF

3.3.3 Testing Complementary Differential I/O Standards

BIST configurations to test complementary differential I/O standards require two

data lines to be supplied to the differential input buffer, as seen in Figure 3.9. A TPG

data line is supplied to the positive (non-inverting) terminal of the input buffer and its

complement is applied to the negative (inverting) input of the buffer in a master I/O cell.

The D1INV of an OLOGIC component is used in each I/O tile to produce the

complemented TPG data line that is supplied to the slave I/O buffer. The slave I/O cell

then sends the complemented data to the differential input buffer of the master I/O cell

via its PADOUT line.

 74

Figure 3.9: I/O Tile BIST Configuration for Complementary Differential I/O Standards

 The BIST architecture to test complementary differential I/O standards, shown in

Figure 3.10, differs from the BIST architecture used to test single-ended I/O standards.

TUSED

OUSED

DIFFI INUSED

PADOUTUSED

INBUFUSED

PADOUT

I

Differential
INBUF

OUTBUF

T

O

PAD

TUSED

OUSED

DIFFI INUSED

PADOUTUSED

INBUFUSED

PADOUT

INBUF
OUTBUF

I

T

O

PAD
Slave I/O buffer

Master I/O buffer

 75

For each I/O tile, one OLOGIC component is instantiated in the slave I/O cell to

complement TPG data. The remaining OLOGIC and ILOGIC components of the I/O tile

are instantiated as routethroughs. The ILOGIC of the slave I/O cell is not used at all as it

serves no function in complementary differential operation. Another difference is that

only two TPG lines are required for each I/O tile under test. One TPG line is used to

source test vectors to the data output pins of both I/O buffers in an I/O tile. A second

TPG line is used to source test vectors to the tristate control pins of both I/O buffers in an

I/O tile. One final difference is that only one ORA is required for each I/O tile as

opposed to six used for the ILOGIC, OLOGIC, and I/O buffer BIST configuration set.

 76

Figure 3.10: I/O Tile Components Used for Complementary Differential I/O Standards

A second template generation program, V4iobistd, was created to generate the

new I/O tile configuration and to facilitate these differences. The program generates an

XDL template file similar to that of V4iobist. The TPGs and ORAs are generated

identically to that of V4iobist. However, the connections made from the TPGs and to the

ORAs are different. Only two TPG signals are routed to each I/O tile under test to supply

test vectors to the data and tristate signals of each I/O buffer. Because each I/O tile only

contains one output line that must be monitored for comparison, the output signal from

Input/Output
Buffer

(I/O Buffer)

Input/Output
Buffer

(I/O Buffer)

To Device Resources

Input
Logic

(ILOGIC)

Output
Logic

(OLOGIC)

Master I/O Cell

From Device Resources

Input
Logic

(ILOGIC)

Output
Logic

(OLOGIC) From Device Resources

Slave I/O Cell

 77

each I/O tile is routed to all six ORAs in each row and the six ORAs in the adjacent row.

Therefore, if one I/O tile is faulty on every output line, then twelve corresponding ORAs

will indicate failures.

 The V4iobistd template generation program generates both orientations of an I/O

tile configured with a complementary differential standard. The first orientation template

configures the top and bottom I/O cells of the tile as the master and slave, respectively.

The second orientation reverses the master slave roles of the I/O cells under test. Each

orientation is required to test the separate PADOUT lines connecting the two I/O cells of

an I/O tile. Also, each orientation must be tested for all complementary differential

standards because only one differential input buffer of the I/O tile is used per orientation.

Table 3.11 lists all complementary differential standards twice to represent that they must

be tested in both orientations. After a V4iobistd generated XDL template is created and

routed by PAR, V4iobrmod is used to modify the I/O standard for each separate required

BIST configuration.

3.3.4 Testing I/O Standards with Digitally Controlled Impedance

I/O tile BIST configurations to test DCI I/O standards, such as HSTL_I_DCI, are

generated in the same manner as their non-DCI counterparts, using a template from

V4iobist or V4iobistd that removes DCI reference pins. When executing DCI BIST

configurations, the two DCI multipurpose reference pins, VRN and VRP, in each I/O bank

must not be configured. The VRN pin in each bank under test should be connected to

VCCO by an external reference resistor equal to the characteristic impedance of the driven

line. Similarly, the VRP pin in each bank under test should be connected to ground by an

 78

external reference resistor equal to the characteristic impedance of the driven line. For

DCI I/O standards that also require a reference voltage to the differential input buffer, the

VREF pins in each I/O bank also must not be configured. Therefore, if testing a full I/O

bank with 32 I/O buffers operating in an I/O standard that requires both DCI and VREF

inputs, a total of six I/O buffers in that bank cannot be tested with that BIST

configuration.

3.4 Summary of I/O Tile BIST Configurations

 A set of 78 BIST configurations were developed to test Virtex-4 I/O tiles, as seen

in Table 3.12. The overall number of BIST configurations is dominated by the 69

supported I/O standards. Each single-ended I/O standard requires one individual BIST

configuration. Each complementary differential I/O standard requires two individual

BIST configurations. Nine of the I/O standards cannot be tested because they do not

support a bidirectional mode of operation. Thus, 70 total BIST configurations were

developed to test the supported I/O standards. This includes the eight configurations

developed to test ILOGIC, OLOGIC, and I/O buffer logic resources. The eight

configurations developed to test SERDES components should also use the first eight I/O

standards because they are the only ones that do not require pins be removed for voltage

references or DCI resistors. The experimental implementation of each of these BIST

configurations is discussed in the next chapter.

 79

Table 3.12: Summary of Virtex-4 I/O Tile BIST Configurations

Cfg I/O Standard Target Cfg I/O Standard Target
1 LVTTL SERDES 40 HSTL_II_T_DCI_18 SER Standard
2 LVCMOS33 SERDES 41 SSTL2_II_T_DCI SER Standard
3 LVCMOS25 SERDES 42 SSTL18_II_T_DCI SER Standard
4 LVCMOS18 SERDES 43 GTL_DCI SER Standard
5 LVCMOS15 SERDES 44 GTLP_DCI SER Standard
6 PCI_33_3 SERDES 45 HSTL_I_DCI SER Standard
7 PCI_66_3 SERDES 46 HSTL_II_DCI SER Standard
8 PCIX SERDES 47 HSTL_III_DCI SER Standard
9 LVTTL I/O LOGIC 48 HSTL_IV_DCI SER Standard
10 LVCMOS33 I/O LOGIC 49 HSTL_I_DCI_18 SER Standard
11 LVCMOS25 I/O LOGIC 50 HSTL_II_DCI_18 SER Standard
12 LVCMOS18 I/O LOGIC 51 HSTL_III_DCI_18 SER Standard
13 LVCMOS15 I/O LOGIC 52 HSTL_IV_DCI_18 SER Standard
14 PCI_33_3 I/O LOGIC 53 SSTL2_II_DCI SER Standard
15 PCI_66_3 I/O LOGIC 54 SSTL18_II_DCI SER Standard
16 PCIX I/O LOGIC 55 HSLVDCI_33 SER Standard
17 LVDCI_33 SE Standard 56 HSLVDCI_25 SER Standard
18 LVDCI_25 SE Standard 57 HSLVDCI_18 SER Standard
19 LVDCI_18 SE Standard 58 HSLVDCI_15 SER Standard
20 LVDCI_15 SE Standard 59 LVPECL_25 CD Standard
21 LVDCI_DV2_25 SE Standard 60 BLVDS_25 CD Standard
22 LVDCI_DV2_18 SE Standard 61 DIFF_SSTL2_II CD Standard
23 LVDCI_DV2_15 SE Standard 62 DIFF_SSTL18_II CD Standard
24 GTL SER Standard 63 DIFF_HSTL_II CD Standard
25 GTLP SER Standard 64 DIFF_HSTL_II_18 CD Standard
26 SSTL2_I SER Standard 65 LVPECL_25 CD Standard
27 SSTL2_II SER Standard 66 BLVDS_25 CD Standard
28 SSTL18_I SER Standard 67 DIFF_SSTL2_II CD Standard
29 SSTL18_II SER Standard 68 DIFF_SSTL18_II CD Standard
30 HSTL_I SER Standard 69 DIFF_HSTL_II CD Standard
31 HSTL_II SER Standard 70 DIFF_HSTL_II_18 CD Standard
32 HSTL_III SER Standard 71 DIFF_SSTL2_II_DCI CD Standard
33 HSTL_IV SER Standard 72 DIFF_SSTL18_II_DCI CD Standard
34 HSTL_I_18 SER Standard 73 DIFF_HSTL_II_DCI CD Standard
35 HSTL_II_18 SER Standard 74 DIFF_HSTL_II_DCI_18 CD Standard
36 HSTL_III_18 SER Standard 75 DIFF_SSTL2_II_DCI CD Standard
37 HSTL_IV_18 SER Standard 76 DIFF_SSTL18_II_DCI CD Standard
38 HSTL_I_12 SER Standard 77 DIFF_HSTL_II_DCI CD Standard
39 HSTL_II_T_DCI SER Standard 78 DIFF_HSTL_II_DCI_18 CD Standard

SE = Single-Ended SER = Single-Ended Requiring VREF

 CD = Complementary Differential

 80

The BIST configurations in Table 3.12 are ordered by changes in BIST

architecture to reduce partial reconfiguration file size. The first eight configurations test

SERDES mode components with the BIST architecture discussed in 3.2.2. BIST

configurations 9 through 58 use the same BIST architecture discussed in Section 3.2.1.

Configurations 59 through 78 test complementary differential standards with the BIST

architecture presented in Section 3.3.3. The groups of complementary differential

standards shaded in grey are repeated to test both orientations. The DCI I/O standards are

grouped together within each of the sets of configurations.

 81

CHAPTER FOUR

EXPERIMENTAL RESULTS

 This chapter describes the implementation and testing of the I/O tile BIST

configurations presented in Chapter 3. The chapter aims to carefully explain which BIST

configurations work as expected, and to explain the problems associated with those that

do not. For the BIST configurations that are not working, this chapter will provide a

detailed account of generation errors or failing patterns associated with each

configuration. This chapter also details other experimental results observed as well as the

capabilities and limitations of this BIST approach.

4.1 Generating I/O Tile BIST Configurations

 This section begins with a summary of the BIST programs used to generate all 78

I/O tile BIST configurations. Section 4.1.1 describes how the BIST programs function,

as well as the command line options that are used to generate the BIST configurations.

Section 4.1.2 provides an overview of the generation procedure for all 78 BIST

configurations presented in Table 3.12 using the BIST programs developed and Xilinx

ISE command line tools. A complete description of the Xilinx ISE command line tools

usage can be found in [5].

 82

4.1.1 Summary of I/O Tile BIST Programs

 There are three template generation programs and three template modification

programs created for Virtex-4 I/O tile BIST. The three template generation programs are

V4iobistios, V4iobist, and V4iobistd. Each of the three template programs follows the

same basic procedure for generating a XDL template:

1. Instantiate the components in the I/O tiles under test. This also includes

the routing between the I/O buffer and the ILOGIC and OLOGIC

components.

2. Instantiate the ORA slices (V4iobistios also instantiates BITSLIP

synchronizer circuits at this point)

3. Instantiate all of the IDELAYCTRLs

4. Instantiate the BRAMs used for TPGs

5. Route the TPGs to the I/O tiles under test

6. Route the I/O tiles under test to the ORAs

7. Instantiate the DSPs used to address the BRAMs

8. Route the DSPs to the BRAM TPGs

9. Instantiate the BSCAN modules (V4iobistios also instantiates the TDI

logic BIST clock enable circuit at this point)

10. Instantiate the DCMs and clock routing (V4iobistios also instantiates the

on-board oscillator I/O buffer at this point)

The command line options for V4iobistios and V4iobist are as follows:

 <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part> <package> <pad>.

The first command line option, <xdlfile>, is the user designated name for the template

 83

file. This name is appended automatically with the .xdl file extension. The <startrow>

<startcol> <endrow> <endcol> options allow the user to specify a start row and column

beginning at the lower left end of the array as well as an end row and column ending at

the upper right end of the area for I/O tiles to be tested. The end row or column values

are not included in the I/O tile instantiation. The <dev> <part> <package> options

support all valid Virtex-4 FX, LX, and SX device and package combinations, as specified

in Chapter 2 and [5]. The final command line option, <pad> supports three possible

values: “v” to specify that VREF pins should be removed, “d” to specify that DCI pins

should be removed, and “b” to specify that both VREF and DCI pins should be removed.

If the <pad> command line option is left blank, neither VREF nor DCI pins are removed.

The command line options for V4iobistd are the same as those described for

V4iobistios and V4iobist with one additional option, <configNum>, located in the

command option sequence before the <pad> option. The <configNum> option is used to

specify which orientation of the complementary differential standard should be

generated. Two options are supported: “1” generates a master/slave orientation and “2”

generates a slave/master orientation. Master/slave or slave/master orientations configure

complementary differential input buffer in the top or bottom I/O cell, respectively. The

“v” option should not be used in the <pad> command line option because complementary

differential I/O standards do not require VREF pins to be removed.

The three modification programs are V4iobmodios, V4iobmod, and V4iobrmod.

Each of the three modification programs work by replacing the configuration settings for

each component to be modified. V4iobmodios and V4iobmod replace the ILOGIC,

OLOGIC, and I/O buffer configuration data in each I/O tile under test. V4iobrmod is

 84

used for I/O standards and only replaces I/O buffer configuration data in each I/O cell

under test. V4iobmodios also replaces the DCM configuration data to reflect the proper

data width clock division required for SERDES operation.

The command line options for all three modification programs are as follows:

<xdl_in> <xdl_out> <phase>. The <xdl_in> <xdl_out> options are used to specify the

XDL input file name to be modified and the modified XDL output file name to be

created. The .xdl file extension is not automatically appended to the specified names.

The <phase> command line option for V4iobmodios and V4iobmod should be a value

between one and eight, where each value is the SERDES or ILOGIC/OLOGIC BIST

configuration to be generated, respectively. The <phase> option for V4iobrmod should

be a value between one and 69, where the value corresponds to the I/O standard in Figure

2.6 by order of appearance. The <phase> value required for each I/O standard can also

be seen by typing only the name of the program in the command prompt.

4.1.2 BIST Configuration Generation Procedure

 The following procedure can be used to generate all 78 I/O tile BIST

configurations for any Virtex-4 device and package. The specific commands for each

step can be found in the batch file of Appendix A.

1. Generate all BIST configuration template XDL files

a. V4iobistios – template file for SERDES configurations

b. V4iobist – template file for ILOGIC/OLOGIC configurations

c. V4iobist option d – template file for single-ended DCI I/O

standards

 85

d. V4iobist option v – template file for single-ended standards

requiring VREF pins to be removed

e. V4iobist option b – template file for I/O standards requiring both

VREF and DCI pins to be removed

f. V4iobistd option 1 – template file for master/slave complementary

differential standards

g. V4iobistd option 2- template file for slave/master complementary

differential standards

h. V4iobistd option 1 d – template file for master/slave

complementary differential standards with DCI

i. V4iobistd option 2 d – template file for slave/master

complementary differential standards with DCI

2. Convert template XDL files to NCD format using force option

3. Run PAR on NCD template files without the placer option

4. Convert routed NCD template files back to XDL format

5. Modify the BIST template files to BIST configurations IO1 through IO78

a. Modify V4iobistios XDL template file with V4iobmodios for BIST

configurations IO1 through IO8

b. Modify V4iobist XDL template file with V4iobmod for BIST

configurations IO9 through IO16

c. Modify V4iobist XDL template file with V4iobrmod for BIST

configurations IO17 through IO18

 86

d. Modify V4iobist option d template file with V4iobrmod for BIST

configurations IO19 through IO25

e. Modify V4iobist option v template file with V4iobrmod for BIST

configurations IO26 through IO38

f. Modify V4iobist option b template file with V4iobrmod for BIST

configurations IO39 through IO58

g. Modify V4iobistd option 1 template file with V4iobrmod for BIST

configurations IO59, IO61, IO63, IO65, IO67, and IO69

h. Modify V4iobistd option 2 template file with V4iobrmod for BIST

configurations IO60, IO62, IO64, IO66, IO68, and IO70

i. Modify V4iobistd option 1 d template file with V4iobrmod for

BIST configurations IO71, IO73, IO75, and IO77

j. Modify V4iobistd option 2 d template file with V4iobrmod for

BIST configurations IO72, IO74, IO76, and IO78

6. Convert all 78 newly modified XDL files to NCD format using the force

option

7. Generate configuration download files for all 78 NCD files

8. Generate partial configuration files for IO2 through IO78 by comparing

the programming file of IO(N) to the NCD file of IO(N+1), where 1 < N <

79

 The user has several options to consider when generating I/O tile BIST

configurations. IO1 can be generated as a full or compressed configuration programming

file. Steps 5-d, 5-e, and 5-f can use the IO10 configuration XDL as a template file, as

 87

discussed in Chapter 3. In order to accomplish this, the template files from steps 1-c, 1-d,

and 1-e must first be modified to three distinct versions of IO10 with V4iobmod that can

then be used in steps 5-d, 5-e, and 5-f, respectively. The user also has the option of

stopping at step 7 to generate full or compressed configurations instead of partial

configurations. One final step in the generation procedure that may be useful in verifying

the BIST configurations would be to create a DRC error report for each of the 78 BIST

configurations. This can be seen in the batch file example presented in Appendix A.

Figure 4.1 illustrates an I/O tile BIST configuration generated for a Virtex-4 FX

20 FPGA. Note the single DSP column and two BRAM TPG columns required to test all

three columns of I/O tiles. Also note that the BIST routing goes straight through the on-

chip Power PC module without conflict.

BRAMs
for TPGs

I/O Tiles
under test

and
ORAs

DSPs for
TPGsPower

PC

Figure 4.1: All I/O Buffers Under Test of a Virtex-4 FX20 with One Power PC

[Screenshot from Xilinx FPGA Editor]

4.2 Executing I/O Tile BIST Configurations

The execution of I/O tile BIST configurations is separated into two main groups:

IO1 through IO8 and IO9 through IO78. The two groups require different execution

sequences due to architectural differences in the BIST configurations described in

Chapter 3. The differences in BIST ORA numbers and locations also require at least two

separate configuration memory readbacks to retrieve the BIST results. A readback is

required at the end of each BIST configuration group when partial reconfigurations are

used. However, a readback is required at the end of each BIST configuration when

 88

 89

partial reconfigurations are not used because the contents of the ORAs will be cleared

with each download. The following procedure summarizes executing I/O tile BIST

configurations IO1 through IO8 used to test SERDES logic resources:

1. Download the BIST configuration to the device

2. Wait for BISTSLIP synchronizer circuits to finish. This timing is

specified in Section 3.2.2.

3. Enter Test Logic Reset

4. Toggle SEL2 high by entering USR2 instruction to the second boundary

scan module

5. Toggle TDI to logic high (this enables the TDI logic circuit)

6. Wait for the all 512 TPG test vectors to be cycled through (this depends on

the speed of the on-board oscillator used)

7. Read back Pass/Fail results from ORAs (this step only has to be executed

once at the end of running each group of BIST configurations if partial

reconfiguration files are used)

8. Repeat for each additional BIST configuration

The following procedure summarizes executing I/O tile BIST configurations IO9

through IO78 used to test ILOGIC, OLOGIC, and I/O buffer logic resources as well

supported I/O standards:

1. Supply VREF voltages or DCI resistors if required

2. Download BIST configuration to the device

3. Enter Test Logic Reset

4. Toggle SEL1 high by entering USR1 of the first boundary scan module

 90

5. Toggle TDI low to high for fifteen clock cycles to reset IDELAYCTRLs

6. Execute 1024 BIST clock cycles on DRCK1 to cycle through all BRAM

TPG test vectors

7. Read back Pass/Fail results from ORAs (this step only has to be executed

once at the end of running each group of BIST configurations if partial

reconfiguration files are used)

8. Repeat for each additional BIST configuration

4.3 Experimental Results Obtained

 The following sections describe the experimental results from generating all 78

I/O tile BIST configurations for all FX, LX, and SX device and package combinations.

These sections also describe the experimental results observed when executing the BIST

configurations on both Virtex-4 SX 35 package FF668 and LX 60 package FF668 FPGAs

on a HW-AFX-FF668-400 prototyping platform. Section 4.3.1 describes the results

obtained from generating and executing BIST configurations IO9 through IO16 used to

test ILOGIC, OLOGIC, and I/O buffer logic resources. Section 4.3.2 describes the

results obtained from generating and executing BIST configurations IO1 through IO8

used to test SERDES logic resources. Finally, section 4.3.3 describes the results obtained

from generating and executing BIST configurations IO17 through IO78.

4.3.1 Configurations to Test ILOGIC, OLOGIC, and I/O Buffers

I/O tile BIST configurations IO9 through IO16 produce several DRC errors

during the generation process that can be ignored. These errors are related to the input

line of the IDELAY modules of the ILOGIC components. The DRC errors report that the

 91

pins DLYCE, DLYINC, and DLYRST of the IDELAY modules are used but have no

child signals. These DRC errors occur when the IDELAY module is used in a

DEFAULT or FIXED mode in which the DLYCE, DLYINC, and DLYRST inputs are

not used. The errors are produced because the TPG routes signals to all of the IDELAY

module input lines even when they are not being used by the module. These errors can

be ignored during the generation process because they do not affect the functionality of

the BIST configurations.

I/O tile BIST configurations IO9 through IO16 also produce several DRC

warnings during the generation process that can be ignored during the BIST generation

process. The first warning states that the IDELAY module inputs discussed above will

be ignored when the IDELAY module is acting in a DEFAULT or FIXED mode. The

other two warnings indicate that O1USED and T1USED PIPs of the OLOGIC

components have dangling pins. These warnings occur because the BIST configurations

always turn on the O1USED and T1USED PIPs, regardless of whether they are being

used by the configuration. These warnings could be avoided if the V4iobmod program

did not turn on the O1USED and T1USED PIPs when they are not required for the BIST

configuration.

 BIST configuration IO14 produces DRC errors that cannot be ignored during the

generation process. Configuration IO14 tests ILOGIC components with IFF1 configured

as an asynchronous latch. The DRC error produced for this configuration states that the

ILOGIC components are configured illegally. The errors also state that the remaining

flip-flops in the ILOGIC component are required for operation in the latch configuration.

It was observed that when the IO14 BIST configuration does not attempt to use IFF1 in

 92

an asynchronous latch mode, the configuration generates without any DRC errors. It

should be noted that BIST configurations IO12 and IO13 test OLOGIC components with

TFF1 and OFF1 configured as asynchronous latches, respectively. However, these two

BIST configurations do not produce DRC errors during generation.

All of the BIST configurations produce passing ORA results, with the exception

of IO14 that uses the ILOGIC IFF1 in an asynchronous latch mode. The ORA failing

pattern for IO14 indicates that the ORAs comparing only the latch output lines of the

bottom ILOGIC components fail. The exact ORA failure positioning can be read as

“00010011” when referring to Table 3.6. When the IFF1 component is configured as a

flip-flop instead of an asynchronous latch, the BIST configuration produces passing ORA

results. The experimental results presented in this section indicate that BIST

configurations IO9 through IO16 generate and function correctly, with the exception of

testing the ILOGIC in an asynchronous latch mode.

4.3.2 Configurations to Test SERDES Logic Resources

No DRC errors are produced during the generation of SERDES BIST

configurations IO1 through IO8. Configurations IO1 through IO5 produce no DRC

warnings. Configurations IO6 through IO8 produce warnings of unexpected tristate

widths for the SDR and DDR data widths assigned. Configurations IO7 and IO8 warn of

connecting the unused shift lines between master and slave SERDES components

because V4iobmodios leaves the shift lines connected for all eight SERDES

configurations. These warnings do also do not affect the operation of the BIST

 93

configurations and could be avoided by adjusting V4iobmodios to remove the shift line

routing when it is unused.

 The execution of the SERDES BIST configurations was performed on an SX35

FPGA with package type FF668, and the failing results are summarized in Table 4.1.

Various experiments were designed and performed to determine the cause of the failures.

These experiments primarily consisted of probing internal signals to LEDs via I/O pins to

examine the internal operation of the TPG, BITLSIP module, BISTSLIP synchronizer

circuit, TDI logic circuit, and DCMs as well as the ISERDES and OSERDES themselves.

While all of these circuits appeared to be functioning properly, the cause of the failures of

the three BIST configurations during execution could not be determined.

Table 4.1: SERDES BIST Execution Results

Configuration Pass/Fail ORA Failure Pattern
IO1 Pass
IO2 Fail No recognizable pattern
IO3 Fail No recognizable pattern
IO4 Pass
IO5 Pass
IO6 Pass
IO7 Fail DCI pin locations
IO8 Pass

4.3.3 Configurations to Test I/O Standards

All BIST configurations for I/O standards have been generated and executed,

including IO17 through IO78 in Table 3.12. The I/O standards used in the first 16 BIST

configurations were also generated from a V4iobrmod configuration template for

execution testing.

 94

No DRC errors or warnings, aside from those observed in the template file

generation discussed previously, occurred when generating BIST configurations IO17

through IO78. The BIST configurations were executed on a Virtex-4 SX35 device with

package type FF668. Single-ended standards were tested on every I/O cell of the device.

Single-ended standards requiring a VREF were tested on every I/O cell of the device, with

the exception of the VREF I/O cells, of the device. The VREF I/O cells were given the

voltage level specified in Table 3.11 and [5]. Complementary differential standards were

tested on every I/O cell of the device. Both single-ended and complementary differential

I/O standards using DCI were tested on every I/O cell of the device, with the exception of

DCI reference resistor pins and I/O banks one and two. The VRP and VRN DCI reference

resistor pins of each bank were supplied 51 Ohm resistors.

In each case, data lines connecting the I/O tiles under test to their respective

ORAs were probed to LEDs on the development board. It was observed that test vectors

are sourced through the I/O buffers for each standard being tested. It was also observed

that each type of I/O standard produces passing ORA results, with exceptions for

expected failures.

 Single-ended I/O standards that require a VREF produce expected ORA failures in

the ORAs rows associated with the removed VREF pins. For example, Table 2.3 indicates

that a VREF pin is located in the bottom I/O cell of row four in bank seven. Removing this

pin creates failures sent to the ORAs monitoring the ILOGIC O line of VREF I/O cell.

This creates a single ORA failure in the same row as the VREF and row above it, or rows

four and five in this example. Therefore, there are two expected ORA failures per VREF

pin or eight expected ORA failures per 32 rows of an I/O bank.

 95

 Similarly, I/O standards that use DCI produce expected failures in the ORAs

associated with the DCI VRP and VRN pins in the manner described for the VREF pins. For

example, the DCI pins for the I/O bank shown in Table 2.3 are both located in row nine.

Executing a single-ended DCI BIST configuration on this bank produces two expected

ORA failures in both rows nine and ten. Therefore, there are four expected ORA failures

per 32 rows of an I/O bank for single-ended DCI standards. Executing a complementary

differential DCI BIST configuration on this bank produces six expected failures in both

rows nine and ten. Therefore, there are twelve expected ORA failures per 32 rows of an

I/O bank for single-ended DCI standards. If a DCI standard that also requires a VREF is

used, then the expected ORA failures of the DCI pins and VREF pins must both be

accounted for. The generation and execution results presented in this section indicate that

I/O tile BIST configurations IO17 through IO78 function correctly.

4.4 Capabilities and Limitations

 The major capability of this BIST approach is the ability to detect catastrophic

faults in routing, logic, and configuration memory bits. Another of the capabilities of this

BIST approach is that both bonded and unbonded I/O buffers can be tested, therefore it is

a package independent test. The BIST approach can be used to test both the logic

resources and supported I/O standards associated with I/O tiles. However, this BIST

approach cannot test I/O standards that do not support a bidirectional mode of operation.

This BIST approach can be used in both manufacturing and system level testing.

However, the BIST approach is sensitive to system component connections. System

component connections must be able to operate in a tri-state mode to prevent back

 96

driving that causes BIST failures. The effect of back driving and system loading were

observed in the work presented in [9].

One of the limitations of this BIST approach is that it cannot detect all parametric

faults associated with the I/O tiles. For example, all of the I/O standards were

experimentally tested with the same VREF voltage level of 0.5 Volts. All of the DCI I/O

standards were experimentally tested with reference resistor values of 51 Ohms. In both

cases, the majority of the I/O standards were tested outside of the specified standard VREF

or DCI resistor value operating ranges. However, in both experiments, every I/O

standard produced passing ORA results. This indicates that the VREF and DCI values do

not have to be adjusted throughout the execution of the BIST configurations. However,

this also indicates that the BIST configurations are not robust enough to detect minor

faults in VREF voltage levels and DCI resistor values.

One of the limitations for testing Virtex-4 FPGAs is that the current I/O BIST

generation programs currently rely on at least two columns of BRAMs for every four

rows of I/O Buffers under test. The Virtex-4 FX 12 FPGA contains only a single column

of BRAMs in rows where the Power PC lies. Therefore, current BIST configuration

generation programs cannot test all of the I/O buffers on an FX 12 device, as seen in

Figure 4.2 below. The template programs could be adapted to generate a unique I/O

BIST architecture for FX 12 devices. The I/O Buffers in Power PC rows of all FX

devices, other than the FX-12, can be tested. This can also be observed in Figure 4.1,

which illustrates an FX 20 containing only one Power PC with all I/O tiles under test.

BRAMs

I/O Buffers not
under test Rows where I/O

tiles cannot be
tested with current
configurations due
to only one BRAM
column in Power
PC rows

Power PC

Figure 4.2: Virtex-4 FX 12 I/O Buffers in Power PC Rows Not Under Test

[Screenshot from Xilinx FPGA Editor]

One final limitation of the currently developed BIST configurations is that only

the SERDES configurations have been developed to operate at true system speeds. Not

testing all of the logic resources at high speeds greatly limits fault detection capabilities.

For example, a fault injection simulation was run on the eight configurations presented in

this thesis to test ILOGIC, OLOGIC, and I/O buffer logic resources. The BIST

configurations were executed using the boundary scan module clock, operating at

approximately 50 KHz. At this testing speed, only approximately 60% fault coverage

was achieved for the ILOGIC, OLOGIC, and I/O buffer resources. Faults such as slew

rate and some of those associated with the IDELAY module were not detected because of

 97

 98

the slow testing speed. Most of the remaining faults that were not detected were

associated with the analog programming features, such as pull and drive strength.

 99

CHAPTER FIVE

SUMMARY AND CONCLUSION

 This chapter provides summary and highlights of the work presented in this

thesis. Section 5.1 presents a summary of the BIST configurations developed to test

Virtex-4 I/O tiles. Section 5.2 describes areas of future research and development that

can be done to improve the BIST configurations. Finally, Section 5.3 describes the

general application this I/O tile BIST approach to other FPGAs and SoCs with FPGA

cores.

5.1 Summary of Virtex-4 I/O Tile BIST

 The work presented in this thesis develops BIST configurations for the I/O tiles of

Virtex-4 FPGAs. Eight configurations were developed to test the ILOGIC, OLOGIC,

and I/O buffer logic resources. Eight configurations were also developed to test the logic

resources of ISERDES and OSERDES components. A total of 70 BIST configurations

were developed to test the Virtex-4 supported I/O standards, including single-ended,

single-ended requiring a VREF, complementary differential, and DCI standards. Eight

configurations developed to test single-ended I/O standards were combined with the eight

configurations to test ILOGIC, OLOGIC, and I/O buffer logic resources. Thus, a total of

78 BIST configurations were developed to test Virtex-4 I/O tiles. The 78 BIST

configurations are summarized in Table 3.12 in an order that aims to minimize partial

reconfiguration programming file size.

 100

The I/O tile BIST configurations presented in this thesis are package independent

because they can be used to test both I/O tiles with bonded and unbonded I/O buffers.

The BIST configurations can be used for both manufacturing and system level testing.

When using the BIST configurations for system level testing, all connected outputs from

external devices must be used in a tri-state mode to prevent back driving. The BIST

approach can be used to detect faults in the configuration memory bits associated with

I/O tile logic, routing, and analog features. However, the BIST configurations cannot

detect all parametric faults that affect analog features, such as VREF voltage levels or DCI

resistance values.

This thesis also presents the process and results of generating and executing each

of the 78 I/O tile BIST configurations. The 78 BIST configurations were generated for

every Virtex-4 device and package combination. They were then downloaded and

executed on Virtex-4 SX 35 and LX 60 devices. The thesis outlines existing problems

associated with a few of the BIST configurations developed to test logic resources in

ILOGIC, OLOGIC, and SERDES components. However, all BIST configurations

developed to test I/O standards were shown to function correctly. These BIST

configurations will require future development for reliable use for manufacturing and

system level testing.

5.2 Areas of Future Research and Development

The major area of future research and development for the work presented in this

thesis is to debug and correct the BIST configurations designed to test logic resources.

The first issue to be addressed is the problem associated with testing the ILOGIC

 101

components in an asynchronous latch mode. This problem exists in BIST configuration

IO14. The next issue to be addressed is to determine the remaining problems associated

with the faulty SERDES BIST configurations. The problematic SERDES BIST

configurations are IO2, IO3, and IO7. These SERDES BIST configurations do not

function correctly when anything but the BITSLIP training pattern is used in the BRAM

TPGs as test vectors.

Another area of research and development for the work presented in this thesis is

to consolidate BIST template and modification programs and to streamline BIST

configuration generation. When used for system level testing, I/O tile BIST

configurations should be generated on a per I/O bank basis. The user should then be

given the opportunity to specify which I/O cells should not be included in the testing. I/O

cells that cannot be configured in a bidirectional mode or are connected to external

system components that will cause back driving should not be included in the tests. The

user should also be able to define a clock to input a high speed external clock source.

Currently, the batch file in Appendix A is used for generating the complete set of BIST

configurations. The BIST programs could be developed to generate such batch files

automatically that could then be executed by the user.

The BIST configurations should also be developed and generated such that they

all can operate at true system speeds. Currently, only the SERDES BIST configurations

support using an on-board oscillator to provide a BIST clock. The remaining BIST

configurations rely on the boundary scan module to provide a clock, which is

significantly slower. Developing all of the BIST configurations such that they can

 102

operate at faster speeds would improve not only the overall BIST testing execution time

but also the level of fault detection that can be obtained.

Another area of future research is to investigate the possibility of reducing the

number of required I/O tile BIST configurations. For example, it may be possible to

reduce the eight configurations developed to test ILOGIC, OLOGIC, and I/O buffer logic

resources to only five configurations. A summary of the configuration settings for a

reduced set is presented in Appendix B as three separate tables for the ILOGIC,

OLOGIC, and I/O buffer components. These configurations could be generated by

modifying the V4iobmod program to reflect the configurations settings presented in the

three tables. A fault simulation and fault injection analysis should then be performed to

ensure that the reduced set of five BIST configurations provides at least the same level of

coverage as the existing set of eight.

5.3 General Application to FPGAs and SoCs

 The I/O tile BIST approach presented in this thesis is generally applicable to any

FPGA or SoC with an FPGA core. However, the BIST configurations need to change

between manufacturers and devices. For example, Xilinx Virtex-5 FPGAs have a similar

I/O tile structure to the one presented in this thesis for Virtex-4 FPGAs. Virtex-5 I/O

tiles contain an ILOGIC, OLOGIC, and I/O buffer in each I/O cell that can also operate

in a SERDES mode [10]. However, the I/O tile of a Virtex-5 FPGA has a different

routing and component architecture. For example, the IDELAY module is contained

between the ILOGIC and OLOGIC components. The BIST approaches and BIST

 103

configuration template generation and modification programs presented in this thesis

must be adapted for the architectural differences.

 104

BIBLIOGRAPHY

[1] J. Barth, C. Dyer, and E. Stassinopoulos, “Space, Atmospheric and Terrestrial

Radiation Environments,” IEEE Trans. on Nuclear Science, Vol. 50, No. 3: pp.
466-482, 2003.

[2] C. Stroud, A Designer’s Guide to Built-In Self-Test, Boston, MA: Springer, 2002.

[3] M. Bushnell and V. Agrawal, Essentials of Electronic Testing, New York, NY:

Springer, 2000.

[4] S. Trimberger, Field-Programmable Gate Array Technology, Boston, MA:

Kluwer Academic Publishers, 1994.

[5] __, Virtex-4 User Guide, User Guide UG070 (v 2.1), Xilinx, Inc., 2007 (available

at www.xilinx.com).

[6] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron

FPGAs, Boston, MA: Kluwer Academic Publishers, 1999.

[7] L. Lerner and C. Stroud, “An Architecture for Fail-Silent Operation of FPGAs

and Configurable SoCs,” Proc. International Conf. on Embedded Systems and
Applications, pp. 176-182, 2006.

[8] S. Vemula, “Built-In Self-Test for Input/Output Cells in Field Programmable Gate

Arrays,” Masters Thesis, Auburn University, 2006.

[9] L. Lerner, S. Vemula, and C. Stroud, “System-Level BIST for Programmable I/O

Cells in FPGAs and SoCs,” Proc. IEEE North Atlantic Test Workshop, pp. 1-9,
2006.

[10] __, Virtex-5 User Guide, User Guide UG190 (v 3.0), Xilinx, Inc., 2007 (available

at www.xilinx.com).

[11] __, Answers Database, Answer Record #11594, Xilinx, Inc., 2002 (available at

www.xilinx.com).

[12] V. Agrawal, C. Kime, and K. Saluja, “A Tutorial on Built-In Self-Test – Part 1:

Principles,” Proc. IEEE Design and Test of Computers, Vol. 10, Issue: 1, pp. 73-
82, 1993.

 105

[13] C. Jia and L. Milor, “A BIST Solution for the Test of I/O Speed,” Proc. IEEE
International Test Conference, pp. 1023-1030, 2003.

[14] S. Vemula and C. Stroud, “Built-In Self-Test for I/O Buffers in FPGAs” Proc.

IEEE North Atlantic Test Workshop, pp. 31-36, 2005.

[15] S. Vemula and C. Stroud, “Built-In Self-Test for Programmable I/O Buffers in

FPGAs and SoCs,” Proc. IEEE Southeastern Symp. on System Theory, pp. 534-
538, 2006.

[16] __, Virtex-4 Family Overview, Data Sheet DS112 (v 2.0), Xilinx, Inc., 2007

(available at www.xilinx.com).

[17] __, Virtex-4 RocketIO Multi-Gigabit Transceiver, User Guide UG076 (v 4.0),

Xilinx, Inc., 2007 (available at www.xilinx.com).

[18] __, Virtex-4 Product Matrix, Publication 1Q2007, Xilinx, Inc., 2007

(available at www.xilinx.com).

[19] D. Milton, “Built-In Self-Test Configurable Memory Resources in Field
Programmable Gate Arrays,” Masters Thesis, Auburn University, 2007.

[20] __, XtremeDSP for Virtex-4 FPGAs User Guide, User Guide UG073 (v 2.5),

Xilinx, Inc., 2007 (available at www.xilinx.com).

[21] __, Negative-Bias Temperature Instability (NBTI) Effects in 90 nm PMOS, White

Paper WP224 (v 1.1), Xilinx, Inc., 2005 (available at www.xilinx.com).

[22] __, Virtex-4 Configuration Guide, User Guide UG071 (v 1.8), Xilinx, Inc., 2007

(available at www.xilinx.com).

[23] W. Mak, “Modern FPGA Constrained Placement,” Asia and South Pacific Design

Automation Conference, Vol. 2, pp. 779-784, Jan. 2005.

[24] __, Virtex-4 Packaging and Pinout Specification, User Guide UG075 (v 3.1),

Xilinx, Inc., 2007 (available at www.xilinx.com).

[25] The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard Test

Access Port and Boundary-Scan Architecture, New York, NY: 2001.

[26] G. Gibson, L. Gray, and C. Stroud, “Boundary Scan Access to BIST for Field

Programmable Gate Arrays,” Proc. IEEE International Application Specific
Integrated Circuits Conf., pp. 57-61, 1997.

 106

[27] M. Abramovici and C. E. Stroud, “BIST-based test and diagnosis of FPGA logic
blocks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.
9, No. 1, pp. 159-172, Feb. 2001.

 107

APPENDIX A

BATCH FILE FOR GENERATING I/O TILE BIST CONFIGURATIONS

echo ***
echo * This batch file generates all 78 I/O tile BIST configurations for a Virtex-4 SX 35
echo * FPGA. This batch file can be used to generate I/O tile BIST configurations for
echo * any Virtex-4 device and package by changing the device and package
echo * specifications in the first section of code.
echo ***

echo Generate XDL template files
echo Specify the device and package in this section
v4iobistios serdes 0 0 15 1 sx 35 ff668
v4iobist io 0 0 15 1 sx 35 ff668
v4iobist iod 0 0 15 1 sx 35 ff668 d
v4iobist iov 0 0 15 1 sx 35 ff668 v
v4iobist iob 0 0 15 1 sx 35 ff668 b
v4iobistd diff1 0 0 15 1 sx 35 ff668 1
v4iobistd diff2 0 0 15 1 sx 35 ff668 2
v4iobistd diff1d 0 0 15 1 sx 35 ff668 1 d
v4iobistd diff2d 0 0 15 1 sx 35 ff668 2 d

echo Convert XDL template files to NCD files
xdl -xdl2ncd -force serdes
xdl -xdl2ncd -force io
xdl -xdl2ncd -force iod
xdl -xdl2ncd -force iov
xdl -xdl2ncd -force iob
xdl -xdl2ncd -force diff1
xdl -xdl2ncd -force diff2
xdl -xdl2ncd -force diff1d
xdl -xdl2ncd -force diff2d

echo Route the NCD template files
par -p -w serdes.ncd serdes.ncd
par -p -w io.ncd io.ncd
par -p -w iod.ncd iod.ncd
par -p -w iov.ncd iov.ncd
par -p -w iob.ncd iob.ncd

 108

par -p -w diff1.ncd diff1.ncd
par -p -w diff2.ncd diff2.ncd
par -p -w diff1d.ncd diff1d.ncd
par -p -w diff2d.ncd diff2d.ncd

echo Convert routed NCD template files to XDL files
xdl -ncd2xdl serdes
xdl -ncd2xdl io
xdl -ncd2xdl iod
xdl -ncd2xdl iov
xdl -ncd2xdl iob
xdl -ncd2xdl diff1
xdl -ncd2xdl diff2
xdl -ncd2xdl diff1d
xdl -ncd2xdl diff2d

echo **
echo BIST configs IO1-IO8
echo 1) SERDES
v4iobmodios serdes.xdl io1.xdl 1
v4iobmodios serdes.xdl io2.xdl 2
v4iobmodios serdes.xdl io3.xdl 3
v4iobmodios serdes.xdl io4.xdl 4
v4iobmodios serdes.xdl io5.xdl 5
v4iobmodios serdes.xdl io6.xdl 6
v4iobmodios serdes.xdl io7.xdl 7
v4iobmodios serdes.xdl io8.xdl 8

echo **********************
echo BIST configs IO9-IO16
echo 2) ILOGIC, OLOGIC, I/O Buffer Configs
v4iobmod io.xdl io9.xdl 1
v4iobmod io.xdl io10.xdl 2
v4iobmod io.xdl io11.xdl 3
v4iobmod io.xdl io12.xdl 4
v4iobmod io.xdl io13.xdl 5
v4iobmod io.xdl io14.xdl 6
v4iobmod io.xdl io15.xdl 7
v4iobmod io.xdl io16.xdl 8

 109

echo **********************
echo BIST configs IO17-IO23
echo 3) single-ended standards with DCI
v4iobrmod iod.xdl io17.xdl 35
v4iobrmod iod.xdl io18.xdl 36
v4iobrmod iod.xdl io19.xdl 37
v4iobrmod iod.xdl io20.xdl 38
v4iobrmod iod.xdl io21.xdl 39
v4iobrmod iod.xdl io22.xdl 40
v4iobrmod iod.xdl io23.xdl 41

echo **********************
echo BIST configs IO24-IO38
echo 4) single-ended standards requiring Vref
v4iobrmod iov.xdl io24.xdl 18
v4iobrmod iov.xdl io25.xdl 19
v4iobrmod iov.xdl io26.xdl 20
v4iobrmod iov.xdl io27.xdl 21
v4iobrmod iov.xdl io28.xdl 22
v4iobrmod iov.xdl io29.xdl 23
v4iobrmod iov.xdl io30.xdl 9
v4iobrmod iov.xdl io31.xdl 10
v4iobrmod iov.xdl io32.xdl 11
v4iobrmod iov.xdl io33.xdl 12
v4iobrmod iov.xdl io34.xdl 13
v4iobrmod iov.xdl io35.xdl 14
v4iobrmod iov.xdl io36.xdl 15
v4iobrmod iov.xdl io37.xdl 16
v4iobrmod iov.xdl io38.xdl 17

echo **********************
echo BIST configs IO39-IO58
echo 5) single-ended standards requiring Vref and DCI
v4iobrmod iob.xdl io39.xdl 42
v4iobrmod iob.xdl io40.xdl 43
v4iobrmod iob.xdl io41.xdl 44
v4iobrmod iob.xdl io42.xdl 45
v4iobrmod iob.xdl io43.xdl 50
v4iobrmod iob.xdl io44.xdl 51
v4iobrmod iob.xdl io45.xdl 52
v4iobrmod iob.xdl io46.xdl 53
v4iobrmod iob.xdl io47.xdl 54
v4iobrmod iob.xdl io48.xdl 55
v4iobrmod iob.xdl io49.xdl 56
v4iobrmod iob.xdl io50.xdl 57

 110

v4iobrmod iob.xdl io51.xdl 58
v4iobrmod iob.xdl io52.xdl 59
v4iobrmod iob.xdl io53.xdl 61
v4iobrmod iob.xdl io54.xdl 63
v4iobrmod iob.xdl io55.xdl 66
v4iobrmod iob.xdl io56.xdl 67
v4iobrmod iob.xdl io57.xdl 68
v4iobrmod iob.xdl io58.xdl 69

echo **********************
echo BIST configs IO59-IO70
echo 6) complementary differential standards
v4iobrmod diff1.xdl io59.xdl 24
v4iobrmod diff1.xdl io60.xdl 27
v4iobrmod diff1.xdl io61.xdl 31
v4iobrmod diff1.xdl io62.xdl 32
v4iobrmod diff1.xdl io63.xdl 33
v4iobrmod diff1.xdl io64.xdl 34
v4iobrmod diff2.xdl io65.xdl 24
v4iobrmod diff2.xdl io66.xdl 27
v4iobrmod diff2.xdl io67.xdl 31
v4iobrmod diff2.xdl io68.xdl 32
v4iobrmod diff2.xdl io69.xdl 33
v4iobrmod diff2.xdl io70.xdl 34

echo **********************
echo BIST configs IO71-IO78
echo 7) complementary differential standards with DCI
v4iobrmod diff1d.xdl io71.xdl 46
v4iobrmod diff1d.xdl io72.xdl 47
v4iobrmod diff1d.xdl io73.xdl 48
v4iobrmod diff1d.xdl io74.xdl 49
v4iobrmod diff2d.xdl io75.xdl 46
v4iobrmod diff2d.xdl io76.xdl 47
v4iobrmod diff2d.xdl io77.xdl 48
v4iobrmod diff2d.xdl io78.xdl 49

echo **
echo Convert configurations to ncd
xdl -xdl2ncd -force -nodrc io1
xdl -xdl2ncd -force -nodrc io2
xdl -xdl2ncd -force -nodrc io3
xdl -xdl2ncd -force -nodrc io4

 111

xdl -xdl2ncd -force -nodrc io5
xdl -xdl2ncd -force -nodrc io6
xdl -xdl2ncd -force -nodrc io7
xdl -xdl2ncd -force -nodrc io8
xdl -xdl2ncd -force -nodrc io9
xdl -xdl2ncd -force -nodrc io10
xdl -xdl2ncd -force -nodrc io11
xdl -xdl2ncd -force -nodrc io12
xdl -xdl2ncd -force -nodrc io13
xdl -xdl2ncd -force -nodrc io14
xdl -xdl2ncd -force -nodrc io15
xdl -xdl2ncd -force -nodrc io16
xdl -xdl2ncd -force -nodrc io17
xdl -xdl2ncd -force -nodrc io18
xdl -xdl2ncd -force -nodrc io19
xdl -xdl2ncd -force -nodrc io20
xdl -xdl2ncd -force -nodrc io21
xdl -xdl2ncd -force -nodrc io22
xdl -xdl2ncd -force -nodrc io23
xdl -xdl2ncd -force -nodrc io24
xdl -xdl2ncd -force -nodrc io25
xdl -xdl2ncd -force -nodrc io26
xdl -xdl2ncd -force -nodrc io27
xdl -xdl2ncd -force -nodrc io28
xdl -xdl2ncd -force -nodrc io29
xdl -xdl2ncd -force -nodrc io30
xdl -xdl2ncd -force -nodrc io31
xdl -xdl2ncd -force -nodrc io32
xdl -xdl2ncd -force -nodrc io33
xdl -xdl2ncd -force -nodrc io34
xdl -xdl2ncd -force -nodrc io35
xdl -xdl2ncd -force -nodrc io36
xdl -xdl2ncd -force -nodrc io37
xdl -xdl2ncd -force -nodrc io38
xdl -xdl2ncd -force -nodrc io39
xdl -xdl2ncd -force -nodrc io40
xdl -xdl2ncd -force -nodrc io41
xdl -xdl2ncd -force -nodrc io42
xdl -xdl2ncd -force -nodrc io43
xdl -xdl2ncd -force -nodrc io44
xdl -xdl2ncd -force -nodrc io45
xdl -xdl2ncd -force -nodrc io46
xdl -xdl2ncd -force -nodrc io47
xdl -xdl2ncd -force -nodrc io48
xdl -xdl2ncd -force -nodrc io49

 112

xdl -xdl2ncd -force -nodrc io50
xdl -xdl2ncd -force -nodrc io51
xdl -xdl2ncd -force -nodrc io52
xdl -xdl2ncd -force -nodrc io53
xdl -xdl2ncd -force -nodrc io54
xdl -xdl2ncd -force -nodrc io55
xdl -xdl2ncd -force -nodrc io56
xdl -xdl2ncd -force -nodrc io57
xdl -xdl2ncd -force -nodrc io58
xdl -xdl2ncd -force -nodrc io59
xdl -xdl2ncd -force -nodrc io60
xdl -xdl2ncd -force -nodrc io61
xdl -xdl2ncd -force -nodrc io62
xdl -xdl2ncd -force -nodrc io63
xdl -xdl2ncd -force -nodrc io64
xdl -xdl2ncd -force -nodrc io65
xdl -xdl2ncd -force -nodrc io66
xdl -xdl2ncd -force -nodrc io67
xdl -xdl2ncd -force -nodrc io68
xdl -xdl2ncd -force -nodrc io69
xdl -xdl2ncd -force -nodrc io70
xdl -xdl2ncd -force -nodrc io71
xdl -xdl2ncd -force -nodrc io72
xdl -xdl2ncd -force -nodrc io73
xdl -xdl2ncd -force -nodrc io74
xdl -xdl2ncd -force -nodrc io75
xdl -xdl2ncd -force -nodrc io76
xdl -xdl2ncd -force -nodrc io77
xdl -xdl2ncd -force -nodrc io78

echo **
echo Generate BIST configurations, -j must be removed to later generate partials
echo Only have to generate a few here for partials
bitgen -d -w io1
bitgen -d -w io2
bitgen -d -w io3
bitgen -d -w io4
bitgen -d -w io5
bitgen -d -w io6
bitgen -d -w io7
bitgen -d -w io8
bitgen -d -w io9
bitgen -d -w io10

 113

bitgen -d -w io11
bitgen -d -w io12
bitgen -d -w io13
bitgen -d -w io14
bitgen -d -w io15
bitgen -d -w io16
bitgen -d -w io17
bitgen -d -w io18
bitgen -d -w io19
bitgen -d -w io20
bitgen -d -w io21
bitgen -d -w io22
bitgen -d -w io23
bitgen -d -w io24
bitgen -d -w io25
bitgen -d -w io26
bitgen -d -w io27
bitgen -d -w io28
bitgen -d -w io29
bitgen -d -w io30
bitgen -d -w io31
bitgen -d -w io32
bitgen -d -w io33
bitgen -d -w io34
bitgen -d -w io35
bitgen -d -w io36
bitgen -d -w io37
bitgen -d -w io38
bitgen -d -w io39
bitgen -d -w io40
bitgen -d -w io41
bitgen -d -w io42
bitgen -d -w io43
bitgen -d -w io44
bitgen -d -w io45
bitgen -d -w io46
bitgen -d -w io47
bitgen -d -w io48
bitgen -d -w io49
bitgen -d -w io50
bitgen -d -w io51
bitgen -d -w io52
bitgen -d -w io53
bitgen -d -w io54
bitgen -d -w io55

 114

bitgen -d -w io56
bitgen -d -w io57
bitgen -d -w io58
bitgen -d -w io59
bitgen -d -w io60
bitgen -d -w io61
bitgen -d -w io62
bitgen -d -w io63
bitgen -d -w io64
bitgen -d -w io65
bitgen -d -w io66
bitgen -d -w io67
bitgen -d -w io68
bitgen -d -w io69
bitgen -d -w io70
bitgen -d -w io71
bitgen -d -w io72
bitgen -d -w io73
bitgen -d -w io74
bitgen -d -w io75
bitgen -d -w io76
bitgen -d -w io77
bitgen -d -w io78

echo **
echo Generate partial BIST configurations for faster test time
bitgen -d -j -b -w -r io1.bit io2.ncd io2p
bitgen -d -j -b -w -r io2.bit io3.ncd io3p
bitgen -d -j -b -w -r io3.bit io4.ncd io4p
bitgen -d -j -b -w -r io4.bit io5.ncd io5p
bitgen -d -j -b -w -r io5.bit io6.ncd io6p
bitgen -d -j -b -w -r io6.bit io7.ncd io7p
bitgen -d -j -b -w -r io7.bit io8.ncd io8p
bitgen -d -j -b -w -r io8.bit io9.ncd io9p
bitgen -d -j -b -w -r io9.bit io10.ncd io10p
bitgen -d -j -b -w -r io10.bit io11.ncd io11p
bitgen -d -j -b -w -r io11.bit io12.ncd io12p
bitgen -d -j -b -w -r io12.bit io13.ncd io13p
bitgen -d -j -b -w -r io13.bit io14.ncd io14p
bitgen -d -j -b -w -r io14.bit io15.ncd io15p
bitgen -d -j -b -w -r io15.bit io16.ncd io16p
bitgen -d -j -b -w -r io16.bit io17.ncd io17p
bitgen -d -j -b -w -r io17.bit io18.ncd io18p

 115

bitgen -d -j -b -w -r io18.bit io19.ncd io19p
bitgen -d -j -b -w -r io19.bit io20.ncd io20p
bitgen -d -j -b -w -r io20.bit io21.ncd io21p
bitgen -d -j -b -w -r io21.bit io22.ncd io22p
bitgen -d -j -b -w -r io22.bit io23.ncd io23p
bitgen -d -j -b -w -r io23.bit io24.ncd io24p
bitgen -d -j -b -w -r io24.bit io25.ncd io25p
bitgen -d -j -b -w -r io25.bit io26.ncd io26p
bitgen -d -j -b -w -r io26.bit io27.ncd io27p
bitgen -d -j -b -w -r io27.bit io28.ncd io28p
bitgen -d -j -b -w -r io28.bit io29.ncd io29p
bitgen -d -j -b -w -r io29.bit io30.ncd io30p
bitgen -d -j -b -w -r io30.bit io31.ncd io31p
bitgen -d -j -b -w -r io31.bit io32.ncd io32p
bitgen -d -j -b -w -r io32.bit io33.ncd io33p
bitgen -d -j -b -w -r io33.bit io34.ncd io34p
bitgen -d -j -b -w -r io34.bit io35.ncd io35p
bitgen -d -j -b -w -r io35.bit io36.ncd io36p
bitgen -d -j -b -w -r io36.bit io37.ncd io37p
bitgen -d -j -b -w -r io37.bit io38.ncd io38p
bitgen -d -j -b -w -r io38.bit io39.ncd io39p
bitgen -d -j -b -w -r io39.bit io40.ncd io40p
bitgen -d -j -b -w -r io40.bit io41.ncd io41p
bitgen -d -j -b -w -r io41.bit io42.ncd io42p
bitgen -d -j -b -w -r io42.bit io43.ncd io43p
bitgen -d -j -b -w -r io43.bit io44.ncd io44p
bitgen -d -j -b -w -r io44.bit io45.ncd io45p
bitgen -d -j -b -w -r io45.bit io46.ncd io46p
bitgen -d -j -b -w -r io46.bit io47.ncd io47p
bitgen -d -j -b -w -r io47.bit io48.ncd io48p
bitgen -d -j -b -w -r io48.bit io49.ncd io49p
bitgen -d -j -b -w -r io49.bit io50.ncd io50p
bitgen -d -j -b -w -r io50.bit io51.ncd io51p
bitgen -d -j -b -w -r io51.bit io52.ncd io52p
bitgen -d -j -b -w -r io52.bit io53.ncd io53p
bitgen -d -j -b -w -r io53.bit io54.ncd io54p
bitgen -d -j -b -w -r io54.bit io55.ncd io55p
bitgen -d -j -b -w -r io55.bit io56.ncd io56p
bitgen -d -j -b -w -r io56.bit io57.ncd io57p
bitgen -d -j -b -w -r io57.bit io58.ncd io58p
bitgen -d -j -b -w -r io58.bit io59.ncd io59p
bitgen -d -j -b -w -r io59.bit io60.ncd io60p
bitgen -d -j -b -w -r io60.bit io61.ncd io61p
bitgen -d -j -b -w -r io61.bit io62.ncd io62p
bitgen -d -j -b -w -r io62.bit io63.ncd io63p

 116

bitgen -d -j -b -w -r io63.bit io64.ncd io64p
bitgen -d -j -b -w -r io64.bit io65.ncd io65p
bitgen -d -j -b -w -r io65.bit io66.ncd io66p
bitgen -d -j -b -w -r io66.bit io67.ncd io67p
bitgen -d -j -b -w -r io67.bit io68.ncd io68p
bitgen -d -j -b -w -r io68.bit io69.ncd io69p
bitgen -d -j -b -w -r io69.bit io70.ncd io70p
bitgen -d -j -b -w -r io70.bit io71.ncd io71p
bitgen -d -j -b -w -r io71.bit io72.ncd io72p
bitgen -d -j -b -w -r io72.bit io73.ncd io73p
bitgen -d -j -b -w -r io73.bit io74.ncd io74p
bitgen -d -j -b -w -r io74.bit io75.ncd io75p
bitgen -d -j -b -w -r io75.bit io76.ncd io76p
bitgen -d -j -b -w -r io76.bit io77.ncd io77p
bitgen -d -j -b -w -r io77.bit io78.ncd io78p

echo **
echo Generate DRC errors reports for review
drc -s -v -o io1.tdr io1.ncd
drc -s -v -o io2.tdr io2.ncd
drc -s -v -o io3.tdr io3.ncd
drc -s -v -o io4.tdr io4.ncd
drc -s -v -o io5.tdr io5.ncd
drc -s -v -o io6.tdr io6.ncd
drc -s -v -o io7.tdr io7.ncd
drc -s -v -o io8.tdr io8.ncd
drc -s -v -o io9.tdr io9.ncd
drc -s -v -o io10.tdr io10.ncd
drc -s -v -o io11.tdr io11.ncd
drc -s -v -o io12.tdr io12.ncd
drc -s -v -o io13.tdr io13.ncd
drc -s -v -o io14.tdr io14.ncd
drc -s -v -o io15.tdr io15.ncd
drc -s -v -o io16.tdr io16.ncd
drc -s -v -o io17.tdr io17.ncd
drc -s -v -o io18.tdr io18.ncd
drc -s -v -o io19.tdr io19.ncd
drc -s -v -o io20.tdr io20.ncd
drc -s -v -o io21.tdr io21.ncd
drc -s -v -o io22.tdr io22.ncd
drc -s -v -o io23.tdr io23.ncd
drc -s -v -o io24.tdr io24.ncd
drc -s -v -o io25.tdr io25.ncd

 117

drc -s -v -o io26.tdr io26.ncd
drc -s -v -o io27.tdr io27.ncd
drc -s -v -o io28.tdr io28.ncd
drc -s -v -o io29.tdr io29.ncd
drc -s -v -o io30.tdr io30.ncd
drc -s -v -o io31.tdr io31.ncd
drc -s -v -o io32.tdr io32.ncd
drc -s -v -o io33.tdr io33.ncd
drc -s -v -o io34.tdr io34.ncd
drc -s -v -o io35.tdr io35.ncd
drc -s -v -o io36.tdr io36.ncd
drc -s -v -o io37.tdr io37.ncd
drc -s -v -o io38.tdr io38.ncd
drc -s -v -o io39.tdr io39.ncd
drc -s -v -o io40.tdr io40.ncd
drc -s -v -o io41.tdr io41.ncd
drc -s -v -o io42.tdr io42.ncd
drc -s -v -o io43.tdr io43.ncd
drc -s -v -o io44.tdr io44.ncd
drc -s -v -o io45.tdr io45.ncd
drc -s -v -o io46.tdr io46.ncd
drc -s -v -o io47.tdr io47.ncd
drc -s -v -o io48.tdr io48.ncd
drc -s -v -o io49.tdr io49.ncd
drc -s -v -o io50.tdr io50.ncd
drc -s -v -o io51.tdr io51.ncd
drc -s -v -o io52.tdr io52.ncd
drc -s -v -o io53.tdr io53.ncd
drc -s -v -o io54.tdr io54.ncd
drc -s -v -o io55.tdr io55.ncd
drc -s -v -o io56.tdr io56.ncd
drc -s -v -o io57.tdr io57.ncd
drc -s -v -o io58.tdr io58.ncd
drc -s -v -o io59.tdr io59.ncd
drc -s -v -o io60.tdr io60.ncd
drc -s -v -o io61.tdr io61.ncd
drc -s -v -o io62.tdr io62.ncd
drc -s -v -o io63.tdr io63.ncd
drc -s -v -o io64.tdr io64.ncd
drc -s -v -o io65.tdr io65.ncd
drc -s -v -o io66.tdr io66.ncd
drc -s -v -o io67.tdr io67.ncd
drc -s -v -o io68.tdr io68.ncd
drc -s -v -o io69.tdr io69.ncd
drc -s -v -o io70.tdr io70.ncd

 118

drc -s -v -o io71.tdr io71.ncd
drc -s -v -o io72.tdr io72.ncd
drc -s -v -o io73.tdr io73.ncd
drc -s -v -o io74.tdr io74.ncd
drc -s -v -o io75.tdr io75.ncd
drc -s -v -o io76.tdr io76.ncd
drc -s -v -o io77.tdr io77.ncd
drc -s -v -o io78.tdr io78.ncd

echo ***
echo End of BIST configuration batch file for SX 35
echo ***

echo ***
echo * The following code links this batch file to a similar but separate batch file used to
echo * generate all 78 I/O tile BIST configurations for a Virtex-4 SX 55 FF1147. This
echo * method can be used to generate I/O tile BIST configurations for all Virtex-4
echo * device and package combinations.
cd..
cd sx55ff1148
sx55ff1148.bat

 119

APPENDIX B

REDUCED CONFIGURATION FOR ILOGIC, OLOGIC, AND I/O BUFFERS

Table B.1: Proposed Configuration Modes of ILOGIC Components

Cfg. Bits Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5
DELAYMUX OFF 1 0 1 OFF
DELMUX 1 0 0 0 OFF
D2OBYPSEL OFF 1 OFF OFF GND
IMUX 1 0 1 1 0
IFFDELMUX 1 0 OFF 0 OFF
D2OFFBSEL GND 1 GND 1 OFF
IFFMUX 1 0 0 1 1
CE1INV CE1 CE1_B CE1 CE1_B CE1
CLKINV CLK CLK_B CLK CLK_B CLK
SRINV SR SR_B SR SR_B SR
REVINV REV REV_B REV REV_B REV
Q1MUX IFF1 IFF3 IFF1 IFF1 IFF3
Q2MUX IFF2 IFF4 IFF2 IFF2 IFF4
IFF1 FF FF FF LATCH FF
SRVAL[1:4] 1111 0000 0000 1100 0011
INIT[1:4] 1111 0011 0000 0000 1100
SRTYPE Sync Sync Sync Async Sync
CLKDIVINV OFF OFF 0 1 OFF
DELAYVAL. 0 0 2 63 0
DELAY
TYPE Default Default Fixed Variable Default

 120

Table B.2: Proposed Configuration Modes of OLOGIC Components

Cfg. Bits Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5
T1INV T1_B T1 T1_B T1 T1
T2INV OFF OFF T2 T2_B OFF
TCEINV OFF TCE TCE_B TCE TCE
CLK1INV OFF CLK1 CLK1_B CLK1 CLK
CLK2INV OFF CLK2 CLK2_B CLK2_B CLK
D1INV D1_B D1 D1_B D1 D1
D2INV OFF OFF D2 D2_B OFF
OCEINV OFF OCE OCE_B OCE OCE
SRINV OFF SR SR_B SR SR
REVINV OFF REV REV_B REV_B REV
TFF1 FF FF FF FF LATCH
OFF1 FF FF FF FF LATCH
TMUX T1 TFF1 TFFDDRA TFFDDRB TFF1
OMUX D1 OFF1 OFFDDRA OFFDDRB OFF1
SRVALOQ 0 1 0 1 0
SRVALTQ 0 1 0 1 0
INITOQ 0 0 0 1 0
INITTQ 0 0 0 1 0
SRTYPEOQ Sync Sync Sync Sync Async
SRTYPETQ Sync Sync Sync Sync Async

Table B.3: Proposed Configuration Modes of I/O Buffer Components

Cfg. Bits Cfg. 1 Cfg. 2 Cfg. 3 Cfg. 4 Cfg. 5
PULL Keeper Down Pullup Keeper Down
GTSATTR Off Disable Disable Off Disable
SLEW Slow Fast Slow Off Slow
DIFFTERM NA NA NA NA NA
DRIVE 24 4 6 Off 2
DRIVE0MA Off Drive0 Drive0 Off Drive0

IOATTR LVTTL
LVCM-
OS33

LVCM-
OS25

PCI66
-3

LVCM-
OS15

 121

APPENDIX C

LIST OF ACRONYMS

ATE – Automatic Test Equipment

BIST – Built-In Self-Test

BUT – Block Under Test

BRAM – Block Random Access Memory

CD – Complementary Differential

CLB – Configurable Logic Block

CUT – Circuit Under Test

DCI – Digitally Controlled Impedance

DCM – Digital Clock Manager

DDR – Double Data Rate

DFT – Design for Testability

DSP – Digital Signal Processor

FF – Flip-Flop

FPGA – Field Programmable Gate Array

I/O – Input/Output

IDELAY – Input Delay Module

ILOGIC – Input Logic

ISERDES – Input SERDES

 122

LUT – Look-Up Table

OLOGIC – Output Logic

ORA – Output Response Analyzer

OSERDES – Output SERDES

PIP – Programmable Interconnect Point

PLB – Programmable Logic Block

PMV – Predicted Motion Vector

REV – Reset

SDR – Single Data Rate

SE – Single-Ended

SER – Single-Ended Requiring VREF

SERDES – Serializer/Deserializer

SoC – System-on-Chip

SR – Set

SRAM – Static Random Access Memory

TPG – Test Pattern Generator

VLSI – Very Large Scale Integration

VREF – Reference Voltage

	CH1 INTRODUCTION
	1.1 Overview of Field Programmable Gate Arrays (FPGAs)
	1.2 Overview of Input/Output Tiles (I/O Tiles)
	1.3 Overview of Built-In Self-Test (BIST)
	1.4 Overview of Prior Work in Testing I/O Tiles
	1.5 Thesis Statement

	CH2 BACKGROUND INFORMATION
	2.1 Virtex-4 Architecture
	2.1.1 Virtex-4 Configurable Logic Blocks
	2.1.2 Virtex-4 Block RAMs
	2.1.3 Virtex-4 Digital Signal Processors
	2.1.4 Virtex-4 Digital Clock Managers
	2.1.5 Virtex-4 Input/Output Cells

	2.2 Details of Virtex-4 General Purpose Input/Output Tiles
	2.2.1 ILOGIC
	2.2.2 OLOGIC
	2.2.3 SERDES
	2.2.4 I/O Buffer
	2.2.5 Programming Interface

	2.3 Built-In Self-Test for FPGAs
	2.4 Previous Work in I/O Testing
	2.5 Thesis Restatement

	CH3 I/O TILE BIST FOR VIRTEX-4 FPGAS
	3.1 BIST Architecture
	3.2 Configurations to Test I/O Tile Logic Resources
	3.2.1 Configurations to Test ILOGIC, OLOGIC, and I/O Buffers
	3.2.2 Configurations to Test SERDES

	3.3 Configurations to Test I/O Standards
	3.3.1 Testing Single-Ended I/O Standards
	3.3.2 Testing Single-Ended I/O Standards Requiring a Reference Voltage
	3.3.3 Testing Complementary Differential I/O Standards
	3.3.4 Testing I/O Standards with Digitally Controlled Impedance

	3.4 Summary of I/O Tile BIST Configurations

	CH4 EXPERIMENTAL RESULTS
	4.1 Generating I/O Tile BIST Configurations
	4.1.1 Summary of I/O Tile BIST Programs
	4.1.2 BIST Configuration Generation Procedure

	4.2 Executing I/O Tile BIST Configurations
	4.3 Experimental Results Obtained
	4.3.1 Configurations to Test ILOGIC, OLOGIC, and I/O Buffers
	4.3.2 Configurations to Test SERDES Logic Resources
	4.3.3 Configurations to Test I/O Standards

	4.4 Capabilities and Limitations

	CH5 SUMMARY AND CONCLUSION
	5.1 Summary of Virtex-4 I/O Tile BIST
	5.2 Areas of Future Research and Development
	5.3 General Application to FPGAs and SoCs

	BIBLIOGRAPHY
	APPENDIX A: BATCH FILE FOR GENERATING I/O TILE BIST CONFIGURATIONS
	APPENDIX B: REDUCED CONFIGURATION FOR ILOGIC, OLOGIC, AND I/O BUFFERS
	APPENDIX C: LIST OF ACRONYMS

