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Directed by Krystyna Kuperberg

Given a set of rectangles, R1 through Rk, where Ri and Ri+1 share a common

edge and these common edges are congruent and parallel to each other. The resulting

”roof” is part of the surface of a convex body. We’ll consider paths from one corner

of this “roof” to the opposite corner. Extending the common edges to lines we’ll call

ridges and rectangles to planar strips, we can allow such paths to go “off the roof”.

Path curvature is computed for a polygonal path by simple adding up the curvatures

of each intermediate vertex. More general paths use a sequence of polygonal approx-

imations to compute curvature. We’ll discern when the path of least curvature goes

off the roof or when it is the shortest path.
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Chapter 1

Introduction

The total curvature of a C2 path C parameterized by arc length s in Rn, r(s), is

defined as
∫
C |r′′(s)| ds. W. Fenchel proved in [4] for R3 and K. Borsuk in [3] for any

Rn that the total curvature of a closed curve is bounded from below by 2π, with the

equality holding only for convex simple closed curves in R2. The total curvature of a

polygonal path P = [z0, z1, . . . , zn] is defined as

t(P ) =
n−1∑
i=1

(π − 6 zi−1zizi+1).

One way you might compute these angles would be to replace the segments of

the path with vectors, all heading in the same direction along the path. The angle

between consecutive vectors would give you the curvature at each point. Recall the

angle between two vectors, u and v, is the arccos( u·v
|u||v|). For more general paths,

approximate polygonal paths can be used to approximate the curvature. As you

develop a sequence of polygonal paths which better approximate the curve, you get

a sequence of curvatures that approach the curvature of the path. This is essentially

the definition for path curvature.

Polygonal paths form the building blocks of all path curvature. Just as polygonal

paths may approximate a general path, polyhedral surfaces approximate a general

surface. We know the path of least curvature on a convex body can not be greater
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than 2π. Currently the total curvature of the shortest path between two points on

the surface of a convex body is not known to have an upper bound as discussed in

[1], [6], and [7]. It has recently been proved in [2] that such an upper bound, should

it exist, must be greater than 2π.

Figure 1.1: Milnor’s Proof

J. Milnor proved in [5] if a segment of a polygonal path is replaced by two

segments then the curvature of the path will either increase or remain the same. His

argument is a very simple one. There are three places where the curvature can change:

At the endpoints of the replaced segment and at the point common to the two new

segments. The new point of curvature will obviously add to the curvature of the path

(assuming an actual change has occurred). The old points of curvature can be altered

at most by the measure of the angle between the corresponding new segment and the
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replaced segment. Since these angles will add up to the curvature of the new point,

the net decrease in the curvature at these points can not be more than the increase

in curvature at the new point. For paths of least curvature on these polyhedral roofs,

we can focus our attention on polygonal paths comprised of the minimum number of

segments.
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Chapter 2

Convex Paths

Figure 2.1: Convex Path

We’ll call a planar polygonal path convex if by adding a line segment between

the initial and final point of the path we get a convex polygon. The interior angle at

a point of curvature is supplemental to that curvature. The interior angles of an n

sided polygon add up (n − 2)π. If we add the total curvature to the corresponding

interior angles we get (n− 2)π. So the two interior angles of the polygon formed by

the new segment will have a sum equal to the curvature of the original path.

In addition to proving curvature is increased or preserved when replacing one

segment with two in a polygonal path, Milnor also observed, but did not prove, that
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if the segments involved in the change in the curvature were not co-planar then the

curvature would be increased.

To see this, we’ll analyze the curvature a two segmented path as one segment is

rotated about a line. The rotated segment can be seen as the slant height of a cone.

Let α be the angle between the slant height and height (the line of rotation for the

segment). The other segment will be attached to the vertex of the cone. Orienting

this segment and the line of revolution into the xy-plane so the vertex is the origin

and the attached segment has non-positive x-coordinates, we’ll let β be the angle

between the attached segment and negative x-axis. Finally, let φ be the angle of

rotation of the slant height from the xy-plane.

β

α

φ

Figure 2.2: Rotating Part of a Path
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Given this orientation we can compute unit vectors parallel with the two segments

as < cos β,− sin β, 0 > and < − cos φ sin α,− cos α, sin φ sin α >. So the curvature is

arccos[− cos φ cos β sin α + sin β cos α]. If we fix α between 0 and π and β between

−π
2

and π
2
, then this becomes a decreasing function of φ from φ = 0 to φ = π.

Figure 2.3: Partial Rotation of the New and the Old

In Milnor’s picture (figure 1.1), if the segment immediately preceding the re-

placed segment is not coplanar with the two new segments (whose plane automatically

contains the replaced segment) then it can be rotated about the line containing the

replaced segment. If it’s rotated away from the first of the two new segments then the

new path’s curvature will decrease while the old path’s curvature will remain the same.

If we signify the old path with O and the new path with N and let O′ and N ′ represent

their rotated versions then we observe that cur(N) > cur(N ′) ≥ cur(O′) = cur(O).
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This same argument works with the segment immediately after the replaced segment

in the path.

Milnor’s first observation,that adding vertices never decreases the curvature of

the path, is easily extendable to replacing a single segment with multiple segments.

Likewise the relation is reversible (replacing multiple segments with one segment will

not increase the curvature). Milnor’s second observation, that the segments involved

in the change in the path must be coplanar to preserve curvature, requires a simple

argument to see it extends to multiple segments.

Theorem 2.1 Replacing a single segment with multiple segments only preserves cur-

vature in the path if the new segments along the segments immediately before and after

are coplanar.

Proof. Imagine we have a path and we replace one segment with multiple segments

(more than two). We’ll call the shorter path O and the longer N. For simplicity,

further suppose N has the minimum number of added vertices, b0 to bk, which is

to say the path does not have curvature zero at any new vertex. Last we’ll assume

cur(N) = cur(O). Working backwards, starting with N and ending in O, an iteration

will consist of replacing two segments with one segment. While it’s possible that N

has no segment immediately following or preceding the change in the path, it is not

possible for both segments to be missing. We will label the segment which for certain

exists a0, a1. We’ll then label the added vertices that follow or precede depending

b0, b1, ..., bk. If there exist the other segment immediately following or preceding it
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will be labeled a2, a3, otherwise a2 will exist as the initial or final point of the path.

So the first iteration will replace a0, a1, b0, b1, b2 with a0, a1, b1, b2, the second iteration

will replace a0, a1, b1, b2, b3 with a0, a1, b2, b3, and so forth.
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•

•
•

•

•

•

•
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a
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bb

b
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0

1

2
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1
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i

i +1

i +2

i +3

Figure 2.4: The Iterative Process

For curvature to be preserved, it must be preserved at each iteration. This means

the vertices of each iteration must be co-planar.

Case 2.1: There are three or more iterations.

Assume there are three or more iterations, but the first iteration is collinear. If

a path is collinear then each point of curvature is either zero of π. Since we assumed

the curvature at b0 and b1 are both positive, they each must be π. If the curvature is

to be preserved then the new curvature at a1 and b1 must also add up to 2π. So in the

second iteration, a1, b1, and b2 initially add up to more than 2π since the curvature
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at b2 can not be zero. This leads to the second iteration failing to preserve curvature.

So the first iteration is not collinear.

For the induction hypothesis, let the i+1st iteration be non-collinear, but copla-

nar with all of the vertices from previous iterations, and is not the second to last

iteration.

The i + 2nd iteration is not the last iteration. The i + 1st and i + 2nd itera-

tions share four vertices in common a0, a1, bi+1, and bi+2. Suppose these vertices are

collinear. In the i+1st iteration, a1, bi, and bi+1 must then initially have positive cur-

vature. When bi is removed, curvature at a1 and bi+1 must be increased for curvature

to be preserved. Since the remaining vertices are collinear, the new curvatures at a1

and bi+1 must add up to 2π. This will prevent the i + 2nd iteration from preserving

curvature. Since the four common vertices to the two consecutive iterations can not

be collinear, they must uniquely determine a plane. This means the i + 2nd iteration

is not collinear and is coplanar with all of the vertices of the previous iterations.

For the last iteration then we can consider three subcases. If a3 does not exist

then we’re done. If a3 does exist but is not collinear with the four common vertices

then the second to last iteration argument can be employed to show the four common

vertices cannot be collinear. Finally, if a3 exists and is collinear with the four common

vertices then we’re done.

Case 2.2: There are two iterations.
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This is an easier case. If the first iteration is collinear then it will be coplanar

with the last iteration. If the first iteration is not collinear then we use the same

argument as above for the last iteration.

10



Chapter 3

Path Curvature on a convex roof.

Given a set of rectangles, R1 through Rk, where Ri and Ri+1 share a common

edge and these common edges are congruent and parallel to each other. Further

suppose the resulting ”roof” is part of the surface of a convex body. We’ll consider

paths from one corner of this roof to the opposite corner. Extending the common

edges to lines we’ll call ridges and rectangles to planar strips, we can allow such paths

to go off the roof. For a polygonal path, curvature is computed by simple adding

up the curvatures of each intermediate vertex. More general paths use a sequence of

polygonal approximations to compute curvature. We’ll attempt to discern when the

path of least curvature goes off the roof or when it is the shortest path.

3.1 The Simplest Roofs

We’ll begin with k = 2. The roof is simple enough, it’s comprised of two rect-

angles with dimension a × c and b × c and has a dihedral angle of γ. We’ll even

consider extreme scenarios like the roof being impossibly thin (c = 0) or impossibly

steep (γ = 0). In the case where γ = 0 the two half planes would coincide, but we’ll

consider each side of the roof distinct and any path plotted has to go through the

ridge line.
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Figure 3.1: Simple Roof

Let S be the shortest path and P be the path of least curvature. If we flatten

the roof, S would become a single line segment connecting the opposite corners of a

rectangle.

Theorem 3.1 S is the unique path of least curvature in four basic cases: When

γ = π, when a = b and 0 < γ < π, when b < a, c = 0 and γ ≥ arccos( b
a
), and when

a = b, γ = 0, c > 0.

Proof.

Case 1

γ = π
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If the roof is actually flat then S has curvature of zero. In truth, this is really

the k = 1 case.

Case 2

a = b and 0 < γ < π

We’ll call a two segmented path isosceles if the two segments are of equal length.

If we compare two isosceles paths with the same initial point and final point, then the

one with the greater total length has the greater curvature. All that’s left to show

is that an isosceles path has less curvature than an non isosceles path of the same

length.

Let x and y be the lengths of the two segments of our path. Let z be the distance

from the initial point to the final point. By the law of cosines z2 = x2 +y2−2xy cos θ

(where π − θ is the curvature).

z2 + 2xy = (x + y)2 + 2xy cos(π − θ)

z2 − (x + y)2

2xy
+ 1 = cos(π − θ)

arccos(
z2 − (x + y)2

2xy
+ 1) = π − θ

π− θ is minimized when xy is maximized. Given x + y is fixed, xy is maximized

when x = y.

13



If a = b then the shortest path is also isosceles. A longer path will be non

isosceles so its curvature is greater than an isosceles path with the same length which

in turn has greater curvature than the shortest path.

Case 3

b < a, c = 0 and γ ≥ arccos( b
a
)

Figure 3.2: A Simple Folding of the Longer Path

We can visualize this case by orienting the roof in the following way. Let the

ridge line be the z axis. Let the short side of length b lie on the negative, y-axis. if

γ is equal to the arccos( b
a
) then the initial point on the long side will have the same

y-coordinate as the final point on the short side, so the line passing through those two

points is parallel to the x-axis. If we plot a longer two segmented path, one whose

ridge point has a positive or negative z-coordinate, then we can revolve that path
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about the line passing through the initial and final point until it also lies in the xy

plane. Its curvature is clearly greater.

a b

Figure 3.3: The Longer Path has Greater Curvature

If γ > arccos( b
a
) then the initial point has a greater y-coordinate than −b, but

if we rotate the roof about the z axis until the initial and final points have matching

y-coordinates then the proof follows as before.

Case 4

a = b, γ = 0, c > 0.

If we orient the path in the xy-plane so that the ridge point is the origin and

the initial and final points have the same negative y-coordinate then we’ll observe

the x-coordinates of the initial and final points have the same absolute value, but

are on opposite sides of the y-axis. So the center of the circle passing through the

15



a b

Figure 3.4: In the Wider Case the Longer Path also has Greater Curvature

ridge, initial, and final points has an x-coordinate of zero. This means the ridge line

is tangent to the circle and so all other paths have greater curvature.

Observe when c = 0, a = b, and γ = 0, all two segmented paths have the same

curvature in this case. So S is a path of least curvature, but not the only path of

least curvature.

Also observe that case 3 is not optimal. There are smaller γ that allow for

agreement, but the proof of this is more involved and will held to the end. We can

however establish a visual criteria for agreement. If the ridge point is not co-linear

with the initial and final points, then these points are co-circular. If this circle does not

intersect the positive y-axis then S has the minimum curvature. It is also interesting

to notice when c = 0 and S is not the path of least curvature that there are two paths

16



of least curvature. If a path whose ridge point has a positive z-coordinate is a path

of least curvature then by symmetry there is a path whose ridge point has a negative,

but same absolute valued, z-coordinate with the same curvature.

Figure 3.5: The Optimal Case

Once we’ve finalized case 3, in all other cases S will not be the path of least

curvature. If the ridge line is oriented to be parallel to the z-axis, we give the initial

point a z-coordinate of 0 or more specifically make it the origin, and give the ridge

of the roof a positive orientation then the z-coordinate of S’s ridge point is ac
a+b

.

Computing the path of least curvature’s ridge point will be more involved.

If a > b, c > 0 and γ = 0 then the z-coordinate of P ’s ridge point is less then

the z-coordinate of S’s ridge point.
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Figure 3.6: Three Local Extrema

The ridge point which is collinear with the initial point and final point produces

the largest possible curvature, π. As z goes to infinity or negative infinity, the curva-

ture also tends to π. This suggests at least one local minimum to either side of the

collinear ridge point.

If a ridge point is not collinear with the initial and final point, then it is co

circular with them. If the center of the circle should have the same z-coordinate as

the ridge point, then the ridge line would be tangent to the circle. So the ridge points

immediately to the left or right would produce larger curvatures, making such a ridge

point a local minimum. If the z-coordinates are different, then such a ridge point is

neither a local minimum nor maximum. The equation of the circle, (y−h)2+(z−k)2 =

18



(a− h)2, reduces to a quadratic when we plug in (0, 0) and (a− b, c) and eliminate h

as a variable:

(a− b)k2 − 2(ac)k + (ac2 − ba2 + ab2) = 0.

k =
ac±

√
(ab((a− b)2 + c2))

a− b
.

Observe both local minimums are equidistant to the collinear ridge point or local

maximum. The two circles tangent to the ridge line are not congruent. The left circle

has a smaller radius and produces a smaller curvature in the path. So the left local

minimum is an absolute minimum and the right local minimum is not.

In the specific case where a = b, c = 0, and γ = 0, S is a path of least curvature,

but all paths comprised of two segments have the equally bad curvature of π.

For a > b, c > 0, and 0 < γ < π, we must look at the curvature in three

dimensions. Let the initial point again be the origin and the ridge line be parallel to

the z-axis and lie in yz-plane with a positive orientation. Then the coordinates of

the final point will be (−b(sin(γ)), a − b(cos(γ)), c). Given a ridge point of (0, a, z),

we can compute the vectors and then the curvature.

Let u =< 0, a, z >, and v =< −b(sin(γ)),−b(cos(γ)), c − z >. Let β equal the

curvature.

cos(β) = (u ·v)/(|u||v|) −→ β = arccos((u ·v)/(|u||v|)). If we differentiate β with

respect to z we get β′ = (−1/
√

1− (cos(β))2)(cos(β)′)

19



−1/
√

1− (cos(β))2 is never zero and is undefined when β = 0 or π, which can

only happen when γ = π or 0. cos(β)′, once simplified, has a denominator based on

the magnitudes of u and v and cannot be zero. So the only critical points we get

come from the numerator which simplifies to:

(2ab cos(γ)− a2 − b2)z3 + (3a2c− 3abc cos(γ))z2

+(ab cos(γ)(a2 + b2 + c2)− 3a2c2 − 2a2b2)z + (a2c3 + a2b2c− a3bc cos(γ))

If we plug in S’s ridge point, we do not get zero, so disagreement exists in this

case. We’re also interested in when P tries to leave the roof. This solvable cubic

produces one local extremum when γ ≥ π/2. We see this by taking the derivative

of the cubic, we get a quadratic with no real roots. If we plug in x = 0 and x = c

into the cubic we’ll observe the local extreme is a minimum and occurs on the roof

when γ ≥ π/2. By analyzing this cubic we can see c ≥
√

b(a− b) also guarantees P

stays on the roof. Finally, shifting back to c = 0, we can optimize our original Case 3

for agreement. Notice the coefficient of z is zero in this case when γ = arccos( 2ab
a2+b2

).

Notice also that 2ab
a2+b2

= b
a

a2+a2

a2+b2
> b

a
if b < a. So arccos( 2ab

a2+b2
) < arccos( b

a
), making

the following theorem an improvement.

Theorem 3.2 S and P will agree if c = 0 and γ ≥ arccos(
2ab

a2 + b2
).

20



3.2 More Complex Roofs

If we add to the number of ridges, we can still partially determine when P and

S will agree.

Theorem 3.3 Let c = 0 and suppose we have k ridges where k > 1. Further suppose

that the shortest path has the following properties: 1. It is a convex path. 2. When

we orient the path in the xy-plane so that the y-coordinates of the initial and final

point are the same and less than the y-coordinates of the interior points of the path,

and no two points of this path share the same x-coordinate. Under these conditions

S and P will agree.

Figure 3.7: Before Folding with More Ridges
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Figure 3.8: After Folding with More Ridges

Proof.

Let S be the shortest path and L be an arbitrary longer path.

Subcase 3.1: Let the initial and final segment of L be a planar.

We’ll do two things to the path L. First we’ll replace the intermediate segments

with one segment, and then fold L about the line passing through the initial and

final point, a line which is parallel to the x-axis, into the xy-plane above the line of

revolution. We’ll call the new path L′. If the original L was planar then cur(L) ≥

cur(L′) and the folding allows us to easily see L′ has greater curvature than S (the

two interior angles whose sum is the curvature of the path are larger for the polygon

formed by L′). If the original path was not planar then cur(L) > cur(L′) and the

folding allows us to see L′ has curvature no less than S.
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Subcase 3.2: Let the initial and final segments of L be non planar.

L can once again be polygonally approximated with a planar path, but this

time it will take three steps. First we can replace the intermediate segments with

one segment (this may or may not produce a change in L). This step will reduce

the curvature or maintain it depending. Second we’ll rotate the path about the line

passing through the initial and final point until the final ridge point lies in the xy-

plane with a y-coordinate greater than the initial or final point (again this may or

may not produce a change in the perspective of the path). This step produces no

change in curvature. At this point, the initial segment is not in the xy-plane. We’ll

rotate the initial and intermediate segments about the line passing through the initial

point and the last ridge point until the first ridge point of L lies in the xy-plane in

the half plane not containing the final segment of the path. This last step is certain

to be non-trivial (it will produce a change in the path). We’ll call this new path L′. If

we consider the intermediate segment of L′ to be the slant height of a cone centered

on the axis of revolution in the third step then we see that third step decreased the

curvature at the final ridge point. So cur(L′) < cur(L).

The first ridge point of L′ must fall in the interior of the half plane formed by

the line passing through the initial point and last ridge point which does not contain

the last segment of the path. Since the axis of revolution has a positive slope, the

x-coordinates of the effected points in step three will decrease. Since the x-coordinate

of the first ridge point had been unaffected during the first two steps, the first ridge

point of L′ must be to the left of the vertical passing though the first ridge point of
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Figure 3.9: A Partial Folding

S. Finally the length of the initial segment of L′ is not less in length than the initial

segment of S, there fore the first ridge point of L′ may not lie within that distance

of the initial point of the path. So the angle the initial segment of L′ makes with the

segment between the initial and final point is greater than the corresponding angle

for S. The other angle needed to compute the curvature for L′ is no less than its

corresponding angle for S. So cur(S) < cur(L′).

In the one ridge case we were able to expand our folding argument to include thin

roofs with some overhang. We used both folding and a circle to see this improvement.

With multiple ridges, folding and partial folding along with the circle does not always

work to see S is also P , but we can get a partial result using this argument. Imagine we

orient the shortest path as above, but that some points share the same x-coordinate.
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Agreement between S and P is still provable using a folding argument if the following

conditions are added. If we replace the intermediate segments with one segment then

last ridge point has curvature less than or equal to π/2. We’ll call this condition 1. If

we extend the initial and final segments into lines then they intersect at a point whose

y-coordinate is greater than the y-coordinate the initial or final point. We’ll call this

condition 2. If we label the distance between the initial point and intersection point

a and the distance between the final point and intersection point b then the included

angle at point of intersection is greater than or equal to arccos( 2ab
a2+b2

). We’ll call this

condition 3.

Theorem 3.4 Let c = 0 and suppose we have k ridges where k > 1. Further suppose

that the shortest path has the following properties:

1. It is a convex path.

2. If the path is oriented in the xy-plane so that the y-coordinates of the initial

and final point are the same and less than the y-coordinates of the interior of the path

then conditions 1, 2, and 3 are met.

Under these conditions S and P will agree.

Proof.

Suppose L is an arbitrary longer path and S is the shortest path. In each case

we can replace the intermediate segments of both paths with single segments, thus

creating L′ and S ′. The curvature of S is equal to the curvature of S ′.

Case 4.1 Suppose L′ has the same initial and final segments as S ′.
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Figure 3.10: Optimal Case

In this case, cur(L) > cur(L′) = cur(S ′) = cur(S), since L would be non-

coplanar.

Case 4.2 Suppose the initial and final segments of L′ are coplanar but do not lie

in the xy-plane.

If we construct a pseudo ridge line where the lines containing the initial and

final segments of S ′ meet then the lines containing the initial and final segments of

L′ also intersect at the pseudo ridge, but not on the xy-plane. Now a simple folding

argument works as it did with the one ridge case (here the pseudo ridge is the one

ridge).

Case 4.3 Suppose the initial and final segments of L are not coplanar.

For purposes of closeness, we’ll look at the plane containing a ridge point, the

initial point, and final point and compute it’s dihedral angle with the xy-plane. The

smaller the dihedral angle, the “closer” the ridge point will be. The planar path for
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a ridge point will be the intersection of the plane containing that ridge point, the

initial and final points with the roof, but with intermediate segments replaced with

one as usual (this last step does not change the curvature of the planar path). If we

compute the planar paths for the initial and final ridge points, the one for the closer

ridge point will be a shorter path than the original path. That is it’s other ridge

point will be closer to the xy-plane. So the corresponding segment, either initial or

final, is shorter in the planar approximation than in the original longer path. So let

L′′ be the ”closer” planar approximation. cur(L′′) ≥ cur(S ′), with equality occurring

when L′′ is S. We’ll fold L′′ into the xy-plane and fold L′ by the same amount. The

common segment to both will lie in the xy-plane, but the rest of L′ will not. If the

final segment was the closer segment then a second partial folding, similar to case 3.2,

will allow us to see cur(L′) > cur(L′′). If the initial segment is closer then a more

difficult argument is necessary.

We’ll again let L′′ be the planar approximation of L′, but this time using the

initial segment and final point to form the plane. We’ll then do a partial folding first.

We’ll fold the intermediate segment and final segment about the line passing through

the first ridge point and final point until they are in the same plane as L′′, but away

from the first segment. If we look at the projected image of this partial folding in

the xy-plane, then we’ll see the shadow of the final ridge point falls underneath the

shadow of the line containing the final segment of L′′. This partially folded path, we’ll

call L′′′, has curvature less than L′ but more than L′′. Since we know the curvature

of L′′ is at least as great as S, we’re done.
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Unlike in the one ridge case, congruency of the rectangles does not generally

yield agreement between S and P , even if we add congruency of the dihedral angles

as an added condition. In the case of a two ridge symmetric roof, we can see the

problem when we divide the path into two halves. If c > 0 then neither the first nor

the second half of the shortest path represents the path of least curvature between

the midpoint and initial or final point. Because of the symmetry in fact, the paths of

least curvature between the midpoint and the initial or final point add no curvature

at the midpoint if joined. So it is easy to see a path with less curvature than S. It is

also possible to construct counter examples with more than two ridges.
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Figure 3.11: The Closer Plane
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Figure 3.12: After Partial Folding
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