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In the past decade, high-performance computing (HPC) platforms like clusters and 

computational grids have been widely used to solve challenging and rigorous 

engineering tasks in industry and scientific applications. Due to extremely high energy 

cost, reducing energy consumption has become a major concern in designing 

economical and environmentally friendly HPC infrastructures for many applications.  In 

this dissertation, we first describe a general architecture for building energy-efficient 

HPC infrastructures, where energy-efficient techniques can be incorporated in each layer 

of the proposed architecture. Next, we developed an array of energy-efficient scheduling 

as well as energy-aware load balancing algorithms for high-performance clusters, 
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computational grids, and large-scale storage systems. The primary goal of this 

dissertation research is to minimize energy consumption while maintaining reasonably 

high performance by incorporating energy-aware resource management techniques to 

HPC platforms. We have conducted extensive simulation experiments using both 

synthetic and real world applications to quantitatively evaluate both energy efficiency 

and performance of our proposed energy-efficient scheduling and load balancing 

strategies. Experimental results show that our approaches can reduce energy dissipation 

in HPC platforms without significantly degrading system performance.  
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Chapter 1 

Introduction 

With the advent of powerful processors, fast interconnects, and low-cost storage 

systems, high performance computing platforms like clusters, grids and large-scale 

storage systems have served as primary and cost-effective infrastructures for ever 

complicated scientific and commercial applications. Theses platforms provide powerful 

computing capability and the applications running in these platforms require intensive 

data processing and data storage capability in nature. Unfortunately, super-computing 

power is at the cost of huge energy consumption. How to generate enough power to 

support these high-performance computing platforms has become a serious problem. 

We believe that an efficient way to alleviate the energy crisis caused by high-

performance computing platforms is to design green computing techniques and apply 

these techniques to the super-computing platforms. The objective of this dissertation is 

to explore energy-efficient resource management technologies to reduce power 

consumption of high-performance computing platforms built in giant data centers. 
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This chapter first presents the problem statement in Section 1.1. In Section 1.2, we 

describe the scope of this research. Section 1.3 highlights the main contributions of this 

dissertation, and Section 1.4 outlines the dissertation organization. 

1.1 Problem Statement 

In this section, we start with an overview of new trends in high-performance 

computing. Section 1.1.2 introduces the serious data center energy crisis that we have to 

face today and presents the initial motivation for the dissertation research. 

1.1.1 The Era of High-Performance Computing 

We are now in an era of information explosion. Billions of data is generated in the 

moment you blink your eyes. In order to process these massive data, large-scale high-

performance computing platforms have been widely deployed all over the world. These 

high-performance computing platforms usually are built in huge data centers. A large 

fraction of applications running in these high-performance computing platforms are 

computing-intensive and storage-intensive, since these applications deal with a large 

amount of data transferred either between memory and storage systems or among 

hundreds of computing nodes via interconnection networks. Nowadays, we can find the 

impact of high-performance computing data centers in almost every domain: financial 

services, scientific computing, bioinformatics, computational chemistry, and weather 

forecast etc. Without the support of high-performance computing platforms, the 

implementation of large-scale scientific and commercial projects like human genome 

sequence programs, universe dark matter observation and Google search engine is 
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almost impossible. There is no doubt that data centers have significantly changed our 

lives. We are enjoying the great convenience and services provide by data centers every 

day.  

1.1.2 The Data Center Energy Crisis 

However, every sword cuts two sides. Increasing evidences have shown that the 

powerful computing capability of data centers is actually at the cost of huge energy 

consumption. For example, Energy User News stated that the power requirements of 

today’s data centers range from 75 W/ft2 to 150-200 W/ft2 and will increase to 200-300 

W/ft2 in the nearest future [1]. The new data center capacity projected for 2005 in U.S. 

would require approximately 40 TWh ($4B at $100 per MWh) per year to run 24x7 

unless they become more efficient [2]. The supercomputing center in Seattle is forecast 

to increase the city's power demands by 25% [3]. As shown in Figure 1.1, the 

Environment Protection Agency reported that the total energy consumption of servers 

and data centers of the United States was 61.4 billion KWh in 2006, which is more than 

doubled the energy usage for the same purpose in 2000 [4]. Even worse, the EPA 

predicted that the power usage of servers and data centers will be doubled again within 

five years if the historical trends are followed [4]. However, most previous research 

about high-performance computing primarily focused on the improvement of 

performance, security, and reliability. Energy conservation issue was a forgotten corner. 

However, organizations of all sizes are currently experiencing significant challenges as a 

result of energy-related expenses within their data centers.  For example, “The data 

center energy crisis is inhibiting our clients’ business growth as they seek to access 
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computing power. Many data centers have now reached full capacity, limiting a firm’s 

ability to grow and make necessary capital investments,” said Mike Daniels, senior vice 

president, IBM Global Technology Services. Our research is motivated by the energy 

consumption trend and the necessity of energy conservation for high-performance 

computing platforms. 

 

Figure 1.1 2007 EPA report to congress about U.S. data center power usage 

1.2 Scope of Research 

Our research is focusing on designing new energy-efficient techniques for data 

centers and incorporating existing techniques to conserve energy in high-performance 

computing platforms. Since CPUs, network interconnections and storage systems are 

three primary energy consumers in most high-performance computing platforms, our 

research focuses on conserving energy for CPUs, interconnections and storage systems. 
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More specific, the energy conservation for CPUs and interconnections are achieved 

through energy-efficient scheduling. A buffer disk based architecture (BUD for short) 

and energy-aware load balancing algorithm are proposed to build energy-efficient 

parallel storage systems. 

1.3 Contributions  

The major contributions of this research are summarized as follows:  

(1) We propose a general architecture for large scale high-performance computing 

platforms and discuss the potential possibilities of incorporating energy-

efficient techniques to each layer of the proposed architecture. 

(2) We design and implement two energy-efficient scheduling algorithms for 

homogeneous cluster systems. 

(3) We design and implement two energy-efficient scheduling algorithms for 

heterogeneous grid systems. 

(4) We design energy-efficient buffer disk based architecture (BUD for short) for 

storage systems and implement the according energy-aware load balancing 

algorithm for BUD.  

(5) We conduct extensive experiments for large scale clusters, grids, and storage 

systems. These experimental results could be used for other researchers in the 

research area of green computing. 
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1.4 Dissertation Organization  

This dissertation is organized as follows. In Chapter 2, related work in the literature 

is briefly reviewed. 

In Chapter 3, we propose the high-performance computing platforms architecture 

and discuss the potential possibilities of incorporating energy-efficient techniques to 

each layer of the proposed architecture. 

To make the architecture presented in Chapter 3 more practical, we develop two 

energy-efficient algorithms for parallel jobs running in clusters in Chapter 4.  

In Chapter 5, we study the energy-efficient scheduling issue for heterogeneous grids. 

In Chapter 6, a buffer disk based energy-efficient storage system is presented and its 

impact to performance and energy is evaluated. 

In Chapter 7, we summarize the main contributions of this dissertation and discuss 

future directions for this research. 
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Chapter 2 

Literature Review 

In this chapter, we briefly summarize the previous literatures which are most 

relevant to our research in terms of energy-efficient resource management for high-

performance computing platforms. Section 2.1 will introduce related work on energy-

efficient parallel scheduling, which is highly relevant to our research shown in chapter 4 

and 5. Related work on energy-efficient high-performance storage systems will be 

discussed in section 2.2. This part of related work is closely relevant to our research 

shown in chapter 6.    

2.1 Related Work on Energy-Aware Scheduling 

The issue of conserving energy consumption in clusters and grids did not attract 

enough attention for a long period because researchers primarily concentrate on the 

performance, reliability, and security issues [5]. Recently, people start to realize that the 

energy consumption issue is also critical since energy demands of clusters and grids 

have been steadily growing companied with an increasing number of data centers. 

However, designing energy-aware scheduling algorithms for homogeneous clusters, 

especially for heterogeneous grids, is technically challenging because we have to take 
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into account multiple design objectives, including performance (measured by throughput 

and schedule length), energy efficiency, and heterogeneities. 

2.1.1 Energy-Aware Scheduling in Clusters and Grids 

A handful of previous studies investigated energy-aware processor and memory 

design techniques to reduce energy consumption in CPU and memory resources [6] [7] 

[8]. IBM researchers Elnozahy, Kistler, and Rajamony proposed the Request Batching 

Policy (RBP), in which servicing of incoming requests is delayed while a web server is 

kept in a low power state. Incoming requests are accumulated in memory until a request 

has been kept pending for longer than a specified batching timeout. RBP can save 

energy because while requests are being accumulated, the processor is placed in a lower 

power state such as deep sleep [9]. Dynamic power management is designed to achieve 

requested performance with minimum number of active components or a minimum load 

on such components [6] [10]. Dynamic power management consists of a collection of 

energy-efficient techniques, which adaptively turn off system components or reduce 

their performance when the component is idle or partially unexploited. For example, 

based on the observation of past idle and busy periods, predictive shutdown policies can 

make power management decisions when a new idle period starts [11] [12]. Shin and 

Choi proposed a scheme to slow down a processor when there is a single task eligible 

for execution [13]. Yao et al. developed a static off-line scheduling algorithm [14], 

whereas Hong et al. proposed on-line heuristics scheduling for aperiodic tasks [15]. T. 

Xie and X. Qin developed a task allocation strategy aiming to minimize overall energy 

consumption while confining schedule lengths to an ideal range [16].  
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However, the prior work in the arena of energy-aware scheduling was merely 

focused on energy consumed by processors. The communication energy consumption 

was completely ignored. The literature has shown that reducing energy dissipation in 

interconnects is critical important. For instance, interconnect consumes 33 percent of the 

total energy in an Avici switch [17] [18], and routers and links consume 37 percent of 

the total power budget in a Mellanox server blade [19]. The energy consumption in 

interconnects becomes even more critical for communication-intensive parallel 

applications, in which large number of data will be transferred among precedence 

constrained parallel tasks. One of the fundamental differences between our research and 

previous research is that we consider both CPU and network interconnection power 

consumption in the context of homogeneous and heterogeneous environment. 

2.1.2 Task Partitioning and Task Scheduling 

Task allocation strategies, which can be divided into task partitioning and scheduling 

strategies, play an important role in achieving high-performance for parallel applications 

on clusters and grids. The goal of a partitioning algorithm is to partition a parallel 

application into a set of precedence constrained tasks represented in the form of a 

directed acyclic graph (DAG), whereas a scheduling algorithm is deployed to schedule 

the DAG onto a set of homogeneous or heterogeneous computational nodes. Scheduling 

strategies deployed in clusters and grids have large impacts on overall system 

performance.  

Allocation techniques can be generally classified into two types: static and dynamic 

schemes. The basic idea of static allocation schemes [20] [21] [22] [23] [24] is to 
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assume prior knowledge of applications, including the component tasks, their execution 

times, and the like. Static allocation tries to find the overall optimized scheduling 

solution for given objectives at compile time, which is extremely expensive (NP-

Complete Problem) in numerous complicated applications. In contrast, dynamic 

allocation strategies [25] [26] [27] [28], which are much less expensive, provide merely 

suboptimal results.  

Scheduling policies can be generally classified into three categories: priority-based 

scheduling [29], group-based scheduling, and task-duplication based scheduling 

algorithms [30]. Priority-based scheduling algorithms involve assignments of priorities 

to tasks and then maps the tasks to computing nodes based upon assigned priorities. 

Group-based scheduling algorithms group intercommunicating tasks within a single 

computing node, thereby eliminating communication overheads [31]. The basic idea 

behind duplication-based scheduling algorithms is to make use of computing nodes’ idle 

times to replicate predecessor tasks [30] [32]. Many researchers have demonstrated that 

various strategies regarding task duplications are extremely applicable for reducing total 

execution times under communication intensive workload conditions [32] [33]. In 

duplication-based scheduling strategies that exhibit performance improvements over 

other scheduling methods, redundantly executed tasks either eliminate communication 

overheads or allow productive utilization of idle processor times. Hagras and Janecek 

developed a simple yet efficient task-graph scheduling algorithm using the list-based 

and task-duplication-based scheduling approaches [34]. Siegel et al. investigated various 

mapping and scheduling algorithms in the context of heterogeneous ad hoc grids, where 

the algorithms are aimed to assign resources in a way to meet applications’ execution 
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time and energy constraints [35]. Kishimoto and Ichikawa carried out a case study, 

attempting to reduce the execution time of the high-performance linpack benchmark on 

two heterogeneous clusters [36]. Cuenca et al. proposed an approach to adapting an 

application implementing a homogeneous parallel dynamic programming algorithm for 

efficient execution on a heterogeneous cluster [37].  

In our algorithms for grids, we try to seamlessly integrate static and dynamic 

allocation techniques to guarantee high-performance while conserving energy. Basically, 

our algorithms contain two phases. In the first phase, we apply a heuristic (a similar 

approach can be found in [5]) to minimize schedule lengths by clustering the most 

related parallel tasks together. The static allocation is carried out because we assume the 

execution and communication times of tasks are already known in priori. In the second 

phase, our algorithms make use of a dynamic allocation method to obtain an optimal 

power consumption of a grid computing system by comparing total energy consumption 

when grouped tasks are allocated to different computational nodes in the grids. 

2.2 Related Work on Energy-Efficient Storage Systems 

Modern parallel storage systems are able to provide higher performance at the cost 

of enormous energy consumption. For example, a typical robotic tape system provided 

by StorageTek would have an aggregate bandwidth of 1200MB/s [38] while a modern 

disk array could easily provide a peak bandwidth of 2,880,000MB/s. However, reading 

and storing 1,000TB of information would cost $9,400 to power the tape library system 

vs. $91,500(almost ten times) to power the disk array [39]. The gap will definitely 

increase when faster disks with higher power consumption rates appear and are widely 
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deployed. A recent industry report shows that storage devices account for almost 27% of 

the total energy in a data center [40]. Even worse, this fraction tends to increase as 

storage requirements are rising by 60% annually [41]. Due to the preceding energy 

consumption trends, new technologies focused on the design of energy-efficient parallel 

storage systems are highly desirable.  

Several techniques proposed to conserve energy in storage systems include dynamic 

power management schemes [42], power-aware cache management strategies [43], 

power-aware prefetching schemes [44], software-directed power management 

techniques [45], and multi-speed settings [46]. But so far, none of these techniques 

address the energy conservation and performance issue of buffer-disk based parallel 

storage systems.  

In 2002, D. Colarelli and D. Grunwald presented a similar framework as compared 

to our BUD architecture. Their architecture was called “Massive Arrays of Idle Disks” 

or MAID [39]. However, two important problems remain unsolved in MAID. First, they 

did not clearly mention about the mapping structure of active drives and passive drives, 

i.e. which buffer disk should be chosen as the candidate to cache the data whenever 

there is a data miss. Second, they did not consider the load balancing issue, which very 

likely could lead to performance penalties.  

Another framework similar to MAID, called Popular Data Concentration (PDC), 

was proposed by E. Pinheiro and R. Bianchini in 2004 [47]. The basic idea of PDC is to 

migrate data across disks according to frequency of access, or popularity. The goal is to 

lay data out in such a way that popular and unpopular data are stored on different disks. 

This layout leaves the disks that store unpopular data mostly idle, so that they can be 
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transitioned to a low-power mode. However, PDC is a static offline algorithm. In some 

cases, it is impossible for the system to exactly know which data is popular and which is 

not. This is especially true for the ever-changing workload, in which some data is 

popular at a particular period but becomes unpopular the next period. 

In contrast with both MAID and PDC, we implemented a heat-based algorithm to 

control data caching and data mapping between data disks and buffer disks in the BUD 

architecture. The heat-based algorithm was first proposed by P. Scheuermann, G. 

Weikum and P. Zabback in 1998 [48]. Their algorithm varies from our algorithm in the 

fact that they calculate the heat of data disks and apply the algorithm in the data 

partitioning stage. We calculate the heat of buffer disks and apply the algorithm in the 

data caching stage. They focus on how to partition data to improve throughput, while 

our focus is how to judiciously cache data to achieve load balancing.  

2.3 Summary 

The objective of this dissertation is to present energy-aware resource management 

strategies for high-performance computing platforms, which is based on previous 

research efforts in scheduling, load balancing and large-scale storage systems. This 

chapter overviewed a variety of existing techniques related to scheduling, load balancing 

and high-performance storage systems. 

In the first part of this chapter, we discussed the relevant approaches for energy-

aware task partitioning and scheduling for clusters and grids. In particular, we talked 

about the energy-aware techniques for CPU and memory, static and dynamic task 

allocation and three different scheduling strategies. Moreover, we briefly introduce the 
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characteristics of our scheduling algorithms. In the second part, we surveyed existing 

energy-aware techniques used in high performance storage systems. These techniques 

include Massive Arrays of Idle Disks and Popular Data Concentration. In addition, we 

compare our heat-based algorithms for buffer disk architecture with these two existing 

algorithms.  
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Chapter 3  

High-Performance Computing 
Platforms Architecture 

In the previous chapter, we summarized the published literatures which are highly 

related to our research. However, during the course of literature review, we realized that 

almost all previous studies are in the lower level such as energy-aware scheduling, CPU 

energy efficiency and Memory energy efficiency etc. Although these works have made 

great contribution to build energy-aware high-performance computing platforms, 

comprehensive discussions in the architecture level was ignored.  

We believe that the discussions in the architecture level are necessary and valuable 

because these discussions can help us understand the importance of energy-efficiency 

for high-performance computing platforms and provide a big picture of this research 

area. Meanwhile, it can provide meaningful guidance for the follow-up researchers. 

Therefore, in this chapter, we propose a general architecture for high-performance 

computing platforms and discuss the possibility of incorporating energy-efficient 

techniques to each layer of this architecture.  
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3.1 A General High-Performance Computing Platforms 
Architecture 

Generally, most high-performance computing platforms can be presented by the 

following four layers: the application layer, the middleware layer, the resource layer and 

the network layer (See Figure 3.1).  Since grid system is one of the most complicated 

high-performances computing platforms, we will use grids as an example to explain the 

proposed architecture.  

 

Figure 3.1 High-performance computing platforms architecture 

The network layer is responsible for routing and transferring packets and it also has 

the responsibility of establishing network services for the resource layer. The dynamic 
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network power management technique could be implemented in the network layer to 

support energy-efficient data transmission by deferring packet transmissions without 

violating any delay constraints. 

On top of the network layer is a resource layer, which consists of a wide range of 

resources like computing nodes, storage systems, electronic data catalogues, and 

satellites or other instruments. The resource layer is responsible for manipulating the 

distributed resources in grid systems. In this layer, the dynamic voltage scaling 

techniques can be used to conserve energy for computing nodes by dynamically 

lowering supply voltages when the computing nodes are running faster than specified 

performance requirements.  

Parallel applications running in a grid system do not directly interact with the 

resource layer. Instead, application programs interact with the middleware layer which 

provides a sophisticated means of reliability control, security protection, resource 

allocation, and task scheduling and analysis. The middleware layer contains a set of 

intelligent modules, including resource broker, security access, task analyzer, task 

scheduler, communication service, information service, and reliability control. The 

resource broker allows users to submit their applications to the grid system. The security 

module is responsible for providing security protection schemes to security-critical grid 

applications. After a grid job is admitted to the grid system, the task analyzer partitions 

the job into a number of small tasks with dependency constraints. Next, the task 

scheduler allocates the tasks to distributed computing resources using specific 

scheduling strategies. The communication service module has the responsibility for 

supporting services like remote function calls. The information service module keeps 
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track of detailed information pertinent to the tasks’ execution on computing resources. 

The reliable control module makes the grid system highly reliable and fault tolerant. For 

example, the reliable control module may reject a submitted job if the job’s reliability 

requirements cannot be guaranteed by resources in the grid system. The middleware 

layer provides significant opportunities for incorporating energy-efficient techniques, 

especially for applying energy-efficient scheduling strategies. Our proposed scheduling 

algorithms in Chapter 4 and Chapter 5 are actually running in this layer. 

The application layer handles all types of user applications varying from science, 

engineering, business, and financial area. Portals and development toolkits are provided 

to support various grid applications. Although energy-aware software applications are 

unusual today, they may become the next hotspot in the research area of software 

engineering with the emerging technology of multi-core microprocessors.  

A number of energy efficiency trends for large scale servers and data centers are 

currently underway. For example, multi-core processors are expected to run at a slower 

speed and lower voltage but handle more work in parallel than a single-core chip 

thereby balancing energy efficiency and performance. Replacing several dedicated 

servers that operate at a low average processor utilization level with a single “host” 

server that operates at a higher average utilization level is another trend. Hard disk drive 

storage devices are also expected to become more energy-efficient in part because of a 

shift to smaller form factor disk drives and increasing use of serial advanced technology 

attachment drives. Meanwhile, the next generation of power supply systems and site 

infrastructure systems for grids will become more and more energy efficient. If these 

trends could be realized and the according techniques could be implemented in different 



19 

 

layers, the energy usage caused by high performance computing platforms will be 

greatly reduced.  

3.2 Summary 

In this chapter, we have proposed a general architecture for high-performance 

computing platforms and discussed the possibility of incorporating energy-efficient 

techniques to each layer of this architecture. 

To make this architecture more solid and sound, we will illustrate how to incorporate 

energy-efficient techniques to three typical high-performance computing platforms in 

the following three chapters. More specifically, Chapter 4 and Chapter 5 will illustrate 

energy-efficient scheduling for clusters and grids respectively. Chapter 6 will illustrate 

energy-efficient resource management for large-scale storage systems.   
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Chapter 4  

Energy-Efficient Scheduling For 
Clusters 

In this chapter, we consider the problem of building energy-efficient cluster systems. 

A cluster is a type of parallel processing system, which consists of a collection of 

interconnected stand-alone computers cooperatively working together as a single, 

integrated computing system (see Figure 4.1). All these loosely coupled computers do 

not have common memory. They communicate with each other by passing messages.  

 

 

Figure 4.1 System model of high-performance clusters (source: Wikipedia) 
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When we talk about cluster systems, we have to mention about the parallel 

computing technologies. Parallel computing is the simultaneous execution of small tasks 

split up from a complicated application and specially allocated on multiple processors in 

order to obtain results faster. The combination of cluster systems and parallel computing 

technology exhibits powerful computing capabilities. Over the last decade, the rapid 

advancement of high-performance microprocessors, high-speed networks, and standard 

middleware tools makes cluster computing platforms more powerful and convenient to 

use. Therefore, cluster computing technology has been extensively deployed and widely 

used to solve challenging and rigorous engineering problems in industry and scientific 

areas like molecular design, weather modeling, database systems, universe dark matter 

observations, and complex image rendering. However, the rapid growth of cluster 

computing centers introduces a serious problem: excessively high energy consumption. 

To address this problem, we propose two energy-efficient scheduling algorithms in this 

chapter for parallel applications running on clusters. The two algorithms are named the 

Energy-Aware Duplication scheduling algorithm (or EAD for short) and the 

Performance-Energy Balanced Duplication scheduling algorithm (or PEBD for short).  

This chapter is organized as follows. In section 4.1, we introduce the mathematical 

models used to present cluster systems, including cluster model, parallel tasks model, 

and energy consumption model. In section 4.2, we present the energy-efficient 

scheduling algorithms and illustrate how the EAD and PEBD algorithms work using a 

concrete example. Next, we will prove the time complexity of our algorithms in section 

4.3. Experimental environment and simulation results are shown in section 4.4. Finally, 

section 4.5 concludes this chapter by summarizing the main contributions of the chapter. 
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4.1 System Models 

In this section, we describe mathematical models used to represent clusters, 

precedence constrained parallel tasks, and energy consumption in CPUs and 

interconnects.  

4.1.1 Cluster Model 

A computer cluster is a group of coupled computers that work together closely so 

that in many respects they can be viewed as though they are a single computer. A cluster 

in our research is characterized by a set P = {p1, p2,..., pm} of computational nodes 

(hereinafter referred to as nodes) connected by a Myrinet-style cluster interconnects. It is 

assumed that the computational nodes are homogeneous in nature, meaning that all 

processors are identical in their capabilities. Similarly, the underlying interconnection is 

assumed to be homogeneous and, thus, communication overhead of a message with 

fixed data size between any pair of nodes is considered to be the same. Each node 

communicates with other nodes through message passing, and the communication time 

between two precedence constrained tasks assigned to the same node is negligible. In 

our system model, computation and communication can take place simultaneously. This 

assumption is reasonable because each computational node in a modern cluster has a 

communication coprocessor that can be used to free the processor in the node from 

communication tasks.  

To simply the system model without loss of generality, we assume that the cluster 

system is fault free and the page fault service time of each task is integrated into its 

execution time. With respect to energy conservation, energy consumption rate of each 
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node in the system is measured by Joule per unit time. Each interconnection link is 

characterized by its energy consumption rate that heavily relies on data size and the 

transmission rate of the link. 

4.1.2 Parallel Tasks Model 

A parallel application with a set of precedence-constrained tasks is represented in the 

form of a Directed Acyclic Graph (DAG), which throughout this paper is modeled as a 

pair (V, E). V = {v1, v2, ..., vn} represents a set of precedence constrained parallel tasks, 

and ti is the ith task’s computation requirement showing the number of time units to 

compute vi, 0 ≤ i ≤ 1. It is assumed that all the tasks in V are non-preemptive and 

indivisible work units, and a similar assumption can be found in related studies [13][49]. 

E denotes a set of messages representing communications and precedence constraints 

among parallel tasks. Thus, eij = (vi, vj)∈ E is a message transmitted from task vi to vj, 

and cij is the communication cost of the message eij ∈ E. We assume in this study that 

there is one entry task and one exit task for an application with a set of precedence-

constrained tasks. The assumption is reasonable because in case of multiple entry or exit 

tasks exist, the multiple tasks can always be connected through a dummy task with zero 

computation cost and zero communication cost messages. 

The communication-to-computation ratio or CCR of a parallel application is defined 

as the ratio between the average communication cost and the average computation cost 

of the application on a given cluster. Formally, the CCR of an application (V, E) is given 

by the Eq. (1): 
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A task allocation matrix (e.g., X) is an n×m binary matrix reflecting a mapping of n 

precedence constrained parallel tasks to m computational nodes in a cluster. Element xij 

in X is “1” if task vi is assigned to node pj and is “0”, otherwise. 

4.1.3 Energy Consumption Model 

We use a bottom-up approach to derive energy dissipation experienced by a parallel 

application running on a cluster. In this subsection, we first model energy consumption 

exhibited by computational nodes in the cluster. Next, we calculate energy dissipation in 

the interconnection network of the cluster. 

Let eni be the energy consumption caused by task vi running on a computational 

node, of which the energy consumption rate isactivePN , and the energy dissipation of task 

vi can be expressed as Eq. (2) 

                              iactivei tPNen ×= .                               (2) 

Given a parallel application with a task set V and allocation matrix X, we can 

calculate the energy consumed by all the tasks in V using Eq. (3). 
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Let idlePN  be the energy consumption rate of a computational node when it is 

inactive, and fi be the completion time of task ti. The energy consumed by an inactive 
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node is a product of the idle energy consumption rate idlePN  and an idle period. Thus, 

we can use Eq. (4) to obtain the energy consumed by the jth computational node in a 

cluster when the node is sitting idle. 
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max  is the total idle time on the jth node. The total energy consumption 

of all the idle nodes cluster is 
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Consequently, the total energy consumption of the parallel application running on 

the cluster can be derived from Eqs. (3) and (5) as  

                  ( ) ( ) .max    
1 1

1
1











⋅−⋅⋅+=

+=

∑∑∑
= ===

m

j

n

i
iiji

n

i
idle

n

i
iactive

idleactive

txfmPNtPN

ENENEN

              (6) 

We denote ijel  as the energy consumed by the transmission of message (ti, tj)∈ E. We 

can compute the energy consumption of the message as a product of its communication 

cost and the power activePL  of the link when it is active: 

                                ijactiveij cPLel ×=                             (7) 

The cluster interconnect in this study is homogeneous, which implies that all 
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messages are transmitted over the interconnection network at the same transmission rate. 

The energy consumed by a network link between pa and pb is a cumulative energy 

consumption caused by all messages transmitted over the link. Therefore, the link’s 

energy consumption is obtained by Eq. (8) as follows, where Lab is a set of messages 

delivered on the link, and Lab can be expressed as

{ }11,1, =∧=≤≤∈∀= jbiaijab xxmbaEeL . 
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The energy consumption of the whole interconnection network is derived from Eq. 

(8) as the summation of all the links’ energy consumption. Thus, we have 
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We can express energy consumed by a link when it is inactive as a product of the 

consumption rate and the idle period of the link. Thus, we have 
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where idlePL  is the power of the link when it is inactive, and 
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incurred by the whole interconnection network during the idle periods as 
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Total energy consumption exhibited by the cluster interconnect is derived from Eqs. 

(9) and (11) as  

                             ,idleactive ELELEL +=                     (12) 

Now, we can compute energy dissipation experienced by a parallel application on a 

cluster using Eqs. (6) and (12). Hence, we can express the total energy consumption of 

the cluster executing the application as 
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4.2 Energy-Efficient Scheduling Algorithms 

In this section, we present two energy-aware scheduling algorithms for parallel 

applications with precedence constraints running on clusters. The two algorithms are 

named the Energy-Aware Duplication scheduling algorithm (or EAD for short) and the 

Performance-Energy Balanced Duplication scheduling algorithm (or PEBD for short). 

The objective of the two scheduling algorithms is to shorten schedule lengths while 



28 

 

optimizing energy consumption of clusters. Theoretically, the scheduling problem for 

clusters is NP-hard problem because it could be mapped to a scheduling problem proven 

to be an NP-complete [50]. Therefore, the proposed two scheduling algorithms are 

heuristic in the sense that they can produce suboptimal solutions in polynomial-time. 

The EAD and PEBD algorithms consist of three major steps delineated in sections 4.2.1 

-- 4.2.3. 

4.2.1 Original Task Sequence Generation 

Precedence constraints of a set of parallel tasks have to be guaranteed by executing 

predecessor tasks before successor tasks. To achieve this goal, the first step in our 

algorithms is to construct an ordered task sequence using the concept of level, which of 

each task is defined as the length in computation time of the longest path from the task 

to the exit task. There are alternative ways to generate the task sequence for a DAG, 

including critical path-based priority schemes [30] and other priority-based schemes 

[51]. In this study, we use a similar approach as proposed by Srinivasan and Jha [5] to 

define the level L(vi) of task vi as below 
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The levels of the tasks which have no successor are equal to their execution time. 

The levels of other tasks can be obtained in a bottom-up fashion by specifying the level 

of the exit task as its execution time and then recursively applying the second term on 

the right-hand side of Eq. (14) to calculate the levels of all the other tasks. Next, all the 

tasks are placed in a queue in an increasing order of the levels. 
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4.2.2 Duplication Parameters Calculation 

The second phase in the EAD and PEBD algorithms is to calculate some important 

parameters, which the algorithms rely on. The important notation and parameters are 

listed in Table 4.1.  

Table 4.1 Important notations and parameters 

Notation       Definition 

EST(vi) Earliest start time of task vi  

ECT(vi) Earliest completion time of task vi 

FP(vi) Favorite predecessor of task vi 

LACT(vi) Latest allowable completion time of task vi  

LAST(vi) Latest allowable start time of task vi 

 

The earliest start time of the entry task is 0 (see the first term on the right side of Eq. 

(15). The earliest start times of all the other tasks can be calculated in a top-down 

manner by recursively applying the second term on the right side of Eq. (15).  
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The earliest completion time of task vi is expressed as the summation of its earliest 

start time and execution time. Thus, we have 

                       .)()( iii tvESTvECT +=                               (16) 

Allocating task vi and its favorite predecessor FP(vi) on the same computational 

node can lead to a shorter schedule length. As such, the favorite predecessor FP(vi) is 

defined as below 
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As shown by the first term on the right-hand side of Eq. (18), the latest allowable 

completion time of the exit task equals to its earliest completion time. The latest 

allowable completion times of all the other tasks are calculated in a top-down manner by 

recursively applying the second term on the right-hand side of Eq. (18). 
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The latest allowable start time of task vi is derived from its latest allowable 

completion time and execution time. Hence, the LAST(vi) can be written as 

                             .)()( iii tvLACTvLAST −=                           (19) 

4.2.3 Energy-Efficient Scheduling: EAD and PEBD 

Given a parallel application presented in form of a DAG, the EAD algorithm in this 

phase allocates each parallel task to a computational node in a way to aggressively 

shorten the schedule length of the DAG while conserving energy consumption. The 

pseudocode in Figure 4.2 shows the details of this phase in the EAD algorithm, which 

aims to provide the greatest energy savings when it reaches the point to duplicate a task. 

Most existing duplication-based scheduling schemes merely optimize schedule lengths 

without addressing the issue of energy conservation. As such, the existing duplication-

based approaches tend to yield minimized schedule lengths at the cost of high energy 

consumption. To make tradeoffs between energy savings and schedule lengths, we 

design the EAD algorithm in which task duplications are strictly forbidden if the 
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duplications do not exhibit energy conservation (see Steps 9-10). In other words, 

duplications are not allowed if they result in a significant increase in energy 

consumption (e.g., the increase exceeds a threshold) and, are avoided in EAD. 

Consequently, the EAD algorithm ensures that schedule lengths are minimized using 

task duplication without adversely affecting energy conservation.  

Figure 4.2 Pseudo code of phase 3 in the EAD algorithm 

Before this phase starts, phase 1 sorts all the tasks in a waiting queue, followed by 

phase 2 to calculate the important parameters. In phase 3 EAD strives to group 

1. v = first waiting task of scheduling queue; 
2. i =  0; 
3. assign v to Pi; 
4. while (not all tasks are allocated to computational nodes) do 
5.   u = FP(v); 
6.   if (u has already been assigned to another processor) then 
7.     if (LAST(v) - LACT(u)<cuv) then /* if duplicate u, we can shorten the schedule 

length */ 
8.       moreenergy = enu – eluv; /*energy increase*/ 
9.       if (moreenergy ≤ threshold h) then /* increased energy less than our threshold*/ 
10.         assign u to Pi; /*duplicate u*/ 
11.         if v has another predecessor z ≠ u has not yet been allocated to any node then 
12.           u = z; 
13.         else 
14.           if u is entry task then 
15.             u = the next task that has not yet been assigned to a node; 
16.             i++ ; 
17.       else 
18.         for another predecessor z of v, z ≠ u,  
19.         if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t been allocated) then 
20.           u = z; /* do not duplicate*/ 
21.     else 
22.       for another predecessor z of v, z≠ u,  
23.       if  (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t been allocated) then  
24.         u = z; /* do not duplicate*/ 
25.   else allocate u to Pi; 
26.   v = u; 
27.   if v is entry task then 
28.     v = the next task that has not yet been allocated to a computational node; 
29.     i++ ; 
30.     assign v to Pi; 
31. return schedule list; 
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communication-intensive parallel tasks together and have them allocated to the same 

computational node. Once multiple task groups are constructed, each group of tasks is 

assigned to a different node in the cluster. The process of grouping tasks is repeated 

from the first task in the queue by performing a depth-first style search, which traces the 

path from the first task to the entry task. Steps 5 and 6 choose a favorite predecessor if it 

has not been allocated a computational node. Otherwise, EAD may or may not replicate 

the favorite predecessor on the current node. For example, we assume that vj is the 

favorite predecessor of the current task vi, and vj has been allocated to another node. If 

duplicating vj on the current node to which vi is allocated can improve performance 

without sacrificing energy conservation, Step 12 makes a duplication of vj. 

Please note that the generation of a task group terminates once the path reaches the 

entry task. The next task group starts from the first unassigned task in the queue. If all 

tasks are assigned to the computation nodes, then the EAD algorithm terminates. 

The third phase of the PEBD algorithm is similar as that of EAD except that PEBD 

seamlessly integrate the approach to minimizing schedule lengths with the process of 

energy optimization (see Figure 4.3). Unlike EAD, the development of PEBD is 

motivated by the needs of making the right tradeoff between performance and energy 

conservation. Thus, the PEBD algorithm is geared to efficiently reduce schedule lengths 

while providing the greatest energy savings. Energy consumption incurred by 

duplicating a task involves judging whether the duplication is profitable or not. To 

facilitate the construction of PEBD, we introduce a concept of cost ratio of a 

duplication, which is defined as the ratio between the energy saving and schedule length 

reduction (see Step 10). While the energy saving of the duplication is obtained in Step 8, 
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the reduction in schedule length is computed in Step 9. The PEBD algorithm is, of 

course, conducive to maintaining cost ratios at a low level, thereby efficiently shortening 

schedule lengths with low energy consumption. This feature is accomplished by Steps 

11-12, which duplicate a task in case the cost ratio of such duplication is smaller than a 

given threshold. 

Figure 4.3 Pseudo code of phase 3 in the PEBD algorithm 

1. v = first waiting task of scheduling queue; 
2. i = 0; 
3. assign v to Pi; 
4. while (not all tasks are allocated to computational nodes) do 
5.   u = FP(v); 
6.   if (u has already been assigned to another node) then 
7.     if (LAST(v) - LACT(u)<cuv) then /* if duplicate u, we can shorten the execution 

time*/ 
8.       moreenergy = enu – eluv; /*energy increase*/ 
9.       lesstime = LACT(u) + cuv -LAST(v); /* schedule length is reduced */ 
10.       cost ratio = moreenergy / lesstime;    /*value of ratio: the smaller the better*/ 
11.       if (ratio ≤ threshold h) then /* significantly shorten schedule length */ 
12.         assign u to Pi;  /*duplicate u*/ 
13.         if v has another predecessor v ≠ u has not yet been assigned to any node then 
14.           u = v; 
15.         else 
16.           if u is entry task then 
17.             u = the next task that has not yet been allocated to a computational node; 
18.             i++ ; 
19.       else 
20.         for another predecessor z of v, z ≠ u,  
21.         if (ECT(u)+ccuv = ECT(z) + cczv) and z has not been allocated) then   
22.           u = z; /*do not duplicate*/ 
23.     else 
24.        for another predecessor z of v, z ≠ u,  
25.        if (ECT(u)+ccuv = ECT(z) + cczv) and z has not been allocated) then 
26.          u = z; /*do not duplicate*/ 
27.   else assign u to Pi; 
28.   v = u; 
29.   if v is entry task then 
30.     v = the next task that has not yet been allocated; 
31.     i++ ; 
32.     allocate v to Pi; 
33. return schedule list 
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4.2.4 A Case Study 

Now we run the proposed scheduling algorithms using a sample task graph 

delineated in Figure 4.4. In this example, we choose Intel Core2 Duo E6300 as the CPU 

of each computing node and high-speed Merynet as interconnection. Recall that the 

energy consumption of the task graph is determined by Eq. (13), where PNactive and 

PLactive are set to 44W and 33.6W, respectively.  

In the task DAG plotted in Figure 4.4, each task is represented by (eni, ti) and each 

message is denoted by (elij, cij). Recall that eni and elij, computed by Eqs. (2) and (7), are 

the energy consumption of task vi and communication between task vi and vj. The 

running trace of EAD and PEBD is given as follows: 

 

Figure 4.4 A typical DAG 
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Phase 1. Generate a task sequence by computing levels: The levels of tasks can be 

calculated using Eq. (14). For instance, the level of task v10 is 8, since v10  is the exit task 

without any successor. The level of v8 is 8 + 7 = 15 because v8 has only one successor 

task. The level of task v2 is max{L(v5) + 3, L(v6) + 3} = 28, since v2 has two successors - 

v5 and v6. All the tasks are placed in a queue in the non-increasing order of levels. Thus, 

we have a list of tasks as {10, 9, 8, 5, 6, 2, 7, 4, 3, 1} 

Phase 2. Calculate important parameters: 

Phase 2.1 Compute EST and ECT : The EST and ECT values of each task can be 

computed by applying Eqs. (15) and (16). For example, task v1 is the entry task and, 

therefore, EST(v1) = 0. In accordance with Eq. 16, we have ECT(v1) = 0 + t1 = 3. Since 

v2, v3, and v4 are unable to start until v1 finishes and, thus, we have EST(v2) = EST(v3) = 

EST(v4) = ECT(v1) = 3. Similarly, EST of v7 is computed as below 

     
( ) ( ){ }
( ) ( ){ } .725 7,max,47 5,maxmin              

 )ECT(v ),ECT(vmax,)ECT(v ),ECT(vmaxmin)EST(v 474337347

=++=
++= cc

 

Correspondingly, the ECT of v7 is ECT(v7) = EST(v7) + t7 = 7 + 20 = 27. 

Phase 2.2 Compute favorite predecessors: The favorite predecessor of a task is 

determined by using Eq. (17). For example, the favorite predecessor of task v2, v3, and v4 

is v1, simply because these three tasks have only one predecessor. The favorite 

predecessor of v8 is v6 because ECT(v6) + c68 = 16 + 10 = 26 > ECT(v5) + c58 = 7 + 1 = 

8. 

Phase 2.3 Compute LAST and LACT: The LACT and ECT values of the exit task 

v10 equal to 40 and, thus, we have LAST(v10) = LACT(v10) - t10 = 40 – 8 = 32. In case of 

LACT(v6), we have to consider two successors, namely, v8 (not in critical path) and v9 



36 

 

(in critical path). We obtain 

( ){ } { } 1718) 10),-(27min  ))min(LAST(v ,c-)LAST(vminmin)LACT(v 86996 ===  and 

LAST(v6) = LACT(v6) - t6  = 17 – 10 = 7 

Table 4.2 shows the final results of all important parameters. 

Table 4.2 Final results of parameters 

Task level est ect last lact fpred 
1 40 0 3 0 3 -- 
2 28 3 6 4 7 1 
3 37 3 7 3 7 1 
4 35 3 5 3 5 1 
5 16 6 7 16 17 2 
6 25 6 16 7 17 2 
7 33 7 27 7 27 3 
8 15 16 23 18 25 6 
9 13 27 32 27 32 7 
10 8 32 40 32 40 9 

 

Phase 3. Task allocation and duplication phase:  

The EAD algorithm. Given a threshold h = 25, EAD generates the first group of 

tasks by starting from the first task in the task list obtained in Phase 1. The first task 

group containing tasks v1, v3, v7, v9, and v10 is allocated to node 1. Next, EAD attempts 

to allocate the first unassigned task in the list. In this case, the unassigned task is task v8. 

Tasks v8, v6 and v2 are allocated to node 2, and the next task to be assigned is task v1. 

Since v1 has been allocated to node 1, EAD has to decide whether there is an incentive 

to duplicate v1 on node 2. The condition in step 7 (see Figure 4.2) is satisfied, because 

we have LAST(v2) - LACT(v1) = 4 – 3 = 1 < cc12 = 3. Therefore, duplicating v1 on node 

2 can shorten the schedule length. However, the increase in energy consumption is en1 – 

el12 = 44w×3 – 33.6w×3 = 31.2J (see step 8 in Figure 4.2), which is greater than the 

threshold. Thus, there is no any incentive to duplicate the task due to the high energy 
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overhead, signifying that the duplication of v1 must be avoided. EAD assigns task v5 to 

node 3, followed by task v2, and v1, which are not duplicated on node 3 because we can 

not shorten the schedule length (LAST(v5) - LACT(v2)=16-7=9> cc25=3). Task v4 is the 

only task allocated on node 4, and v1 is not duplicated because the increase in energy 

consumption is significant. 

Therefore, the final scheduling decision of EAD is as follows: 

Processor 1: Task 10� Task 9� Task 7� Task 3� Task 1 
Processor 2: Task 8� Task 6� Task 2 
Processor 3: Task 5 
Processor 4: Task 4 
 

The PEBD algorithm. The behavior of PEBD is similar to that of EAD except that 

energy-performance tradeoffs are determined by a ratio between the energy 

consumption of replicas and the decrease in schedule length by virtue of replicas. Given 

a threshold h = 25, PEBD first allocates v1, v3, v7, v9, and v10 to node 1 and then it will 

meet the same situation as EAD, in which PEBD has to decide whether or not to 

duplicate v1. Once again, PEBD will calculate LAST(v2) - LACT(v1) = 4 – 3 = 1 < cc12 = 

3. Thus, if duplicate T1, the scheduling length can be shortened by 2 seconds. However, 

the energy consumption will be increased by en1 – el12 = 44w×3 – 33.6w×3 = 31.2J. 

Now PEBD will decide based on the result of ratio (31.2/2 =15.6<Threshold=25) to 

duplicate T1. The duplication of v1 is made possible by PEBD because the replica helps 

in reducing the schedule length without significantly increasing energy consumption. 

And then, in the next iteration, EAD assigns task v5 to node 3, followed by task v2, and 

v1, which are not duplicated on node 3 because we cannot shorten the schedule length 

(LAST(v5) - LACT(v2)=16-7=9> cc25=3). The final scheduling decision of PEBD is:  



38 

 

Processor 1: Task 10� Task 9� Task 7� Task 3� Task 1 
Processor 2: Task 8� Task 6� Task 2� Task 1 
Processor 3: Task 5 
Processor 4: Task 4� Task 1 

4.3 Time Complexity Analysis 

In this subsection, we will analyze the time complexity of the EAD and PEBD 

algorithms.  

Theorem 1. The time complexity of EAD and PEBD is O(|V|2). 

Proof. The EAD and PEBD algorithms perform the three main phases respectively 

described in Sections 4.2. In the first phase, EAD and PEBD traverse all the tasks of the 

DAG to compute the levels of the tasks. The time complexity to calculate the levels is 

O(|E|), where |E| is the number of messages. This is because all the messages have to be 

examined in the worst case. It takes O(|V|log|V|) time to sort the tasks in the non-

increasing order of the levels, where |V| = n is the number of tasks. Therefore, the time 

complexity of phase 1 is O(|E| + |V|log|V|). 

The second phase is performed to obtain all the important parameters like EST, ECT, 

FP, LACT, and LAST. Phase 2 calculates these parameters by applying the depth first 

search with the complexity of O (|V| + |E|). 

Recall that in phase 3 the tasks are allocated to the computational nodes. First, all the 

tasks are checked and allocated to one or more nodes in the while loop based on 

duplication strategies. In the worst case, all the tasks in the critical path must be 

duplicated, meaning that the time complexity is O(h|V|)time, where h is the height of the 

DAG. Since h is less than or equal to |V|, the complexity of the third phase is O(|V|2). 
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Consequently, the overall time complexities of EAD and PEBD are O(2|E| + |V|(lg|V|+1) 

+ |V2| = O(|E|+|V|2). For a dense DAG, the number of messages are proportional to 

O(|V|2). Hence, the time complexities of EAD and PEBD are O(|V|2).                         

4.4 Simulation Results 

Now we are in the position to evaluate the effectiveness of the proposed energy-

aware duplication scheduling algorithms. In this section, we compare EAD and PEBD 

with two existing scheduling algorithms: the non-duplication-based scheduling heuristic 

(NDS or MCP) [52], and the task duplication-based scheduling algorithm (TDS) [49]. In 

order to fairly compare our scheduling algorithms with existing algorithms, we set the 

same evaluation metrics and parameter tune rule for all simulation results of different 

algorithms. Additionally, we choose popular processors of AMD and Intel companies 

and popular interconnections like Myrinet and Infiniband network as our simulation 

platform, which can make our simulation results more practical and acceptable to 

industry people. 

4.4.1 Simulation Metrics and Parameters 

Schedule length and energy consumption are the major two metrics used in our 

simulation to evaluate the performance of different algorithms. The basic but important 

rule we followed in our simulations is OTOP (Once Tuning One Parameter). In other 

words, parameters in the same simulation group results are exactly the same except one 

parameter is different. By tuning only one parameter, we can clearly observe its impact 

to clusters and easily find out the system sensitivity to this specific parameter. The 
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important parameters tuned in our simulations include Communication-to-Computation 

Ratio (CCR), energy threshold, interconnection type and processor type. It is to be noted 

that CCR is an overall average time parameter to measure the communication time and 

computation time, which is defined in equation (1). Generally speaking, data transfer 

intensive applications have higher CCR, whereas the CCR of computation-intensive 

applications is lower.  

The processors used in our simulator are AMD Athlon 64 X2 4600+ with 85W TDP, 

AMD Athlon 64 X2 4600+ with 65W TDP, AMD Athlon 64 X2 3800+ with 35W TDP, 

Intel Core 2 Duo E6300 processor. Figure 4.5 demonstrates the energy consumption rate 

of each processor in idle, light, busy and heavy working mode. The data source is from 

the latest test report of Xbit Lab (http://www.xbitlabs.com).  

Myrinet and Infiniband network are the interconnections used in our simulations. 

The energy consumption parameters used for Myrinet and Infiniband are 33.6w and 65w 

respectively, which are based on the products technical report from Myricom and Qlogic 

company. 
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(a) Energy parameter in idle mode (b) Energy parameter in light mode 

(c) Energy parameter in busy mode (d) Energy parameter in heavy mode 

Figure 4.5 Energy consumption parameters in different working modes 

We simulated four DAGs, which include Fast Fourier Transform Tree (15 tasks), 

Gaussian Elimination Tree(18 tasks), Robot Control application (88 tasks) and Sparse 

Matrix Solver application (96 tasks). The detailed tree structures are shown in Figure 4.6 

and the tree structure files of two actual applications (Robot and Sparse) can be 

downloaded at Standard Task Graph website [53]. Robot Control DAGs represents a 

task graph for Newton-Euler dynamic control calculation for the 6-degrees-of-freedom 

Stanford manipulator [54]. Sparse Matrix Solver DAGs represents a task graph for a 

random sparse matrix solver of an electronic circuit simulation that was generated using 

a symbolic generation technique and the OSCAR FORTRAN compiler [55] [56]. 
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T2 T3
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T8 T9 T10 T11

T12 T13 T14 T15

 

(a) Fast Fourier Transform 

 

(b) Gaussian Elimination 

 

(c) Robot Control 

 

(d) Sparse Matrix Solver 

Figure 4.6 Structure of simulated trees and applications 
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4.4.2 Impact of Processor Types to Energy 

Processors play an important role in the computing capacity and energy consumption 

of clusters.  In order to study impacts of processors on the performance of EAD and 

PEBD, we choose three different AMD processors and one Intel processor as CPUs used 

in our simulated clusters. All the power consumption parameters of these four types of 

processors are listed in Figure 4.5. Table 4.3 shows the simulation environment and 

according parameters of the clusters which we collect data for Figures 4.7. 

Table 4.3 Simulation environment of processor impact 

 

 

Figure 4.7(a) Energy consumption for different processors (Gaussian, CCR=0.4)  

Simulation environment 
Processor type Athlon 4600+ 85W,  Athlon 4600+ 65W 

Athlon 3800+ 35W,  Intel Core2 Duo E6300 
Processor working mode Heavy 
Interconnection Myrinet 
Simulated Trees or 
Applications 

Gaussian Elimination, Fast Fourier 
Transform 

CCR (0.4, 4) 
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Figure 4.7(b) Energy consumption for different processors (Gaussian, CCR=4) 

 

Figure 4.7(c) Energy consumption for different processors (FFT, CCR=0.4) 

 

Figure 4.7(d) Energy consumption for different processors (FFT, CCR=4) 
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We observe from Figures 4.7 that EAD and PEBD can provide significant 

performance improvements for these four kiMCP of processors. In general, EAD and 

PEBD perform much better on Athlon 4600+ 85W than Intel Core2 Duo E6300. An 

intriguing result for EAD or PEBD is that a larger discrepancy between CPU_heavy and 

CPU_idle leads to a more pronounced performance enhancements. For instance, the gap 

between CPU_heavy and CPU_idle (i.e., 104W – 15W = 89) in Athlon 4600+ 85W, 

which is bigger than that (i.e., 44W – 26W = 18W) of Intel Core2 Duo E6300; EAD and 

PEBD outperform TDS by 19.47% and 19.36% in Athlon 4600+ 85W whereas the 

percentage drops down to 3.73% and 3.76% respectively in Intel Core2 Duo E6300. We 

did exactly the same experiments in FFT tree (results shown in Figures 4.7(c) and (d)) 

and found very similar trend. The implication of the result is that processors with large 

descrepency between CPU_heavy and CPU_idle can benefit greatly from EAD and 

PEBD, regardless of the value of CCR. This implication provides a useful suggestion to 

users what kind of processor is more suitable for our algorithms. 

4.4.3 Impact of Interconnection Types to Energy 

Network energy consumption is a second critical factor affecting total energy 

dissipation in clusters. In this subsection, our goal is to study the impacts of different 

interconnections on the performance of the EAD and PEBD algorithms. The underneath 

interconnections used in this group of simulation results are Myrinet and Infiniband, 

which are two of the popular networks implemented in modern clusters. Table 4.4 shows 

the simulation environment and according parameters of the clusters which we collect 

data for Figures 4.8. 
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Table 4.4. Simulation environment of interconnection impact 

 

 

Figure 4.8(a) Total energy consumption (Robot Control, Myrinet)  

 

  

Figure 4.8(b) Total energy consumption (Robot Control, Infiniband) 

Simulation environment 
Processor type Intel Core2 Duo E6300 
Processor working mode Heavy 
Interconnection Myrinet , Infiniband 
Simulated Trees or 
Applications 

Robot Control , Sparse Matrix Solver 

CCR (0.1, 0.5, 1, 5, 10) 
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Figure 4.8(c) Total energy consumption (Sparse Matrix Solver, Myrinet) 

 

Figure 4.8(d) Total energy consumption (Sparse Matrix Solver, Infiniband) 

From Figures 4.8, we can find out that the overall performance of EAD and PEBD 

are better than TDS and MCP. Another interesting observation is that both EAD and 

PEBD work better, i.e. save more energy, when the interconnection is Myrinet. For 

example, for the same Robot Control application, EAD outperformance TDS in terms of 

energy conservation for 16.65% (CCR=0.1) and 13.25% (CCR=0.5) if we use Myrinet, 

whereas the numbers will change to 5% (CCR=0.1) and 3.14% (CCR=0.5) when we 

choose Infiniband. Similary, for the same Sparse Matrix Solver application, PEBD 
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outperformance MCP in terms of power consumption for 4.64% (CCR=5) and 17.25% 

(CCR=10) if we use Myrinet, whereas the numbers will change to 4.17% (CCR=5) and 

6.35% (CCR=10) when we choose Infiniband. Since the interconnection power 

consumption rate used in our siumlations for Myrinet and Infiniband are 33.6w and 65w 

respectively, we can see that the efficiency of our algorithms are somehow degraded by 

the high interconnection power consumption. In other words, less portion of network 

energy consumption is a positive factor to make our algorithms have better performance. 

4.4.4 Impact of Application Types to Energy 

Will the application type affect the efficiency of EAD and PEBD? If it does, what is 

the most important factor? In order to answer these questions, we simulated Robot 

Control and Sparse Matrix Solver applications under exactly the same environments, 

which means we have same processor, same interconnections, same CCRs and even 

same energy threshold. Figures 4.9 shows the simulation results which illustrate the 

different efficiency of both EAD and PEBD for different applications. Table 4.5 shows 

the simulation environment of Figures 4.9. 

Table 4.5 Simulation environment of application impact 

 

Simulation environment 
Processor type Intel Core2 Duo E6300  

Athlon 3800+ 35W  

Processor working mode Heavy 
Interconnection Myrinet 

Simulated Trees or 
Applications 

Robot Control , Sparse Matrix Solver 

CCR (0.1, 0.5, 1, 5, 10) 
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Figure 4.9(a) Energy of Intel Core2 Duo E6300 (Robert Control, Myrinet) 

 
Figure 4.9(b) Energy of Intel Core2 Duo E6300 (Sparse Matrix Solver, Myrinet) 

 
Figure 4.9(c) Energy of Athlon 3800+ 35W (Robert Control, Myrinet) 



50 

 

 
Figure 4.9(d) Energy of Athlon 3800+ 35W (Sparse Matrix Solver, Myrinet) 

From Figures 4.9, we can see that EAD and PEBD can save more energy in the 

Robot Control applications. For example, in the Robot Control application, EAD can 

save more energy than TDS up to 17.07% (CCR=0.1, Athlon 3800+ 35W) and 15.78% 

(CCR=0.5, Athlon 3800+ 35W), whereas the numbers will drop down to 6.89% 

(CCR=0.1, Athlon 3800+ 35W) and 5.37% (CCR=0.5, Athlon 3800+ 35W) for Sparse 

Matrix Solver application. Since all the other parameters are exactly the same except the 

application structures (see Figures 4.9(c) and (d)), we can draw the conclusion that 

application types do affect the efficiency of our algorithms. Based on the data provided 

by Standard Task Graph Set website [53], the parallelism of Robert Control and Sparse 

Matrix Solver applications are 4.363796 and 15.868853 respectively, which means 

Robert Control has more task dependencies thus there exists more possibility for EAD 

and PEBD to consume energy by judiciously duplicating tasks. In other words, the task 

dependencies and parallelism level are the key points to decide the efficiency of our 

algorithms.  
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4.4.5 Impact of CCR to Energy 

Group Figures 4.10 illustrate the CCR impact to processor energy, interconnection 

energy and total energy. Four observations are evident from this group of experimental 

results. First, the overall performance of EAD and PEBD outperforms MCP and TDS. 

Second, both EAD and PEBD are very sensitive to CCR. For example, when CCR is 

0.1, EAD and PEBD perform 11.33% and 8.33% better than TDS. However, the 

performance drops down to 9.39% and 6.85% if we tune the CCR to 0.5. Third, MCP 

provides the greatest energy savings if CCR is less than 1. This is because energy cost 

due to interconnection is extremely low with a small CCR value. Finally yet 

importantly, the communication energy cost will dramatically increase when CCR going 

higher and become the major power consumer of whole system. 

Table 4.6 Simulation environment of CCR impact 

Processor type: Athlon 3800+ 35W 
Processor working mode: Busy 
Interconnection: Myrinet 
Simualated Application: Robot Control 
CCR: (0.1, 0.5, 1, 5, 10) 

 

 

Figure 4.10(a) CPU energy consumption under different CCRs  
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Figure 4.10(b) Interconnection energy under different CCRs  

 

Figure 4.10(c) Total energy consumption under different CCRs 

4.4.6 Impact of Processor Status to energy 

Processors may have different working modes like idle, not busy, busy and 

extremely busy. The energy consumption rate is different under different modes. In 

order to speculate the impact of processor status to energy consumption, we simulated 

three working modes, for AMD Athlon 3800+ 35W processor. When processor is 

running applications like widows media player, 3D graph generation, CD burn, it is in 
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light, busy and heavy modes respectively. The simulation results are shown in Figures 

4.11 and the corresponding energy consumption parameters for each working mode 

could be found in Figures 4.5. 

 

 

Figure 4.11(a) CPU energy consumption under light mode 

 

 

Figure 4.11(b) CPU energy consumption under busy mode 
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Figure 4.11(c) CPU energy consumption under heavy mode 

 

Figure 4.11(d) Total energy consumption under light mode 

 

Figure 4.11(e) Total energy consumption under busy mode 
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Figure 4.11(f) Total energy consumption under heavy mode 

If we look at Figures 4.11(a) (b) (c) together, you will find the CPU energy 

consumption of EAD and PEBD are various under different modes, which indicates 

EAD and PEBD have different duplication decisions. If we compared the results shown 

in Fig.4.11 (d) (e) (f), we can easily find that EAD and PEBD work more efficiently 

under heavy mode. For example, EAD and PEBD can conserve 17.07%, 12.6% more 

energy than TDS in heavy mode, whereas these numbers will become 11.33%, 8.33% in 

busy mode and 4.43%, 3.23% in light mode.   Recall that in the heavy mode, the 

processor has the biggest energy consumption gap between CPU idle and CPU working, 

we can easily find out the same conclusion as section 6.2, which tells us processors with 

large energy consumption descrepency betweent CPU_working and CPU_idle can 

benefit greatly from EAD and PEBD, regardless of the value of CCR. 

4.4.7 Impact to Schedule Length 

Group Figures 4.12 depict the experimental results used to evaluate the overall 

performance of the four scheduling algorithms in term of schedule length. Figures 
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4.12(a) and (b) show the scheduling lengths of schedules made by the four algorithms 

for the Gaussian Elimination and Fast Fourier Transform applications. The results show 

that EAD and PEBD efficiently reduce energy consumption without adversely affecting 

performance of the applications. For example, on average the schedule lengths of 

Gaussian Elimination produced by EAD and PEBD are merely 5.7% and 2.2% larger 

than those generated by TDS. Similarly, on average the schedule lengths of Fast Fourier 

Transform yielded by EAD and PEBD are only 2.92% and 2.02% longer than that of 

TDS. These results suggest that it is worth trading a marginal degradation in schedule 

length for a significant reduction in energy dissipation for cluster computing systems. 

 

Figure 4.12(a) Schedule length of Gaussian Elimination 

 

Figure 4.12(b) Schedule length of Sparse Matrix Solver 
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4.5 Summary 

In this chapter, we addressed the issue of allocating tasks of parallel applications 

running on clusters with an objective of shortening schedule lengths while conserving 

energy. Specifically, we proposed two improved duplication-based scheduling 

algorithms, namely the Energy-Aware Duplication algorithm (or EAD) and the 

Performance-Energy Balanced Duplication algorithm (or PEBD). EAD and PEBD are 

designed and implemented to provide energy savings in clusters by duplicating tasks on 

more than one computational node. While EAD is able to aggressively provide the 

greatest energy savings by making use of task replicas to eliminate energy-consuming 

messages, PEBD aims at making tradeoffs between energy conservation and 

performance. 

To facilitate the presentation of EAD and PEBD, we built mathematical models to 

describe a cluster system framework, parallel applications with precedence constraints, 

and energy consumption model. We conducted extensive experiments and our 

experimental results show that EAD and PEBD are more energy-efficient compared 

with other two existing allocation schemes called MCP(or NDS) and TDS. Our 

conclusion is that EAD and PEBD are capable of trading a marginal degradation in 

schedule length for a significant reduction in energy consumption for homogeneous 

cluster computing systems.  
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Chapter 5 

Energy-Efficient Scheduling For 
Grids 

In the previous chapter, we have designed two energy-efficient scheduling 

algorithms for homogeneous clusters, which comprise a set of identical characteristics in 

terms of CPU speed, memory capacity, power consumption rate and interconnections. 

However, these algorithms cannot be directly used for heterogeneous high performance 

computing platforms like grids. In this chapter, we propose two energy-aware 

scheduling algorithms, called Energy-Efficient Task Duplication Scheduling (EETDS) 

and Heterogeneous Energy-Aware Duplication Scheduling (HEADUS), which attempt 

to make the best tradeoffs between performance and energy savings for parallel 

applications running on heterogeneous grids. 

This chapter is organized as follows. Section 5.1 presents the motivation of this 

study. In section 5.2, we define the mathematical models used in our grid systems, 

which include a grid model, parallel tasks model, and an energy consumption model. 

Next, in section 5.3, we discuss the job scheduling in grid systems. In section 5.4, we 

present the proposed EETDS and HEADUS scheduling algorithms in detail and 
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illustrate how they work using a concrete example. Section 5.5 proves that time 

complexity of EETDS and HEADUS. Experimental results with qualitative comparisons 

to other two existing approaches are analyzed in section 5.6. Finally, section 5.7 

summarize the entire chapter. 

5.1 Motivation 

Although it is common that a new and stand-alone cluster system is homogeneous in 

nature, upgraded clusters or networked clusters are likely to be heterogeneous in 

practice. In other words, heterogeneity of a variety of resources such as CPU, memory, 

and interconnection, may exist in cluster systems. This is because, to improve 

performance and support more users, new nodes that might have different characteristics 

than the original ones may be added to the systems or several smaller clusters of 

different characteristics may be connected via a high-speed network to form a bigger 

one. Accordingly, heterogeneity may exist in a variety of resources such as CPU, 

memory, and interconnection etc.  

Computing grids are one of the typical distributed systems with heterogeneity. A 

computational grid is a type of parallel and distributed system that enables the sharing, 

selection, and aggregation of resources distributed across multiple administrative 

domains based on the resources’ availability, capacity, performance, cost and users' 

quality-of-service requirements. Literally speaking, a large-scale distributed system that 

qualifies the following three conditions could be envisioned as a computational grid 

[57]. (1) Computing resources are not administered centrally; (2) open standards are 

used; and (3) non-trivial quality of service is achieved. Grid applications distinguish 
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themselves from traditional distributed applications because they not only 

simultaneously use large number of resources, but also have stringent performance 

requirements, dynamic resource requirements, and complex communication structures 

[58]. As our economy shifts from paper-based to digital information management, large-

scale grid computing platforms have been widely deployed to support the complicated 

scientific and commercial applications which require intensive data processing and data 

storage in nature. As you can imagine, the powerful computing capability of grids is 

actually in the cost of huge energy consumption. Therefore, designing energy-efficient 

algorithms for grids becomes highly desirable.  

The research shown in this chapter is motivated by the above reasons. However, we 

realized that the design is much more challenging compared with the design for 

homogeneous clusters. In the study shown in this chapter, we take into account multiple 

design objectives, including performance (measured by throughput and schedule length), 

energy efficiency, and heterogeneities.  

5.2 System Model 

In this section, we describe mathematical models used to represent heterogeneous 

grids, parallel applications with precedence constraints. Since the energy consumption 

model is the same to the model used in cluster systems, we do not explain it again in this 

chapter. Please refer to section 4.1.3 for details.  
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5.2.1 Grid Systems Model 

A grid system consists of a set P = {p1, p2,..., pm} of heterogeneous computing nodes 

(hereinafter referred to as nodes) connected by a high-speed interconnect like fast 

Ethernet, gigabit Ethernet, SCI, FDDI or Myrinet. A heterogeneous grid can be 

represented by a graph, where computing nodes are vertices. There exists a weighted 

edge if a pair of corresponding nodes can communicate with each other. An n×m binary 

allocation matrix X is used to reflect a mapping of n tasks to m heterogeneous nodes. 

Thus, element xij in X is “1” if task ti is assigned to node pj and is “0”, otherwise. Since 

our scheduling algorithms will be verified in a heterogeneous environment, it is 

imperative to define the following constraints for our heterogeneous grid system model. 

First, different nodes have different preference with respect to tasks, meaning that a 

node offering task ti a shorter execution time does not necessarily run faster for another 

task tj. Thus, different nodes in a heterogeneous cluster favor different kinds of tasks. 

Second, execution times of tasks on different nodes may various because the nodes may 

have various clock speed and processing capabilities. Third, the transmission rates of 

network interconnections depend on underlying network types. Last, energy 

consumption rates of the nodes and interconnections may not necessarily be identical.  

To simply the system model without loss of generality, we assume that all nodes are 

fully connected with dedicated and reliable network interconnections. Each node 

communicates with other nodes through message passing; communication time between 

two tasks assigned to the same node is negligible. In addition, we assume computation 

and communication can take place simultaneously in our system model. This 

assumption is reasonable because each computing node in a modern cluster has a 
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communication coprocessor that can be used to free the processor in the node from 

communication tasks. Since we primarily focus on energy consumption, each node in 

the system has an energy consumption rate measured by Joule per unit time. 

Furthermore, each network link is characterized by its energy consumption rate that 

heavily relies on the link’s transmission rate, which is modeled by weight wij of the edge 

between nodes pi and pj. 

5.2.2 Parallel Tasks Model 

Parallel tasks with dependencies are represented by Directed Acyclic Graphs 

(DAGs) in this study. Throughout this paper, a collaborative application is specified as a 

pair, i.e, (T, E), where T = {t1, t2, ..., tn} represents a set of parallel tasks, E is a set of 

weighted and directed edges representing communication cost among tasks, e.g., (ti, tj)∈ 

E is a message transmitted from task ti to tj. Precedence constrains of the parallel tasks 

are represented by all edges in set E. Communication time spent in delivering a message 

(ti, tj) ∈ E from task ti on node pu to tj on pv is determined by sij/buv, where sij is the 

message’s data size and buv is the transmission rate of a link connecting node pu and pv. 

The execution times of task ti running on a set of heterogeneous computing nodes are 

modeled by a vector, i.e., ( )m
iiii cccc ,,, 21

L= , where j
ic  represents the execution time of 

ti on the jth computing node. If task ti cannot be executed on node pj, the corresponding 

execution time j
ic  in the vector ci is marked as ∞. We define a task as an entry task if it 

does not have any predecessor tasks and; similarly, a task is called an exit task if there is 

no task following behind it. 
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An Example. Figure 5.1 illustrates the task description of a parallel application 

represented by a task graph, a mapping matrix, and a cluster with three heterogeneous 

computing nodes. The task graph contains ten tasks; the computing node graph (or 

processor graph) has three heterogeneous computing nodes. i
activeEN  is the energy 

consumption rate of the ith computing node in the busy mode, and iidleEN  is the energy 

consumption of the ith computing node in the idle mode. Similarly, ijactiveEL  and ij
idleEL  is 

the energy consumption rate of the link between the ith and jth nodes when data is being 

transferred and when no data are being transmitted. For example, the energy 

consumption rates of the network link between nodes p1 and p2 are 3012 =activeEL  and 

12
idleEL  = 10 when the link is in the busy and idle modes, respectively. The energy 

consumption rates of node p1 is 1
activeEN = 25 and 81 =idleEN  when it is active and idle, 

respectively. We assume that the transmission rate between two computing nodes is 

same in both directions. The execution time vector of each task on the three processors 

is illustrated in Figure 5.1(d). For example, the execution times of task t1 on nodes p1, p2, 

and p3 are 6.7, 3.9, and 2.0 time units, respectively. Here we should note that task t9 

couldn’t be allocated to p1 because the corresponding item in the mapping matrix is 

marked as ∞.  
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Figure 5.1 Example task graph and heterogeneous processor graph  

5.3 Job Scheduling in Grids 

Computational grids are complex multivariate environments, which are made up of 

numerous grid entities needed to be managed. The job scheduling module plays a key 

role in making coherent and coordinated use of ubiquitous and heterogeneous resources 

in a grid system.  

The responsibility of the scheduling module includes resource allocations and task 

scheduling.   Figure 5.2 and Figure 5.3 depict the process of job scheduling in grids from 

the prospective of system and task level respectively. In system view, the job scheduler 
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of grids contains two parts, a global scheduler and several local schedulers. The global 

level scheduler (or grid level scheduler) coordinates multiple local schedulers while 

choosing the most appropriate resources for grid applications. It is worth noting that the 

global level scheduler in most cases has no direct control over grid resources. 

Consequently, the global level schedule has to communicate with and precisely trigger 

local level schedulers to complete tasks of jobs submitted by users. The local level 

schedulers in turn directly handle resources by accessing to local resources. Moreover, 

the global level scheduler is responsible for collaborating with other fundamental 

middleware modules such as information services, communication services, and 

reliability controllers.  

 

Figure 5.2 The system view of scheduling in a computational grid 
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The grid level scheduler not only implements energy-efficient scheduling policies 

but also deals with resource heterogeneities. The grid level scheduler has the following 

unique attributes. 

Reclamation of allocations 

Target resources may be reclaimed by the local administrator so that the reclaimed 

resources can be allocated to tasks with higher priorities. In this case, the scheduler must 

be able to reclaim allocated resources and reallocate resources to corresponding tasks. 

Task and data migrations 

This attribute signifies that any task can be interrupted in computing node and the 

task along with its corresponding data can be migrated to another node. The scheduling 

module leverages the task and data migrations to improve the performance and 

reliability of grid systems. 

Exclusive allocations 

It is common that some computing resources might have particular preferences or 

exclusiveness for different types of tasks. For example, a computing node offering a 

shorter execution time for a task does not necessarily run faster for another task. Even 

worse, some computing nodes may be exclusive to specific types of tasks. Thus, the 

scheduling module has to resolve conflicts between tasks and resources. 

Tentative allocations 

To make scheduling decisions with high energy efficiency, it is imperative for the 

scheduling module to calculate and compare task allocation cost by tentatively 

allocating tasks to a wide range of available resources. The scheduler is able to 

efficiently complete revocation of tentative allocations.  
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Dependent task allocations 

A grid application may be consist of multiple dependent tasks, whose dependencies 

must be handled by the scheduling module. In our framework, a task analyzer provides 

detailed information of tasks to scheduler; the scheduler makes an effort to first allocate 

tasks with high dependencies to the same computing resources to significantly reduce 

communication overheads. 

From the task view, once the scheduling module has collected all the information of 

currently available resources, the module can allocate shared resources to parallel tasks 

after judiciously choosing target recourses in accordance with specific scheduling 

policies. Figure 5.3 outlines the job scheduling flow in computational grids. During the 

course of jobs’ execution, a result collector periodically checks randomly returned sub-

results and transfers the sub-results to the grid level scheduler. The grid level scheduler 

further passes on the latest information to all tasks, thereby guaranteeing that the tasks 

with dependencies can immediately be executed their precedence constraints are met 

(i.e., sub-results become available). 
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Figure 5.3 The task view of scheduling in a computational grid 

 

5.4 Energy-Efficient Scheduling Algorithms 

In this section, we present the details of scheduling algorithms used in our Grid 

scheduling framework. First, we will explain how the task analyzer can provide 

information about task dependencies. Next, the proposed EETDS and HEADUS will be 

explained in three major phases. The first phase is called grouping, in which tasks with 

highest dependency will be grouped together. Phase two is called task duplication, 

which aims to duplicate as many tasks as possible if the energy cost will not be 

significantly increased. In phase three, the scheduler will tentatively allocate the grouped 

tasks to different available resources and calculate the energy cost. Finally, the scheduler 
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will make its final (energy-performance balanced) decision and completed the real 

allocations.  

5.4.1 The Task Analyzer 

The task analyzer is responsible for analyzing tasks characteristic and task 

dependencies. In addition, the task analyzer has to accurately estimate execution times 

of tasks based on task types or information provided by users. In our framework, parallel 

tasks with dependencies are represented by Directed Acyclic Graphs (DAGs). 

Throughout this paper, a grid application is specified as a pair, i.e, (T, E), where T = {t1, 

t2, ..., tn} represents a set of parallel tasks, E is a set of weighted and directed edges 

representing communication cost among tasks, e.g., (ti, tj)∈ E is a message transmitted 

from task ti to tj. Task dependencies among the parallel tasks are represented by all 

edges in set E. Communication time spent in delivering a message (ti, tj) ∈ E from task ti 

on node pu to tj on pv is determined by sij/buv, where sij is the message’s data size and buv 

is the transmission rate of a link connecting node pu and pv. The execution times of task 

ti running on a set of heterogeneous computing nodes are modeled by a vector, i.e., 

( )m
iiii cccc ,,, 21

L= , where j
ic  represents the execution time of ti on the jth computing 

node. If task ti cannot be executed on node pj, the corresponding execution time j
ic  in 

the vector ci is marked as ∞. We define a task as an entry task if it does not have any 

predecessor tasks and; similarly, a task is called an exit task if there is no task following 

behind it. The task analyzer will take the user request (usually it contains the necessary 

task description information) as input and generate DAGs as output. Figure 5.4 

illustrates a typical task description file and the DAG generated by the task analyzer. 
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Figure 5.4 A directed acyclic graph (DAG) analyzed by the task analyzer 

 

5.4.2 Grouping Phase 

The grouping phase of our algorithms is to associate the most relevant tasks (i.e. 

tasks in the same critical paths) into groups. Given a parallel application modeled as a 

task graph or DAG, the grouping phase yields a group-based graph of the DAG. Since 

all tasks in a group are allocated to the same computing node where there are no waiting 

times among the tasks within the group, we can reduce communication overheads of 

highly dependent tasks with intensive communications. Additionally, a task-duplication 

strategy is applied in the process of grouping to further improve system performance by 

replicating tasks into multiple computing nodes if schedule lengths can be shortened. 
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More specifically, the grouping phase can be finely divided into two sub-steps, namely, 

original task sequence generating and parameters calculating. Since these two steps are 

quite similar with the first two steps used for EAD and PEBD.  Please refer to section 

4.2.1 and section 4.2.2 for details.  

5.4.3 Task Duplication Phase 

After the grouping phase, the original task sequence should be generated and all 

important parameters should be calculated. Once the original task sequence and 

important parameters are available, we are ready to apply the duplication strategy to 

complete the last step of the grouping phase. Figure 5.5 illustrates the main idea of the 

duplication strategy using a simple example. The left part of Figure 5.5 shows a DAG 

for four tasks with precedence constraints.  The execution times of task T1, T2, T3, T4 are 

8s, 10s, 15s, and 6s. The communication times among the tasks are 6s, 5s, 2s, and 4s, 

respectively. The right part of Figure 5.5 provides three schedules made by the linear 

scheduling strategy, the non-duplication strategy, and the duplication strategy, 

respectively. The linear schedule has the longest schedule length because all the tasks 

allocated to one computing nodes have to be executed in a sequential order. The non-

duplication schedule reduces the schedule length by allowing T2 and T3 running in 

parallel on two computing nodes. The duplication schedule further improves the 

performance by redundantly executing T1 on the second node. Thus, the duplication 

strategy trades CPU times for communication overheads. 



 

Figure 5.5 

 

Figures 5.6 and 5.7 illustrate in details the implementation of EETDS and HEADUS 

with respect to the process of forming a final task group graph. Initially, no task is 

marked as “grouped” and the list of clusters is initialized to be empty. Next, the 

algorithms consider the first task and insert it to a newly formed group called G1. Then 

in the following iterations, the algorithms go through all the tasks along the favorite 

predecessor chain, attempting to add all the tasks in the critical path to the same group. 

Once a task is added to a group, it will be immediately marked as “grouped”. If the task 

being processed is the entry task, the current iteration will end and a new iteration will 

start in the next loop by choosing the first ungrouped task from the original 

sequence generated in step 1. During the process of walking through multiple critical 

paths, we may find some tasks have been added to a group. At this point, the duplication 

strategy is responsible to make the decision whether or not to duplicate thi
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sider the first task and insert it to a newly formed group called G1. Then 

in the following iterations, the algorithms go through all the tasks along the favorite 

predecessor chain, attempting to add all the tasks in the critical path to the same group. 

ce a task is added to a group, it will be immediately marked as “grouped”. If the task 

being processed is the entry task, the current iteration will end and a new iteration will 

start in the next loop by choosing the first ungrouped task from the original task 

sequence generated in step 1. During the process of walking through multiple critical 

paths, we may find some tasks have been added to a group. At this point, the duplication 

strategy is responsible to make the decision whether or not to duplicate this task to 
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multiple groups by comparing the value of LAST(t) - LACT(t’) and the communication 

time cc(t, t’). A task will be duplicated if the schedule length can be reduced and the task 

will not be duplicated otherwise. At the end of the process, the task graph has been 

divided into groups. Finally, the group graph is generated by creating edges among all 

the groups communicating with each other. The algorithms then set a weight for each 

edge to represent corresponding communication cost.  

          

 

Figure 5.6 Pseudo code of the grouping phase in the EETDS algorithm  

 

 

1. t = first waiting task of original task sequence; 
2. i =  1; 
1. add t to Gi; /* mark t as “grouped” */ 
2. while (not all tasks are grouped) do 
3.   t’  = FP(t); 
4.   if (t’ has already been added to one cluster) then 
5.     if (LAST(t) - LACT(t’) < cc(t, t’)) then /* if duplicate t’ , we can shorten the schedule 

length */ 
6.         add t’  to Gi; /*duplicate t’ , mark t’  grouped */ 
7.         if t has another predecessor z ≠ t’  has not yet been grouped then 
8.           t’ = z; 
9.         else 
10.           if t’  is entry task then 
11.             t’  = the next task that has not yet been grouped; 
12.             i++ ; 
13.     else 
14.       for another predecessor z of x, z≠ t’ ,  
15.       if  (ECT(t’)+ccuv = ECT(z) + cc(t, t’)) and z hasn’t been grouped) then  
16.         t’ = z; /* do not duplicate*/ 
17.   else allocate t’  to Gi; /*also mark t’  as “grouped” */ 
18.   t = t’ ; 
19.   if t is entry task then 
20.     t = the next task that has not yet been added to a group; 
21.     i++ ; 
22.     assign t to Gi; /*also mark t as grouped*/ 
23. return group graph; 
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Figure 5.7 Pseudo code of the grouping phase in the HEADUS algorithm 

The major difference between EETDS and HEADUS is that HEADUS makes 

tradeoff between energy savings and schedule lengths, in which task duplications are 

strictly forbidden if the duplications do not exhibit energy conservation (see Steps 9-10). 

In other words, duplications are infeasible if they result in a significant increase in 

energy consumption (e.g., the increase exceeds a threshold). In doing so, the HEADUS 

algorithm ensures that schedule lengths are optimized using task duplication without 

greatly affecting energy conservation. 

1. t = first waiting task of original task sequence; 
2. i =  1; 
3. assign t to Gi; 
4. while (not all tasks are grouped) do 
5.   t’  = FP(t); 
6.   if (t’  has already been added to one cluster) then 
7.     if (LAST(t) - LACT(t’) < cc(t, t’)) then /* duplicate t’ , we can shorten the schedule 

length */ 
8.       moreenergy = ENt’ – ELt’t; /*energy increase*/ 
9.       if (moreenergy ≤ threshold T) then /* increased energy less than our threshold*/ 
10.         add t’  to Gi; /*duplicate t’, mark t’  grouped */ 
11.         if t has another predecessor z ≠ t’  has not yet been allocated to any node then 
12.           t’ = z; 
13.         else 
14.           if t’  is entry task then 
15.             t’  = the next task that has not yet been assigned to a node; 
16.             i++ ; 
17.       else 
18.         for another predecessor z of t, z ≠ t’ ,  
19.         if (ECT(t’)+cct’t = ECT(z) + cczt) and z hasn’t been allocated) then 
20.           t’ = z; /* do not duplicate*/ 
21.     else 
22.       for another predecessor z of x, z≠ t’,  
23.       if  (ECT(t’)+ cc(t, t’) = ECT(z) + cc(t,z)) and z hasn’t been allocated) then  
24.         t’ = z; /* do not duplicate*/ 
25.   else add t’  to Gi; /*duplicate t’, mark t’  grouped */ 
26.   t = t’ ; 
27.   if t is entry task then 
28.     t = the next task that has not yet been allocated to a computational node; 
29.     i++ ; 
30.    add t’  to Gi; /*duplicate t’, mark t’  grouped */ 
31. return schedule list; 
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5.4.4 Energy-Efficient Group Allocation Phase 

After the grouping stage, the DAG has been partitioned into a number of groups, 

which will be allocated to heterogeneous computing nodes by the next step in an energy-

efficient way. The main objective for this phase is to generate an allocation list with 

minimized energy dissipation. Recall that there might be exclusion relations among 

some tasks and nodes, e.g. task t9 couldn’t be allocated to p1 as shown in Figure 5.1. 

Therefore, we have to verify whether or not a node and a group are exclusive to each 

other. In other words, we have to assure that all tasks in the group are exclusion 

compatible with the node to be allocated on. If any task is exclusive to a current node, 

our algorithm performs the same verification process on another computing node until 

an exclusion compatible node is identified. In real world clusters, most computing nodes 

are compatible with various parallel tasks. Otherwise the clusters cannot provide widely 

used services for end users. To make our algorithm practical, we implement the 

compatible verification process in our algorithm to handle exclusion issues. 

Once a group and a computing node pass the compatible verification process, the 

group will be temporarily allocated to the node. Next, the algorithms calculate energy 

consumption caused by the group running on the node. The estimation of the energy 

consumption can be carried out using the energy consumption model described in 

Section 3.3. The value of this energy consumption is saved in an energy cost array. The 

algorithms apply the same procedure to the next type of compatible node. This 

procedure is repeatedly performed until all candidate compatible nodes with respect to 

the group have been considered. Finally, the algorithms update the allocation list with a 

compatible node that leads to the minimized energy dissipation. After the group 
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allocation phase is accomplished, the allocation list provides an allocation solution with 

minimized energy consumption of the heterogeneous cluster. Figure 5.8 shows the way 

of implementing the energy-efficient group allocation phase. 

 

Figure 5.8 Pseudo code of group allocation to minimize energy consumption  

Energy_Efficient_Allocation () { 
set allocation list is empty; 
for each cluster c in the cluster graph G { 

         n = Energy_Efficient_Calculation (c, N); 
        mark c is finally allocated to n, update allocation list; 

} 
return allocation list; 

}  
Energy_Efficient_Calculation (c, N) { 

i = 1; 
while (n is not the last node in N) { 

        Legal_n = Exclusion_Verify (c, n); 
     Add Legal_n to the Legal_Node_List; 
     n = the next node following Legal_n in N ; 

} 
for each node n in Legal_Node_List { 

     if (n has not been allocated with any cluster) { 
         mark c to be temporarily allocated to n; 
                temp_energy_cost[i] = Energy_Consumption(c,n);  
               //here Energy_Consumption()will calcutlate energy cost assumming c is allocted to n; 
               i++; 
     } 

} 
return the node with minimized value in array temp_energy_cost[] 

} 
Exclusion_Verify (c, n) { 

for each task t in cluster c { 
       if (t is exclusive with n) { 
         n = the next node following n in N ; 
               Exclusion_Verify (c, n); 
     } 
      } 
      return n; 
 } 
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5.4.5 A Case Study 

In this section, we use a synthetic parallel application as an example to illustrate how 

the EETDS and HEADUS algorithms work. The task graph of the parallel application is 

delineated in Figure 5.9. The running trace of each step is given as follows: 
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Figure 5.9 A synthetic parallel application 

 

Phase 1. Grouping 

Step 1. Generate a task sequence by computing levels: The levels of the tasks can be 

calculated using Eq. (16). For instance, the level of task v10 is 8, since v10 is the exit task 

without any successor. The level of v8 is 8 + 7 = 15 because v8 has only one successor 

task. The level of task v2 is max{L(v5) + 3, L(v6) + 3} = 28, since v2 has two successors - 
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v5 and v6. All the tasks are placed in a queue in the non-increasing order of levels. Thus, 

we have a list of tasks as {10, 9, 8, 5, 6, 2, 7, 4, 3, 1} 

Step 2. Calculate the important parameters: 

Step 2.1 Compute EST and ECT: The EST and ECT values of each task can be 

computed by applying Eqs. (17) and (18). For example, task v1 is the entry task and, 

therefore, EST(v1) = 0. In accordance with Eq. (18), we have ECT(v1) = 0 + t1 = 3. Since 

v2, v3, and v4 are unable to start until v1 finishes and, thus, we have EST(v2) = EST(v3) = 

EST(v4) = ECT(v1) = 3. Similarly, EST of v7 is computed as below 

     
( ) ( ){ }
( ) ( ){ } .15105 7,max,207 5,maxmin              
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Correspondingly, the ECT of v7 is ECT(v7) = EST(v7) + t7 = 15 + 20 = 35. 

Step 2.2 Compute favorite predecessors: The favorite predecessor of a task is 

determined by using Eq. (19). For example, the favorite predecessor of task v2, v3, and v4 

is v1, simply because these three tasks have only one predecessor. The favorite 

predecessor of v8 is v6 because ECT(v6) + c68 = 16 + 50 = 66 > ECT(v5) + c58 = 7 + 5 = 

12. 

Step 2.3 Compute LAST and LACT: The LACT and ECT values of the exit task v10 

equal to 79 and, thus, we have LAST(v10) = LACT(v10) - t10 = 79 – 8 = 71. In case of 

LACT(v6), we have to consider two successors, namely, v8 (in critical path) and v9 (not 

in critical path). We obtain 

( ){ } { } 1629) 50),-(66min  ))min(LAST(v ,c-)LAST(vminmin)LACT(v 86996 === and 

LAST(v6) = LACT(v6) - t6  = 16 – 10 = 6. Table 5.1 summarizes the values of all the 

parameters: 
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Table 5.1 Results of the important parameters 

 

Step 3. Generate a duplication task sequence:  

The EETDS algorithm generates the first group of tasks by starting from the first 

task in the task list obtained in step 1, which is task 10. The first task group containing 

tasks v1, v3, v7, v9, and v10 forms GROUP 1. Next, the second iteration starts because the 

algorithm hits task v1, which is the entry task. At this point, next ungrouped task is task 

v8. Tasks v8, v6 and v2 are associated to GROUP 2, and the next task to be considered is 

task v1. Since v1 has been clustered to GROUP 1, the algorithm has to decide whether 

there is an incentive to duplicate v1 on GROUP 2. The condition in step 7 (see Figure 

5.7) is satisfied, because we have LAST(v2) - LACT(v1) = 3 – 34 < cc12 = 15. Therefore, 

duplicating v1 on GROUP 2 gives rise to a shortened schedule length. Thus, GROUP 2 

consists of v8, v6 , v2 and v1.  Again, the algorithm hits the entry task and the third 

Task level EST ECT LAST LACT FP 

1 40 0 3 31 34 -- 

2 28 3 6 3 6 1 

3 37 3 7 42 46 1 

4 35 3 5 34 36 1 

5 16 6 7 23 24 2 

6 25 6 16 6 16 2 

7 33 15 35 46 66 3 

8 15 16 23 29 36 6 

9 13 66 71 66 71 7 

10 8 71 79 71 79 9 
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iteration is invoked. At this point, task v5 is added to GROUP 3, followed by task v2, and 

v1, which are not duplicated on GROUP 3 because LAST(v5) - LACT(v2) = 23 – 6 = 17 > 

cc12 = 15, which means the schedule length will be increased. Similarly, task v4 and v1 

are added to GROUP 4 in the last iteration. Finally, the following task groups are 

created:  

 

 

 

 

 

Accordingly, the final task group generated by HEADUS is like follows (energy 

threshold T, ENactive and ELactive are set to 1J, 6J and 1J, respectively): 

 

 

 

 

 

Last but not the least, the EETDS and HEADUS algorithms compute the 

communication cost between each pair of task groups and set the corresponding edges to 

form a group graph.  

 

 

 

Group 1: Task 10, Task 9, Task 7, Task 3, Task 1 

Group 2: Task 8, Task 6, Task 2, Task 1 

Group 3: Task 5 

Group 4: Task 4, Task 1 

Group 1: Task 10, Task 9, Task 7, Task 3, Task 1 

Group 2: Task 8, Task 6, Task 2 

Group 3: Task 5 

Group 4: Task 4 
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Table 5.2 Energy consumption values 

 A B C D 

C1 3050J 3700J 2008J 3000J 

C2 1000J 900J 1560J 1200J 

C3 180J 194J 136J 75J 

C4 207J 226J 251J 243J 

 

Phase 2. Energy-efficient Allocating 

In this phase, the EETDS algorithm performs the procedure described in Figure 5.6. 

Here we just assume that the heterogeneous grid system consists of four types of 

computing nodes denoted by A, B, C, and D. Energy consumption values of the nodes 

are listed in Table 5.2: 

The final list of allocations determined by the EETDS algorithm is given as follows:  

Group 1 is allocated to node C 

Group 2 is allocated to node B 

Group 3 is allocated to node D 

Group 4 is allocated to node A   

 
. 
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Figure 5.10 Allocation results showing how the EETDS algorithm works 

5.5 Time Complexity Analysis 

The time complexity of the EETDS scheduling algorithm is O(|V|2). 

Proof. The algorithm consists of two major phases: the grouping and energy-aware 

allocation phases. Let us first analyze the time complexity of each phase.  

Let us start from the first step in the grouping phase. In this step, the algorithm 

traverses all tasks of a DAG to compute the levels of the tasks. The time complexity to 

calculate the levels is O(|E|), where |E| is the number of messages. This is because in the 

worst case all the messages in the DAG have to be examined. Furthermore, it takes 
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O(|V|log|V|) time to sort the tasks in an increasing order of the levels, where |V| = n is 

the number of tasks. Therefore, the time complexity of step 1 is O(|E| + |V|log|V|). 

The second step is performed to obtain all the important parameters like EST, ECT, 

FP, LACT, and LAST. Phase 2 calculates these parameters by applying the depth first 

search with the time complexity of O (|V| + |E|). 

In the last step of the grouping phase the tasks are associated into several groups, 

which can help in reducing schedule length. First, each task is checked and added to one 

or more groups in the iteration based on the duplication strategy. In the worst case, all 

the tasks in the critical path must be duplicated, meaning that the time complexity is 

O(h|V|) time, where h is the height of the DAG. Since h is less than or equal to |V|, the 

time complexity of the third step is O(|V|2).  

Consequently, the total time complexity of these three steps is O(2|E| + |V|(lg|V|+1) + 

|V2| = O(|E|+|V|2). For a dense DAG, the number of messages are proportional to O(|V|2). 

Hence, the time complexities of the grouping phase is O(|V|2).  

In the second phase, the algorithm executes the compatibility verification process 

and calculates the energy consumption caused by each group on each compatible 

computing node. Suppose the grouping phase generates a group set G= {g1, g2, g3, … gq} 

with q different groups. We have a heterogeneous node set P = {p1, p2,..., pm} with m 

different type of processors, the algorithm attempts to select two elements randomly 

from the sets G and P in order to estimate energy cost. According to the permutation and 

combination theory, the time complexity is 11
mq CC × . Obviously, the number q of groups 

is always less than the number of tasks and the number of m is a constant (i.e. the 

number of heterogeneous nodes in a real cluster). Since the calculation of power 
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consumption for each combination can be completed in linear time, the time complexity 

of the group allocation phase is O(c|V|), where c is a constant relies on m and other 

related calculation time. Similarly, the verification process can be done within O(c|V|). 

Therefore, the overall time complexity of the EETDS algorithm is O(|V|2), where V is 

the number of tasks in a parallel task set. 

5.6 Simulation Results 

In this section, we evaluate the effectiveness of the proposed EETDS and HEADUS 

scheduling algorithms.  

5.6.1 Simulation Metrics and Parameters 

We conducted extensive experiments using Gaussian Elimination and Fast Fourier 

Transform applications. In addition, we compare EETDS and HEADUS with two 

existing scheduling algorithms: the Non-Duplication Scheduling algorithm (NDS) and 

the Task Duplication Scheduling algorithm (TDS). We also compare our algorithms 

with a baseline algorithm: Energy-Efficient Non-Duplication Scheduling (EENDS). The 

NDS, TDS and EENDS algorithms are briefly described below. 

(1) NDS: This a non-duplication-based algorithm (also know as the static priority-

based Modified Critical Path (MCP) algorithm [52]) with time complexity of O(n2(logn 

+ m)), where n and m are the numbers of tasks and nodes, respectively. NDS, which 

does not duplicate any task, makes scheduling decisions using the critical-path method. 

(2) TDS: The TDS algorithm allocates all tasks that are in a critical path to one 

computing node. If tasks have already been dispatched to other nodes, TDS only 
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duplicates the tasks that can potentially shorten scheduling length. TDS aims to generate 

a schedule of a parallel application with the shortest schedule length. 

(3) EENDS: To the best of our knowledge, EENDS is a baseline algorithm that 

could not be found in the literature. In order to comprehensively understand the impacts 

of grouping phase, we combine the second phase of our algorithm with the NDS 

grouping to form a new EENDS scheduling algorithm. 

Table 5.3 Characteristics of experimental system parameters 

             Parameters           Value (Fixed) - (Varied) 
Different trees to be 
examined 

Gaussian elimination, Fast Fourier Transform 
Execution time of 
Gaussian Elimination 

{5, 4, 1, 1, 1, 1, 10, 2, 3, 3, 3, 7, 8, 6, 6, 20, 30, 30 }-(random) 
Execution time of Fast 
Fourier Transform 

{15, 10, 10, 8, 8, 1, 1, 20, 20, 40, 40, 5, 5, 3, 3 }-(random) 

Computing node type AMD Athlon 64 X2 4600+ with 85W TDP (Type 1) 
AMD Athlon 64 X2 4600+ with 65W TDP (Type 2) 
AMD Athlon 64 X2 3800+ with 35W TDP (Type 3) 
Intel Core 2 Duo E6300 processor (Type 4) 

CCR set Between 0.1 and 10 
Computing node 
heterogeneity 

Environment1: 
# of Type 1: 4 
# of Type 2: 4 
# of Type 3: 4 
# of Type 4: 4 

Environment2: 
# of Type 1: 6 
# of Type 2: 2 
# of Type 3: 2 
# of Type 4: 6 

Environment3: 
# of Type 1: 5 
# of Type 2: 3 
# of Type 3: 3 
# of Type 4: 5 

Environment4: 
# of Type 1: 7 
# of Type 2: 1 
# of Type 3: 1 
# of Type 4: 7 

Network energy 
consumption rate 

20W, 33.6W, 60W 
 

The basic yet important method we used in our experiments is called OTOP (Once 

Tuning One Parameter). Specifically, in each experimental study we only vary one 

parameter while keeping the other parameters unchanged. By tuning one parameter at a 

time, we are allowed to clearly observe its impacts on clusters and easily analyze system 

sensitivities to this specific parameter. Important system parameters tuned in our 

experimental studies include Communication-to-Computation Ratio (or CCR for short), 

network heterogeneity, and computing heterogeneity.  
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Note that the CCR value of a parallel application on a heterogeneous cluster is 

defined as the ratio between the average communication cost of |E| messages and the 

average computation cost of n parallel tasks in the application on the given cluster with 

m heterogeneous computing nodes. Formally, the CCR of an application (T, E) is 

expressed by Eq. (22) as below. 
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Generally speaking, communication-intensive applications have high CCRs, whereas 

CCRs of computation-intensive applications are low. 

Table 5.3 summarizes the configuration parameters of simulated heterogeneous 

clusters used in our experiments. On the right hand side of each row in Table 5.3, 

parameters in the first part are fixed, whereas parameters in the second part are varied or 

randomly generated using uniform distributions. In order to illustrate the heterogeneity 

of computing nodes, we choose to test four heterogeneous cluster computing 

environments, in which the numbers of four types of computing nodes are different in 

processors. The last row in Table 5.3 represents the network heterogeneity by setting 

various energy consumption rates. Figure 5.11 shows the energy consumption 

parameters, CPU speed parameters of different types of processors used in computing 

nodes. All these data comes from the latest test report of Xbit Lab 

(http://www.xbitlabs.com). Figure 4.6 depicts the task graphs of parallel applications 

used in our simulation. 
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CPU Clock Speed, GHZ

1.86

2

2.4

2.6

0 0.5 1 1.5 2 2.5 3

Core2 Duo E6300

Athlon 3800+ 35W

Athlon 4600+ 65W

Athlon 4600+ 85W

Figure 5.11 Parameters used in simulation (data from test report of Xbit Lab) 

5.6.2 Experimental Results for Gaussian Elimination 

In this subsection, we evaluate five scheduling algorithms using the Gaussian 

Elimination application on a heterogeneous grid. Figure 5.12 shows the impacts of CCR 

on energy dissipation of the cluster running the Gaussian Elimination application. Five 

observations are evident from this group of experiments. First, the energy consumption 

of Gaussian Elimination under all the five scheduling schemes is very sensitive to CCR. 

Second, EETDS and HEADUS provide noticeable energy savings compared with the 

TDS and NDS algorithms. Third, NDS outperforms TDS with respect to energy 

conservation when the CCR values are small. However, TDS is superior to NDS when 

CCR becomes large (e.g., CCR is greater than or equal to 4). Fourth, EETDS and 

HEADUS work well in all these four heterogeneous cluster computing environments. 

These results demonstrate that EETDS and HEADUS have overall better performance 
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compared with the other three and HEADUS is the best energy-efficient scheduling 

algorithm among the five examined schemes. Last, the energy savings exhibited by 

EETDS and HEADUS become more pronounced with the increasing values of CCR. 

These results indicate that with respect to energy conservation our algorithms are more 

appropriate for communication-intensive applications as opposed to computation-

intensive applications. 

Figure 5.12 CCR sensitivity for Gaussian when Net_Energy=33.6 

Since our algorithms are designed for heterogeneous grids, we tested energy 

dissipation in the four different environments, which are shown in Table 5.3. Figure 5.13 

illustrates the impacts of the computing heterogeneity on grid computing platforms. 

First, we observe that EETDS and HEADUS can conserve more energy in E1 and E3 
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(see Figs. 5.13(a) and (b) compared with E2 and E4 (see Figs. 5.13(c) and (d), from 

which we can draw the conclusion that less energy is consumed by clusters with more 

energy-efficient computing nodes. Second, the computing heterogeneity has significant 

impacts on the energy efficiency of EETDS. For example, when CCR equals to 0.1 in 

the four clusters, the EETDS algorithm reduces energy consumption (compared with 

TDS) by 38.5%, 49.1%, 48.7%, and 51.7%, respectively. These experimental results 

indicate that EETDS and HEADUS can conserve even more energy for heterogeneous 

clusters that are comprised of energy-consuming computing nodes. Third, Figure 5.13 

shows a similar performance trend that EETDS and HEADUS significantly conserve 

energy in overall because TDS consumes huge energy when CCR is small and NDS 

consumes more energy when CCR is large due to the high energy dissipation in the 

network interconnections. 

Next, let us quantitatively show the impacts of network heterogeneity on the 

performance of these five scheduling algorithms. In this group of experiments, we vary 

network energy consumption rates. Three network energy consumption rates are chosen: 

20W, 33.6W, and 60W. It is worth noting that these three energy consumption rates 

represent real-world network interconnections (e.g. Merinet) widely used in clusters. 
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Figure 5.13 Computational nodes heterogeneity experiments 

After comparing Figs. 5.14(a), (b), and (c), we can quantify the impacts of network 

heterogeneity on energy dissipation exhibited by the five scheduling algorithms. For 

instance, given computing environment 1, EETDS can improve energy efficiency over 

TDS by 27.9%, 27.9%, 27.8% when network energy consumption rate is 20W, 33.6W, 

and 60W, respectively (CCR is set to 0.1). However, when CCR is large (e.g., 10), these 

improvements in energy efficiency are scaled down to 15.6%, 13.3% and 10.2%, 

respectively. In this set of experiments we confirm that the network energy consumption 

contributes a whole lot to the grids’ total energy consumption when CCR is large. Last, 

we conclude that NDS is not suitable for communication-intensive parallel applications 

because NDS has schedule lengths significantly increased when communication 

overheads are high. 
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Finally, we illustrate the energy threshold sensitivity of HEADUS algorithm in 

Figure 5.14(d). We did this simulation by setting threshold as 100J, 500J and 1kJ under 

different CCRs in environment 4 when Net_Energy consumption rate is set to 60W. Our 

conclusion is that energy threshold does affect the performance of HEADUS. More 

specifically, HEADUS is very sensitive to threshold, especially when the energy 

consumption of related CPU and links is comparable with the energy threshold.  

Figure 5.14 Network heterogeneity and threshold sensitivity experiments 

5.6.3 Experimental Results for Fast Fourier Transform 

The goal of this group of experiments is to compare the performance of the proposed 

EETDS and HEADUS algorithms with the NDS, TDS and EENDS algorithms with 

respect to energy conservation under the FFT application. First, we are focused on 

relationships between CCR and energy consumption of the FFT application. Figure 5.15 

plots total energy consumption of the four heterogeneous clusters running FFT. CCR is 
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gradually varied from 0.1 to 10. Figure 5.15 shows that the total energy consumption 

caused by the FFT application becomes more sensitive to CCR when CCR is greater 

than 2. Compared with the TDS algorithm, EETDS conserves approximately 46% and 

31% energy when CCR is small and large in environment 4. Accordingly, HEADUS 

conserves roughly about 47% and 17% respectively. Also, EETDS and HEADUS 

outperform NDS with 17.5% & 19.5% for small CCRs and 34.7% & 20.5% for big 

CCRs. Therefore, we can see that HEADUS is more appropriate for computation 

intensive application and EETDS works better in highly communication intensive 

applications. When CCR is greater than 8, even EENDS consumes more energy because 

the first grouping phase in EENDS generates groups that have high communication 

overheads.  

 

Figure 5.15 CCR sensitivity for FFT when Net_Energy=20W 
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Moreover, Figure 5.15 shows that when CCR is relatively small, energy 

consumption under the TDS algorithm is noticeably higher than those under the other 

four algorithms. This is mainly because energy dissipation in the network 

interconnections is diminished with a small CCR. Not surprisingly, EETDS improves 

energy efficiency over NDS up to 50% when CCR is large (e.g., CCR = 10).  

Now we evaluate the impacts of computing heterogeneity using the FFT application. 

Experimental results in terms of energy efficiency are depicted in Figure 5.16. For all 

four cluster computing environments, EETDS and HEADUS significantly improves 

energy efficiency over the three alternative scheduling algorithms (see Figure 5.16). 

These results coupled with the results plotted in Figure 5.15 confirm that regardless of 

the heterogeneities and CCR values, our algorithm are consistently the most energy-

efficient scheduling algorithm among all the five examined schemes. 

 

Figure 5.16 Computational nodes heterogeneity experiments for FFT 
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Figure 5.17 shows the impacts of network heterogeneity on the energy consumption 

experienced by the four scheduling algorithms. Comparing Figs. 5.17(a), (b), and (c), we 

observe that the impacts of network heterogeneity are highly dependent on CCR. Energy 

consumption cased by network interconnections account for the major portion of the 

energy dissipation in the clusters under the condition that CCR is large. 

 

Figure 5.17 Network heterogeneity for FFT and schedule length for Gaussian 

5.6.4 Experimental Results of Schedule Length 

Schedule length is one the of most important performance metrics. Our algorithms 

are conducive to conserve energy without significantly degrading performance. In this 

set of experimental results, we will evaluate the impact to schedule length. Figure 
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5.17(d) summarizes empirical results based on the Gaussian Elimination application. 

Figure 5.17(d) reveals that both EETDS and HEADUS have only a marginal 

performance degradation compared with TDS. That is partially because the four types of 

processors used in the computing nodes consume more energy if they run at full speed. 

Therefore, EETDS and HEADUS are forced to sacrifice performance to some extent by 

allocating parallel tasks to energy-efficient computing nodes. Although EETDS and 

HEADUS increase schedule length by an average of 9% and 10% compared with TDS, 

EETDS and HEADUS do conserve energy by an average of 32% and 34%. 

Nevertheless, the performance degradation problem can be remedied by the 

advancement of hardware technology (e.g., high CPU capacity and high CPU energy 

efficiency). 

5.7 Summary 

In this chapter, we addressed the issue of allocating and scheduling tasks of parallel 

applications running on heterogeneous grids in a way to conserve energy without 

adversely affecting performance. Specifically, we proposed two novel scheduling 

algorithms called EETDS and HEADUS, which aim to make the best tradeoffs between 

energy savings and performance for tasks of parallel applications running on 

heterogeneous clusters. EETDS and HEADUS are designed and implemented based on 

the previous algorithms used in chapter 4 for homogeneous clusters. Both the EETDS 

and HEADUS algorithms consist of two major phases. In the first phase, a grouping 

method is employed to minimize schedule lengths of parallel applications. The goal of 
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phase two is to leverage energy-consumption parameters to achieve high energy 

efficiency.  

The experimental results show that compared with TDS, NDS and EENDS, EETDS 

and HEADUS can significantly reduce energy consumption in heterogeneous grids with 

only a marginal degradation in performance. 
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Chapter 6 

Energy-Efficient Storage Systems 

In the previous two chapters, we have addressed the energy conservation issue for 

high-performance cluster and grid systems through energy-efficient scheduling. These 

scheduling algorithms primarily consider the energy consumed by CPU and 

interconnection. The significantly energy consumed by storage systems has not been 

discussed.  

In this chapter, we address the energy conservation issue for large-scale storage 

systems by proposing buffer disk based architecture and designing energy-aware 

resource management strategy.  

The rest of this chapter is organized as follows. In section 6.1, we present the 

motivation of this study. Section 6.2 illustrates the buffer-disk based parallel disks 

architecture. In section 6.3, we demonstrate the heat-based load balancing strategy. 

Mathematical models for calculating the power of parallel storage systems are explained 

in section 6.4.The experimental environment and simulation results are presented in 

section 6.5. Finally, section 6.6 will summarize the primary contribution of this chapter 

and future research directions. 
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6.1 Motivation  

Storage systems are considered as one of the major energy consumer in most high 

performance computing platforms. That is mainly because most high-performance 

computing servers have to storage and process massive data. Historically, tape libraries 

are preferred over disk arrays for massive storage environments, in large part due to the 

capacity and cost differential between tapes and disks. Over the last decade the original 

tape systems have been gradually replaced by parallel disk systems because of the 

continuous expansion of disk capacity and continuous drop of disk price. However, 

large-scale parallel storage systems consume significant amount of energy. A recent 

industry report shows that storage devices account for almost 27% of the total energy in 

a data center [40]. Therefore, new technologies focused on the design of energy-efficient 

parallel storage systems are highly desirable.  

In this chapter, we present a buffer disk (BUD for short) based architecture to build 

energy efficient parallel storage systems. The basic idea of BUD is simple and 

straightforward. To most people, it is common sense that leaving a light bulb on at 

daytime is a waste of energy. The same thing happens if we keep the disks on when it 

does nothing. It makes no sense that we still feed those idle disks power, without 

producing any useful work. The primary design goal of BUD is to conserve energy by 

serving most of the requests in a small number of buffer disks and turning as many idle 

disks as possible to a low power mode. Nevertheless, one potential problem of the BUD 

architecture is that a limited number of buffer disks may easily become the bottleneck. 

Worst case access patterns can direct all requests to a single buffer disk, resulting in 
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arbitrarily large delays for very small arrival rates. Therefore, we also designed the heat 

based load balancing strategy for BUD in order to improve the performance. 

6.2 Buffer-Disk Architecture 

The buffer disk architecture (see Figure 6.1) consists of four major components: a 

RAM buffer, m buffer disks, n data disks, and a buffer-disk controller. The buffer disks 

temporarily cache the requests for the data disks. Data disks remain in low power mode 

unless a read request misses in the buffer disk or the write log for a specific data disk 

grows too large. The buffer-disk controller is the “brain” of the whole system, which 

contains the energy-related reliability algorithms, data partitioning algorithms, data 

movement/placement strategies, and prefetching strategies. Our ultimate objective in 

this research is to conserve more energy without adversely affecting the performance of 

the disk system. More specifically, the controller strives to move the frequently accessed 

data from data disks into buffer disks. This allows as many data disks as possible to 

switch into low-power modes. The rationale behind this strategy relies on the fact that 

only a small percentage of the data is frequently accessed in a wide variety of data-

intensive applications [59]. To achieve this goal, we proposed the heat-based algorithm 

to dynamically balance the workload. This algorithm aids in avoiding the potential 

“traffic jam” caused by over loaded buffer disks.  Here we want to note that all our 

solutions and experimental results illustrated in the following sections are primarily 

based on read requests. 
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Figure 6.1 The buffer disk architecture 

6.3 Heat-Based Load Balancing 

To conserve energy, most data disks will run in the low power state and all the 

traffic will be directed to a limited number of buffer disks. This can potentially make the 

buffer disks overloaded and they may become the system bottleneck and degrade the 

system performance. Load balancing is one of the best solutions for the inherent 

shortcoming of the BUD architecture. Basically, there are three types of load balancing 

strategies called non-random load balancing, random load balancing, and redundancy 

load balancing. Sequential mapping belongs to non-random load balancing because the 

buffer disks have fixed mapping relationship with specific data disks.  The round-robin 

mapping is a typical random load balancing strategy by allocating data to each buffer 

disk with equal portions and in order. Redundancy load balancing strategies for storage 

systems include EERAID [60], eRAID [61], and RIMAC [62]. In this section, we will 

propose a heat-based load balancing strategy, which also belongs to random load 
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balancing strategy. The primary objective of our strategy is to keep all buffer disks as 

equally loaded as possible and to minimize the overall response time of all requests.  

6.3.1 A Concrete Example 

Before we start discussing our proposed heat-based load balancing algorithm, we 

will demonstrate a concrete example. In it some buffer disks are over loaded, thus 

degrading the performance of the whole system.  

Suppose we have 15 requests cached in the RAM buffer and they are going to be 

dispatched to different buffer disks by the controller. Requests have different colors, 

which represent that they will access different data blocks.  For example, request 

1(white) will access data block 1 (white) existing in data disk 1 and request 6 (green) 

will access the data block 6 (green) existing in data disk 6. Figure 6.2 illustrates the 

dispatching results of the sequential mapping algorithm, which is a typical non-random 

load balancing strategy. In the sequential mapping strategy, a buffer disk will only cache 

the data coming from specific data disks in a sequential way. For instance, the data in 

data disk 1 and data disk 2 will only be copied to buffer disk 1 and similarly, buffer disk 

3 will only cache the data coming from data disk 5 and data disk 6.  Figure 6.2 shows 

that the three buffer disks are not well load balanced because buffer disk 1, 2, and 3 

serve 9 requests, 3 requests and 3 requests respectively. Obviously, buffer disk 1 has 

become the bottleneck whereas the other two buffer disks are only slightly loaded. 

Round robin mapping is a typical random load balancing strategy. Figure 6.3 illustrates 

the scheduling results of the round robin mapping, in which data blocks are cached to 

the buffer disks in a round robin way. We can see that buffer disk 1, 2, and 3 are 
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allocated 7 requests, 5 requests and 3 requests respectively. Although we get better 

results as compared to sequential mapping, three buffer disks are still not well balanced. 

It is highly possible that buffer disk 1 could cause performance degradation when more 

requests are processed.   

 

Figure 6.2 Allocation results of sequential mapping strategy 

 

Figure 6.3 Allocation results of round-robin mapping strategy 



103 

 

6.3.2 Heat-based Load Balancing Algorithm 

In contrast with sequential and round robin mapping algorithms, we proposed a heat-

based mapping strategy to achieve load balancing. The basic idea of heat-based mapping 

is that blocks in data disks will be mapped to buffer disks based on their heat. Our goal 

is to make the accumulated heat of data blocks allocated to each buffer disk the same or 

close to this ideal situation. In other words, the temperature, or the workload of each 

buffer disk should be the same. The temperature of a buffer disk is the total heat of all 

blocks existing in the buffer disk. For example, if we suppose all blocks have the same 

data size, the heat of blocks 1-6 is 5, 4, 1, 2, 1, and 2 respectively. Therefore, block 1 is 

cached to buffer disk 1, block 2 and 3 are copied to buffer disk 2 and block 4, 5 and 6 

are mapped to buffer disk 3. With this mapping the temperature of each buffer disk is 5.  

Figure 6.4 depicts the dispatching results of the heat-based load balancing strategy. 

 

Figure 6.4 Allocation results of heat-based mapping strategy 
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To clearly describe our heat-based load balancing algorithm, we define the key 

parameters as follows. 

Access Frequency:  times a data block is accessed within a specific time unit. 

Heat weight: the ratio of requested data size and standard data size (1MB) 

Heat: the multiplication of access frequency and heat weight 

Temperature: the accumulated heat of all data blocks existing in a buffer disk   

The heat could be used to measure the popularity of a data block and the temperature 

clearly shows how busy a buffer disk is. To calculate the heat more accurately, we need 

to consider the impact of block size. A large block size should have higher heat 

compared to a small block with the same access frequency. This is due to the fact that 

the system will spend more time to complete the response operation for the larger block. 

In other words, the larger blocks should have higher heat weight.  

Since our algorithm is executed online, dynamic tracking of the heat of blocks is 

crucial. We implemented two strategies to dynamically track the heat. In the first 

strategy, the controller will snapshot the first k requests of the request queue and run the 

heat calculation function. Once the k requests are captured, they will be removed from 

the main request queue in the memory. We call these k requests a snapshot request 

window and this window will be the input of the heat-based load balancing algorithm. 

However, the snapshot window strategy is only suitable for bursty request patterns but 

not for sparse request patterns. When a sparse request pattern is encountered, it may take 

too long to collect a snapshot window of k requests. The response time suffers if we do 

not serve the requests until all k requests ready. Therefore, we designed a second 

strategy called the observation time window strategy. In this strategy, the controller will 
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serve the requests that arrive within a specific observation time, T seconds, no matter 

how many requests arrive. That means, the maximum waiting overhead for each request 

is T. 

Figure 6.5 Heat-based load balancing algorithm 

1. Input:  the request window ;            /*  request window  will be updated periodically */ 
2. for each unique target block in the queue   /* each request has a target block to be accessed 

*/ 
3.      AF = Access_Frequency_Calculation() ;  /* calculate the block access 

frequency*/ 
4.      HW = accessed block size/ standard block size;    /*calculate the heat 

weight*/ 
5.      heat = AF * HW;      /*calculate the heat */ 
6. sort the data blocks based on heat and save them in Linklist_Block; /* first block has the 

highest heat */ 
7. sort the buffer disk based on current temperature to a Linklist_Buffer ;/* first disk has lowest 

temperature*/  
8. pointer p_buffer = the first buffer disk in the Linklist_Buffer; 
9. pointer p_block = the first block in the Linklist_Block; 
10. pointer t_buffer ;  /* t_buffer points to the buffer disk which have the copy of target block*/ 
11. for each block in the Linklist_Block  
12.     if (p_block.found = = false)    /* the target block cannot be found in buffer 

disks*/ 
13.         if (p_buffer. free = = true)          /* the candidate buffer disk has enough space*/ 
14.             wake up the corresponding data disk  and cache the data; 
          /* The data blocks within the batch prefetching window will be copied to the buffer disk 

p_buffer; 

15.            dispatch all requests accessing p_block to p_buffer; 
16.            recalculate and update the information of block heat and buffer disk temperature ; 
17.         else /* the first candidate buffer disk has no space*/ 
18.             if (p_buffer.next != empty) 
  p_buffer ++;  /* seek another candidate buffer disk*/          

19.                 go to setp 12; 
20.             else /* all buffer disks are already full*/ 
21.                 reset p_buffer to the first buffer disk in the Linklist_Buffer; 
22.                 data_replace_function(p_buffer);  /* replace existing data blocks using LRU 

algorithm */  
23.                 dispatch all requests accessing p_block to p_buffer; 
24.                 recalculate and update the information of block heat and buffer disk temperature ; 
25.     else /* p_block is found in one buffer disk t_buffer */   
26.            dispatch all requests accessing p_block to t_buffer ; 
27.            recalculate and update the information of block heat and buffer disk temperature ; 
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Figure 6.5 outlines the pseudo code of the heat-based load balancing algorithm. We 

should note that the request window in the first line could represent the snapshot 

window or the observation time window. This algorithm will periodically collect the 

requests waiting in the queue, analyze the target block of each read request, and 

calculate the heat of each unique block. If the target block cannot be found in the buffer 

disk, the controller will send a data miss command. This will wake up the corresponding 

data disk and copy the block to the buffer disk that has the lowest temperature. In a 

special case, the selected buffer disk may not have free space to store a new data block. 

The controller will seek the next buffer disk with a temperature that is higher than the 

initial buffer disk selected, but still lower than any other buffer disk. In the worst case, 

no candidate buffer disk will be found because all buffer disks are full. A data 

replacement function based on the LRU algorithm will be executed to replace some 

existing data blocks. If the target block has already been cached in one of the buffer 

disks, that buffer disk will serve the corresponding request. Once the algorithm has 

made the decision how to dispatch these requests, the block heat and buffer disk 

temperature will be recalculated and updated accordingly. Since this is an online 

algorithm, the decision made at the current time period relies on the heat and 

temperature information collected at the last time period.   

6.4 Energy Consumption Models 

In order to compare the energy efficiency of the BUD architecture with disk arrays 

without buffer disks, we define the energy consumption model in this section. As we all 

know, the states of a disk (either a buffer disk or a data disk) include active, sleep, idle, 
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or shut down. Some modern disks even have different energy consumption modes for 

the active state (different rotation speeds), in our study we only consider the active, idle, 

and sleep states in this study to simplify the problem. The core of our power model used 

in our simulator is a summation of all power states multiplied by the time each power 

state was active. In addition, the power state transition overhead is also considered and 

added to the total energy consumption of BUD. Moreover, we suppose the buffer disk 

will never enter the sleep state. Therefore, the buffer disks only have two states, active 

and idle. Similarly, the data disks will either be active when they are copying data to 

buffer disks or sleeping when no data access is required. In what follows, a series of 

functions are presented to formally illustrate how we calculate the energy consumption 

of the BUD architecture. The calculation for traditional parallel disk arrays is trivial and 

ignored here.  

We denote the energy consumption rates of the disks when they are in active, idle 

and sleep mode by Pactive, Pidle, and Psleep, respectively. Similarly, let Tactive, Tidle and Tsleep 

be the time intervals when the disk is in the active, idle and sleep states, respectively. 

Hence, the energy dissipation Eactive of the disk when it is in the active state can be 

written as activeactive TP ⋅ . Similarly, the energy Eidle of the disk when it is sitting idle and 

the energy Esleep of the disk when it is sleeping can be expressed as idleidle TP ⋅  and 

sleepsleep TP ⋅ respectively. In addition to that, we denote Etr as the energy consumption 

overhead when disks transit from one state to another and Ntr indicates how many times 

a disk transits its power state. Now the total energy consumed by each buffer disk can be 
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calculated as                         
idleidleactiveactivetrtr

idleactivetrtrbuffer

TPTPNE

EENEE

⋅+⋅+×=

++×=
 (21) 

    

 In a similar way, the total energy consumed by each data disk can be calculated as 

sleepsleepactiveactivetrtr

sleepactivetrtrdata

TPTPNE

EENEE

⋅+⋅+×=

++×=
     (22) 

Although we use the same term Etr in both equations, the value of Etr  is different 

because the energy overhead for transitions between the active, idle, and sleep states are 

different. The energy values for each of the previously mentioned transitions are made 

explicit in Table 2. The time interval Tactive when the disk is in the active state is the sum 

of serving times of disk requests submitted to the disk system.  

                    ,)(
1
∑

=
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i
serviceactive iTT                (23) 

where n is the total number of submitted disk requests, and )(iTservice  is the serving 

time of the ith disk request. )(iTservice  can be modeled as 

         ).()()()( iTiTiTiT transrotseekservice ++=           (24) 

where Tseek is the amount of time spent seeking to the desired cylinder, Trot is the 

rotational delay and Ttrans is the amount of time spent actually reading from or writing to 

the disk.  

Suppose there are a total of m buffer disks and n data disks in the BUD parallel 

storage systems, now we can quantify the total energy with the equation below 
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6.5 Simulation Results 

In this section, we present the performance evaluation of the BUD parallel disk 

system and the heat-based load balancing algorithm proposed above. To simulate the 

BUD architecture, we implemented our simulator, called BUD_Sim, using Java 

language. We tried our best to consider and incorporate as many details of real disks as 

possible. For example, we calculate the seek time as a non-linear function (Table 6.1) of 

the seek distance using the seek-time-versus-distance curve presented in [63].  

Table 6.1 Seek time calculation 

 

 

 

 

In addition, we have implemented a load generator, which can generate synthetic 

workloads according to specified parameter distributions, or analyze and filter real 

traces and feed them as the input to BUD_Sim. Using the generator, we could easily 

control and systematically tune all relevant parameters of a workload based on our 

evaluation requirements.  

Another important decision for implementing BUD_Sim is the type of hard disk 

drives we should simulate. We believe that the buffer disks should have higher 

performance (e.g. short seek time, high rotation speed) compared with data disks. 

Consequently, buffer disks are more expensive and cost higher energy. It is still 

worthwhile to use higher performance buffer disks because the number of buffer disks is 

limited compared with the number of data disks. We will have an overall optimal 

Seek distance Seek time (ms) 

< 616 cylinders 3.45 + 0.597 d  

≥ 616 cylinders 10.8 + 0.012 d 
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performance/cost rate. In BUD_Sim, the high-performance IBM disk, IBM 36Z15 

Ultrastar, serves as the buffer disk and the low performance disk, IBM 73LZX Ultrastar, 

serves as the data disk. Table 6.2 illustrates the detailed parameters of these two types of 

disks, which are from IBM manuals and power measurements published in [64]. In 

Table 6.3, we summarize the important parameters that have been used in our 

simulation. 

Table 6.2 Hardware characteristics of disks 

 

Parameters 

IBM 36Z15 
Ultrastar 

(high perf.) 

IBM 73LZX Ultrastar 

(low perf.) 

Standard interface SCSI SCSI 

Number of platters 4 2 

Rotations per minute 15000 10000 

Average seek time 3.4 ms 4.9 ms 

Average rotation time 2 ms 3 ms 

Transfer rate 55 MB/sec 53 MB/sec 

Power (active) 13.5 W 9.5 W 

Power (idle) 10.2 W 6.0 W 

Power (sleep) 2.5W 1.4W 

Energy (spin down) 13.0 J 10.0 J 

Time (spin down) 1.5 s 1.7 s 

Energy (spin up) 135.0 J 97.9 J 

Time (spin up) 10.9 s 10.1 s 
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Before the simulation results are discussed, we briefly outline the baseline parallel 

storage system and load balancing algorithms. They are used for comparison with our 

proposed BUD architecture and heat-based load balancing algorithm. In section 6.3.1 

and 6.3.3, where we compare the energy consumption and response time, the baseline 

parallel storage system has no buffer disks. All disk drives greedily serve the requests in 

order to shorten the response time, i.e. disks only have active and idle modes and will 

never sleep. Therefore, the energy and time overhead caused by spin-up and spin-down 

could be avoided. In section 6.3.2, the other two baseline algorithms, called sequential 

mapping and round robin mapping, are compared against the proposed heat-based 

mapping algorithm. Please refer to section 6.2.1 for more detailed information about 

these two mapping strategies. 

Table 6.3 Important parameters 

Parameters Range/Value 

# of requests:  {2000,5000,10000,20000} 

# of buffer disks 3 

# of data disks 30 

data block size {64KB, 1MB, 4MB, 64MB} 

average interval  

(light load trace) 
2.5s 

average interval  

(heavy load trace) 
0.5s 

6.5.1 Evaluation of Energy Consumption 



 

This set of experimental results aims at evaluating the energy efficiency of the buffer 

disk based parallel storage systems. To fairly compare the results, we generated and 

executed a large number of requests and simulated both large reads (average data size is 

64MB) and small reads (average data size is 64KB).  Fig

total energy consumption of NO

20000 large read requests and small read requests, respectively. 

There are three important observations here. First, the BUD can significantly 

conserve energy compared with No

requests BUD serves, the more 

outperforms No-Buffer in terms of energy conservation by 75.83%, 77.89%, 80.18% 

and 81.16% for 2000, 5000, 10000, and 20000 large reads respectively. This is expected 

because more requests lead to more 

sleep mode. Third, BUD performs better for small reads (average 84.4% improvement) 

than large reads (average 78.77% improvement). The rationale behind is that BUD will 

consume more energy when moving large da

Figure
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This set of experimental results aims at evaluating the energy efficiency of the buffer 

disk based parallel storage systems. To fairly compare the results, we generated and 

cuted a large number of requests and simulated both large reads (average data size is 

64MB) and small reads (average data size is 64KB).  Figure 6.6 and Fig

total energy consumption of NO-buffer and Heat-BUD running 2000, 5000, 10000, and 

0000 large read requests and small read requests, respectively.  

There are three important observations here. First, the BUD can significantly 

conserve energy compared with No-Buffer parallel storage systems. Second, the more 

requests BUD serves, the more potential power savings is revealed. For example, BUD 

Buffer in terms of energy conservation by 75.83%, 77.89%, 80.18% 

and 81.16% for 2000, 5000, 10000, and 20000 large reads respectively. This is expected 

because more requests lead to more opportunities for BUD to keep the data disks in 

sleep mode. Third, BUD performs better for small reads (average 84.4% improvement) 

than large reads (average 78.77% improvement). The rationale behind is that BUD will 

consume more energy when moving large data blocks to buffer disks.

ure 6.6 Energy consumption for large reads

This set of experimental results aims at evaluating the energy efficiency of the buffer 

disk based parallel storage systems. To fairly compare the results, we generated and 

cuted a large number of requests and simulated both large reads (average data size is 

and Figure 6.7 plot the 

BUD running 2000, 5000, 10000, and 

There are three important observations here. First, the BUD can significantly 

Buffer parallel storage systems. Second, the more 

potential power savings is revealed. For example, BUD 

Buffer in terms of energy conservation by 75.83%, 77.89%, 80.18% 

and 81.16% for 2000, 5000, 10000, and 20000 large reads respectively. This is expected 

opportunities for BUD to keep the data disks in 

sleep mode. Third, BUD performs better for small reads (average 84.4% improvement) 

than large reads (average 78.77% improvement). The rationale behind is that BUD will 

ta blocks to buffer disks. 

 

Energy consumption for large reads 
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Figure 6.7 Energy consumption for small reads 

6.5.2 Evaluation of Load Balancing 

In this section, we will evaluate the load balancing ability of the heat-based 

algorithm. Please note that there are actually two levels of load balancing in real parallel 

storage systems. The first level is memory caching, i.e. the main memory could cache 

the popular disks. The second level is buffer disk caching. In order to study the effects 

of load balancing in the buffer disks, we suppose no data are cached in the memory. 

Recall that the temperature of a buffer disk clearly shows how busy it is. Figure 6.8 

records the temperature of three buffer disks when we run the simulation for 1000 

requests in BUD. From Figure 6.8, we can see that the three temperature curves merge 

together most of the time. This means that the three buffer disks are almost equally 

loaded most of the simulation time. In order to identify the information hidden in Figure 

6.8, how the dynamic load balancing works, we plot the initial stage, intermediate stage, 

and final stage of the temperature tracking trace in Figure 6.9, Figure 6.10 and Figure 

6.11. At the initial stage, the three buffer disks are not load balanced. Buffer disk 2 is the 
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busiest disk and buffer disk 1 is lightly loaded. Therefore, the heat-based algorithm will 

keep allocating requests to buffer disk 1. We can see that the temperature of buffer disk 

1 keeps growing and it catches buffer disk 3 first. After that, the temperatures of buffer 

disk 1 and 3 cross-rise for a while and then they catch buffer disk 2. At this point, the 

system is load balanced for the first time.  Figure 6.10 shows that the whole system is 

perfectly load balanced in the intermediate stage because the temperatures of three 

buffer disks rise in turns.  Interestingly, we find in Figure 6.11 that the three temperature 

curves are not as closely intertwined in the final stage when compared to the 

intermediate stage. This could be explained by the fact that the heat-based load 

balancing might not be that efficient when all data blocks that are requested are already 

present in the buffer disks. In other words, if a data miss operation does not occur, there 

is no chance for the heat-based algorithm to execute. Therefore, the temperature of 

buffer disks will be largely decided by the access pattern of coming requests.  

 

 

Figure 6.8 Temperature tracking trace 
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Figure 6.9 Temperatures in initial stage 

 

Figure 6.10 Temperatures in intermediate stage 

 

Figure 6.11 Temperatures in final stage 
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To compare the load balancing efficiency of sequential mapping, round robin 

mapping, and heat-based mapping, we simulated 5000 requests with average data size of 

4MB using these three mapping strategies. The simulation results depicted in Figure 

6.12 prove that the proposed heat-based mapping is the most efficient algorithm that 

achieves load balancing. In addition, the random mapping method (round robin 

mapping) outperforms non-random mapping strategies (sequential mapping) overall.  

 

Figure 6.12 Load balancing comparison 

6.5.3 Evaluation of Response Time 

Response time is one of the most important criteria to evaluate the BUD 

architecture. This is because the buffer disk architecture leads to response time penalties. 

This is especially true in the early stages of a workload when few data blocks are cached 

in buffer disks. However, we believe that the performance penalty in the early stage is 

worthwhile as long as the system can provide quick response times when the initial 

caching stage is over.  
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In order to accurately evaluate the response time, we simulated 25000 requests for 

large reads (average data size 64MB) and small reads (average data size 64KB), which 

are illustrated in Figure 6.13-6.16 respectively.  For each simulation, we first execute 

20000 requests to complete the caching stage. After that, we execute 5000 more requests 

to see whether or not the system can leverage the response time delay. Since the number 

of sample requests is too large, it is difficult to analyze the performance trend. 

Therefore, we plot the trend line in each figure (the black line inside) to better analyze 

the changing response time trend. The trend line is plotted by calculating the average 

response time of every 100 tasks and inserting this value into the trend line. For 

example, if we have 5000 requests, the program will calculate 50 average response times 

which will be the data points in trend line.  

 

Figure 6.13 Response time trace before training (64MB) 
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Figure 6.14 Response time trace after training (64MB) 

 

Figure 6.15 Response time trace before training (64KB) 

Figure 6.13 and Figure 6.15 verify our prediction of the response time delay in the 

early caching stage. For example, we can see in Figure 6.13 that the response time delay 

rises up to 140s. However, we are very delighted to witness the performance improve 

when more and more hot data blocks are cached in the buffer disks.  After the training 

process, the average response time is very close to the performance of a greedy No-

Buffer parallel storage system. For example, the average response time of BUD shown 
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in Table 6.4 is 1.219s for large reads and 0.01s for small reads. These numbers are in the 

same level of No-Buffer parallel disk systems. We can even predict that the BUD could 

offer better performance than No-Buffer strategies if higher performance disks serve as 

the buffer disk in the future.  

 

Figure 6.16 Response time trace after training (64KB) 

 

Table 6.4 Average response time comparison 

 Average Response Time 

training (64MB): 5.614s 

after training (64MB): 1.219s 

training (64KB): 0.767s 

after training (64KB): 0.01s 

NO-Buffer(64MB) 1.216s 

NO-Buffer(64KB) 0.01s 
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6.6 Summary 

In this chapter, we propose a buffer disk based architecture for parallel storage 

systems, or BUD for short, which can conserve energy by allowing as many data disks 

as possible running in low-power mode. A heat-based dynamic data-caching strategy 

was proposed to improve the performance of BUD architecture by achieving good load 

balancing in buffer disk layer. We also analyze and compare the impact of three 

mapping methods, which are sequential mapping, round robin mapping, and heat-based 

mapping respectively. These mappings are applied to the BUD architecture to gauge 

load balance, energy consumption, and performance. 

The preliminary results have shown substantial gains that BUD can conserve more 

than 80% of energy when compared with traditional parallel systems that do not employ 

buffer disks. In addition, the average response time could be as good as the No-Buffer 

parallel systems. For the future research work we would like to explore the impact of the 

number of buffer disks and data disks to the system. In addition, we need to incorporate 

traces from real-world applications to improve the feasibility of our approaches.  
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Chapter 7 

Conclusions and Future Work 

In this dissertation, we propose a general architecture for building energy-efficient 

high-performance computing platforms and discuss the possibility of incorporating 

energy-efficient techniques in each layer of the proposed architecture. In addition, we 

have developed a series of energy-efficient algorithms for high-performance computing 

platforms like clusters, grids and large-scale storage systems. This chapter concludes the 

dissertation by summarizing the contributions and describing future directions. The 

chapter is organized as follows: section 7.1 highlights the main contributions of the 

dissertation. In section 7.2, we concentrate on some future directions, which are 

extensions of our past and current research on green computing for high-performance 

computing platforms.  

7.1 Main Contributions 

Currently, more and more data centers face the energy crisis. This crisis appears to 

be a mismatch between requirements and capabilities. On the requirements side, to meet 

application demands and the regulatory requirements, we need to deploy more and more 
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servers. During the years 2000-2010, the number of servers is expected to grow by 6 

times and the number of storage disks is expected to grow by 69 times. Accordingly, 

demands for energy use will significantly increase. How to get enough power to support 

future data center has become a serious problem. The objective of our research is to find 

possible and potential energy-efficient techniques to reduce power consumption of high-

performance computing platforms built in giant data centers.  The main contributions are 

summarized as follows: 

• Architecture for High-Performance Computing Platforms 

As far as we have known, there is no existing general architecture which is suitable 

for most high-performance computing platforms. Especially, there is no previous 

research have discussed the energy conservation issue of high-performance computing 

platforms in the architecture level. We propose a general architecture for high-

performance computing platforms and discuss the possibility of incorporating energy-

efficient techniques to each layer of the proposed architecture (See Figure 3.1). 

• Energy-Efficient Scheduling for Clusters 

In the past few years, high-performance clusters have been widely used to solve 

challenging and rigorous engineering tasks in industry and scientific applications. Due 

to extremely high energy cost, reducing energy consumption has become a major 

concern in designing economical and environmentally friendly Clusters for many 

applications. We propose two energy-efficient duplication-based scheduling algorithms 

called EAD and PEBD for clusters. They aimed to reduce energy consumption in 

clusters while minimizing communication overheads associated with parallel tasks. 

Rather than just consider energy or performance, our algorithms strived to balance the 
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scheduling lengths and energy savings by judiciously replicating predecessors of a task 

if the duplication can aid in performance with limited energy consumption. We 

conducted extensive experiments using both synthetic benchmarks and real-world 

applications to prove the efficiency of these two algorithms. 

• Energy-Efficient Scheduling for Grids 

Grids are complicated heterogeneous super computing platforms which can 

simultaneously execute thousands of parallel tasks. How to energy-efficiently schedule 

those parallel tasks in complex heterogeneous grids environment is an open problem. 

The objective of this study is to develop energy-efficient data grids to provide 

significant energy savings for data-intensive applications running on grids. We designed 

a generic energy-aware scheduling framework for grids and proposed two energy-

efficient algorithms called EETDS and HEADUS. In addition, we evaluated the 

performance and energy efficiency of the proposed algorithms by conducting extensive 

simulations. 

• Energy-Efficient Storage Systems 

With the tremendous development of human society, billions of data in the form of 

knowledge and information is generated every day. In order to save and process these 

massive data sets with high-performance, a large number of disks have to be operated in 

parallel, which introduces a serious problem: huge energy consumption.  To build 

energy-efficient storage systems, we propose a buffer-disk based architecture. In 

addition, we design and implement corresponding energy-aware load balancing strategy 

for the buffer-disk architecture. 
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7.2 Future Work 

In the course of designing and evaluating energy-aware resource management 

techniques for high-performance computing platforms, we have found several 

interesting issues that are still unresolved. This section overviews some of these open 

issues that need further investigation. These open issues present opportunities for my 

future research.  

• Energy-Efficient Scheduling for Embedded Systems 

Embedded/mobile devices are even more sensitive to power consumption due to the 

limited battery life. I will extend my previous energy-aware research to embedded 

devices/sensor networks and evaluate previous algorithms in terms of energy efficiency 

in a more power sensitive environment. 

• Energy-Aware Load Balancing 

The nature of load balancing is to equally spread work between many computers, 

processes, hard disks or other resources in order to get optimal resource utilization and 

decrease computing time. In order to do this, the controller or scheduler has to keep as 

many resources active as possible. This will lead to a potential problem - huge energy 

consumption. Now we are in a dilemma: increase throughput means more energy 

consumption while saving energy means system performance degradation. It is expected 

to propose a power-aware load balancing schema which aims at judiciously spreading 

work in an energy-efficient way. 

• Optimize Data Movement 



125 

 

I/O-intensive applications tend to have a huge amount of transferred data. Since the 

transferred data may be moved from node to node, data movement has a significant 

impact on the overall performance of load balancing polices. To alleviate such a burden 

resulting from data movements, it is necessary to propose a predictive model to move 

data without compromising the performance of applications running on local nodes. The 

new model should largely depend on data distribution, the amount of data, data access 

pattern, and network traffic. 

• Dynamic Scheduling Strategies in Grids 

The performance of a large scale heterogeneous grid system is very sensitive to 

various unforeseen and unplanned events that can happen at short notice, which include 

but not limited to breakdowns of computers and random arrivals of new jobs. These 

real-time events not only interrupt system operations, but also have negative impacts on 

job schedules made on the fly. Therefore, it is highly desirable to develop adaptive 

dynamic scheduling strategies which can handle those unpredicted events. Multi-agent 

techniques are promising approaches to building complex, robust, and cost-effective 

schedulers for the next-generation grid systems, because multi-agents are autonomous, 

distributed and dynamic in nature. The agent-based dynamic scheduling strategy could 

be a possible solution to generate robust schedules in a complicated and dynamic 

distributed computing environment like grids. 

• Service Level Agreement Research in High-Performance Clusters 

It is desirable to develop high-performance clusters to provide secure and reliable 

services for various types of customer requests submitted to the systems. Various cluster 

computing use cases have different requirements such as execution deadline, higher 
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security, higher reliability, low cost etc. Therefore, it is highly imperative to develop 

widely accepted regulations at the high level. 
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