

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR

HIGH-PERFORMANCE COMPUTING PLATFORMS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Ziliang Zong

Certificate of Approval:

__________________________ ___________________________
Drew Hamilton Xiao Qin, Chair
Associate Professor Assistant Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

__________________________ ___________________________
Wei-Shinn Ku George T. Flowers
Assistant Professor Interim Dean
Computer Science and Software Graduate School
Engineering

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR

HIGH-PERFORMANCE COMPUTING PLATFORMS

Ziliang Zong

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 9, 2008

iii

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR

HIGH-PERFORMANCE COMPUTING PLATFORMS

Ziliang Zong

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at their expense. The

author reserves all publication rights.

 Signature of Author

Date of Graduation

iv

DISSERTATION ABSTRACT

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR

HIGH-PERFORMANCE COMPUTING PLATFORMS

Ziliang Zong

Doctor of Philosophy, August 9, 2008
(M.S. Shandong University, China, 2005)
(B.S. Shandong University, China, 2002)

151 Typed Pages

Directed by Xiao Qin

In the past decade, high-performance computing (HPC) platforms like clusters and

computational grids have been widely used to solve challenging and rigorous

engineering tasks in industry and scientific applications. Due to extremely high energy

cost, reducing energy consumption has become a major concern in designing

economical and environmentally friendly HPC infrastructures for many applications. In

this dissertation, we first describe a general architecture for building energy-efficient

HPC infrastructures, where energy-efficient techniques can be incorporated in each layer

of the proposed architecture. Next, we developed an array of energy-efficient scheduling

as well as energy-aware load balancing algorithms for high-performance clusters,

v

computational grids, and large-scale storage systems. The primary goal of this

dissertation research is to minimize energy consumption while maintaining reasonably

high performance by incorporating energy-aware resource management techniques to

HPC platforms. We have conducted extensive simulation experiments using both

synthetic and real world applications to quantitatively evaluate both energy efficiency

and performance of our proposed energy-efficient scheduling and load balancing

strategies. Experimental results show that our approaches can reduce energy dissipation

in HPC platforms without significantly degrading system performance.

vi

ACKNOWLEDGMENTS

First of all, I would like to express my deep and sincere gratitude to my advisor, Dr.

Xiao Qin. Without his wide knowledge, detailed and constructive guidance, generous

support and warm encouragement, I would not have completed my PhD study within

three years and this dissertation research would have never been possible. His passionate

attitude towards research and wonderful personality will have a remarkable influence on

my entire career.

I warmly thank Dr. Drew Hamilton and Dr. Wei-Shinn Ku for their valuable advice

on my dissertation. The extensive discussions and their insightful comments have

significantly helped in improving the quality of this dissertation. I also wish to express

my warm and sincere thanks to Dr. Shiwen Mao for serving as the outside reader and

proofreading my dissertation.

I also wish to extend my sincere thanks to all the members in our research group led

by Dr. Qin. The group members and my friends have helped me and collaborated with

me during my study in Auburn University. These research group members include

Adam Manzanares, Xiaojun Ruan, Kiranmai Bellam, Tao Xie, and Mais Nijim.

I owe my loving thanks to my wife Shuo Wang, my daughter Elena Zong and my

parents-in-law. They not only have been providing me with sufficient time to do

research, but also giving me a happy family life in Auburn. It would have been

impossible for me to complete this dissertation without their encouragement and

vii

understanding. I am deeply grateful to my parents. Without their consistent support and

selfless love, I could not get the achievements today.

viii

Style manual: IEEE Standard for Research Papers

Software used: Microsoft Word 2007, Microsoft Excel 2007, Linux GCC Compiler,

Microsoft Visio 2007, Eclipse, Adobe Photoshop, C/C++/Java

ix

TABLE OF CONTENTS

LIST OF FIGERS .. xiii

LIST OF TABLES ... xvii

1. INTRODUCTION ... 1

1.1 Problem Statement ... 2

1.1.1 The Era of High-Performance Computing ... 2

1.1.2 The Data Center Energy Crisis ... 3

1.2 Scope of Research ... 4

1.3 Contributions ... 5

1.4 Dissertation Organization .. 6

2. LITERATURE REVIEW .. 7

2.1 Related Work on Energy-Aware Scheduling .. 7

2.1.1 Energy-Aware Scheduling in Clusters and Grids 8

2.1.2 Task Partitioning and Task Scheduling .. 9

2.2 Related Work on Energy-Efficient Storage Systems 11

2.3 Summary .. 13

3. HIGH-PERFORMANCE COMPUTING PLATFORMS ARCHITECTURE............ 15

x

3.1 A General High-Performance Computing Platforms Architecture 16

3.2 Summary .. 19

4. ENERGY-EFFICIENT SCHEDULING FOR CLUSTERS 20

4.1 System Models .. 22

4.1.1 Cluster Model ... 22

4.1.2 Parallel Tasks Model .. 23

4.1.3 Energy Consumption Model ... 24

4.2 Energy-Efficient Scheduling Algorithms .. 27

4.2.1 Original Task Sequence Generation ... 28

4.2.2 Duplication Parameters Calculation ... 29

4.2.3 Energy-Efficient Scheduling: EAD and PEBD 30

4.2.4 A Case Study .. 34

4.3 Time Complexity Analysis .. 38

4.4 Simulation Results ... 39

4.4.1 Simulation Metrics and Parameters .. 39

4.4.2 Impact of Processor Types to Energy ... 43

4.4.3 Impact of Interconnection Types to Energy ... 45

4.4.4 Impact of Application Types to Energy ... 48

4.4.5 Impact of CCR to Energy ... 51

4.4.6 Impact of Processor Status to energy ... 52

xi

4.4.7 Impact to Schedule Length ... 55

4.5 Summary .. 57

5. ENERGY-EFFICIENT SCHEDULING FOR GRIDS ... 58

5.1 Motivation ... 59

5.2 System Model .. 60

5.2.1 Grid Systems Model ... 61

5.2.2 Parallel Tasks Model .. 62

5.3 Job Scheduling in Grids ... 64

5.4 Energy-Efficient Scheduling Algorithms .. 68

5.4.1 The Task Analyzer.. 69

5.4.2 Grouping Phase .. 70

5.4.3 Task Duplication Phase .. 71

5.4.4 Energy-Efficient Group Allocation Phase .. 75

5.4.5 A Case Study .. 77

5.5 Time Complexity Analysis .. 82

5.6 Simulation Results ... 84

5.6.1 Simulation Metrics and Parameters .. 84

5.6.2 Experimental Results for Gaussian Elimination 87

5.6.3 Experimental Results for Fast Fourier Transform 91

5.6.4 Experimental Results of Schedule Length ... 94

xii

5.7 Summary .. 95

6. ENERGY-EFFICIENT STORAGE SYSTEMS ... 97

6.1 Motivation ... 98

6.2 Buffer-Disk Architecture ... 99

6.3 Heat-Based Load Balancing .. 100

6.3.1 A Concrete Example ... 101

6.3.2 Heat-based Load Balancing Algorithm .. 103

6.4 Energy Consumption Models .. 106

6.5 Simulation Results ... 109

6.5.1 Evaluation of Energy Consumption ... 111

6.5.2 Evaluation of Load Balancing .. 113

6.5.3 Evaluation of Response Time ... 116

6.6 Summary .. 120

7. CONCLUSIONS AND FUTURE WORK .. 121

7.1 Main Contributions .. 121

7.2 Future Work ... 124

8. REFERENCES .. 127

xiii

LIST OF FIGURES

Figure 1.1 2007 EPA report to congress about U.S. data center power usage 4

Figure 3.1 High-performance computing platforms architecture 16

Figure 4.1 System model of high-performance clusters (source: Wikipedia) 20

Figure 4.2 Pseudo code of phase 3 in the EAD algorithm .. 31

Figure 4.3 Pseudo code of phase 3 in the PEBD algorithm .. 33

Figure 4.4 A typical DAG ... 34

Figure 4.5 Energy consumption parameters in different working modes 41

Figure 4.6 Structure of simulated trees and applications... 42

Figure 4.7(a) Energy consumption for different processors (Gaussian, CCR=0.4) 43

Figure 4.7(b) Energy consumption for different processors (Gaussian, CCR=4) 44

Figure 4.7(c) Energy consumption for different processors (FFT, CCR=0.4) 44

Figure 4.7(d) Energy consumption for different processors (FFT, CCR=4) 44

Figure 4.8(a) Total energy consumption (Robot Control, Myrinet) 46

Figure 4.8(b) Total energy consumption (Robot Control, Infiniband) 46

Figure 4.8(c) Total energy consumption (Sparse Matrix Solver, Myrinet) 47

Figure 4.8(d) Total energy consumption (Sparse Matrix Solver, Infiniband) 47

xiv

Figure 4.9(a) Energy of Intel Core2 Duo E6300 (Robert Control, Myrinet) 49

Figure 4.9(b) Energy of Intel Core2 Duo E6300 (Sparse Matrix Solver, Myrinet) 49

Figure 4.9(c) Energy of Athlon 3800+ 35W (Robert Control, Myrinet) 49

Figure 4.9(d) Energy of Athlon 3800+ 35W (Sparse Matrix Solver, Myrinet) 50

Figure 4.10(a) CPU energy consumption under different CCRs 51

Figure 4.10(b) Interconnection energy under different CCRs ... 52

Figure 4.10(c) Total energy consumption under different CCRs 52

Figure 4.11(a) CPU energy consumption under light mode .. 53

Figure 4.11(b) CPU energy consumption under busy mode ... 53

Figure 4.11(c) CPU energy consumption under heavy mode ... 54

Figure 4.11(d) Total energy consumption under light mode ... 54

Figure 4.11(e) Total energy consumption under busy mode ... 54

Figure 4.11(f) Total energy consumption under heavy mode ... 55

Figure 4.12(a) Schedule length of Gaussian Elimination .. 56

Figure 4.12(b) Schedule length of Sparse Matrix Solver .. 56

Figure 5.1 Example task graph and heterogeneous processor graph 64

Figure 5.2 The system view of scheduling in a computational grid 65

Figure 5.3 The task view of scheduling in a computational grid 68

Figure 5.4 A directed acyclic graph (DAG) analyzed by the task analyzer 70

Figure 5.5 An example of duplication scheduling strategy ... 72

xv

Figure 5.6 Pseudo code of the grouping phase in the EETDS algorithm 73

Figure 5.7 Pseudo code of the grouping phase in the HEADUS algorithm 74

Figure 5.8 Pseudo code of group allocation to minimize energy consumption 76

Figure 5.9 A synthetic parallel application .. 77

Figure 5.10 Allocation results showing how the EETDS algorithm works....................... 82

Figure 5.11 Parameters used in simulation (data from test report of Xbit Lab) 87

Figure 5.12 CCR sensitivity for Gaussian when Net_Energy=33.6 88

Figure 5.13 Computational nodes heterogeneity experiments .. 90

Figure 5.14 Network heterogeneity and threshold sensitivity experiments 91

Figure 5.15 CCR sensitivity for FFT when Net_Energy=20W ... 92

Figure 5.16 Computational nodes heterogeneity experiments for FFT 93

Figure 5.17 Network heterogeneity for FFT and schedule length for Gaussian 94

Figure 6.1 The buffer disk architecture ... 100

Figure 6.2 Allocation results of sequential mapping strategy ... 102

Figure 6.3 Allocation results of round-robin mapping strategy 102

Figure 6.4 Allocation results of heat-based mapping strategy .. 103

Figure 6.5 Heat-based load balancing algorithm ... 105

Figure 6.6 Energy consumption for large reads .. 112

Figure 6.7 Energy consumption for small reads .. 113

Figure 6.8 Temperature tracking trace .. 114

xvi

Figure 6.9 Temperatures in initial stage .. 115

Figure 6.10 Temperatures in intermediate stage ... 115

Figure 6.11 Temperatures in final stage .. 115

Figure 6.12 Load balancing comparison ... 116

Figure 6.13 Response time trace before training (64MB) ... 117

Figure 6.14 Response time trace after training (64MB) .. 118

Figure 6.15 Response time trace before training (64KB) .. 118

Figure 6.16 Response time trace after training (64KB)... 119

xvii

LIST OF TABLES

Table 4.1 Important notations and parameters .. 29

Table 4.2 Final results of parameters .. 36

Table 4.3 Simulation environment of processor impact .. 43

Table 4.4. Simulation environment of interconnection impact ... 46

Table 4.5 Simulation environment of application impact ... 48

Table 4.6 Simulation environment of CCR impact ... 51

Table 5.1 Results of the important parameters .. 79

Table 5.2 Energy consumption values ... 81

Table 5.3 Characteristics of experimental system parameters .. 85

Table 6.1 Seek time calculation ... 109

Table 6.2 Hardware characteristics of disks .. 110

Table 6.3 Important parameters ... 111

Table 6.4 Average response time comparison ... 119

1

Chapter 1

Introduction

With the advent of powerful processors, fast interconnects, and low-cost storage

systems, high performance computing platforms like clusters, grids and large-scale

storage systems have served as primary and cost-effective infrastructures for ever

complicated scientific and commercial applications. Theses platforms provide powerful

computing capability and the applications running in these platforms require intensive

data processing and data storage capability in nature. Unfortunately, super-computing

power is at the cost of huge energy consumption. How to generate enough power to

support these high-performance computing platforms has become a serious problem.

We believe that an efficient way to alleviate the energy crisis caused by high-

performance computing platforms is to design green computing techniques and apply

these techniques to the super-computing platforms. The objective of this dissertation is

to explore energy-efficient resource management technologies to reduce power

consumption of high-performance computing platforms built in giant data centers.

2

This chapter first presents the problem statement in Section 1.1. In Section 1.2, we

describe the scope of this research. Section 1.3 highlights the main contributions of this

dissertation, and Section 1.4 outlines the dissertation organization.

1.1 Problem Statement

In this section, we start with an overview of new trends in high-performance

computing. Section 1.1.2 introduces the serious data center energy crisis that we have to

face today and presents the initial motivation for the dissertation research.

1.1.1 The Era of High-Performance Computing

We are now in an era of information explosion. Billions of data is generated in the

moment you blink your eyes. In order to process these massive data, large-scale high-

performance computing platforms have been widely deployed all over the world. These

high-performance computing platforms usually are built in huge data centers. A large

fraction of applications running in these high-performance computing platforms are

computing-intensive and storage-intensive, since these applications deal with a large

amount of data transferred either between memory and storage systems or among

hundreds of computing nodes via interconnection networks. Nowadays, we can find the

impact of high-performance computing data centers in almost every domain: financial

services, scientific computing, bioinformatics, computational chemistry, and weather

forecast etc. Without the support of high-performance computing platforms, the

implementation of large-scale scientific and commercial projects like human genome

sequence programs, universe dark matter observation and Google search engine is

3

almost impossible. There is no doubt that data centers have significantly changed our

lives. We are enjoying the great convenience and services provide by data centers every

day.

1.1.2 The Data Center Energy Crisis

However, every sword cuts two sides. Increasing evidences have shown that the

powerful computing capability of data centers is actually at the cost of huge energy

consumption. For example, Energy User News stated that the power requirements of

today’s data centers range from 75 W/ft2 to 150-200 W/ft2 and will increase to 200-300

W/ft2 in the nearest future [1]. The new data center capacity projected for 2005 in U.S.

would require approximately 40 TWh ($4B at $100 per MWh) per year to run 24x7

unless they become more efficient [2]. The supercomputing center in Seattle is forecast

to increase the city's power demands by 25% [3]. As shown in Figure 1.1, the

Environment Protection Agency reported that the total energy consumption of servers

and data centers of the United States was 61.4 billion KWh in 2006, which is more than

doubled the energy usage for the same purpose in 2000 [4]. Even worse, the EPA

predicted that the power usage of servers and data centers will be doubled again within

five years if the historical trends are followed [4]. However, most previous research

about high-performance computing primarily focused on the improvement of

performance, security, and reliability. Energy conservation issue was a forgotten corner.

However, organizations of all sizes are currently experiencing significant challenges as a

result of energy-related expenses within their data centers. For example, “The data

center energy crisis is inhibiting our clients’ business growth as they seek to access

4

computing power. Many data centers have now reached full capacity, limiting a firm’s

ability to grow and make necessary capital investments,” said Mike Daniels, senior vice

president, IBM Global Technology Services. Our research is motivated by the energy

consumption trend and the necessity of energy conservation for high-performance

computing platforms.

Figure 1.1 2007 EPA report to congress about U.S. data center power usage

1.2 Scope of Research

Our research is focusing on designing new energy-efficient techniques for data

centers and incorporating existing techniques to conserve energy in high-performance

computing platforms. Since CPUs, network interconnections and storage systems are

three primary energy consumers in most high-performance computing platforms, our

research focuses on conserving energy for CPUs, interconnections and storage systems.

5

More specific, the energy conservation for CPUs and interconnections are achieved

through energy-efficient scheduling. A buffer disk based architecture (BUD for short)

and energy-aware load balancing algorithm are proposed to build energy-efficient

parallel storage systems.

1.3 Contributions

The major contributions of this research are summarized as follows:

(1) We propose a general architecture for large scale high-performance computing

platforms and discuss the potential possibilities of incorporating energy-

efficient techniques to each layer of the proposed architecture.

(2) We design and implement two energy-efficient scheduling algorithms for

homogeneous cluster systems.

(3) We design and implement two energy-efficient scheduling algorithms for

heterogeneous grid systems.

(4) We design energy-efficient buffer disk based architecture (BUD for short) for

storage systems and implement the according energy-aware load balancing

algorithm for BUD.

(5) We conduct extensive experiments for large scale clusters, grids, and storage

systems. These experimental results could be used for other researchers in the

research area of green computing.

6

1.4 Dissertation Organization

This dissertation is organized as follows. In Chapter 2, related work in the literature

is briefly reviewed.

In Chapter 3, we propose the high-performance computing platforms architecture

and discuss the potential possibilities of incorporating energy-efficient techniques to

each layer of the proposed architecture.

To make the architecture presented in Chapter 3 more practical, we develop two

energy-efficient algorithms for parallel jobs running in clusters in Chapter 4.

In Chapter 5, we study the energy-efficient scheduling issue for heterogeneous grids.

In Chapter 6, a buffer disk based energy-efficient storage system is presented and its

impact to performance and energy is evaluated.

In Chapter 7, we summarize the main contributions of this dissertation and discuss

future directions for this research.

7

Chapter 2

Literature Review

In this chapter, we briefly summarize the previous literatures which are most

relevant to our research in terms of energy-efficient resource management for high-

performance computing platforms. Section 2.1 will introduce related work on energy-

efficient parallel scheduling, which is highly relevant to our research shown in chapter 4

and 5. Related work on energy-efficient high-performance storage systems will be

discussed in section 2.2. This part of related work is closely relevant to our research

shown in chapter 6.

2.1 Related Work on Energy-Aware Scheduling

The issue of conserving energy consumption in clusters and grids did not attract

enough attention for a long period because researchers primarily concentrate on the

performance, reliability, and security issues [5]. Recently, people start to realize that the

energy consumption issue is also critical since energy demands of clusters and grids

have been steadily growing companied with an increasing number of data centers.

However, designing energy-aware scheduling algorithms for homogeneous clusters,

especially for heterogeneous grids, is technically challenging because we have to take

8

into account multiple design objectives, including performance (measured by throughput

and schedule length), energy efficiency, and heterogeneities.

2.1.1 Energy-Aware Scheduling in Clusters and Grids

A handful of previous studies investigated energy-aware processor and memory

design techniques to reduce energy consumption in CPU and memory resources [6] [7]

[8]. IBM researchers Elnozahy, Kistler, and Rajamony proposed the Request Batching

Policy (RBP), in which servicing of incoming requests is delayed while a web server is

kept in a low power state. Incoming requests are accumulated in memory until a request

has been kept pending for longer than a specified batching timeout. RBP can save

energy because while requests are being accumulated, the processor is placed in a lower

power state such as deep sleep [9]. Dynamic power management is designed to achieve

requested performance with minimum number of active components or a minimum load

on such components [6] [10]. Dynamic power management consists of a collection of

energy-efficient techniques, which adaptively turn off system components or reduce

their performance when the component is idle or partially unexploited. For example,

based on the observation of past idle and busy periods, predictive shutdown policies can

make power management decisions when a new idle period starts [11] [12]. Shin and

Choi proposed a scheme to slow down a processor when there is a single task eligible

for execution [13]. Yao et al. developed a static off-line scheduling algorithm [14],

whereas Hong et al. proposed on-line heuristics scheduling for aperiodic tasks [15]. T.

Xie and X. Qin developed a task allocation strategy aiming to minimize overall energy

consumption while confining schedule lengths to an ideal range [16].

9

However, the prior work in the arena of energy-aware scheduling was merely

focused on energy consumed by processors. The communication energy consumption

was completely ignored. The literature has shown that reducing energy dissipation in

interconnects is critical important. For instance, interconnect consumes 33 percent of the

total energy in an Avici switch [17] [18], and routers and links consume 37 percent of

the total power budget in a Mellanox server blade [19]. The energy consumption in

interconnects becomes even more critical for communication-intensive parallel

applications, in which large number of data will be transferred among precedence

constrained parallel tasks. One of the fundamental differences between our research and

previous research is that we consider both CPU and network interconnection power

consumption in the context of homogeneous and heterogeneous environment.

2.1.2 Task Partitioning and Task Scheduling

Task allocation strategies, which can be divided into task partitioning and scheduling

strategies, play an important role in achieving high-performance for parallel applications

on clusters and grids. The goal of a partitioning algorithm is to partition a parallel

application into a set of precedence constrained tasks represented in the form of a

directed acyclic graph (DAG), whereas a scheduling algorithm is deployed to schedule

the DAG onto a set of homogeneous or heterogeneous computational nodes. Scheduling

strategies deployed in clusters and grids have large impacts on overall system

performance.

Allocation techniques can be generally classified into two types: static and dynamic

schemes. The basic idea of static allocation schemes [20] [21] [22] [23] [24] is to

10

assume prior knowledge of applications, including the component tasks, their execution

times, and the like. Static allocation tries to find the overall optimized scheduling

solution for given objectives at compile time, which is extremely expensive (NP-

Complete Problem) in numerous complicated applications. In contrast, dynamic

allocation strategies [25] [26] [27] [28], which are much less expensive, provide merely

suboptimal results.

Scheduling policies can be generally classified into three categories: priority-based

scheduling [29], group-based scheduling, and task-duplication based scheduling

algorithms [30]. Priority-based scheduling algorithms involve assignments of priorities

to tasks and then maps the tasks to computing nodes based upon assigned priorities.

Group-based scheduling algorithms group intercommunicating tasks within a single

computing node, thereby eliminating communication overheads [31]. The basic idea

behind duplication-based scheduling algorithms is to make use of computing nodes’ idle

times to replicate predecessor tasks [30] [32]. Many researchers have demonstrated that

various strategies regarding task duplications are extremely applicable for reducing total

execution times under communication intensive workload conditions [32] [33]. In

duplication-based scheduling strategies that exhibit performance improvements over

other scheduling methods, redundantly executed tasks either eliminate communication

overheads or allow productive utilization of idle processor times. Hagras and Janecek

developed a simple yet efficient task-graph scheduling algorithm using the list-based

and task-duplication-based scheduling approaches [34]. Siegel et al. investigated various

mapping and scheduling algorithms in the context of heterogeneous ad hoc grids, where

the algorithms are aimed to assign resources in a way to meet applications’ execution

11

time and energy constraints [35]. Kishimoto and Ichikawa carried out a case study,

attempting to reduce the execution time of the high-performance linpack benchmark on

two heterogeneous clusters [36]. Cuenca et al. proposed an approach to adapting an

application implementing a homogeneous parallel dynamic programming algorithm for

efficient execution on a heterogeneous cluster [37].

In our algorithms for grids, we try to seamlessly integrate static and dynamic

allocation techniques to guarantee high-performance while conserving energy. Basically,

our algorithms contain two phases. In the first phase, we apply a heuristic (a similar

approach can be found in [5]) to minimize schedule lengths by clustering the most

related parallel tasks together. The static allocation is carried out because we assume the

execution and communication times of tasks are already known in priori. In the second

phase, our algorithms make use of a dynamic allocation method to obtain an optimal

power consumption of a grid computing system by comparing total energy consumption

when grouped tasks are allocated to different computational nodes in the grids.

2.2 Related Work on Energy-Efficient Storage Systems

Modern parallel storage systems are able to provide higher performance at the cost

of enormous energy consumption. For example, a typical robotic tape system provided

by StorageTek would have an aggregate bandwidth of 1200MB/s [38] while a modern

disk array could easily provide a peak bandwidth of 2,880,000MB/s. However, reading

and storing 1,000TB of information would cost $9,400 to power the tape library system

vs. $91,500(almost ten times) to power the disk array [39]. The gap will definitely

increase when faster disks with higher power consumption rates appear and are widely

12

deployed. A recent industry report shows that storage devices account for almost 27% of

the total energy in a data center [40]. Even worse, this fraction tends to increase as

storage requirements are rising by 60% annually [41]. Due to the preceding energy

consumption trends, new technologies focused on the design of energy-efficient parallel

storage systems are highly desirable.

Several techniques proposed to conserve energy in storage systems include dynamic

power management schemes [42], power-aware cache management strategies [43],

power-aware prefetching schemes [44], software-directed power management

techniques [45], and multi-speed settings [46]. But so far, none of these techniques

address the energy conservation and performance issue of buffer-disk based parallel

storage systems.

In 2002, D. Colarelli and D. Grunwald presented a similar framework as compared

to our BUD architecture. Their architecture was called “Massive Arrays of Idle Disks”

or MAID [39]. However, two important problems remain unsolved in MAID. First, they

did not clearly mention about the mapping structure of active drives and passive drives,

i.e. which buffer disk should be chosen as the candidate to cache the data whenever

there is a data miss. Second, they did not consider the load balancing issue, which very

likely could lead to performance penalties.

Another framework similar to MAID, called Popular Data Concentration (PDC),

was proposed by E. Pinheiro and R. Bianchini in 2004 [47]. The basic idea of PDC is to

migrate data across disks according to frequency of access, or popularity. The goal is to

lay data out in such a way that popular and unpopular data are stored on different disks.

This layout leaves the disks that store unpopular data mostly idle, so that they can be

13

transitioned to a low-power mode. However, PDC is a static offline algorithm. In some

cases, it is impossible for the system to exactly know which data is popular and which is

not. This is especially true for the ever-changing workload, in which some data is

popular at a particular period but becomes unpopular the next period.

In contrast with both MAID and PDC, we implemented a heat-based algorithm to

control data caching and data mapping between data disks and buffer disks in the BUD

architecture. The heat-based algorithm was first proposed by P. Scheuermann, G.

Weikum and P. Zabback in 1998 [48]. Their algorithm varies from our algorithm in the

fact that they calculate the heat of data disks and apply the algorithm in the data

partitioning stage. We calculate the heat of buffer disks and apply the algorithm in the

data caching stage. They focus on how to partition data to improve throughput, while

our focus is how to judiciously cache data to achieve load balancing.

2.3 Summary

The objective of this dissertation is to present energy-aware resource management

strategies for high-performance computing platforms, which is based on previous

research efforts in scheduling, load balancing and large-scale storage systems. This

chapter overviewed a variety of existing techniques related to scheduling, load balancing

and high-performance storage systems.

In the first part of this chapter, we discussed the relevant approaches for energy-

aware task partitioning and scheduling for clusters and grids. In particular, we talked

about the energy-aware techniques for CPU and memory, static and dynamic task

allocation and three different scheduling strategies. Moreover, we briefly introduce the

14

characteristics of our scheduling algorithms. In the second part, we surveyed existing

energy-aware techniques used in high performance storage systems. These techniques

include Massive Arrays of Idle Disks and Popular Data Concentration. In addition, we

compare our heat-based algorithms for buffer disk architecture with these two existing

algorithms.

15

Chapter 3

High-Performance Computing
Platforms Architecture

In the previous chapter, we summarized the published literatures which are highly

related to our research. However, during the course of literature review, we realized that

almost all previous studies are in the lower level such as energy-aware scheduling, CPU

energy efficiency and Memory energy efficiency etc. Although these works have made

great contribution to build energy-aware high-performance computing platforms,

comprehensive discussions in the architecture level was ignored.

We believe that the discussions in the architecture level are necessary and valuable

because these discussions can help us understand the importance of energy-efficiency

for high-performance computing platforms and provide a big picture of this research

area. Meanwhile, it can provide meaningful guidance for the follow-up researchers.

Therefore, in this chapter, we propose a general architecture for high-performance

computing platforms and discuss the possibility of incorporating energy-efficient

techniques to each layer of this architecture.

16

3.1 A General High-Performance Computing Platforms
Architecture

Generally, most high-performance computing platforms can be presented by the

following four layers: the application layer, the middleware layer, the resource layer and

the network layer (See Figure 3.1). Since grid system is one of the most complicated

high-performances computing platforms, we will use grids as an example to explain the

proposed architecture.

Figure 3.1 High-performance computing platforms architecture

The network layer is responsible for routing and transferring packets and it also has

the responsibility of establishing network services for the resource layer. The dynamic

17

network power management technique could be implemented in the network layer to

support energy-efficient data transmission by deferring packet transmissions without

violating any delay constraints.

On top of the network layer is a resource layer, which consists of a wide range of

resources like computing nodes, storage systems, electronic data catalogues, and

satellites or other instruments. The resource layer is responsible for manipulating the

distributed resources in grid systems. In this layer, the dynamic voltage scaling

techniques can be used to conserve energy for computing nodes by dynamically

lowering supply voltages when the computing nodes are running faster than specified

performance requirements.

Parallel applications running in a grid system do not directly interact with the

resource layer. Instead, application programs interact with the middleware layer which

provides a sophisticated means of reliability control, security protection, resource

allocation, and task scheduling and analysis. The middleware layer contains a set of

intelligent modules, including resource broker, security access, task analyzer, task

scheduler, communication service, information service, and reliability control. The

resource broker allows users to submit their applications to the grid system. The security

module is responsible for providing security protection schemes to security-critical grid

applications. After a grid job is admitted to the grid system, the task analyzer partitions

the job into a number of small tasks with dependency constraints. Next, the task

scheduler allocates the tasks to distributed computing resources using specific

scheduling strategies. The communication service module has the responsibility for

supporting services like remote function calls. The information service module keeps

18

track of detailed information pertinent to the tasks’ execution on computing resources.

The reliable control module makes the grid system highly reliable and fault tolerant. For

example, the reliable control module may reject a submitted job if the job’s reliability

requirements cannot be guaranteed by resources in the grid system. The middleware

layer provides significant opportunities for incorporating energy-efficient techniques,

especially for applying energy-efficient scheduling strategies. Our proposed scheduling

algorithms in Chapter 4 and Chapter 5 are actually running in this layer.

The application layer handles all types of user applications varying from science,

engineering, business, and financial area. Portals and development toolkits are provided

to support various grid applications. Although energy-aware software applications are

unusual today, they may become the next hotspot in the research area of software

engineering with the emerging technology of multi-core microprocessors.

A number of energy efficiency trends for large scale servers and data centers are

currently underway. For example, multi-core processors are expected to run at a slower

speed and lower voltage but handle more work in parallel than a single-core chip

thereby balancing energy efficiency and performance. Replacing several dedicated

servers that operate at a low average processor utilization level with a single “host”

server that operates at a higher average utilization level is another trend. Hard disk drive

storage devices are also expected to become more energy-efficient in part because of a

shift to smaller form factor disk drives and increasing use of serial advanced technology

attachment drives. Meanwhile, the next generation of power supply systems and site

infrastructure systems for grids will become more and more energy efficient. If these

trends could be realized and the according techniques could be implemented in different

19

layers, the energy usage caused by high performance computing platforms will be

greatly reduced.

3.2 Summary

In this chapter, we have proposed a general architecture for high-performance

computing platforms and discussed the possibility of incorporating energy-efficient

techniques to each layer of this architecture.

To make this architecture more solid and sound, we will illustrate how to incorporate

energy-efficient techniques to three typical high-performance computing platforms in

the following three chapters. More specifically, Chapter 4 and Chapter 5 will illustrate

energy-efficient scheduling for clusters and grids respectively. Chapter 6 will illustrate

energy-efficient resource management for large-scale storage systems.

20

Chapter 4

Energy-Efficient Scheduling For
Clusters

In this chapter, we consider the problem of building energy-efficient cluster systems.

A cluster is a type of parallel processing system, which consists of a collection of

interconnected stand-alone computers cooperatively working together as a single,

integrated computing system (see Figure 4.1). All these loosely coupled computers do

not have common memory. They communicate with each other by passing messages.

Figure 4.1 System model of high-performance clusters (source: Wikipedia)

21

When we talk about cluster systems, we have to mention about the parallel

computing technologies. Parallel computing is the simultaneous execution of small tasks

split up from a complicated application and specially allocated on multiple processors in

order to obtain results faster. The combination of cluster systems and parallel computing

technology exhibits powerful computing capabilities. Over the last decade, the rapid

advancement of high-performance microprocessors, high-speed networks, and standard

middleware tools makes cluster computing platforms more powerful and convenient to

use. Therefore, cluster computing technology has been extensively deployed and widely

used to solve challenging and rigorous engineering problems in industry and scientific

areas like molecular design, weather modeling, database systems, universe dark matter

observations, and complex image rendering. However, the rapid growth of cluster

computing centers introduces a serious problem: excessively high energy consumption.

To address this problem, we propose two energy-efficient scheduling algorithms in this

chapter for parallel applications running on clusters. The two algorithms are named the

Energy-Aware Duplication scheduling algorithm (or EAD for short) and the

Performance-Energy Balanced Duplication scheduling algorithm (or PEBD for short).

This chapter is organized as follows. In section 4.1, we introduce the mathematical

models used to present cluster systems, including cluster model, parallel tasks model,

and energy consumption model. In section 4.2, we present the energy-efficient

scheduling algorithms and illustrate how the EAD and PEBD algorithms work using a

concrete example. Next, we will prove the time complexity of our algorithms in section

4.3. Experimental environment and simulation results are shown in section 4.4. Finally,

section 4.5 concludes this chapter by summarizing the main contributions of the chapter.

22

4.1 System Models

In this section, we describe mathematical models used to represent clusters,

precedence constrained parallel tasks, and energy consumption in CPUs and

interconnects.

4.1.1 Cluster Model

A computer cluster is a group of coupled computers that work together closely so

that in many respects they can be viewed as though they are a single computer. A cluster

in our research is characterized by a set P = {p1, p2,..., pm} of computational nodes

(hereinafter referred to as nodes) connected by a Myrinet-style cluster interconnects. It is

assumed that the computational nodes are homogeneous in nature, meaning that all

processors are identical in their capabilities. Similarly, the underlying interconnection is

assumed to be homogeneous and, thus, communication overhead of a message with

fixed data size between any pair of nodes is considered to be the same. Each node

communicates with other nodes through message passing, and the communication time

between two precedence constrained tasks assigned to the same node is negligible. In

our system model, computation and communication can take place simultaneously. This

assumption is reasonable because each computational node in a modern cluster has a

communication coprocessor that can be used to free the processor in the node from

communication tasks.

To simply the system model without loss of generality, we assume that the cluster

system is fault free and the page fault service time of each task is integrated into its

execution time. With respect to energy conservation, energy consumption rate of each

23

node in the system is measured by Joule per unit time. Each interconnection link is

characterized by its energy consumption rate that heavily relies on data size and the

transmission rate of the link.

4.1.2 Parallel Tasks Model

A parallel application with a set of precedence-constrained tasks is represented in the

form of a Directed Acyclic Graph (DAG), which throughout this paper is modeled as a

pair (V, E). V = {v1, v2, ..., vn} represents a set of precedence constrained parallel tasks,

and ti is the ith task’s computation requirement showing the number of time units to

compute vi, 0 ≤ i ≤ 1. It is assumed that all the tasks in V are non-preemptive and

indivisible work units, and a similar assumption can be found in related studies [13][49].

E denotes a set of messages representing communications and precedence constraints

among parallel tasks. Thus, eij = (vi, vj)∈ E is a message transmitted from task vi to vj,

and cij is the communication cost of the message eij ∈ E. We assume in this study that

there is one entry task and one exit task for an application with a set of precedence-

constrained tasks. The assumption is reasonable because in case of multiple entry or exit

tasks exist, the multiple tasks can always be connected through a dummy task with zero

computation cost and zero communication cost messages.

The communication-to-computation ratio or CCR of a parallel application is defined

as the ratio between the average communication cost and the average computation cost

of the application on a given cluster. Formally, the CCR of an application (V, E) is given

by the Eq. (1):

24

∑

∑

=

∈= ||

1||
1

||
1

),(V

i
i

Ee
ij

t
V

c
E

EVCCR ij . (1)

A task allocation matrix (e.g., X) is an n×m binary matrix reflecting a mapping of n

precedence constrained parallel tasks to m computational nodes in a cluster. Element xij

in X is “1” if task vi is assigned to node pj and is “0”, otherwise.

4.1.3 Energy Consumption Model

We use a bottom-up approach to derive energy dissipation experienced by a parallel

application running on a cluster. In this subsection, we first model energy consumption

exhibited by computational nodes in the cluster. Next, we calculate energy dissipation in

the interconnection network of the cluster.

Let eni be the energy consumption caused by task vi running on a computational

node, of which the energy consumption rate isactivePN , and the energy dissipation of task

vi can be expressed as Eq. (2)

 iactivei tPNen ×= . (2)

Given a parallel application with a task set V and allocation matrix X, we can

calculate the energy consumed by all the tasks in V using Eq. (3).

()

.

1

1

||

1

∑

∑∑

=

==

=

⋅==

n

i
iactive

n

i
iactive

V

i
iactive

tPN

tPNenEN

 (3)

Let idlePN be the energy consumption rate of a computational node when it is

inactive, and fi be the completion time of task ti. The energy consumed by an inactive

25

node is a product of the idle energy consumption rate idlePN and an idle period. Thus,

we can use Eq. (4) to obtain the energy consumed by the jth computational node in a

cluster when the node is sitting idle.

 () ()






 ⋅−⋅= ∑
==

n

i
iiji

n

i
idle

j
idle txfPNEN

1
1

max (4)

where ()i

n

i
f

1
max

=
 is the schedule length (also known as makespan time), and

() ∑
==

⋅−
n

i
iiji

n

i
txf

1
1

max is the total idle time on the jth node. The total energy consumption

of all the idle nodes cluster is

() ()

() () .max

max

1 1
1

1 1
1

1











⋅−⋅⋅=








 ⋅−⋅==

∑∑

∑ ∑∑

= ==

= ===

m

j

n

i
iiji

n

i
idle

m

j

n

i
iiji

n

i
idle

m

j

j
idleidle

txfmPN

txfPNenEN

 (5)

Consequently, the total energy consumption of the parallel application running on

the cluster can be derived from Eqs. (3) and (5) as

 () () .max
1 1

1
1











⋅−⋅⋅+=

+=

∑∑∑
= ===

m

j

n

i
iiji

n

i
idle

n

i
iactive

idleactive

txfmPNtPN

ENENEN

 (6)

We denote ijel as the energy consumed by the transmission of message (ti, tj)∈ E. We

can compute the energy consumption of the message as a product of its communication

cost and the power activePL of the link when it is active:

 ijactiveij cPLel ×= (7)

The cluster interconnect in this study is homogeneous, which implies that all

26

messages are transmitted over the interconnection network at the same transmission rate.

The energy consumed by a network link between pa and pb is a cumulative energy

consumption caused by all messages transmitted over the link. Therefore, the link’s

energy consumption is obtained by Eq. (8) as follows, where Lab is a set of messages

delivered on the link, and Lab can be expressed as

{ }11,1, =∧=≤≤∈∀= jbiaijab xxmbaEeL .

()

(),

1 ,1
∑ ∑

∑∑

= ≠=

∈∈

⋅⋅⋅=

⋅==

n

i

n

ijj
ijactivejbia

Le
ijactive

Le
ij

ab
active

cPLxx

cPLelEL
abijabij

 (8)

The energy consumption of the whole interconnection network is derived from Eq.

(8) as the summation of all the links’ energy consumption. Thus, we have

 ∑ ∑
= ≠=

=
m

a

m

abb

ab
activeactive ELEL

1 ,1

 ()∑ ∑ ∑ ∑
= ≠= = ≠=

⋅⋅⋅=
n

i

n

ijj

m

a

m

abb
ijactivejbia cPLxx

1 ,1 1 ,1

. (9)

We can express energy consumed by a link when it is inactive as a product of the

consumption rate and the idle period of the link. Thus, we have

 () ()








⋅⋅−⋅= ∑ ∑

= ≠=

n

i

n

ijj
ijjbiai

n

i
idle

ab
idle cxxfPLEL

1 ,1

max

(10)

where idlePL is the power of the link when it is inactive, and

() ()∑ ∑
= ≠=

⋅⋅−
n

i

n

ijj
ijjbiai

n

i
cxxf

1 ,1

max is the total idle time of the link. We can express energy

27

incurred by the whole interconnection network during the idle periods as

() ()∑ ∑ ∑ ∑

∑ ∑

= ≠= = ≠=

= ≠=

⋅








⋅⋅−=

=

m

a

m

a,bb

n

i

n

ijj
ijjbiai

n

i
idle

m

a

m

abb

ab
idleidle

cxxfPL

ELEL

1 1 1 ,1

1 ,1

max

(11)

Total energy consumption exhibited by the cluster interconnect is derived from Eqs.

(9) and (11) as

 ,idleactive ELELEL += (12)

Now, we can compute energy dissipation experienced by a parallel application on a

cluster using Eqs. (6) and (12). Hence, we can express the total energy consumption of

the cluster executing the application as

 () ()








⋅−⋅⋅+=+= ∑∑∑

= ===

m

j

n

i
iiji

n

i
idle

n

i
iactive txfmPNtPNELENE

1 1
1

1

max (13)

() () ()∑ ∑ ∑ ∑ ∑ ∑ ∑∑
= ≠= = = ≠= = ≠=≠=











⋅⋅−+⋅⋅⋅+

n

i

n

ijj

m

a

m

a

m

a,bb

n

i

n

ijj
ijjbiai

n

i
idle

m

abb
ijactivejbia cxxfPLcPLxx

1 ,1 1 1 1 1 ,1,1

.max

4.2 Energy-Efficient Scheduling Algorithms

In this section, we present two energy-aware scheduling algorithms for parallel

applications with precedence constraints running on clusters. The two algorithms are

named the Energy-Aware Duplication scheduling algorithm (or EAD for short) and the

Performance-Energy Balanced Duplication scheduling algorithm (or PEBD for short).

The objective of the two scheduling algorithms is to shorten schedule lengths while

28

optimizing energy consumption of clusters. Theoretically, the scheduling problem for

clusters is NP-hard problem because it could be mapped to a scheduling problem proven

to be an NP-complete [50]. Therefore, the proposed two scheduling algorithms are

heuristic in the sense that they can produce suboptimal solutions in polynomial-time.

The EAD and PEBD algorithms consist of three major steps delineated in sections 4.2.1

-- 4.2.3.

4.2.1 Original Task Sequence Generation

Precedence constraints of a set of parallel tasks have to be guaranteed by executing

predecessor tasks before successor tasks. To achieve this goal, the first step in our

algorithms is to construct an ordered task sequence using the concept of level, which of

each task is defined as the length in computation time of the longest path from the task

to the exit task. There are alternative ways to generate the task sequence for a DAG,

including critical path-based priority schemes [30] and other priority-based schemes

[51]. In this study, we use a similar approach as proposed by Srinivasan and Jha [5] to

define the level L(vi) of task vi as below

 ()







+
Φ=

=
∈

otherwisetklevel

t
vL

i

isucck

i

i)(max

 i)successor(if ,
)(

)(
43421

. (14)

The levels of the tasks which have no successor are equal to their execution time.

The levels of other tasks can be obtained in a bottom-up fashion by specifying the level

of the exit task as its execution time and then recursively applying the second term on

the right-hand side of Eq. (14) to calculate the levels of all the other tasks. Next, all the

tasks are placed in a queue in an increasing order of the levels.

29

4.2.2 Duplication Parameters Calculation

The second phase in the EAD and PEBD algorithms is to calculate some important

parameters, which the algorithms rely on. The important notation and parameters are

listed in Table 4.1.

Table 4.1 Important notations and parameters

Notation Definition

EST(vi) Earliest start time of task vi

ECT(vi) Earliest completion time of task vi

FP(vi) Favorite predecessor of task vi

LACT(vi) Latest allowable completion time of task vi

LAST(vi) Latest allowable start time of task vi

The earliest start time of the entry task is 0 (see the first term on the right side of Eq.

(15). The earliest start times of all the other tasks can be calculated in a top-down

manner by recursively applying the second term on the right side of Eq. (15).

 ()














 +

Φ=
=

≠∈∈
otherwise ,)(),(maxmin

 r(i)predecesso if ,0
)(

,
kikj

vvEeEe

i cvECTvECT
vEST

jkkiji

. (15)

The earliest completion time of task vi is expressed as the summation of its earliest

start time and execution time. Thus, we have

 .)()(iii tvESTvECT += (16)

Allocating task vi and its favorite predecessor FP(vi) on the same computational

node can lead to a shorter schedule length. As such, the favorite predecessor FP(vi) is

defined as below

30

 .)()(,, where,)(kikjijkijiji cvECTcvECTkjEeEevvFP +≥+≠∈∈∀=

(17)

As shown by the first term on the right-hand side of Eq. (18), the latest allowable

completion time of the exit task equals to its earliest completion time. The latest

allowable completion times of all the other tasks are calculated in a top-down manner by

recursively applying the second term on the right-hand side of Eq. (18).

 () ()














 −

Φ=
=

=∈≠∈
otherwise ,)(min,)(minmin

 i)successor(if),(
)(

)(,)(,
j

vFPvEe
ijj

vFPvEe

i

i vLASTcvLAST

vECT
vLACT

jiijjiij

. (18)

The latest allowable start time of task vi is derived from its latest allowable

completion time and execution time. Hence, the LAST(vi) can be written as

 .)()(iii tvLACTvLAST −= (19)

4.2.3 Energy-Efficient Scheduling: EAD and PEBD

Given a parallel application presented in form of a DAG, the EAD algorithm in this

phase allocates each parallel task to a computational node in a way to aggressively

shorten the schedule length of the DAG while conserving energy consumption. The

pseudocode in Figure 4.2 shows the details of this phase in the EAD algorithm, which

aims to provide the greatest energy savings when it reaches the point to duplicate a task.

Most existing duplication-based scheduling schemes merely optimize schedule lengths

without addressing the issue of energy conservation. As such, the existing duplication-

based approaches tend to yield minimized schedule lengths at the cost of high energy

consumption. To make tradeoffs between energy savings and schedule lengths, we

design the EAD algorithm in which task duplications are strictly forbidden if the

31

duplications do not exhibit energy conservation (see Steps 9-10). In other words,

duplications are not allowed if they result in a significant increase in energy

consumption (e.g., the increase exceeds a threshold) and, are avoided in EAD.

Consequently, the EAD algorithm ensures that schedule lengths are minimized using

task duplication without adversely affecting energy conservation.

Figure 4.2 Pseudo code of phase 3 in the EAD algorithm

Before this phase starts, phase 1 sorts all the tasks in a waiting queue, followed by

phase 2 to calculate the important parameters. In phase 3 EAD strives to group

1. v = first waiting task of scheduling queue;
2. i = 0;
3. assign v to Pi;
4. while (not all tasks are allocated to computational nodes) do
5. u = FP(v);
6. if (u has already been assigned to another processor) then
7. if (LAST(v) - LACT(u)<cuv) then /* if duplicate u, we can shorten the schedule

length */
8. moreenergy = enu – eluv; /*energy increase*/
9. if (moreenergy ≤ threshold h) then /* increased energy less than our threshold*/
10. assign u to Pi; /*duplicate u*/
11. if v has another predecessor z ≠ u has not yet been allocated to any node then
12. u = z;
13. else
14. if u is entry task then
15. u = the next task that has not yet been assigned to a node;
16. i++ ;
17. else
18. for another predecessor z of v, z ≠ u,
19. if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t been allocated) then
20. u = z; /* do not duplicate*/
21. else
22. for another predecessor z of v, z≠ u,
23. if (ECT(u)+ccuv = ECT(z) + cczv) and z hasn’t been allocated) then
24. u = z; /* do not duplicate*/
25. else allocate u to Pi;
26. v = u;
27. if v is entry task then
28. v = the next task that has not yet been allocated to a computational node;
29. i++ ;
30. assign v to Pi;
31. return schedule list;

32

communication-intensive parallel tasks together and have them allocated to the same

computational node. Once multiple task groups are constructed, each group of tasks is

assigned to a different node in the cluster. The process of grouping tasks is repeated

from the first task in the queue by performing a depth-first style search, which traces the

path from the first task to the entry task. Steps 5 and 6 choose a favorite predecessor if it

has not been allocated a computational node. Otherwise, EAD may or may not replicate

the favorite predecessor on the current node. For example, we assume that vj is the

favorite predecessor of the current task vi, and vj has been allocated to another node. If

duplicating vj on the current node to which vi is allocated can improve performance

without sacrificing energy conservation, Step 12 makes a duplication of vj.

Please note that the generation of a task group terminates once the path reaches the

entry task. The next task group starts from the first unassigned task in the queue. If all

tasks are assigned to the computation nodes, then the EAD algorithm terminates.

The third phase of the PEBD algorithm is similar as that of EAD except that PEBD

seamlessly integrate the approach to minimizing schedule lengths with the process of

energy optimization (see Figure 4.3). Unlike EAD, the development of PEBD is

motivated by the needs of making the right tradeoff between performance and energy

conservation. Thus, the PEBD algorithm is geared to efficiently reduce schedule lengths

while providing the greatest energy savings. Energy consumption incurred by

duplicating a task involves judging whether the duplication is profitable or not. To

facilitate the construction of PEBD, we introduce a concept of cost ratio of a

duplication, which is defined as the ratio between the energy saving and schedule length

reduction (see Step 10). While the energy saving of the duplication is obtained in Step 8,

33

the reduction in schedule length is computed in Step 9. The PEBD algorithm is, of

course, conducive to maintaining cost ratios at a low level, thereby efficiently shortening

schedule lengths with low energy consumption. This feature is accomplished by Steps

11-12, which duplicate a task in case the cost ratio of such duplication is smaller than a

given threshold.

Figure 4.3 Pseudo code of phase 3 in the PEBD algorithm

1. v = first waiting task of scheduling queue;
2. i = 0;
3. assign v to Pi;
4. while (not all tasks are allocated to computational nodes) do
5. u = FP(v);
6. if (u has already been assigned to another node) then
7. if (LAST(v) - LACT(u)<cuv) then /* if duplicate u, we can shorten the execution

time*/
8. moreenergy = enu – eluv; /*energy increase*/
9. lesstime = LACT(u) + cuv -LAST(v); /* schedule length is reduced */
10. cost ratio = moreenergy / lesstime; /*value of ratio: the smaller the better*/
11. if (ratio ≤ threshold h) then /* significantly shorten schedule length */
12. assign u to Pi; /*duplicate u*/
13. if v has another predecessor v ≠ u has not yet been assigned to any node then
14. u = v;
15. else
16. if u is entry task then
17. u = the next task that has not yet been allocated to a computational node;
18. i++ ;
19. else
20. for another predecessor z of v, z ≠ u,
21. if (ECT(u)+ccuv = ECT(z) + cczv) and z has not been allocated) then
22. u = z; /*do not duplicate*/
23. else
24. for another predecessor z of v, z ≠ u,
25. if (ECT(u)+ccuv = ECT(z) + cczv) and z has not been allocated) then
26. u = z; /*do not duplicate*/
27. else assign u to Pi;
28. v = u;
29. if v is entry task then
30. v = the next task that has not yet been allocated;
31. i++ ;
32. allocate v to Pi;
33. return schedule list

34

4.2.4 A Case Study

Now we run the proposed scheduling algorithms using a sample task graph

delineated in Figure 4.4. In this example, we choose Intel Core2 Duo E6300 as the CPU

of each computing node and high-speed Merynet as interconnection. Recall that the

energy consumption of the task graph is determined by Eq. (13), where PNactive and

PLactive are set to 44W and 33.6W, respectively.

In the task DAG plotted in Figure 4.4, each task is represented by (eni, ti) and each

message is denoted by (elij, cij). Recall that eni and elij, computed by Eqs. (2) and (7), are

the energy consumption of task vi and communication between task vi and vj. The

running trace of EAD and PEBD is given as follows:

Figure 4.4 A typical DAG

35

Phase 1. Generate a task sequence by computing levels: The levels of tasks can be

calculated using Eq. (14). For instance, the level of task v10 is 8, since v10 is the exit task

without any successor. The level of v8 is 8 + 7 = 15 because v8 has only one successor

task. The level of task v2 is max{L(v5) + 3, L(v6) + 3} = 28, since v2 has two successors -

v5 and v6. All the tasks are placed in a queue in the non-increasing order of levels. Thus,

we have a list of tasks as {10, 9, 8, 5, 6, 2, 7, 4, 3, 1}

Phase 2. Calculate important parameters:

Phase 2.1 Compute EST and ECT : The EST and ECT values of each task can be

computed by applying Eqs. (15) and (16). For example, task v1 is the entry task and,

therefore, EST(v1) = 0. In accordance with Eq. 16, we have ECT(v1) = 0 + t1 = 3. Since

v2, v3, and v4 are unable to start until v1 finishes and, thus, we have EST(v2) = EST(v3) =

EST(v4) = ECT(v1) = 3. Similarly, EST of v7 is computed as below

() (){ }
() (){ } .725 7,max,47 5,maxmin

)ECT(v),ECT(vmax,)ECT(v),ECT(vmaxmin)EST(v 474337347

=++=
++= cc

Correspondingly, the ECT of v7 is ECT(v7) = EST(v7) + t7 = 7 + 20 = 27.

Phase 2.2 Compute favorite predecessors: The favorite predecessor of a task is

determined by using Eq. (17). For example, the favorite predecessor of task v2, v3, and v4

is v1, simply because these three tasks have only one predecessor. The favorite

predecessor of v8 is v6 because ECT(v6) + c68 = 16 + 10 = 26 > ECT(v5) + c58 = 7 + 1 =

8.

Phase 2.3 Compute LAST and LACT: The LACT and ECT values of the exit task

v10 equal to 40 and, thus, we have LAST(v10) = LACT(v10) - t10 = 40 – 8 = 32. In case of

LACT(v6), we have to consider two successors, namely, v8 (not in critical path) and v9

36

(in critical path). We obtain

(){ } { } 1718) 10),-(27min))min(LAST(v ,c-)LAST(vminmin)LACT(v 86996 === and

LAST(v6) = LACT(v6) - t6 = 17 – 10 = 7

Table 4.2 shows the final results of all important parameters.

Table 4.2 Final results of parameters

Task level est ect last lact fpred
1 40 0 3 0 3 --
2 28 3 6 4 7 1
3 37 3 7 3 7 1
4 35 3 5 3 5 1
5 16 6 7 16 17 2
6 25 6 16 7 17 2
7 33 7 27 7 27 3
8 15 16 23 18 25 6
9 13 27 32 27 32 7
10 8 32 40 32 40 9

Phase 3. Task allocation and duplication phase:

The EAD algorithm. Given a threshold h = 25, EAD generates the first group of

tasks by starting from the first task in the task list obtained in Phase 1. The first task

group containing tasks v1, v3, v7, v9, and v10 is allocated to node 1. Next, EAD attempts

to allocate the first unassigned task in the list. In this case, the unassigned task is task v8.

Tasks v8, v6 and v2 are allocated to node 2, and the next task to be assigned is task v1.

Since v1 has been allocated to node 1, EAD has to decide whether there is an incentive

to duplicate v1 on node 2. The condition in step 7 (see Figure 4.2) is satisfied, because

we have LAST(v2) - LACT(v1) = 4 – 3 = 1 < cc12 = 3. Therefore, duplicating v1 on node

2 can shorten the schedule length. However, the increase in energy consumption is en1 –

el12 = 44w×3 – 33.6w×3 = 31.2J (see step 8 in Figure 4.2), which is greater than the

threshold. Thus, there is no any incentive to duplicate the task due to the high energy

37

overhead, signifying that the duplication of v1 must be avoided. EAD assigns task v5 to

node 3, followed by task v2, and v1, which are not duplicated on node 3 because we can

not shorten the schedule length (LAST(v5) - LACT(v2)=16-7=9> cc25=3). Task v4 is the

only task allocated on node 4, and v1 is not duplicated because the increase in energy

consumption is significant.

Therefore, the final scheduling decision of EAD is as follows:

Processor 1: Task 10� Task 9� Task 7� Task 3� Task 1
Processor 2: Task 8� Task 6� Task 2
Processor 3: Task 5
Processor 4: Task 4

The PEBD algorithm. The behavior of PEBD is similar to that of EAD except that

energy-performance tradeoffs are determined by a ratio between the energy

consumption of replicas and the decrease in schedule length by virtue of replicas. Given

a threshold h = 25, PEBD first allocates v1, v3, v7, v9, and v10 to node 1 and then it will

meet the same situation as EAD, in which PEBD has to decide whether or not to

duplicate v1. Once again, PEBD will calculate LAST(v2) - LACT(v1) = 4 – 3 = 1 < cc12 =

3. Thus, if duplicate T1, the scheduling length can be shortened by 2 seconds. However,

the energy consumption will be increased by en1 – el12 = 44w×3 – 33.6w×3 = 31.2J.

Now PEBD will decide based on the result of ratio (31.2/2 =15.6<Threshold=25) to

duplicate T1. The duplication of v1 is made possible by PEBD because the replica helps

in reducing the schedule length without significantly increasing energy consumption.

And then, in the next iteration, EAD assigns task v5 to node 3, followed by task v2, and

v1, which are not duplicated on node 3 because we cannot shorten the schedule length

(LAST(v5) - LACT(v2)=16-7=9> cc25=3). The final scheduling decision of PEBD is:

38

Processor 1: Task 10� Task 9� Task 7� Task 3� Task 1
Processor 2: Task 8� Task 6� Task 2� Task 1
Processor 3: Task 5
Processor 4: Task 4� Task 1

4.3 Time Complexity Analysis

In this subsection, we will analyze the time complexity of the EAD and PEBD

algorithms.

Theorem 1. The time complexity of EAD and PEBD is O(|V|2).

Proof. The EAD and PEBD algorithms perform the three main phases respectively

described in Sections 4.2. In the first phase, EAD and PEBD traverse all the tasks of the

DAG to compute the levels of the tasks. The time complexity to calculate the levels is

O(|E|), where |E| is the number of messages. This is because all the messages have to be

examined in the worst case. It takes O(|V|log|V|) time to sort the tasks in the non-

increasing order of the levels, where |V| = n is the number of tasks. Therefore, the time

complexity of phase 1 is O(|E| + |V|log|V|).

The second phase is performed to obtain all the important parameters like EST, ECT,

FP, LACT, and LAST. Phase 2 calculates these parameters by applying the depth first

search with the complexity of O (|V| + |E|).

Recall that in phase 3 the tasks are allocated to the computational nodes. First, all the

tasks are checked and allocated to one or more nodes in the while loop based on

duplication strategies. In the worst case, all the tasks in the critical path must be

duplicated, meaning that the time complexity is O(h|V|)time, where h is the height of the

DAG. Since h is less than or equal to |V|, the complexity of the third phase is O(|V|2).

39

Consequently, the overall time complexities of EAD and PEBD are O(2|E| + |V|(lg|V|+1)

+ |V2| = O(|E|+|V|2). For a dense DAG, the number of messages are proportional to

O(|V|2). Hence, the time complexities of EAD and PEBD are O(|V|2).

4.4 Simulation Results

Now we are in the position to evaluate the effectiveness of the proposed energy-

aware duplication scheduling algorithms. In this section, we compare EAD and PEBD

with two existing scheduling algorithms: the non-duplication-based scheduling heuristic

(NDS or MCP) [52], and the task duplication-based scheduling algorithm (TDS) [49]. In

order to fairly compare our scheduling algorithms with existing algorithms, we set the

same evaluation metrics and parameter tune rule for all simulation results of different

algorithms. Additionally, we choose popular processors of AMD and Intel companies

and popular interconnections like Myrinet and Infiniband network as our simulation

platform, which can make our simulation results more practical and acceptable to

industry people.

4.4.1 Simulation Metrics and Parameters

Schedule length and energy consumption are the major two metrics used in our

simulation to evaluate the performance of different algorithms. The basic but important

rule we followed in our simulations is OTOP (Once Tuning One Parameter). In other

words, parameters in the same simulation group results are exactly the same except one

parameter is different. By tuning only one parameter, we can clearly observe its impact

to clusters and easily find out the system sensitivity to this specific parameter. The

40

important parameters tuned in our simulations include Communication-to-Computation

Ratio (CCR), energy threshold, interconnection type and processor type. It is to be noted

that CCR is an overall average time parameter to measure the communication time and

computation time, which is defined in equation (1). Generally speaking, data transfer

intensive applications have higher CCR, whereas the CCR of computation-intensive

applications is lower.

The processors used in our simulator are AMD Athlon 64 X2 4600+ with 85W TDP,

AMD Athlon 64 X2 4600+ with 65W TDP, AMD Athlon 64 X2 3800+ with 35W TDP,

Intel Core 2 Duo E6300 processor. Figure 4.5 demonstrates the energy consumption rate

of each processor in idle, light, busy and heavy working mode. The data source is from

the latest test report of Xbit Lab (http://www.xbitlabs.com).

Myrinet and Infiniband network are the interconnections used in our simulations.

The energy consumption parameters used for Myrinet and Infiniband are 33.6w and 65w

respectively, which are based on the products technical report from Myricom and Qlogic

company.

41

(a) Energy parameter in idle mode (b) Energy parameter in light mode

(c) Energy parameter in busy mode (d) Energy parameter in heavy mode

Figure 4.5 Energy consumption parameters in different working modes

We simulated four DAGs, which include Fast Fourier Transform Tree (15 tasks),

Gaussian Elimination Tree(18 tasks), Robot Control application (88 tasks) and Sparse

Matrix Solver application (96 tasks). The detailed tree structures are shown in Figure 4.6

and the tree structure files of two actual applications (Robot and Sparse) can be

downloaded at Standard Task Graph website [53]. Robot Control DAGs represents a

task graph for Newton-Euler dynamic control calculation for the 6-degrees-of-freedom

Stanford manipulator [54]. Sparse Matrix Solver DAGs represents a task graph for a

random sparse matrix solver of an electronic circuit simulation that was generated using

a symbolic generation technique and the OSCAR FORTRAN compiler [55] [56].

42

T1

T2 T3

T4 T5 T6 T7

T8 T9 T10 T11

T12 T13 T14 T15

(a) Fast Fourier Transform

(b) Gaussian Elimination

(c) Robot Control

(d) Sparse Matrix Solver

Figure 4.6 Structure of simulated trees and applications

43

4.4.2 Impact of Processor Types to Energy

Processors play an important role in the computing capacity and energy consumption

of clusters. In order to study impacts of processors on the performance of EAD and

PEBD, we choose three different AMD processors and one Intel processor as CPUs used

in our simulated clusters. All the power consumption parameters of these four types of

processors are listed in Figure 4.5. Table 4.3 shows the simulation environment and

according parameters of the clusters which we collect data for Figures 4.7.

Table 4.3 Simulation environment of processor impact

Figure 4.7(a) Energy consumption for different processors (Gaussian, CCR=0.4)

Simulation environment
Processor type Athlon 4600+ 85W, Athlon 4600+ 65W

Athlon 3800+ 35W, Intel Core2 Duo E6300
Processor working mode Heavy
Interconnection Myrinet
Simulated Trees or
Applications

Gaussian Elimination, Fast Fourier
Transform

CCR (0.4, 4)

44

Figure 4.7(b) Energy consumption for different processors (Gaussian, CCR=4)

Figure 4.7(c) Energy consumption for different processors (FFT, CCR=0.4)

Figure 4.7(d) Energy consumption for different processors (FFT, CCR=4)

45

We observe from Figures 4.7 that EAD and PEBD can provide significant

performance improvements for these four kiMCP of processors. In general, EAD and

PEBD perform much better on Athlon 4600+ 85W than Intel Core2 Duo E6300. An

intriguing result for EAD or PEBD is that a larger discrepancy between CPU_heavy and

CPU_idle leads to a more pronounced performance enhancements. For instance, the gap

between CPU_heavy and CPU_idle (i.e., 104W – 15W = 89) in Athlon 4600+ 85W,

which is bigger than that (i.e., 44W – 26W = 18W) of Intel Core2 Duo E6300; EAD and

PEBD outperform TDS by 19.47% and 19.36% in Athlon 4600+ 85W whereas the

percentage drops down to 3.73% and 3.76% respectively in Intel Core2 Duo E6300. We

did exactly the same experiments in FFT tree (results shown in Figures 4.7(c) and (d))

and found very similar trend. The implication of the result is that processors with large

descrepency between CPU_heavy and CPU_idle can benefit greatly from EAD and

PEBD, regardless of the value of CCR. This implication provides a useful suggestion to

users what kind of processor is more suitable for our algorithms.

4.4.3 Impact of Interconnection Types to Energy

Network energy consumption is a second critical factor affecting total energy

dissipation in clusters. In this subsection, our goal is to study the impacts of different

interconnections on the performance of the EAD and PEBD algorithms. The underneath

interconnections used in this group of simulation results are Myrinet and Infiniband,

which are two of the popular networks implemented in modern clusters. Table 4.4 shows

the simulation environment and according parameters of the clusters which we collect

data for Figures 4.8.

46

Table 4.4. Simulation environment of interconnection impact

Figure 4.8(a) Total energy consumption (Robot Control, Myrinet)

Figure 4.8(b) Total energy consumption (Robot Control, Infiniband)

Simulation environment
Processor type Intel Core2 Duo E6300
Processor working mode Heavy
Interconnection Myrinet , Infiniband
Simulated Trees or
Applications

Robot Control , Sparse Matrix Solver

CCR (0.1, 0.5, 1, 5, 10)

47

Figure 4.8(c) Total energy consumption (Sparse Matrix Solver, Myrinet)

Figure 4.8(d) Total energy consumption (Sparse Matrix Solver, Infiniband)

From Figures 4.8, we can find out that the overall performance of EAD and PEBD

are better than TDS and MCP. Another interesting observation is that both EAD and

PEBD work better, i.e. save more energy, when the interconnection is Myrinet. For

example, for the same Robot Control application, EAD outperformance TDS in terms of

energy conservation for 16.65% (CCR=0.1) and 13.25% (CCR=0.5) if we use Myrinet,

whereas the numbers will change to 5% (CCR=0.1) and 3.14% (CCR=0.5) when we

choose Infiniband. Similary, for the same Sparse Matrix Solver application, PEBD

48

outperformance MCP in terms of power consumption for 4.64% (CCR=5) and 17.25%

(CCR=10) if we use Myrinet, whereas the numbers will change to 4.17% (CCR=5) and

6.35% (CCR=10) when we choose Infiniband. Since the interconnection power

consumption rate used in our siumlations for Myrinet and Infiniband are 33.6w and 65w

respectively, we can see that the efficiency of our algorithms are somehow degraded by

the high interconnection power consumption. In other words, less portion of network

energy consumption is a positive factor to make our algorithms have better performance.

4.4.4 Impact of Application Types to Energy

Will the application type affect the efficiency of EAD and PEBD? If it does, what is

the most important factor? In order to answer these questions, we simulated Robot

Control and Sparse Matrix Solver applications under exactly the same environments,

which means we have same processor, same interconnections, same CCRs and even

same energy threshold. Figures 4.9 shows the simulation results which illustrate the

different efficiency of both EAD and PEBD for different applications. Table 4.5 shows

the simulation environment of Figures 4.9.

Table 4.5 Simulation environment of application impact

Simulation environment
Processor type Intel Core2 Duo E6300

Athlon 3800+ 35W

Processor working mode Heavy
Interconnection Myrinet

Simulated Trees or
Applications

Robot Control , Sparse Matrix Solver

CCR (0.1, 0.5, 1, 5, 10)

49

Figure 4.9(a) Energy of Intel Core2 Duo E6300 (Robert Control, Myrinet)

Figure 4.9(b) Energy of Intel Core2 Duo E6300 (Sparse Matrix Solver, Myrinet)

Figure 4.9(c) Energy of Athlon 3800+ 35W (Robert Control, Myrinet)

50

Figure 4.9(d) Energy of Athlon 3800+ 35W (Sparse Matrix Solver, Myrinet)

From Figures 4.9, we can see that EAD and PEBD can save more energy in the

Robot Control applications. For example, in the Robot Control application, EAD can

save more energy than TDS up to 17.07% (CCR=0.1, Athlon 3800+ 35W) and 15.78%

(CCR=0.5, Athlon 3800+ 35W), whereas the numbers will drop down to 6.89%

(CCR=0.1, Athlon 3800+ 35W) and 5.37% (CCR=0.5, Athlon 3800+ 35W) for Sparse

Matrix Solver application. Since all the other parameters are exactly the same except the

application structures (see Figures 4.9(c) and (d)), we can draw the conclusion that

application types do affect the efficiency of our algorithms. Based on the data provided

by Standard Task Graph Set website [53], the parallelism of Robert Control and Sparse

Matrix Solver applications are 4.363796 and 15.868853 respectively, which means

Robert Control has more task dependencies thus there exists more possibility for EAD

and PEBD to consume energy by judiciously duplicating tasks. In other words, the task

dependencies and parallelism level are the key points to decide the efficiency of our

algorithms.

51

4.4.5 Impact of CCR to Energy

Group Figures 4.10 illustrate the CCR impact to processor energy, interconnection

energy and total energy. Four observations are evident from this group of experimental

results. First, the overall performance of EAD and PEBD outperforms MCP and TDS.

Second, both EAD and PEBD are very sensitive to CCR. For example, when CCR is

0.1, EAD and PEBD perform 11.33% and 8.33% better than TDS. However, the

performance drops down to 9.39% and 6.85% if we tune the CCR to 0.5. Third, MCP

provides the greatest energy savings if CCR is less than 1. This is because energy cost

due to interconnection is extremely low with a small CCR value. Finally yet

importantly, the communication energy cost will dramatically increase when CCR going

higher and become the major power consumer of whole system.

Table 4.6 Simulation environment of CCR impact

Processor type: Athlon 3800+ 35W
Processor working mode: Busy
Interconnection: Myrinet
Simualated Application: Robot Control
CCR: (0.1, 0.5, 1, 5, 10)

Figure 4.10(a) CPU energy consumption under different CCRs

52

Figure 4.10(b) Interconnection energy under different CCRs

Figure 4.10(c) Total energy consumption under different CCRs

4.4.6 Impact of Processor Status to energy

Processors may have different working modes like idle, not busy, busy and

extremely busy. The energy consumption rate is different under different modes. In

order to speculate the impact of processor status to energy consumption, we simulated

three working modes, for AMD Athlon 3800+ 35W processor. When processor is

running applications like widows media player, 3D graph generation, CD burn, it is in

53

light, busy and heavy modes respectively. The simulation results are shown in Figures

4.11 and the corresponding energy consumption parameters for each working mode

could be found in Figures 4.5.

Figure 4.11(a) CPU energy consumption under light mode

Figure 4.11(b) CPU energy consumption under busy mode

54

Figure 4.11(c) CPU energy consumption under heavy mode

Figure 4.11(d) Total energy consumption under light mode

Figure 4.11(e) Total energy consumption under busy mode

55

Figure 4.11(f) Total energy consumption under heavy mode

If we look at Figures 4.11(a) (b) (c) together, you will find the CPU energy

consumption of EAD and PEBD are various under different modes, which indicates

EAD and PEBD have different duplication decisions. If we compared the results shown

in Fig.4.11 (d) (e) (f), we can easily find that EAD and PEBD work more efficiently

under heavy mode. For example, EAD and PEBD can conserve 17.07%, 12.6% more

energy than TDS in heavy mode, whereas these numbers will become 11.33%, 8.33% in

busy mode and 4.43%, 3.23% in light mode. Recall that in the heavy mode, the

processor has the biggest energy consumption gap between CPU idle and CPU working,

we can easily find out the same conclusion as section 6.2, which tells us processors with

large energy consumption descrepency betweent CPU_working and CPU_idle can

benefit greatly from EAD and PEBD, regardless of the value of CCR.

4.4.7 Impact to Schedule Length

Group Figures 4.12 depict the experimental results used to evaluate the overall

performance of the four scheduling algorithms in term of schedule length. Figures

56

4.12(a) and (b) show the scheduling lengths of schedules made by the four algorithms

for the Gaussian Elimination and Fast Fourier Transform applications. The results show

that EAD and PEBD efficiently reduce energy consumption without adversely affecting

performance of the applications. For example, on average the schedule lengths of

Gaussian Elimination produced by EAD and PEBD are merely 5.7% and 2.2% larger

than those generated by TDS. Similarly, on average the schedule lengths of Fast Fourier

Transform yielded by EAD and PEBD are only 2.92% and 2.02% longer than that of

TDS. These results suggest that it is worth trading a marginal degradation in schedule

length for a significant reduction in energy dissipation for cluster computing systems.

Figure 4.12(a) Schedule length of Gaussian Elimination

Figure 4.12(b) Schedule length of Sparse Matrix Solver

57

4.5 Summary

In this chapter, we addressed the issue of allocating tasks of parallel applications

running on clusters with an objective of shortening schedule lengths while conserving

energy. Specifically, we proposed two improved duplication-based scheduling

algorithms, namely the Energy-Aware Duplication algorithm (or EAD) and the

Performance-Energy Balanced Duplication algorithm (or PEBD). EAD and PEBD are

designed and implemented to provide energy savings in clusters by duplicating tasks on

more than one computational node. While EAD is able to aggressively provide the

greatest energy savings by making use of task replicas to eliminate energy-consuming

messages, PEBD aims at making tradeoffs between energy conservation and

performance.

To facilitate the presentation of EAD and PEBD, we built mathematical models to

describe a cluster system framework, parallel applications with precedence constraints,

and energy consumption model. We conducted extensive experiments and our

experimental results show that EAD and PEBD are more energy-efficient compared

with other two existing allocation schemes called MCP(or NDS) and TDS. Our

conclusion is that EAD and PEBD are capable of trading a marginal degradation in

schedule length for a significant reduction in energy consumption for homogeneous

cluster computing systems.

58

Chapter 5

Energy-Efficient Scheduling For
Grids

In the previous chapter, we have designed two energy-efficient scheduling

algorithms for homogeneous clusters, which comprise a set of identical characteristics in

terms of CPU speed, memory capacity, power consumption rate and interconnections.

However, these algorithms cannot be directly used for heterogeneous high performance

computing platforms like grids. In this chapter, we propose two energy-aware

scheduling algorithms, called Energy-Efficient Task Duplication Scheduling (EETDS)

and Heterogeneous Energy-Aware Duplication Scheduling (HEADUS), which attempt

to make the best tradeoffs between performance and energy savings for parallel

applications running on heterogeneous grids.

This chapter is organized as follows. Section 5.1 presents the motivation of this

study. In section 5.2, we define the mathematical models used in our grid systems,

which include a grid model, parallel tasks model, and an energy consumption model.

Next, in section 5.3, we discuss the job scheduling in grid systems. In section 5.4, we

present the proposed EETDS and HEADUS scheduling algorithms in detail and

59

illustrate how they work using a concrete example. Section 5.5 proves that time

complexity of EETDS and HEADUS. Experimental results with qualitative comparisons

to other two existing approaches are analyzed in section 5.6. Finally, section 5.7

summarize the entire chapter.

5.1 Motivation

Although it is common that a new and stand-alone cluster system is homogeneous in

nature, upgraded clusters or networked clusters are likely to be heterogeneous in

practice. In other words, heterogeneity of a variety of resources such as CPU, memory,

and interconnection, may exist in cluster systems. This is because, to improve

performance and support more users, new nodes that might have different characteristics

than the original ones may be added to the systems or several smaller clusters of

different characteristics may be connected via a high-speed network to form a bigger

one. Accordingly, heterogeneity may exist in a variety of resources such as CPU,

memory, and interconnection etc.

Computing grids are one of the typical distributed systems with heterogeneity. A

computational grid is a type of parallel and distributed system that enables the sharing,

selection, and aggregation of resources distributed across multiple administrative

domains based on the resources’ availability, capacity, performance, cost and users'

quality-of-service requirements. Literally speaking, a large-scale distributed system that

qualifies the following three conditions could be envisioned as a computational grid

[57]. (1) Computing resources are not administered centrally; (2) open standards are

used; and (3) non-trivial quality of service is achieved. Grid applications distinguish

60

themselves from traditional distributed applications because they not only

simultaneously use large number of resources, but also have stringent performance

requirements, dynamic resource requirements, and complex communication structures

[58]. As our economy shifts from paper-based to digital information management, large-

scale grid computing platforms have been widely deployed to support the complicated

scientific and commercial applications which require intensive data processing and data

storage in nature. As you can imagine, the powerful computing capability of grids is

actually in the cost of huge energy consumption. Therefore, designing energy-efficient

algorithms for grids becomes highly desirable.

The research shown in this chapter is motivated by the above reasons. However, we

realized that the design is much more challenging compared with the design for

homogeneous clusters. In the study shown in this chapter, we take into account multiple

design objectives, including performance (measured by throughput and schedule length),

energy efficiency, and heterogeneities.

5.2 System Model

In this section, we describe mathematical models used to represent heterogeneous

grids, parallel applications with precedence constraints. Since the energy consumption

model is the same to the model used in cluster systems, we do not explain it again in this

chapter. Please refer to section 4.1.3 for details.

61

5.2.1 Grid Systems Model

A grid system consists of a set P = {p1, p2,..., pm} of heterogeneous computing nodes

(hereinafter referred to as nodes) connected by a high-speed interconnect like fast

Ethernet, gigabit Ethernet, SCI, FDDI or Myrinet. A heterogeneous grid can be

represented by a graph, where computing nodes are vertices. There exists a weighted

edge if a pair of corresponding nodes can communicate with each other. An n×m binary

allocation matrix X is used to reflect a mapping of n tasks to m heterogeneous nodes.

Thus, element xij in X is “1” if task ti is assigned to node pj and is “0”, otherwise. Since

our scheduling algorithms will be verified in a heterogeneous environment, it is

imperative to define the following constraints for our heterogeneous grid system model.

First, different nodes have different preference with respect to tasks, meaning that a

node offering task ti a shorter execution time does not necessarily run faster for another

task tj. Thus, different nodes in a heterogeneous cluster favor different kinds of tasks.

Second, execution times of tasks on different nodes may various because the nodes may

have various clock speed and processing capabilities. Third, the transmission rates of

network interconnections depend on underlying network types. Last, energy

consumption rates of the nodes and interconnections may not necessarily be identical.

To simply the system model without loss of generality, we assume that all nodes are

fully connected with dedicated and reliable network interconnections. Each node

communicates with other nodes through message passing; communication time between

two tasks assigned to the same node is negligible. In addition, we assume computation

and communication can take place simultaneously in our system model. This

assumption is reasonable because each computing node in a modern cluster has a

62

communication coprocessor that can be used to free the processor in the node from

communication tasks. Since we primarily focus on energy consumption, each node in

the system has an energy consumption rate measured by Joule per unit time.

Furthermore, each network link is characterized by its energy consumption rate that

heavily relies on the link’s transmission rate, which is modeled by weight wij of the edge

between nodes pi and pj.

5.2.2 Parallel Tasks Model

Parallel tasks with dependencies are represented by Directed Acyclic Graphs

(DAGs) in this study. Throughout this paper, a collaborative application is specified as a

pair, i.e, (T, E), where T = {t1, t2, ..., tn} represents a set of parallel tasks, E is a set of

weighted and directed edges representing communication cost among tasks, e.g., (ti, tj)∈

E is a message transmitted from task ti to tj. Precedence constrains of the parallel tasks

are represented by all edges in set E. Communication time spent in delivering a message

(ti, tj) ∈ E from task ti on node pu to tj on pv is determined by sij/buv, where sij is the

message’s data size and buv is the transmission rate of a link connecting node pu and pv.

The execution times of task ti running on a set of heterogeneous computing nodes are

modeled by a vector, i.e., ()m
iiii cccc ,,, 21

L= , where j
ic represents the execution time of

ti on the jth computing node. If task ti cannot be executed on node pj, the corresponding

execution time j
ic in the vector ci is marked as ∞. We define a task as an entry task if it

does not have any predecessor tasks and; similarly, a task is called an exit task if there is

no task following behind it.

63

An Example. Figure 5.1 illustrates the task description of a parallel application

represented by a task graph, a mapping matrix, and a cluster with three heterogeneous

computing nodes. The task graph contains ten tasks; the computing node graph (or

processor graph) has three heterogeneous computing nodes. i
activeEN is the energy

consumption rate of the ith computing node in the busy mode, and iidleEN is the energy

consumption of the ith computing node in the idle mode. Similarly, ijactiveEL and ij
idleEL is

the energy consumption rate of the link between the ith and jth nodes when data is being

transferred and when no data are being transmitted. For example, the energy

consumption rates of the network link between nodes p1 and p2 are 3012 =activeEL and

12
idleEL = 10 when the link is in the busy and idle modes, respectively. The energy

consumption rates of node p1 is 1
activeEN = 25 and 81 =idleEN when it is active and idle,

respectively. We assume that the transmission rate between two computing nodes is

same in both directions. The execution time vector of each task on the three processors

is illustrated in Figure 5.1(d). For example, the execution times of task t1 on nodes p1, p2,

and p3 are 6.7, 3.9, and 2.0 time units, respectively. Here we should note that task t9

couldn’t be allocated to p1 because the corresponding item in the mapping matrix is

marked as ∞.

64









































∞
2.4 1.3 11.2

9.9 10.2

1.7 2.3 8.1

3.2 4.1 9.6

7.2 6.5 7.8

5.0 1.4 5.9

3.0 7.6 7.5

2.4 4.9 8.8

4.5 5.2 9.3

1.8 11.4 9.0

2.0 3.9 6.7

8

25

=
=

idle

active

EN

EN

65

100

=
=

idle

active

EN

EN

4

12

=
=

idle

active

EN

EN

6

10

30

2112 ==
=

=

trtr

EL

EL

idle

active

4

7

20

3223 ==
=

=

trtr

EL

EL

idle

active
8

15

40

3113 ==
=

=

trtr

EL

EL

idle

active

Figure 5.1 Example task graph and heterogeneous processor graph

5.3 Job Scheduling in Grids

Computational grids are complex multivariate environments, which are made up of

numerous grid entities needed to be managed. The job scheduling module plays a key

role in making coherent and coordinated use of ubiquitous and heterogeneous resources

in a grid system.

The responsibility of the scheduling module includes resource allocations and task

scheduling. Figure 5.2 and Figure 5.3 depict the process of job scheduling in grids from

the prospective of system and task level respectively. In system view, the job scheduler

65

of grids contains two parts, a global scheduler and several local schedulers. The global

level scheduler (or grid level scheduler) coordinates multiple local schedulers while

choosing the most appropriate resources for grid applications. It is worth noting that the

global level scheduler in most cases has no direct control over grid resources.

Consequently, the global level schedule has to communicate with and precisely trigger

local level schedulers to complete tasks of jobs submitted by users. The local level

schedulers in turn directly handle resources by accessing to local resources. Moreover,

the global level scheduler is responsible for collaborating with other fundamental

middleware modules such as information services, communication services, and

reliability controllers.

Figure 5.2 The system view of scheduling in a computational grid

66

The grid level scheduler not only implements energy-efficient scheduling policies

but also deals with resource heterogeneities. The grid level scheduler has the following

unique attributes.

Reclamation of allocations

Target resources may be reclaimed by the local administrator so that the reclaimed

resources can be allocated to tasks with higher priorities. In this case, the scheduler must

be able to reclaim allocated resources and reallocate resources to corresponding tasks.

Task and data migrations

This attribute signifies that any task can be interrupted in computing node and the

task along with its corresponding data can be migrated to another node. The scheduling

module leverages the task and data migrations to improve the performance and

reliability of grid systems.

Exclusive allocations

It is common that some computing resources might have particular preferences or

exclusiveness for different types of tasks. For example, a computing node offering a

shorter execution time for a task does not necessarily run faster for another task. Even

worse, some computing nodes may be exclusive to specific types of tasks. Thus, the

scheduling module has to resolve conflicts between tasks and resources.

Tentative allocations

To make scheduling decisions with high energy efficiency, it is imperative for the

scheduling module to calculate and compare task allocation cost by tentatively

allocating tasks to a wide range of available resources. The scheduler is able to

efficiently complete revocation of tentative allocations.

67

Dependent task allocations

A grid application may be consist of multiple dependent tasks, whose dependencies

must be handled by the scheduling module. In our framework, a task analyzer provides

detailed information of tasks to scheduler; the scheduler makes an effort to first allocate

tasks with high dependencies to the same computing resources to significantly reduce

communication overheads.

From the task view, once the scheduling module has collected all the information of

currently available resources, the module can allocate shared resources to parallel tasks

after judiciously choosing target recourses in accordance with specific scheduling

policies. Figure 5.3 outlines the job scheduling flow in computational grids. During the

course of jobs’ execution, a result collector periodically checks randomly returned sub-

results and transfers the sub-results to the grid level scheduler. The grid level scheduler

further passes on the latest information to all tasks, thereby guaranteeing that the tasks

with dependencies can immediately be executed their precedence constraints are met

(i.e., sub-results become available).

68

User
Requests

Sub Tasks

Results

Grid Level
Task

Scheduler

Results
Collector

Input tasks

Return results

Figure 5.3 The task view of scheduling in a computational grid

5.4 Energy-Efficient Scheduling Algorithms

In this section, we present the details of scheduling algorithms used in our Grid

scheduling framework. First, we will explain how the task analyzer can provide

information about task dependencies. Next, the proposed EETDS and HEADUS will be

explained in three major phases. The first phase is called grouping, in which tasks with

highest dependency will be grouped together. Phase two is called task duplication,

which aims to duplicate as many tasks as possible if the energy cost will not be

significantly increased. In phase three, the scheduler will tentatively allocate the grouped

tasks to different available resources and calculate the energy cost. Finally, the scheduler

69

will make its final (energy-performance balanced) decision and completed the real

allocations.

5.4.1 The Task Analyzer

The task analyzer is responsible for analyzing tasks characteristic and task

dependencies. In addition, the task analyzer has to accurately estimate execution times

of tasks based on task types or information provided by users. In our framework, parallel

tasks with dependencies are represented by Directed Acyclic Graphs (DAGs).

Throughout this paper, a grid application is specified as a pair, i.e, (T, E), where T = {t1,

t2, ..., tn} represents a set of parallel tasks, E is a set of weighted and directed edges

representing communication cost among tasks, e.g., (ti, tj)∈ E is a message transmitted

from task ti to tj. Task dependencies among the parallel tasks are represented by all

edges in set E. Communication time spent in delivering a message (ti, tj) ∈ E from task ti

on node pu to tj on pv is determined by sij/buv, where sij is the message’s data size and buv

is the transmission rate of a link connecting node pu and pv. The execution times of task

ti running on a set of heterogeneous computing nodes are modeled by a vector, i.e.,

()m
iiii cccc ,,, 21

L= , where j
ic represents the execution time of ti on the jth computing

node. If task ti cannot be executed on node pj, the corresponding execution time j
ic in

the vector ci is marked as ∞. We define a task as an entry task if it does not have any

predecessor tasks and; similarly, a task is called an exit task if there is no task following

behind it. The task analyzer will take the user request (usually it contains the necessary

task description information) as input and generate DAGs as output. Figure 5.4

illustrates a typical task description file and the DAG generated by the task analyzer.

70

Figure 5.4 A directed acyclic graph (DAG) analyzed by the task analyzer

5.4.2 Grouping Phase

The grouping phase of our algorithms is to associate the most relevant tasks (i.e.

tasks in the same critical paths) into groups. Given a parallel application modeled as a

task graph or DAG, the grouping phase yields a group-based graph of the DAG. Since

all tasks in a group are allocated to the same computing node where there are no waiting

times among the tasks within the group, we can reduce communication overheads of

highly dependent tasks with intensive communications. Additionally, a task-duplication

strategy is applied in the process of grouping to further improve system performance by

replicating tasks into multiple computing nodes if schedule lengths can be shortened.

71

More specifically, the grouping phase can be finely divided into two sub-steps, namely,

original task sequence generating and parameters calculating. Since these two steps are

quite similar with the first two steps used for EAD and PEBD. Please refer to section

4.2.1 and section 4.2.2 for details.

5.4.3 Task Duplication Phase

After the grouping phase, the original task sequence should be generated and all

important parameters should be calculated. Once the original task sequence and

important parameters are available, we are ready to apply the duplication strategy to

complete the last step of the grouping phase. Figure 5.5 illustrates the main idea of the

duplication strategy using a simple example. The left part of Figure 5.5 shows a DAG

for four tasks with precedence constraints. The execution times of task T1, T2, T3, T4 are

8s, 10s, 15s, and 6s. The communication times among the tasks are 6s, 5s, 2s, and 4s,

respectively. The right part of Figure 5.5 provides three schedules made by the linear

scheduling strategy, the non-duplication strategy, and the duplication strategy,

respectively. The linear schedule has the longest schedule length because all the tasks

allocated to one computing nodes have to be executed in a sequential order. The non-

duplication schedule reduces the schedule length by allowing T2 and T3 running in

parallel on two computing nodes. The duplication schedule further improves the

performance by redundantly executing T1 on the second node. Thus, the duplication

strategy trades CPU times for communication overheads.

Figure 5.5

Figures 5.6 and 5.7 illustrate in details the implementation of EETDS and HEADUS

with respect to the process of forming a final task group graph. Initially, no task is

marked as “grouped” and the list of clusters is initialized to be empty. Next, the

algorithms consider the first task and insert it to a newly formed group called G1. Then

in the following iterations, the algorithms go through all the tasks along the favorite

predecessor chain, attempting to add all the tasks in the critical path to the same group.

Once a task is added to a group, it will be immediately marked as “grouped”. If the task

being processed is the entry task, the current iteration will end and a new iteration will

start in the next loop by choosing the first ungrouped task from the original

sequence generated in step 1. During the process of walking through multiple critical

paths, we may find some tasks have been added to a group. At this point, the duplication

strategy is responsible to make the decision whether or not to duplicate thi

72

Figure 5.5 An example of duplication scheduling strategy

.6 and 5.7 illustrate in details the implementation of EETDS and HEADUS

with respect to the process of forming a final task group graph. Initially, no task is

marked as “grouped” and the list of clusters is initialized to be empty. Next, the

sider the first task and insert it to a newly formed group called G1. Then

in the following iterations, the algorithms go through all the tasks along the favorite

predecessor chain, attempting to add all the tasks in the critical path to the same group.

ce a task is added to a group, it will be immediately marked as “grouped”. If the task

being processed is the entry task, the current iteration will end and a new iteration will

start in the next loop by choosing the first ungrouped task from the original

sequence generated in step 1. During the process of walking through multiple critical

paths, we may find some tasks have been added to a group. At this point, the duplication

strategy is responsible to make the decision whether or not to duplicate thi

An example of duplication scheduling strategy

.6 and 5.7 illustrate in details the implementation of EETDS and HEADUS

with respect to the process of forming a final task group graph. Initially, no task is

marked as “grouped” and the list of clusters is initialized to be empty. Next, the

sider the first task and insert it to a newly formed group called G1. Then

in the following iterations, the algorithms go through all the tasks along the favorite

predecessor chain, attempting to add all the tasks in the critical path to the same group.

ce a task is added to a group, it will be immediately marked as “grouped”. If the task

being processed is the entry task, the current iteration will end and a new iteration will

start in the next loop by choosing the first ungrouped task from the original task

sequence generated in step 1. During the process of walking through multiple critical

paths, we may find some tasks have been added to a group. At this point, the duplication

strategy is responsible to make the decision whether or not to duplicate this task to

73

multiple groups by comparing the value of LAST(t) - LACT(t’) and the communication

time cc(t, t’). A task will be duplicated if the schedule length can be reduced and the task

will not be duplicated otherwise. At the end of the process, the task graph has been

divided into groups. Finally, the group graph is generated by creating edges among all

the groups communicating with each other. The algorithms then set a weight for each

edge to represent corresponding communication cost.

Figure 5.6 Pseudo code of the grouping phase in the EETDS algorithm

1. t = first waiting task of original task sequence;
2. i = 1;
1. add t to Gi; /* mark t as “grouped” */
2. while (not all tasks are grouped) do
3. t’ = FP(t);
4. if (t’ has already been added to one cluster) then
5. if (LAST(t) - LACT(t’) < cc(t, t’)) then /* if duplicate t’ , we can shorten the schedule

length */
6. add t’ to Gi; /*duplicate t’ , mark t’ grouped */
7. if t has another predecessor z ≠ t’ has not yet been grouped then
8. t’ = z;
9. else
10. if t’ is entry task then
11. t’ = the next task that has not yet been grouped;
12. i++ ;
13. else
14. for another predecessor z of x, z≠ t’ ,
15. if (ECT(t’)+ccuv = ECT(z) + cc(t, t’)) and z hasn’t been grouped) then
16. t’ = z; /* do not duplicate*/
17. else allocate t’ to Gi; /*also mark t’ as “grouped” */
18. t = t’ ;
19. if t is entry task then
20. t = the next task that has not yet been added to a group;
21. i++ ;
22. assign t to Gi; /*also mark t as grouped*/
23. return group graph;

74

Figure 5.7 Pseudo code of the grouping phase in the HEADUS algorithm

The major difference between EETDS and HEADUS is that HEADUS makes

tradeoff between energy savings and schedule lengths, in which task duplications are

strictly forbidden if the duplications do not exhibit energy conservation (see Steps 9-10).

In other words, duplications are infeasible if they result in a significant increase in

energy consumption (e.g., the increase exceeds a threshold). In doing so, the HEADUS

algorithm ensures that schedule lengths are optimized using task duplication without

greatly affecting energy conservation.

1. t = first waiting task of original task sequence;
2. i = 1;
3. assign t to Gi;
4. while (not all tasks are grouped) do
5. t’ = FP(t);
6. if (t’ has already been added to one cluster) then
7. if (LAST(t) - LACT(t’) < cc(t, t’)) then /* duplicate t’ , we can shorten the schedule

length */
8. moreenergy = ENt’ – ELt’t; /*energy increase*/
9. if (moreenergy ≤ threshold T) then /* increased energy less than our threshold*/
10. add t’ to Gi; /*duplicate t’, mark t’ grouped */
11. if t has another predecessor z ≠ t’ has not yet been allocated to any node then
12. t’ = z;
13. else
14. if t’ is entry task then
15. t’ = the next task that has not yet been assigned to a node;
16. i++ ;
17. else
18. for another predecessor z of t, z ≠ t’ ,
19. if (ECT(t’)+cct’t = ECT(z) + cczt) and z hasn’t been allocated) then
20. t’ = z; /* do not duplicate*/
21. else
22. for another predecessor z of x, z≠ t’,
23. if (ECT(t’)+ cc(t, t’) = ECT(z) + cc(t,z)) and z hasn’t been allocated) then
24. t’ = z; /* do not duplicate*/
25. else add t’ to Gi; /*duplicate t’, mark t’ grouped */
26. t = t’ ;
27. if t is entry task then
28. t = the next task that has not yet been allocated to a computational node;
29. i++ ;
30. add t’ to Gi; /*duplicate t’, mark t’ grouped */
31. return schedule list;

75

5.4.4 Energy-Efficient Group Allocation Phase

After the grouping stage, the DAG has been partitioned into a number of groups,

which will be allocated to heterogeneous computing nodes by the next step in an energy-

efficient way. The main objective for this phase is to generate an allocation list with

minimized energy dissipation. Recall that there might be exclusion relations among

some tasks and nodes, e.g. task t9 couldn’t be allocated to p1 as shown in Figure 5.1.

Therefore, we have to verify whether or not a node and a group are exclusive to each

other. In other words, we have to assure that all tasks in the group are exclusion

compatible with the node to be allocated on. If any task is exclusive to a current node,

our algorithm performs the same verification process on another computing node until

an exclusion compatible node is identified. In real world clusters, most computing nodes

are compatible with various parallel tasks. Otherwise the clusters cannot provide widely

used services for end users. To make our algorithm practical, we implement the

compatible verification process in our algorithm to handle exclusion issues.

Once a group and a computing node pass the compatible verification process, the

group will be temporarily allocated to the node. Next, the algorithms calculate energy

consumption caused by the group running on the node. The estimation of the energy

consumption can be carried out using the energy consumption model described in

Section 3.3. The value of this energy consumption is saved in an energy cost array. The

algorithms apply the same procedure to the next type of compatible node. This

procedure is repeatedly performed until all candidate compatible nodes with respect to

the group have been considered. Finally, the algorithms update the allocation list with a

compatible node that leads to the minimized energy dissipation. After the group

76

allocation phase is accomplished, the allocation list provides an allocation solution with

minimized energy consumption of the heterogeneous cluster. Figure 5.8 shows the way

of implementing the energy-efficient group allocation phase.

Figure 5.8 Pseudo code of group allocation to minimize energy consumption

Energy_Efficient_Allocation () {
set allocation list is empty;
for each cluster c in the cluster graph G {

 n = Energy_Efficient_Calculation (c, N);
 mark c is finally allocated to n, update allocation list;

}
return allocation list;

}
Energy_Efficient_Calculation (c, N) {

i = 1;
while (n is not the last node in N) {

 Legal_n = Exclusion_Verify (c, n);
 Add Legal_n to the Legal_Node_List;
 n = the next node following Legal_n in N ;

}
for each node n in Legal_Node_List {

 if (n has not been allocated with any cluster) {
 mark c to be temporarily allocated to n;
 temp_energy_cost[i] = Energy_Consumption(c,n);
 //here Energy_Consumption()will calcutlate energy cost assumming c is allocted to n;
 i++;
 }

}
return the node with minimized value in array temp_energy_cost[]

}
Exclusion_Verify (c, n) {

for each task t in cluster c {
 if (t is exclusive with n) {
 n = the next node following n in N ;
 Exclusion_Verify (c, n);
 }
 }
 return n;
 }

77

5.4.5 A Case Study

In this section, we use a synthetic parallel application as an example to illustrate how

the EETDS and HEADUS algorithms work. The task graph of the parallel application is

delineated in Figure 5.9. The running trace of each step is given as follows:

1

2 3 4

5 6 7

8 9

10

3

3 4

2

1

10
20

7 5

8

15 15

15

15
15

20
10

5 50 50
100

2535

Figure 5.9 A synthetic parallel application

Phase 1. Grouping

Step 1. Generate a task sequence by computing levels: The levels of the tasks can be

calculated using Eq. (16). For instance, the level of task v10 is 8, since v10 is the exit task

without any successor. The level of v8 is 8 + 7 = 15 because v8 has only one successor

task. The level of task v2 is max{L(v5) + 3, L(v6) + 3} = 28, since v2 has two successors -

78

v5 and v6. All the tasks are placed in a queue in the non-increasing order of levels. Thus,

we have a list of tasks as {10, 9, 8, 5, 6, 2, 7, 4, 3, 1}

Step 2. Calculate the important parameters:

Step 2.1 Compute EST and ECT: The EST and ECT values of each task can be

computed by applying Eqs. (17) and (18). For example, task v1 is the entry task and,

therefore, EST(v1) = 0. In accordance with Eq. (18), we have ECT(v1) = 0 + t1 = 3. Since

v2, v3, and v4 are unable to start until v1 finishes and, thus, we have EST(v2) = EST(v3) =

EST(v4) = ECT(v1) = 3. Similarly, EST of v7 is computed as below

() (){ }
() (){ } .15105 7,max,207 5,maxmin

)ECT(v),ECT(vmax,)ECT(v),ECT(vmaxmin)EST(v 474337347

=++=
++= cc

Correspondingly, the ECT of v7 is ECT(v7) = EST(v7) + t7 = 15 + 20 = 35.

Step 2.2 Compute favorite predecessors: The favorite predecessor of a task is

determined by using Eq. (19). For example, the favorite predecessor of task v2, v3, and v4

is v1, simply because these three tasks have only one predecessor. The favorite

predecessor of v8 is v6 because ECT(v6) + c68 = 16 + 50 = 66 > ECT(v5) + c58 = 7 + 5 =

12.

Step 2.3 Compute LAST and LACT: The LACT and ECT values of the exit task v10

equal to 79 and, thus, we have LAST(v10) = LACT(v10) - t10 = 79 – 8 = 71. In case of

LACT(v6), we have to consider two successors, namely, v8 (in critical path) and v9 (not

in critical path). We obtain

(){ } { } 1629) 50),-(66min))min(LAST(v ,c-)LAST(vminmin)LACT(v 86996 === and

LAST(v6) = LACT(v6) - t6 = 16 – 10 = 6. Table 5.1 summarizes the values of all the

parameters:

79

Table 5.1 Results of the important parameters

Step 3. Generate a duplication task sequence:

The EETDS algorithm generates the first group of tasks by starting from the first

task in the task list obtained in step 1, which is task 10. The first task group containing

tasks v1, v3, v7, v9, and v10 forms GROUP 1. Next, the second iteration starts because the

algorithm hits task v1, which is the entry task. At this point, next ungrouped task is task

v8. Tasks v8, v6 and v2 are associated to GROUP 2, and the next task to be considered is

task v1. Since v1 has been clustered to GROUP 1, the algorithm has to decide whether

there is an incentive to duplicate v1 on GROUP 2. The condition in step 7 (see Figure

5.7) is satisfied, because we have LAST(v2) - LACT(v1) = 3 – 34 < cc12 = 15. Therefore,

duplicating v1 on GROUP 2 gives rise to a shortened schedule length. Thus, GROUP 2

consists of v8, v6 , v2 and v1. Again, the algorithm hits the entry task and the third

Task level EST ECT LAST LACT FP

1 40 0 3 31 34 --

2 28 3 6 3 6 1

3 37 3 7 42 46 1

4 35 3 5 34 36 1

5 16 6 7 23 24 2

6 25 6 16 6 16 2

7 33 15 35 46 66 3

8 15 16 23 29 36 6

9 13 66 71 66 71 7

10 8 71 79 71 79 9

80

iteration is invoked. At this point, task v5 is added to GROUP 3, followed by task v2, and

v1, which are not duplicated on GROUP 3 because LAST(v5) - LACT(v2) = 23 – 6 = 17 >

cc12 = 15, which means the schedule length will be increased. Similarly, task v4 and v1

are added to GROUP 4 in the last iteration. Finally, the following task groups are

created:

Accordingly, the final task group generated by HEADUS is like follows (energy

threshold T, ENactive and ELactive are set to 1J, 6J and 1J, respectively):

Last but not the least, the EETDS and HEADUS algorithms compute the

communication cost between each pair of task groups and set the corresponding edges to

form a group graph.

Group 1: Task 10, Task 9, Task 7, Task 3, Task 1

Group 2: Task 8, Task 6, Task 2, Task 1

Group 3: Task 5

Group 4: Task 4, Task 1

Group 1: Task 10, Task 9, Task 7, Task 3, Task 1

Group 2: Task 8, Task 6, Task 2

Group 3: Task 5

Group 4: Task 4

81

Table 5.2 Energy consumption values

 A B C D

C1 3050J 3700J 2008J 3000J

C2 1000J 900J 1560J 1200J

C3 180J 194J 136J 75J

C4 207J 226J 251J 243J

Phase 2. Energy-efficient Allocating

In this phase, the EETDS algorithm performs the procedure described in Figure 5.6.

Here we just assume that the heterogeneous grid system consists of four types of

computing nodes denoted by A, B, C, and D. Energy consumption values of the nodes

are listed in Table 5.2:

The final list of allocations determined by the EETDS algorithm is given as follows:

Group 1 is allocated to node C

Group 2 is allocated to node B

Group 3 is allocated to node D

Group 4 is allocated to node A

.

82

Figure 5.10 Allocation results showing how the EETDS algorithm works

5.5 Time Complexity Analysis

The time complexity of the EETDS scheduling algorithm is O(|V|2).

Proof. The algorithm consists of two major phases: the grouping and energy-aware

allocation phases. Let us first analyze the time complexity of each phase.

Let us start from the first step in the grouping phase. In this step, the algorithm

traverses all tasks of a DAG to compute the levels of the tasks. The time complexity to

calculate the levels is O(|E|), where |E| is the number of messages. This is because in the

worst case all the messages in the DAG have to be examined. Furthermore, it takes

83

O(|V|log|V|) time to sort the tasks in an increasing order of the levels, where |V| = n is

the number of tasks. Therefore, the time complexity of step 1 is O(|E| + |V|log|V|).

The second step is performed to obtain all the important parameters like EST, ECT,

FP, LACT, and LAST. Phase 2 calculates these parameters by applying the depth first

search with the time complexity of O (|V| + |E|).

In the last step of the grouping phase the tasks are associated into several groups,

which can help in reducing schedule length. First, each task is checked and added to one

or more groups in the iteration based on the duplication strategy. In the worst case, all

the tasks in the critical path must be duplicated, meaning that the time complexity is

O(h|V|) time, where h is the height of the DAG. Since h is less than or equal to |V|, the

time complexity of the third step is O(|V|2).

Consequently, the total time complexity of these three steps is O(2|E| + |V|(lg|V|+1) +

|V2| = O(|E|+|V|2). For a dense DAG, the number of messages are proportional to O(|V|2).

Hence, the time complexities of the grouping phase is O(|V|2).

In the second phase, the algorithm executes the compatibility verification process

and calculates the energy consumption caused by each group on each compatible

computing node. Suppose the grouping phase generates a group set G= {g1, g2, g3, … gq}

with q different groups. We have a heterogeneous node set P = {p1, p2,..., pm} with m

different type of processors, the algorithm attempts to select two elements randomly

from the sets G and P in order to estimate energy cost. According to the permutation and

combination theory, the time complexity is 11
mq CC × . Obviously, the number q of groups

is always less than the number of tasks and the number of m is a constant (i.e. the

number of heterogeneous nodes in a real cluster). Since the calculation of power

84

consumption for each combination can be completed in linear time, the time complexity

of the group allocation phase is O(c|V|), where c is a constant relies on m and other

related calculation time. Similarly, the verification process can be done within O(c|V|).

Therefore, the overall time complexity of the EETDS algorithm is O(|V|2), where V is

the number of tasks in a parallel task set.

5.6 Simulation Results

In this section, we evaluate the effectiveness of the proposed EETDS and HEADUS

scheduling algorithms.

5.6.1 Simulation Metrics and Parameters

We conducted extensive experiments using Gaussian Elimination and Fast Fourier

Transform applications. In addition, we compare EETDS and HEADUS with two

existing scheduling algorithms: the Non-Duplication Scheduling algorithm (NDS) and

the Task Duplication Scheduling algorithm (TDS). We also compare our algorithms

with a baseline algorithm: Energy-Efficient Non-Duplication Scheduling (EENDS). The

NDS, TDS and EENDS algorithms are briefly described below.

(1) NDS: This a non-duplication-based algorithm (also know as the static priority-

based Modified Critical Path (MCP) algorithm [52]) with time complexity of O(n2(logn

+ m)), where n and m are the numbers of tasks and nodes, respectively. NDS, which

does not duplicate any task, makes scheduling decisions using the critical-path method.

(2) TDS: The TDS algorithm allocates all tasks that are in a critical path to one

computing node. If tasks have already been dispatched to other nodes, TDS only

85

duplicates the tasks that can potentially shorten scheduling length. TDS aims to generate

a schedule of a parallel application with the shortest schedule length.

(3) EENDS: To the best of our knowledge, EENDS is a baseline algorithm that

could not be found in the literature. In order to comprehensively understand the impacts

of grouping phase, we combine the second phase of our algorithm with the NDS

grouping to form a new EENDS scheduling algorithm.

Table 5.3 Characteristics of experimental system parameters

 Parameters Value (Fixed) - (Varied)
Different trees to be
examined

Gaussian elimination, Fast Fourier Transform
Execution time of
Gaussian Elimination

{5, 4, 1, 1, 1, 1, 10, 2, 3, 3, 3, 7, 8, 6, 6, 20, 30, 30 }-(random)
Execution time of Fast
Fourier Transform

{15, 10, 10, 8, 8, 1, 1, 20, 20, 40, 40, 5, 5, 3, 3 }-(random)

Computing node type AMD Athlon 64 X2 4600+ with 85W TDP (Type 1)
AMD Athlon 64 X2 4600+ with 65W TDP (Type 2)
AMD Athlon 64 X2 3800+ with 35W TDP (Type 3)
Intel Core 2 Duo E6300 processor (Type 4)

CCR set Between 0.1 and 10
Computing node
heterogeneity

Environment1:
of Type 1: 4
of Type 2: 4
of Type 3: 4
of Type 4: 4

Environment2:
of Type 1: 6
of Type 2: 2
of Type 3: 2
of Type 4: 6

Environment3:
of Type 1: 5
of Type 2: 3
of Type 3: 3
of Type 4: 5

Environment4:
of Type 1: 7
of Type 2: 1
of Type 3: 1
of Type 4: 7

Network energy
consumption rate

20W, 33.6W, 60W

The basic yet important method we used in our experiments is called OTOP (Once

Tuning One Parameter). Specifically, in each experimental study we only vary one

parameter while keeping the other parameters unchanged. By tuning one parameter at a

time, we are allowed to clearly observe its impacts on clusters and easily analyze system

sensitivities to this specific parameter. Important system parameters tuned in our

experimental studies include Communication-to-Computation Ratio (or CCR for short),

network heterogeneity, and computing heterogeneity.

86

Note that the CCR value of a parallel application on a heterogeneous cluster is

defined as the ratio between the average communication cost of |E| messages and the

average computation cost of n parallel tasks in the application on the given cluster with

m heterogeneous computing nodes. Formally, the CCR of an application (T, E) is

expressed by Eq. (22) as below.

∑ ∑

∑∑ ∑ ∑

∑ ∑

∑∑ ∑ ∑

= =

= = = ≠=

= =

= = = ≠=





















−⋅
=





















−
=

n

i

m

j

j
i

n

i

n

j

m

u

m

uvv uv

ij

n

i

m

j

j
i

n

i

n

j

m

u

m

uvv uv

ij

c
n

b

s

mE

c
mn

b

s

mmE
ETCCR

1 1

1 1 1 ,1

1 1

1 1 1 ,1

1

)1(||

1

11

)1(

1

||

1

),((20)

Generally speaking, communication-intensive applications have high CCRs, whereas

CCRs of computation-intensive applications are low.

Table 5.3 summarizes the configuration parameters of simulated heterogeneous

clusters used in our experiments. On the right hand side of each row in Table 5.3,

parameters in the first part are fixed, whereas parameters in the second part are varied or

randomly generated using uniform distributions. In order to illustrate the heterogeneity

of computing nodes, we choose to test four heterogeneous cluster computing

environments, in which the numbers of four types of computing nodes are different in

processors. The last row in Table 5.3 represents the network heterogeneity by setting

various energy consumption rates. Figure 5.11 shows the energy consumption

parameters, CPU speed parameters of different types of processors used in computing

nodes. All these data comes from the latest test report of Xbit Lab

(http://www.xbitlabs.com). Figure 4.6 depicts the task graphs of parallel applications

used in our simulation.

87

CPU Clock Speed, GHZ

1.86

2

2.4

2.6

0 0.5 1 1.5 2 2.5 3

Core2 Duo E6300

Athlon 3800+ 35W

Athlon 4600+ 65W

Athlon 4600+ 85W

Figure 5.11 Parameters used in simulation (data from test report of Xbit Lab)

5.6.2 Experimental Results for Gaussian Elimination

In this subsection, we evaluate five scheduling algorithms using the Gaussian

Elimination application on a heterogeneous grid. Figure 5.12 shows the impacts of CCR

on energy dissipation of the cluster running the Gaussian Elimination application. Five

observations are evident from this group of experiments. First, the energy consumption

of Gaussian Elimination under all the five scheduling schemes is very sensitive to CCR.

Second, EETDS and HEADUS provide noticeable energy savings compared with the

TDS and NDS algorithms. Third, NDS outperforms TDS with respect to energy

conservation when the CCR values are small. However, TDS is superior to NDS when

CCR becomes large (e.g., CCR is greater than or equal to 4). Fourth, EETDS and

HEADUS work well in all these four heterogeneous cluster computing environments.

These results demonstrate that EETDS and HEADUS have overall better performance

88

compared with the other three and HEADUS is the best energy-efficient scheduling

algorithm among the five examined schemes. Last, the energy savings exhibited by

EETDS and HEADUS become more pronounced with the increasing values of CCR.

These results indicate that with respect to energy conservation our algorithms are more

appropriate for communication-intensive applications as opposed to computation-

intensive applications.

Figure 5.12 CCR sensitivity for Gaussian when Net_Energy=33.6

Since our algorithms are designed for heterogeneous grids, we tested energy

dissipation in the four different environments, which are shown in Table 5.3. Figure 5.13

illustrates the impacts of the computing heterogeneity on grid computing platforms.

First, we observe that EETDS and HEADUS can conserve more energy in E1 and E3

89

(see Figs. 5.13(a) and (b) compared with E2 and E4 (see Figs. 5.13(c) and (d), from

which we can draw the conclusion that less energy is consumed by clusters with more

energy-efficient computing nodes. Second, the computing heterogeneity has significant

impacts on the energy efficiency of EETDS. For example, when CCR equals to 0.1 in

the four clusters, the EETDS algorithm reduces energy consumption (compared with

TDS) by 38.5%, 49.1%, 48.7%, and 51.7%, respectively. These experimental results

indicate that EETDS and HEADUS can conserve even more energy for heterogeneous

clusters that are comprised of energy-consuming computing nodes. Third, Figure 5.13

shows a similar performance trend that EETDS and HEADUS significantly conserve

energy in overall because TDS consumes huge energy when CCR is small and NDS

consumes more energy when CCR is large due to the high energy dissipation in the

network interconnections.

Next, let us quantitatively show the impacts of network heterogeneity on the

performance of these five scheduling algorithms. In this group of experiments, we vary

network energy consumption rates. Three network energy consumption rates are chosen:

20W, 33.6W, and 60W. It is worth noting that these three energy consumption rates

represent real-world network interconnections (e.g. Merinet) widely used in clusters.

90

Figure 5.13 Computational nodes heterogeneity experiments

After comparing Figs. 5.14(a), (b), and (c), we can quantify the impacts of network

heterogeneity on energy dissipation exhibited by the five scheduling algorithms. For

instance, given computing environment 1, EETDS can improve energy efficiency over

TDS by 27.9%, 27.9%, 27.8% when network energy consumption rate is 20W, 33.6W,

and 60W, respectively (CCR is set to 0.1). However, when CCR is large (e.g., 10), these

improvements in energy efficiency are scaled down to 15.6%, 13.3% and 10.2%,

respectively. In this set of experiments we confirm that the network energy consumption

contributes a whole lot to the grids’ total energy consumption when CCR is large. Last,

we conclude that NDS is not suitable for communication-intensive parallel applications

because NDS has schedule lengths significantly increased when communication

overheads are high.

91

Finally, we illustrate the energy threshold sensitivity of HEADUS algorithm in

Figure 5.14(d). We did this simulation by setting threshold as 100J, 500J and 1kJ under

different CCRs in environment 4 when Net_Energy consumption rate is set to 60W. Our

conclusion is that energy threshold does affect the performance of HEADUS. More

specifically, HEADUS is very sensitive to threshold, especially when the energy

consumption of related CPU and links is comparable with the energy threshold.

Figure 5.14 Network heterogeneity and threshold sensitivity experiments

5.6.3 Experimental Results for Fast Fourier Transform

The goal of this group of experiments is to compare the performance of the proposed

EETDS and HEADUS algorithms with the NDS, TDS and EENDS algorithms with

respect to energy conservation under the FFT application. First, we are focused on

relationships between CCR and energy consumption of the FFT application. Figure 5.15

plots total energy consumption of the four heterogeneous clusters running FFT. CCR is

92

gradually varied from 0.1 to 10. Figure 5.15 shows that the total energy consumption

caused by the FFT application becomes more sensitive to CCR when CCR is greater

than 2. Compared with the TDS algorithm, EETDS conserves approximately 46% and

31% energy when CCR is small and large in environment 4. Accordingly, HEADUS

conserves roughly about 47% and 17% respectively. Also, EETDS and HEADUS

outperform NDS with 17.5% & 19.5% for small CCRs and 34.7% & 20.5% for big

CCRs. Therefore, we can see that HEADUS is more appropriate for computation

intensive application and EETDS works better in highly communication intensive

applications. When CCR is greater than 8, even EENDS consumes more energy because

the first grouping phase in EENDS generates groups that have high communication

overheads.

Figure 5.15 CCR sensitivity for FFT when Net_Energy=20W

93

Moreover, Figure 5.15 shows that when CCR is relatively small, energy

consumption under the TDS algorithm is noticeably higher than those under the other

four algorithms. This is mainly because energy dissipation in the network

interconnections is diminished with a small CCR. Not surprisingly, EETDS improves

energy efficiency over NDS up to 50% when CCR is large (e.g., CCR = 10).

Now we evaluate the impacts of computing heterogeneity using the FFT application.

Experimental results in terms of energy efficiency are depicted in Figure 5.16. For all

four cluster computing environments, EETDS and HEADUS significantly improves

energy efficiency over the three alternative scheduling algorithms (see Figure 5.16).

These results coupled with the results plotted in Figure 5.15 confirm that regardless of

the heterogeneities and CCR values, our algorithm are consistently the most energy-

efficient scheduling algorithm among all the five examined schemes.

Figure 5.16 Computational nodes heterogeneity experiments for FFT

94

Figure 5.17 shows the impacts of network heterogeneity on the energy consumption

experienced by the four scheduling algorithms. Comparing Figs. 5.17(a), (b), and (c), we

observe that the impacts of network heterogeneity are highly dependent on CCR. Energy

consumption cased by network interconnections account for the major portion of the

energy dissipation in the clusters under the condition that CCR is large.

Figure 5.17 Network heterogeneity for FFT and schedule length for Gaussian

5.6.4 Experimental Results of Schedule Length

Schedule length is one the of most important performance metrics. Our algorithms

are conducive to conserve energy without significantly degrading performance. In this

set of experimental results, we will evaluate the impact to schedule length. Figure

95

5.17(d) summarizes empirical results based on the Gaussian Elimination application.

Figure 5.17(d) reveals that both EETDS and HEADUS have only a marginal

performance degradation compared with TDS. That is partially because the four types of

processors used in the computing nodes consume more energy if they run at full speed.

Therefore, EETDS and HEADUS are forced to sacrifice performance to some extent by

allocating parallel tasks to energy-efficient computing nodes. Although EETDS and

HEADUS increase schedule length by an average of 9% and 10% compared with TDS,

EETDS and HEADUS do conserve energy by an average of 32% and 34%.

Nevertheless, the performance degradation problem can be remedied by the

advancement of hardware technology (e.g., high CPU capacity and high CPU energy

efficiency).

5.7 Summary

In this chapter, we addressed the issue of allocating and scheduling tasks of parallel

applications running on heterogeneous grids in a way to conserve energy without

adversely affecting performance. Specifically, we proposed two novel scheduling

algorithms called EETDS and HEADUS, which aim to make the best tradeoffs between

energy savings and performance for tasks of parallel applications running on

heterogeneous clusters. EETDS and HEADUS are designed and implemented based on

the previous algorithms used in chapter 4 for homogeneous clusters. Both the EETDS

and HEADUS algorithms consist of two major phases. In the first phase, a grouping

method is employed to minimize schedule lengths of parallel applications. The goal of

96

phase two is to leverage energy-consumption parameters to achieve high energy

efficiency.

The experimental results show that compared with TDS, NDS and EENDS, EETDS

and HEADUS can significantly reduce energy consumption in heterogeneous grids with

only a marginal degradation in performance.

97

Chapter 6

Energy-Efficient Storage Systems

In the previous two chapters, we have addressed the energy conservation issue for

high-performance cluster and grid systems through energy-efficient scheduling. These

scheduling algorithms primarily consider the energy consumed by CPU and

interconnection. The significantly energy consumed by storage systems has not been

discussed.

In this chapter, we address the energy conservation issue for large-scale storage

systems by proposing buffer disk based architecture and designing energy-aware

resource management strategy.

The rest of this chapter is organized as follows. In section 6.1, we present the

motivation of this study. Section 6.2 illustrates the buffer-disk based parallel disks

architecture. In section 6.3, we demonstrate the heat-based load balancing strategy.

Mathematical models for calculating the power of parallel storage systems are explained

in section 6.4.The experimental environment and simulation results are presented in

section 6.5. Finally, section 6.6 will summarize the primary contribution of this chapter

and future research directions.

98

6.1 Motivation

Storage systems are considered as one of the major energy consumer in most high

performance computing platforms. That is mainly because most high-performance

computing servers have to storage and process massive data. Historically, tape libraries

are preferred over disk arrays for massive storage environments, in large part due to the

capacity and cost differential between tapes and disks. Over the last decade the original

tape systems have been gradually replaced by parallel disk systems because of the

continuous expansion of disk capacity and continuous drop of disk price. However,

large-scale parallel storage systems consume significant amount of energy. A recent

industry report shows that storage devices account for almost 27% of the total energy in

a data center [40]. Therefore, new technologies focused on the design of energy-efficient

parallel storage systems are highly desirable.

In this chapter, we present a buffer disk (BUD for short) based architecture to build

energy efficient parallel storage systems. The basic idea of BUD is simple and

straightforward. To most people, it is common sense that leaving a light bulb on at

daytime is a waste of energy. The same thing happens if we keep the disks on when it

does nothing. It makes no sense that we still feed those idle disks power, without

producing any useful work. The primary design goal of BUD is to conserve energy by

serving most of the requests in a small number of buffer disks and turning as many idle

disks as possible to a low power mode. Nevertheless, one potential problem of the BUD

architecture is that a limited number of buffer disks may easily become the bottleneck.

Worst case access patterns can direct all requests to a single buffer disk, resulting in

99

arbitrarily large delays for very small arrival rates. Therefore, we also designed the heat

based load balancing strategy for BUD in order to improve the performance.

6.2 Buffer-Disk Architecture

The buffer disk architecture (see Figure 6.1) consists of four major components: a

RAM buffer, m buffer disks, n data disks, and a buffer-disk controller. The buffer disks

temporarily cache the requests for the data disks. Data disks remain in low power mode

unless a read request misses in the buffer disk or the write log for a specific data disk

grows too large. The buffer-disk controller is the “brain” of the whole system, which

contains the energy-related reliability algorithms, data partitioning algorithms, data

movement/placement strategies, and prefetching strategies. Our ultimate objective in

this research is to conserve more energy without adversely affecting the performance of

the disk system. More specifically, the controller strives to move the frequently accessed

data from data disks into buffer disks. This allows as many data disks as possible to

switch into low-power modes. The rationale behind this strategy relies on the fact that

only a small percentage of the data is frequently accessed in a wide variety of data-

intensive applications [59]. To achieve this goal, we proposed the heat-based algorithm

to dynamically balance the workload. This algorithm aids in avoiding the potential

“traffic jam” caused by over loaded buffer disks. Here we want to note that all our

solutions and experimental results illustrated in the following sections are primarily

based on read requests.

100

Figure 6.1 The buffer disk architecture

6.3 Heat-Based Load Balancing

To conserve energy, most data disks will run in the low power state and all the

traffic will be directed to a limited number of buffer disks. This can potentially make the

buffer disks overloaded and they may become the system bottleneck and degrade the

system performance. Load balancing is one of the best solutions for the inherent

shortcoming of the BUD architecture. Basically, there are three types of load balancing

strategies called non-random load balancing, random load balancing, and redundancy

load balancing. Sequential mapping belongs to non-random load balancing because the

buffer disks have fixed mapping relationship with specific data disks. The round-robin

mapping is a typical random load balancing strategy by allocating data to each buffer

disk with equal portions and in order. Redundancy load balancing strategies for storage

systems include EERAID [60], eRAID [61], and RIMAC [62]. In this section, we will

propose a heat-based load balancing strategy, which also belongs to random load

101

balancing strategy. The primary objective of our strategy is to keep all buffer disks as

equally loaded as possible and to minimize the overall response time of all requests.

6.3.1 A Concrete Example

Before we start discussing our proposed heat-based load balancing algorithm, we

will demonstrate a concrete example. In it some buffer disks are over loaded, thus

degrading the performance of the whole system.

Suppose we have 15 requests cached in the RAM buffer and they are going to be

dispatched to different buffer disks by the controller. Requests have different colors,

which represent that they will access different data blocks. For example, request

1(white) will access data block 1 (white) existing in data disk 1 and request 6 (green)

will access the data block 6 (green) existing in data disk 6. Figure 6.2 illustrates the

dispatching results of the sequential mapping algorithm, which is a typical non-random

load balancing strategy. In the sequential mapping strategy, a buffer disk will only cache

the data coming from specific data disks in a sequential way. For instance, the data in

data disk 1 and data disk 2 will only be copied to buffer disk 1 and similarly, buffer disk

3 will only cache the data coming from data disk 5 and data disk 6. Figure 6.2 shows

that the three buffer disks are not well load balanced because buffer disk 1, 2, and 3

serve 9 requests, 3 requests and 3 requests respectively. Obviously, buffer disk 1 has

become the bottleneck whereas the other two buffer disks are only slightly loaded.

Round robin mapping is a typical random load balancing strategy. Figure 6.3 illustrates

the scheduling results of the round robin mapping, in which data blocks are cached to

the buffer disks in a round robin way. We can see that buffer disk 1, 2, and 3 are

102

allocated 7 requests, 5 requests and 3 requests respectively. Although we get better

results as compared to sequential mapping, three buffer disks are still not well balanced.

It is highly possible that buffer disk 1 could cause performance degradation when more

requests are processed.

Figure 6.2 Allocation results of sequential mapping strategy

Figure 6.3 Allocation results of round-robin mapping strategy

103

6.3.2 Heat-based Load Balancing Algorithm

In contrast with sequential and round robin mapping algorithms, we proposed a heat-

based mapping strategy to achieve load balancing. The basic idea of heat-based mapping

is that blocks in data disks will be mapped to buffer disks based on their heat. Our goal

is to make the accumulated heat of data blocks allocated to each buffer disk the same or

close to this ideal situation. In other words, the temperature, or the workload of each

buffer disk should be the same. The temperature of a buffer disk is the total heat of all

blocks existing in the buffer disk. For example, if we suppose all blocks have the same

data size, the heat of blocks 1-6 is 5, 4, 1, 2, 1, and 2 respectively. Therefore, block 1 is

cached to buffer disk 1, block 2 and 3 are copied to buffer disk 2 and block 4, 5 and 6

are mapped to buffer disk 3. With this mapping the temperature of each buffer disk is 5.

Figure 6.4 depicts the dispatching results of the heat-based load balancing strategy.

Figure 6.4 Allocation results of heat-based mapping strategy

104

To clearly describe our heat-based load balancing algorithm, we define the key

parameters as follows.

Access Frequency: times a data block is accessed within a specific time unit.

Heat weight: the ratio of requested data size and standard data size (1MB)

Heat: the multiplication of access frequency and heat weight

Temperature: the accumulated heat of all data blocks existing in a buffer disk

The heat could be used to measure the popularity of a data block and the temperature

clearly shows how busy a buffer disk is. To calculate the heat more accurately, we need

to consider the impact of block size. A large block size should have higher heat

compared to a small block with the same access frequency. This is due to the fact that

the system will spend more time to complete the response operation for the larger block.

In other words, the larger blocks should have higher heat weight.

Since our algorithm is executed online, dynamic tracking of the heat of blocks is

crucial. We implemented two strategies to dynamically track the heat. In the first

strategy, the controller will snapshot the first k requests of the request queue and run the

heat calculation function. Once the k requests are captured, they will be removed from

the main request queue in the memory. We call these k requests a snapshot request

window and this window will be the input of the heat-based load balancing algorithm.

However, the snapshot window strategy is only suitable for bursty request patterns but

not for sparse request patterns. When a sparse request pattern is encountered, it may take

too long to collect a snapshot window of k requests. The response time suffers if we do

not serve the requests until all k requests ready. Therefore, we designed a second

strategy called the observation time window strategy. In this strategy, the controller will

105

serve the requests that arrive within a specific observation time, T seconds, no matter

how many requests arrive. That means, the maximum waiting overhead for each request

is T.

Figure 6.5 Heat-based load balancing algorithm

1. Input: the request window ; /* request window will be updated periodically */
2. for each unique target block in the queue /* each request has a target block to be accessed

*/
3. AF = Access_Frequency_Calculation() ; /* calculate the block access

frequency*/
4. HW = accessed block size/ standard block size; /*calculate the heat

weight*/
5. heat = AF * HW; /*calculate the heat */
6. sort the data blocks based on heat and save them in Linklist_Block; /* first block has the

highest heat */
7. sort the buffer disk based on current temperature to a Linklist_Buffer ;/* first disk has lowest

temperature*/
8. pointer p_buffer = the first buffer disk in the Linklist_Buffer;
9. pointer p_block = the first block in the Linklist_Block;
10. pointer t_buffer ; /* t_buffer points to the buffer disk which have the copy of target block*/
11. for each block in the Linklist_Block
12. if (p_block.found = = false) /* the target block cannot be found in buffer

disks*/
13. if (p_buffer. free = = true) /* the candidate buffer disk has enough space*/
14. wake up the corresponding data disk and cache the data;
 /* The data blocks within the batch prefetching window will be copied to the buffer disk

p_buffer;

15. dispatch all requests accessing p_block to p_buffer;
16. recalculate and update the information of block heat and buffer disk temperature ;
17. else /* the first candidate buffer disk has no space*/
18. if (p_buffer.next != empty)
 p_buffer ++; /* seek another candidate buffer disk*/

19. go to setp 12;
20. else /* all buffer disks are already full*/
21. reset p_buffer to the first buffer disk in the Linklist_Buffer;
22. data_replace_function(p_buffer); /* replace existing data blocks using LRU

algorithm */
23. dispatch all requests accessing p_block to p_buffer;
24. recalculate and update the information of block heat and buffer disk temperature ;
25. else /* p_block is found in one buffer disk t_buffer */
26. dispatch all requests accessing p_block to t_buffer ;
27. recalculate and update the information of block heat and buffer disk temperature ;

106

Figure 6.5 outlines the pseudo code of the heat-based load balancing algorithm. We

should note that the request window in the first line could represent the snapshot

window or the observation time window. This algorithm will periodically collect the

requests waiting in the queue, analyze the target block of each read request, and

calculate the heat of each unique block. If the target block cannot be found in the buffer

disk, the controller will send a data miss command. This will wake up the corresponding

data disk and copy the block to the buffer disk that has the lowest temperature. In a

special case, the selected buffer disk may not have free space to store a new data block.

The controller will seek the next buffer disk with a temperature that is higher than the

initial buffer disk selected, but still lower than any other buffer disk. In the worst case,

no candidate buffer disk will be found because all buffer disks are full. A data

replacement function based on the LRU algorithm will be executed to replace some

existing data blocks. If the target block has already been cached in one of the buffer

disks, that buffer disk will serve the corresponding request. Once the algorithm has

made the decision how to dispatch these requests, the block heat and buffer disk

temperature will be recalculated and updated accordingly. Since this is an online

algorithm, the decision made at the current time period relies on the heat and

temperature information collected at the last time period.

6.4 Energy Consumption Models

In order to compare the energy efficiency of the BUD architecture with disk arrays

without buffer disks, we define the energy consumption model in this section. As we all

know, the states of a disk (either a buffer disk or a data disk) include active, sleep, idle,

107

or shut down. Some modern disks even have different energy consumption modes for

the active state (different rotation speeds), in our study we only consider the active, idle,

and sleep states in this study to simplify the problem. The core of our power model used

in our simulator is a summation of all power states multiplied by the time each power

state was active. In addition, the power state transition overhead is also considered and

added to the total energy consumption of BUD. Moreover, we suppose the buffer disk

will never enter the sleep state. Therefore, the buffer disks only have two states, active

and idle. Similarly, the data disks will either be active when they are copying data to

buffer disks or sleeping when no data access is required. In what follows, a series of

functions are presented to formally illustrate how we calculate the energy consumption

of the BUD architecture. The calculation for traditional parallel disk arrays is trivial and

ignored here.

We denote the energy consumption rates of the disks when they are in active, idle

and sleep mode by Pactive, Pidle, and Psleep, respectively. Similarly, let Tactive, Tidle and Tsleep

be the time intervals when the disk is in the active, idle and sleep states, respectively.

Hence, the energy dissipation Eactive of the disk when it is in the active state can be

written as activeactive TP ⋅ . Similarly, the energy Eidle of the disk when it is sitting idle and

the energy Esleep of the disk when it is sleeping can be expressed as idleidle TP ⋅ and

sleepsleep TP ⋅ respectively. In addition to that, we denote Etr as the energy consumption

overhead when disks transit from one state to another and Ntr indicates how many times

a disk transits its power state. Now the total energy consumed by each buffer disk can be

108

calculated as
idleidleactiveactivetrtr

idleactivetrtrbuffer

TPTPNE

EENEE

⋅+⋅+×=

++×=
 (21)

 In a similar way, the total energy consumed by each data disk can be calculated as

sleepsleepactiveactivetrtr

sleepactivetrtrdata

TPTPNE

EENEE

⋅+⋅+×=

++×=
 (22)

Although we use the same term Etr in both equations, the value of Etr is different

because the energy overhead for transitions between the active, idle, and sleep states are

different. The energy values for each of the previously mentioned transitions are made

explicit in Table 2. The time interval Tactive when the disk is in the active state is the sum

of serving times of disk requests submitted to the disk system.

 ,)(
1
∑

=

=
n

i
serviceactive iTT (23)

where n is the total number of submitted disk requests, and)(iTservice is the serving

time of the ith disk request.)(iTservice can be modeled as

).()()()(iTiTiTiT transrotseekservice ++= (24)

where Tseek is the amount of time spent seeking to the desired cylinder, Trot is the

rotational delay and Ttrans is the amount of time spent actually reading from or writing to

the disk.

Suppose there are a total of m buffer disks and n data disks in the BUD parallel

storage systems, now we can quantify the total energy with the equation below

∑∑
==

+=
n

i
data

m

i
buffertotal iEiEE

11

)()((25)

109

6.5 Simulation Results

In this section, we present the performance evaluation of the BUD parallel disk

system and the heat-based load balancing algorithm proposed above. To simulate the

BUD architecture, we implemented our simulator, called BUD_Sim, using Java

language. We tried our best to consider and incorporate as many details of real disks as

possible. For example, we calculate the seek time as a non-linear function (Table 6.1) of

the seek distance using the seek-time-versus-distance curve presented in [63].

Table 6.1 Seek time calculation

In addition, we have implemented a load generator, which can generate synthetic

workloads according to specified parameter distributions, or analyze and filter real

traces and feed them as the input to BUD_Sim. Using the generator, we could easily

control and systematically tune all relevant parameters of a workload based on our

evaluation requirements.

Another important decision for implementing BUD_Sim is the type of hard disk

drives we should simulate. We believe that the buffer disks should have higher

performance (e.g. short seek time, high rotation speed) compared with data disks.

Consequently, buffer disks are more expensive and cost higher energy. It is still

worthwhile to use higher performance buffer disks because the number of buffer disks is

limited compared with the number of data disks. We will have an overall optimal

Seek distance Seek time (ms)

< 616 cylinders 3.45 + 0.597 d

≥ 616 cylinders 10.8 + 0.012 d

110

performance/cost rate. In BUD_Sim, the high-performance IBM disk, IBM 36Z15

Ultrastar, serves as the buffer disk and the low performance disk, IBM 73LZX Ultrastar,

serves as the data disk. Table 6.2 illustrates the detailed parameters of these two types of

disks, which are from IBM manuals and power measurements published in [64]. In

Table 6.3, we summarize the important parameters that have been used in our

simulation.

Table 6.2 Hardware characteristics of disks

Parameters

IBM 36Z15
Ultrastar

(high perf.)

IBM 73LZX Ultrastar

(low perf.)

Standard interface SCSI SCSI

Number of platters 4 2

Rotations per minute 15000 10000

Average seek time 3.4 ms 4.9 ms

Average rotation time 2 ms 3 ms

Transfer rate 55 MB/sec 53 MB/sec

Power (active) 13.5 W 9.5 W

Power (idle) 10.2 W 6.0 W

Power (sleep) 2.5W 1.4W

Energy (spin down) 13.0 J 10.0 J

Time (spin down) 1.5 s 1.7 s

Energy (spin up) 135.0 J 97.9 J

Time (spin up) 10.9 s 10.1 s

111

Before the simulation results are discussed, we briefly outline the baseline parallel

storage system and load balancing algorithms. They are used for comparison with our

proposed BUD architecture and heat-based load balancing algorithm. In section 6.3.1

and 6.3.3, where we compare the energy consumption and response time, the baseline

parallel storage system has no buffer disks. All disk drives greedily serve the requests in

order to shorten the response time, i.e. disks only have active and idle modes and will

never sleep. Therefore, the energy and time overhead caused by spin-up and spin-down

could be avoided. In section 6.3.2, the other two baseline algorithms, called sequential

mapping and round robin mapping, are compared against the proposed heat-based

mapping algorithm. Please refer to section 6.2.1 for more detailed information about

these two mapping strategies.

Table 6.3 Important parameters

Parameters Range/Value

of requests: {2000,5000,10000,20000}

of buffer disks 3

of data disks 30

data block size {64KB, 1MB, 4MB, 64MB}

average interval

(light load trace)
2.5s

average interval

(heavy load trace)
0.5s

6.5.1 Evaluation of Energy Consumption

This set of experimental results aims at evaluating the energy efficiency of the buffer

disk based parallel storage systems. To fairly compare the results, we generated and

executed a large number of requests and simulated both large reads (average data size is

64MB) and small reads (average data size is 64KB). Fig

total energy consumption of NO

20000 large read requests and small read requests, respectively.

There are three important observations here. First, the BUD can significantly

conserve energy compared with No

requests BUD serves, the more

outperforms No-Buffer in terms of energy conservation by 75.83%, 77.89%, 80.18%

and 81.16% for 2000, 5000, 10000, and 20000 large reads respectively. This is expected

because more requests lead to more

sleep mode. Third, BUD performs better for small reads (average 84.4% improvement)

than large reads (average 78.77% improvement). The rationale behind is that BUD will

consume more energy when moving large da

Figure

112

This set of experimental results aims at evaluating the energy efficiency of the buffer

disk based parallel storage systems. To fairly compare the results, we generated and

cuted a large number of requests and simulated both large reads (average data size is

64MB) and small reads (average data size is 64KB). Figure 6.6 and Fig

total energy consumption of NO-buffer and Heat-BUD running 2000, 5000, 10000, and

0000 large read requests and small read requests, respectively.

There are three important observations here. First, the BUD can significantly

conserve energy compared with No-Buffer parallel storage systems. Second, the more

requests BUD serves, the more potential power savings is revealed. For example, BUD

Buffer in terms of energy conservation by 75.83%, 77.89%, 80.18%

and 81.16% for 2000, 5000, 10000, and 20000 large reads respectively. This is expected

because more requests lead to more opportunities for BUD to keep the data disks in

sleep mode. Third, BUD performs better for small reads (average 84.4% improvement)

than large reads (average 78.77% improvement). The rationale behind is that BUD will

consume more energy when moving large data blocks to buffer disks.

ure 6.6 Energy consumption for large reads

This set of experimental results aims at evaluating the energy efficiency of the buffer

disk based parallel storage systems. To fairly compare the results, we generated and

cuted a large number of requests and simulated both large reads (average data size is

and Figure 6.7 plot the

BUD running 2000, 5000, 10000, and

There are three important observations here. First, the BUD can significantly

Buffer parallel storage systems. Second, the more

potential power savings is revealed. For example, BUD

Buffer in terms of energy conservation by 75.83%, 77.89%, 80.18%

and 81.16% for 2000, 5000, 10000, and 20000 large reads respectively. This is expected

opportunities for BUD to keep the data disks in

sleep mode. Third, BUD performs better for small reads (average 84.4% improvement)

than large reads (average 78.77% improvement). The rationale behind is that BUD will

ta blocks to buffer disks.

Energy consumption for large reads

113

Figure 6.7 Energy consumption for small reads

6.5.2 Evaluation of Load Balancing

In this section, we will evaluate the load balancing ability of the heat-based

algorithm. Please note that there are actually two levels of load balancing in real parallel

storage systems. The first level is memory caching, i.e. the main memory could cache

the popular disks. The second level is buffer disk caching. In order to study the effects

of load balancing in the buffer disks, we suppose no data are cached in the memory.

Recall that the temperature of a buffer disk clearly shows how busy it is. Figure 6.8

records the temperature of three buffer disks when we run the simulation for 1000

requests in BUD. From Figure 6.8, we can see that the three temperature curves merge

together most of the time. This means that the three buffer disks are almost equally

loaded most of the simulation time. In order to identify the information hidden in Figure

6.8, how the dynamic load balancing works, we plot the initial stage, intermediate stage,

and final stage of the temperature tracking trace in Figure 6.9, Figure 6.10 and Figure

6.11. At the initial stage, the three buffer disks are not load balanced. Buffer disk 2 is the

114

busiest disk and buffer disk 1 is lightly loaded. Therefore, the heat-based algorithm will

keep allocating requests to buffer disk 1. We can see that the temperature of buffer disk

1 keeps growing and it catches buffer disk 3 first. After that, the temperatures of buffer

disk 1 and 3 cross-rise for a while and then they catch buffer disk 2. At this point, the

system is load balanced for the first time. Figure 6.10 shows that the whole system is

perfectly load balanced in the intermediate stage because the temperatures of three

buffer disks rise in turns. Interestingly, we find in Figure 6.11 that the three temperature

curves are not as closely intertwined in the final stage when compared to the

intermediate stage. This could be explained by the fact that the heat-based load

balancing might not be that efficient when all data blocks that are requested are already

present in the buffer disks. In other words, if a data miss operation does not occur, there

is no chance for the heat-based algorithm to execute. Therefore, the temperature of

buffer disks will be largely decided by the access pattern of coming requests.

Figure 6.8 Temperature tracking trace

115

Figure 6.9 Temperatures in initial stage

Figure 6.10 Temperatures in intermediate stage

Figure 6.11 Temperatures in final stage

116

To compare the load balancing efficiency of sequential mapping, round robin

mapping, and heat-based mapping, we simulated 5000 requests with average data size of

4MB using these three mapping strategies. The simulation results depicted in Figure

6.12 prove that the proposed heat-based mapping is the most efficient algorithm that

achieves load balancing. In addition, the random mapping method (round robin

mapping) outperforms non-random mapping strategies (sequential mapping) overall.

Figure 6.12 Load balancing comparison

6.5.3 Evaluation of Response Time

Response time is one of the most important criteria to evaluate the BUD

architecture. This is because the buffer disk architecture leads to response time penalties.

This is especially true in the early stages of a workload when few data blocks are cached

in buffer disks. However, we believe that the performance penalty in the early stage is

worthwhile as long as the system can provide quick response times when the initial

caching stage is over.

117

In order to accurately evaluate the response time, we simulated 25000 requests for

large reads (average data size 64MB) and small reads (average data size 64KB), which

are illustrated in Figure 6.13-6.16 respectively. For each simulation, we first execute

20000 requests to complete the caching stage. After that, we execute 5000 more requests

to see whether or not the system can leverage the response time delay. Since the number

of sample requests is too large, it is difficult to analyze the performance trend.

Therefore, we plot the trend line in each figure (the black line inside) to better analyze

the changing response time trend. The trend line is plotted by calculating the average

response time of every 100 tasks and inserting this value into the trend line. For

example, if we have 5000 requests, the program will calculate 50 average response times

which will be the data points in trend line.

Figure 6.13 Response time trace before training (64MB)

118

Figure 6.14 Response time trace after training (64MB)

Figure 6.15 Response time trace before training (64KB)

Figure 6.13 and Figure 6.15 verify our prediction of the response time delay in the

early caching stage. For example, we can see in Figure 6.13 that the response time delay

rises up to 140s. However, we are very delighted to witness the performance improve

when more and more hot data blocks are cached in the buffer disks. After the training

process, the average response time is very close to the performance of a greedy No-

Buffer parallel storage system. For example, the average response time of BUD shown

119

in Table 6.4 is 1.219s for large reads and 0.01s for small reads. These numbers are in the

same level of No-Buffer parallel disk systems. We can even predict that the BUD could

offer better performance than No-Buffer strategies if higher performance disks serve as

the buffer disk in the future.

Figure 6.16 Response time trace after training (64KB)

Table 6.4 Average response time comparison

 Average Response Time

training (64MB): 5.614s

after training (64MB): 1.219s

training (64KB): 0.767s

after training (64KB): 0.01s

NO-Buffer(64MB) 1.216s

NO-Buffer(64KB) 0.01s

120

6.6 Summary

In this chapter, we propose a buffer disk based architecture for parallel storage

systems, or BUD for short, which can conserve energy by allowing as many data disks

as possible running in low-power mode. A heat-based dynamic data-caching strategy

was proposed to improve the performance of BUD architecture by achieving good load

balancing in buffer disk layer. We also analyze and compare the impact of three

mapping methods, which are sequential mapping, round robin mapping, and heat-based

mapping respectively. These mappings are applied to the BUD architecture to gauge

load balance, energy consumption, and performance.

The preliminary results have shown substantial gains that BUD can conserve more

than 80% of energy when compared with traditional parallel systems that do not employ

buffer disks. In addition, the average response time could be as good as the No-Buffer

parallel systems. For the future research work we would like to explore the impact of the

number of buffer disks and data disks to the system. In addition, we need to incorporate

traces from real-world applications to improve the feasibility of our approaches.

121

Chapter 7

Conclusions and Future Work

In this dissertation, we propose a general architecture for building energy-efficient

high-performance computing platforms and discuss the possibility of incorporating

energy-efficient techniques in each layer of the proposed architecture. In addition, we

have developed a series of energy-efficient algorithms for high-performance computing

platforms like clusters, grids and large-scale storage systems. This chapter concludes the

dissertation by summarizing the contributions and describing future directions. The

chapter is organized as follows: section 7.1 highlights the main contributions of the

dissertation. In section 7.2, we concentrate on some future directions, which are

extensions of our past and current research on green computing for high-performance

computing platforms.

7.1 Main Contributions

Currently, more and more data centers face the energy crisis. This crisis appears to

be a mismatch between requirements and capabilities. On the requirements side, to meet

application demands and the regulatory requirements, we need to deploy more and more

122

servers. During the years 2000-2010, the number of servers is expected to grow by 6

times and the number of storage disks is expected to grow by 69 times. Accordingly,

demands for energy use will significantly increase. How to get enough power to support

future data center has become a serious problem. The objective of our research is to find

possible and potential energy-efficient techniques to reduce power consumption of high-

performance computing platforms built in giant data centers. The main contributions are

summarized as follows:

• Architecture for High-Performance Computing Platforms

As far as we have known, there is no existing general architecture which is suitable

for most high-performance computing platforms. Especially, there is no previous

research have discussed the energy conservation issue of high-performance computing

platforms in the architecture level. We propose a general architecture for high-

performance computing platforms and discuss the possibility of incorporating energy-

efficient techniques to each layer of the proposed architecture (See Figure 3.1).

• Energy-Efficient Scheduling for Clusters

In the past few years, high-performance clusters have been widely used to solve

challenging and rigorous engineering tasks in industry and scientific applications. Due

to extremely high energy cost, reducing energy consumption has become a major

concern in designing economical and environmentally friendly Clusters for many

applications. We propose two energy-efficient duplication-based scheduling algorithms

called EAD and PEBD for clusters. They aimed to reduce energy consumption in

clusters while minimizing communication overheads associated with parallel tasks.

Rather than just consider energy or performance, our algorithms strived to balance the

123

scheduling lengths and energy savings by judiciously replicating predecessors of a task

if the duplication can aid in performance with limited energy consumption. We

conducted extensive experiments using both synthetic benchmarks and real-world

applications to prove the efficiency of these two algorithms.

• Energy-Efficient Scheduling for Grids

Grids are complicated heterogeneous super computing platforms which can

simultaneously execute thousands of parallel tasks. How to energy-efficiently schedule

those parallel tasks in complex heterogeneous grids environment is an open problem.

The objective of this study is to develop energy-efficient data grids to provide

significant energy savings for data-intensive applications running on grids. We designed

a generic energy-aware scheduling framework for grids and proposed two energy-

efficient algorithms called EETDS and HEADUS. In addition, we evaluated the

performance and energy efficiency of the proposed algorithms by conducting extensive

simulations.

• Energy-Efficient Storage Systems

With the tremendous development of human society, billions of data in the form of

knowledge and information is generated every day. In order to save and process these

massive data sets with high-performance, a large number of disks have to be operated in

parallel, which introduces a serious problem: huge energy consumption. To build

energy-efficient storage systems, we propose a buffer-disk based architecture. In

addition, we design and implement corresponding energy-aware load balancing strategy

for the buffer-disk architecture.

124

7.2 Future Work

In the course of designing and evaluating energy-aware resource management

techniques for high-performance computing platforms, we have found several

interesting issues that are still unresolved. This section overviews some of these open

issues that need further investigation. These open issues present opportunities for my

future research.

• Energy-Efficient Scheduling for Embedded Systems

Embedded/mobile devices are even more sensitive to power consumption due to the

limited battery life. I will extend my previous energy-aware research to embedded

devices/sensor networks and evaluate previous algorithms in terms of energy efficiency

in a more power sensitive environment.

• Energy-Aware Load Balancing

The nature of load balancing is to equally spread work between many computers,

processes, hard disks or other resources in order to get optimal resource utilization and

decrease computing time. In order to do this, the controller or scheduler has to keep as

many resources active as possible. This will lead to a potential problem - huge energy

consumption. Now we are in a dilemma: increase throughput means more energy

consumption while saving energy means system performance degradation. It is expected

to propose a power-aware load balancing schema which aims at judiciously spreading

work in an energy-efficient way.

• Optimize Data Movement

125

I/O-intensive applications tend to have a huge amount of transferred data. Since the

transferred data may be moved from node to node, data movement has a significant

impact on the overall performance of load balancing polices. To alleviate such a burden

resulting from data movements, it is necessary to propose a predictive model to move

data without compromising the performance of applications running on local nodes. The

new model should largely depend on data distribution, the amount of data, data access

pattern, and network traffic.

• Dynamic Scheduling Strategies in Grids

The performance of a large scale heterogeneous grid system is very sensitive to

various unforeseen and unplanned events that can happen at short notice, which include

but not limited to breakdowns of computers and random arrivals of new jobs. These

real-time events not only interrupt system operations, but also have negative impacts on

job schedules made on the fly. Therefore, it is highly desirable to develop adaptive

dynamic scheduling strategies which can handle those unpredicted events. Multi-agent

techniques are promising approaches to building complex, robust, and cost-effective

schedulers for the next-generation grid systems, because multi-agents are autonomous,

distributed and dynamic in nature. The agent-based dynamic scheduling strategy could

be a possible solution to generate robust schedules in a complicated and dynamic

distributed computing environment like grids.

• Service Level Agreement Research in High-Performance Clusters

It is desirable to develop high-performance clusters to provide secure and reliable

services for various types of customer requests submitted to the systems. Various cluster

computing use cases have different requirements such as execution deadline, higher

126

security, higher reliability, low cost etc. Therefore, it is highly imperative to develop

widely accepted regulations at the high level.

127

References

[1] B. Moore. Taking the data centre power and cooling challenge. Energy User News,

August 27th, 2002.

[2] J. Chase and Ron Doyle, “Energy Management for Server Clusters”, Proc. the 8th

Workshop Hot Topics in Operating Systems (HotOS-VIII), pp. 165, May 2001.

[3] R. Bryce. Power struggle. Interactive Week, December 2000.

http://www.zdnet.com/intweek/, found under

stories/news/0,4164,2666038,00.html.

[4] http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datace

nter_Report_Congress_Final1.pdf.

[5] S. Srinivasan and N.K. Jha, “Safety and Reliability Driven Task Allocation in

Distributed Systems”, IEEE Trans. Parallel and Distributed Systems, Vol. 10, No.

3, pp. 238-251, March 1999.

[6] L. Benini and G. De Micheli, “Dynamic Power Management: Design Techniques

and CAD Tools”, Kluwer Academic Publisher, 1998.

[7] J. Rabaey and M. Pedram (Editors), “Lower Power Design Methodologies”,

Kluwer Academic Publisher, Norwell, MA, 1998.

[8] A. Raghunathan, N. K. Jha, and S. Dey, “High-Level Power Analysis and

Optimization, Kluwer Academic Publisher”, Norwell, MA, 1998.

[9] E.N. M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient Server

128

Clusters,” Proc. Int’l Workshop Power-Aware Computer Systems, Feb. 2002.

[10] L. Benini, A. Bogliolo, G. D. Micheli, “A Survey of Design Techniques for

System-Level Dynamic Power Management,” IEEE Trans. VLSI Sys., vol. 8, no.

3, pp.299-316, June 2000.

[11] F. Douglis, P. Krishnan, B. Bershad, “Adaptive Disk Spin-down Policies for

Mobile Computers”, USENIX Symp. Mobile and Location-Independent Computing,

pp. 121-137, 1995.

[12] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive System Shutdown and

Other Architectural Techniques for Energy Efficient Programmable Computation”,

IEEE Trans. VLSI Systems, Vol. 4, No. 1, pp. 42-55, March 1996.

[13] X. Qin and H. Jiang, “A Dynamic and Reliability-driven Scheduling Algorithm for

Parallel Real-time Jobs on Heterogeneous Clusters”, Journal of Parallel and

Distributed Computing, vol. 65, no. 8, pp. 885-900, Aug. 2005.

[14] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for Reduced CPU

Energy”, Proc. IEEE Annual Foundations of Computer Science, pp. 374-382,

1995.

[15] I. Hong, M. Potkonjak, and M. Srivastava, “On-line Scheduling of Hard Real-Time

Tasks on Variable Voltage Processor”, Proc. Computer Aided Design, pp. 653-656,

1998.

[16] T. Xie, X. Qin, and M. Nijim, “Solving Energy-Latency Dilemma: Task Allocation

for Parallel Applications in Heterogeneous Embedded Systems”, Proc. 35th Int’l

Conf. Parallel Processing, Columbus, Ohio, Aug. 2006.

[17] W. Dally, P. Carvey, and L. Dennison, “The Avici Terabit Switch/Rounter”, Proc.

129

Hot Interconnects 6, pp. 41-50, Aug. 1998.

[18] .N. M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient Server Clusters”,

Proc. Int’l Workshop Power-Aware Computer Systems, Feb. 2002.

[19] Mellanox Technologies Inc., “Mellanox Performance, Price, Power, Volumn

Metric (PPPV)”, http://www.mellanox.co/products/shared/PPPV.pdf, 2004.

[20] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for

compile-time task scheduling in heterogeneous systems”, Proc. IEEE

Heterogeneous Computing Workshop, 2006.

[21] I. Page, T. Jacob, and E.Chen, “Fast Algorithms for Distributed Resource

Allocation”, IEEE Trans. Parallel and Distributed Sys., vol. 4, no. 2, pp. 188-197,

Feb. 1993.

[22] G.C. Sih and E.A. Lee, “Declustering: A New Multiprocessor Scheduling

Technique”, IEEE Trans. Parallel and Distributed Sys., vol. 4, no.6, pp. 625-637,

June 1993.

[23] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for

Interconnection-Constrained Heterogeneous Processor Architectures”, IEEE Trans.

Parallel and Distributed Sys., vol. 4, no. 2, pp. 175-186, Feb. 1993.

[24] C.M. Woodside and G.G. Monforton, “Fast Allocation of Processes in Distributed

and Parallel systems”, IEEE Trans. Parallel and Distributed Sys., vol. 4, no. 2, pp.

164-174, Feb. 1993.

[25] N.S. Bowen, C.N. Nikolaou, and A. Ghafoor, “On the Assignment Problem of

Arbitrary Process Systems to Heterogeneous Distributed Computer Systems”,

IEEE Trans. Computers, vol. 41, no. 3, Mar. 1992.

130

[26] K. Efe, “Heuristic Models of Task Assignment Scheduling in Distributed

Systems”, IEEE Trans. Computers, pp. 50-60, June 1982.

[27] V.M. Lo, “Heuristic Algorithms for Task Assignments in Distributed System”,

IEEE Trans. Computers, vol. 37, no. 11, pp. 1,384-1,397, Nov. 1988.

[28] S. Yajnik, S. Srinivasan, and N.K. Jha, “TBFT: A Task-Based Fault Tolerance

Scheme for Distributed Systems”, Proc. Int’l Conf. Parallel and Distributed

Computer Sys., Oct. 1994.

[29] Y. Shin and K. Choi, “Power Conscious Fixed Priority Scheduling for Hard Real-

Time Systems”, Proc. Design Automation Conf., 1999.

[30] S. Bansal, P. Kumar, and K. Singh, “An Improved Duplication Strategy for

Schedulng Precedence Constrained Graphs in Multiprocessor Systems”, IEEE

Trans. Parallel and Distributed Systems, Vol. 14, No. 6, pp. 533-544, June 2003.

[31] S.S. Pande, D.P. Agrawal and J. Mauney, “A Scalable Scheduling Method for

Functional Parallelism on Distributed Memory Multiprocessors”, IEEE Trans.

Parallel and Distributed Systems, Vol. 6, No. 4, pp. 388-399, April 1995.

[32] S. Darbha and D. P. Agrawal, “A Task Duplication Based Scalable Scheduling

Algorithm for Distributed Memory Systems”, J. Parallel and Distributed

Computing, vol. 46, no. 1, pp. 15-27, Oct. 1997.

[33] S. Ranaweera, and D.P. Agrawal, “A Task Duplication Based Scheduling

Algorithm for Heterogeneous Systems”, Proc. Parallel and Distributed Processing

Symp., pp.445-450, May 2000.

[34] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for

compile-time task scheduling in heterogeneous systems”, Proc. IEEE

131

Heterogeneous Computing Workshop, 2006.

[35] H.J. Siegel et al., “Mapping subtasks with multiple versions on an ad-hoc grid”,

Proc. IEEE Heterogeneous Computing Workshop, 2006.

[36] Y. Kishimoto and S. Ichikawa, “Optimizing the configuration of a heterogeneous

cluster with multiprocessing and execution-time estimation”, Proc. IEEE

Heterogeneous Computing Workshop, 2006.

[37] J. Cuenca, D. Gimenez and J.-P. Martinez, “Heuristics for work distribution of a

homogeneous parallel dynamic programming scheme on heterogeneous systems”,

Proc. IEEE Heterogeneous Computing Workshop, 2006.

[38] StorageTek Corp. 9310 tape silo information,

http://www.storagetek.com/products/tape/9310/2001.

[39] D. Colarelli and D. Grunwald, “Massive Arrays of Idle Disks for Storage

Archives”, Proc. of the 15th High Performance Networking and Computing Conf.,

November 2002.

[40] “Power, heat, and sledgehammer”, White paper, Maximum Institution Inc.,

http://www.max-t.com/ownloads/whitepapers/SledgehammerPowerHeat20411.pdf.

[41] Fred Moore, “More Power Needed”, Energy User News, November 2002.

[42] F. Douglis, P. Krishnan, and B. Marsh, “Thwarting the Power-Hunger Disk”, Proc.

Winter USENIX Conf., pp.292-306, 1994.

[43] Q. Zhu, F. M. David, C. F. Devaaraj, Z. Li, Y. Zhou, and P. Cao, “Reducing

Energy Consumption of Disk Storage Using Power-Aware Cache Management,”

Proc. High-Performance Computer Framework, 2004.

[44] S.W. Son and M. Kandemir, “Energy-aware data prefetching for multi-speed

132

disks”, Proc. ACM International Conference on Computing Frontiers, Ischia, Italy,

May 2006.

[45] S.W. Son, M. Kandemir, and A. Choudhary, “Software-directed disk power

management for scientific applications”, Proc. Int’l Symp. Parallel and Distributed

Processing, April, 2005.

[46] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Fanke, “DRPM:

Dynamic Speed Control for Power Management in Server Class Disks”, Proc. Int’l

Symp. of Computer Framework, pp. 169-179, June 2003.

[47] E. Pinheiro and R. Bianchini, “Energy Conservation Techniques for Disk Array-

Based Servers”, Proc. of the 18th International Conference on Supercomputing

(ICS’04), June 2004.

[48] P. Scheuermann, G. Weikum, P. Zabback, “Data partitioning and load balancing in

parallel disk systems”, The International Journal on Very Large Data Bases, vol.

7, issue 1, pp. 48-66, Feb.1998

[49] S. Darbha, D.P. Agrawal, “Optimal Scheduling Algorithm for Distributed-Memory

Machines”, IEEE Trans. Parallel and Distributed Systems, Vol. 9, No. 1, pp.87-95,

Jan. 1998.

[50] R.L. Graham, L.E. Lawler, J.K. Lenstra, and A.H. Kan, “Optimizing and

Approximation in Deterministic Sequencing and Scheduling: A Survey”, Annals of

Discrete Math, pp.287-326, 1979.

[51] H.El. Rewini, T.G. Lewis, and H.H. Ali, “Task Scheduling in Parallel and

Distributed Systems”, New Jersy: Prentice Hall, 1994.

[52] M.Y. Wu and D.D. Gajski, “Hypertool: A Performance Aid for Message-Passing

133

Systems,” IEEE Trans. Parallel and Distributed Systems, Vol. 1, No. 3, pp. 330-

343, July 1990.

[53] Standard Task Graph Set web site.

http://www.kasahara.elec.waseda.ac.jp/schedule/ making_e.html#application.

[54] H. Kasahara and S. Narita, “Parallel Processing of Robot-Arm Control

Computation on a Multiprocessor System”, IEEE J. Robotics and Automation,

Vol.RA-1, No.2, pp. 104-113 (1985).

[55] H. Kasahara, H. Honda and S. Narita, “Parallel Processing of Near Fine Grain

Tasks Using Static Scheduling on OSCAR”, Proc. IEEE ACM Supercomputing

'90 (1990).

[56] A. Yoshida, K. Koshizuka and H. Kasahara, "Data-Localization for Fortran

Macrodataflow Computation Using Partial Static Task Assignment", Proc. 10th

ACM Int'l Conf. on Supercomputing, pp. 61-68 (1996).

[57] Wikipedia about Grid computing, http://en.wikipedia.org/wiki/Grid_computing.

[58] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security Architecture for

Computational Grids”, Proc. ACM Computer and Communication Security, San

Francisco, CA, USA, 1998.

[59] T.T. Kwan, R.E. McGrath, and D.A Reed, “NCSA's World Wide Web Server:

Design and Performance”, IEEE Computer, vol. 28, no. 11, pp. 68 – 74, Nov.

1995.

[60] D. Li and J. Wang, “EERAID: Energy-Efficient Redundant and Inexpensive Disk

Array”, Proc. of the 11th ACM SIGOPS European Workshop, Sept 2004.

[61] D. Li and J. Wang, “Conserving Energy in RAID Systems with Conventional

134

Disks”, Proc. of the International Workshop on Storage Network Architecture and

Parallel I/Os, Sept 2005.

[62] X. Yao and J. Wang, “RIMAC: A Redundancy-based Hierarchical I/O Architecture

for Energy-Efficient Storage Systems”, Proc. of the 1st ACM EuroSys Conference,

Apr 2006.

[63] C. Ruemmler, J. Wilkes, “An introduction to Disk Drive Modeling”, IEEE Trans.

on Computers, Vol. 27, no. 3, pp. 17 – 28, 1994.

[64] E.V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk Energy in Network

Servers”, Proc. of the 17th International Conference on Supercomputing (ICS’03),

June 2003.

