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In the past decade, high-performance computing (H#*&forms like clusters and
computational grids have been widely used to sobtWmallenging and rigorous
engineering tasks in industry and scientific agilans. Due to extremely high energy
cost, reducing energy consumption has become armaacern in designing
economical and environmentally friendly HPC infrastures for many applications. In
this dissertation, we first describe a general itgcture for building energy-efficient
HPC infrastructures, where energy-efficient teche&jcan be incorporated in each layer
of the proposed architecture. Next, we developedreay of energy-efficient scheduling

as well as energy-aware load balancing algorithors High-performance clusters,

iv



computational grids, and large-scale storage systeflme primary goal of this
dissertation research is to minimize energy consiompvhile maintaining reasonably
high performance by incorporating energy-aware ugs® management techniques to
HPC platforms. We have conducted extensive sinmulagxperiments using both
synthetic and real world applications to quantiely evaluate both energy efficiency
and performance of our proposed energy-efficiertedaling and load balancing
strategies. Experimental results show that ouraaagres can reduce energy dissipation

in HPC platforms without significantly degradingsggm performance.
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Chapter 1

| ntroduction

With the advent of powerful processors, fast irganects, and low-cost storage
systems, high performance computing platforms likesters, grids and large-scale
storage systems have served as primary and cestie#f infrastructures for ever
complicated scientific and commercial applicatiofiseses platforms provide powerful
computing capability and the applications runninghese platforms require intensive
data processing and data storage capability inreatunfortunately, super-computing
power is at the cost of huge energy consumptionw Itto generate enough power to
support these high-performance computing platfdmassbecome a serious problem.

We believe that an efficient way to alleviate theermgy crisis caused by high-
performance computing platforms is to design greemputing techniques and apply
these techniques to the super-computing platfoilrhe. objective of this dissertation is
to explore energy-efficient resource managemenhnigogies to reduce power

consumption of high-performance computing platfobust in giant data centers.



This chapter first presents the problem statemei@ection 1.1. In Section 1.2, we
describe the scope of this research. Section gldights the main contributions of this

dissertation, and Section 1.4 outlines the dissertarganization.

1.1 Problem Statement

In this section, we start with an overview of nesends in high-performance
computing. Section 1.1.2 introduces the serioua danter energy crisis that we have to

face today and presents the initial motivationtfar dissertation research.

1.1.1 The Era of High-Performance Computing

We are now in an era of information explosion. iBils of data is generated in the
moment you blink your eyes. In order to processehmassive data, large-scale high-
performance computing platforms have been wideplaed all over the world. These
high-performance computing platforms usually ardtbo huge data centers. A large
fraction of applications running in these high-penfiance computing platforms are
computing-intensive and storage-intensive, sin@sehapplications deal with a large
amount of data transferred either between memod; siorage systems or among
hundreds of computing nodes via interconnectiomwords. Nowadays, we can find the
impact of high-performance computing data centeralinost every domain: financial
services, scientific computing, bioinformatics, gqartational chemistry, and weather
forecast etc. Without the support of high-perforcencomputing platforms, the
implementation of large-scale scientific and conuiarprojects like human genome

sequence programs, universe dark matter observatoh Google search engine is



almost impossible. There is no doubt that dataererttave significantly changed our
lives. We are enjoying the great convenience andcss provide by data centers every

day.

1.1.2 The Data Center Energy Crisis

However, every sword cuts two sides. Increasingleawies have shown that the
powerful computing capability of data centers isuatty at the cost of huge energy
consumption. For example, Energy User News stdiatlthe power requirements of
today’s data centers range from 75 Wit 150-200 W/ft and will increase to 200-300
WI/ft2 in the nearest future [1]. The new data censpacity projected for 2005 in U.S.
would require approximately 40 TWh ($4B at $100 MVh) per year to run 24x7
unless they become more efficient [2]. The supepmding center in Seattle is forecast
to increase the city's power demands by 25% [3]. shewn in Figure 1.1, the
Environment Protection Agency reported that thaltenergy consumption of servers
and data centers of the United States was 61idrblWh in 2006, which is more than
doubled the energy usage for the same purpose 00 P4. Even worse, the EPA
predicted that the power usage of servers andaggtizrs will be doubled again within
five years if the historical trends are followed.[#owever, most previous research
about high-performance computing primarily focused the improvement of
performance, security, and reliability. Energy aamation issue was a forgotten corner.
However, organizations of all sizes are currentiyeziencing significant challenges as a
result of energy-related expenses within their dagaters. For example, “The data

center energy crisis is inhibiting our clients’ lmess growth as they seek to access



computing power. Many data centers have now reat@illedapacity, limiting a firm’s

ability to grow and make necessary capital investsigsaid Mike Daniels, senior vice
president, IBM Global Technology Services. Our agsk is motivated by the energy
consumption trend and the necessity of energy ceasen for high-performance

computing platforms.
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Figure 1.1 2007 EPA report to congress about U.S. data center power usage

1.2 Scope of Research

Our research is focusing on designing new enerfgiait techniques for data
centers and incorporating existing techniques toseove energy in high-performance
computing platforms. Since CPUs, network intercatinas and storage systems are
three primary energy consumers in most high-perdoire computing platforms, our

research focuses on conserving energy for CPUsrcimminections and storage systems.



More specific, the energy conservation for CPUs artdrconnections are achieved

through energy-efficient scheduling. A buffer disased architecture (BUD for short)

and energy-aware load balancing algorithm are megoto build energy-efficient

parallel storage systems.

1.3 Contributions

The major contributions of this research are sunmadras follows:

(1)

(2)

®3)

(4)

(5)

We propose a general architecture for large sdgleferformance computing
platforms and discuss the potential possibilitidsirecorporating energy-
efficient techniques to each layer of the propaaetiitecture.

We design and implement two energy-efficient schadualgorithms for
homogeneous cluster systems.

We design and implement two energy-efficient schedualgorithms for
heterogeneous grid systems.

We design energy-efficient buffer disk based aethitre (BUD for short) for
storage systems and implement the according erswgye load balancing
algorithm for BUD.

We conduct extensive experiments for large scalstets, grids, and storage
systems. These experimental results could be wseatlier researchers in the

research area of green computing.



1.4 Dissertation Organization

This dissertation is organized as follows. In Cka, related work in the literature
is briefly reviewed.

In Chapter 3, we propose the high-performance caoimgpplatforms architecture
and discuss the potential possibilities of incogbiog energy-efficient techniques to
each layer of the proposed architecture.

To make the architecture presented in Chapter 3 maactical, we develop two
energy-efficient algorithms for parallel jobs rungiin clusters in Chapter 4.

In Chapter 5, we study the energy-efficient schieadubksue for heterogeneous grids.

In Chapter 6, a buffer disk based energy-effictatage system is presented and its
impact to performance and energy is evaluated.

In Chapter 7, we summarize the main contributiohthis dissertation and discuss

future directions for this research.



Chapter 2

Literature Review

In this chapter, we briefly summarize the previditeratures which are most
relevant to our research in terms of energy-efficiesource management for high-
performance computing platforms. Section 2.1 witroduce related work on energy-
efficient parallel scheduling, which is highly reét to our research shown in chapter 4
and 5. Related work on energy-efficient high-perfance storage systems will be
discussed in section 2.2. This part of related werklosely relevant to our research

shown in chapter 6.

2.1 Related Work on Energy-Awar e Scheduling

The issue of conserving energy consumption in etgsand grids did not attract
enough attention for a long period because reseesgbrimarily concentrate on the
performance, reliability, and security issues Pgcently, people start to realize that the
energy consumption issue is also critical sincergghelemands of clusters and grids
have been steadily growing companied with an irgsnganumber of data centers.
However, designing energy-aware scheduling algwostifor homogeneous clusters,

especially for heterogeneous grids, is technicettigllenging because we have to take
7



into account multiple design objectives, includpegformance (measured by throughput

and schedule length), energy efficiency, and hgeareities.

2.1.1 Energy-Awar e Scheduling in Clustersand Grids

A handful of previous studies investigated energw® processor and memory
design techniques to reduce energy consumptiorPid @rd memory resources [6] [7]
[8]. IBM researchers Elnozahy, Kistler, and Rajaspnpnoposed the Request Batching
Policy (RBP), in which servicing of incoming reqtes delayed while a web server is
kept in a low power state. Incoming requests acei@clated in memory until a request
has been kept pending for longer than a specifigdhing timeout. RBP can save
energy because while requests are being accumuthtedrocessor is placed in a lower
power state such as deep sleep [9]. Dynamic povesmagement is designed to achieve
requested performance with minimum number of aatm@ponents or a minimum load
on such components [6] [10]. Dynamic power manageroensists of a collection of
energy-efficient techniques, which adaptively twffi system components or reduce
their performance when the component is idle otighr unexploited. For example,
based on the observation of past idle and busypg®rpredictive shutdown policies can
make power management decisions when a new idledpstarts [11] [12]. Shin and
Choi proposed a scheme to slow down a processon Wiege is a single task eligible
for execution [13]. Yacet al. developed a static off-line scheduling algorithia]|
whereas Hongt al. proposed on-line heuristics scheduling for apécidasks [15]. T.
Xie and X. Qin developed a task allocation strataiying to minimize overall energy

consumption while confining schedule lengths tadeal range [16].



However, the prior work in the arena of energy-avacheduling was merely
focused on energy consumed by processors. The coioation energy consumption
was completely ignored. The literature has shovat thducing energy dissipation in
interconnects is critical important. For instanicégrconnect consumes 33 percent of the
total energy in an Avici switch [17] [18], and reus and links consume 37 percent of
the total power budget in a Mellanox server blai@].[ The energy consumption in
interconnects becomes even more critical for comoamon-intensive parallel
applications, in which large number of data will ransferred among precedence
constrained parallel tasks. One of the fundamett@rences between our research and
previous research is that we consider both CPU reetdiork interconnection power

consumption in the context of homogeneous and bgé@eous environment.

2.1.2 Task Partitioning and Task Scheduling

Task allocation strategies, which can be divided task partitioning and scheduling
strategies, play an important role in achievinghhpgrformance for parallel applications
on clusters and grids. The goal of a partitionimgoathm is to partition a parallel
application into a set of precedence constrainsistaepresented in the form of a
directed acyclic graph (DAG), whereas a schedudilggrithm is deployed to schedule
the DAG onto a set of homogeneous or heterogensmugputational node&cheduling
strategies deployed in clusters and grids haveelamgpacts on overall system
performance.

Allocation techniques can be generally classifig two types: static and dynamic

schemes. The basic idea of static allocation schej@@] [21] [22] [23] [24] is to



assume prior knowledge of applications, includimg tomponent tasks, their execution
times, and the like. Static allocation tries todfithe overall optimized scheduling
solution for given objectives at compile time, whics extremely expensive (NP-
Complete Problem) in numerous complicated appboati In contrast, dynamic
allocation strategies [25] [26] [27] [28], whicheamuch less expensive, provide merely
suboptimal results.

Scheduling policies can be generally classified ithiree categories: priority-based
scheduling [29], group-based scheduling, and tagHichtion based scheduling
algorithms [30]. Priority-based scheduling algamghinvolve assignments of priorities
to tasks and then maps the tasks to computing nioaesd upon assigned priorities.
Group-based scheduling algorithms group intercomoating tasks within a single
computing node, thereby eliminating communicatiaerbeads [31]. The basic idea
behind duplication-based scheduling algorithme ismake use of computing nodes’ idle
times to replicate predecessor tasks [30] [32]. WMiasearchers have demonstrated that
various strategies regarding task duplicationseateemely applicable for reducing total
execution times under communication intensive waa#l conditions [32] [33]. In
duplication-based scheduling strategies that eklpbrformance improvements over
other scheduling methods, redundantly executedstagker eliminate communication
overheads or allow productive utilization of idleopessor times. Hagras and Janecek
developed a simple yet efficient task-graph schadualgorithm using the list-based
and task-duplication-based scheduling approachgs $egelet al. investigated various
mapping and scheduling algorithms in the contextesérogeneous ad hoc grids, where

the algorithms are aimed to assign resources imate meet applications’ execution
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time and energy constraints [35]. Kishimoto andidatva carried out a case study,
attempting to reduce the execution time of the {ugtformance linpack benchmark on
two heterogeneous clusters [36]. Cuemrtaal. proposed an approach to adapting an
application implementing a homogeneous paralleladyin programming algorithm for
efficient execution on a heterogeneous cluster.[37]

In our algorithms for grids, we try to seamlesshfegrate static and dynamic
allocation techniques to guarantee high-performaviaée conserving energy. Basically,
our algorithms contain two phases. In the firstgghave apply a heuristic (a similar
approach can be found in [5]) to minimize schedelegths by clustering the most
related parallel tasks together. The static allooas carried out because we assume the
execution and communication times of tasks areadir&known in priori. In the second
phase, our algorithms make use of a dynamic allmtahethod to obtain an optimal
power consumption of a grid computing system by ganmg total energy consumption

when grouped tasks are allocated to different caatjunal nodes in the grids.

2.2 Related Work on Energy-Efficient Storage Systems

Modern parallel storage systems are able to proligeer performance at the cost
of enormous energy consumption. For example, a&ypobotic tape system provided
by StorageTek would have an aggregate bandwidt200MB/s [38] while a modern
disk array could easily provide a peak bandwidtl2 880,000MB/s. However, reading
and storing 1,000TB of information would cost $040 power the tape library system
vs. $91,500(almost ten times) to power the dislkyaf9]. The gap will definitely

increase when faster disks with higher power comgiom rates appear and are widely
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deployed. A recent industry report shows that ggem@evices account for almost 27% of
the total energy in a data center [40]. Even wotlis, fraction tends to increase as
storage requirements are rising by 60% annually. [BLe to the preceding energy
consumption trends, new technologies focused onlésegn of energy-efficient parallel

storage systems are highly desirable.

Several techniques proposed to conserve energgriage systems include dynamic
power management schemes [42], power-aware cacmagament strategies [43],
power-aware prefetching schemes [44], softwarestBhe power management
techniques [45], and multi-speed settings [46]. Batfar, none of these techniques
address the energy conservation and performanoe sk buffer-disk based parallel
storage systems.

In 2002, D. Colarelli and D. Grunwald presentednailar framework as compared
to our BUD architecture. Their architecture wadethi'Massive Arrays of Idle Disks”
or MAID [39]. However, two important problems remainsolved in MAID. First, they
did not clearly mention about the mapping structfractive drives and passive drives,
i.e. which buffer disk should be chosen as the icite to cache the data whenever
there is a data miss. Second, they did not contideload balancing issue, which very
likely could lead to performance penalties.

Another framework similar to MAID, called Popularata Concentration (PDC),
was proposed by E. Pinheiro and R. Bianchini in&2[A¥]. The basic idea of PDC is to
migrate data across disks according to frequen@coéss, or popularity. The goal is to
lay data out in such a way that popular and un@opdata are stored on different disks.

This layout leaves the disks that store unpopusda anostly idle, so that they can be
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transitioned to a low-power mode. However, PDC gtadic offline algorithm. In some

cases, it is impossible for the system to exaatipwvk which data is popular and which is
not. This is especially true for the ever-changmgrkload, in which some data is
popular at a particular period but becomes unpeogh&anext period.

In contrast with both MAID and PDC, we implementedeat-based algorithm to
control data caching and data mapping betweendisita and buffer disks in the BUD
architecture. The heat-based algorithm was firgippsed by P. Scheuermann, G.
Weikum and P. Zabback in 1998 [48]. Their algorithanies from our algorithm in the
fact that they calculate the heat of data disks apgly the algorithm in the data
partitioning stage. We calculate the heat of buffisks and apply the algorithm in the
data caching stage. They focus on how to partidiata to improve throughput, while

our focus is how to judiciously cache data to ashi®ad balancing.

2.3 Summary

The objective of this dissertation is to presergrgg-aware resource management
strategies for high-performance computing platforméich is based on previous
research efforts in scheduling, load balancing kmde-scale storage systems. This
chapter overviewed a variety of existing techniguated to scheduling, load balancing
and high-performance storage systems.

In the first part of this chapter, we discussed ithlevant approaches for energy-
aware task partitioning and scheduling for clustand grids. In particular, we talked
about the energy-aware techniques for CPU and mgensbatic and dynamic task

allocation and three different scheduling strateghMoreover, we briefly introduce the
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characteristics of our scheduling algorithms. Ia #econd part, we surveyed existing
energy-aware techniques used in high performarmagd systems. These techniques
include Massive Arrays of Idle Disks and PopulateD@oncentration. In addition, we
compare our heat-based algorithms for buffer drskitecture with these two existing

algorithms.
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Chapter 3

High-Per for mance Computing
Platforms Architecture

In the previous chapter, we summarized the puldidhieratures which are highly
related to our research. However, during the coofdgerature review, we realized that
almost all previous studies are in the lower lesteth as energy-aware scheduling, CPU
energy efficiency and Memory energy efficiency &tthough these works have made
great contribution to build energy-aware high-parfance computing platforms,
comprehensive discussions in the architecture l@aslignored.

We believe that the discussions in the architedienvel are necessary and valuable
because these discussions can help us understandhplortance of energy-efficiency
for high-performance computing platforms and preval big picture of this research
area. Meanwhile, it can provide meaningful guidafmethe follow-up researchers.
Therefore, in this chapter, we propose a generehitacture for high-performance
computing platforms and discuss the possibility in€orporating energy-efficient

techniques to each layer of this architecture.
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3.1 A General High-Perfor mance Computing Platforms
Architecture

Generally, most high-performance computing plat®roan be presented by the
following four layers: the application layer, theddleware layer, the resource layer and
the network layer (See Figure 3.1). Since gridesysis one of the most complicated
high-performances computing platforms, we will gsiels as an example to explain the

proposed architecture.

Application Layer

Reliability
Control

Fa—
Secure Task Task ;
Access Analyzer Scheduler

Figure 3.1 High-performance computing platfor ms ar chitecture

The network layer is responsible for routing arahsferring packets and it also has

the responsibility of establishing network serviéesthe resource layer. The dynamic

16



network power management technique could be impiéedein the network layer to
support energy-efficient data transmission by dafgrpacket transmissions without
violating any delay constraints.

On top of the network layer is a resource layerictvitonsists of a wide range of
resources like computing nodes, storage systenestrehic data catalogues, and
satellites or other instruments. The resource layeesponsible for manipulating the
distributed resources in grid systems. In this daybe dynamic voltage scaling
techniqgues can be used to conserve energy for domgpuodes by dynamically
lowering supply voltages when the computing nodesranning faster than specified
performance requirements.

Parallel applications running in a grid system du directly interact with the
resource layer. Instead, application programs actewith the middleware layer which
provides a sophisticated means of reliability colntisecurity protection, resource
allocation, and task scheduling and analysis. Thedieware layer contains a set of
intelligent modules, including resource broker, us#g access, task analyzer, task
scheduler, communication service, information smrviand reliability control. The
resource broker allows users to submit their appbas to the grid system. The security
module is responsible for providing security pratat schemes to security-critical grid
applications. After a grid job is admitted to thedgsystem, the task analyzer partitions
the job into a number of small tasks with depenglecanstraints. Next, the task
scheduler allocates the tasks to distributed comgutesources using specific
scheduling strategies. The communication servicelul@o has the responsibility for

supporting services like remote function calls. Thrmation service module keeps
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track of detailed information pertinent to the &sixecution on computing resources.
The reliable control module makes the grid systeghliz reliable and fault tolerant. For
example, the reliable control module may rejectlbnsitted job if the job’s reliability
requirements cannot be guaranteed by resourcdseimgrid system. The middleware
layer provides significant opportunities for incorgting energy-efficient techniques,
especially for applying energy-efficient schedulstgategies. Our proposed scheduling
algorithms in Chapter 4 and Chapter 5 are actwatining in this layer.

The application layer handles all types of userliagipons varying from science,
engineering, business, and financial area. Paatadsdevelopment toolkits are provided
to support various grid applications. Although gyeaware software applications are
unusual today, they may become the next hotspdhenresearch area of software
engineering with the emerging technology of mudtreemicroprocessors.

A number of energy efficiency trends for large ecaérvers and data centers are
currently underway. For example, multi-core prooessare expected to run at a slower
speed and lower voltage but handle more work iralfgrthan a single-core chip
thereby balancing energy efficiency and performarReplacing several dedicated
servers that operate at a low average procesdmatitin level with a single “host”
server that operates at a higher average utilizd¢ieel is another trend. Hard disk drive
storage devices are also expected to become mergyeefficient in part because of a
shift to smaller form factor disk drives and ing®@ use of serial advanced technology
attachment drives. Meanwhile, the next generatibpawer supply systems and site
infrastructure systems for grids will become monel anore energy efficient. If these

trends could be realized and the according teclesigould be implemented in different
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layers, the energy usage caused by high performaooguting platforms will be

greatly reduced.

3.2 Summary

In this chapter, we have proposed a general acoture for high-performance
computing platforms and discussed the possibilityincorporating energy-efficient
techniques to each layer of this architecture.

To make this architecture more solid and soundwillgllustrate how to incorporate
energy-efficient techniques to three typical highfprmance computing platforms in
the following three chapters. More specifically,apter 4 and Chapter 5 will illustrate
energy-efficient scheduling for clusters and gmespectively. Chapter 6 will illustrate

energy-efficient resource management for largeesstrage systems.

19



Chapter 4

Energy-Efficient Scheduling For
Clusters

In this chapter, we consider the problem of butddemergy-efficient cluster systems.
A cluster is a type of parallel processing systevhjch consists of a collection of
interconnected stand-alone computers cooperativalyking together as a single,
integrated computing system (see Figure 4.1). Adse loosely coupled computers do

not have common memory. They communicate with edlolr by passing messages.

LAN/WAN

Master Node
Parallel Applications

Messag ing Library
—Opan =" Fllp Server/Gateway

Cluster
Management
Tools

Compute Nodes

Figure 4.1 System model of high-performance clusters (source: Wikipedia)
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When we talk about cluster systems, we have to iorendbout the parallel
computing technologies. Parallel computing is theutaneous execution of small tasks
split up from a complicated application and spdgiallocated on multiple processors in
order to obtain results faster. The combinationlo$ter systems and parallel computing
technology exhibits powerful computing capabiliti€dver the last decade, the rapid
advancement of high-performance microprocessogh-$peed networks, and standard
middleware tools makes cluster computing plattomwme powerful and convenient to
use. Therefore, cluster computing technology has lextensively deployed and widely
used to solve challenging and rigorous enginegpiodplems in industry and scientific
areas like molecular design, weather modeling,bde@ systems, universe dark matter
observations, and complex image rendering. Howethex, rapid growth of cluster
computing centers introduces a serious problemessicely high energy consumption.
To address this problem, we propose two energygieffi scheduling algorithms in this
chapter for parallel applications running on clustdhe two algorithms are named the
Energy-Aware Duplication scheduling algorithm (or EAD for shorgnd the
Performance-Bergy Balanced Dplication scheduling algorithm (or PEBD for short).

This chapter is organized as follows. In sectiah e introduce the mathematical
models used to present cluster systems, includungter model, parallel tasks model,
and energy consumption model. In section 4.2, wesgnt the energy-efficient
scheduling algorithms and illustrate how the EARI #EBD algorithms work using a
concrete example. Next, we will prove the time ctempy of our algorithms in section
4.3. Experimental environment and simulation resate shown in section 4.4. Finally,

section 4.5 concludes this chapter by summariziegrtain contributions of the chapter.
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4.1 System M odels

In this section, we describe mathematical modeledut represent clusters,
precedence constrained parallel tasks, and eneansumption in CPUs and

interconnects.

4.1.1 Cluster Modéel

A computer cluster is a group of coupled computbed work together closely so
that in many respects they can be viewed as ththeghare a single computer. A cluster
in our research is characterized by a Ret {p1, p,..., pn} Of computational nodes
(hereinafter referred to as nodes) connected byrankt-style cluster interconnects. It is
assumed that the computational nodes are homogeneooature, meaning that all
processors are identical in their capabilities. iBiry, the underlying interconnection is
assumed to be homogeneous and, thus, communicatenmead of a message with
fixed data size between any pair of nodes is censdlto be the same. Each node
communicates with other nodes through messagenggassid the communication time
between two precedence constrained tasks assignéx tsame node is negligible. In
our system model, computation and communicationtal® place simultaneously. This
assumption is reasonable because each computatiodal in a modern cluster has a
communication coprocessor that can be used totfregrocessor in the node from
communication tasks.

To simply the system model without loss of gengralve assume that the cluster
system is fault free and the page fault services toh each task is integrated into its

execution time. With respect to energy conservatemergy consumption rate of each
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node in the system is measured by Joule per uné.tEach interconnection link is
characterized by its energy consumption rate tleatvity relies on data size and the

transmission rate of the link.

4.1.2 Parallel Tasks Mode€

A parallel application with a set of precedencestmined tasks is represented in the
form of aDirected Acyclic Grap{DAG), which throughout this paper is modeled as a
pair (V, E) V= {v1, W, ..., \4} represents a set of precedence constrained pdealks,
andt; is theith task’s computation requirement showing the nundietime units to
computev;, 0 =i < 1. It is assumed that all the tasks\ihare non-preemptive and
indivisible work units, and a similar assumptiom g found in related studies [13][49].
E denotes a set of messages representing commongand precedence constraints
among parallel tasks. Thus;, = (v, \)JE is a message transmitted from tasko v,
andg; is the communication cost of the messagé/E. We assume in this study that
there is one entry task and one exit task for grliggiion with a set of precedence-
constrained tasks. The assumption is reasonabéibedn case of multiple entry or exit
tasks exist, the multiple tasks can always be odedethrough a dummy task with zero
computation cost and zero communication cost messag

The communication-to-computation ratio or CCR qfamallel application is defined
as the ratio between the average communicationacwsthe average computation cost
of the application on a given cluster. Formallg thCR of an application (V, E) is given

by the Eq. (2):
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CCRV,E) =

<‘,_‘ E‘I—‘

%
—N : (1)

A task allocation matrix (e.gX) is annxm binary matrix reflecting a mapping of
precedence constrained parallel tasksitcomputational nodes in a cluster. Element

in Xis “1” if task v; is assigned to nodg# and is “0”, otherwise.

4.1.3 Energy Consumption Model

We use a bottom-up approach to derive energy dissipexperienced by a parallel
application running on a cluster. In this subsettiwe first model energy consumption
exhibited by computational nodes in the clustextNee calculate energy dissipation in
the interconnection network of the cluster.

Let en be the energy consumption caused by taskunning on a computational

node, of which the energy consumption rateNs.,,., and the energy dissipation of task

v; can be expressed as Eq. (2)
er] PNactlve it (2)

Given a parallel application with a task 3étand allocation matrixX, we can

calculate the energy consumed by all the taskéugsing Eq. (3).
M n

ENactive = zen = Z(PNactive l:ﬂi )
i=1 i=1 (3)

n
= PNactiveZti'
i=1
Let PN,. be the energy consumption rate of a computatiomale when it is

inactive, and; be the completion time of task The energy consumed by an inactive
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node is a product of the idle energy consumptide PiN,,, and an idle period. Thus,

we can use Eq. (4) to obtain the energy consumetthdjth computational node in a

cluster when the node is sitting idle.

(% )} (@)

n
i=1

ENJe = PN [ﬁm%x( fi )_
where m_fitx(fi) is the schedule length (also known as makespare)tinand

mr_:';11><(fi)—2xij [, is the total idle time on thgh node. The total energy consumption

i=1

of all the idle nodes cluster is

m

ENg. = Zen = PNge DZ(ng}iwi )= )j

n
=1 i=1

= PNg. EEm max(f)- >3 (x, )j ?

j=1i=1
Consequently, the total energy consumption of taealfel application running on

the cluster can be derived from Egs. (3) and (5) as

EN = ENactive + ENidle

= PN 3ot 4PN )3 3 )

i=1 i

(6)

j=li=1
We denoteel; as the energy consumed by the transmission ofageds t)//E. We

can compute the energy consumption of the messagepeoduct of its communication

cost and the powdtL, . of the link when it is active:

(7)

elij = PL,cive X C;

The cluster interconnect in this study is homogeseownhich implies that all
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messages are transmitted over the interconnecéittmonk at the same transmission rate.
The energy consumed by a network link betwegrand p, is a cumulative energy
consumption caused by all messages transmitted tbeetink. Therefore, the link’s
energy consumption is obtained by Eq. (8) as fallowherel ,, is a set of messages

delivered on the link, and Ly can be expressed as

L., ={0¢, DE1sabsm|x, =10x, =1}

E akétlve_ Zelu = Z(Pl-actlve )

& Olap e 0Ly,

e (8)
= z - z (_)ga D(jb |:Plﬁctive |]:Ij )’

The energy consumption of the whole interconnectietwork is derived from Eq.

(8) as the summation of all the links’ energy canption. Thus, we have

ab
actlve z Z ELactlve

a=1 b=1bza

Z Z Z(Xla D(jb [PLactive IZCij ) (9)
i=1 j=1,j#i a=1b=1b%a

We can express energy consumed by a link wheniitaistive as a product of the
consumption rate and the idle period of the linkug, we have
E %tfe = I:)I‘idle Eﬁmia% fi)_z Z(Xia D(jb Eij )]
i=1 j=1j#i
(10)
where PL,, is the power of the Ilink when it is inactive, and

m:ax(fi)—z Z(Xia X, Etij) is the total idle time of the link. We can expresgrgy
' i=1 j=1j%i
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incurred by the whole interconnection network dgrihe idle periods as

m m

ElLige = z Z ELijl?e
a=1 b=1b#a
:Z Z Pl-idle(miax(f Z Z(X (X, L€ )]
a=1b=1bza i=1 j=1j#i

(11)
Total energy consumption exhibited by the clustéerconnect is derived from EQs.
(9) and (11) as
EL = ELyge + ELge (12)
Now, we can compute energy dissipation experietiged parallel application on a
cluster using Egs. (6) and (12). Hence, we canesspthe total energy consumption of

the cluster executing the application as

E=EN+EL= F)Nactlvezt +PN|dIe [Emljna)(f ) ii (XIJ [ﬂl )J (13)

* 4 Zn:Z Zm“g h D(jb Placie (€ )+Zm: Zm: Pl‘idle[m:é‘)‘(fi)_zn: Zn:(xia D(jb E(tij )J

i=1 j=1#i

4.2 Ener gy-Efficient Scheduling Algorithms

In this section, we present two energy-aware sdimegwalgorithms for parallel
applications with precedence constraints runningclsters. The two algorithms are
named the Bergy-Aware Duplication scheduling algorithm (or EAD for shoand the
Performance-Bergy Balanced Dplication scheduling algorithm (or PEBD for short).

The objective of the two scheduling algorithms asshorten schedule lengths while
27



optimizing energy consumption of clusters. Theasdly, the scheduling problem for
clusters is NP-hard problem because it could bepedpo a scheduling problem proven
to be an NP-complete [50]. Therefore, the proposea scheduling algorithms are
heuristic in the sense that they can produce subhaptsolutions in polynomial-time.
The EAD and PEBD algorithms consist of three majeps delineated in sections 4.2.1

-4.2.3.

4.2.1 Original Task Sequence Generation

Precedence constraints of a set of parallel taake kb be guaranteed by executing
predecessor tasks before successor tasks. To acthiesv goal, the first step in our
algorithms is to construct an ordered task sequastey the concept of level, which of
each task is defined as the length in computatioe bf the longest path from the task
to the exit task. There are alternative ways toegete the task sequence for a DAG,
including critical path-based priority schemes [20]d other priority-based schemes
[51]. In this study, we use a similar approach emppsed by Srinivasan and Jha [5] to

define the leveL(v;) of taskv; as below

t, if successor(=®
L(v)) =1 maxlevelk))+t, otherwise (14)
\_ﬂ,_—d

kOsucd(i)

The levels of the tasks which have no successoea@ual to their execution time.
The levels of other tasks can be obtained in abetip fashion by specifying the level
of the exit task as its execution time and themnseely applying the second term on
the right-hand side of Eq. (14) to calculate theelg of all the other tasks. Next, all the
tasks are placed in a queue in an increasing ofdee levels.
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4.2.2 Duplication Parameters Calculation

The second phase in the EAD and PEBD algorithnts talculate some important
parameters, which the algorithms rely on. The irtgodr notation and parameters are
listed in Table 4.1.

Table 4.1 Important notations and parameters

Notation Definition
EST(V) Earliest start time of task
ECT(v) Earliest completion time of task vi
FP(v) Favorite predecessor of task vi
LACT(v) Latest allowable completion time of task vi
LAST(V) Latest allowable start time of task vi

The earliest start time of the entry task is O ¢beefirst term on the right side of Eq.
(15). The earliest start times of all the otherkéasan be calculated in a top-down

manner by recursively applying the second termherright side of Eq. (15).

0, if predecess@) = @
ESTv) = min( max (ECT(Vj),ECT(Vk)-I_Cki)J’OtherWise' 4o
&; UE \ ay0E.v, 2V,

The earliest completion time of taskis expressed as the summation of its earliest
start time and execution time. Thus, we have
ECT(v,) =EST(v,) +t, . (16)
Allocating taskv; and its favorite predecesséP(v;) on the same computational
node can lead to a shorter schedule length. As, shehfavorite predecessbP(v;) is

defined as below
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FP(v,) =v,,wherelle; UE,e; UE, | # k‘ECT(vJ.)+cji > ECT(v,) +c,.

17)

As shown by the first term on the right-hand side€Eq. (18), the latest allowable
completion time of the exit task equals to its ieatl completion time. The latest
allowable completion times of all the other taskes @lculated in a top-down manner by

recursively applying the second term on the rigintichside of Eq. (18).

ECT(v.), if successdj= ®
LACT(v) =] | ) | s
mlr(ej e )(LASKV" )6 ) & CE T, )(LAST(Vj ))) otherwist

The latest allowable start time of task is derived from its latest allowable
completion time and execution time. Hence,tA&STv;) can be written as

LAST(v.) = LACT(v,) —t, . (19)

4.2.3 Energy-Efficient Scheduling: EAD and PEBD

Given a parallel application presented in form @A&G, the EAD algorithm in this
phase allocates each parallel task to a computdtionde in a way to aggressively
shorten the schedule length of the DAG while coriegr energy consumption. The
pseudocode in Figure 4.2 shows the details ofgha&se in the EAD algorithm, which
aims to provide the greatest energy savings whezadhes the point to duplicate a task.
Most existing duplication-based scheduling schemesely optimize schedule lengths
without addressing the issue of energy conservafd@nsuch, the existing duplication-
based approaches tend to yield minimized schedulgths at the cost of high energy
consumption. To make tradeoffs between energy gavand schedule lengths, we

design the EAD algorithm in which task duplicatioage strictly forbidden if the
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duplications do not exhibit energy conservatione(&teps 9-10). In other words,

duplications are not allowed if they result in agrsficant increase in energy

consumption (e.g., the increase exceeds a threstaid, are avoided in EAD.

Consequently, the EAD algorithm ensures that sdeeldungths are minimized using

task duplication without adversely affecting enecgyservation.

Nooh~wdhE

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

v = first waiting task of scheduling queue;

i=0;

assignv to P;

while (not all tasks are allocated to computational spde
u=FP(v);
if (uhas already been assigned to another proce$sor)

if (LAST(v) - LACT(u)<g) then /* if duplicate u, we can shorten the sched(

length */
moreenergy ®n,— el,; /*energy increase*/
if (moreenergx thresholdh) then /* increased energy less than our threshold*
assigm to P;; /*duplicate u*/
if v has another predecesgat u has not yet been allocated to any ntt
u=z
else
if uis entry taskhen
u = the next task that has not yet been assignadtale;
i++
else
for another predecessor a/pf # u,
if (ECT(u)+cgy = ECT(z) + cg,) and z hasn’'t been allocatetien
u =z /* do not duplicate*/
else
for another predecessor z of ¥,z
if (ECT(u)+cgy,=ECT(z) + cg,) and z hasn’t been allocatetien
u = z /* do not duplicate*/
else allocateu to P;;
V=u;
if vis entry taskhen
v = the next task that has not yet been allocatedcmmputational node;
i++
assigrv to P;;
return schedule list;

Before this phase starts, phase 1 sorts all thes tasa waiting queue, followed by

phase 2 to calculate the important parameters. has@ 3 EAD strives to group

Figure 4.2 Pseudo code of phase 3in the EAD algorithm
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communication-intensive parallel tasks together hade them allocated to the same
computational node. Once multiple task groups aresttucted, each group of tasks is
assigned to a different node in the cluster. Thecgss of grouping tasks is repeated
from the first task in the queue by performing attdfirst style search, which traces the
path from the first task to the entry task. Steps18 6 choose a favorite predecessor if it
has not been allocated a computational node. OtbenEAD may or may not replicate
the favorite predecessor on the current node. kample, we assume that vj is the
favorite predecessor of the current task vi, andag been allocated to another node. If
duplicating vj on the current node to which vi iboeated can improveperformance
without sacrificing energy conservation, Step 1Xkesaa duplication of vij.

Please note that the generation of a task grompiriates once the path reaches the
entry task. The next task group starts from th& finassigned task in the queue. If all
tasks are assigned to the computation nodes, leelBAD algorithm terminates.

The third phase of the PEBD algorithm is similattizst of EAD except that PEBD
seamlessly integrate the approach to minimizingegale lengths with the process of
energy optimization (see Figure 4.3). Unlike EADg tdevelopment of PEBD is
motivated by the needs of making the right tradéeffween performance and energy
conservation. Thus, the PEBD algorithm is geareefficiently reduce schedule lengths
while providing the greatest energy savings. Eneapnsumption incurred by
duplicating a task involves judging whether the ldgbion is profitable or not. To
facilitate the construction of PEBD, we introduce cancept of cost ratio of a
duplication, which is defined as the ratio betwdemenergy saving and schedule length

reduction (see Step 10). While the energy savintp@ftuplication is obtained in Step 8,
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the reduction in schedule length is computed inp &e The PEBD algorithm is, of
course, conducive to maintaining cost ratios avalevel, thereby efficiently shortening
schedule lengths with low energy consumption. Te&ure is accomplished by Steps
11-12, which duplicate a task in case the cosb m@tisuch duplication is smaller than a

given threshold.

1. v =first waiting task of scheduling queue;

2. 1=0;

3. assignvtoP;;

4. while (not all tasks are allocated to computational spde

5. u=FP(v)

6. if (uhas already been assigned to another ribea)

7. if (LAST(Vv) - LACT(u)<g) then /* if duplicateu, we can shorten the execution
time*/

8. moreenergy en,— el /*energy increase*/

9. lesstime £ACT(u) + Gy -LAST(v) /* schedule length is reduced */

10. cost ratio = moreenergy / lesstime;  /*eadd ratio: the smaller the better*/

11. if (ratio< thresholdh) then /* significantly shorten schedule length */

12. assigm to P;; /*duplicateu*/

13. if v has another predecesssf u has not yet been assigned to any rtibea

14. u=yv,

15. ese

16. if uis entry taskhen

17. u = the next task that has not yet been allocatedcmmputational node;

18. i++ ;

19. else

20. for another predecesafv, z# u,

21. if (ECT(u)+cg, = ECT(z) + cg,) andz has not been allocatethjen

22. u =z /*do not duplicate*/

23. dse

24. for another predecessof v, z# u,

25. if (ECT(u)+cgy = ECT(z) + cg,) andz has not been allocatethjen

26. u =z /*do not duplicate*/

27. €seassigrutoP;

28. v=u

29. if vis entry taskhen

30. v =the nexttask that has not yet been allocated;

31.  i++;

32. allocatev to P;;

33. return schedule list

Figure 4.3 Pseudo code of phase 3 in the PEBD algorithm
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4.2.4 A Case Study

Now we run the proposed scheduling algorithms ustngample task graph
delineated in Figure 4.4. In this example, we cledosel Core2 Duo E6300 as the CPU
of each computing node and high-speed Merynet &scionnection. Recall that the
energy consumption of the task graph is determimgdeqg. (13), wheréPNyive and
PLactive are set to 44W and 33.6W, respectively.

In the task DAG plotted in Figure 4.4, each taskeresented bye(, t) and each
message is denoted Blj( ¢;). Recall thatn andel;j, computed by Egs. (2) and (7), are
the energy consumption of task and communication between taskandyv;. The

running trace of EAD and PEBD is given as follows:

Figure4.4 A typical DAG
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Phase 1. Generate a task sequence by computing levels:l&Jads of tasks can be
calculated using Eq. (14). For instance, the le¥easkv, is 8, sincev,g is the exit task
without any successor. The levelwfis 8 + 7 = 15 becausg has only one successor
task. The level of task is max{L(vs) + 3, L(w) + 3} = 28, sincev, has two successors -
vs andve. All the tasks are placed in a queue in the naneasing order of levels. Thus,
we have a list of tasks as {10, 9, 8, 5, 6, 2,, 83,4}

Phase 2. Calculate important parameters:

Phase 2.1 ComputeESTandECT : The ESTandECT values of each task can be
computed by applying Egs. (15) and (16). For examiaskv; is the entry task and,
therefore ESTv1) = 0. In accordance with Eq. 16, we h&@€T(v;) = 0 +t; = 3. Since
V, V3, andv, are unable to start until finishes and, thus, we have ESJ)(= EST{s) =
EST{,) = ECT{n) = 3. Similarly, EST of v7 is computed as below

EST(v,) = min{maxECT(v,), ECT(v,) +c,,),ma{ECT(v,), ECT(v,) +C,, )}
= min{max(5,7 + 4),max7,5+2}} = 7.

Correspondingly, the ECT of v7 is EGFY= EST{,) +t;=7 + 20 = 27.

Phase 2.2 Compute favorite predecessors: The favorite prestr of a task is
determined by using Eq. (17). For example, theriéerpredecessor of task, vs, andv,
is vi, simply because these three tasks have only omdepessor. The favorite
predecessor ofg is Vg becausd=CT () + Cgs= 16 + 10 = 26 SECT(¥) + Csg=7 + 1 =
8.

Phase 2.3 Compute LAST and LACT: The LACT and ECT valuesld# exit task
Vip equal to 40 and, thus, we hav&ST (o) = LACT (W) - t1o= 40 — 8 = 32. In case of

LACT(vs), we have to consider two successors, nameglinot in critical path) angy
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(in critical path). We obtain
LACT(V,) = min{min(LAST(V, ) - Cge, Min(LAST(y)))} = min{(27-10),18} =17 and
LAST(¥) = LACT(%) -ts =17 -10=7

Table 4.2 shows the final results of all importpatameters.

Table 4.2 Final results of parameters

Task level est ect last lact fpred
1 40 0 3 0 3 --
2 28 3 6 4 7 1
3 37 3 7 3 7 1
4 35 3 5 3 5 1
5 16 6 7 16 17 2
6 25 6 16 7 17 2
7 33 7 27 7 27 3
8 15 16 23 18 25 6
9 13 27 32 27 32 7

10 8 32 40 32 40 9

Phase 3. Task allocation and duplication phase:

The EAD algorithm. Given a thresholdh = 25, EAD generates the first group of
tasks by starting from the first task in the task dbtained in Phase 1. The first task
group containing taske, vs, V7, Vo, andvyg is allocated to node 1. Next, EAD attempts
to allocate the first unassigned task in the Iisthis case, the unassigned task is tgsk
Tasksvg, Vg andv, are allocated to node 2, and the next task tosbmmed is task;.
Sincev; has been allocated to node 1, EAD has to decidetheh there is an incentive
to duplicatev; on node 2. The condition in step 7 (see Figurg i4.2atisfied, because
we haveLAST(y) - LACT(M) = 4 — 3 = 1 <ccpp = 3. Therefore, duplicating vl on node
2 can shorten the schedule length. However, thease in energy consumptioreis, —
elip = 44wx3 — 33.6wx3 = 31.2J (see step 8 in FiguBd, 4vhich is greater than the

threshold. Thus, there is no any incentive to dad the task due to the high energy
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overhead, signifying that the duplication\afmust be avoided. EAD assigns tagko
node 3, followed by task, andv;, which are not duplicated on node 3 because we can
not shorten the schedule lengttAGT(¥) - LACT(v2)=16-7=9> cgs=3). Taskv, is the
only task allocated on node 4, and v1 is not dapdd because the increase in energy
consumption is significant.

Therefore, the final scheduling decision of EARxssfollows:

Processor 1: Task 39 Task 9> Task 7 Task 3> Task 1

Processor 2: Task® Task 6> Task 2

Processor 3: Task 5

Processor 4: Task 4

The PEBD algorithm. The behavior of PEBD is similar to that of EAD egtéhat
energy-performance tradeoffs are determined by to rbetween the energy
consumption of replicas and the decrease in schddngth by virtue of replicas. Given
a thresholdch = 25, PEBD first allocateg,, vs, V7, Vo, andvio to node 1 and then it will
meet the same situation as EAD, in which PEBD lmsld@cide whether or not to
duplicatevi. Once again, PEBD will calculateAST(¢) - LACT(M) =4 -3 =1 <2 =
3. Thus, if duplicate T1, the scheduling length barshortened by 2 seconds. However,
the energy consumption will be increaseddmy — eh, = 44wx3 — 33.6wx3 = 31.2J.
Now PEBD will decide based on the result of ratd.p/2 =15.6<Threshold=25) to
duplicate T1. The duplication @f is made possible by PEBD because the replica helps
in reducing the schedule length without signifitanhcreasing energy consumption.
And then, in the next iteration, EAD assigns tasko node 3, followed by task, and
vi, which are not duplicated on node 3 because waatahorten the schedule length
(LAST(¥) - LACT(v2)=16-7=9> cgs=3). The final scheduling decision of PEBD is:
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Processor 1: Task 3 Task 9> Task 7 Task 3> Task 1
Processor 2: Task® Task 6> Task 2> Task 1
Processor 3: Task 5

Processor 4: Task34 Task 1

4.3 Time Complexity Analysis

In this subsection, we will analyze the time comjle of the EAD and PEBD

algorithms.

Theorem 1. The time complexity of EAD and PEBD is ©f)).

Proof. The EAD and PEBD algorithms perform the three mginases respectively
described in Sections 4.2. In the first phase, EBR0 PEBD traverse all the tasks of the
DAG to compute the levels of the tasks. The timmglexity to calculate the levels is
O(E|), whereE| is the number of messages. This is becauseeath#tssages have to be
examined in the worst case. It takes\@¢g|V|) time to sort the tasks in the non-
increasing order of the levels, wheg + n is the number of tasks. Therefore, the time
complexity of phase 1 is @&|+ [V|log|V]).

The second phase is performed to obtain all thertapt parameters likeST, ECT,
FP, LACT,and LAST Phase 2 calculates these parameters by applyendepth first
search with the complexity of OA|+ E|).

Recall that in phase 3 the tasks are allocatede@dmputational nodes. First, all the
tasks are checked and allocated to one or moresnwdéhe while loop based on
duplication strategies. In the worst case, all theks in the critical path must be
duplicated, meaning that the time complexity ifi[@|jtime, whereh is the height of the

DAG. Sinceh is less than or equal td|] the complexity of the third phase is\ZR).
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Consequently, the overall time complexities of Eamd PEBD are O(E| + V|(Ig]V|+1)
+ M?| = O(E|+MP). For a dense DAG, the number of messages areogiimpal to

O(IV]). Hence, the time complexities of EAD and PEBD@(¥[?).

4.4 Simulation Results

Now we are in the position to evaluate the effemimss of the proposed energy-
aware duplication scheduling algorithms. In thiste®, we compare EAD and PEBD
with two existing scheduling algorithms: the norplication-based scheduling heuristic
(NDS or MCP) [52], and the task duplication-baselgesiuling algorithm (TDS) [49]. In
order to fairly compare our scheduling algorithmighvexisting algorithms, we set the
same evaluation metrics and parameter tune rulalf@imulation results of different
algorithms. Additionally, we choose popular procgssof AMD and Intel companies
and popular interconnections like Myrinet and lifand network as our simulation
platform, which can make our simulation results en@ractical and acceptable to

industry people.

4.4.1 Simulation Metrics and Parameters

Schedule length and energy consumption are therntam metrics used in our
simulation to evaluate the performance of differaligorithms. The basic but important
rule we followed in our simulations is OTOP (Oncening One Parameter). In other
words, parameters in the same simulation groudtseate exactly the same except one
parameter is different. By tuning only one parameie can clearly observe its impact

to clusters and easily find out the system sernitito this specific parameter. The

39



important parameters tuned in our simulations idelCommunication-to-Computation
Ratio (CCR), energy threshold, interconnection tgpd processor type. It is to be noted
that CCR is an overall average time parameter tasome the communication time and
computation time, which is defined in equation (Generally speaking, data transfer
intensive applications have higher CCR, whereasGd& of computation-intensive
applications is lower.

The processors used in our simulator are AMD Atl@drnX2 4600+ with 85W TDP,
AMD Athlon 64 X2 4600+ with 65W TDP, AMD Athlon 642 3800+ with 35W TDP,
Intel Core 2 Duo E6300 processor. Figure 4.5 detnates the energy consumption rate
of each processor in idle, light, busy and heavykimg mode. The data source is from

the latest test report of Xbit Labttp://www.xbitlabs.com).

Myrinet and Infiniband network are the interconm@as used in our simulations.
The energy consumption parameters used for Myandtinfiniband are 33.6w and 65w
respectively, which are based on the products teahreport from Myricom and Qlogic

company.
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CPU Power Usage, Idle (C'n'Q and EIST Enabled), W CPU Power Usage, Windows Media Player, W

0 5 10 15 20 25 30 0 5 w 15 2 25 30 35 4 45

Athlon 64 X2 4600+ 85 Athlon 64 X2 4600+ 85

Athlon 64 %2 4500+ 65V Athlon 64 %2 4500+ 65V

Athlon 64 X2 3300+ 35 Athlon 64 X2 3300+ 35

Core 2 Duo ES300 Core 2 Duo ES300

(a) Energy parameter in idle mode (b) Energy parameter in light mode
CPU Power Usage, 3DMark06, W CPU Power Usage, S'n'M (CPU Burn), W
0 10 20 30 40 50 &0 7 B0 0 20 40 & B0 100 120
Athlom 54 %2 4600+ 550 70 Athlom 54 %2 4600+ 550 104
Athlon 54 %2 4600+ A5V 48 Athlon 54 %2 4600+ A5V 5
Athlom 54 %2 3300+ 350 31 Athlom 54 %2 3300+ 350 47
Core 2 Duo EA300 40 Core 2 Duo EA300 44
(c) Energy parameter in busy mode (d) Energy parameter in heavy mode

Figure 4.5 Energy consumption parametersin different working modes

We simulated four DAGs, which include Fast Fourleansform Tree (15 tasks),
Gaussian Elimination Tree(18 tasks), Robot Cordgplication (88 tasks) and Sparse
Matrix Solver application (96 tasks). The detailesk structures are shown in Figure 4.6
and the tree structure files of two actual appice (Robot and Sparse) can be
downloaded at Standard Task Graph website [53].0RGQmntrol DAGS represents a
task graph for Newton-Euler dynamic control caltola for the 6-degrees-of-freedom
Stanford manipulator [54]. Sparse Matrix Solver DA&presents a task graph for a
random sparse matrix solver of an electronic cirsumulation that was generated using

a symbolic generation technique and the OSCAR FORNY Bompiler [55] [56].
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(a) Fast Fourier Transform (b) Gaussian Elimination

(c) Robot Control (d) Sparse Matrix Solver

Figure 4.6 Structure of simulated trees and applications
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4.4.2 Impact of Processor Typesto Energy

Processors play an important role in the computaqacity and energy consumption
of clusters. In order to study impacts of processmn the performance of EAD and
PEBD, we choose three different AMD processorsaralintel processor as CPUs used
in our simulated clusters. All the power consumptparameters of these four types of
processors are listed in Figure 4.5. Table 4.3 shthe simulation environment and
according parameters of the clusters which we cbtlata for Figures 4.7.

Table 4.3 Simulation environment of processor impact

Simulation environment

Processor type Athlon 4600+ 85W, Athlon 4600+ 65W
Athlon 3800+ 35W, Intel Core2 Duo E6300

Processor working mode Heavy

I nter connection Myrinet

Simulated Treesor Gaussian Elimination, Fast Fourier

Applications Transform

CCR (0.4, 4)

Total Energy Consumption =#thlon

4600+
40000 85/
35000 m Athlon
= 30000 4600+
3 25000 65W
E 20000 | Athlon
2 15000 3800+
(1T
10000 35w
5000 o Intel
0 Eorel
uo
EAD PEBD TDS MCP £6300

Figure4.7(a) Energy consumption for different processors (Gaussian, CCR=0.4)
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Figure 4.7(b) Energy consumption for different processors (Gaussian, CCR=4)

Total Energy Consumption  #Athion

4600+
40000 85
35000 m Athlon
_ 20000 4600+
_3_ 25000 65W
E 20000 w Athlon |
3 15000 3800+ |
* 10000 35W
| 5000 ® Intel
0 Core
Duo
EAD PERD 05 Mcp Seatn

Figure 4.7(c) Energy consumption for different processors (FFT, CCR=0.4)

5 e oo u Athlon
Total Energy Consumption o
70000 B5W
60000 m Athlon
— 50000 4600+
F 65W |
= 40000
= Athlon
g 30000 eooe |
520000 35w
| 10000 ® Intel
0 Corel
Duo
EAD PEBD DS Mcp £6300 |

Figure 4.7(d) Energy consumption for different processors (FFT, CCR=4)
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We observe from Figures 4.7 that EAD and PEBD caovige significant
performance improvements for these four kiMCP aicpssors. In general, EAD and
PEBD perform much better on Athlon 4600+ 85W thatell Core2 Duo E6300. An
intriguing result for EAD or PEBD is that a largdiscrepancy between CPU_heavy and
CPU idle leads to a more pronounced performancarer@@ments. For instance, the gap
between CPU_heavy and CPU idle (i.e., 104W — 158R¥in Athlon 4600+ 85W,
which is bigger than that (i.e., 44W — 26W = 18W)rdgel Core2 Duo E6300; EAD and
PEBD outperform TDS by 19.47% and 19.36% in Ath#800+ 85W whereas the
percentage drops down to 3.73% and 3.76% respBbctivintel Core2 Duo E6300. We
did exactly the same experiments in FFT tree (teghown in Figures 4.7(c) and (d))
and found very similar trend. The implication o&ttesult is that processors with large
descrepency between CPU_heavy and CPU .idle carfitbbgneatly from EAD and
PEBD, regardless of the value of CCR. This impiaaprovides a useful suggestion to

users what kind of processor is more suitable twradgorithms.

4.4.3 Impact of I nterconnection Typesto Energy

Network energy consumption is a second criticaltda@affecting total energy
dissipation in clusters. In this subsection, oualge to study the impacts of different
interconnections on the performance of the EAD REB&D algorithms. The underneath
interconnections used in this group of simulatiesuits are Myrinet and Infiniband,
which are two of the popular networks implementechodern clusters. Table 4.4 shows
the simulation environment and according parameiéitse clusters which we collect

data for Figures 4.8.
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Table 4.4. Simulation environment of interconnection impact

Simulation environment

Processor type Intel Core2 Duo E6300

Processor working mode Heavy

I nter connection Myrinet , Infiniband

Simulated Treesor Robot Control , Sparse Matrix Solver
Applications

CCR (0.1,0.5, 1, 5, 10)

Total Energy Consumption

1400000

1200000 u TDS
-_-g-muonun m—
2 800000
g 600000 ED
400000 .

=mmm A -

Gl
0.1 0.5 1 5 10

Figure 4.8(a) Total energy consumption (Robot Control, Myrinet)

Total Energy Consumption

2000000
uTDS
__ 1500000
F m EAD
-g 1000000
é © PEBD
500000
= MCP

0.1 0.5 1 5 10
Figure 4.8(b) Total energy consumption (Robot Control, I nfiniband)
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Total Energy Consumption

1400000
1200000 = TDS
= 1000000
[ |
2 00000 Ll
s 600000 = PEBD
o
= MCP
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400000 |II II
200000 |
o LHEEN NN
0.1 0.5 1 5

Figure 4.8(c) Total energy consumption (Sparse Matrix Solver, Myrinet)

Total Energy Consumption

1400000
1200000 mTD5
= 1000000
_-§. 800000 i
g 600000 « PEBD
S 400000
200000 m NDS
0

01 0.5 1 5 10

Figure 4.8(d) Total energy consumption (Sparse Matrix Solver, Infiniband)
From Figures 4.8, we can find out that the ovgpalformance of EAD and PEBD

are better than TDS and MCP. Another interestingeolation is that both EAD and
PEBD work better, i.e. save more energy, when tiieréonnection is Myrinet. For
example, for the same Robot Control applicationDEAutperformance TDS in terms of
energy conservation for 16.65% (CCR=0.1) and 13.26%R=0.5) if we use Myrinet,
whereas the numbers will change to 5% (CCR=0.1) 24d% (CCR=0.5) when we

choose Infiniband. Similary, for the same SparseriMaSolver application, PEBD
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outperformance MCP in terms of power consumptiandi64% (CCR=5) and 17.25%
(CCR=10) if we use Myrinet, whereas the numbers efiinge to 4.17% (CCR=5) and
6.35% (CCR=10) when we choose Infiniband. Since thirconnection power
consumption rate used in our siumlations for Mytrisued Infiniband are 33.6w and 65w
respectively, we can see that the efficiency ofagorithms are somehow degraded by
the high interconnection power consumption. In otlerds, less portion of network

energy consumption is a positive factor to makeabgorithms have better performance.

4.4.4 |mpact of Application Typesto Energy

Will the application type affect the efficiency BAD and PEBD? If it does, what is
the most important factor? In order to answer thgsestions, we simulated Robot
Control and Sparse Matrix Solver applications unebegictly the same environments,
which means we have same processor, same intetommse same CCRs and even
same energy threshold. Figures 4.9 shows the diimmilaesults which illustrate the
different efficiency of both EAD and PEBD for difemt applications. Table 4.5 shows
the simulation environment of Figures 4.9.

Table 4.5 Simulation environment of application impact

Simulation environment

Processor type Intel Core2 Duo E6300
Athlon 3800+ 35W
Processor working mode Heavy
I nter connection Myrinet
Simulated Treesor Robot Control , Sparse Matrix Solver
Applications
CCR (0.1,0.5, 1, 5, 10)
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Total Energy Consumption

1400000
1200000 = TDS
= 1000000
| = 200000 SEAD
g 600000 S
& 400000
. 200000 uMCP
0

01 0.5 1 5 10

Figure 4.9(a) Energy of Intel Core2 Duo E6300 (Robert Control, Myrinet)

Total Energy Consumption

1400000
1200000 =TD5
ﬁzuonooo o
|.—_v. 800000
g 600000 “PEBD |
W 400000
. 200000 mMCP |
0

0.1 0.5 1 5 10

Figure 4.9(b) Energy of Intel Core2 Duo E6300 (Sparse Matrix Solver, Myrinet)

Total Energy Consumption
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00000
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Figure 4.9(c) Energy of Athlon 3800+ 35W (Robert Control, Myrinet)
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Total Energy Consumption
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Figure 4.9(d) Energy of Athlon 3800+ 35W (Sparse Matrix Solver, Myrinet)

From Figures 4.9, we can see that EAD and PEBDseae more energy in the
Robot Control applications. For example, in the &oBontrol application, EAD can
save more energy than TDS up to 17.07% (CCR=0HlpAt3800+ 35W) and 15.78%
(CCR=0.5, Athlon 3800+ 35W), whereas the number8 driop down to 6.89%
(CCR=0.1, Athlon 3800+ 35W) and 5.37% (CCR=0.5,|&th3800+ 35W) for Sparse
Matrix Solver application. Since all the other paeders are exactly the same except the
application structures (see Figures 4.9(c) and, (@® can draw the conclusion that
application types do affect the efficiency of olgaithms. Based on the data provided
by Standard Task Graph Set website [53], the mdisth of Robert Control and Sparse
Matrix Solver applications are 4.363796 and 15.&388espectively, which means
Robert Control has more task dependencies thus thasts more possibility for EAD
and PEBD to consume energy by judiciously dupli@atiasks. In other words, the task

dependencies and parallelism level are the keytpd decide the efficiency of our

algorithms.
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4.4.5 Impact of CCR to Energy

Group Figures 4.10 illustrate the CCR impact tocpssor energy, interconnection
energy and total energy. Four observations areeaviffom this group of experimental
results. First, the overall performance of EAD &tBD outperforms MCP and TDS.
Second, both EAD and PEBD are very sensitive to CER example, when CCR is
0.1, EAD and PEBD perform 11.33% and 8.33% bettemtTDS. However, the
performance drops down to 9.39% and 6.85% if we tilve CCR to 0.5. Third, MCP
provides the greatest energy savings if CCR istless 1. This is because energy cost
due to interconnection is extremely low with a dm@ICR value. Finally yet
importantly, the communication energy cost willetically increase when CCR going
higher and become the major power consumer of wéystem.

Table 4.6 Simulation environment of CCR impact

Processor type: Athlon 3800+ 35W
Processor working mode: Busy

| nter connection: Myrinet
Simualated Application: Robot Control
CCR: (0.1,0.5, 1, 5, 10)

CPU Energy Consumption

370000

——TDS
350000 -
3 330000 ] —m—EAD
‘:';5 310000
& PEB
2 290000 D
270000 | ——MCP
250000 |

0.1 0.5 1 L] 10

Figure 4.10(a) CPU energy consumption under different CCRs
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Interconnection Energy
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Figure 4.10(b) Inter connection energy under different CCRs

Total Energy Consumption
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Figure 4.10(c) Total energy consumption under different CCRs
4.4.6 Impact of Processor Statusto energy

Processors may have different working modes likk, ichot busy, busy and
extremely busy. The energy consumption rate isedfit under different modes. In
order to speculate the impact of processor statienérgy consumption, we simulated
three working modes, for AMD Athlon 3800+ 35W preser. When processor is

running applications like widows media player, 3@2mh generation, CD burn, it is in
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light, busy and heavy modes respectively. The stian results are shown in Figures
4.11 and the corresponding energy consumption peteam for each working mode

could be found in Figures 4.5.

CPU Energy Consumption

285000 :

280000 /’*'ﬁﬁh\\\? ——TDS
= 275000 - T~ B
= 270000
g 265000 . O SEED
w 260000

255000 W o =—==MCP

250000

.1 0.5 1 5 10

Figure4.11(a) CPU energy consumption under light mode

CPU Energy Consumption
370000
350000 L
E 330000 EAD
= 310000
£ 290000 —*—PEBD
270000 MCP
250000
0.1 0.5 1 5 10

Figure 4.11(b) CPU energy consumption under busy mode
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CPU Energy Consumption
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Figure 4.11(c) CPU energy consumption under heavy mode

Total Energy Consumption
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Figure4.11(d) Total energy consumption under light mode
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Figure4.11(e) Total energy consumption under busy mode
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Total Energy Consumption
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Figure 4.11(f) Total energy consumption under heavy mode

If we look at Figures 4.11(a) (b) (c) together, yail find the CPU energy
consumption of EAD and PEBD are various under tiffié modes, which indicates
EAD and PEBD have different duplication decisiolisve compared the results shown
in Fig.4.11 (d) (e) (f), we can easily find that EAand PEBD work more efficiently
under heavy mode. For example, EAD and PEBD casergr 17.07%, 12.6% more
energy than TDS in heavy mode, whereas these nsmbkkbecome 11.33%, 8.33% in
busy mode and 4.43%, 3.23% in light mode. Rettat in the heavy mode, the
processor has the biggest energy consumption gagée CPU idle and CPU working,
we can easily find out the same conclusion as@e&i2, which tells us processors with
large energy consumption descrepency betweent CBitking and CPU _idle can

benefit greatly from EAD and PEBD, regardless efvhalue of CCR.

4.4.7 Impact to Schedule Length

Group Figures 4.12 depict the experimental resustsd to evaluate the overall

performance of the four scheduling algorithms immteof schedule length. Figures
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4.12(a) and (b) show the scheduling lengths of cales made by the four algorithms
for the Gaussian Elimination and Fast Fourier Ti@mngs applications. The results show
that EAD and PEBD efficiently reduce energy constiompwithout adversely affecting
performance of the applications. For example, omraye the schedule lengths of
Gaussian Elimination produced by EAD and PEBD aerely 5.7% and 2.2% larger
than those generated by TDS. Similarly, on avethgeschedule lengths of Fast Fourier
Transform yielded by EAD and PEBD are only 2.929% &102% longer than that of
TDS. These results suggest that it is worth tradingarginal degradation in schedule

length for a significant reduction in energy disdipn for cluster computing systems.
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Figure 4.12(a) Schedule length of Gaussian Elimination
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Figure 4.12(b) Schedulelength of Sparse Matrix Solver
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4.5 Summary

In this chapter, we addressed the issue of allogatsks of parallel applications
running on clusters with an objective of shortensupedule lengths while conserving
energy. Specifically, we proposed two improved dgtion-based scheduling
algorithms, namely the riergy-Awvare Dulication algorithm (or EAD) and the
Performance-Bergy Balanced Dplication algorithm (or PEBD). EAD and PEBD are
designed and implemented to provide energy savingkisters by duplicating tasks on
more than one computational node. While EAD is ableaggressively provide the
greatest energy savings by making use of taskcaplio eliminate energy-consuming
messages, PEBD aims at making tradeoffs betweerrgyeneonservation and
performance.

To facilitate the presentation of EAD and PEBD, elt mathematical models to
describe a cluster system framework, parallel appibns with precedence constraints,
and energy consumption model. We conducted extengxperiments and our
experimental results show that EAD and PEBD areenmarergy-efficient compared
with other two existing allocatiorschemes called MCP(or NDS) and TDS. Our
conclusion is that EAD and PEBD are capable ofitigach marginal degradation in
schedule length for a significant reduction in gyeconsumption for homogeneous

cluster computing systems.
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Chapter 5

Energy-Efficient Scheduling For
Grids

In the previous chapter, we have designed two grefficient scheduling
algorithms for homogeneous clusters, which commiset of identical characteristics in
terms of CPU speed, memory capacity, power consompate and interconnections.
However, these algorithms cannot be directly usedéterogeneous high performance
computing platforms like grids. In this chapter, vpeopose two energy-aware
scheduling algorithms, callednErgy-Hficient Task Duplication Sheduling (EETDS)
and _Heterogeneous rtergy-Aware Diplication heduling (HEADUS) which attempt
to make the best tradeoffs between performance earetgy savings for parallel
applications running on heterogeneous grids.

This chapter is organized as follows. Section Sdsents the motivation of this
study. In section 5.2, we define the mathematicatlefs used in our grid systems,
which include a grid model, parallel tasks modeilgd @n energy consumption model.
Next, in section 5.3, we discuss the job schedulingrid systems. In section 5.4, we

present the proposed EETDS and HEADUS schedulinggrithms in detail and
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illustrate how they work using a concrete examg@ection 5.5 proves that time
complexity of EETDS and HEADUS. Experimental resuiith qualitative comparisons
to other two existing approaches are analyzed otise 5.6. Finally, section 5.7

summarize the entire chapter.

5.1 Motivation

Although it is common that a new and stand-alomnster system is homogeneous in
nature, upgraded clusters or networked clusterslikedy to be heterogeneous in
practice. In other words, heterogeneity of a vgradtresources such as CPU, memory,
and interconnection, may exist in cluster systembis is because, to improve
performance and support more users, new nodesiigat have different characteristics
than the original ones may be added to the systemseveral smaller clusters of
different characteristics may be connected viaghispeed network to form a bigger
one. Accordingly, heterogeneity may exist in a e@riof resources such as CPU,
memory, and interconnection etc.

Computing grids are one of the typical distribusdgtems with heterogeneity. A
computational grid is a type of parallel and disited system that enables the sharing,
selection, and aggregation of resources distribudetbss multiple administrative
domains based on the resources’ availability, aapaperformance, cost and users'
guality-of-service requirements. Literally speakiagarge-scale distributed system that
qualifies the following three conditions could bevisioned as a computational grid
[57]. (1) Computing resources are not administezedtrally; (2) open standards are

used; and (3) non-trivial quality of service is @sted. Grid applications distinguish
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themselves from traditional distributed applicaionbecause they not only
simultaneously use large number of resources, laat have stringent performance
requirements, dynamic resource requirements, antplex communication structures
[58]. As our economy shifts from paper-based tatdignformation management, large-
scale grid computing platforms have been widelylaga to support the complicated
scientific and commercial applications which reguimtensive data processing and data
storage in nature. As you can imagine, the powertuhputing capability of grids is
actually in the cost of huge energy consumptiorer&fore, designing energy-efficient
algorithms for grids becomes highly desirable.

The research shown in this chapter is motivatethbyabove reasons. However, we
realized that the design is much more challengioghygared with the design for
homogeneous clusters. In the study shown in trapten, we take into account multiple
design objectives, including performance (measbgethroughput and schedule length),

energy efficiency, and heterogeneities.

5.2 System M oddl

In this section, we describe mathematical mode&dus represent heterogeneous
grids, parallel applications with precedence caists. Since the energy consumption
model is the same to the model used in clusteesystwe do not explain it again in this

chapter. Please refer to section 4.1.3 for details.
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5.2.1 Grid Systems Model

A grid system consists of a $et= {p1, pz,..., An} Of heterogeneous computing nodes
(hereinafter referred to as nodes) connected bygh-dpeed interconnect like fast
Ethernet, gigabit Ethernet, SCI, FDDI or Myrinet. eterogeneous grid can be
represented by a graph, where computing nodes eatecas. There exists a weighted
edge if a pair of corresponding nodes can commteiwéh each other. Anxm binary
allocation matrixX is used to reflect a mapping oftasks tom heterogeneous nodes.
Thus, elemeng; in X is “1” if taskt; is assigned to nodg and is “0”, otherwise. Since
our scheduling algorithms will be verified in a éetgeneous environment, it is
imperative to define the following constraints tar heterogeneous grid system model.
First, different nodes have different preferencéhwespect to tasks, meaning that a
node offering task a shorter execution time does not necessarilyfaster for another
taskt. Thus, different nodes in a heterogeneous cldater different kinds of tasks.
Second, execution times of tasks on different nodag various because the nodes may
have various clock speed and processing capabilifigird, the transmission rates of
network interconnections depend on underlying netwdypes. Last, energy
consumption rates of the nodes and interconnecti@ysnot necessarily be identical.

To simply the system model without loss of gengralve assume that all nodes are
fully connected with dedicated and reliable netwanterconnections. Each node
communicates with other nodes through messagengassimmunication time between
two tasks assigned to the same node is negligmladdition, we assume computation
and communication can take place simultaneouslyour system model. This

assumption is reasonable because each computing imod modern cluster has a
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communication coprocessor that can be used tothregorocessor in the node from
communication tasks. Since we primarily focus oergg consumption, each node in
the system has an energy consumption rate meadwyedoule per unit time.
Furthermore, each network link is characterizediteyenergy consumption rate that
heavily relies on the link’s transmission rate, efhis modeled by weight; of the edge

between nodeg andp;.

5.2.2 Paralld Tasks M oddl

Parallel tasks with dependencies are representedilgcted Acyclic Graphs
(DAGS)in this study. Throughout this paper, a collabweaapplication is specified as a
pair, i.e,(T, E) whereT = {t3, t, ..., t;} represents a set of parallel taskss a set of
weighted and directed edges representing commimrcedst among tasks, e.di, §) 2/

E is a message transmitted from tasto t;. Precedence constrains of the parallel tasks
are represented by all edges inEe€Communication time spent in delivering a message
(t, t) L E from taskt; on nodepy, to tjon py is determined byj/b,, wheres; is the
message’s data size abg is the transmission rate of a link connecting npgandp..
The execution times of tagkrunning on a set of heterogeneous computing nodes a

modeled by a vector, i.ec, = (cil,cf,-.-,c{"), wherec’ represents the execution time of

ti on thejth computing node. If task cannot be executed on nogehe corresponding

execution timec! in the vector, is marked ase. We define a task as an entry task if it

does not have any predecessor tasks and; simigatsk is called an exit task if there is

no task following behind it.
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An Example. Figure 5.1 illustrates the task description opaxallel application
represented by a task graph, a mapping matrix,aaddster with three heterogeneous

computing nodes. The task graph contains ten tablesicomputing node graph (or

processor graph) has three heterogeneous compotidgs. EN! is the energy

active

consumption rate of thigh computing node in the busy mode, @M., is the energy

consumption of théh computing node in the idle mode. Similark! . and EL,. is

active
the energy consumption rate of the link betweentthandjth nodes when data is being

transferred and when no data are being transmitkedt. example, the energy

consumption rates of the network link between nageand p, are EL:2, . =30 and

active

ELS. = 10 when the link is in the busy and idle modespectively. The energy

consumption rates of nogris EN. .= 25 andEN;,, =8 when it is active and idle,

active —
respectively. We assume that the transmission batereen two computing nodes is
same in both directions. The execution time veofagach task on the three processors
is illustrated in Figure 5.1(d). For example, txe@ution times of task on node%;, po,
andps are 6.7, 3.9, and 2.0 time units, respectively.eH&e should note that task
couldn’t be allocated t@; because the corresponding item in the mappingixnistr

marked aso.
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EN =25

active

Task Description: EN. =8
TaskSet {T1, T2, ..., T9, T10 } idle

T1 is the entry task.; EL. e =30 EL,,. = 40
T10 is the exit task; EL,. =10

T2, T3 and T4 can not start until T1 finished; idle Elgy. =15
T5 and T6 can not start until T2 finished; tr, =1, =6 tr, =1tr;, =8

ELacuve =20

Elge =7

T7 can not start until both T3 and T4 finished;
T8 can not start until both T5 and T6 finished;

T9 can not start until both T6 and T7 finished; ENacive =100 try; =try, =4 EN,.ve =12
T10 can not start until both T8 and T9 finished: ENg. =65 EN,, =4
(a) An example task description (b) A heterogeneous processor graph

P1 P2 P3
Ti [ 6.7 3.9 2.0]
T2 | 9.011.4 1.8
3 | 9352 45

14 | 8849 2.4

7.5 7.6 3.0
T5

59 1.4 5.0
T6

7.8 65 7.2
T7 196 41 3.2

T8 | 8123 1.7
T9 | o 10.2 9.9
T10 | 11.2 1.3 2.4]

(c) A DAG based on description in (a) (d) A mapping matrix

Figure 5.1 Exampletask graph and heter ogeneous processor graph

5.3 Job Scheduling in Grids

Computational grids are complex multivariate enwinents, which are made up of
numerous grid entities needed to be managed. Thegbeduling module plays a key
role in making coherent and coordinated use ofwithgs and heterogeneous resources
in a grid system.

The responsibility of the scheduling module inclsidesource allocations and task
scheduling. Figure 5.2 and Figure 5.3 depictptoeess of job scheduling in grids from
the prospective of system and task level respdygtilie system view, the job scheduler
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of grids contains two parts, a global scheduler sexkral local schedulers. The global
level scheduler (or grid level scheduler) coordésamultiple local schedulers while
choosing the most appropriate resources for grdigggions. It is worth noting that the
global level scheduler in most cases has no dioecttrol over grid resources.
Consequently, the global level schedule has to conicate with and precisely trigger
local level schedulers to complete tasks of jobisnstted by users. The local level
schedulers in turn directly handle resources byssinog to local resources. Moreover,
the global level scheduler is responsible for dmlating with other fundamental
middleware modules such as information servicesnnoonication services, and

reliability controllers.

Scheduling Pnl-i«;y E
= s

|

Global Scheduler

Information Service

Original Big Tasks

Analyzed Sub Tasks Communication

Service

| > Reliability Control

Local Tasks

—I0 G | ol Scheduler |
[— S——— E——

Runtime Operating Database

Local Tasks Ma System: Man: s
Local Task—— QU

—111 Loeal Scheduler 2

Grid Support ‘Runtime Operating Database

Toolkit Manager System Manager

jocal Tasks e e
- oo, —T111 — Local Scheduler n
iy ! s [ (e e
b L " o o
prnter Fax Gy 'Il:lr og:slrmg :;:::;::

Figure 5.2 The system view of scheduling in a computational grid
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The grid level scheduler not only implements enesfiicient scheduling policies
but also deals with resource heterogeneities. Titelgvel scheduler has the following
unique attributes.

Reclamation of allocations

Target resources may be reclaimed by the local mdtrator so that the reclaimed
resources can be allocated to tasks with higheripes. In this case, the scheduler must
be able to reclaim allocated resources and rea#éaesources to corresponding tasks.

Task and data migrations

This attribute signifies that any task can be mfeted in computing node and the
task along with its corresponding data can be negréo another node. The scheduling
module leverages the task and data migrations torawe the performance and
reliability of grid systems.

Exclusive allocations

It is common that some computing resources mighie hzarticular preferences or
exclusiveness for different types of tasks. Forngple, a computing node offering a
shorter execution time for a task does not necigsan faster for another task. Even
worse, some computing nodes may be exclusive toifspéypes of tasks. Thus, the
scheduling module has to resolve conflicts betwasks and resources.

Tentative allocations

To make scheduling decisions with high energy Eficy, it is imperative for the
scheduling module to calculate and compare taskcation cost by tentatively
allocating tasks to a wide range of available reseai The scheduler is able to

efficiently complete revocation of tentative allticas.
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Dependent task allocations

A grid application may be consist of multiple degent tasks, whose dependencies
must be handled by the scheduling module. In aaméwork, a task analyzer provides
detailed information of tasks to scheduler; theesither makes an effort to first allocate
tasks with high dependencies to the same compuéisgurces to significantly reduce
communication overheads.

From the task view, once the scheduling modulecbéected all the information of
currently available resources, the module can ateoshared resources to parallel tasks
after judiciously choosing target recourses in etance with specific scheduling
policies. Figure 5.3 outlines the job schedulirgMlin computational grids. During the
course of jobs’ execution, a result collector péically checks randomly returned sub-
results and transfers the sub-results to the gudllscheduler. The grid level scheduler
further passes on the latest information to akdashereby guaranteeing that the tasks
with dependencies can immediately be executed fireicedence constraints are met

(i.e., sub-results become available).
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Figure 5.3 Thetask view of scheduling in a computational grid

5.4 Ener gy-Efficient Scheduling Algorithms

In this section, we present the details of schedullgorithms used in our Grid
scheduling framework. First, we will explain howethiask analyzer can provide
information about task dependencies. Next, thegsegd EETDS and HEADUS will be
explained in three major phases. The first phasalied grouping, in which tasks with
highest dependency will be grouped together. Phaseis called task duplication,
which aims to duplicate as many tasks as possiblael energy cost will not be
significantly increased. In phase three, the scleeduill tentatively allocate the grouped

tasks to different available resources and caleula¢ energy cost. Finally, the scheduler
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will make its final (energy-performance balancedcidion and completed the real

allocations.

5.4.1 TheTask Analyzer

The task analyzer is responsible for analyzing daskaracteristic and task
dependencies. In addition, the task analyzer hagdtarately estimate execution times
of tasks based on task types or information praVvioleusers. In our framework, parallel
tasks with dependencies are represented Dinected Acyclic Graphs (DAGS)
Throughout this paper, a grid application is spedifas a pair, i.€T, E) whereT = {t,,
to, ..., t} represents a set of parallel tasksis a set of weighted and directed edges
representing communication cost among tasks, @.gt)./E is a message transmitted
from taskt; to ti. Task dependencies among the parallel tasks aresented by all
edges in seE. Communication time spent in delivering a mess&ge) (/E from taskt
on nodep, to tjon py is determined bg;/bu, wheres; is the message’s data size dm¢
is the transmission rate of a link connecting npgdandp,. The execution times of task

ti running on a set of heterogeneous computing nocesnadeled by a vector, i.e.,

C = (cil,ciz,--~,cim), wherec/ represents the execution timetpbn thejth computing
node. If taski cannot be executed on nogethe corresponding execution tinsg in

the vectorc is marked aso. We define a task as an entry task if it doeshaste any
predecessor tasks and; similarly, a task is catedxit task if there is no task following
behind it. The task analyzer will take the usemuesq (usually it contains the necessary
task description information) as input and gener@#®Gs as output. Figure 5.4

illustrates a typical task description file and WG generated by the task analyzer.
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Task Description:

TaskSet $T1, T2, ...,T9. T10 !

T1 is the entry task:

T is the exit task;

T2, T3 and T4 can not start until T1 finished:
T5 and Ta can not start until T2 finished;

T7 can not start until both T3 and T4 fimished;
TH can not start until both TS and T6 linished:
T9 can not start until both Té and T7 finished:
T10 can not start until both T8 and TY finished;

Estimated exccution time for each task:

IT1=3s; T2=3s; T3=ds: T4=2s. T5=15; T6=10s;

TT=25; TE=Ts; T9=55; Tl(=Hs;!

Estimated communication cost between tasks:
ITl—=T2=25 T1—=T13=35; T1—=T4d=25;
T2—=Tai=25, T2—T6=15; T3I—T7=3s;
T4—+TT=l5; T5—=TB=15; T6—TE=Ts;
To—To=6s; TT—=T9=10s; TE—T10=2s;
TO—TI10=35:]

{a) A Typical Task Description

(b) DAG Generated by Task Analyzer

Figure5.4 A directed acyclic graph (DAG) analyzed by the task analyzer

5.4.2 Grouping Phase

The grouping phase of our algorithms is to assedhé most relevant tasks (i.e.

tasks in the same critical paths) into groups. Giaeparallel application modeled as a

task graph or DAG, the grouping phase yields a prmased graph of the DAG. Since

all tasks in a group are allocated to the same atimgpnode where there are no waiting

times among the tasks within the group, we canaediommunication overheads of

highly dependent tasks with intensive communicaticgkdditionally, a task-duplication

strategy is applied in the process of groupingutthier improve system performance by

replicating tasks into multiple computing nodescdhedule lengths can be shortened.
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More specifically, the grouping phase can be firdilyded into two sub-steps, namely,
original task sequence generating and parametéslatng. Since these two steps are
quite similar with the first two steps used for EADd PEBD. Please refer to section

4.2.1 and section 4.2.2 for details.

5.4.3 Task Duplication Phase

After the grouping phase, the original task seqaestwould be generated and all
important parameters should be calculated. Once odttiginal task sequence and
important parameters are available, we are readypfly the duplication strategy to
complete the last step of the grouping phase. Ei§us illustrates the main idea of the
duplication strategy using a simple example. Tliegart of Figure 5.5 shows a DAG
for four tasks with precedence constraints. Thecaton times of task I T,, T3 T4 are
8s, 10s, 15s, and 6s. The communication times arttengasks are 6s, 5s, 2s, and 4s,
respectively. The right part of Figure 5.5 provideeee schedules made by the linear
scheduling strategy, the non-duplication strategyd the duplication strategy,
respectively. The linear schedule has the longestdule length because all the tasks
allocated to one computing nodes have to be exeédata sequential order. The non-
duplication schedule reduces the schedule lengthalloying T, and & running in
parallel on two computing nodes. The duplicatiorhestule further improves the
performance by redundantly executing dn the second node. Thus, the duplication

strategy trades CPU times for communication ovetbea
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One CPU; Linear Schedule Schedule length: 39s

8
0 8 23 33 39
6 5 Two CPUs; No Duplication Schedule length : 32s
10 15 >
0 8 26 32
2 4 6 2
14 24 >
Two CPUs; Duplication Schedule length : 29s
6
A DAG for four tasks with _

precedence constraints 20 23 29

o
l co
N
v v

0 8 18

Figure 5.5 An example of duplication scheduling strategy

Figures 56 and 5.7 illustrate in details the implementatdiEETDS and HEADU
with respect to the process of forming a final tggkup graph. Initially, no task
marked as “grouped” and the list of clusters idialized to be empty. Next, tf
algorithms conider the first task and insert it to a newly fodrgroup called G1. The
in the following iterations, the algorithms go tbhgh all the tasks along the favor
predecessor chain, attempting to add all the teskse critical path to the same grot
Once a task is added to a group, it will be immedyatearked as “grouped”. If the ta
being processed is the entry task, the currerdtiter will end and a new iteration w
start in the next loop by choosing the first ungred task from the originetask
sequence generated in step 1. During the processl&fng through multiple critice
paths, we may find some tasks have been addedrtmua. At this point, the duplicatic
strategy is responsible to make the decision whebhenot to duplicate ts task to
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multiple groups by comparing the value of LAST(DACT(t") and the communication
time cc(t, t'). A task will be duplicated if thelsedule length can be reduced and the task
will not be duplicated otherwise. At the end of fm@cess, the task graph has been
divided into groups. Finally, the group graph isgeted by creating edges among all
the groups communicating with each other. The #lgois then set a weight for each

edge to represent corresponding communication cost.

1. t=first waiting task of original task sequence;

2. i=1,

1. addttoG; /* markt as “grouped” */

2. while (not all tasks are groupedd

3. t =FP();

4. if (f has already been added to one cludtes)

5. if (LAST(t) - LACT(t) < cc(t, t) then /* if duplicatet’, we can shorten the schedyle
length */

6 add’ to G;; /*duplicatet’, markt’ grouped */

7. if t has another predecesgzef t' has not yet been group#ten

8. t =z,

9 else

10. if t' is entry taskhen

11. t' = the next task that has not yet been grouped;

12. i++;

13. ¢€se

14. for another predecessoof x, z~ t,

15. if (ECT(t)+ccy =ECT(2) + cc(t, t') andz hasn't been groupedthen
16. t' = z; /* do not duplicate*/

17. elseallocatet’ to G;; /*also markt’ as “grouped” */

18. t=1,

19. if tis entry taskhen

20. t=the next task that has not yet been added toupg

21.  i++;

22. assigrt to G;; /*also markt as grouped*/

23. return group graph;

Figure 5.6 Pseudo code of the grouping phasein the EETDS algorithm
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1. t=first waiting task of original task sequence;
2. 1=1;

3. assigntto G;

4. while (not all tasks are groupedd

5.t =FP(t);

6 if (' has already been added to one clustex)
7 if (LAST(t) - LACT(t") < ccf(t, t) then /* duplicatet’, we can shorten the schedyle

length */
8. moreenergy = EN- ELy; /*energy increase*/
9. if (moreenergy threshold TYhen /* increased energy less than our threshold*/
10. add’ to G;; /*duplicate t’, mark’ grouped */
11. if t has another predecesgzeft' has not yet been allocated to any ntiten
12. t=2z;
13. else
14. if t' is entry taskhen
15. t' = the next task that has not yet been assignadtale;
16. i++
17. else
18. for another predecessor z,af# t',
19. if (ECT(t)+ccy = ECT(2) + cg) and z hasn't been allocatetien
20. t' = z; /* do not duplicate*/
21. dse
22. for another predecessor z of %,tz
23. if (ECT(t)+ cc(t, ') =ECT(z) + cc(t,2)and z hasn’t been allocatedtien
24. t' = z; /* do not duplicate*/
25. elseaddt’ to G; /*duplicate t', markt’ grouped */
26. t=t;

27. if tis entry taskhen

28. t=the next task that has not yet been allocatedcmmputational node;
29.  it++;

30. addt’ to G;; /*duplicate t', markt’ grouped */

31. return schedule list;

Figure 5.7 Pseudo code of the grouping phasein the HEADUS algorithm
The major difference between EETDS and HEADUS iast tHEADUS makes

tradeoff between energy savings and schedule Iepgthwhich task duplications are
strictly forbidden if the duplications do not exhibnergy conservation (see Steps 9-10).
In other words, duplications are infeasible if thegult in a significant increase in
energy consumption (e.g., the increase exceedseshiblid). In doing so, the HEADUS
algorithm ensures that schedule lengths are opeuinizsing task duplication without

greatly affecting energy conservation.
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5.4.4 Energy-Efficient Group Allocation Phase

After the grouping stage, the DAG has been panibinto a number of groups,
which will be allocated to heterogeneous computiades by the next step in an energy-
efficient way. The main objective for this phasetasgenerate an allocation list with
minimized energy dissipation. Recall that there hhige exclusion relations among
some tasks and nodes, e.g. taskouldn’t be allocated tp;, as shown in Figure 5.1.
Therefore, we have to verify whether or not a nadd a group are exclusive to each
other. In other words, we have to assure that aakd in the group are exclusion
compatible with the node to be allocated on. If gask is exclusive to a current node,
our algorithm performs the same verification pr@gces another computing node until
an exclusion compatible node is identified. In ialld clusters, most computing nodes
are compatible with various parallel tasks. Otheeathe clusters cannot provide widely
used services for end users. To make our algorignactical, we implement the
compatible verification process in our algorithmhemdle exclusion issues.

Once a group and a computing node pass the corgaghfication process, the
group will be temporarily allocated to the nodexhéhe algorithms calculate energy
consumption caused by the group running on the .ndde estimation of the energy
consumption can be carried out using the energyswaoption model described in
Section 3.3. The value of this energy consumptsosaved in an energy cost array. The
algorithms apply the same procedure to the nexe tgp compatible node. This
procedure is repeatedly performed until all candidampatible nodes with respect to
the group have been considered. Finally, the dlyos update the allocation list with a

compatible node that leads to the minimized enediggipation. After the group
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allocation phase is accomplished, the allocatisndrovides an allocation solution with
minimized energy consumption of the heterogenetustar. Figure 5.8 shows the way

of implementing the energy-efficient group allocatphase.

Energy_Efficient_Allocation () {
set allocation list is empty;
for each cluster c in the cluster graph G {
n = Energy_Efficient_Calculation (c, N);
mark c is finally allocated to n, updat®edtion list;

}
return allocation list;
}
Energy_Efficient_Calculation (c, N) {

i=1;

while (nis not the last node in N) {
Legal_n = Exclusion_Verify (c, n);
Add Legal_n to the Legal_Node_List;
n = the next node following Legal_nin N ;

}

for each node n in Legal_Node_List {
if (n has not been allocated with any cluster)

mark c to be temporarily allocated to n;

temp_energy_cost[i] = Energy_Congtiom(c,n);
/Ihere Energy_Consumption()will edlate energy cost assumming c is allocted to n;

i++;
}
}
return the node with minimized value in array teepergy_cost|]

}

Exclusion_Verify (c, n) {
for each task t in cluster ¢ {
if (tis exclusive with n) {
n = the next node following nin N ;
Exclusion_Verify (c, n);
}
}

return n;

Figure 5.8 Pseudo code of group allocation to minimize energy consumption
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5.4.5 A Case Study

In this section, we use a synthetic parallel ajppilon as an example to illustrate how
the EETDS and HEADUS algorithms work. The task prapthe parallel application is

delineated in Figure 5.9. The running trace of estep is given as follows:

Figure 5.9 A synthetic parallel application

Phase 1. Grouping

Step 1 Generate a task sequence by computing levelslelieés of the tasks can be
calculated using Eq. (16). For instance, the leveéhskvyo is 8, sincerpis the exit task
without any successor. The levelwfis 8 + 7 = 15 becausg has only one successor

task. The level of task is max{L(vs) + 3, L(w) + 3} = 28, sincev, has two successors -
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vs andve. All the tasks are placed in a queue in the naneasing order of levels. Thus,
we have a list of tasks as {10, 9, 8, 5, 6, 2,, 83,4}

Step 2 Calculate the important parameters:

Step 2.1ComputeEST and ECT: The EST and ECT values of each task can be
computed by applying Egs. (17) and (18). For examiaskv; is the entry task and,
therefore ESTv1) = 0. In accordance with Eq. (18), we h&@T(v;) = 0 +t; = 3. Since
V, V3, andv, are unable to start until finishes and, thus, we have ESJ)(= EST{s) =
EST{,) = ECT{x) = 3. Similarly, EST ofr is computed as below

EST(V,) = min{max{ECT(v,), ECT(v,) + ¢, ),max{ECT(v,), ECT(v,) + c,, }
= min{max(5,7 + 20), max(7,5+10)} =15.

Correspondingly, the ECT @f is ECT{4) = EST{7) +t;= 15 + 20 = 35.

Step 2.2Compute favorite predecessors: The favorite preskar of a task is
determined by using Eq. (19). For example, theriéerpredecessor of task, vs, andv,
is vi, simply because these three tasks have only omdepessor. The favorite
predecessor ofg is Vg becausd=CT () + Cgs= 16 + 50 = 66 SECT(%) + Csg= 7 + 5 =
12.

Step 2.3Compute LAST and LACT: The LACT and ECT valuedlod exit taskvig
equal to 79 and, thus, we haAST(¥g) = LACT(wo) - t1o0= 79 — 8 = 71. In case of
LACT(vs), we have to consider two successors, hanwl{in critical path) andsyg (not
in critical path). We obtain

LACT(V,) = min{min(LAST(V, ) -Cee, Min(LAST(y,)))} = min{(66-50),29} =16 and
LAST(¢) = LACT(w) - tt = 16 — 10 = 6. Table 5.1 summarizes the valuedidha

parameters:
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Table 5.1 Results of theimportant parameters

Task level EST ECT LAST LACT FP
1 40 0 3 31 34 -
2 28 3 6 3 6 1
3 37 3 7 42 46 1
4 35 3 5 34 36 1
5 16 6 7 23 24 2
6 25 6 16 6 16 2
7 33 15 35 46 66 3
8 15 16 23 29 36 6
9 13 66 71 66 71 7

10 8 71 79 71 79 9

Step 3 Generate a duplication task sequence:

The EETDS algorithm generates the first group eksaby starting from the first
task in the task list obtained in step 1, whichask 10. The first task group containing
tasksvi, Vs, V7, Vg, andvio forms GROUP 1. Next, the second iteration stagtsabse the
algorithm hits tasks, which is the entry task. At this point, next umgped task is task
vg. Tasksvs, Vs andv, are associated to GROUP 2, and the next task toh&dered is
taskvi. Sincev; has been clustered to GROUP 1, the algorithm daketide whether
there is an incentive to duplicate on GROUP 2. The condition in step 7 (see Figure
5.7) is satisfied, because we hav&ST(y) - LACT(M) = 3 — 34 <cc» = 15. Therefore,
duplicatingv; on GROUP 2 gives rise to a shortened schedulgHeitus, GROUP 2
consists ofvg, s , Vo> and vy, Again, the algorithm hits the entry task and thedth
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iteration is invoked. At this point, task is added to GROUP 3, followed by task and
v1, which are not duplicated on GROUP 3 becdus8T(¢) - LACT(¢) =23 -6 =17 >
cci2 = 15, which means the schedule length will beaased. Similarly, task, andv;
are added to GROUP 4 in the last iteration. Finalhe following task groups are

created:
Group 1: Task 10, Task 9, Task 7, Task 3, Task 1
Group 2: Task 8, Task 6, Task 2, Task 1
Group 3: Task 5

Group 4: Task 4, Task 1

Accordingly, the final task group generated by HEA® is like follows (energy
thresholdT, ENagive and H_¢iive are set to 1J, 6J and 1J, respectively):
Group 1: Task 10, Task 9, Task 7, Task 3, Task 1
Group 2: Task 8, Task 6, Task 2
Group 3: Task 5

Group 4: Task 4

Last but not the least, the EETDS and HEADUS athors compute the
communication cost between each pair of task granpsset the corresponding edges to

form a group graph.
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Table 5.2 Energy consumption values

A B C D
C1 3050J 3700J 2008J 3000J
Cc2 1000J 900J 1560J 1200J
C3 180J 1943 136J 75
C4 207J 226J 251J 243J

Phase 2. Ener gy-efficient Allocating

In this phase, the EETDS algorithm performs thecgdorre described in Figure 5.6.
Here we just assume that the heterogeneous grignsysonsists of four types of

computing nodes denoted by A, B, C, and D. Eneaysomption values of the nodes

are listed in Table 5.2:

The final list of allocations determined by the BES algorithm is given as follows:

Group 1 is allocated to node C
Group 2 is allocated to node B
Group 3 is allocated to node D

Group 4 is allocated to node
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(a) The originial task description (b) The partitioned task graph

10 Cluster 1 is allocated to node C

Cluster 2 is allocated to node B
e 5 @ Cluster 3 is allocated to node D

Cluster 4 is allocated to node A

(¢) The cluster graph (d) Final allocation list

Figure 5.10 Allocation results showing how the EETDS algorithm works
5.5 Time Complexity Analysis

The time complexity of the EETDS scheduling alduritis O(/]).

Proof. The algorithm consists of two major phases: tlmiging and energy-aware
allocation phases. Let us first analyze the tinragexity of each phase.

Let us start from the first step in the groupingagd In this step, the algorithm
traverses all tasks of a DAG to compute the legélhe tasks. The time complexity to
calculate the levels is &), whereH]| is the number of messages. This is because in the

worst case all the messages in the DAG have toxbenieed. Furthermore, it takes
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O(V|log|V]) time to sort the tasks in an increasing ordetheflevels, wherev| =n is
the number of tasks. Therefore, the time complexitstep 1 is OH| +|V|log|V]).

The second step is performed to obtain all the mapb parameters [ikEST, ECT,
FP, LACT,and LAST Phase 2 calculates these parameters by applyengdpth first
search with the time complexity of O/[[+ E|).

In the last step of the grouping phase the tas&ksaasociated into several groups,
which can help in reducing schedule length. Feath task is checked and added to one
or more groups in the iteration based on the dapta strategy. In the worst case, all
the tasks in the critical path must be duplicateéaning that the time complexity is
O(h|V]) time, whereh is the height of the DAG. Sindeis less than or equal t¥|] the
time complexity of the third step is ®fj).

Consequently, the total time complexity of thegeé¢hsteps is O] + M|(Ig|V|+1) +
IV?| = O(E|+VP). For a dense DAG, the number of messages areimpmal to O[V[?).
Hence, the time complexities of the grouping phasa(V[?).

In the second phase, the algorithm executes thepatioiity verification process
and calculates the energy consumption caused bly gemup on each compatible
computing node. Suppose the grouping phase geaeraoup séb= {91, B, G, ... G}
with q different groups. We have a heterogeneous node sefpi, pz,..., @} With m
different type of processors, the algorithm attesmiot select two elements randomly

from the set$s andP in order to estimate energy cost. According togbemutation and
combination theory, the time complexity@ x C;,. Obviously, the numbeg of groups

is always less than the number of tasks and thebauraf m is a constant (i.e. the

number of heterogeneous nodes in a real clustémgeSthe calculation of power
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consumption for each combination can be completdoheéar time, the time complexity
of the group allocation phase isdM]), where c is a constant relies onand other
related calculation time. Similarly, the verifiaati process can be done withinc{Y().
Therefore, the overall time complexity of the EETBIgorithm is OY[%), whereV is

the number of tasks in a parallel task set.

5.6 Simulation Results

In this section, we evaluate the effectivenessefdroposed EETDS and HEADUS

scheduling algorithms.

5.6.1 Simulation Metrics and Parameters

We conducted extensive experiments using Gausdiamnn@&tion and Fast Fourier
Transform applicationsin addition, we compare EETDS and HEADUS with two
existing scheduling algorithms: the Non-DuplicatiSBoheduling algorithm (NDS) and
the Task Duplication Scheduling algorithm (TDS). \&leo compare our algorithms
with a baseline algorithm: Energy-Efficient Non-Digption Scheduling (EENDS). The
NDS, TDS and EENDS algorithms are briefly describetbw.

(1) NDS This a non-duplication-based algorithm (also knasvthe static priority-
based Modified Critical Path (MCP) algorithm [52}jth time complexity of Of?(logn
+ m)), wheren andm are the numbers of tasks and nodes, respectiNgs, which
does not duplicate any task, makes schedulingidesisising the critical-path method.

(2) TDS The TDS algorithm allocates all tasks that areaiwritical path to one

computing node. If tasks have already been dispdtdio other nodes, TDS only
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duplicates the tasks that can potentially shortéreduling length. TDS aims to generate
a schedule of a parallel application with the sésirschedule length.

(3) EENDS: To the best of our knowledge, EENDS ibaseline algorithm that
could not be found in the literature. In order tonprehensively understand the impacts
of grouping phase, we combine the second phaseuofatlyorithm with the NDS
grouping to form a new EENDS scheduling algorithm.

Table 5.3 Characteristics of experimental system parameters

Parameter s Value (Fixed) - (Varied)
Different trees to be Gaussian elimination, Fast Fourier Transform
Execution time of {5,4,1,1,1,1,10,2,3,3,3,7,8, 6, 6,20, 30 }-(random)

Execution time of Fast{15, 10, 10, 8, 8, 1, 1, 20, 20, 40, 40, 5, 5, ¥(Gndom)
Fourier Transform

Computing node type AMD Athlon 64 X2 4600+ with 85MDP (Type 1)
AMD Athlon 64 X2 4600+ with 65W TDP (Type 2)
AMD Athlon 64 X2 3800+ with 35W TDP (Type 3)

Intel Core 2 Duo E6300 processor (Type 4)

CCR set Between 0.1 and 10

Computing node Environmentl:| Environment2:| Environment3:| Environment4:

heterogeneity #of Type 1: 4| # of Type 1: 6| # of Type 1: 5| #of Type 1: 7
# of Type 2: 4| # of Type 2: 2| # of Type 2: 3| #of Type 2: 1
# of Type 3: 4| # of Type 3: 2| #of Type 3: 3| #of Type 3: 1
#of Type 4. . | #of Type 4.1 | #of Type 4:! | #of Type 4.

Network energy 20w, 33.6W, 60W

The basic yet important method we used in our exysrts is called OTOP (Once
Tuning One Parameter). Specifically, in each expental study we only vary one
parameter while keeping the other parameters umggthrBy tuning one parameter at a
time, we are allowed to clearly observe its impactslusters and easily analyze system
sensitivities to this specific parameter. Importaystem parameters tuned in our
experimental studies include Communication-to-Cotapon Ratio (or CCR for short),

network heterogeneity, and computing heterogeneity.
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Note that the CCR value of a parallel application @ heterogeneous cluster is
defined as the ratio between the average comminncaost of|E| messages and the
average computation cost wfparallel tasks in the application on the giverstdu with
m heterogeneous computing nodéarmally, the CCR of an applicatiofT, E) is

expressed by Eq. (22) as below.

1 L& 1 m m S 1 n n m m %
ZZ( P Jj _ZZ(Z > 'J
CCRT, E) - | E | i=1 j:]:.L rnr(ml ]: u=1v=1v#£u buv — | E | Im ]:l-) in:l j::.] u=1v=1yv#u buv (20)

Generally speaking, communication-intensive appbes have high CCRs, whereas
CCRs of computation-intensive applications are low.

Table 5.3 summarizes the configuration parametérsiraulated heterogeneous
clusters used in our experiments. On the right hsidd of each row in Table 5.3,
parameters in the first part are fixed, whereasampaters in the second part are varied or
randomly generated using uniform distributionsotder to illustrate the heterogeneity
of computing nodes, we choose to test four hetereges cluster computing
environments, in which the numbers of four typesafmputing nodes are different in
processors. The last row in Table 5.3 represemsn#diwork heterogeneity by setting
various energy consumption rates. Figure 5.11 shdlwes energy consumption
parameters, CPU speed parameters of different tgpesocessors used in computing
nodes. All these data comes from the latest tegporte of Xbit Lab

(http://www.xbitlabs.com). Figure 4.6 depicts the task graphs of paralpgliaations

used in our simulation.
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CPU Power Usage, Idle (C'n'Q and EIST Enabled), W

a 5 0 13 20 25 kL]

Athlon 64 X2 4600+ 35W
Athlon 64 X2 4600+ 85W
Athlon 64 X2 3300+ 35W

Core 2 Duo EG300

(a) CPU Power Consumption Rate (Idle)

CPU Clock Speed, GHZ

Athlon 4600+ 85W

Athlon 4600+ 65W

Athlon 3800+ 35W

Core2 Duo E6300

CPU Power Usage, S$'n'M (CPU Burn), W

a 20 40 60 30 100 120

Athlon 64 X2 4600 + 85W

Athlon 84 X2 4600 + 85W

Athlon 84 X2 3300+ 35W

Core 2 Duo ES300

(a) CPU Power Consumption Rate (Busy)

Test platform for CPU energy consumption was built using
ASUS M2N32-SLI Deluxe mainboard based on Nvidia
nForce 590 SLI chipset, 1GB DDR2-800 SDRAM,
PowerColor X1900 XTX 512MB graphics card and Western
Digital Raptor WR740GD HDD. The processor was cooled
down by Zalman CNPS9500 AM2 air cooler. Intel Core 2
Duo E6300 processor was built using ASUS PSW DH
Deluxe mainboard on Intel 975X chipset. The system was

‘ also equipped with the same graphics card, memory and hard
3 disk drive. The CPU was cooled down with a similar air-
cooling solution from Zalman — CNPS9500 LED.

(c) CPU Clock Speed (Unit: GHZ) (d) Test Environment Parameters

Figure5.11 Parameters used in simulation (data from test report of Xbit Lab)

5.6.2 Experimental Resultsfor Gaussian Elimination

In this subsection, we evaluate five schedulingo@lgms using the Gaussian
Elimination application on a heterogeneous gridguFé 5.12 shows the impacts of CCR
on energy dissipation of the cluster running thei$s&n Elimination application. Five
observations are evident from this group of expents. First, the energy consumption
of Gaussian Elimination under all the five schedglschemes is very sensitive to CCR.
Second, EETDS and HEADUS provide noticeable ensayyngs compared with the
TDS and NDS algorithms. Third, NDS outperforms TD@h respect to energy
conservation when the CCR values are small. HowéMes is superior to NDS when
CCR becomes large (e.g., CCR is greater than oalegu4). Fourth, EETDS and
HEADUS work well in all these four heterogeneousstér computing environments.

These results demonstrate that EETDS and HEADUS® baerall better performance
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compared with the other three and HEADUS is the leeergy-efficient scheduling
algorithm among the five examined schemes. Last, ethergy savings exhibited by
EETDS and HEADUS become more pronounced with tloeeasing values of CCR.
These results indicate that with respect to eneamservation our algorithms are more
appropriate for communication-intensive applicasioas opposed to computation-

intensive applications.
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Figure5.12 CCR sensitivity for Gaussian when Net_Energy=33.6

Since our algorithms are designed for heterogenapids, we tested energy
dissipation in the four different environments, ahhare shown in Table 5.3. Figure 5.13
illustrates the impacts of the computing heteroggnen grid computing platforms.

First, we observe that EETDS and HEADUS can corsemere energy in E1 and E3
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(see Figs. 5.13(a) and (b) compared with E2 andqsEé Figs. 5.13(c) and (d), from
which we can draw the conclusion that less enesgyonsumed by clusters with more
energy-efficient computing nodes. Second, the cdimguheterogeneity has significant
impacts on the energy efficiency of EETDS. For egeanwhen CCR equals to 0.1 in
the four clusters, the EETDS algorithm reduces ggn@onsumption (compared with
TDS) by 38.5%, 49.1%, 48.7%, and 51.7%, respegtivEhese experimental results
indicate that EETDS and HEADUS can conserve everereaergy for heterogeneous
clusters that are comprised of energy-consumingpecimg nodes. Third, Figure 5.13
shows a similar performance trend that EETDS and\BMES significantly conserve

energy in overall because TDS consumes huge envengn CCR is small and NDS
consumes more energy when CCR is large due to ighe dnergy dissipation in the
network interconnections.

Next, let us quantitatively show the impacts ofwark heterogeneity on the
performance of these five scheduling algorithmsthis group of experiments, we vary
network energy consumption rates. Three networkggneonsumption rates are chosen:
20W, 33.6W, and 60W. It is worth noting that thékeee energy consumption rates

represent real-world network interconnections (Blgrinet) widely used in clusters.
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Energy Consumption under Different Energy Consumption under Different
Environments Environments
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Figure5.13 Computational nodes heterogeneity experiments

After comparing Figs. 5.14(a), (b), and (c), we gamantify the impacts of network
heterogeneity on energy dissipation exhibited by fike scheduling algorithms. For
instance, given computing environment 1, EETDS iosprove energy efficiency over
TDS by 27.9%, 27.9%, 27.8% when network energy wonion rate is 20W, 33.6W,
and 60W, respectively (CCR is set to 0.1). Howewdren CCR is large (e.g., 10), these
improvements in energy efficiency are scaled downl5.6%, 13.3% and 10.2%,
respectively. In this set of experiments we confiat the network energy consumption
contributes a whole lot to the grids’ total eneapnsumption when CCR is large. Last,
we conclude that NDS is not suitable for commumacatntensive parallel applications
because NDS has schedule lengths significantlyeasgd when communication

overheads are high.
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Finally, we illustrate the energy threshold semgiti of HEADUS algorithm in
Figure 5.14(d). We did this simulation by settihgeshold as 100J, 500J and 1kJ under
different CCRs in environment 4 when Net_Energystonption rate is set to 60W. Our
conclusion is that energy threshold does affect gadgormance of HEADUS. More
specificallyy, HEADUS is very sensitive to thresholespecially when the energy

consumption of related CPU and links is comparalille the energy threshold.
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Figure 5.14 Network heter ogeneity and threshold sensitivity experiments
5.6.3 Experimental Resultsfor Fast Fourier Transform

The goal of this group of experiments is to compheeperformance of the proposed
EETDS and HEADUS algorithms with the NDS, TDS andANDS algorithms with
respect to energy conservation under the FFT agpit. First, we are focused on
relationships between CCR and energy consumptiaheoFFT application. Figure 5.15

plots total energy consumption of the four hetenegeis clusters running FFT. CCR is
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gradually varied from 0.1 to 10. Figure 5.15 shdhet the total energy consumption
caused by the FFT application becomes more seadibivVCCR when CCR is greater
than 2. Compared with the TDS algorithm, EETDS eovss approximately 46% and
31% energy when CCR is small and large in envirarinrde Accordingly, HEADUS
conserves roughly about 47% and 17% respectivelgo,AEETDS and HEADUS
outperform NDS with 17.5% & 19.5% for small CCRsdaB4.7% & 20.5% for big
CCRs. Therefore, we can see that HEADUS is moreo@p@ate for computation
intensive application and EETDS works better inhhigcommunication intensive
applications. When CCR is greater than 8, even EENBnhsumes more energy because

the first grouping phase in EENDS generates grdbps have high communication

overheads.
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Figure 5.15 CCR sensitivity for FFT when Net_Ener gy=20W
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Moreover, Figure 5.15 shows that when CCR is nethti small, energy
consumption under the TDS algorithm is noticeabfyhlr than those under the other
four algorithms. This is mainly because energy iga&sn in the network
interconnections is diminished with a small CCR.t Norprisingly, EETDS improves
energy efficiency over NDS up to 50% when CCRigdae.g., CCR = 10).

Now we evaluate the impacts of computing heterogenising the FFT application.
Experimental results in terms of energy efficierarg depicted in Figure 5.16. For all
four cluster computing environments, EETDS and HEADsignificantly improves
energy efficiency over the three alternative schiedualgorithms (see Figure 5.16).
These results coupled with the results plottediguffeé 5.15 confirm that regardless of
the heterogeneities and CCR values, our algorithencansistently the most energy-

efficient scheduling algorithm among all the fiveaenined schemes.
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Figure 5.16 Computational nodes heterogeneity experimentsfor FFT
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Figure 5.17 shows the impacts of network heterogyeina the energy consumption
experienced by the four scheduling algorithms. Canmg Figs. 5.17(a), (b), and (c), we
observe that the impacts of network heterogenedyahly dependent on CCR. Energy
consumption cased by network interconnections adctar the major portion of the

energy dissipation in the clusters under the camdihat CCR is large.
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Figure5.17 Network heterogeneity for FFT and schedulelength for Gaussian
5.6.4 Experimental Results of Schedule L ength

Schedule length is one the of most important peréorce metrics. Our algorithms
are conducive to conserve energy without signitigadegrading performance. In this

set of experimental results, we will evaluate thgpact to schedule length. Figure
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5.17(d) summarizes empirical results based on thes§an Elimination application.
Figure 5.17(d) reveals that both EETDS and HEADUS&veh only a marginal

performance degradation compared with TDS. Thparsially because the four types of
processors used in the computing nodes consume energy if they run at full speed.
Therefore, EETDS and HEADUS are forced to sacrifiegformance to some extent by
allocating parallel tasks to energy-efficient corpg nodes. Although EETDS and
HEADUS increase schedule length by an average o&8&010% compared with TDS,
EETDS and HEADUS do conserve energy by an average3286 and 34%.

Nevertheless, the performance degradation problean be remedied by the
advancement of hardware technology (e.g., high €Rphcity and high CPU energy

efficiency).

5.7 Summary

In this chapter, we addressed the issue of allegatnd scheduling tasks of parallel
applications running on heterogeneous grids in & ¥eaconserve energy without
adversely affecting performance. Specifically, wepgmsed two novel scheduling
algorithms called EETDS and HEADUS, which aim tokengéhe best tradeoffs between
energy savings and performance for tasks of paralfgplications running on
heterogeneous clusters. EETDS and HEADUS are dadignd implemented based on
the previous algorithms used in chapter 4 for hoenegus clusters. Both the EETDS
and HEADUS algorithms consist of two major phadasthe first phase, a grouping

method is employed to minimize schedule lengthpashllel applications. The goal of

95



phase two is to leverage energy-consumption paemdb achieve high energy
efficiency.

The experimental results show that compared witls TBDS and EENDS, EETDS
and HEADUS can significantly reduce energy consumnpin heterogeneous grids with

only a marginal degradation in performance.
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Chapter 6

Energy-Efficient Storage Systems

In the previous two chapters, we have addresse@rnbegy conservation issue for
high-performance cluster and grid systems througgrgy-efficient scheduling. These
scheduling algorithms primarily consider the energgnsumed by CPU and
interconnection. The significantly energy consunhgdstorage systems has not been
discussed.

In this chapter, we address the energy conservasisue for large-scale storage
systems by proposing buffer disk based architecimd designing energy-aware
resource management strategy.

The rest of this chapter is organized as follows.séction 6.1, we present the
motivation of this study. Section 6.2 illustratdee tbuffer-disk based parallel disks
architecture. In section 6.3, we demonstrate tha&t-based load balancing strategy.
Mathematical models for calculating the power afafial storage systems are explained
in section 6.4.The experimental environment andukation results are presented in
section 6.5. Finally, section 6.6 will summarize fhrimary contribution of this chapter

and future research directions.
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6.1 Motivation

Storage systems are considered as one of the m@gogy consumer in most high
performance computing platforms. That is mainly éase most high-performance
computing servers have to storage and process yeasdaia. Historically, tape libraries
are preferred over disk arrays for massive stoemy&ronments, in large part due to the
capacity and cost differential between tapes askisdiOver the last decade the original
tape systems have been gradually replaced by eladiBk systems because thfe
continuous expansion of disk capacity and contisudrop of disk price. However,
large-scale parallel storage systems consume mignifamount of energy. A recent
industry report shows that storage devices acclmuralmost 27% of the total energy in
a data center [40]. Therefore, new technologieaded on the design of energy-efficient
parallel storage systems are highly desirable.

In this chapter, we present a buffer disk (BUD $bort) based architecture to build
energy efficient parallel storage systems. The coadea of BUD is simple and
straightforward. To most people, it is common setisg leaving a light bulb on at
daytime is a waste of energy. The same thing hapgeme keep the disks on when it
does nothing. It makes no sense that we still féwde idle disks power, without
producing any useful work. The primary design gafaBUD is to conserve energy by
serving most of the requests in a small numberdfieb disks and turning as many idle
disks as possible to a low power mode. Neverthetass potential problem of the BUD
architecture is that a limited number of bufferkdisnay easily become the bottleneck.

Worst case access patterns can direct all reqtesissingle buffer disk, resulting in
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arbitrarily large delays for very small arrival @at Therefore, we also designed the heat

based load balancing strategy for BUD in ordemgpriove the performance.

6.2 Buffer-Disk Architecture

The buffer disk architecture (see Figure 6.1) csissof four major components: a
RAM buffer, m buffer disks,n data disks, and a buffer-disk controller. The butfisks
temporarily cache the requests for the data diBksa disks remain in low power mode
unless a read request misses in the buffer digkeomwrite log for a specific data disk
grows too large. The buffer-disk controller is theain” of the whole system, which
contains the energy-related reliability algorithnogta partitioning algorithms, data
movement/placement strategies, and prefetchindegies. Our ultimate objective in
this research is to conserve more energy withowersely affecting the performance of
the disk system. More specifically, the controfienves to move the frequently accessed
data from data disks into buffer disks. This alloags many data disks as possible to
switch into low-power modes. The rationale behihid strategy relies on the fact that
only a small percentage of the data is frequentlyessed in a wide variety of data-
intensive applications [59]. To achieve this goat, proposed the heat-based algorithm
to dynamically balance the workload. This algoritlaias in avoiding the potential
“traffic jam” caused by over loaded buffer diskélere we want to note that all our
solutions and experimental results illustrated he following sections are primarily

based on read requests.
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Figure 6.1 The buffer disk architecture
6.3 Heat-Based L oad Balancing

To conserve energy, most data disks will run in lthe power state and all the
traffic will be directed to a limited number of lbeif disks. This can potentially make the
buffer disks overloaded and they may become thesybottleneck and degrade the
system performance. Load balancing is one of th& kelutions for the inherent
shortcoming of the BUD architecture. Basically,rthare three types of load balancing
strategies called non-random load balancing, rant@ad balancing, and redundancy
load balancing. Sequential mapping belongs to mmalom load balancing because the
buffer disks have fixed mapping relationship wigfesific data disks. The round-robin
mapping is a typical random load balancing strategallocating data to each buffer
disk with equal portions and in order. Redundama@d|balancing strategies for storage
systems include EERAID [60], eRAID [61], and RIMAGB2]. In this section, we will

propose a heat-based load balancing strategy, wdleh belongs to random load
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balancing strategy. The primary objective of ouatstlgy is to keep all buffer disks as

equally loaded as possible and to minimize theallvegsponse time of all requests.

6.3.1 A Concrete Example

Before we start discussing our proposed heat-bassdtl balancing algorithm, we
will demonstrate a concrete example. In it somefdoudlisks are over loaded, thus
degrading the performance of the whole system.

Suppose we have 15 requests cached in the RAMrbaifie they are going to be
dispatched to different buffer disks by the corémol Requests have different colors,
which represent that they will access differentadbtocks. For example, request
1(white) will access data block 1 (white) existimgdata disk 1 and request 6 (green)
will access the data block 6 (green) existing itaddisk 6. Figure 6.2 illustrates the
dispatching results of the sequential mapping &lgor, which is a typical non-random
load balancing strategy. In the sequential mappirategy, a buffer disk will only cache
the data coming from specific data disks in a setjaleway. For instance, the data in
data disk 1 and data disk 2 will only be copiedhtidfer disk 1 and similarly, buffer disk
3 will only cache the data coming from data dis&rsl data disk 6. Figure 6.2 shows
that the three buffer disks are not well load bedghbecause buffer disk 1, 2, and 3
serve 9 requests, 3 requests and 3 requests ligspecDbviously, buffer disk 1 has
become the bottleneck whereas the other two bufifgks are only slightly loaded.
Round robin mapping is a typical random load balamstrategy. Figure 6.3 illustrates
the scheduling results of the round robin mappingyhich data blocks are cached to

the buffer disks in a round robin way. We can dest buffer disk 1, 2, and 3 are
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allocated 7 requests, 5 requests and 3 requegisctagly. Although we get better
results as compared to sequential mapping, thréerhiisks are still not well balanced.

It is highly possible that buffer disk 1 could cayserformance degradation when more

requests are processed.
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Request Queue

RIS
Ri4
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Figure 6.2 Allocation results of sequential mapping strategy
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Figure 6.3 Allocation results of round-robin mapping strategy
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6.3.2 Heat-based L oad Balancing Algorithm

In contrast with sequential and round robin map@lyprithms, we proposed a heat-
based mapping strategy to achieve load balancing.basic idea of heat-based mapping
is that blocks in data disks will be mapped to éuffisks based on their heat. Our goal
is to make the accumulated heat of data blocksatkal to each buffer disk the same or
close to this ideal situation. In other words, temperature, or the workload of each
buffer disk should be the same. The temperatuie lmiffer disk is the total heat of all
blocks existing in the buffer disk. For examplew# suppose all blocks have the same
data size, the heat of blocks 1-6 is 5, 4, 1, 2nH, 2 respectively. Therefore, block 1 is
cached to buffer disk 1, block 2 and 3 are copeetuffer disk 2 and block 4, 5 and 6
are mapped to buffer disk 3. With this mappingtémaperature of each buffer disk is 5.

Figure 6.4 depicts the dispatching results of xatbased load balancing strategy.
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Figure 6.4 Allocation results of heat-based mapping strategy
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To clearly describe our heat-based load balanciggrithm, we define the key
parameters as follows.

Access Frequency: times a data block is accessed within a spectie tinit.

Heat weight: the ratio of requested data size and standardsdsgg1MB)

Heat: the multiplication of access frequency and heaghitei

Temperature: the accumulated heat of all data blocks existing luffer disk

The heat could be used to measure the populargydafta block and the temperature
clearly shows how busy a buffer disk is. To caltukhe heat more accurately, we need
to consider the impact of block size. A large blogike should have higher heat
compared to a small block with the same accessiémry. This is due to the fact that
the system will spend more time to complete thparse operation for the larger block.
In other words, the larger blocks should have hidieat weight.

Since our algorithm is executed online, dynamickirag of the heat of blocks is
crucial. We implemented two strategies to dynarhjcédack the heat. In the first
strategy, the controller will snapshot the fiksequests of the request queue and run the
heat calculation function. Once tkaequests are captured, they will be removed from
the main request queue in the memory. We call tlkessguests a shapshot request
window and this window will be the input of the 4@sed load balancing algorithm.
However, the snapshot window strategy is only blatdor bursty request patterns but
not for sparse request patterns. When a sparsesepgattern is encountered, it may take
too long to collect a snapshot windowlofequests. The response time suffers if we do
not serve the requests until &lrequests ready. Therefore, we designed a second

strategy called the observation time window stratdg this strategy, the controller will
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serve the requests that arrive within a specifiseobation time, T seconds, no matter

how many requests arrive. That means, the maximaiting overhead for each request

isT.

1. Input: the request window ; /* requestdow will be updated periodically */

2. for each unique target block in the queue [* gacjuest has a target block to be acces
*/

3. AF = Access_Frequency_Calculation() ; * adte the block access
frequency*/

4, HW = accessed block size/ standard block size; [*calculate the heat
weight*/

5. heat = AF * HW; [*calculate the heat */

6. sort the data blocks based on heat and save theimkiist_Block; /* first block has the
highest heat */

7. sort the buffer disk based on current temperatueeltinklist_Buffer ;/* first disk has lowest
temperature*/

8. pointer p_buffer = the first buffer disk in the kirst_Buffer;

9. pointer p_block = the first block in the Linklistldgk;

10. pointer t_buffer ; /*t_buffer points to the buffdisk which have the copy of target block*/

11. for each block in the Linklist_Block

12. if (p_block.found = = false) /* the targdobk cannot be found in buffer
disks*/

13. if (p_buffer. free = = true) [*dltandidate buffer disk has enough space*/

14. wake up the corresponding data dis# aathe the data;

/* The data blocks within the batch pteféng window will be copied to the buffer disk

p_buffer;

15. dispatch all requests accessing p_kiogk buffer;

16. recalculate and update the informatibblack heat and buffer disk temperature ;

17. else /* the first candidate buffer disk Imasspace*/

18. if (p_buffer.next = empty)

p_buffer ++; /* seek another candidate buffektfi

19. go to setp 12;

20. else /* all buffer disks are alreadi*fu

21. reset p_buffer to the first buftesk in the Linklist_Buffer;

22. data_replace_function(p_buffe)replace existing data blocks using LRU
algorithm */

23. dispatch all requests accessindagklo p_buffer;

24, recalculate and update the inforomadf block heat and buffer disk temperature |

25. else /* p_block is found in one buffer disk wffer */

26. dispatch all requests accessing p_kiotkbuffer ;

27. recalculate and update the informatibblack heat and buffer disk temperature ;

Figure 6.5 Heat-based load balancing algorithm
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Figure 6.5 outlines the pseudo code of the heagebbmad balancing algorithm. We
should note that the request window in the firsielicould represent the snapshot
window or the observation time window. This algamit will periodically collect the
requests waiting in the queue, analyze the tardmtkbof each read request, and
calculate the heat of each unique block. If thgaablock cannot be found in the buffer
disk, the controller will send a data miss commartds will wake up the corresponding
data disk and copy the block to the buffer diskt thas the lowest temperature. In a
special case, the selected buffer disk may not fraeespace to store a new data block.
The controller will seek the next buffer disk wihtemperature that is higher than the
initial buffer disk selected, but still lower thamy other buffer disk. In the worst case,
no candidate buffer disk will be found because lalffer disks are full. A data
replacement function based on the LRU algorithm d executed to replace some
existing data blocks. If the target block has algeheen cached in one of the buffer
disks, that buffer disk will serve the corresporndiequest. Once the algorithm has
made the decision how to dispatch these requdstsbliock heat and buffer disk
temperature will be recalculated and updated aaugiyd Since this is an online
algorithm, the decision made at the current timeiogerelies on the heat and

temperature information collected at the last tpeeod.

6.4 Energy Consumption M odels

In order to compare the energy efficiency of thelBakchitecture with disk arrays
without buffer disks, we define the energy consuamptnodel in this section. As we all

know, the states of a disk (either a buffer dislaatata disk) include active, sleep, idle,
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or shut down. Some modern disks even have diffezartgy consumption modes for
the active state (different rotation speeds), instudy we only consider the active, idle,
and sleep states in this study to simplify the fob The core of our power model used
in our simulator is a summation of all power statadtiplied by the time each power
state was active. In addition, the power statesitienm overhead is also considered and
added to the total energy consumption of BUD. Muezpwe suppose the buffer disk
will never enter the sleep state. Therefore, thig¢ebulisks only have two states, active
and idle. Similarly, the data disks will either hetive when they are copying data to
buffer disks or sleeping when no data access igined In what follows, a series of
functions are presented to formally illustrate hwer calculate the energy consumption
of the BUD architecture. The calculation for traalal parallel disk arrays is trivial and
ignored here.

We denote the energy consumption rates of the didlen they are in active, idle
and sleep mode Waciive Pidle, andPsieep respectively. Similarly, [€Tactive Tidle aNdTsieep
be the time intervals when the disk is in the agtidle and sleep states, respectively.
Hence, the energy dissipatid.ive Of the disk when it is in the active state can be

T,

active *

written asP,

active

Similarly, the energ¥iqge of the disk when it is sitting idle and
the energyEsieep Of the disk when it is sleeping can be expresse®a [T, and

Peer LT,

sleep — sleep

respectively. In addition to that, we denddg as the energy consumption

overhead when disks transit from one state to amna@hd N indicates how many times

a disk transits its power state. Now the total gneonsumed by each buffer disk can be
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E = xN. +E. . +E
Calculated as buffer Etr tr active idle (21)
= Etr X Ntr +P, D_ + I:)idle EI-idle

active — active

In a similar way, the total energy consumed byhaiata disk can be calculated as

+E
T,

active

Edata = E(r X Ntr + Eactive
= Etr X Ntr + P

active

sleep

+P

sleep

T (22)

sleep
Although we use the same tefiy in both equations, the value &f is different
because the energy overhead for transitions bettieeactive, idle, and sleep states are
different. The energy values for each of the presip mentioned transitions are made
explicit in Table 2. The time intervalie When the disk is in the active state is the sum

of serving times of disk requests submitted todis& system.

active = z-rservice(i )’ (23)
i=1

wheren is the total number of submitted disk requests, Bg,.(i) is the serving

time of theith disk requestT,

service

i ( xan be modeled as

Toervice(l) = Tseerli) + Tt (i) + Tans () (24)
where TeeekiS the amount of time spent seeking to the desisgichder, Ty is the
rotational delay andyfnsis the amount of time spent actually reading frammvriting to
the disk.
Suppose there are a total of m buffer disks andta disks in the BUD parallel

storage systems, now we can quantify the totalggneith the equation below

Etotal = i Ebuffer(i) +i Edata(i) (25)
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6.5 Simulation Results

In this section, we present the performance evialnadf the BUD parallel disk
system and the heat-based load balancing algonmfuposed above. To simulate the
BUD architecture, we implemented our simulator,lezhl BUD_Sim, using Java
language. We tried our best to consider and incgatpaas many details of real disks as
possible. For example, we calculate the seek tsne r@on-linear function (Table 6.1) of
the seek distance using the seek-time-versus-distaurve presented in [63].

Table 6.1 Seek time calculation

Seek distance Seek time (ms)
< 616 cylinders 3.45 + 0.59%/d
> 616 cylinders 10.8 +0.012d

In addition, we have implemented a load generattvich can generate synthetic
workloads according to specified parameter distrdms, or analyze and filter real
traces and feed them as the input to BUD_Sim. Uslieggenerator, we could easily
control and systematically tune all relevant paremseof a workload based on our
evaluation requirements.

Another important decision for implementing BUD_Simthe type of hard disk
drives we should simulate. We believe that the dyuffisks should have higher
performance (e.g. short seek time, high rotatioeedp compared with data disks.
Consequently, buffer disks are more expensive avst bigher energy. It is still
worthwhile to use higher performance buffer disksduse the number of buffer disks is

limited compared with the number of data disks. Wi# have an overall optimal
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performance/cost rate. In BUD_Sim, the high-perfance IBM disk, IBM 36215

Ultrastar, serves as the buffer disk and the loviopemance disk, IBM 73LZX Ultrastar,

serves as the data disk. Table 6.2 illustratesi¢hailed parameters of these two types of

disks, which are from IBM manuals and power measerdgs published in [64]. In

Table 6.3, we summarize the important parameteesd tave been used in our

simulation.
Table 6.2 Hardwar e characteristics of disks
BM 36215 IBM 73LZX Ultrastar
Parameters Ultrastar
(high perf) (low pert.)
Standard interface SCSI SCSI
Number of platters 4 2
Rotations per minute 15000 10000
Average seek time 3.4 ms 4.9 ms
Average rotation time 2 ms 3 ms
Transfer rate 55 MB/sec 53 MB/sec
Power (active) 13.5W 9.5W
Power (idle) 10.2W 6.0 W
Power (sleep) 2.5W 1.4W
Energy (spin down) 13.0J 10.0J
Time (spin down) 15s 1.7s
Energy (spin up) 135.0J 97.9J
Time (spin up) 109s 10.1s
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Before the simulation results are discussed, weflgroutline the baseline parallel
storage system and load balancing algorithms. Hreyused for comparison with our
proposed BUD architecture and heat-based load talaralgorithm. In section 6.3.1
and 6.3.3, where we compare the energy consumptidnresponse time, the baseline
parallel storage system has no buffer disks. Akdirives greedily serve the requests in
order to shorten the response time, i.e. disks balye active and idle modes and will
never sleep. Therefore, the energy and time ovdrbhaased by spin-up and spin-down
could be avoided. In section 6.3.2, the other tweetine algorithms, called sequential
mapping and round robin mapping, are compared agdire proposed heat-based
mapping algorithm. Please refer to section 6.2rlnfiore detailed information about
these two mapping strategies.

Table 6.3 Important parameters

Parameters Range/Value
# of requests: {2000,5000,10000,20000}
# of buffer disks 3
# of data disks 30
data block size {64KB, 1MB, 4MB, 64MB}
averageinterval
2.5s
(light load trace)
averageinterval
0.5s

(heavy load trace)

6.5.1 Evaluation of Energy Consumption
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This set of experimental results aims at evaludtiegenergy efficiency of the buff
disk based parallel storage systems. To fairly ammghe results, we generated |
executed a large number of requests and simulatedlbaik reads (average data siz
64MB) and small reads (average data size is 64KBJure 6.6and Fiuure 6.7 plot the
total energy consumption of Mbuffer and HeaBUD running 2000, 5000, 10000, a
20000 large read requests and small read request®atively

There are three important observations here. First, BUD can significantl
conserve energy compared with -Buffer parallel storage systems. Second, the r
requests BUD serves, the m(potential power savings is revealed. For exampléDt
outperforms NaBuffer in terms of energy conservation by 75.83%,89%, 80.18Y%
and 81.16% for 2000, 5000, 10000, and 20000 lazgds respectively. This is expec
because more requests lead to mopportunities for BUD to keep the data disks
sleep mode. Third, BUD performs better for smadid® (average 84.4% improveme
than large reads (average 78.77% improvement).rdtenale behind is that BUD wi

consume more energy when moving largta blocks to buffer disk
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Figure 6.6 Energy consumption for largereads
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Figure 6.7 Energy consumption for small reads
6.5.2 Evaluation of L oad Balancing

In this section, we will evaluate the load balagciability of the heat-based
algorithm. Please note that there are actuallylenvels of load balancing in real parallel
storage systems. The first level is memory cachiieg,the main memory could cache
the popular disks. The second level is buffer adigghing. In order to study the effects
of load balancing in the buffer disks, we supposelata are cached in the memory.

Recall that the temperature of a buffer disk cleaHows how busy it is. Figure 6.8
records the temperature of three buffer disks wivenrun the simulation for 1000
requests in BUD. From Figure 6.8, we can see tmathree temperature curves merge
together most of the time. This means that theethmaffer disks are almost equally
loaded most of the simulation time. In order tonitly the information hidden in Figure
6.8, how the dynamic load balancing works, we gletinitial stage, intermediate stage,
and final stage of the temperature tracking trac€&igure 6.9, Figure 6.10 and Figure

6.11. At the initial stage, the three buffer digke not load balanced. Buffer disk 2 is the
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busiest disk and buffer disk 1 is lightly loadedhefefore, the heat-based algorithm will
keep allocating requests to buffer disk 1. We amthat the temperature of buffer disk
1 keeps growing and it catches buffer disk 3 fisdter that, the temperatures of buffer
disk 1 and 3 cross-rise for a while and then thatglc buffer disk 2. At this point, the
system is load balanced for the first time. Figér&0 shows that the whole system is
perfectly load balanced in the intermediate stageabse the temperatures of three
buffer disks rise in turns. Interestingly, we fimdFigure 6.11 that the three temperature
curves are not as closely intertwined in the fistéhge when compared to the
intermediate stage. This could be explained by fdet that the heat-based load
balancing might not be that efficient when all dalacks that are requested are already
present in the buffer disks. In other words, ifediadmiss operation does not occur, there
is no chance for the heat-based algorithm to erecliberefore, the temperature of

buffer disks will be largely decided by the accpatern of coming requests.
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Figure 6.8 Temperaturetracking trace

114



Temperature

= = == Buffer Disk 1
e Buiffer Disk 2
Buffer Disk 3

Temperature Trace (Initial)

2000
1800
1600 -
1400 .
1200 - -
1000 > -
800 -
600 | 7
400
200
0

12 3 45 6 7 8 9 10111213141516 171819 20

Figure 6.9 Temperaturesin initial stage
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Figure 6.11 Temperaturesin final stage
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To compare the load balancing efficiency of segaénnhapping, round robin
mapping, and heat-based mapping, we simulated &@fiests with average data size of
4MB using these three mapping strategies. The sitionl results depicted in Figure
6.12 prove that the proposed heat-based mappitigeisnost efficient algorithm that
achieves load balancing. In addition, the randomppimy method (round robin
mapping) outperforms non-random mapping stratggeguential mapping) overall.

Load Balancing Comparison

7000 = Buffer Disk 1
6000

5000

4000 - - _
3000 -
2000 -
1000 - . I
y || || =

Sequential Mapping Round Robin Mapping Heat_based Mapping

m Buffer Disk 2
» Buffer Disk 3

Temperature

Figure 6.12 L oad balancing comparison
6.5.3 Evaluation of Response Time

Response time is one of the most important critdoaevaluate the BUD
architecture. This is because the buffer disk &echire leads to response time penalties.
This is especially true in the early stages of aklead when few data blocks are cached
in buffer disks. However, we believe that the perfance penalty in the early stage is
worthwhile as long as the system can provide quedponse times when the initial

caching stage is over.
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In order to accurately evaluate the response timgesimulated 25000 requests for
large reads (average data size 64MB) and smalkréadrage data size 64KB), which
are illustrated in Figure 6.13-6.16 respectiveljor each simulation, we first execute
20000 requests to complete the caching stage. titkr we execute 5000 more requests
to see whether or not the system can leveragesiponse time delay. Since the number
of sample requests is too large, it is difficult &amalyze the performance trend.
Therefore, we plot the trend line in each figutee(black line inside) to better analyze
the changing response time trend. The trend lingladed by calculating the average
response time of every 100 tasks and inserting Yhise into the trend line. For
example, if we have 5000 requests, the programcaitiulate 50 average response times

which will be the data points in trend line.
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Figure 6.13 Response time trace before training (64M B)
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Figure 6.14 Responsetimetrace after training (64M B)
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Figure 6.15 Response time trace before training (64K B)
Figure 6.13 and Figure 6.15 verify our predictidritlee response time delay in the

early caching stage. For example, we can see iré&ig.13 that the response time delay
rises up to 140s. However, we are very delighteditaess the performance improve
when more and more hot data blocks are cacheceiuffer disks. After the training
process, the average response time is very closkeet@erformance of a greedy No-

Buffer parallel storage system. For example, theragye response time of BUD shown
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in Table 6.4 is 1.219s for large reads and 0.0dsrwall reads. These numbers are in the
same level of No-Buffer parallel disk systems. Ve even predict that the BUD could
offer better performance than No-Buffer strategidsgher performance disks serve as

the buffer disk in the future.
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Figure 6.16 Response time trace after training (64K B)

Table 6.4 Average response time comparison

Average Response Time

training (64MB): 5.614s
after training (64MB): 1.219s
training (64KB): 0.767s
after training (64KB): 0.01s
NO-Buffer(64MB) 1.216s
NO-Buffer(64KB) 0.01s

119



6.6 Summary

In this chapter, we propose a buffer disk basediimcture for parallel storage
systems, or BUD for short, which can conserve gnésgallowing as many data disks
as possible running in low-power mode. A heat-badg@tamic data-caching strategy
was proposed to improve the performance of BUD itecture by achieving good load
balancing in buffer disk layer. We also analyze aminpare the impact of three
mapping methods, which are sequential mapping,daahin mapping, and heat-based
mapping respectivelyThese mappings are applied to the BUD architectorgauge
load balance, energy consumption, and performance.

The preliminary results have shown substantial g#éwat BUD can conserve more
than 80% of energy when compared with traditiorsabflel systems that do not employ
buffer disks. In addition, the average response toould be as good as the No-Buffer
parallel systems. For the future research work walalike to explore the impact of the
number of buffer disks and data disks to the systaraddition, we need to incorporate

traces from real-world applications to improve thasibility of our approaches.
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Chapter 7

Conclusions and Future Work

In this dissertation, we propose a general architecfor building energy-efficient
high-performance computing platforms and discuss plssibility of incorporating
energy-efficient techniques in each layer of theppsed architecture. In addition, we
have developed a series of energy-efficient algor#t for high-performancecomputing
platforms like tusters, grids and large-scale storage systeifigis chapter concludes the
dissertation by summarizing the contributions amdcdibing future directions. The
chapter is organized as follows: section 7.1 hgittb the main contributions of the
dissertation. In section 7.2, we concentrate on esduature directions, which are
extensions of our past and current research omgremputing for high-performance

computing platforms.

7.1 Main Contributions

Currently, more and more data centers face theggnaisis. This crisis appears to
be a mismatch between requirements and capabilideshe requirements side, to meet

application demands and the regulatory requiremedaeed to deploy more and more
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servers. During the years 2000-2010, the numbeyeofers is expected to grow by 6
times and the number of storage disks is expedegtdw by 69 times. Accordingly,

demands for energy use will significantly increadew to get enough power to support
future data center has become a serious problemobjective of our research is to find
possible and potential energy-efficient technigioeeduce power consumption of high-
performance computing platforms built in giant degaters. The main contributions are

summarized as follows:
» Architecturefor High-Performance Computing Platforms

As far as we have known, there is no existing gdranchitecture which is suitable
for most high-performance computing platforms. Esgé/, there is no previous
research have discussed the energy conservatioa efshigh-performance computing
platforms in the architecture level. We propose enggal architecture for high-
performance computing platforms and discuss theibibisy of incorporating energy-

efficient techniques to each layer of the propametiitecture (See Figure 3.1).
» Energy-Efficient Scheduling for Clusters

In the past few years, high-performance clustenge Haeen widely used to solve
challenging and rigorous engineering tasks in itrguand scientific applications. Due
to extremely high energy cost, reducing energy gomngion has become a major
concern in designing economical and environmentédigndly Clusters for many
applications. We propose two energy-efficient degaion-based scheduling algorithms
called EAD and PEBD for clusters. They aimed toussd energy consumption in
clusters while minimizing communication overheadsoxiated with parallel tasks.

Rather than just consider energy or performanceatgorithms strived to balance the
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scheduling lengths and energy savings by judiciotesplicating predecessors of a task
if the duplication can aid in performance with lied energy consumption. We
conducted extensive experiments using both symthietinchmarks and real-world

applications to prove the efficiency of these tigoathms.
» Energy-Efficient Scheduling for Grids

Grids are complicated heterogeneous super compupilagforms which can
simultaneously execute thousands of parallel tadksv to energy-efficiently schedule
those parallel tasks in complex heterogeneous gnmsronment is an open problem.
The objective of this study is to develop enerdieefnt data grids to provide
significant energy savings for data-intensive aggtions running on grids. We designed
a generic energy-aware scheduling framework fodsg@and proposed two energy-
efficient algorithms called EETDS and HEADUS. Inddin, we evaluated the
performance and energy efficiency of the propodgdrighms by conducting extensive

simulations.
» Energy-Efficient Storage Systems

With the tremendous development of human socielyors of data in the form of
knowledge and information is generated every dayortler to save and process these
massive data sets with high-performance, a largebeu of disks have to be operated in
parallel, which introduces a serious problem: hegergy consumption. To build
energy-efficient storage systems, we propose aebditk based architecture. In
addition, we design and implement correspondingg@naware load balancing strategy

for the buffer-disk architecture.
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7.2 FutureWork

In the course of designing and evaluating energgrawesource management
techniques for high-performance computing platfgrmvge have found several
interesting issues that are still unresolved. Hastion overviews some of these open
issues that need further investigation. These op&umes present opportunities for my

future research.
» Energy-Efficient Scheduling for Embedded Systems

Embedded/mobile devices are even more sensitipewer consumption due to the
limited battery life. | will extend my previous emgy-aware research to embedded
devices/sensor networks and evaluate previousitigms in terms of energy efficiency
in a more power sensitive environment.

* Energy-Aware L oad Balancing

The nature of load balancing is to equally spreadkwbetween many computers,
processes, hard disks or other resources in oodgettoptimal resource utilization and
decrease computing time. In order to do this, tha&roller or scheduler has to keep as
many resources active as possible. This will lead potential problem - huge energy
consumption. Now we are in a dilemma: increase uijinput means more energy
consumption while saving energy means system padoce degradation. It is expected
to propose a power-aware load balancing schemahwdiios at judiciously spreading

work in an energy-efficient way.

* Optimize Data M ovement
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I/O-intensive applications tend to have a huge arhot transferred data. Since the
transferred data may be moved from node to nod& wevement has a significant
impact on the overall performance of load balangotices. To alleviate such a burden
resulting from data movements, it is necessaryrap@se a predictive model to move
data without compromising the performance of agpions running on local nodes. The
new model should largely depend on data distrilytthe amount of data, data access
pattern, and network traffic.

* Dynamic Scheduling Strategiesin Grids

The performance of a large scale heterogeneoussystem is very sensitive to
various unforeseen and unplanned events that ggmehaat short notice, which include
but not limited to breakdowns of computers and cemcarrivals of new jobs. These
real-time events not only interrupt system operatjdut also have negative impacts on
job schedules made on the fly. Therefore, it ishlyigdesirable to develop adaptive
dynamic scheduling strategies which can handleethogredicted events. Multi-agent
techniques are promising approaches to buildingpdex) robust, and cost-effective
schedulers for the next-generation grid systemsaume multi-agents are autonomous,
distributed and dynamic in nature. The agent-baedmic scheduling strategy could
be a possible solution to generate robust schedoles complicated and dynamic

distributed computing environment like grids.
» ServiceLevel Agreement Research in High-Performance Clusters
It is desirable to develop high-performance cluster provide secure and reliable

services for various types of customer requestmgtdd to the systems. Various cluster

computing use cases have different requirementh ssgcexecution deadline, higher
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security, higher reliability, low cost etc. Theredoit is highly imperative to develop

widely accepted regulations at the high level.
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