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Directed by Vishwani Agrawal

To determine the quality that a set of gate delay tests provides for testing gate delay

faults, gate delay fault simulation must determine the minimum size detectable for detected

gate delay faults. The minimum size detectable is the minimum faulty gate delay that must

be present for the test to detect the fault. Given two tests that detect the same fault, the

test that detects the fault with a smaller size is considered a higher quality test for that

fault. When bounded gate delays are used, gate delay fault simulation involves bounded

delay simulation of the fault-free circuit and an evaluation of the faulty waveforms.

Whenever signals in a combinational circuit diverge from a fanout point and reconverge

later, the inputs to the reconvergent gate are correlated. In conventional bounded delay

simulation and gate delay fault simulation, these correlations are ignored. In this work, we

present a method for adding reconvergent fanout analysis to bounded delay simulation and

gate delay fault simulation. In bounded delay simulation, considering information about

how signals are correlated due to reconvergent fanout provides more accurate evaluation

of simulation waveforms than previous approaches that ignore this information. In gate

delay fault simulation, this correlation information provides more accurate evaluation of

v



the minimum size detectable for detected gate delay faults. Results for gate delay fault

simulation show that ignoring these correlations produces pessimistic calculations for the

minimum sizes detectable.
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Chapter 1

Introduction

As technology advances, manufactured VLSI devices are becoming more and more com-

plex. As complexity of devices increases, the testing of devices to ensure correct operation

becomes more and more difficult. Testing must not only ensure correct logical operation,

but must also ensure correct timing operation.

Manufacturing process variations (variations in threshold voltage, channel length, etc.)

and differences in operating environment (such as power supply and temperature variations)

result in delay values within a manufactured device that vary. This uncertainty in gate and

wire delays requires the delays within a circuit to be modeled as imprecise delays rather than

a simple nominal delay value. One model that allows imprecise gate delays is the bounded

gate delay model, where delays are lumped at gates, and a gate’s delay is assumed to be

somewhere between some minimum (lower bound) and maximum (upper bound) value.

However, analysis techniques using the bounded gate delay model often produce results

that are too pessimistic. As the uncertainty due to process variations increases, the need

for more accurate analysis also increases.

1.1 Problem Statement

The problem solved in this thesis is: A method to improve the accuracy for simulation

of gate delay faults in the presence of reconvergent fanouts.
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1.2 Contribution of Thesis

We have analyzed the inaccuracy in bounded delay simulation and gate delay fault

simulation when signal correlations due to reconvergent fanouts are ignored. A method

for reconvergent fanout analysis during bounded delay simulation of the fault-free circuit is

presented. The sizes of delay faults are an important parameter in determining the quality

that a test set provides for gate delay faults, so another method is presented to accurately

evaluate the minimum size detectable for detected gate delay faults in the presence of

reconvergent fanouts.

One paper describing this work was presented at the International Test Conference

2007 [13] and another was presented at the 17th IEEE North Atlantic Test Workshop 2008

[27].

1.3 Organization of Thesis

The thesis is organized as follows. In Chapter 2, we discuss a general background of

delay fault modeling, static timing analysis, and min-max delay simulation. In Chapter 3,

previous work in gate delay fault simulation and previous work in reconvergent fanout anal-

ysis during both bounded delay simulation and delay fault simulation are described. A

method for reconvergent fanout analysis during detection threshold evaluation is presented

in Chapter 4. In Chapter 5, a method for reconvergent fanout analysis in fault-free circuit

simulation is presented to further improve the accuracy in computing the detection thresh-

olds of detected gate delay faults. Conclusions and future work are discussed in Chapter 6.
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Chapter 2

Background

The objective of delay testing is to ensure that a manufactured design meets its timing

specifications. Defects that occur during fabrication of a VLSI device may increase circuit

delays, causing an error if a transition is prevented from reaching an output within the

clock period. Delay testing isolates those devices that will not operate within the designed

timing constraints from those that operate as designed. In order to examine a circuit’s

timing operation, a delay test must propagate signal transitions through the design, which

requires the application of vector pairs. The first vector of a delay test initializes the circuit

and the second vector produces the required transitions [14, 37].

The delay of a signal transition in a combinational circuit has two main parts: switching

delays and propagation delays. Switching delays are due to the input to output delay of

gates. The switching delay of a gate is the time it takes for the gate’s output to change after

a change on an input. Propagation delays are due to the delay along wires. The propagation

delay between gates is the time it takes a signal transition to travel from the output of a

gate to the input of a fanout gate [14, 24]. For the bounded gate delay model, delays are

lumped at gates, and a gate’s delay is assumed to be somewhere between a minimum (lower

bound) and maximum (upper bound) value.
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2.1 Delay Fault Modeling

Physical defects such as imperfections in materials or missing contact windows that

occur during device fabrication result in a difference between the chip’s implemented hard-

ware and it’s intended design. A fault is a mathematical abstraction at the function level

that represents physical defects and allows the development and application of analytical

tools. A fault model should provide high confidence that faulty devices will be isolated from

those that operate as indended by design [14, 37].

Some physical defects result in increased delays without causing an error in the device’s

logical function. If the increased circuit delay exceeds the intended clock period, the circuit

will fail to operate as designed. Such defects that effect the performance of the device

are modeled by a delay fault model. Three common fault models for delay faults are the

transition fault model, the path delay fault model, and the gate delay fault model [14, 37].

2.1.1 Transition Fault Model

The transition fault model [18, 56, 63] is a qualitive delay fault model where circuit

delays are often not even considered [37]. Each line in the circuit has two transition faults, a

slow-to-rise fault and a slow-to-fall fault, and it is assumed that the delay fault only affects

a single gate in the circuit. A slow-to-rise (fall) transition fault makes the falling (rising)

signal on that line slow [14, 37]. The transition fault model is used to model large delay

faults where the increase in delay due to the fault is assumed to be large enough to prevent

the transition from reaching the circuit’s outputs before the clock [14, 37]. To model small

delay faults, two types of models are common, the path delay fault model and the gate

delay fault model [13, 34, 52].
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2.1.2 Path Delay Fault Model

The path delay fault [40, 54, 58] models small delay faults, and is usually considered

to be closest to the ideal model for defects that increase circuit delays [37]. A path delay

fault occurs when the cumulative propagation delay, rising or falling, of a combinational

path exceeds a specified limit. A path is a connected chain of gates from primary input

to primary output, between two clocked memory elements (flip-flops), or from a primary

input to a clocked memory element. The length of a path is the sum of delays due to gates

and interconnects along the path. The major disadvantage of the path delay fault model is

that the number of paths can be very large in a circuit, and the number of path delay faults

can be exponential in the number of gates [53]. Therefore, testing all path delay faults in

a circuit is impractical. Often, only a subset of paths with a delay greater than a specified

threshold are considered [14, 37].

Research continues on the selection of a relevant set of path delay faults that should

be tested. In spite of sevral available results [44, 64], there is no accepted way of selecting

paths. Because of their large number, path delay fault simulation of sequential circuits is

a complex problem [8, 10, 11, 17]. For combinational circuits or for scan-mode sequential

circuits, efficient methods of simulation [26] and diagnosis [47] have been reported.

Although several path delay test generation systems have been reported [23, 48], sig-

nificant difficulties are encountered in this area. Tests generated with single-fault assump-

tion can be invalidated in the presence of multiple faults. Such tests are known as non-

robust [14, 25, 36]. Tests that cannot be invalidated by any arbitrary delays in the circuit

are called robust [40]. In general, it is found that no robust tests exist for many path delay

faults. Fortunately, it is possible to validate some, though not all, non-robust tests [19, 59].
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Such tests are known as validatable non-robust (VNR) tests. The problem of delay test

invalidation can also be reduced by finding tests that do not generate timing hazards. Haz-

ards are timing ambiguities in the transient behavior of a signal. The use of hazard-free

tests can improve the quality of delay testing and diagnosis [38, 57].

In view of the problems of path delay testing, as outlined above, we often derive

pessimistic inferences about the speed of the circuit [9, 50]. A contribution of the research

reported in this thsis is in reducing such pessimism.

2.1.3 Gate Delay Fault Model

The gate delay fault model assumes that a delay fault is lumped at a single gate [14, 37].

Unlike the transition fault model, the gate delay fault model is a quantitive fault model in

which circuit delays are considered [37]. A gate delay fault is modeled as an increase in the

input to output delay of a gate. The increase in delay due to a fault is called the size of the

fault, which is an important parameter in determining the ability of a test to detect gate

delay defects [14, 37].

The gate delay fault model has the advantages of the ability to model small delay defects

and the number of gate delay faults in a circuit is linear in the number of gates [14, 37].

Because of the single gate delay fault assumption, however, the gate delay fault model has

the disadvantage that tests derived for gate delay faults can fail to detect delay faults that

are caused by the cumulative delay of multiple small delay defects [37].

2.1.4 Segment Delay Fault Model

A delay model that strikes a compromise between the path and gate delay models is the

segment delay model [28]. In this model, faults on strings of gates within specified maximum

6



length (in number of gates) are considered. Thus, a unit length segment corresponds to the

gate delay model and an infinite length segment corresponds to the path delay model. In

practice, the segment length can be chosen from such considerations as spatial correlations

among gates and analysis complexity.

2.2 Static Timing Analysis

Static timing analysis is a vector-independent analysis of the timing behavior of com-

binational paths through a circuit [3, 29, 60]. Static timing analysis is usually used in the

design process before manufacturing to calculate the circuit’s worse-case timing behavior

and to identify the circuit’s critical path [20, 62, 66]. The critical path is the longest delay

combinational path in the circuit. The delay of the critical path determines the smallest

clock period at which the circuit can function correctly [14, 34].

Static timing analysis is included in the standard design flow of VLSI circuits and is

supported by commercial tools [6]. Its applications have been proposed for timing optimiza-

tion of synchronous sequential circuits at the functional clocking [43] and physical design [22]

levels. Though the analysis formally verifies the correctness of the timing behavior of the

design, it does not eliminate the need for delay testing. This is because no fabrication

process is perfect and errors and variations are introduced, requiring every manufactured

device to be tested.

A simple form of timing analysis may use fixed (or nominal) delays for gates. Delay

variations are anayzed by using either a statistical delay model [1, 5, 35, 42, 49, 62] or a

bounded delay model [12, 13, 16, 39, 55, 61]. In the research reported in this thesis we use

the bounded delay model.
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2.2.1 Slack

Static timing analysis is used to calculate the slacks of paths through the circuit. For

a path P with delay d, the slack of P is the quantity Tc − d, where Tc is the clock period.

Slacks are defined for a gate G as Tc−DG, where DG is the delay of the longest delay path

from input to output through G [32, 33, 34, 49, 51, 52]. For bounded gate delays, Iyengar et

al. [34] distinguish between two different calculations for the slack at a gate, the slack for

the design process and the slack for testing. For the calculation of slacks during the design

process, maximum gate delays are used when calculating the delay of the longest delay

path through gate G. The reason is that timing analysis during design has to ensure that

all outputs are stable before the clock, even if the delay for every gate is at it’s maximum

value. In testing, minimum gate delays are used to calculate the longest path delay through

gate G because testing should guarantee detection of delay faults. A test to detect a delay

fault has to ensure the fault will be detected without being masked by gate delays that are

decreased due to delay variations.

2.3 Bounded Delay Simulation

Delay simulation is a dynamic timing analysis that analyzes the timing behavior of

a circuit for a set of inputs and signal transitions. During bounded delay simulation of a

vector pair, two vectors, V1 and V2, are applied to the circuit’s inputs, and signal timing is

analyzed for the pair. After Vector V1 is applied, the circuit is assumed to have stabalized

before V2 is applied. Each gate G has two logic values, IV (G) and FV (G). IV (G) is the

initial value, which is the output logic value for gate G after vector V1 is applied, and FV (G)

is the final value, which is the output logic value after vector V2 is applied [37, 32, 34, 51, 52].

8



2.3.1 Simplified Signal Waveforms

The timing of a signal at the output of gate G can be represented using simplified

signal waveforms descibed in [15], where signal timing is represented using two quantities,

EA(G) and LS(G). EA(G) is the earliest arrival time for the output of gate G after vector

V2 is applied, and LS(G) is the latest stabalization time for the gate’s output after vector

V2 is applied. The waveform at the output of a gate G is at IV (G) before time EA(G), and

at FV (G) after time LS(G). Between times EA(G) and LS(G), gate G has an ambiguous

(unknown) value (X). During this ambiguity region, the waveform at the output of G can

have any number of pulses [13, 32, 34, 37, 51, 52].

Figure 2.1 illustrates bounded delay simulation waveforms. Minimum and maximum

gate delays are shown beside each gate. The output of gate C is at logic 1 before time

t = 1, and logic 0 after time t = 3. Due to process variations, the signal can change any

time between times 1 and 3. Between times 1 and 3, the output of C is ambiguous (X).

Similarly, the output of gate E changes from 0 to 1 sometime between times 2 and 5. The

output of E has the unknown value X in the ambiguous region between times 2 and 5.

9
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Figure 2.1: Min-Max Simulation Waveforms.
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Chapter 3

Previous Work

The first section in this chapter describes previous work on computing the sizes of

detected gate delay faults during gate delay fault simulation. The second section describes

previous work for reconvergent fanout analysis in both bounded delay simulation and delay

fault simulation.

3.1 Gate Delay Fault Simulation

Given a set of vectors, gate delay fault simulation is used to determine the quality the

set of test vectors provides for detecting gate delay faults in the circuit [12, 34, 37, 52]. In

order to detect a gate delay fault, the test must both place a transition at the fault site and

propagate its effect to an observation point. Therefore, testing a gate delay fault requires

two vectors: the first to set the initial value of the transition at the fault site, and the second

to both make the transition to the final value at the site and propagate the fault’s effect

to an observation point. For a rising (falling) transition, the first vector places a logic 0

(logic 1) at the fault site, and the second vector is a stuck-at-0 (stuck-at-1) test for the same

fault site [34, 52].

To determine the quality of a set of tests, gate delay fault simulation determines both

how many faults are detected and their minimum size detectable. The minimum size

detectable is the minimum faulty delay that must be present for the test to detect the

fault [21, 34, 52]. Given two tests that detect the same fault, the test that detects the

fault with a smaller size is considered a higher quality test for that fault. The minimum
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size gate delay fault that is guaranteed to be detected by a test is defined as the detection

threshold [34, 37]. A test is guaranteed to detect a gate delay fault if the size of the delay

fault δ is greater than the fault’s detection threshold for that test. The size of a delay fault

at a gate G is defined in [34] as the amount of faulty delay added to the earliest arrival time

of G (EA(G)). When a gate delay fault of size δ is present at G, the output of G transitions

after time EA(G) + δ [34, 37].

Figure 3.1 illustrates the detection threshold of a slow-to-fall gate delay fault on input

A in the example circuit of Figure 2.1. A slow-to-fall fault at A of size δ shifts the earliest

arrival time of A by δ time units. A delay of EA(A) by δ time units delays the earliest
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arrival times for gates C, E, F , H, and Y by δ time units. For the fault to be detected,

the size of the fault should be large enough to shift the output at Y far enough such that

the initial value of Y IV (Y ) is sampled at the sample clock. If output Y was sampled at

Ts = 12, a fault at A of size larger than 8 (δ > 8) is required to guarantee that IV (Y )

is sampled at time 12. Therefore, the detection threshold for the slow-to-fall fault at A in

Figure 3.1 is 8.

Iyengar et al. [34] describe a method to compute the detection thresholds of detected

gate delay faults. In this method, for every gate delay fault test (vector pair V1 and V2),

bounded delay simulation computes the simplified signal waveform values IV , FV , EA,

and LS to summarize gate output waveforms for the fault-free circuit, and gate delay fault

simulation computes information about circuit waveforms under the influence of a fault.

This information about faulty waveforms is compared to fault-free waveforms at circuit

outputs to determine the detection threshold of detected gate delay faults.

3.1.1 Fault-Free Circuit Simulation

The calculations for EA and LS to represent fault-free waveform timing are described

in [15, 32, 33, 34]. For a vector pair, EA and LS for each primary input, PI, is initialized,

and EA and LS for each gate is evaluated in one forward pass over the circuit. For a

primary input that has a transition, IV (PI) 6= FV (PI), EA and LS are both initialized to

the time at which the stimulus is applied to the input. If a primary input does not have a

transition, IV (PI) = FV (PI), it’s waveform is at a steady logic value, which is represented

by setting EA and LS to:

EA(PI) =∞ LS(PI) = −∞
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EA and LS are evaluated for all other gates using EA and LS values at the gate’s inputs.

For all inputs (i) to a gate G whose initial value (IV (i)) is a controlling input logic value

for G, EA is calculated as:

EA(G) = max{EA(i)}+minDelay(G)

If no input to G has an initial value that is a controlling input logic value for G, then for

all inputs (i):

EA(G) = min{EA(i)}+minDelay(G)

For all inputs to G whose final value (FV (i)) is a controlling input logic value for G, LS is

calculated as:

LS(G) = min{LS(i)}+maxDelay(G)

If no input has a final value that is a controlling input logic value for G, then for all inputs:

LS(G) = max{LS(i)}+maxDelay(G)

If these calculations result in EA(G) > LS(G), the output of G is at a steady logic value.

If this occurs, EA and LS are set to:

EA(G) =∞ LS(G) = −∞

to represent a steady logic value on the output of gate G.
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3.1.2 Fault Detection

For each gate delay fault simulated, each signal in the faulty circuit has a fault prop-

agating value, FPV , which is the signal’s value in the presence of a stuck-at fault at the

fault site such that the fault site is stuck-at it’s initial value [32, 34]. Therefore, simulation

of a gate delay fault at gate G at the fault site, FPV (G) is the initial value of G:

FPV (G) = IV (G)

At a gate G outside the cone of influence of the faulty gate, the waveforms are unaffected

by the fault. Gate G lies outside the cone of influence of the faulty gate if no directed path

exists from the output of the faulty gate to an input to gate G. In this case, FPV is set to

the gate’s final value:

FPV (G) = FV (G)

At a gate G inside the cone of influence, the FPV is evaluated using boolean logic on

the FPV s of its inputs. Gate G lies inside the cone of influence if a directed path from

the output of the faulty gate to an input to gate G does exist. Propagating the FPV s

propagates the fault effects through the circuit, and can be used to determine whether or

not a delay fault of any size can be detected by the test. If at an output, the FPV differs

from the output’s final value, the fault is considered detected by that test, and the fault’s

detection threshold determines the size required for detection [32, 34, 37].

To determine the detection threshold for a given delay fault f , a reference fault size,

ρ(G), and two reference times, RTa(G) and RTb(G), are evaluated for each gate G, which

provide timing information about the faulty waveforms. Certain assertions are made about
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the signal waveform at G. The logic value at a gate G for a given delay fault of size δ is

at FPV (G) between times RTa(G) and RTb(G) + δ, provided δ > ρ(G). If the size of

the fault is less than the reference size, the fault has no effect at the output of G, and the

waveform does not differ from the fault-free waveform [32, 34, 37, 52]. For a gate G, at the

fault site, FPV (G) is at IV (G) for the time between −∞ and EA(G):

ρ(G) = 0 RTa(G) = −∞ RTb(G) = EA(G)

and for a gate G, outside the cone of influence of the fault, FPV (G) is at FV (G) between

the times LS(G) to ∞:

ρ(G) = 0 RTa(G) = LS(G) RTb(G) =∞

For a gate G, inside the cone of influence of the fault site, if all inputs (i) have sensitizing

fault propagating values FPV (i), RTa(G) and RTb(G) are calculated as follows:

RTa(G) = max{RTa(i)}+maxDelay(G)

RTb(G) = min{RTb(i)}+minDelay(G)

To calculate the reference size, ρ(G), the value ω is calculated, which represents the

minimum delay at some input to G that overcomes the inertia of G so as to observe the

delay at the output of G:

ω = max{0, max{RTa(i)}+maxDelay(G)−min{RTb(i)}}
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The reference size for gate G is then:

ρ(G) = max{max{ρ(i)}, ω}

For a gateG, inside the cone of influence of the fault site, ifG has inputs with controlling

fault propagation values, an input i is chosen such that FPV (i) is a controlling input value

for gate G. RTa(G) and RTb(G) are then calculated as follows:

RTa(G) = RTa(i) +maxDelay(G)

RTb(G) = RTb(i) +minDelay(G)

ρ(G) = max{max{ρ(i)}, RTa(i) +maxDelay(G)−RTb(i)}

The detection threshold for a delay fault f (DT (f)) at a circuit output z is then:

DT (f) = max{ρ(z), Ts(z)−RTb(z)}

Table 3.1: Incorrect Detection Threshold Calculations for XOR Circuit.

signal EA LS FPV ρ(s) RTa RTb

A 0 0 1 0 −∞ 0
B ∞ −∞ 1 0 −∞ ∞
C 1 3 1 0 −∞ 1
D ∞ −∞ 1 0 −∞ ∞
E 2 5 0 0 −∞ 2
F 3 5 1 0 −∞ 3
H 5 9 1 0 −∞ 5
Y 4 11 0 0 −∞ 4
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where Ts is the sample time of the output. The minimum size fault detectable is then the

minimum detection threshold for all outputs and all tests [12, 32, 34, 37, 52].

Table 3.1 show the calculations for EA, LS, fault propagating values, and the three

reference quantity calculations when evaluating the detection threshold of a slow-to-fall

fault on input A in the example circuit of Figure 3.1. If the output Y were sampled at time

Ts = 12, then the detection threshold would be:

DT (A) = Ts(Y )−RTb(Y )

DT (A) = 12− 4 = 8

3.1.3 Detection Gap

The detection gap described by Iyengar et al. [34] provides a way to relate the detection

threshold of a detected gate delay fault to the slack at the fault site. The detection gap for

a detected gate delay fault (gap(G)) is:

gap(G) = DT (G)− slack(G)

where slack(G) is the slack for testing purposes defined in [34], which is the sum of all

minimum gate delays along the longest delay path through gate G. If a vector pair detects

a fault at G such that gap(G) = 0, the smallest possible delay fault at G has been detected.

If gap(G) > 0, there is a possibility that there exists a better test to detect a gate delay

fault at G with a smaller detection threshold [27, 34].

The smaller the detection gaps are for a set of vectors, the better quality that set

provides for detecting gate delay faults. Suppose a gate delay fault is detected at a gate by
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Figure 3.2: Illustrating Correlation of Inputs to a Reconvergent Gate.

activating a path p2, which is shorter than the longest path, p1, through that gate as shown

in Figure 3.2. Path delays D and d in Figure 3.2 are the sums of all minimum gate delays

along paths p1 and p2 that pass through the gate. For a clock period Tc, Tc ≥ D ≥ d, and

the slack for the gate is Tc−D, where D is the delay of the longest delay path, p1. If the

fault is detected through the shorter path p2, then the detection gap is DT (p2) − slack,

which is larger than 0 by the amount D − d. Ideally we would like to detect the smallest

gate delay fault possible, so a better test would detect the delay fault through path p1.

If detected through p1, the detection gap would be DT (p1) − slack, which is 0 because

DT (p1) = slack.
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3.2 Reconvergent Fanout Analysis

When signals produced by a common fanout point reconverge, the inputs to the re-

convergent gate are correlated [7, 12, 13, 16, 27, 30, 39, 41, 61]. Consider the fanout at

the output of gate C in Figure 3.3, which reconverges at gate F . Figure 3.4 illustrates

the correlation of both inputs to gate F (signals C and D). Suppose signal C changes at

time x, which is somewhere between times 1 and 3. Since gate C’s output is an input to

gate E, the signal at E follows the signal at C in time, and δ cannot be smaller than the

minimum delay of gate E, which is 1. Therefore, the output of E cannot change before

time x+minDelay(E), or x+ 1.

Conventional bounded delay simulation ignores correlations of signals at inputs to

reconvergent gates, and is known to produce pessimistic results [12, 13, 16, 27, 30, 31, 39,

41, 61]. In Figure 3.3, the inputs to gate F are correlated, and the input from C (top input)

transitions to a controlling input logic value for gate F before the input from E (bottom

input) transitions away from a controlling input value for F . Therefore, there is always

a controlling logic value on at least one input to gate F . Conventional min-max delay

simulation produces an ambiguity region at the output of F between times 3 and 5, which

can never occur in an actual circuit. Propagating its effect to the output at gate Y would

produce extra ambiguity between times 4 to 6. Removing, or suppressing, the erroneously

produced static hazard results in the signal at output Y transitioning from a 0 to a 1 at

some time between 6 and 11, instead of times 4 and 11 from conventional bounded delay

simulation.
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Figure 3.3: Min-Max Simulation Waveforms.

3.2.1 Bounded Delay Simulation

Chakraborty et al. [16] present an algorithm for accurate timing analysis in the pres-

ence of reconvergent fanouts. In this method, gates are evaluated using a thirteen valued

waveform algebra. If a gate output is evaluated to be a constant value, it is guaranteed that

for all possible gate input transition orderings, the output remains at a constant value. If

the gate’s output is not evaluated to be a constant value, the gate is further analyzed to
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determine whether or not a hazard occurring at the output is masked. This analysis tries

to determine for every input p that is different from input q if the transition on p is ordered

relative to the transition on q. If a transition on p is ordered relative to a transition on q,

the time at which the transition occurs on q depends on the time at which the transition

occurs on q. Any ordering information detected is used to determine if hazards occurring

at the gate’s output should be masked [16]. Although this method results in an accurate

timing analysis, its complexity would prevent it’s use in logic simulation [12, 13].

An event-driven symbolic min-max simulator is described by Linderman and Leeser [41]

that eliminates common ambiguity due to reconvergent fanout. In the event graph, delays

to a reconvergent gate from events back to the last common event (event from the common

fanout point) are used to determine the common ambiguity to eliminate [41]. This method

produces less pessimistic results in the presence of reconvergent fanouts, but it’s worse-case

complexity is exponential in circuit size [16]. Time-symbolic simulation [31] and coded

time-symbolic simulation [30] are two methods that also produce accurate results in the
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presence of reconvergent fanouts, but their worse-case complexity is also exponential in

circuit size [16].

Lalgudi et al. [39] present an event-driven min-max delay simulator on the MARS [2]

parallel computer that removes the common ambiguity between events at the inputs to a

reconvergent gate before the gate is evaluated. To determine the common ambiguity between

events, the event data structure used has an “ambiguity descriptor list” that contains fanout

stem IDs that are originators of ambiguity. For each fanout stem ID, modified ambiguity

information is stored. The modified ambiguity information is needed when determining

common ambiguity of two events at the inputs to a reconvergent gate because both events

are modified differently as they propagate along two different paths from the fanout stem

to the reconvergent gate. Both events may have been modified such that any common

ambiguity has been eliminated. The ambiguity descriptor lists of events can grow very

large, so the simulator limits the list’s maximum size, which may result in pessimism [39].

3.2.2 Delay Fault Simulation

A path delay fault simulation algorithm using bounded gate delays that considers

correlations between inputs to reconvergent gates is described by Bose and Agrawal [12].

In this approach, each gate has an ”ambiguity list” that is propagated with events during

event-driven simulation. Ambiguity list propagation is similar to fault list propagation of

concurrent fault simulation. When a reconvergent gate is evaluated, the ambiguity lists of

fanin gates provide information about how the reconvergent gate’s inputs are correlated due

to a common fanout point. If this information is such that ambiguity due to a static hazard

at the output of the reconvergent gate cannot occur, the hazard is suppressed [12, 13].
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Each element of the ambiguity list at gate G contains:

• Gate ID of a fanout point that causes an ambiguity region at G

• Minimum delay from the fanout to G

• Maximum delay from the fanout to G

During simulation, if the current value of a gate G is a Boolean value (logic 0 or

logic 1), the ambiguity list at G is empty. If the current value of G is ambiguous (X), then

the ambiguity list at G may not be empty [13].

When an event arrives at gate G and the output of G is evaluated to be ambiguous (X)

for the current simulation time, every fanout point (element) in the ambiguity lists of fanin

gates to G is examined to evaluate the ambiguity list at G’s output. If a fanout point f is

found at more than one input to gate G, then G is a reconvergent gate with common fanout

f . When this occurs, if a fanout point has a minimum delay to an input transitioning from

a controlling to a sensitizing logic value that is larger than the maximum delay to an input

that is transitioning from a sensitizing to controlling value, the hazard at the output of the

reconvergent gate is suppressed, the output is set to be stable, and the hazard list is set to

null. If hazard suppression does not occur, then the fanouts at the gate’s input hazard lists

are updated with the gate’s delay values and propagated to the output hazard list. Results

presented for the ISCAS85 combinational benchmark circuits show error as high as 20%

when measuring the critical path delay using bounded delay simulation [12, 13].
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Chapter 4

Reconvergent Fanout Analysis in Detection

Threshold Evaluation

This chapter presents a method to determine the detection threshold of detected faults

during gate delay fault simulation that is more accurate than previous approaches. This

method adds a reconvergent fanout analysis technique to the detection threshold evaluation

method presented by Iyengar et al. [34]. The analysis technique presented in this chapter

has appeared in recent papers [13, 27].

4.1 Motivation

Consider the circuit in Figure 4.1 which shows bounded delay simulation waveforms for

a test to detect a slow-to-fall gate delay fault on input B. Input A is held constant while B

undergoes a falling transition. Min-Max bounds for all gate delays are shown beneath each

gate in the figure. The worse-case delay for the maximum delays shown is 7 time units, so

in this example, the sample period is set to Ts = 8. If the output Y is sampled at time 8,

the value sampled at Y will always be at FV (Y ) for the fault-free circuit.

Table 4.1 shows earliest arrival (EA) and latest stabilization (LS) times, fault prop-

agation values (FPV ), reference fault sizes (ρ(s)), and reference times (RTa and RTb)

calculated using the detection threshold evaluation method presented by Iyengar et al. [34].

Using these reference quantity calculations, the slow-to-fall gate delay fault at gate B is

detected with a detection threshold of Ts −RTb(Y ) = (8− 4) = 4.
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Figure 4.1: Incorrect Gate Delay Detection Threshold.

Table 4.1: Incorrect Detection Threshold Calculations.

signal EA LS FPV ρ(s) RTa RTb

A ∞ −∞ 1 0 −∞ ∞
B 0 0 1 0 −∞ 0
C 4 6 0 0 −∞ 4
D 1 4 1 0 −∞ 1
E 1 4 1 0 −∞ 1
F 3 6 0 0 −∞ 3
H 3 4 0 0 −∞ 3
Y 4 7 0 0 −∞ 4

From Figure 4.1 we see that the earliest arrival time for the rising transition at the

output of Y is 4. To guarantee detection, the size of the fault at B must be large enough

such that it’s effect will shift the waveform at Y by at least 4 time units. A shift in the

waveform at Y of 4 time units or greater will guarantee that the output Y is at IV (Y ) when

the output is sampled at time 8, so a fault at gate B with size 4 or greater is detected.

Notice, however, that the fanout at the output of gateD reconverges at gateH. Because

the top input (from D) is guaranteed to transition to a controlling input logic value (0) for
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Figure 4.2: Incorrect Gate Delay Detection Threshold for XOR Circuit.

H before the bottom input (from F ) transitions away from a controlling input value, there

is always a controlling logic value on some input to gate H, and the output is stable at

logic 0. The incorrect hazard at the output of gate H between times 3 and 4 results in the

ambiguity at gate Y between times 4 and 5. A more accurate analysis would show that

a slow-to-fall gate delay fault at gate B would only need to shift the output waveform at

Y by 3 time units to guarantee detection, and the correct detection threshold should be

evaluated as 3 instead of 4. This is because for the fault-free circuit, the ambiguous region

between times 4 and 5 at the output of gate Y is guaranteed to be at IV (Y ) in the accurate

analysis.

A similar error can be seen in the circuit of Figure 4.2. Table 4.2 shows the calculations

for evaluating the detection threshold of a slow-to-fall gate delay fault at input gate A.

Because both inputs to gate F are correlated in such a way that there is always a controlling

logic value (0) at at least one input to F , the hazard produced between times 3 and 5 is

incorrect. Using the Iyengar et al. [34] method, and a sample period of Ts = 12, the
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Table 4.2: Incorrect Detection Threshold Calculations for XOR Circuit.

signal EA LS FPV ρ(s) RTa RTb

A 0 0 1 0 −∞ 0
B ∞ −∞ 1 0 −∞ ∞
C 1 3 1 0 −∞ 1
D ∞ −∞ 0 0 −∞ ∞
E 2 5 0 0 −∞ 2
F 3 5 1 0 −∞ 3
H 5 9 1 0 −∞ 5
Y 4 11 0 0 −∞ 4

detection threshold is evaluated as Ts − RTb(Y ) = (12 − 4) = 8. A more careful analysis

would show that fault sizes greater than 6 would be sufficient to shift the output at Y to

guarantee detection. Here, an accurate analysis should calculate the detection threshold of

the slow-to-fall fault at A as 6 instead of 8.

4.2 Detection Threshold Evaluation

This section describes how reconvergent fanout analysis is added to the method de-

scribed in [34] for a more accurate detection threshold evaluation of detected gate delay

faults. The method described here is similar to that in [34] in that gate delays are specified

by their upper and lower bounds, and the stimulus to the circuit consists of a vector pair,

V1 and V2. It is assumed the circuit has stabilized after the first vector is applied, before

applying the second vector. The time frame of reference, t = 0, is assumed to be the instant

the second vector is applied to the primary inputs. For each gate G in the fault-free circuit,

values to represent the simplified signal waveforms, IV (G), FV (G), EA(G), and LS(G),

are evaluated as in [15, 32, 34, 37].
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For gate G, the fault propagating value, FPV (G) is identical to the logic value of

G when V2 is applied to the circuit with the corresponding stuck-at fault at G. For a

slow-to-rise (slow-to-fall) delay fault at a gate output, the corresponding stuck-at fault is

the stuck-at-0 (stuck-at-1) fault at the same fault site. As described in [34], the fault

propagating value for a gate G at the fault site is the initial value of G, FPV (G) = IV (G),

and the fault propagating value for a gate G outside the cone of influence of the fault site

is the final value of G, FPV (G) = FV (G). For a gate G inside the logic cone of the fault

site, FPV (G) is evaluated using fault propagating values at G’s fanin gates and the usual

rules of Boolean logic [34].

4.2.1 Ambiguity Lists

To provide information about the correlations between signals, each gate G has an

ambiguity list similar to those described by Bose and Agrawal [12], where each element

consists of the following:

• Gate IDs of fanout points (f) that lie in the forward cone of the fault site.

• d(G, f): Minimum delay to G from f .

• D(G, f): Maximum delay to G from f .

Unlike the ambiguity lists evaluated during logic simulation in the algorithm presented

in [12], these lists are evaluated for each gate inside the cone of influence of the fault [13, 27].

4.2.2 Faulty Waveforms

For a given delay fault f of size δ, the reference fault size, ρ(G), and the two reference

times, RTa(G) and RTb(G), are evaluated for each gate G, such that the logic value at G
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is guaranteed to be at FPV (G) between the time interval RTa(G) to RTb(G)+δ, provided

the size of delay fault f exceeds ρ(G). For a gate at the fault site and for gates that lie

outside the downcone of the fault site, the three reference quantities are evaluated as in [34].

For a gate G outside the cone of influence of the fault, G is at it’s fault propagating value

for the time between LS(G) and ∞:

ρ(G) = 0 RTa(G) = LS(G) RTb(G) = +∞

For a gate G at the fault site, G is at it’s fault propagating value for the time between −∞

and EA(G):

ρ(G) = 0 RTa(G) = −∞ RTb(G) = EA(G)

If the fault site also happens to be a fanout stem, an ambiguity list is also created at the fault

site with the gate ID of fanout point G and delays d(G,G) = 0 and D(G,G) = 0 [13, 27].

Reference quantities for gates inside the downcone of the fault site are evaluated along

with ambiguity lists. The ambiguity lists at the gate’s inputs are used to determine the

ambiguity list at the output. For a gate G inside the cone of influence of the fault, if all

inputs (i) have sensitizing fault propagating values, RTa(G) and RTb(G) are calculated

identically as in [34]:

RTa(G) = max{RTa(i)}+maxDelay(G)

RTb(G) = min{RTb(i)}+minDelay(G)
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Calculating the reference size is also identical to that described in [34]:

ω = max{0, max{RTa(i)}+maxDelay(G)−min{RTb(i)}}

ρ(G) = max{max{ρ(i)}, ω}

The ambiguity list at the output of gate G is updated by adding an element for every fanout

element found at the inputs (i) of G. The minimum and maximum delays of ambiguity list

elements, d(G, f) and D(G, f), are updated using the minimum and maximum delays of G:

d(G, f) = min{d(i, f)}+minDelay(G)

D(G, f) = max{D(i, f)}+maxDelay(G)

For a gate G inside the cone of influence of the fault site, if inputs to G have both

sensitizing and controlling fault propagating values, the following quantities are evaluated

for all fanout points (f) of the hazard lists at inputs to G:

minDV (f) = max{d(M,f)}

maxSV (f) = max{D(m, f)}

where M is an input to G with a controlling FPV and m is an input to G with a sensitizing

FPV . The quantity minDV (f) represents the largest minimum delay from the common

fanout point f to an input to G with a FPV that is a controlling input logic value for G.

The quantity maxSV (f) represents the largest maximum delay from f to an input to G

with FPV that is a sensitizing input value for gate G [13, 27].
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If no common fanout point f results in minDV (f) ≥ maxSV (f), hazard suppression

does not occur, and the reference quantities at the output of G are calculated using an

input i with a dominating FPV :

ρ(G) = max{ρ(i), RTa(i) +maxDelay(G)−RTb(i)}

RTa(G) = RTa(i) +maxDelay(G)

RTb(G) = RTb(i) +minDelay(G)

Input i is chosen such that ρ(i) is minimum among all such inputs of G. The ambiguity list

at G is updated similar to before, adding an element to G’s ambiguity list for every fanout

point f appearing at G’s inputs:

d(G, f) = min{d(i, f)}+minDelay(G)

D(G, f) = max{D(i, f)}+maxDelay(G)

If, however, a common fanout point at the inputs toG results inminDV (f) ≥ maxSV (f),

then hazard cancellation occurs. Here, fault effects cannot be propagated through gate G.

The ambiguity list at the output of G is set to the empty (null) list and the following

reference values are used at the output:

ρ(G) = 0 RTa(G) = −∞ RTb(G) =∞

32



1 1

1 0

(1,3)

(1,3)

C

D

E

F

H

Y

(1,2)

(1,2)

(3,4)

A

B

(1,2)

X
slow−to

fall

C, 0, 0

C, 1, 2 E, 0, 0

Figure 4.3: Ambiguity Lists.

4.3 Examples

Figure 4.3 shows the ambiguity lists for the example of Figure 4.2 when gate F is about

to be evaluated. Since inputs to F have both sensitizing and controlling fault propagating

values, minDV and maxSV are calculated for all fanout points at the inputs to F . For the

common fanout point C, the following quantities are evaluated:

minDV (C) = 1 maxSV (C) = 0

Since minDV (C) ≥ maxSV (C), the hazard is suppressed, and the output of gate F is

stable. The ambiguity list at F is set to null, and the reference quantities are set to:

ρ(G) = 0, RTa(G) = −∞, and RTb(G) =∞.

Tables 4.3 and 4.4 show the results obtained when this algorithm is used for the exam-

ples shown in both Figures 4.1 and 4.2. The second column shows fault propagating values,
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Table 4.3: Corrected Detection Threshold Calculations.

signal FPV ρ(s) RTa RTb Hazard List
A 1 0 −∞ ∞ null
B 1 0 −∞ 0 (B,0,0)
C 0 0 −∞ 4 (B,4,6)
D 1 0 −∞ 1 (B,1,4),(D,0,0)
E 1 0 −∞ 1 (B,1,4)
F 0 0 −∞ 3 (B,3,6),(D,2,2)
H 0 0 −∞ ∞ null
Y 0 0 −∞ 5 (B,5,7)

Table 4.4: Corrected Detection Threshold Calculations for XOR Circuit.

signal FPV ρ(s) RTa RTb Hazard List
A 1 0 −∞ 0 null
B 1 0 −∞ ∞ null
C 1 0 −∞ 1 (C,0,0)
D 1 0 −∞ ∞ null
E 0 0 −∞ 2 (C,1,2),(E,0,0)
F 1 0 −∞ ∞ null
H 1 0 −∞ 5 (C,4,6),(E,3,4)
Y 0 0 −∞ 6 (C,5,8),(E,4,6)

and columns three through five show the three reference quantities for each signal. The last

column shows the ambiguity lists at all gate outputs. For the example of Figure 4.1, the out-

put sampling time was assumed to be t = 8. The correct detection threshold (8−RTb(Y ))

is evaluated as 3, while the original algorithm in Table 4.1 evaluates the threshold to be 4.

For Figure 4.2, assuming an output sampling period of Ts = 12, the erroneous detection

threshold is calculated as 8 (12−RTb(Y )). This threshold is now correctly evaluated as 6.
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Table 4.5: Detection Gap Results for 1,000 Random Vectors.

Without Reconvergent With Reconvergent
Fanout Analysis Fanout Analysis

Average Faults Average Faults
Detection Detected with Detection Detected with

Gap Gap ≤ 3.5 Gap Gap ≤ 3.5
c432 72.4 8.80% 68.1 10.80%
c499 31.1 11.44% 29.2 18.20%
c880 21.3 40.18% 21.3 40.18%
c1355 33.4 10.90% 31.8 17.21%
c1908 48.1 15.94% 47.9 15.94%
c2670 34.2 29.70% 33.9 29.70%
c3540 43.9 20.45% 41.9 21.15%
c5315 28.3 36.48% 28.2 36.64%
c6288 395.2 0.45% 379.3 0.45%
c7552 36.3 11.95% 36.1 11.98%

4.4 Results on ISCAS85 Benchmark Circuits

Table 4.5 shows results obtained for ISCAS85 combinational benchmark circuits using

the gate delay fault simulation method presented in this chapter. Each circuit was simulated

for 1,000 random vectors, and for each vector, the fault-free waveforms were calculated using

the method described by Iyengar et al. [34]. The minimum and maximum delays for each

gate were set using a simple wireload delay model [46, 65], where delay bounds for each

gate are set to (Nom×n)±Tol. Nom is a nominal delay value, n is the number of fanouts,

and Tol is the tolerance to set minimum and maximum delays around the nominal value.

The min-max delays for a gate are then set to:

maxDelay = (Nom× n) + Tol

minDelay = (Nom× n)− Tol
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For these results, a nominal delay of 3.5 time units and a tolerance of ±14% was used,

which would set the default min-max delays of a gate with a single fanout to approximately

3 and 4. A static timing analysis calculated the longest path delay as the sum of maximum

gate delays along the longest delay path from input to output. The sample period Ts was

then set to 1 time unit above the longest path delay.

For the data presented in columns two and three of Table 4.5, signal correlations due

to reconvergent fanouts were ignored. For each vector, and for each detected gate delay

fault, faulty waveforms were evaluated using the method presented by Iyengar et al. [34] to

evaluate the detection threshold. For the data in columns four and five, ambiguity lists were

evaluated during detection threshold evaluation as described in this chapter. In each case,

for each detected fault, the smallest detection threshold over all simulated vector pairs was

stored. The slack for each gate was calculated during the static timing analysis step as the

difference between Ts and the sum of all minimum gate delays along the longest delay path

through that gate. Detection gaps were then calculated to relate the detection thresholds

to the slacks. The smaller the detection gaps are for detected gate delay faults, the better

quality the vector set provides for gate delay testing.

Columns two and four show the average detection gap for all detected gate delay

faults to illustrate the pessimism when signal correlations are ignored. When reconvergent

fanout analysis is used, the average detection gap is smaller. Columns three and five show

the fault coverage of detected gate delay faults with a detection gap that is less than or

equal to the nominal gate delay used, which is 3.5. This is to allow faults to be counted

as detected if they are either detected through the longest path through the gate, or if

they are detected through a path which is less than the longest path by only one gate delay.
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When reconvergent fanout analysis is used, more gate delay faults are detected with smaller

detection gaps.
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Chapter 5

Reconvergent Fanout Analysis in Fault-Free

Circuit Simulation

This chapter presents a method that adds reconvergent fanout analysis to the bounded

delay simulation used in simulating a fault-free circuit. The reconvergent fanout analysis

technique, similar to that presented by Bose and Agrawal [12], is used to more accurately

calculate the fault-free waveform timing values EA and LS when reconvergent fanouts are

present. The technique presented in this chapter has appeared in a recent paper [27].

5.1 Motivation

Consider the circuit in Figure 5.1, which shows fault-free circuit simulation waveforms

for a test to detect a slow-to-rise gate delay fault at gate J . Table 5.1 shows EA, LS,

FPV , and the three reference quantity calculations for evaluating the detection threshold

of the fault at J . For a sample period of Ts = 14, the detection threshold is evaluated as

Ts −RTb(Y ) = (14− 5) = 9.

At reconvergent gate H, the top input (from D) is guaranteed to transition to a logic

0 at least 1 time unit before the bottom input (from F ) transitions away from logic 0. Due

to this correlation, there is always a logic 0 on at least one input to NAND gate H, so the

hazard between times 3 and 5 at the output of H cannot occur. A correct analysis would

set the fault-free timing values as:

EA(H) =∞ LS(H) = −∞
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Figure 5.1: Incorrect Detection Threshold.

which would result in the following timing values for output Y :

EA(Y ) = 7 LS(Y ) = 13

Because gate J is the fault site, RTb(J) is set to EA(J), which is 4 time units in

Table 5.1. If the incorrect hazard at H were suppressed, RTb(J) = EA(J) = 6 instead of 4.

This change would propagate to output Y by changing RTb(Y ) = 5 to the correct value

of RTb(Y ) = 7. By adding reconvergent fanout analysis to fault-free circuit simulation,

the detection threshold for the fault at J would be correctly evaluated as Ts − RTb(Y ) =

(14− 7) = 7 instead of the pessimistic value of 9.

Notice that for this example, propagating ambiguity lists in the downcone of the fault

site during faulty circuit calculations, without considering reconvergent fanout analysis in

the calculation of EA(H) and LS(H), results in a pessimistic detection threshold evaluation.

To accurately evaluate detection thresholds of detected gate delay faults, signal correlations

39



Table 5.1: Incorrect Detection Threshold Calculation.

signal EA LS FPV ρ(s) RTa RTb

A ∞ −∞ 1 0 −∞ ∞
B 0 0 0 0 0 ∞
C ∞ −∞ 1 0 −∞ ∞
D 1 3 0 0 3 ∞
E ∞ −∞ 1 0 −∞ ∞
F 2 5 1 0 5 ∞
H 3 5 1 0 5 ∞
I 5 9 0 0 9 ∞
J 4 11 0 0 −∞ 4
Y 5 13 1 0 −∞ 5

due to reconvergent fanouts should be considered during both fault-free circuit simulation

and faulty waveform calculations.

5.2 Fault-Free Circuit Simulation

To propagate correlation information during fault-free circuit simulation, we propagate

ambiguity lists similar to those in [12, 13]. Each ambiguity list element at a gate G contains

a gate ID of a fanout point f effecting G, the minimum delay from f to G, and the maximum

delay from f to G:

• Gate IDs of fanout points (f) that lie in the forward cone of the fault site.

• d(G, f): Minimum delay to G from f .

• D(G, f): Maximum delay to G from f .

When EA(G) and LS(G) are evaluated, the ambiguity list at G is evaluated. Ambiguity

lists at the inputs to G are used to determine the ambiguity list at the output [27].
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If inputs at a reconvergent gate are correlated due to a common fanout point, a am-

biguity list element for that fanout point appears at all correlated inputs of G [12, 13, 27].

If fanout point f appears in the ambiguity list of more than one input to G, then f is

reconverging at G. If correlated inputs to G are transitioning both to and away from a

controlling input logic value for gate G, the following quantities are evaluated:

minDV (f) = max{d(M,f)}

maxSV (f) = max{D(m, f)}

where M is an input to G that is transitioning away from a controlling logic value, and m

is an input to G that is transitioning to a controlling input logic value. Here, minDV (f)

represents the largest delay from a common fanout point f to an input (M) of gate G,

where IV (M) is a controlling input logic value for G. The quantity maxSV (f) represents

the largest delay from f to an input (m) of G where FV (m) is a controlling input value for

gate G [27].

If minDV (f) ≥ maxSV (f), then the correlated inputs to G are such that the transition

to a controlling input value for G on input m is guaranteed to occur before M transitions

away from a controlling input value for G. In this case, there is always a controlling logic

value at some input to G, so hazard suppression occurs in which the ambiguity list at the

output of G is set to null, and the following fault-free timing values are used:

EA(G) =∞ LS(G) = −∞
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Table 5.2: Corrected Detection Threshold Calculation.

signal EA LS FPV ρ(s) RTa RTb

A ∞ −∞ 1 0 −∞ ∞
B 0 0 0 0 0 ∞
C ∞ −∞ 1 0 −∞ ∞
D 1 3 0 0 3 ∞
E ∞ −∞ 1 0 −∞ ∞
F 2 5 1 0 5 ∞
H ∞ −∞ 1 0 −∞ ∞
I 5 9 0 0 9 ∞
J 7 11 0 0 −∞ 7
Y 8 13 1 0 −∞ 8

If no fanout point results in minDV (f) ≥ maxSV (f), hazard suppression does not

occur, and EA(G) and LS(G) are evaluated as in [34]. In this case, an ambiguity list

element is added to G’s ambiguity list for every fanout element found in the ambiguity lists

at the inputs (i) to G, and the minimum and maximum delays of ambiguity list elements

are updated using the minimum and maximum delays of G:

d(G, f) = min{d(i, f)}+minDelay(G)

D(G, f) = max{D(i, f)}+maxDelay(G)

Table 5.2 shows the fault-free and faulty waveform calculations for the example of Fig-

ure 5.1, when ambiguity lists are propagated during both fault-free and faulty simulations.

RTb(Y ) is now calculated at 8, which results in a correct detection threshold evaluation

of 6.
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Table 5.3: Largest Output EA and LS Values for 10,000 Random Vectors.

Without Reconvergent With Reconvergent
Fanout Analysis Fanout Analysis

Largest EA Largest LS Largest EA Largest LS
c3540 195.7 339.2 222.7 335.2
c5315 150.5 339.2 171.6 323.2
c6288 292.0 933.7 424.4 825.9
c7552 165.5 339.2 198.7 339.2

5.3 Results on ISCAS85 Benchmark Circuits

Results on ISCAS85 combinational benchmark circuits for randomly generated input

vectors are shown in Table 5.3 and Table 5.4. A simple wireload delay model is used

for minimum and maximum gate delays, where delay bounds for each gate are set to

(Nom× n)±Tol. Nom is a nominal delay value, n is the number of fanouts, and Tol is the

tolerance to set minimum and maximum delays around the nominal value. The min-max

delays for a gate are then set to:

maxDelay = (Nom× n) + Tol

minDelay = (Nom× n)− Tol

For these results, a nominal delay of 3.5 time units and a tolerance of ±14% was used,

which would set the default min-max delays of a gate with a single fanout to approximately

3 and 4. A static timing analysis step calculated the longest path delay and the slacks for

each gate. The sample period Ts was chosen to be 1 time unit more than the longest path

delay.
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Table 5.4: Detection Gap Results for 1,000 Random Vectors.

Without Reconvergent With Reconvergent
Fanout Analysis Fanout Analysis

Average Faults Average Faults
Detection Detected with Detection Detected with

Gap Gap ≤ 3.5 Gap Gap ≤ 3.5
c432 72.4 8.80% 66.8 11.00%
c499 31.1 11.44% 25.4 20.54%
c880 21.3 40.18% 20.3 40.18%
c1355 33.4 10.90% 27.8 19.42%
c1908 48.1 15.94% 45.6 16.37%
c2670 34.2 29.70% 31.6 31.31%
c3540 43.9 20.45% 35.3 21.90%
c5315 28.3 36.48% 25.2 37.73%
c6288 395.2 0.45% 352.5 0.57%
c7552 36.3 11.95% 30.3 13.05%

Results on fault-free timing analysis (EA and LS) for a few larger combinational bench-

mark circuits for a set of 10,000 random vectors are shown in Table 5.3. These results show

the difference seen at circuit outputs when reconvergent fanout analysis is used. The second

and third columns show the largest EA and largest LS value at a circuit’s output for all

vectors without using reconvergent fanout analysis. Columns four and five show the same

results when signal correlations are used, and hazards that cannot occur are suppressed.

The last two columns show the difference in these calculations between those with recon-

vergent fanout analysis and those without reconvergent fanout analysis. The result of using

information about correlated signals at reconvergent gates during simulation generally re-

sults in larger EA values and smaller LS values at outputs, and is more apparent for circuits

that contain a large number of reconvergent fanout such as in the array multiplier circuit

c6288.
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Table 5.4 shows the results when reconvergent fanout analysis is used during both fault-

free timing analysis and detection threshold evaluation. Using reconvergent fanout analysis

on all gates of the fault-free circuit in addition to gates inside the cone of influence during

fault simulation is the primary difference between the method presented in this chapter

and the method presented in Chapter 4. The detection gap is used to display the data

in Table 5.4. The smaller the detection gaps are for detected gate delay faults, the better

quality the vector set provides for gate delay testing. Columns two and three of Table 5.4

show the detection gap results without using reconvergent fanout analysis. Column two

shows the average detection gap for all detected gate delay faults, and column three shows

the fault coverage of detected gate delay faults with a detection gap that is less than or

equal to the nominal gate delay used, which is 3.5. This is to allow faults to be counted as

detected if they are either detected through the longest path through the gate, or if they are

detected through a path which is less than the longest path by only one gate delay. Columns

four and five of Table 5.4 show detection gap results when reconvergent fanout analysis was

used during both fault-free timing analysis and detection threshold calculation. Column

four shows the average detection threshold for all detected faults and column five shows the

fault coverage of detected faults with a detection gap less than or equal to 3.5. The data

shown in Table 5.4 illustrates the pessimism when signal correlations are ignored in gate

delay fault simulation. When reconvergent fanout analysis is used, the average detection

gap is smaller and more faults are detected with smaller detection gaps.
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Chapter 6

Conclusion

We have presented a method for reconvergent fanout analysis in gate delay fault simu-

lation in Chapter 4. This method considers signal correlations due to reconvergent fanouts

when evaluating the detection thresholds of detected gate delay faults. The use of signal

correlations results in less pessimistic detection threshold calculations. In Chapter 5, we pre-

sented a method for reconvergent fanout analysis in bounded delay simulation that considers

signal correlations due to reconvergent fanouts when evaluating the fault-free waveform of

a reconvergent gate. This method results in a more accurate fault-free circuit simulation

when bounded gate delays are used to model imprecise circuit delays.

Since the quantities propagated inside the cone of influence of the fault site during

detection threshold evaluation are initialized at the fault site and outside the downcone of

the fault site using the waveforms from the fault-free circuit, reconvergent fanout analysis

should be used during both fault-free circuit simulation and detection threshold evaluation

for accurate gate delay fault simulation in the presence of reconvergent fanouts.

6.1 Future Work

During simulation, the ambiguity lists that are propagated to provide information about

signal correlations can grow quite large. The efficiency of the described reconvergent fanout

analysis technique can be affected significantly since these lists are evaluated at every gate

in the circuit during bounded delay simulation of the fault-free circuit, and for all gates
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inside the cone of influence of every fault simulated. The efficiency of the list propagation

algorithms described in Chapter 4 and Chapter 5 can be improved.

6.2 Other Applications

The bounded delay simulation algorithms developed in this research has found two

other applications. The first of these is in identifying hazard-free tests. Such tests consist of

pairs of vectors, which when applied to combinational logic produce no hazards (transients

with multiple transitions) at primary outputs. These are used for timing calibration of

scan-based circuits [57]. For a vector-pair to be effective, its hazard-free behavior should

be preserved in spite of the manufacturing variations in delays. The use of min-max delay

model and the ambiguity list simulation algorithms have allowed the identification of many

more hazard-free tests than was possible with pessimistic zero-delay simulators [45].

The second application is in a tool that determines the dynamic power consumption

of a digital CMOS circuit. Dynamic power of a CMOS logic circuit is directly related to

the signal transitions. However, the actual number of transitions is strongly influenced the

the delay-dependent transient behavior of signals. A relevant problem is that of estimating

the minimum, maximum and average values of dynamic power consumed when gate delays

are affected by process variations. The use of the bounded delay model and the ambi-

guity delay simulation has allowed the development of new power analysis algorithms [4].

These algorithms require much less computation compared to the conventional Monte Carlo

approach.
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6.3 An Important Observation

In this work, we found that adding reconvergent fanout analysis to gate delay fault

simulation always reduced the detection threshold. This may be due to a possible fact that

considering signal correlations from reconverging fanouts cannot cause ambiguity intervals

to increase. The reconvergent fanout analysis technique described in this thesis removes

ambiguity at the output of a gate when correlations between the gate’s inputs guarantee the

output to be stable, so ambiguity should only decrease when reconvergent fanout analysis

is used. Although we have not proven that the detection threshold cannot increase when

signal correlations are considered, we were not able to construct a contradicting example in

which the use of reconvergent fanout analysis would result in larger detection thresholds.

We currently view this result as a conjecture and hope that it will draw the attention of

future researchers.
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Appendix A

Gate Delay Fault Simulation Program - User Information

User information for the gate delay fault simulation program used for the results pre-
sented in Chapter 4 and Chapter 5 is described in this appendix. The program is imple-
mented in the C programming language to run in a UNIX/LINUX environment. The GNU
C compiler GCC 4.2 (http://gcc.gnu.org/ ) was used in this work to compile the source code
(simulator.c) into an executable named “simulate”. The simulator is then invoked with the
following command:

simulate cktName.bench [options]

The circuit netlist is specified in the cktName.bench file in a hierarchical bench format,
which is discussed in the next section. The simulator flattens the netlist, stores the circuit
in memory, and simulates the circuit for a set of input vectors. Simulation is setup by
specifying the various simulator options discussed in Section A.2. Section A.3 describes an
example simulation.

A.1 Hierarchical Bench Format

The circuit description is specified in a hierarchical bench format, where each hier-
archical block, blockName, is separated into its own section with a beginning “BLOCK
blockName” statement and an ending “END” statement. The description of each block
is in the regular bench format used to describe the ISCAS85 combinational benchmark
circuits, where the following Boolean gate types are supported: NAND, AND, OR, NOR,
NOT, and BUFF.

To simulate ISCAS85 benchmark circuits, the circuit’s bench netlist has to be modified
by adding “BLOCK circuitName” to the beginning of the netlist and “END” to the end of
the netlist. For example, circuit c17 would be modified by adding the first and last bold
face lines shown in Figure A.1.

Since the simulator does not support XOR gates, circuits that contain XORs (such
as c432 and c499) must have an XOR block added to their hierarchy. For example, in
the half adder description in Figure A.2, the NAND configuration for an XOR gate (de-
fined in the XOR block) would be inserted for the “Sum” output. For the statement
“Sum=XOR(in1,in2)”, Sum corresponds to the XOR block’s Y output, and in1 and in2
correspond to the XOR block’s A and B inputs.

Min-max gate delays may also be specified for standard gates by adding these values
to that line in the netlist after a colon. For example, the line “Cout = AND(in1,in2) : 2 3”
would set the minimum delay to 2 and the maximum delay to 3 for the AND gate of the
“Cout” output in the half adder circuit description of Figure A.2.
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BLOCK c17
INPUT(1)
INPUT(2)
INPUT(3)
INPUT(6)
INPUT(7)
OUTPUT(22)
OUTPUT(23)
10 = NAND(1, 3)
11 = NAND(3, 6)
16 = NAND(2, 11)
19 = NAND(11, 7)
22 = NAND(10, 16)
23 = NAND(16, 19)

END

Figure A.1: Hierarchical Benchmark Description of c17.

BLOCK XOR
INPUT(A)
INPUT(B)
OUTPUT(Y)
X1 = NAND(A,B)
X2 = NAND(X1,A)
X3 = NAND(X1,B)
Y = NAND(X2,X3)

END

BLOCK HalfAdder
INPUT(in1)
INPUT(in2)
OUTPUT(Sum)
OUTPUT(Cout)
Sum = XOR(in1,in2)
Cout = AND(in1,in2)

END

Figure A.2: Hierarchical Benchmark Description for a Half Adder.
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-vectorFile .tbl file
-vecgen n
-delayNominal n
-delayTolerance n
-withFanoutBuffers
-withoutFanoutBuffers
-withHazLists
-withoutHazLists
-saveHazFreeOutputs filename
-saveFaults filename
-reportTiming
-reportTransFaultCoverage
-reportAvgGap
-reportFaultCoverage n

Figure A.3: Simulator Options.

A.2 Simulator Options

An option list is shown in Figure A.3, which determines the type of simulation per-
formed, the input vectors to simulate, how gate delays are set, and how to report simulation
results.

The “-vectorFile filename” option specifies the input vector file containing the set of
input vectors to be simulated. The vector file contains a list of the circuit’s primary input
and primary output names, followed by a list of vectors, where each vector is specified as a
single line. The input and output values for each vector are specified in the same order as
they were listed at the top of the vector file. If a vector file is not specified using this option,
the vector file defaults to circuitName.tbl for a netlist specified in circuitName.bench.

A set of n random vectors can be generated for the circuit if the “-vecgen n” option
is specified. Logic simulation determines the circuit’s output response for each generated
vector, and the simulator creates the vector file specified with the “-vectorFile filename”
option. With this option specified, neither bounded delay simulation nor gate delay fault
simulation are performed.

Gate delays that are not specified in the netlist file are set using a simple wireload
delay model, where delay bounds for each gate are set to (Nom × n) ± Tol. Nom is a
nominal delay value, n is the number of fanouts, and Tol is the tolerance to set minimum
and maximum delays around the nominal value. The min-max delays are then set to:

maxdel(G) = (Nom× n) + Tol
mindel(G) = (Nom× n)− Tol
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The “-delayNominal n” and “-delayTolerance n” options set the Nom and Tol values.
If these options are not specified, the wireload delay values default to Nom = 3.5 and
Tol = 14%.

The “-withHazLists” option tells the simulator to use reconvergent fanout analysis and
propagate ambiguity lists during both fault-free circuit simulation and gate delay fault sim-
ulation as described in Chapter 5. If the “-withoutHazLists” option is specified, ambiguity
lists will not be used at all during simulation. Ambiguity lists are not used by default, so
to use reconvergent fanout analysis during simulation, the “-withHazLists” option must be
specified.

If the “-saveHazFreeOutputs filename” option is specified, each input vector pair is
stored in filename along with an indication of which outputs were found to be hazard free
for simulation of that vector pair. An example vector pair written to this file for a circuit
with 5 primary inputs and 2 primary outputs would be:

01101
10100 01

These lines indicate that for the vector pair V1 = 01101 and V2 = 10100, the circuit’s first
primary output listed in the input vector file is not hazard free (’0’), and the second primary
output listed is hazard free (’1’).

The “-saveFaults filename” option tells the simulator to save fault detection informa-
tion to a file specified by filename. The total number of faults and the number of detected
faults are listed first, then detected and undetected gate delay faults are listed. Each fault
in the list of detected faults specifies the gate name at the fault site, the fault type (slow-
to-rise or slow-to-fall), and the best detection threshold and detection gap for detection of
that fault for the simulated input vectors. The list of undetected faults gives the gate name
and fault type (slow-to-rise or slow-to-fall) for all faults that are not detected by the vector
set.

If the “-reportTiming” option is specified, the simulator reports the sample period Ts,
the largest EA seen at any primary output, and the largest LS seen at any primary output
for the vector set. The “-reportTransFaultCoverage” option reports the fault coverage of
gate delay faults for the vector set if fault sizes are ignored. The “-reportFaultCoverage n”
option prints the fault coverage of gate delay faults that are detected with a detection gap
≤ n. If the “-reportAvgGap” option is specified, the simulator reports the average detection
gap of gate delay faults that are detected by the vector set.

A.3 Example Simulation

This section describes an example simulation for the circuit shown in Figure A.4 using
input vectors specified by the vector file shown in Figure A.6. The input vectors were
generated randomly using the command:

simulate example.bench -vecgen 10
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(1,3)

(1,3)

(1,2)

(1,2)

(3,4)

(1,2)

IN1

IN2 X2

X1

XOR0.X3

XOR0.X2

XOR0.X1

OUT

Figure A.4: Example Circuit.

where the circuit netlist is described in the file “example.bench” in the hierarchical bench
format. The following command performs gate delay fault simulation on the example circuit
using 10 randomly generated vectors:

simulate example.bench -withHazLists -withoutFanoutBuffers -reportTiming
-reportTransFaultCoverage -reportAvgGap -reportFaultCoverage 1
-saveHazFreeOutputs example.hazFree -saveFaults example.faults

The simulator first read in the netlist and flattened the hierarchy by inserting the XOR
block for the OUT output in the example circuit. Gate names in the flattened netlist are
those shown in Figure A.4. Since gate delays are not specified in the netlist (Figure A.5)
and the “-delayNominal” and “-delayTolerance” options were not specified in the command
above, the delay bounds for a gate with n fanouts default to 3.5n±14%. The “-useHazLists”
option is specified to perform reconvergent fanout analysis during both bounded gate delay
simulation of the fault-free circuit and gate delay fault simulation of the vector set. The
simulator does not insert zero delay fanout buffers because of the “-withoutFanoutBuffers”
option. Since the “-vectorFile” option is not specified, the input vector file defaults to
“example.tbl”.

The options “-reportTiming”, “-reportTransFaultCoverage”, “-reportAvgGap” and “-
reportFaultCoverage 1” produced the timing report, and the fault coverage and detection
gap reports shown in Figure A.7. The timing information reported shows the largest EA
value seen at the primary output for simulation of all ten vectors is 5, the largest LS value
seen at the primary output for simulation of the ten vectors is 11, and the sample period
used by the simulator was set to 12. The fault coverage and detection gap reports show
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BLOCK XOR
INPUT(A)
INPUT(B)
OUTPUT(Y)
X1 = NAND(A, B) : 1 2
X2 = NAND(X1, A) : 1 2
X3 = NAND(X1, B) : 3 4
Y = NAND(X2, X3) : 1 2

END

BLOCK EXAMPLE-CKT
INPUT(IN1)
INPUT(IN2)
OUTPUT(OUT)
X1 = BUFF(IN1) : 1 3
X2 = BUFF(IN2) : 1 3
OUT = XOR(X1, X2)

END

Figure A.5: Hierarchical Bench Netlist for Simulation Example.

PI A
PI B
PO Y

101
000
011
011
101
000
110
000
011
011

Figure A.6: Input Vector File for Simulation Example.
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Output Timing Information:
largest EA: 5.0
largest LS: 11.0
sampleTime: 12.0

Number Transition Faults Detected = 14
Total Number Transition Faults = 16
Transition Fault Coverage: 87.50%

Avg. detection Gap for all detected Fautls: 1.9

Number of faults detected with less than 1.0 detection gap: 0

Figure A.7: Fault Coverage and Detection Gap Reports.

10
00 0
00
01 0
01
10 1
10
00 0
00
11 0
11
00 1
00
01 0

Figure A.8: Hazard Free Outputs for Simulation Example.
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87.5% transition fault coverage, no faults detected with a detection gap less than 1.0, and
an average detection gap of 1.9.

The “-saveHazFreeOutputs example.hazFree” option produced the output file shown
in Figure A.8. The input vector pairs simulated are listed in the first column. The second
column indicates which outputs were hazard free for the simulation of that vector pair. A
’1’ for an output in the second column indicates a hazard free output and a ’0’ indicates
that output was not hazard free for the vector pair.

The “-saveFaults example.faults” option produced a file containing fault information,
which is shown below. This file contains two lists of faults, one list for gate delay faults that
are detected by the vector set, listed along with their detection threshold and detection gap.
The second list shows which faults are undetected by the vector set. The slow-to-rise gate
delay faults on gates XOR0.X1 and XOR0.X3 are not detected by the simulated input
vectors.

Fault Information File for Example Simulation:

Number Faults Detected = 14
Total Number Faults = 16
Transition Fault Coverage: 87.50%

******* List of Detected Faults *******
GATE: IN1: slow-to-rise fault
Detection Threshold: 9.0
Detection Gap: 3.0
GATE: IN1: slow-to-fall fault
Detection Threshold: 9.0
Detection Gap: 3.0
GATE: IN2: slow-to-rise fault
Detection Threshold: 7.0
Detection Gap: 1.0
GATE: IN2: slow-to-fall fault
Detection Threshold: 8.0
Detection Gap: 2.0
GATE: X1: slow-to-rise fault
Detection Threshold: 9.0
Detection Gap: 3.0
GATE: X1: slow-to-fall fault
Detection Threshold: 9.0
Detection Gap: 3.0
GATE: X2: slow-to-rise fault
Detection Threshold: 7.0
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Detection Gap: 1.0
GATE: X2: slow-to-fall fault
Detection Threshold: 8.0
Detection Gap: 2.0
GATE: XOR0.X1: slow-to-fall fault
Detection Threshold: 8.0
Detection Gap: 2.0
GATE: XOR0.X2: slow-to-rise fault
Detection Threshold: 9.0
Detection Gap: 1.0
GATE: XOR0.X2: slow-to-fall fault
Detection Threshold: 9.0
Detection Gap: 1.0
GATE: XOR0.X3: slow-to-fall fault
Detection Threshold: 7.0
Detection Gap: 1.0
GATE: OUT: slow-to-rise fault
Detection Threshold: 7.0
Detection Gap: 1.0
GATE: OUT: slow-to-fall fault
Detection Threshold: 9.0
Detection Gap: 3.0

******* List of Undetected Faults *******
GATE: XOR0.X1: slow-to-rise fault not detected
GATE: XOR0.X3: slow-to-rise fault not detected
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Appendix B

Gate Delay Fault Simulation Program - Implementation

This appendix describes the implementation of the gate delay fault simulation program
used for the results presented in Chapter 4 and Chapter 5. The program is implemented in
the C programming language to run in a UNIX/LINUX environment. Execution begins by
reading the circuit netlist description in a hierarchical bench format, flattening the hierarchy,
and storing the circuit into memory using the various data structures. Simulation of the
circuit involves the following three main steps:

• Static Timing Analysis

• Bounded Delay Simulation

• Detection Threshold Evaluation

The static timing analysis step is performed to analyze circuit delays in a vector independent
manner. For each input vector pair, the bounded delay simulation step is performed to
determine information about signal waveforms at each gate in the fault-free circuit. The
detection threshold evaluation step propagates fault effects through the circuit for each gate
delay fault that is activated by the vector pair, determines if the activated fault is detected.
If the fault is detected, the detection threshold is evaluated. A slow-to-rise (slow-to-fall)
gate delay fault is activated if the output of the gate at the fault site has a rising (falling)
transition for that vector pair. Both slow-to-rise and slow-to-fall delay faults are considered
at each fault site. Fault sites for gate delay faults in a combinational circuit are at all gate
outputs and at all fanout branches [34]. The simulator can insert zero delay buffers on all
fanout branches in the circuit to model all fault sites as faults on gate outputs.

B.1 Data Structures

Two data structures are used to store the circuit in memory, the Circuit and Gate
data structures shown in Figure B.1. Each gate is stored with a unique ID, a Type,
a minimum (mindel) and maximum delay (maxdel), an initial value (IV ), a final value
(FV ), an earliest arrival time (EA), a latest stabilization time (LS), and two arrays, fanin
and fanout. The gate’s Type is set to indicate one of the following Boolean gate types:
NAND, AND, OR, NOR, NOT, and BUFF. The output waveform for the gate in the fault-
free circuit is represented by it’s IV , FV , EA, and LS values. To store information about
how gates are connected in the circuit, the fanin array for each gate contains a pointer to
each fanin gate and the fanout array for each gate contains a pointer to each fanout gate.

The Circuit data structure contains three arrays, PI, PO, and gateArray. The
gateArray contains an element for each gate in the circuit. The gate’s ID value is it’s
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Gate: ID
Type
mindel
maxdel
IV
FV
EA
LS
fanin
fanout

Circuit: PI
PO
gateArray

Figure B.1: Circuit and Gate Data Structures.

Fault: faultID
faultType
FPV
RTa
RTb
ρ

Fault RTa
Size: RTb

ρ
Threshold
Gap

Figure B.2: Fault and Fault Size Data Structures.

index in gateArray, which is a unique identifier for each gate in the circuit. The PI and
PO arrays contain pointers to the primary input and primary output gates that are stored
in gateArray. The gates in gateArray are stored in increasing level order. A level-order
simulation simply loops through the circuit’s gateArray to visit all gates in increasing level
order, so that when a gate is simulated, all of the gate’s fanins have already been processed.

Two data structures are used to store fault information, the Fault and Fault Size
data structures shown in Figure B.2. During fault simulation of each activated fault, the
simulator maintains a list of Fault data structures for each gate in the circuit. Each
element of a gate’s Fault list contains a faultID, faultType, FPV , RTa, RTb, and ρ.
The faultID is equal to the ID of the gate at the fault site, and the faultType indicates
whether a slow-to-rise or a slow-to-fall delay fault is being simulated. FPV , RTa, RTb, and
ρ store information about the faulty waveform at the gate. FPV stores the fault propagating
value and RTa, RTb, and ρ provide timing information about faulty waveforms as described
by Iyengar et al. [34] and discussed in Chapter 3.

To store fault detection information globally for all simulated vectors, the simulator
maintains two Fault Size data structures for each gate in the circuit, one for the slow-
to-rise fault, and one for the slow-to-fall fault at each gate. The Fault Size element for
a detected gate delay fault stores the best RTa, RTb, ρ, detection threshold (Threshold),
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Ambiguity fanoutID
List: d(G, f)

D(G, f)

Figure B.3: Ambiguity List Data Structure.

and detection gap (Gap) information for all vector pairs that have been simulated. If the
fault is not detected by the simulated vectors, that fault’s Fault Size element is null.

The simulator maintains a list of Ambiguity List data structures, shown in Figure
B.3, for each gate G in the circuit, which provides information used for the reconvergent
fanout analysis technique described in Chapter 4 and Chapter 5. The fanoutID of an
element in a gate’s Ambiguity List is the gate ID of a fanout point f effecting gate G.
The element’s d(G, f) and D(G, f) values store the minimum and maximum delays from
fanout f to gate G.

B.2 Static Timing Analysis

The static timing analysis step is performed to calculate the critical delay of the circuit
and the slack for every gate in the circuit. The critical delay of the circuit is the maximum
delay possible from primary input to primary output for any possible input vector pair if all
gate delays are within their specified min-max delay range. The critical delay (CritDelay)
is calculated in one forward pass over the circuit’s gates in level order, as shown in Figure
B.4. At each gate G, delay values are maintained (delay(G)), which are initialized to 0 for
primary input gates. For all other gates (G), these delay values are evaluated by lines 5-9
as the maximum delay value previously calculated at fanin gates to G plus the maximum
delay of gate G (maxdel(G)). After all gates have been evaluated, the critical delay for
the circuit is the maximum delay value calculated at a primary output gate (lines 12-15).
The sample period Ts is then set to one delay unit longer than the circuit’s critical delay:
Ts = CritDelay + 1.

The slack for each gate G is calculated as described by Iyengar et al. [34] and discussed
in Chapter 3:

slack(G) = Ts − LMPD(G)

where LMPD(G) is the longest minimum path delay through gate G, which is the sum
of all minimum gate delays along the longest delay path through G. The algorithm to
calculate slacks involves two passes over the circuit, and is shown in Figure B.5. The first
pass is in increasing level order (forward pass) and the second is in decreasing level order
(backward pass). During the forward pass, delay values are maintained for each gate G
(forwdDel(G)), which are initialized to 0 for primary input gates. For all other gates
(G), these delay values are evaluated by lines 5-9 as the maximum delay value previously
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1: for all gates (G) in increasing level order do
2: if G is a primary input then
3: delay(G) = 0
4: else
5: delay(G) = −∞
6: for all fanin gates Gfanin to gate G do
7: delay(G) = max{delay(Gfanin), delay(G)}
8: end for
9: delay(G) = delay(G) +maxdel(G)

10: end if
11: end for
12: CritDelay = −∞
13: for all primary output gates (G) do
14: CritDelay = max{delay(G), CritDelay}
15: end for

Figure B.4: Critical Delay Calculation.

1: for all gates (G) in increasing level order do
2: if G is a primary input then
3: forwdDel(G) = 0
4: else
5: forwdDel(G) = −∞
6: for all fanin gates Gfanin to gate G do
7: forwdDel(G) = max{forwdDel(Gfanin), forwdDel(G)}
8: end for
9: forwdDel(G) = forwdDel(G) +mindel(G)

10: end if
11: end for
12: for all gates (G) in decreasing level order do
13: if G is a primary output then
14: backDel(G) = 0
15: else
16: backDel(G) = −∞
17: for all fanout gates Gfanout to gate G do
18: backDel(G) = max{[backDel(Gfanout) +mindel(Gfanout)], backDel(G)}
19: end for
20: end if
21: LMPD(G) = forwdDel(G) + backDel(G)
22: slack(G) = Ts − LMPD(G)
23: end for

Figure B.5: Slack Calculation.
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calculated at fanin gates to G plus the minimum delay of gate G (mindel(G)). During the
backward pass, the delay values maintained for each gate G (backDel(G)) are initialized
to 0 at primary output gates, and evaluated by lines 16-19 as the maximum delay value
previously calculated at fanout gates of G plus the minimum delay of the fanout gate. The
longest minimum path delay through each gate G (LMPD(G)) is then evaluated for each
gate during the backward pass at line 21, and the slack for G (slack(G)) is evaluated at
line 22.

B.3 Bounded Delay Simulation

Bounded delay simulation is performed for each vector pair (V1 and V2) to determine
the signal waveforms at each gate in the fault-free circuit. The initial logic values of primary
inputs are initialized using vector V1, and final logic values of primary inputs are initialized
using vector V2. Initial (IV ) and final values (FV ) for all other gates are evaluated in one
forward level order pass over the circuit. A gate’s initial (final) value is evaluated using
the initial (final) values of it’s fanin gates and the rules of Boolean logic. The earliest
arrival (EA) and latest stabilization (LS) times are then initialized for primary inputs, and
evaluated at all other gates in a second forward level order pass over the circuit as described
by Iyengar et al. [34] and discussed in Chapter 3.

Figure B.6 shows the algorithm for bounded delay simulation after initial and final logic
values have been evaluated at every gate. EA and LS for primary inputs are initialized in
lines 1-10 as described in [34] and discussed in Chapter 3. If hazard suppression is enabled
with the “-withHazLists” option, and the primary input is also a fanout stem, an ambiguity
list element is inserted at that gate G with the G’s ID as the fanoutID and minimum and
maximum delays of zero: d(G,G) = 0 and d(G,G) = 0.

Lines 11-21 visit all gates in a forward pass. The function evalGateT iming(G) at line
15 evaluates EA and LS for gate G using the EA and LS values of fanin gates as described
in [34] and discussed in Chapter 3. Lines 14-16 filter out hazards that are not large enough
to overcome the gate’s inertia, where the inertia of a gate is the gate’s minimum delay.

If hazard suppression is enabled, the function evalAmbiguityList(G) (line 18) evaluates
the ambiguity list at gate G as described in Chapter 5. If gate G is a reconvergent gate,
and inputs to G are such that hazard suppression occurs, evalAmbiguityList(G) sets the
ambiguity list at the output of G to null and sets the output of G to a stable logic value:

EA(G) =∞ LS(G) = −∞

If hazard suppression does not occur, evalAmbiguityList(G) adds an ambiguity list
element to G’s ambiguity list for every fanout element found in the ambiguity lists of fanin
gates (Gfanin) to G, and updates the minimum and maximum delays of ambiguity list
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1: for all primary input gates G do
2: if IV (G) 6= FV (G) then
3: EA(G) = 0 and LS(G) = 0
4: else
5: EA(G) =∞ and LS(G) = −∞
6: if G is a fanout stem and hazard suppression is enabled then
7: insertAmbiguityList(G)
8: end if
9: end if

10: end for
11: for all gates (G) in increasing level order do
12: if G is not a primary input then
13: evalGateT iming(G)
14: if [LS(G)− EA(G)] < mindel(G) then
15: EA(G) =∞ and LS(G) = −∞
16: end if
17: if hazard suppression is enabled then
18: evalAmbiguityList(G)
19: end if
20: end if
21: end for

Figure B.6: Bounded Delay Simulation.

elements using the minimum and maximum delays of gate G:

d(G, f) = min{d(Gfanin, f)}+mindel(G)
D(G, f) = max{D(Gfanin, f)}+maxdel(G)

B.4 Detection Threshold Evaluation

The detection threshold evaluation step performs fault simulation to propagate fault
effects through the circuit for each gate delay fault that is activated by the input vector pair.
Fault propagation begins by initializing the Fault data structure’s reference quantities,
FPV , RTa, RTb, and ρ for the gate at the fault site and for gates that lie outside the cone
of influence of the fault as described by Iyengar et al. [34] and discussed in Chapter 3. If
hazard suppression is enabled with the “-withHazLists” option, and the fault site is a fanout
stem, an ambiguity list is also created at the fault site with the gate ID of fanout point G
and zero delays: d(G,G) = 0 and D(G,G) = 0 [13, 27]. The Fault data structure reference
quantities at gates inside the cone of influence of the fault site are evaluated during fault
propagation as described in [34] and discussed in Chapter 3.
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1: for all gates (G) do
2: if IV (G) 6= FV (G) then
3: if G is a fanout stem and hazard suppression is enabled then
4: insertAmbiguityList(G)
5: end if
6: for all fanout gates Gout of gate G do
7: enqueue(Gout)
8: end for
9: while queue is not empty do

10: Gq = dequeue()
11: evalRefV als(Gq)
12: if hazard suppression is enabled then
13: evalAmbiguityList(Gq)
14: end if
15: for all fanout gates Gout of gate Gq do
16: enqueue(Gout)
17: end for
18: end while
19: updateGlobalFaultInfo()
20: end if
21: end for

Figure B.7: Fault Simulation.

The fault propagation algorithm is shown in Figure B.7. Reference quantities for
gates inside the downcone of the fault site (Gq) are evaluated as described in [34] and
discussed in Chapter 3 by the evalRefV als(Gq) function at line 11. If hazard suppression
is enabled, the evalAmbiguityList(Gq) function at line 13 evaluates the ambiguity list
for gate Gq as described in Chapter 4. If hazard suppression does not occur for gate
Gq, evalAmbiguityList(Gq) updates the ambiguity list at Gq by adding an element for
every fanout element found in the ambiguity lists of fanin gates to Gq. The minimum and
maximum delays of ambiguity list elements, d(Gq, f) and D(Gq, f), are updated using the
minimum and maximum delays of Gq:

d(Gq, f) = min{d(Gfanin, f)}+mindel(Gq)
D(Gq, f) = max{D(Gfanin, f)}+maxdel(Gq)
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If Gq is a reconvergent gate, and inputs to Gq are such that hazard suppression does
occur, evalAmbiguityList(Gq) updates the reference quantities at Gq to:

ρ(Gq) = 0
RTa(Gq) = −∞
RTb(Gq) =∞

and sets the ambiguity list at the output of Gq to the empty (null) list.
The detection threshold (Threshold) and detection gap (Gap) for a detected gate

delay fault at output z is then calculated as described in [34] and discussed in Chapter
3 (Threshold = max{ρ(z), Ts − RTb(z)} and Gap(G) = Threshold(G) − slack(G)). The
updateGlobalFaultInfo() function at line 19 updates the slow-to-rise and slow-to-fall Fault
Size data structures to store the best RTa, RTb, ρ, detection threshold (Threshold), and
detection gap (Gap) information for all input vector pairs that have been simulated.

B.5 Program Evaluation

CPU execution times for the ISCAS85 benchmark circuits are shown in Table B.1
and Table B.2 for gate delay fault simulation of 1,000 input vectors without propagating
ambiguity lists. For the data in Table B.1, zero delay fanout buffers were not inserted on
fanout branches. For the data in Table B.2, zero delay fanout buffers were inserted on all
fanout branches, increasing the number of gates for each circuit. In both tables, columns
two, three, and four show the number of primary inputs, primary outputs, and gates for
each circuit, and column five shows the execution time on a 2 GHz Intel Pentium processor.
By inserting zero delay buffers on all fanout branches, the number of gates for each circuit
increases by approximately a factor of two, which results in an increase in CPU execution
time by a factor of about four.

Table B.3 shows a separate set of execution times for simulation of the ISCAS85 bench-
mark circuits for 1,000 input vectors with and without the ambiguity list propagation tech-
nique described in Chapter 5. For the data Table B.3, zero delay fanout buffers were
inserted on all fanout branches in each circuit. Column five shows the performance when
the ambiguity list propagation technique is not used, and column six shows the performance
when ambiguity lists are propagated during both bounded delay simulation of the fault-free
circuit and gate delay fault simulation. Propagating ambiguity lists during simulation of
both the fault-free and faulty circuit increases CPU execution time by a factor of about 1.8.
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Table B.1: Performance When Zero Delay Buffers Are Not Inserted on Fanout Branches.

Number Number Number CPU
Primary Primary of Execution
Inputs Outputs Gates Time (sec.)

c432 36 7 250 5
c499 41 32 555 23
c880 60 26 443 4
c1355 41 32 587 31
c1908 33 25 913 42
c2670 233 140 1426 31
c3540 50 22 1719 72
c5315 178 123 2485 84
c6288 32 32 2448 267
c7552 207 108 3719 201

Table B.2: Performance When Zero Delay Buffers Are Inserted on Fanout Branches.

Number Number Number CPU
Primary Primary of Execution
Inputs Outputs Gates Time (sec.)

c432 36 7 558 16
c499 41 32 1323 82
c880 60 26 880 15
c1355 41 32 1355 101
c1908 33 25 1908 120
c2670 233 140 2670 102
c3540 50 22 3540 253
c5315 178 123 5315 370
c6288 32 32 6288 1460
c7552 207 108 7552 1005
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Table B.3: Performance With and Without Reconvergent Fanout Analysis.

CPU Time (sec.) CPU Time (sec.)
Number Number Number Without With
Primary Primary Of Reconvergent Reconvergent
Inputs Outputs Gates Fanout Analysis Fanout Analysis

c432 36 7 558 16 30
c499 41 32 1323 82 136
c880 60 26 880 15 24
c1355 41 32 1355 101 154
c1908 33 25 1908 120 222
c2670 233 140 2670 102 158
c3540 50 22 3540 253 495
c5315 178 123 5315 370 636
c6288 32 32 6288 1460 4316
c7552 207 108 7552 1005 1516
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