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THESIS ABSTRACT 
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Fetuin-A (also called alpha2-HS glycoprotein), a phosphorylated protein secreted 

by the liver, is a physiological inhibitor of the insulin receptor tyrosine kinase (IR-TK). 

Elevated plasma levels of fetuin-A have been observed in animal models of obesity and 

diabetes, with fetuin-A null mice exhibiting improved insulin sensitivity and resistance to 

weight gain. In humans, increased plasma fetuin-A levels have been strongly correlated 

with insulin resistance, fatty liver, and metabolic syndrome. Increasing evidence indicate 

that insulin resistance and metabolic syndrome are associated with elevated circulating 

and/or tissue levels of cortisol, the principal active glucocorticoid in humans. Recently 

dexamethasone (DEX), a synthetic glucocorticoid, was shown to up-regulate fetuin-A 

gene expression and protein levels in primary mouse hepatocytes. Since DEX has been 

implicated in insulin resistance in animal models and humans, it was of significant 

interest to investigate the role of fetuin-A in DEX-induced insulin resistance. Treatment 

of Hep3B human hepatoma cells with DEX significantly increased the synthesis and 
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secretion of fetuin-A, suggesting a possibility that glucocorticoids may regulate fetuin-A 

levels in humans. These findings were extended to the Zucker diabetic fatty (ZDF) rat, a 

model of extreme insulin resistance. ZDF rats exhibited a ~2-fold increase in 

corticosterone levels compared to age- (6 weeks old) and sex-matched lean controls. This 

increase was matched by a ~2-fold increase in plasma fetuin-A levels in ZDF rats. 

Consistent with these data, DEX treatment (1 mg/kg, i.p., once daily for 4 days) was 

associated with hyperinsulinemia and insulin resistance, analyzed by homeostasis model 

assessment (HOMA) in 4-week old, male Wistar rats. Concomitantly, DEX treatment 

significantly elevated hepatic fetuin-A gene expression and protein levels resulting in a 

~2.2-fold increase in plasma fetuin-A levels. Administration of RU-486, a specific 

glucocorticoid receptor antagonist, restored insulin and HOMA-IR to normal and 

significantly decreased plasma fetuin-A levels in DEX-treated animals. Next, we sought 

to examine the role of endogenous glucocorticoids in regulating fetuin-A through the 

removal of adrenal glands. As expected, adrenalectomy significantly decreased 

circulating corticosterone and insulin levels, and effectively improved insulin sensitivity 

in Wistar rats. This improvement in insulin sensitivity was associated with a significant 

decrease in plasma fetuin-A levels. Furthermore, DEX-treated fetuin-A knockout mice 

showed improved insulin sensitivity compared to wild-type controls. Taken together, we 

demonstrate that circulating fetuin-A levels are regulated by glucocorticoids. Since 

fetuin-A is implicated in insulin resistance and metabolic syndrome, these studies suggest 

a novel role for fetuin-A in glucocorticoid-mediated insulin resistance. 
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CHAPTER 1: INTRODUCTION 

 

 Data from the World Health Organization indicate that more than 1.6 billion 

adults across the globe are overweight, while roughly 400 million of those are considered 

obese. By 2015, it is projected that around 2.3 billion adults, or one-third of the world’s 

current population, will be overweight (1). In Alabama alone, approximately 28.4% of 

adults are obese while an additional 34.8% of adults are overweight, ranking the state 

among the most obese in the nation (2). An increase in obesity has been associated with 

the development of numerous health problems, including: gallbladder disease, 

osteoarthritis, cardiovascular disease, and diabetes mellitus (3). 

  

The International Diabetes Federation shows that diabetes currently affects 246 

million people worldwide and is expected to affect 380 million by 2025. Each year, a 

further 7 million people develop this disease, while more than 3.8 million deaths per year 

are attributed to diabetes and its related complications. It is considered the fourth leading 

cause of global death by disease (4). Type 2 is the most prevalent form of diabetes, and a 

particularly strong association exists between weight gain and the development of type 2 

diabetes mellitus irrespective of ethnicity or gender (5,6). Type 2 diabetes usually stems 

from insulin resistance, when the body does not effectively respond to the 
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glucoregulatory mechanisms of insulin. Pancreatic β-cells compensate for the detriment 

in insulin signaling by releasing more insulin to maintain glucose homeostasis 

until they lose their ability to secrete it, resulting in β-cell failure and subsequent diabetes. 

Many complications can arise from diabetes, including: heart disease, stroke, blindness, 

kidney disease, and limb amputations (7). 

 

 Obesity has been strongly implicated as a potential risk factor for type 2 diabetes 

and is positively associated with an attenuation of insulin sensitivity (8,9). It represents 

an expansion of adipose tissue resulting in the hypertrophic secretion of signaling 

molecules by the adipocyte, called adipokines. TNF-α is an adipokine that inhibits insulin 

receptor signaling by reducing receptor tyrosine kinase activity (10). It also stimulates 

lipolysis and increases circulating fatty acid concentrations, further exacerbating insulin 

signaling (11,12). Interleukin-6 (IL-6) is another adipokine that is increased in the 

adipocytes of obese subjects (13). The secretion of TNF-α and circulating plasma IL-6 

have both been shown to be highly associated with obesity-associated insulin resistance 

(14). Additionally, other adipokines such as leptin, adiponectin, resistin, and retinol 

binding protein 4 (RBP4) have been suggested to play a pivotal role in the development 

of insulin resistance (11,15-21). 

 

 Another molecule that modulates insulin signaling is fetuin-A, a phosphorylated 

glycoprotein secreted by the liver. It is part of the cystatin family of proteins and a 

negative acute phase reactant (22). Fetuin-A has been shown to have sequence homology 

to its rat homolog pp63, a natural inhibitor of insulin receptor tyrosine kinase (IR-TK) 
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activity (23-25). Recombinant fetuin-A was shown to interact with the insulin receptor 

and inhibit insulin-stimulated receptor autophosphorylation and tyrosine kinase activity, 

leading to inhibition of the Ras/Raf/MAPK pathway (26,27). In rat liver and skeletal 

muscle, fetuin-A also inhibits tyrosine phosphorylation of the insulin receptor (25,27).  

 

The human fetuin-A gene is located on chromosome 3q27, a type 2 diabetes 

susceptibility locus (28). Data from the Heart and Soul study strongly associate fetuin-A 

with an atherogenic lipid profile in non-diabetic subjects with coronary artery disease 

(29). Serum fetuin-A levels are also positively correlated with severity of atherosclerosis 

in peripheral vessels of patients with normal renal function (30). Additionally, Stefan et 

al. report that elevated fetuin-A levels in humans are positively associated with both 

insulin resistance and fat accumulation in the liver (31). On the other hand, mice null for 

the fetuin-A gene display improved insulin sensitivity and do not gain weight when fed a 

high fat diet (32). Also, these transgenic mice do not become obese or insulin resistant as 

a result of age (33). Overall, a growing body of evidence seems to implicate fetuin-A as 

highly associated with both insulin resistance and type 2 diabetes. 

 

Glucocorticoids are a set of hormones that have also been strongly linked with the 

development of insulin resistance. Today, these compounds are the most common 

treatment for reducing inflammation and immune activation in rheumatoid arthritis, 

asthma, and allotransplantation (34). While glucocorticoids possess potent anti-

inflammatory and immunosuppressive properties, they can also lead to adverse metabolic 

effects such as hyperlipidemia, central obesity, and insulin resistance (35). Within the 
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scope of diabetes and homeostatic glucose control, the detrimental effects of 

glucocorticoids are synergistic: they increase hepatic glucose production and attenuate 

peripheral insulin sensitivity to cause insulin resistance, contributing to extensive 

hyperglycemia (36). Patients with Cushing’s Syndrome present an excessive amount of 

cortisol, the primary endogenous glucocorticoid in humans (37). These patients also 

demonstrate impaired glucose tolerance and are insulin resistant (38). The chronic 

administration of glucocorticoids has been associated with elevated insulin levels in both 

animal and human models (39,40), and euglycemic-hyperinsulinemic clamp studies 

reveal the presence of whole-body insulin resistance (41,42). Dexamethasone (DEX) is a 

synthetic glucocorticoid roughly fifty times more potent than cortisol (43). 

Therapeutically, it has been used as an anti-inflammatory agent, an antiemetic, and can 

also reduce pain and swelling (44-46). However, one of the adverse side effects of DEX 

administration is its ability to induce insulin resistance. In rat skeletal muscle, DEX 

impairs glucose transport with or without insulin (47). Similarly, dexamethasone 

attenuates insulin signaling and glucose transport in primary cultured rat adipocytes (48). 

Furthermore, a single-dose DEX injection leads to whole-body insulin resistance in rats 

(49). 

  

A recent study demonstrates that DEX treatment up-regulates fetuin-A gene 

expression in both mouse hepatoma cells and primary murine hepatocytes (50). However, 

no study has investigated the relationship between DEX, fetuin-A, and insulin resistance. 

Thus, the objective of this study is to elucidate the role of fetuin-A as a potential mediator 

of glucocorticoid-induced insulin resistance. 
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CHAPTER 2: REVIEW OF LITERATURE 

 

2.1 Obesity  

 The National Institute of Diabetes and Digestive and Kidney Diseases report that 

roughly two-thirds of adults in the United States are overweight, and almost one-third are 

considered obese (51). The chief principle in the progression of obesity is the concept of 

energy balance: when energy intake exceeds energy expenditure, fat storage occurs and 

eventually results in weight gain and obesity (52). Thus, a widely discussed theory for its 

cause is that society is shifting more toward a sedentary lifestyle, one that promotes an 

increase in energy consumption coupled with a reduction in energy expenditure leading 

to eventual weight gain (53). The primary storage site for lipids in our body is 

subcutaneous fat tissue. However, when subcutaneous fat reaches a threshold beyond 

which it cannot store any more, excess lipids are redirected to other locations throughout 

the body, most notably as visceral fat in intra-abdominal areas, but also in insulin-

sensitive tissues such as skeletal muscle and the liver. This results in the disruption of 

normal metabolic processes throughout the body (54). Obesity has been implicated as a 

major contributing factor in the development of various clinical disorders, including 

hypertension, atherosclerosis, dyslipidemia, insulin resistance, and diabetes (8,55). For 

example, a net retention of lipids within the liver has been associated with insulin 

resistance, obesity, and type 2 diabetes (56,57). Furthermore, excess fat deposition in 
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skeletal muscle has been shown to lead to diminished insulin sensitivity and a decrease in 

glucose uptake (58-61). These are all chief characteristics of type 2 diabetes. 

 

2.2 Diabetes 

 The American Diabetes Association defines diabetes mellitus as a group of 

metabolic diseases characterized by hyperglycemia resulting from defects in insulin 

secretion, insulin action, or both (62). Diabetes is the sixth leading cause of death in the 

United States (7), affecting approximately 7% of the U.S. population (63). Diabetes is 

associated with a host of metabolic complications, including: heart disease, stroke, 

atherosclerosis, limb amputation, and many others (7). There are three types of diabetes 

that have been well-characterized. Type 1 diabetes, previously known as juvenile 

diabetes, is usually diagnosed in children and is characterized by the body’s inability to 

produce insulin (63). Gestational diabetes occurs during pregnancy, when hormones from 

the placenta block the action of insulin in the mother, leading to insulin resistance. 

Together, these two types comprise a scant 10% of the total number of diabetics in the 

world. The vast majority of cases reside in the third category: type 2 diabetes. As the 

most prevalent of the three, type 2 diabetes currently affects more than 240 million 

people worldwide, nearly 6% of the world’s adult population. It is distinguished by the 

body’s inability to respond to insulin, a condition known as insulin resistance. Previous 

studies attribute the hyperinsulinemia observed in relation to obesity to an attenuation in 

insulin clearance from circulation (64-66). Alternatively, other studies ascribe elevated 

plasma insulin to an expansion of β-cell mass and function, leading to an increase in 

insulin secretion, a process termed β-cell compensation (67-69). While the literature 
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seems to be divided on which mechanism predominates (70), both are indicative of a 

“pre-diabetic” state in which the body undergoes a period of hyperinsulinemia to 

overcome slight elevations in fasting blood glucose (71). Extensive β-cell compensation 

eventually leads to defects in its cellular mechanism such as mitochondrial dysfunction, 

ER stress, and glucolipotoxicity. These abnormalities result in progressive β-cell failure 

where insulin cannot be produced in sufficient quantities to maintain normal blood 

glucose, resulting in uncontrolled hyperglycemia (69).  

 

2.3 Insulin action and signal transduction 

 The insulin receptor (IR) is a heterotetrameric membrane glycoprotein consisting 

of two extracellular α-subunits and two transmembrane β-subunits held together through 

disulfide bonds. Initially, there is a separation between the two β-subunits to prevent 

premature interaction between them. When insulin binds to the binding domain of the α-

subunit, a conformational change is induced that brings the two α-subunits closer together 

resulting in the autophosphorylation of the β-subunits and activation of the intrinsic 

kinase activity. This triggers a cascade of signaling steps intracellularly beginning with 

the phosphorylation of the insulin receptor substrate (IRS) proteins, Shc (Src homology 

collagen) and APS (adapter protein with Pleckstrin-homology [PH] and Src-homology-2 

[SH2] domains) (72). In particular, the phosphorylation of Tyr972 of the IR β-subunit 

creates a recognition site for interaction with phosphotyrosine binding (PTB) domains 

that are located on IRS-1 and -2 (73). Upon PTB binding, two tyrosine residues within 

IRS-1 (Tyr612 and Tyr632) undergo phosphorylation and serve as a docking site for 

phosphoinositide-3-kinase (PI3K), a lipid kinase with a host of signaling functions which 
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include: cellular growth and differentiation, synthesis and degradation of carbohydrates, 

proteins and lipids, and membrane trafficking (74). Upon binding to IRS-1 or -2, PI3K 

becomes activated and phosphorylates phosphatidylinositol 4,5-bisphosphate 

[PtdIns(4,5)P2] at the 3-position of the inositol ring to yield phosphatidylinositol 3,4,5-

trisphosphate (PIP3) and phosphatidylinositol 3,4-bisphosphate (PIP2) (75,76). These act 

as second messengers and recruit phosphoinositide-dependent kinase 1 (PDK1) to 

partially activate protein kinase B (also known as AKT) by phosphorylating the latter. 

Alessi and colleagues have previously demonstrated that the complete activation of AKT 

is dependent upon its phosphorylation at two amino acid residues: Thr308 and Ser473 

(77). While PDK1 has been shown to phosphorylate Thr308, the autonomous mechanism 

of phosphorylation of the Ser473 remains controversial (78). The expression of a 

dominant-negative kinase-deficient insulin receptor in the skeletal muscle of transgenic 

mice leads to impaired insulin sensitivity, glucose intolerance, and a diminished 

activation of IRS-1 and PI3K (79,80), demonstrating the vital role of these molecules in 

insulin signal transduction. After AKT is activated, it detaches from the plasma 

membrane to translocate GLUT4, an insulin-dependent glucose transporter that is highly 

expressed in adipose tissue and skeletal muscle, from the cytoplasm to the cell surface, 

allowing for the transport of glucose into the cell (81). AKT also governs the activity of 

glycogen synthesis via phosphorylation and subsequent inactivation of glycogen synthase 

kinase-3 (GSK3) to activate glycogen synthesis (82). Additionally, AKT affects the 

activity of 6-phosphofructose 2-kinase (PFK2), an enzyme responsible for one of the 

rate-limiting steps of glycolysis. Phosphorylation of PFK2 through AKT leads to the 

activation of glycolysis in vitro (83). 
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Insulin signaling also plays a dual role in the management of gene expression 

within the cell through the mitogen-activated protein kinase (MAPK) signaling cascade. 

Receptor autophosphorylation on tyrosine residues of the insulin receptor promotes the 

formation of a Shc-Grb2 complex (84). At the plasma membrane, the two molecules then 

associate with son-of-sevenless (SOS), a nucleotide exchange protein that converts 

inactive GDP-Ras to active GTP-Ras (85). Ras leads to the activation of MEKK which 

subsequently phosphorylates MEK-1/2 to activate MAPK and the manipulation of gene 

expression for various cellular processes (86). 

 

As the most potent anabolic hormone known, insulin has many pleiotropic roles 

in the synthesis and storage of macronutrients such as carbohydrates, lipids, and proteins. 

It stimulates the uptake of glucose, amino acids, and fatty acids into cells, and increases 

the expression or activity of anabolic enzymes that catalyze glycogen, lipid, and protein 

synthesis. It also inhibits the expression or activity of enzymes that degrade those 

macronutrients and release them into circulation (87). In the hepatocyte, insulin inhibits 

the production and release of glucose by inhibiting the transcription of the gene encoding 

for phosphoenolpyruvate carboxylase, a rate-limiting enzyme in gluconeogenesis, leading 

to a decrease in hepatic glucose production (88). In adipose tissue, insulin acts as a down-

regulator of lipolysis via its inhibition of hormone sensitive lipase (89).  
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Fig. 1: Insulin signal transduction inside the skeletal muscle cell. The binding of insulin 
induces a conformational change in the insulin receptor, leading to the 
autophosphorylation of various tyrosine residues on the β subunit of the IR. PTB domains 
located on IRS proteins recognize and bind to these phosphorylated tyrosine residues, 
leading to the recruitment and activation of PI3K. This molecule then leads to the 
activation of AKT, ultimately resulting in the regulation of protein synthesis, glycogen 
synthesis, and translocation of GLUT4 to the plasma membrane for glucose uptake into 
the cell. 
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2.4 Insulin resistance 

 In many models of insulin resistance, there is evidence indicating that attenuation 

of insulin signaling begins with the insulin receptor or its downstream targets. 

Understanding the mechanisms of insulin signaling forms the cornerstone to studying the 

development of insulin resistance, diabetes, and the risk of cardiovascular disease. Insulin 

resistance plays a central role as a precursor to the development of type 2 diabetes. It is 

characterized by the body’s inability to respond to insulin and is a common phenomenon 

often associated with genetic predisposition, aging, a sedentary lifestyle, and primarily 

obesity (90). There seems to be a causal role for obesity in the pathogenesis of insulin 

resistance since weight gain worsens it while weight loss ameliorates it (91). Insulin 

resistance, obesity, and type 2 diabetes are positively associated with increased plasma 

free fatty acid concentrations (92-95). 

 

It was originally assumed that the adipocyte was just a storage depot for fat in the 

body, but ever since Hotamisligil and colleagues showed that the cytokine TNF-α, 

produced by adipocytes, was able to induce insulin resistance (96), many others have 

gone on to identify other biologically active signaling molecules produced by fat cells, 

collectively labeled adipokines. These include leptin, interleukin-6, resistin, 

angiotensinogen, adiponectin, retinol-binding protein 4 (RBP-4), and others (20,97,98). 

These discoveries form the cornerstone of a plausible mechanism for the idea that excess 

fat storage is a notable contributing factor to reducing insulin signal transduction via the 

modulation of the secretion of adipokines, which may contribute to insulin resistance.  
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 Of particular importance is the fact that TNF-α activates Jun terminal kinase 1 

(JNK), a serine/threonine protein kinase. In both genetic and dietary animal models of 

obesity, JNK activity is increased in the liver, muscle, and adipose tissue. Conversely, the 

loss of JNK prevents insulin resistance (99). Activating JNK leads to the phosphorylation 

of insulin receptor substrate 1 (IRS-1) at a serine residue (Ser307 in rats/mice; Ser312 in 

humans) located on the C-terminal end of the PTB domain. This inhibits it and disrupts 

the association between the insulin receptor and IRS-1, rendering the latter molecule 

inactive and impairing the insulin signaling cascade (100,101). Another signaling 

molecule associated with TNF-α is IκKβ. Studies have shown that IκKβ can also impact 

insulin signaling through two mechanisms: 1) the phosphorylation of a serine residue on 

IRS-1, resulting in attenuated insulin signaling; and 2) the phosphorylation of Iκβ 

(inhibitor of NF-κβ), activating the transcription factor NF-κβ that stimulates the 

synthesis of pro-inflammatory molecules such as TNF-α and IL-6 (102,103). In similar 

fashion, Yuan and colleagues have previously demonstrated that the over-expression of 

IκKβ extenuates insulin signaling in cultured 3T3-L1 adipocytes, whereas its inhibition 

reverses insulin resistance (104). 

 

 The adipokine adiponectin can enhance the inhibition of hepatic glucose 

production as well as glucose uptake in fat and skeletal muscle. There is decreased 

expression of adiponectin in obese humans and mice (105), while the administration of 

adiponectin to obese and insulin resistant mice improves insulin sensitivity (106-108). 
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 Resistin is another adipokine that has been shown to decrease insulin-dependent 

glucose transport in vitro and increase fasting blood glucose levels and hepatic glucose 

production in vivo (20,109-111). In addition, transgenic mice lacking resistin exhibit low 

fasting blood glucose levels due to a decrease in hepatic glucose production (112). 

 

Aside from adipokines secreted by adipose tissue, circulating free fatty acids can 

also modulate glucose homeostasis. Patients with insulin resistance and type 2 diabetes 

frequently display abnormal lipid metabolism and elevations in both lipid deposition and 

concentration in the skeletal muscle (11,113). Free fatty acids have been shown to reduce 

glucose uptake, while a decrease in lipid levels improves insulin activity in the skeletal 

muscle, adipocyte, and the liver (114). They also affect downstream targets of the insulin 

receptor such as PI3-K activity in the skeletal muscle. An increase in plasma free fatty 

acids results in increased IRS-1 Ser307 phosphorylation, in turn leading to decreases in 

IRS-1 tyrosine phosphorylation, PI3-kinase activity, and glucose transport (115). 

 

2.5 Negative regulators of insulin signaling 

 Within the context of insulin resistance, many molecules have been described as 

having a negative impact on insulin signaling. Since the active insulin receptor 

conformation is maintained through the phosphorylation of essential tyrosine residues, 

dephosphorylation of the receptor by protein tyrosine phosphatases (PTPs) can deactivate 

the receptor and reduce insulin signaling. Studies in human skeletal muscle show that 

protein tyrosine phosphatase-1B (PTP-1B) activity is increased in muscles from obese 

subjects, but is reduced in obese, diabetic subjects (116). Additionally, the 
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overexpression of PTP-1B reduces glucose uptake and GLUT-4 translocation to the cell 

membrane in primary rat adipocytes and Rat1 fibroblasts overexpressing human insulin 

receptors (117,118). Also, the overexpression of leukocyte antigen-related phosphatases 

(LAR) in mice has been shown to reduce both glucose disposal and uptake, causing 

whole-body insulin resistance (119). 

 

 Another negative modulator of insulin signaling is the suppressor of cytokine 

signaling (SOCS) family of proteins, which act as negative feedback regulators of 

cytokine signaling (120). Studies have indicated that SOCS-1, SOCS-3, and SOCS-6 can 

bind to the insulin receptor in cells (121,122). In addition, SOCS-3 attenuates insulin 

signaling both in vitro and in vivo (123,124). The overexpression of SOCS-1 and SOCS-

3 in liver causes insulin resistance, while their suppression leads to markedly improved 

hepatic steatosis (125). 

 

 Plasma cell antigen 1 (PC-1) is a plasma membrane enzyme that is widely 

distributed in tissues, including the three major insulin-sensitive tissues: liver, adipose 

tissue, and skeletal muscle (126). Transgenic mice overexpressing PC-1 exhibited 

hyperglycemia, insulin resistance, and diabetes (127). Additionally, studies in human 

tissue have demonstrated that PC-1 is elevated in muscle and fat of insulin resistant 

patients (128,129). It has also been shown that PC-1 binds to amino acids 485-599 of the 

insulin receptor connecting domain, blocking IR autophosphorylation and subsequent 

insulin signaling (73,130). 
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 The dual-specificity phosphatase Pten (phosphatase with tensin homology) is a 

negative regulator of insulin signaling through the PI3-K/AKT pathway (131). It has been 

shown to block MAPK phosphorylation in response to insulin stimulation by inhibiting 

IRS-1 phosphorylation and formation of the IRS1/Grb/Sos complex, leading to the 

suppression of cellular growth (132). Another phosphatase that modulates insulin 

signaling is SHIP-2. While the overexpression of this molecule does not affect insulin-

induced tyrosine phosphorylation of the insulin receptor β-subunit, subsequent 

association of Shc and Grb2 is inhibited, resulting in a decrease of insulin-stimulated 

MAPK activity (133). A separate study has demonstrated that Pten, but not SHIP-2, 

suppresses insulin signaling through the PI3-K/AKT pathway in 3T3-L1 adipocytes 

(134), reinforcing the notion that SHIP-2 primarily affects the mitogenic pathway of 

insulin signaling. 

 

2.6 Overview of fetuin A 

 A major phosphorylated glycoprotein was discovered in 1985 by Le Cam and 

others (22). This protein, named pp63 and secreted by rat hepatocytes, possessed strong 

structural similarity to the α-globulin family of proteins and was found to be negatively 

regulated during acute inflammation (22). Later on, this group characterized pp63 as a 

natural inhibitor of insulin receptor tyrosine kinase activity (25). Various homologs of rat 

pp63 exist, including bovine fetuin and human fetuin-A (also called α2-HS-glycoprotein 

or AHSG) (23). The human homolog was originally named fetuin; however, the 

discovery of a second member of the fetuin family, fetuin-B, prompted a name change 

from fetuin to “fetuin-A” (135). Like rat pp63, both bovine and human fetuin have been 
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characterized as having inhibitory effects on insulin receptor tyrosine kinase activity 

(24,136). Interestingly, the human fetuin-A gene (AHSG) is located on chromosome 

3q27, a locus that has been associated with metabolic syndrome and type 2 diabetes 

(28,137-139). However, while a single-nucleotide polymorphism (SNP) of the fetuin-A 

gene is associated with type 2 diabetes in French Caucasians (140), a different group 

reports that an AHSG gene variant is associated with leanness among Swedish men (141). 

Lehtinen et al. have found that four SNPs in AHSG are nominally associated with 

coronary artery calcified plaque in European Americans with type 2 diabetes (142). 

Recently, two AHSG polymorphisms in Danish whites were shown to be associated with 

dyslipidemia and type 2 diabetes, while a Thr248Met SNP was associated with improved 

insulin sensitivity (143). These data suggest that AHSG gene variants may play a role in 

the development of various metabolic features. 

 

The Heart and Soul Study was designed to investigate the influence of 

psychosocial factors on the progression of coronary artery disease (29). Non-diabetic 

outpatients were sequestered based on levels of serum fetuin-A. Results from this study 

demonstrated a strong association between higher human fetuin-A concentrations and an 

atherogenic lipid profile. Additionally, fetuin-A was also strongly associated with the 

metabolic syndrome, a constellation of metabolic risk factors associated with 

cardiovascular events and all-cause mortality (29). A recent (2007) study performed by 

Mori et. al. addressed the issue of fetuin-A and its association with arterial stiffness 

(144). Serum fetuin-A levels and stiffness parameter β for the common carotid artery 

were measured via ultrasound in 141 healthy subjects. Simple regression analysis showed 
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a significant (p = 0.018) positive correlation between fetuin-A and stiffness parameter β. 

All in all, this established a strong correlation between Ahsg and carotid arterial stiffness, 

independent of known atherogenic factors in healthy subjects (144). 

 

Fetuin-A has been shown to interact with the insulin receptor (IR) and specifically 

inhibits insulin stimulated IR autophosphorylation (27). Studies with recombinant human 

fetuin-A have revealed that it inhibits the mitogenic, but not the metabolic, pathway of 

insulin signaling in cells overexpressing the human insulin receptor (26). Additionally, 

Mathews et al. demonstrated that recombinant human fetuin-A inhibited insulin-induced 

insulin receptor (IR) autophosphorylation in intact rat1 fibroblasts over expressing the 

human insulin receptor (the HIRcB cell line). In other words, the presence of fetuin-A in 

HIRcB cells disrupted insulin receptor signaling (27). Haglund et al. demonstrated 

through peptide fragment sequencing that human fetuin-A was phosphorylated at two 

sites, Ser120 and Ser312 (145). This finding showed for the first time that circulating 

fetuin-A was partially phosphorylated, and that it may potentially play a role in the signal 

transduction mechanism of insulin in cellular systems in vivo.  

 

A strong association has been established between the consumption of a high-fat 

diet, the subsequent onset of obesity, and the development of diabetes (146). In a rat 

model of diet-induced obesity, a significant increase in fetuin-A gene expression has been 

observed (147). Given the interaction between fetuin-A and the insulin receptor, this 

leads to a possible association between fetuin-A and diabetes, potentially through the 

insulin signaling pathway. Fetuin-knockout (KO) mice exhibit increased basal and 
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insulin-stimulated phosphorylation of IR and increased activity of downstream signaling 

molecules such as mitogen-activated protein kinase (MAPK) and AKT in liver and 

skeletal muscle. Additionally, results from glucose and insulin tolerance tests showed 

enhanced insulin sensitivity and glucose tolerance when compared to controls. When fed 

a high-fat diet, these KO mice were resistant to weight gain, had significantly decreased 

body fat, and remained sensitive to insulin (32). Data from this study suggest that mice 

lacking fetuin-A are resistant to the adverse effects resulting from a high-fat diet, which 

include insulin resistance, glucose intolerance, and weight gain. 

 

To lend further evidence of fetuin-A as a major player in diabetic symptoms, 

Stefan et al. performed a cross-sectional study on healthy Caucasians without type 2 

diabetes, measuring liver fat accumulation and the degree of insulin sensitivity. Hepatic 

steatosis, or fatty liver, is common among individuals who are alcoholic, obese, and/or 

have diabetes. Results from the study showed a significant positive correlation between 

fetuin-A plasma levels and fasting insulinemia (p = 0.01). Also, plasma fetuin-A levels 

were significantly higher in those with impaired glucose tolerance when compared to 

controls (p = 0.006). A significantly negative correlation was observed when comparing 

plasma fetuin-A levels to insulin sensitivity, while liver fat showed a significant positive 

correlation with plasma fetuin-A (31). Thus, not only were fetuin-A levels associated 

with insulin resistance, but the accumulation of liver fat also seemed to be associated 

with plasma fetuin-A.  
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2.7.1 Glucocorticoids – functions and cellular mechanisms 

 As a whole, glucocorticoids are a class of hormones that possess a variety of 

functions in the body. Released from the cortex of the adrenal gland, these agents are 

secreted into the blood stream in a circadian pattern, peaking in the morning and 

diminishing at night (148). Cortisol is the main glucocorticoid present in humans and is 

an essential hormone for survival. It is released when the body faces acute duress, such as 

during fasting, inflammation, infection, or during the “fight or flight” response. Naturally, 

many of its effects are designed so that the body can mobilize resources for rapid energy 

production. Various effects of cortisol have been observed, including: an increase in 

blood pressure, increased liver and plasma proteins, suppression of the immune system, 

as well as elevated plasma free fatty acids, among others (149). However, arguably the 

most significant effect of glucocorticoids within the scope of diabetes research resides 

primarily in the liver: gluconeogenesis. In general, this process occurs either during 

fasting or exercise and is primarily used to restore blood glucose levels back to a normal 

physiologic range, between 70-150 mg/dL). However, glucocorticoid treatment has been 

shown to enhance glucose output and reduce glucose utilization in normal rats (150). 

Additionally, the dual effect of mobilizing extrahepatic amino acids for substrates 

coupled with an increase in enzyme production can potentially lead to a 6- to 10-fold 

elevation in glucose formation (149). 

 

2.7.2 Glucocorticoids – production and regulation 

 In humans, the secretion of glucocorticoids in the body is controlled through the 

activity of the hypothalamic-pituitary-adrenal (HPA) axis. When either an intrinsic or 
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extrinsic stress is received, the hypothalamus releases corticotropin-releasing hormone 

(CRH, also known as CRF) which in turn releases adrenocorticotropic hormone (ACTH) 

from the pituitary gland into the bloodstream (151). However, to minimize the catabolic 

and immunosuppressive effects of this response when levels become too high, 

glucocorticoids directly inhibit the HPA axis primarily at the hippocampus by acting on 

the hypothalamus and the pituitary gland, in turn decreasing the levels of circulating 

ACTH (151,152). 

 

 While activation of the HPA due to stress leads to a negative inhibition of (119) 

glucocorticoid production, a partial resistance to the feedback inhibition of glucocorticoid 

release has also been shown (153). Sapolsky et al. have shown that in the hippocampus, 

acute stress decreases the number of glucocorticoid receptors, thereby augmenting the 

levels of circulating glucocorticoids and a resistance to feedback inhibition. After the 

stress response has been terminated, glucocorticoid levels decrease in association with 

diminishing levels of CRH. This ultimately results in the normalization of both 

glucocorticoid receptor concentration and the feedback inhibition system (154). 
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Fig. 2: Flowchart of glucocorticoid release and feedback inhibition. When the body 
experiences an acute stress, CRH neurons signal to the hypothalamus to release CRF, 
which acts on the pituitary gland to release ACTH. The latter hormone then travels to the 
adrenal cortex to stimulate glucocorticoid release, which can negatively feedback on its 
own production at both the hypothalamus and the anterior pituitary. 
 
 

 21 
 



 22 
 

 At the cellular level, glucocorticoids can readily permeate the cell membrane and 

bind to glucocorticoid receptors (GRs) located in the cytosol. The receptor is a ligand-

activated transcription factor that is normally associated with heat-shock proteins (HSPs) 

in the absence of binding. Two types of glucocorticoid receptors have been well-

characterized. Type 2, the classic glucocorticoid receptor, has low affinity for 

corticosterone and instead has a greater affinity for synthetic glucocorticoids such as 

dexamethasone (155). The type 1 receptor on the other hand, is a corticosterone-

preferring receptor with high affinity for both corticosterone and the mineralocorticoid 

aldosterone (156). Once the glucocorticoid ligand binds to the GR, the complex 

undergoes a conformational change and subsequent dissociation from the HSPs, allowing 

both the receptor and its ligand to translocate into the nucleus (34). Within the nucleus, 

there are two types of mechanisms through which GRs can act. GRs bind to 

glucocorticoid response elements (GREs) to modulate transcription activity (157). A 

second proposed mechanism is characterized by interaction of the GR with other 

transcription factors without directly targeting specific DNA binding events, such as the 

involvement of GR with activating protein-1 (AP-1). AP-1 is a transcription factor that 

binds to specific target sequences within responsive promoters of DNA (158). While the 

GR itself does not bind to these promoters, deletion of AP-1 has been previously shown 

to abolish both AP-1-stimulated and GR-mediated repression of gene transcription, 

indicating a possible protein-protein interaction between the GR and AP-1 (159). 
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2.7.3 11β-hydroxysteroid dehydrogenase 

 The tissue-specific mediator of glucocorticoid action is 11β-hydroxysteroid 

dehydrogenase, an enzyme that drives the interconversion of 11-hydroxy (active) and 11-

keto (inactive) glucocorticoids. Two isozymes have been characterized in detail: 11β-

HSD1 and 11β-HSD2. The type 1 enzyme is widely found in various organs throughout 

the body, including the liver, adipose tissue, and skeletal muscle (160). In humans, its 

role is to convert inactive cortisone to active cortisol via 11-ketoreductase activity. On the 

other hand, the type 2 enzyme in humans is responsible for converting active cortisol 

(corticosterone in rodents) to inactive cortisone (11-dehydrocorticosterone in rodents). 

 

 In the liver, 11β-HSD1 has been shown to counter the effects of insulin through 

the up-regulation of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in the 

gluconeogenic pathway (161,162). Conversely, the inhibition of 11β-HSD1 leads to a 

decrease in blood glucose concentrations in hyperglycemic mice (162). The dysregulation 

of 11β-HSD1 expression and activity has also been observed in diabetic animal models 

and humans. In a mouse model of obesity and diabetes (ob/ob mouse), hepatic 11β-HSD1 

activity was reduced when compared to lean control animals. However, there was an 

elevation in both the liver and plasma corticosterone levels, as well as an inverse 

relationship between 11β-HSD1 expression and body weight (163), implicating the 

enzyme as a possible contributing factor to obesity-induced glucocorticoid production. 

Furthermore, in obese humans, an elevation of adipose 11β-HSD1 activity was associated 

with obesity, insulin resistance, and other aspects of the metabolic syndrome (164-166). 
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 Carbenoxolone, a derivative of liquorice, is a non-selective inhibitor of 11β-HSD 

types 1 and 2 in humans. Walker et al. have shown that oral carbenoxolone increases 

insulin sensitivity and decreases glucose production in the liver (167). A later study by 

the same group reveals that the inhibition of 11β-HSD1 in the liver of type 2 diabetic 

patients reduces their glucose production rate during hyperglucagonemia, but has no 

effect on gluconeogenesis or lipid profiles in these patients, perhaps due to the relatively 

mild potency of carbenoxolone as a non-selective 11β-HSD inhibitor (168,169). In 

contrast, the selective inhibition of 11β-HSD1 leads to a lowering of blood glucose levels 

and improved insulin sensitivity in various mouse models of type 2 diabetes 

(162,170,171). 11β-HSD1 knockout mice express lower levels of TNF-α along with 

reduced visceral fat accumulation when on a high-fat diet, while isolated adipocytes from 

these mice exhibit higher basal and insulin-stimulated glucose uptake (172). Additionally, 

these mice have an improved lipid profile, hepatic insulin sensitization, and are resistant 

to high-fat induced hyperglycemia (173,174). 

 

2.7.4 Glucocorticoids and insulin resistance 

Since glucocorticoids have potent anti-inflammatory and immunosuppressive 

properties, their uses in remedial settings today include allergic and hematological 

disorders, and renal, intestinal, liver, and skin diseases (42). However, when given in 

excess, glucocorticoids can lead to features commonly associated with the metabolic 

syndrome, such as obesity, hyperlipidemia, and insulin resistance (175). A prime 

example of glucocorticoid excess and its effects is manifested in patients with Cushing’s 

syndrome. This endocrine disorder is characterized by a chronic exposure to excess 
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glucocorticoids produced by the adrenal cortex. Patients with Cushing’s syndrome 

generally demonstrate central obesity, arterial hypertension, impaired glucose tolerance, 

diabetes, and hyperlipidemia (37). These factors can all lead to elevated risks of 

cardiovascular disease and mortality in these patients. Dexamethasone is a synthetic 

glucocorticoid roughly fifty times as potent as cortisol (43). It is widely used today to 

treat many inflammatory and autoimmune conditions, such as rheumatoid arthritis, 

inflammatory bowel, and asthma (34). In spite of its potent therapeutic properties, 

adverse side effects of dexamethasone and other glucocorticoid treatments have also been 

well documented. For instance, an increased risk of developing gestational diabetes is 

reported in women receiving glucocorticoids for threatened pre-term delivery (176). 

Patients with hypercortisolism show a 30-40% risk of developing diabetes mellitus (177). 

Also, the inclusion of glucocorticoids as part of the standard therapy after organ 

transplantation are believed to be responsible for the development of post-transplant 

diabetes mellitus (PTDM) in up to 40% of renal transplant cases (178). When given in 

excess, dexamethasone adversely affects muscle catabolism (179), resulting in both 

increased adiposity (180,181) and insulin resistance. (39,182). As a result, many 

researchers have treated animals with dexamethasone to study the effects and parameters 

of insulin resistance. A study by Qi et al. shows that although a single-dose of 

dexamethasone (1 mg/kg body weight) is not associated with hyperinsulinemia or 

hyperglycemia, a euglycemic-hyperinsulinemic clamp study reveals a decrease in glucose 

infusion rate, indicating poor glucose disposal in cells, a hallmark characteristic of insulin 

resistance (49). Furthermore, dexamethasone treatment leads to an increased level of 

lipoprotein lipase (LPL) in the heart. This is indicative of an increase in the ability of 
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LPL to facilitate fatty acid delivery to the heart, leading to excessive triglyceride storage 

in the organ (49). Overall, these results illustrate that dexamethasone induces whole-body 

insulin resistance as well as an alteration of fatty acid metabolism in the heart. 

 

A separate paper describes the effects of dexamethasone on GLUT2 protein levels 

and its gene expression in the pancreatic islet cells of male Sprague-Dawley rats. Data 

from this study reveal that the inclusion of dexamethasone alone decreases GLUT2 

protein by ~65% while no effect on GLUT2 mRNA is observed. In contrast, palmitic acid 

alone induces a 40% decrease in GLUT2 mRNA, but does not consistently affect protein 

expression. Dexamethasone only minimally affects the GLUT2 translation rate, but the 

half-life of the protein is decreased by 50%, indicating a post-translational degradation 

mechanism. Lastly, the inclusion of both dexamethasone and palmitic acid decreases 

glucose-induced insulin secretion (183). These results demonstrate that in isolated 

pancreatic β-cells, a combination of palmitic acid and dexamethasone can both diminish 

GLUT2 expression and attenuate glucose-induced insulin secretion, two common 

features seen in type 2 diabetes. 

 

2.8 Objectives/hypotheses of thesis research 

 Recently, Woltje et al. demonstrated that dexamethasone treatment increased 

fetuin-A gene expression in both Hepa1-6 mouse hepatoma cells and primary murine 

hepatocytes (50). Additionally, they showed that the fetuin-A promoter contained 

glucocorticoid response elements through which dexamethasone modulated fetuin-A 

levels, and that these promoter sequences were highly conserved in mouse, rat, and 
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human fetuin-A genes (50). However, no current studies to date have examined fetuin-A 

levels in glucocorticoid-based insulin resistant models. Thus, the overall objective of this 

study was to examine the relationship between glucocorticoids, fetuin-A, and insulin 

resistance.  

 

We hypothesized that both cells and animals treated with dexamethasone will 

express an elevated level of fetuin-A. In addition, dexamethasone treatment will lead to 

diminished insulin sensitivity as assessed through HOMA-IR and the insulin tolerance 

test. However, the absence of fetuin-A will result in improved insulin sensitivity, 

irrespective of dexamethasone treatment. 

 



 28 
 

CHAPTER 3: MATERIALS AND METHODS 

 

3.1 Cell culture experiments 

Human Hep3B and HepG2 hepatoma cells (ATCC, Manassas, VA) were cultured 

in 100 mm tissue culture dishes (BD Falcon, San Jose, CA) using Improved Modified 

Eagle’s Medium (IMEM) (Mediatech, Herndon, VA), supplemented with heat-

inactivated 10% (v/v) fetal bovine serum, and penicillin streptomycin (1%) in a 37 °C 

incubator containing 5% CO2. After growing to confluency, cells were washed with 

Dulbecco’s phosphate buffered saline (Invitrogen, Grand Island, NY) and starved 

overnight in serum-free IMEM containing penicillin streptomycin (1%) and 0.1% bovine 

serum albumin (Fisher Scientific, Fairlawn, NJ). Cells were then washed with PBS, 

treated with either DEX or vehicle (ethanol), and incubated overnight in serum-free 

IMEM. Media and cells were collected 24 hours after the treatment and stored in -20 °C 

for protein and gene expression analysis, respectively. 

 

3.2 Animals 

Protocols for animal care, testing, and euthanasia were evaluated and approved by 

the Institutional Animal Care and Use Committee at Auburn University. Eight week old 

male Wistar rats were purchased from Charles River Laboratories (Indianapolis, IN). 



Animals were maintained on a 12-hour light/dark cycle and fed standard rodent chow and 

water ad libitum. 

 

3.3 Dexamethasone / RU-486 treatment 

Rats were injected with DEX (1 mg/kg body weight) (Sigma, St. Louis, MO), 

RU-486 (50 mg/kg body weight) (Sigma), or vehicle (saline for DEX, ethanol for RU-

486), once daily for four days. Animals in the DEX+RU group received RU injection two 

hours prior to DEX treatment. All injections were administered intraperitoneally. Blood 

samples were taken from the lateral saphenous vein 24 hours before the initial treatment, 

on the third day, and on the fifth day of treatment, for glucose, insulin, and Western blot 

assays. Rats were sacrificed 24 hours after the final injection and truncal blood was 

collected from each animal. Liver sections were excised and flash-frozen by immersion 

in liquid nitrogen and stored in a -80˚C freezer until use. 

Day 0 1 2 3 4 5

DEX, RU, or vehicle

Blood
sample

Blood
sample

Blood
Sample

&
excised
livers  
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3.4 Adrenalectomy 

Wistar rats were randomly assigned to either adrenalectomized (ADX) or sham-

operated groups. Standard rodent chow and water were provided ad libitum. After 

acclimatization, animals were anesthetized with an intraperitoneal injection of a ketamine 

(70 mg/kg)/xylazine (5 mg/kg) cocktail. Assurance of complete anesthesia was confirmed 

by pedal and corneal reflexes. A sterile ophthalmic lubricant (Akwa Tears) (Akorn Inc, 

Buffalo Grove, IL) was applied to the cornea to prevent drying. The hair on the back of 

the lumbar area was shaved and a 3 cm dorsal midline skin incision was made at the level 

of the 1st to 3rd lumbar vertebra. After cuts were made through the muscle wall both 

adrenal glands were located and exteriorized along with the surrounding fat pad with a 

pair of straight mouse-toothed thumb forceps. The adrenal glands were then excised by 

blunt dissection and discarded. The muscle incisions were then sutured shut with 

monofilament synthetic absorbable suture (Covidien Syneture, Mansfield, MA). The skin 

incision was then closed with surgical staples. Sham rats were operated similar to the 

ADX rats described above, with the exception that their adrenal glands were located but 

not removed. Both rat groups were given standard rat chow. In addition to regular 

drinking water, a bottle of 0.9% NaCl and 0.15% KCl (w/v) was provided ad libitum . 

 

 After a seven-day recovery period, both ADX and sham-operated rats were 

injected intraperitoneally with DEX or saline, once daily for four days. Blood samples 

were taken from the lateral saphenous vein 24 hours before the initial treatment, on the 

third day, and again on the fifth day of treatment, for glucose, insulin, and Western blot 

assays. Rats were sacrificed 24 hours after the final injection and truncal blood was 



collected from each animal. Liver sections were excised and flash-frozen by immersion 

in liquid nitrogen and stored in a -80˚C freezer until use. 

Surgery:
ADX
Sham

Day 0 1 2 3 4 5
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3.5 Fetuin-A null mice 

Fetuin-A null mice, back-crossed over ten generations onto C57B/6J background, 

were kindly provided by Dr. Willi Jahnen-Dechent (Aachen University, Germany). After 

acclimatization, fetuin-A null mice were set up for breeding. Age- and sex-matched 

C57Bl/6 mice (Charles River Laboratories, Indianapolis, IN) were used as controls. 

Eight-week old, male, fetuin-A null mice and C57Bl/6 mice were injected with 1 mg 

DEX per kilogram body weight in a total volume of 100 μL, or an equivalent volume of 

saline, intraperitoneally, once daily for four days. Twenty-four hours after the final 

injection, mice were subject to either an insulin tolerance test (ITT) or glucose tolerance 

test (GTT). After completion of these assays, mice were euthanized using carbon dioxide 

followed by cervical dislocation. 
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3.6 Insulin tolerance test (ITT) 

Following a four-hour fast, mice were injected intraperitoneally with 0.50 U/kg 

regular human insulin. Blood samples were obtained at 0, 15, 30, and 60 minutes from 

the tail vein and blood glucose was measured with an Accu-Chek glucometer (Roche 

Diagnostics, Indianapolis, IN).  

 

3.7 Mouse tail DNA preparation 

Sections (5-6 mm) of the tail from fetuin-A null and wild-type mice were clipped 

and stored in -20ºC. Purification of total DNA from rodent tails was performed using the 

DNeasy Blood and Tissue Kit (Qiagen, Germantown, Maryland) according to 

manufacturer’s instructions. The DNA was further purified by mixing it with an equal 

volume of phenol:choloroform:isoamyl alcohol. DNA purity, determined by calculating 

the optical density ratio at wavelengths of 260 and 280 nm, and DNA concentrations 

were measured with a spectrophotometer (DU530 UV/Vis) (Beckman Coulter, Fullerton, 

CA). 

 

3.8 Polymerase chain reaction (PCR) and genotyping 

PCR mixtures contained 1x PCR buffer (Bio-Rad, Hercules, CA), 1 M Betaine 

(Sigma, St. Louis, MO), 200 μM each dNTP (Bio-Rad), 0.4 μM WT forward primer, 0.3 

μM WT reverse primer, 0.2 μM knockout forward primer, 2.5 U of Taq DNA Polymerase 

(Promega, Madison, WI), and 4 mM MgCl2 (Bio-Rad) in a total volume of 25 μL. 

Specific primer sequences are provided (Table 1). The thermal cycling protocol was 71ºC 

for 2 minutes; mouse-tail DNA was then added. This was followed by 40 cycles of 96ºC 
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for 10 seconds, 60ºC for 2 minutes, and 71ºC for 2 minutes. 5x loading buffer (Sigma, St. 

Louis, MO) was added to the PCR tubes and samples loaded into a 1% agarose gel. Gel 

was visualized with ethidium bromide (Fisher Scientific, Fairlawn, NJ) staining under 

UV light. Reference amplicons were 2.0 kb for WT and 0.6 kb for fetuin-A-/- mice, 

respectively. 

 

3.9 Biochemical assays 

Glucose levels were determined using an Accu-Chek glucometer (Roche 

Diagnostics, Indianapolis, IN). Plasma insulin levels were measured by a rat insulin 

ELISA assay kit (Linco Research, St. Charles, MO) according to the manufacturer’s 

instructions. Rat insulin was used as a standard. The homeostasis model assessment 

(HOMA) method (184) was used as a measure of insulin resistance, calculated using non-

fasted values of blood glucose and plasma insulin: 

HOMA-IR = [Insulin (μU/mL) x Glucose (mmol/L)] / 22.5 

 

3.10 Protein quantification 

Protein concentrations in Hep3B and HepG2 cell culture media were assayed with 

the Bradford method using Bio-Rad protein assay reagent (Bio-Rad, Hercules, CA) 

according to the manufacturer’s instructions. 

 

3.11 Corticosterone assay 

To evaluate the success of surgical adrenalectomies, plasma samples from 

adrenalectomized rats were assayed for corticosterone levels by an Enzyme Immunoassay 
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(EIA) Kit (Diagnostic Systems Laboratories, Webster, TX) according to manufacturer’s 

instructions. Briefly, rat corticosterone standards, controls, and unknowns were added 

into a 96-well plate. Enzyme conjugate solution was then added to each well and briefly 

shaken. Rat corticosterone antiserum was then added and the wells incubated at room 

temperature on a microplate shaker. The plate was washed, TMB chromogen solution 

was added, and the plate was read at 450 nm on a microplate reader (Bio-Tek, Winooski, 

VT). Corticosterone concentrations were calculated based on a four-parameter curve-fit 

of the assayed standard results. 

 

3.12 Western blotting 

Plasma samples from animal experiments were diluted (1:100 in PBS) before 

loading onto the gel. Cell culture media and animal plasma samples were mixed with 3X 

SDS-buffer and run on a 4-20% SDS-PAGE gel (NuSep, Austell, GA). SDS-PAGE gels 

were transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA) by the semi-dry 

transfer method using transfer buffer (25 mM Tris, 192 mM Glycine, 20% Methanol). 

Membranes were blocked in either 5% milk (non-fat dry milk; Bio-Rad, Hercules, CA) or 

1% BSA (Fisher Scientific, Fairlawn, NJ), both dissolved in Western blot wash solution 

(10 mM Tris pH 7.4, 100 mM NaCl, 0.1% Tween-20). The membranes were then 

incubated with antibodies specific to either human fetuin-A (Immunostar Inc., Hudson, 

WI) or phosphorylated Ser312 fetuin-A (custom generated with the epitope 

“HTFMGVVSLGSPS(PO4)GEVSHPR” and affinity purified; Affinity BioReagents, 

Golden, CO) and incubated with either SuperSignal West Femto or Pico 

chemiluminescent substrate (Pierce, Rockford, IL) for 5 minutes. The blot was then 
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imaged using the UVP Bioimaging System and LabWorks software package (UVP, 

Upland, CA). Relative area densities were quantified using the Un-Scan It software 

package, v.5.1 (Silk Scientific, Orem, UT). 

 

3.13 Liver homogenates 

Frozen liver tissues from Wistar rats were homogenized in tissue lysis buffer 

containing the following: 50 mM HEPES, pH 7.4; 100 mM sodium pyrophosphate; 100 

mM sodium fluoride; 10 mM EDTA; 10 mM sodium orthovanadate; 2 mM PMSF; 1% 

Triton X-100; Complete Mini protease inhibitor, 1 tablet per 10 mL solution (Roche 

Diagnostics, Mannheim, Germany). Homogenates were centrifuged at 4ºC, and the 

supernatant was retained. Bradford protein quantification and Western blotting were then 

performed as described previously. 

 

3.14 Total RNA isolation 

Frozen liver tissues excised from male Wistar rats were homogenized in Trizol 

reagent (Invitrogen, Grand Island, NY), transferred to a QIA shredder column (Qiagen, 

Germantown, Maryland), and RNA was isolated according to manufacturer’s 

instructions. Any potential DNA contaminants were removed using DNase I (Qiagen, 

Germantown, Maryland). The concentration of RNA was determined with a 

spectrophotometer (DU530 UV/Vis) (Beckman Coulter, Fullerton, CA), while the purity 

was ascertained by calculating the optical density ratio at wavelengths of 260 and 280nm. 
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3.15 cDNA synthesis 

Extracted RNA was synthesized into cDNA using the iScript cDNA Synthesis Kit 

(Bio-Rad, Hercules, CA). Each RNA sample was diluted with nuclease-free water to 

yield a normalized quantity of 1 μg RNA. This amount was then added to a tube 

containing iScr. buffer and iScr. reverse transcriptase (Bio-Rad, Hercules, CA). Tubes 

were placed in a thermocycler (Bio-Rad, Hercules, CA) and run using the following 

protocol: 25ºC for 5 minutes, 42ºC for 30 minutes, and 85ºC for 5 minutes. The 

synthesized cDNA was then stored in a -20ºC freezer. 

 

3.16 Real-time PCR gene expression 

To assess fetuin-A gene expression, cDNA was added to iQ SYBR Green 

Supermix (Bio-Rad, Hercules, CA) along with forward and reverse primers in a final 

reaction volume of 25 μL. Quantitative real-time PCR was carried out using the MyiQ 

single-color real-time PCR detection system (Bio-Rad, Hercules, CA). Specific primer 

sequences are provided (Table 2). The thermal cycling protocol was 95ºC for 3 minutes 

followed by 40 cycles of 95ºC for 15 seconds, 58ºC for 30 seconds, and 72ºC for 30 

seconds. To account for variability in the quality and quantity of total RNA used, gene 

expression of fetuin-A was normalized to that of β-actin mRNA as an endogenous 

control. 

 

3.17 Statistical analysis 

Experimental results were expressed as mean ± standard error of the mean (SEM). 

Comparisons between various treatments and/or groups were carried out using the 
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unpaired Student’s t-test or one-way analysis of variance (ANOVA) where appropriate. 

Differences were considered to be statistically significant if ‘p value’ was less than 0.05. 

Statistical analysis was performed using GraphPad InStat v.3 (GraphPad, San Diego, 

CA). 
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CHAPTER 4: RESULTS 

 

4.1 Elevated fetuin-A levels in Hep3B and HepG2 human hepatoma cells 

Fetuin-A is produced and secreted by the liver and undergoes post-translational 

modifications. Human fetuin contains an 18-amino-acid N-terminal signal peptide and is 

therefore secreted into media (185,186). While the rat hepatoma cell line H4IIE does not 

secrete fetuin, other rat hepatoma cell lines such as FTO-2B and Fao have been shown to 

secrete it (187). The human hepatoma cell lines Hep3B and HepG2 have also been shown 

to synthesize fetuin-A (145,188). Earlier studies by Woltje et al (50) identified a 

glucocorticoid response element in the promoter of fetuin-A which was responsive to 

DEX treatment, resulting in increased fetuin-A expression in primary murine 

hepatocytes. To confirm these effects, fetuin-A levels were assayed after a 24-hour DEX 

treatment in human Hep3B and HepG2 cells. Real-time PCR results indicated an 

elevation of relative gene expression of fetuin-A at 5 μM and 125 μM DEX treatment 

(Fig. 3). However, no changes in relative gene expression of fetuin-A were observed in 

HepG2 cells (data not shown). Fetuin-A secreted into media was assessed by Western 

blot. DEX treatment induced maximal secretion of fetuin-A at 1.0 and 5.0 μM in Hep3B 

cells (Fig. 4). No significant differences in fetuin-A secretion were observed in HepG2 

cells (Fig. 5).  
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4.2 Elevated corticosterone and fetuin-A levels in a ZDF rat model 

The primary glucocorticoid in rodents, corticosterone, has also been associated 

with insulin resistance (189,190). To delineate our hypothesis that glucocorticoids are 

associated with fetuin-A levels in animals, corticosterone and fetuin-A levels were 

measured in 6-week-old Zucker Diabetic Fatty (ZDF) rats. Although ZDF rats exhibited 

glucose levels comparable to lean controls at six weeks of age (ZDF: 151 ± 8 mg/dL, 

Lean: 128 ± 7 mg/dL, NS) (Fig. 6), they were hyperinsulinemic (ZDF: 8.982 ± 2.247 

ng/mL, Lean: 0.524 ± 0.148 ng/mL, p < 0.05) (Fig. 7) and insulin resistant as determined 

by HOMA-IR (84.54 ± 25.4, n = 6) when compared with lean controls (3.84 ± 0.9, n = 6) 

(p = 0.01). ZDF rats had significantly higher plasma corticosterone levels than lean 

controls (Fig. 8). A concomitant elevation in fetuin-A, though not significant (p = 0.10), 

was also observed in the plasma of these rats, suggesting that elevated corticosterone 

levels in ZDF rats may be associated with fetuin-A levels and insulin resistance (Fig. 9). 

 

4.3 Increased fetuin-A expression in DEX-treated Wistar rats 

Glucocorticoids such as dexamethasone have been shown to induce insulin 

resistance in both animals and humans (40,42,43,47), and also to up-regulate fetuin-A 

gene expression (50). Since fetuin-A is a natural inhibitor of insulin receptor tyrosine 

phosphorylation (24,27) and was associated with insulin resistance and fat accumulation 

in the liver (31,191), it was logical to pose the question: Does DEX treatment increase 

fetuin-A levels and thereby contribute to an insulin resistant state? To assess the effect of 

glucocorticoids on insulin resistance, 4-week-old male Wistar rats were given an 

intraperitoneal injection of DEX (1 mg/kg body weight) once daily for four days. In 
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addition, a separate group of animals was injected with RU-486 (50 mg/kg) two hours 

prior to DEX. RU-486 is a glucocorticoid receptor antagonist used to counter the effects 

of elevated glucocorticoid levels. It has been used in patients with Cushing’s syndrome 

who exhibit hypercortisolism (192), and has been shown to reduce characteristics 

associated with type 2 diabetes in animals, such as hyperglycemia and insulin resistance 

(161,193).  

 

4.3.1 Body weight changes 

DEX-treated and RU-treated rats did not exhibit significant differences in body 

weight when compared to saline. However, a significant decrease (p < 0.01) in body 

weight was observed in the DEX+RU -treated rats on day 5 (153.0 ± 2.8 g) compared to 

saline-treated rats (181.9 ± 4.2 g). Additionally, day 5 body weights of saline-treated rats 

(181.9 ± 4.2 g) were significantly greater (p < 0.05) than their baseline (day 0) weights 

(158.4 ± 2.7 g) (Fig. 10). 

 

4.3.2 Glucose and insulin levels 

Blood glucose levels were not altered with either DEX-, RU-, or DEX+RU –

treatment compared to saline-treated controls (Fig. 11). On the contrary, plasma insulin 

was significantly elevated on day 3 in DEX-treated rats (2.372 ± 0.603 ng/mL) when 

compared to saline treatment (0.773 ± 0.093 ng/mL) (p < 0.01). Though not statistically 

significant, DEX-treated rats maintained elevated insulin levels (2.326 ± 0.573 ng/mL) on 

day 5 of the experiment when compared to saline treatment (1.445 ± 0.281 ng/mL). As 

expected, DEX-treated rats that were also given RU exhibited a significant decrease in 
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plasma insulin on both day 3 (0.584 ± 0.210 ng/mL) and day 5 (0.560 ± 0.068 ng/mL) 

when compared to animals treated with only DEX (Day 3: 2.372 ± 0.603 ng/mL, p < 

0.01; Day 5: 2.326 ± 0.573 ng/mL, p < 0.01) (Fig. 12). 

 

4.3.3 HOMA-IR 

The homeostasis model assessment of insulin resistance (HOMA-IR) is a 

calculated estimate of relative insulin resistance. First described by Matthews et al., it is 

based on plasma insulin and glucose values to assess contributions of insulin resistance 

and deficient cell function to hyperglycemia (184). DEX injection in Wistar rats led to a 

significant increase (p < 0.05) in non-fasted HOMA-IR (20.6 ± 5.8) when compared to 

the saline-treated group on day 3 (6.6 ± 0.9). On day 5, a trend towards significance was 

observed in these groups (DEX: 22.0 ± 5.5, Saline: 12.9 ± 2.6) though this difference was 

not statistically significant. The DEX-treated rats that were also given RU showed a 

significant decrease (p < 0.05) in non-fasted HOMA-IR on day 3 (4.8 ± 1.9) when 

compared to DEX-treated rats (20.6 ± 5.8). Day 5 non-fasted HOMA-IR was also 

significantly decreased (p < 0.01) in DEX+RU rats (4.9 ± 0.6) when compared to DEX-

treatment alone (22.0 ± 5.5). (Fig. 13).  

 

4.3.4 Fetuin-A gene expression in DEX-treated Wistar rats 

To evaluate fetuin-A gene expression, liver samples were excised from DEX- and 

RU- treated Wistar rats. RNA was isolated, reverse transcribed to cDNA, and quantitative 

real-time PCR was performed. No significant changes in fetuin-A gene expression were 

observed among treatment groups relative to the housekeeping gene, β-actin (Fig. 14). 
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4.3.5 Plasma fetuin-A concentrations in DEX-treated Wistar rats 

Wistar rat blood samples were obtained on days 0, 3, and 5 for quantitation of 

fetuin-A. Plasma, diluted 1:100 in saline, was separated on SDS-PAGE, transferred to 

nitrocellulose, and incubated with human fetuin-A specific antibodies. Though fetuin-A 

has a molecular weight of 48 kD, its apparent molecular weight on a 4-20% SDS-PAGE 

gel was ~60 kD. The increase in molecular weight was due to post-translational 

modifications including N- and O-linked glycosylations, and phosphorylation. In our 

hands, plasma fetuin-A consistently demonstrated a molecular weight of ~60 kD. 

Additionally, anti-human fetuin-A antibody demonstrated cross-reactivity with rat fetuin-

A. Densitometric analysis showed a significant increase in fetuin-A levels on day 5 of the 

experiment (p < 0.01). While not statistically significant, RU injection in DEX-treated 

rats decreased fetuin-A levels relative to DEX alone. Interestingly, rats injected with RU 

alone exhibited a significant increase in plasma fetuin-A on day 5 (Fig. 15). 

 

4.3.6 Insulin receptor (IR) autophosphorylation in Wistar rats 

To study the effects of DEX treatment on hepatic insulin signaling, liver tissues 

were homogenized, run on SDS-PAGE, and immunoblotted with antibody specific to 

three phosphorylated tyrosine residues (Tyr1158, Tyr1162, Tyr1163) of the insulin 

receptor. Though not statistically significant, DEX-treated animals exhibited a ~52% 

decrease in IR phosphorylation status relative to saline controls (p = 0.07) (Fig. 16). 
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4.3.7 Summary 

Taken together, these results indicate that DEX treatment induces 

hyperinsulinemia and insulin resistance in Wistar rats. Concomitant increases in fetuin-A 

gene expression and protein levels, and a decrease in IR activation were observed. 

Findings from this experiment suggest that treatment with RU-486, a glucocorticoid 

receptor antagonist, protects Wistar rats against DEX-induced insulin resistance and 

prevents an increase of fetuin-A gene expression and protein levels. 

 

4.4 Decreased fetuin-A expression in adrenalectomized (ADX) Wistar rats 

Since DEX-treatment increased plasma fetuin-A levels, it was of significant 

interest to understand the effects of adrenalectomy (the surgical removal of adrenal 

glands) on fetuin-A levels. Adrenalectomized or sham-operated rats were allowed a 1-

week recovery period. During this time, both water and salt solutions (0.9% NaCl and 

0.15% KCl) were provided ad libitum.  

 

4.4.1 Body weights and corticosterone levels in ADX and sham rats 

Following the recovery period (Day 0), significant (p < 0.01) decreases in body 

weights were observed in ADX animals compared to sham controls (Fig. 17). To 

determine the effectiveness of adrenalectomy, circulating levels of corticosterone were 

measured. As expected, plasma corticosterone levels were significantly lower in ADX 

rats (Fig. 18). 
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4.4.2 Glucose and insulin levels 

Blood glucose levels were not significantly different among surgical procedures 

or treatment (Fig. 19). However, a significant increase (p < 0.05) in insulin was observed 

on day 3 of DEX-treated sham rats (2.183 ± 0.158 ng/mL) compared to baseline values 

(1.023 ± 0.146 ng/mL). However, these levels were attenuated by day 5 (DEX: 1.434 ± 

0.059 ng/mL vs. Saline: 1.023 ± 0.146 ng/mL). Though not statistically significant, ADX 

rats had lower baseline (Day 0) insulin levels (0.455 ± 0.030 ng/mL) when compared 

with sham-controls (1.023 ± 0.146 ng/mL). Similarly, insulin levels tended to be lower in 

saline-injected adrenalectomized rats compared to sham controls. With DEX treatment on 

day 3 (DEX: 1.943 ± 0.396 ng/mL vs. Saline: 0.694 ± 0.127 ng/mL, p < 0.05) and day 5 

(DEX: 2.000 ± 0.328 ng/mL vs. Saline: 0.735 ± 0.111 ng/mL, p < 0.05), insulin levels 

were both significantly elevated compared to saline-treated ADX rats (Fig. 20).  

 

4.4.3 HOMA-IR 

Non-fasted HOMA-IR values exhibited a similar pattern as insulin levels in ADX 

rats. DEX treatment significantly elevated HOMA-IR when compared to baseline sham 

values on day 3 in sham controls (DEX: 19.9 ± 1.6 vs. Baseline: 9.3 ± 1.4, p < 0.01) but 

not day 5 (DEX: 12.3 ± 0.5 vs. Baseline: 9.3 ± 1.4). In ADX rats, DEX treatment led to a 

significant increase in HOMA-IR for both day 3 (DEX: 16.4 ± 3.0 vs. Baseline: 3.4 ± 0.3, 

p < 0.001) and day 5 (DEX: 15.0 ± 2.5 vs. Baseline: 3.4 ± 0.3, p < 0.001) of treatment 

compared to baseline (Day 0) values (Fig. 21).  
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4.4.4 Fetuin-A levels in ADX rats 

Western blot analysis was performed using anti-fetuin-A antibody to assess the 

effects of adrenalectomy on plasma fetuin-A. ADX Wistar rats showed a significant 

decrease (p < 0.05) in fetuin-A levels (0.21 ± 0.03) when compared to sham-operated 

controls (1.00 ± 0.30 relative density units) (Fig. 22). Furthermore, unlike sham controls, 

adrenalectomized rats failed to respond to DEX, demonstrating significantly lower levels 

of fetuin-A (Fig. 23). Similarly, DEX treatment in ADX rats did not alter fetuin-A levels 

(Fig. 24). However, sham rats demonstrated significantly elevated levels of total (p < 

0.001) (Fig. 25) and phosphorylated fetuin-A (Fig. 26). 

 

4.4.5 Summary 

Together, these results indicate that adrenalectomy improves insulin sensitivity. 

DEX treatment induces insulin resistance in both sham and ADX rats to similar degrees. 

Additionally, these findings demonstrate that metabolites secreted from the adrenal 

glands may play a significant role in the regulation of fetuin-A protein expression. 

 

4.5 Improved insulin sensitivity and glucose tolerance in DEX-treated fetuin-A 

knockout mice 

Since DEX treatment increased fetuin-A expression in Wistar rats, we 

hypothesized that fetuin-A null mice would be resilient to DEX-induced insulin 

resistance.  
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4.5.1 DNA genotyping 

 Fetuin-A null mice were identified by genotyping using standard PCR protocols. 

Wild-type (WT) C57Bl/6 mice produced an amplicon of approximately 2.0 kb, whereas 

fetuin-A KO mice produced an amplicon of 0.6 kb (Fig. 27). 

 

4.5.2 Insulin tolerance test 

An insulin tolerance test (ITT) was administered to assess the degree of insulin 

responsiveness in DEX-treated (1 mg/kg) fetuin-A KO mice. With a single i.p. injection 

of regular human insulin (0.50 U/kg), a significant (p < 0.05) difference was observed in 

glucose clearance between DEX-treated WT and KO mice at both 30- and 60- minute 

time points (Fig. 28). Additionally, DEX-treated WT mice exhibited attenuated insulin 

sensitivity when compared to saline-treated WT controls at the 60-minute time point (p < 

0.05).  

 

4.5.3 Summary 

These results demonstrate that DEX-treated mice are more insulin resistant than 

saline-treated controls, whereas fetuin-A knockout mice injected with DEX are protected 

against DEX-induced insulin resistance. 
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CHAPTER 5: DISCUSSION 

 

Diabetes, currently affecting over 22 million people in the U.S., is characterized 

by a deterioration of efficient homeostatic glucose control by insulin, either through a 

deficiency in insulin production or the disruption of insulin signaling known as insulin 

resistance. If left unchecked, diabetes can lead to a host of metabolic problems such as 

blindness, stroke, and cardiovascular disease (7). Insulin signaling can be characterized 

into three “critical nodes of signaling:” the insulin receptor and IRS proteins; PI3-kinase 

and its catalytic subunits; and the AKT isoforms (72). These “nodes” are frequently the 

target of various humoral factors that modulate insulin action, such as free fatty acids; 

adipokines including leptin, adiponectin, resistin, and RBP-4; and inflammatory 

cytokines such as TNF-α and IL-6 (11,15,194-197).  

 

Additionally, several physiological regulators of the insulin receptor have been 

identified. Increased expression of protein tyrosine phosphatases PTP-1B, LAR, and 

SHP-2 have been demonstrated in muscle and adipose tissues of obese animals and 

humans (198). Further, PTP-1B knockout mice exhibit improved insulin sensitivity, 

increased energy expenditure, and are resistant to diet-induced obesity, demonstrating an 

important role for PTPs in the regulation of insulin signaling and energy metabolism 

(199,200). 
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Another molecule that regulates proximal insulin signaling and which may play a 

contributing role in insulin resistance is PC-1, a glycoprotein with enzymatic 

phosphodiesterase activity. It is expressed in various tissues and has been shown to 

inhibit insulin receptor tyrosine kinase activity (201-203). Moreover, this inhibition 

seems to be through the binding of PC-1 to the α-subunit of the insulin receptor, thus 

interfering with IR movement and autophosphorylation of the β-subunits (73,130), 

thereby disrupting insulin signaling. PC-1 activity in fibroblasts from patients with type 2 

diabetes are positively correlated with insulin resistance (204), while the overexpression 

of PC-1 leads to insulin resistance and diabetes in mice (127).  

 

Fetuin-A, a glycoprotein secreted by the liver, is a negative acute phase reactant 

(188). Fetuin-A has been shown to interact with the insulin receptor and disrupt both IR 

autophosphorylation and inhibit IR tyrosine kinase activity (24,27). Additionally, 

recombinant fetuin-A inhibits the insulin-stimulated mitogenic signaling pathway in cells 

overexpressing the insulin receptor (26). In humans, fetuin-A is associated with insulin 

resistance and fat accumulation in the liver (31). On the other hand, fetuin-A knockout 

mice demonstrate improved insulin signaling and are resistant to diet-induced obesity 

(32,33). 

 

Excess amounts of glucocorticoids have also been known to cause insulin 

resistance in both animals and humans despite their therapeutic anti-inflammatory effects 

(205-209), with dexamethasone (DEX) as a prime example (47,48,169,178). However, 

the exact mechanisms through which glucocorticoids induce insulin resistance are still 
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not clear. Interestingly, DEX up-regulates fetuin-A gene expression in mouse hepatoma 

cells and primary murine hepatocytes (50).  Fetuin-A interacts with the insulin receptor 

and has previously been shown to have IR inhibitory activity (24-27). In this study, we 

have addressed the relationship between DEX, fetuin-A, and insulin resistance both in 

cell culture and in animal models of insulin resistance.  

 

 First, we characterized the effects of DEX treatment on fetuin-A gene expression, 

synthesis, and secretion. Our studies showed that DEX treatment in Hep3B cells led to an 

increase in fetuin-A gene expression while no differences were observed in HepG2 cells. 

Earlier studies have demonstrated that the transcription of PEPCK, an enzyme involved 

in gluconeogenesis, is induced by glucocorticoids and inhibited by insulin in H4IIE cells. 

On the other hand, glucocorticoids repress PEPCK transcription while no effect is 

observed after insulin treatment in HepG2 cells (210,211). Thus, the inconsistencies 

observed in our experiment may be the result of differences in cellular machinery 

between various cancer cell lines. This may warrant the use of primary hepatocytes as an 

effective model to most extensively mimic actual physiological conditions. Concomitant 

increases in fetuin-A protein levels secreted into media were also observed. Although 

DEX treatment was administered in a dose-dependent manner, both gene expression and 

protein levels of fetuin-A were saturable at a dosage (5 μM) in Hep3B cells. These 

observations are consistent with an earlier study in primary murine hepatocytes, where a 

5.0 μM DEX concentration elicited the highest amount of gene transcription (50). 

Interestingly, gene transcription and protein levels in our studies did not match 

consistently. This may be due to the dependence of protein secretion on both the 
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transcription of fetuin-A and post-translational modifications that mediate its secretion 

into the cell culture media, leading to a delayed secretory response relative to gene 

transcription. 

 

Recently, Woltje et al. examined regulatory elements on the fetuin-A gene 

promoter and identified a putative glucocorticoid response element (GRE). A sequence 

analysis of the fetuin-A promoter regions in human, mouse, and rat genes revealed a high 

degree of sequence similarity. All three species’ promoter sequences contained a putative 

GRE along with a C/EBP-β and an HNF-3 binding site. The mouse and rat response 

elements showed a 96.4% sequence homology, while the human sequence showed 79.6% 

sequence identity, suggesting a common regulatory mechanism between all three species.  

 

 Based upon the finding that DEX treatment up-regulated fetuin-A gene expression 

in primary murine hepatocytes (50), we sought to examine the status of glucocorticoids 

and plasma fetuin-A in an animal model of insulin resistance. The Zucker diabetic fatty 

(ZDF) rat is an animal model of type 2 diabetes. These animals have a genetic mutation 

in the leptin receptor and are characterized by overt hyperglycemia, hyperlipidemia, 

impaired glucose tolerance, and insulin resistance (212). At 6 weeks of age, ZDF rats are 

normoglycemic, but have a ~2-fold increase in β-cell mass and exhibit hyperinsulinemia 

(213), indicative of an insulin resistant state. Our findings showed that plasma samples 

from 6-week-old ZDF rats demonstrated significantly elevated (p < 0.05) corticosterone 

levels when compared to lean controls. Concurrently, plasma fetuin-A levels were also 

higher in these animals. These results are consistent with other studies showing positive 
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associations of corticosterone with insulin resistance (164,190). Further, these findings 

suggest that the increase in corticosterone levels may contribute to increased plasma 

fetuin-A concentrations in ZDF rats, which may play a role in insulin resistance (24,27). 

 

 Next, we sought to examine the role of fetuin-A in glucocorticoid-induced insulin 

resistance in Wistar rats. As reported earlier, no significant changes in body weight were 

observed with DEX treatment (214,215). However, DEX-treated rats given RU had 

significantly lower body weights than saline-treated controls. Although food intake was 

not monitored in this study, our findings are consistent with other investigators who have 

previously reported that treatment with RU and DEX together led to a significant 

decrease in body weight (216,217). 

 

Our results also showed that DEX treatment significantly increased (p < 0.01) 

plasma insulin and HOMA-IR. The addition of RU to DEX-treated animals led to a 

significant decrease in both insulin and HOMA-IR. Earlier research by Liu et al. had 

demonstrated that RU-486 (RU) attenuated glucocorticoid-induced insulin resistance 

(161). This supports the concept of DEX administration leading to insulin resistance in 

rats, and that this effect is mediated through the glucocorticoid receptor. Of the several 

methods used for determining insulin resistance, such as the homeostasis model 

assessment for insulin resistance (HOMA-IR), quantitative insulin-sensitivity check 

index (QUICKI), fasting glucose-to-insulin ratio (FGIR), and the euglycemic-

hyperinsulinemic clamp, the latter clamp method is considered the gold standard 

(218,219). However, this is more labor intensive, time-consuming, and less comfortable 
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than other indirect methods of analysis. Thus, earlier studies have been performed to 

demonstrate the validity and accuracy of surrogate measures (HOMA-IR, QUICKI, etc.) 

in evaluating insulin sensitivity (184,220-222). For our studies, HOMA-IR was chosen as 

the preferred method for determining insulin resistance. HOMA-IR is a calculation of 

insulin sensitivity using fasting plasma glucose and insulin values (184) and has been 

utilized in many other studies to gauge insulin resistance (223-226). Since blood was 

collected during experimental treatment, HOMA-IR calculations utilized in our 

experiments were based on non-fasted levels of both glucose and insulin.  

 

Since DEX treatment induced insulin resistance and RU treatment abrogated 

DEX-induced insulin resistance, we assayed fetuin-A gene expression and plasma levels 

to understand the role of fetuin-A as a possible contributing factor to this effect. 

Interestingly, fetuin-A gene expression was not significantly different among treatment 

groups. However, increased plasma fetuin-A was observed after DEX treatment in Wistar 

rats; this corroborates well with the notion that fetuin-A is associated with insulin 

resistance (31,33). On the other hand, plasma fetuin-A decreased when RU was given to 

DEX-treated rats. This fits our hypothesis that RU treatment ameliorates DEX-induced 

insulin resistance, possibly through the disruption of glucocorticoid receptor signaling 

leading to a decrease in fetuin-A. However, rats treated with RU alone demonstrated 

significantly elevated plasma fetuin-A levels on day 5, but this did not result in elevated 

plasma insulin or HOMA-IR. In the circulation, approximately 20% of fetuin-A is 

phosphorylated at two sites: Ser120 and Ser312 (145). Also, it has been shown that the 

phosphorylation of fetuin-A is critical for its tyrosine kinase inhibitory activity (185). 
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Thus, a possible rationalization for this observed inconsistency may be that although total 

fetuin-A levels were high, relative levels of phosphorylated fetuin-A to total levels were 

low enough that the IR inhibitory effects in these animals were negligible. Interestingly, 

plasma fetuin-A was significantly elevated in RU-treated rats despite a low level of gene 

expression in these animals. While this may imply a diminished level of protein 

synthesis, a possible explanation for the elevated plasma levels could be due to a delayed 

degradation of plasma fetuin-A. This compels further examination into the mechanisms 

of fetuin-A synthesis, secretion, and degradation in these studies. 

 

Since DEX treatment increased fetuin-A gene expression and protein levels with a 

concomitant increase in insulin resistance, it was of significant interest to examine insulin 

receptor activation in DEX-treated Wistar rats. The insulin receptor, along with the IRS 

family of proteins, has been considered one of the “critical nodes” for the propagation of 

insulin signal transduction. It is a critical junction for cross-talk between pathways that 

modulate the activity of other signaling systems (72). Earlier studies have demonstrated 

that dexamethasone treatment can lead to whole body insulin resistance and can disrupt 

this node of insulin signaling (49,215). DEX treatment in primary rat skeletal myocytes 

leads to a significant decrease in insulin-stimulated IRS-1 content and phosphorylation, 

with no effect on IRS-1 serine phosphorylation status (227). In primary rat adipocytes, 

DEX abates basal and insulin-stimulated glucose uptake, lowers IRS-1 expression, and 

decreases both PI3K and AKT content (48). In addition, it has been shown to impair 

insulin-stimulated glucose transport by inhibiting GLUT4 translocation (228), and 

reduces AKT and GSK-3 phosphorylation in skeletal muscle (39). Fetuin-A has been 
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shown to interact with the insulin receptor to reduce autophosphorylation of tyrosine 

residues on the receptor (27). Since fetuin-A expression was increased after DEX-

treatment, it was our hypothesis that insulin receptor activation may be impaired. 

Accordingly, liver IR phosphorylation status was examined by immunoblotting with anti-

phospho IR antibody (Tyr1158, Tyr1162, Tyr1163). Our data showed a near-significant 

reduction (p = 0.07) in the phosphorylation of these tyrosine residues, which have 

previously been shown to be crucial for insulin signal transduction (229,230). This 

suggests that the DEX-mediated increase in fetuin-A may be involved in both the 

abatement of IR autophosphorylation and the concomitant decrease in insulin sensitivity.  

 

Overall results from this experiment indicate that glucocorticoid administration 

leads to insulin resistance and increased levels of fetuin-A, while the administration of 

RU improves insulin sensitivity and prevents the increase of plasma fetuin-A in these 

animals. While RU-treated rats exhibit significantly elevated fetuin-A, insulin and 

HOMA-IR are not increased, suggesting that other factors such as fetuin-A 

phosphorylation may play a role in its natural IR inhibitory activity. This warrants further 

investigation into the status of phosphorylated fetuin-A in DEX- and RU-treated Wistar 

rats. 

 

 Surgical adrenalectomies (ADX) have been performed in various studies to 

observe its effects on insulin sensitivity and glucose metabolism in rodent models of 

diabetes and insulin resistance (231-233). It has been shown to curtail hyperinsulinemia 

and hyperglycemia in both ob/ob mice (234,235) and Wistar rats (236). As expected, our 
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findings showed that adrenalectomy led to a significant decrease in both body weight and 

corticosterone levels, which were consistent with other studies (237-239). Also, earlier 

studies by White et al have shown that adrenalectomized rats exhibit a decrease in body 

weight which can be reversed with aldosterone treatment, a type 1 receptor agonist (156). 

While blood glucose levels were not significantly different between ADX and sham-

operated controls, plasma insulin levels and HOMA-IR were both lower in ADX rats 

(saline-injected) compared to sham controls (saline-injected). DEX treatment resulted in 

a significant increase in both insulin and HOMA-IR in the ADX and sham groups. 

Studies by Solomon et al. and Yukimura et al. have demonstrated elevated plasma insulin 

in adrenalectomized rats with glucocorticoid administration (240,241). Since HOMA-IR 

is based on a calculation of glucose and insulin values, we have shown that DEX-treated 

rats exhibit elevated HOMA-IR when compared to saline-treated controls due to their 

hyperinsulinemic profile, despite glucose levels being similar to that of controls. Earlier 

findings have also demonstrated that adrenalectomy improves insulin sensitivity 

(242,243), while the injection of glucocorticoids reverses the effects of adrenalectomy 

(244,245).  

 

 Along with improved insulin sensitivity, ADX rats also exhibited a decrease in 

plasma fetuin-A compared to sham-controls in both saline- and DEX-treated groups. 

Fetuin-A has been shown to be associated with insulin resistance (31), whereas fetuin-A 

knockout mice demonstrate improved insulin sensitivity (32,33). In ADX rats, the 

decrease in fetuin-A protein expression was consistent with an improvement in insulin 

sensitivity. Interestingly, DEX treatment in ADX rats did not lead to elevated plasma 
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fetuin-A, suggesting that adrenal gland-secreted metabolites may play a pivotal role in 

the glucocorticoid-mediated up-regulation of fetuin-A. This notion is supported by the 

fact that corticosteroids can bind two types of receptors: type 1 and type 2. The type 1 

receptor has a high affinity for both corticosterone and the mineralocorticoid aldosterone. 

On the other hand, the type 2 receptor has a higher affinity for synthetic glucocorticoids 

such as dexamethasone. Adrenalectomized rats do not produce the corticosteroids 

necessary to activate the type 1 and type 2 receptors. Therefore, our observation that 

treatment with DEX, a type 2 receptor agonist, does not elicit an increase in fetuin-A may 

suggest a cooperative effect of both type 1 and type 2 receptors in mediating the increase 

in plasma fetuin-A detected in our earlier experiment. 

 

No significant decrease in fetuin-A was observed when comparing DEX- and 

saline-treated ADX rats. On the other hand, sham-operated rats treated with DEX 

displayed significantly elevated levels of both total and phosphorylated fetuin-A. Earlier 

studies have revealed that the phosphorylation of fetuin-A is critical for its IR inhibitory 

activity (185). Along with fetuin-A, HOMA-IR was also elevated in DEX-treated sham-

operated rats. Taken together, these results demonstrate that glucocorticoids increase 

fetuin-A with concomitant elevations in insulin and HOMA-IR, possibly mediated 

through pathways drawn from the adrenal glands. 

 

 The fetuin-A knockout mouse was first generated by Jahnen-Dechent et al. as a 

model to study ectopic mineralization (246). Since fetuin-A is shown to be an inhibitor of 

insulin receptor tyrosine kinase activity and is also associated with insulin resistance and 
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the metabolic syndrome (24,29,31), it was of significant interest to utilize the fetuin-A 

knockout mouse model in studying the pathogenesis of insulin resistance. Mathews et al. 

have previously showed that fetuin-A knockout mice are protected from obesity and 

insulin resistance when fed a high-fat diet (32). The same group later demonstrated that 

insulin sensitivity was not affected in fetuin-A knockout mice as a result of aging (33). 

Based on these findings, we hypothesized that fetuin-A knockout mice given DEX would 

retain a sustained degree of insulin sensitivity. The insulin tolerance test (ITT) is based 

on an intraperitoneal injection of insulin and a measurement of the animal’s glucose 

response over time. It is an effective tool used to assess whole-body insulin sensitivity in 

animals (33,106,247,248). Thus, we utilized this method in evaluating the effects of DEX 

on insulin signaling in our study. Results showed that fetuin-A knockout mice treated 

with DEX exhibited improved insulin sensitivity compared to wild-type DEX-treated 

controls. Additionally, DEX treatment in wild-type mice led to significantly impaired 

insulin signaling compared to wild-type saline-treated controls, which was consistent 

with our earlier results demonstrating that DEX induced insulin resistance in animals. 

Together, these findings demonstrate the efficacy of DEX in inducing insulin resistance, 

while gene knockout of fetuin-A prevents the disruption of insulin signaling. This 

suggests that fetuin-A may play a critical role in the development of DEX-induced 

insulin resistance. 

 

The metabolic syndrome is a cluster of metabolic abnormalities that increase the 

risk for cardiovascular disease. According to the National Cholesterol Education 

Program’s Adult Treatment Panel III report (NCEP-ATP III), these factors include: 
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abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, and insulin 

resistance (249). Fetuin-A has been shown to be strongly associated with features of the 

metabolic syndrome, such as an atherogenic lipid profile, hyperlipidemia, liver fat 

accumulation, and insulin resistance (29,31). Moreover, adiponectin levels, which are 

inversely correlated with coronary heart disease (250), are shown to be suppressed by 

fetuin-A in animals and humans (251). Patients with Cushing’s syndrome have 

hypercortisolemia and exhibit many characteristics of the metabolic syndrome, including 

obesity, hypertension, dyslipidemia, and glucose intolerance (169). These, along with 

elevated levels of cortisol, suggest that glucocorticoids may be a contributing factor in the 

development of these features (252). 

 

Endogenous glucocorticoids are produced through the hypothalamic-pituitary-

adrenal (HPA) axis, a neuroendocrine feedback circuit (160). In response to acute stress, 

neurons stimulate the hypothalamus to release corticotropin releasing factor (CRF), 

which then travel to the anterior pituitary to secrete ACTH. This hormone then acts on 

the adrenal cortices to mediate glucocorticoid production (153). Studies have 

demonstrated that increased HPA and glucocorticoid activity are both consistently 

correlated with obesity, hyperglycemia, and insulin resistance (253-255). However, an 

even more important notion may be the inter-conversion of glucocorticoids between 

inactive and active states. 

 

Two key enzymes that mediate tissue-specific glucocorticoid activity are 11β-

hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2. Type 1 converts inactive 
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glucocorticoids to their active forms and is widely expressed in insulin-sensitive tissues 

such as the liver and adipose (256). On the other hand, type 2 is responsible for the 

conversion of active to inactive glucocorticoids and is more widely expressed in the 

kidney, an aldosterone-selective target tissue (42). In adipose tissue, 11β-HSD1 activity is 

consistently associated with obesity, insulin resistance, and other features of the 

metabolic syndrome (164,166,175). Conversely, 11β-HSD1 activity in the liver is 

decreased in obese Zucker rats and ob/ob mice (163,257). Obese, insulin resistant 

humans exhibit elevated cortisol generation from its inactive form in both skeletal muscle 

and adipose without significant increases in plasma cortisol concentrations (166,258). 

This suggests that the tissue-specific activity of 11β-HSD1 in converting inactive to 

active glucocorticoids is a greater contributing factor to the development of features 

associated with the metabolic syndrome than circulating levels of glucocorticoids (259). 

Interestingly, the liver-specific overexpression of 11β-HSD1 in mice leads to mild insulin 

resistance, dyslipidemia, and hypertension without an increase in fat mass (260). 

Moreover, overexpressing 11β-HSD1 selectively in adipose tissue of mice leads to the 

development of visceral obesity that is exacerbated by a high-fat diet. In addition, these 

animals become diabetic, insulin resistant, and exhibit hyperlipidemia (261). On the other 

hand, the transgenic overexpression of 11β-HSD2 in adipocytes protects mice from diet-

induced obesity and weight-gain due to reduced fat mass accumulation (262). Whole-

body 11β-HSD1 knockout mice exhibit increased liver insulin sensitivity, improvements 

in both lipid profile and glucose tolerance, and are also resistant to weight gain and 

diabetes (172,173). Non-specific inhibitors of 11β-HSD such as carbenoxolone have been 

shown to increase glucose uptake in the liver and improve insulin sensitivity in type 2 
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diabetics (168) and healthy subjects (167). Furthermore, the selective inhibition of 11β-

HSD1 lowers blood glucose levels and leads to improved hepatic insulin sensitivity in 

hyperglycemic mice (162,170). These findings suggest that the enzymatic regulation of 

11β-HSD activity may be a potent avenue of therapeutic strategies for the treatment of 

various features associated with the metabolic syndrome. Additionally, our results have 

demonstrated that glucocorticoids elevate fetuin-A levels and impair insulin signaling. 

On the other hand, fetuin-A knockout mice exhibit protective effects against insulin 

resistance similar to those seen in the targeted inhibition or genetic knockout of 11β-

HSD1. Accordingly, the tissue-specific activity of the 11β-HSD enzymes may be of 

significant interest in prospective investigations elucidating the role of fetuin-A in 

glucocorticoid-mediated insulin resistance. 

 

Recently, the sphingolipid ceramide was shown to be a molecular intermediate 

linking glucocorticoid-, saturated fat-, and obesity-induced insulin resistance (263). 

Dexamethasone treatment in mice induced the expression of genes necessary for 

ceramide biosynthesis and promoted ceramide accumulation in the liver. Concomitant 

increases in both fasting blood glucose and insulin, along with impaired glucose disposal 

were also observed. On the other hand, treatment with myriocin, an inhibitor of ceramide 

biosynthesis, significantly ameliorated DEX-induced glucose intolerance in these 

animals, suggesting that enzymes required for ceramide biosynthesis could be a potential 

drug target for glucocorticoid-induced insulin resistance. These results parallel our 

findings that demonstrate fetuin-A as a central mediator of DEX-induced insulin 

resistance. Additional experiments in this area could potentially involve assessing the 
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degree of ceramide expression and circulating levels in DEX-treated fetuin-A knockout 

mice to provide further insight into the mechanisms of glucocorticoid-mediated insulin 

resistance. 
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CHAPTER 6: CONCLUSIONS 

 

 Diabetes is a disease that affects nearly 250 million people around the world with 

an estimated annual cost of approximately $175 billion. Various factors may predispose a 

person to developing diabetes, such as a high-fat diet, obesity, and ethnicity. In addition, 

inflammatory cytokines such as TNF-α and IL-6 can contribute to insulin resistance, a 

hallmark feature of type 2 diabetes. Among other roles, fetuin-A acts as a natural 

inhibitor of insulin signaling through the disruption of insulin receptor tyrosine 

autophosphorylation. It is highly associated with obesity, insulin resistance, dyslipidemia, 

and features of the metabolic syndrome (29,31,191,264). Furthermore, serum fetuin-A is 

also associated with carotid arterial stiffness (144), atherosclerosis (30), C-reactive 

protein (251), and negatively represses high molecular weight adiponectin (251). 

Polymorphisms in the fetuin-A gene have been shown to be associated with type 2 

diabetes (140), dyslipidemia (143), and leanness (265) among varying populations, 

suggesting that fetuin-A has modulatory effects on whole body metabolism from a 

genetic standpoint. Conversely, fetuin-A knockout mice are protected against diet-

induced obesity and weight gain (32). Given that fetuin-A is associated with insulin 

resistance and that dexamethasone increases fetuin-A gene expression and decreases 

peripheral insulin sensitivity, we sought to assess the possible role of fetuin-A as a 

mediator of glucocorticoid-induced insulin resistance. 
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We first demonstrated that DEX up-regulated both gene expression of fetuin-A 

and protein secretion in human Hep3B and HepG2 hepatoma cell lines. In ZDF rats, an 

animal model of gross insulin resistance and diabetes, both corticosterone and fetuin-A 

levels were elevated. DEX injection in male Wistar rats led to a significant increase in 

plasma insulin, HOMA-IR, and fetuin-A. On the other hand, treatment with the 

glucocorticoid receptor antagonist RU-486 ameliorated DEX-induced increases of these 

factors, implicating fetuin-A as a possible target of glucocorticoid action. 

Adrenalectomized rats exhibited improved HOMA-IR, while saline- and DEX-treated 

rats demonstrated significantly lower fetuin-A levels compared to their respective sham-

operated controls. DEX-treated wild-type mice developed whole-body insulin resistance, 

while fetuin-A knockout mice injected with DEX showed a level of insulin sensitivity 

that was comparable to saline-treated controls. 

 

 These results demonstrate that DEX induces insulin resistance in animals with a 

concomitant increase in plasma fetuin-A. Surgical adrenalectomy improves insulin 

sensitivity and also lowers fetuin-A levels, while mice lacking fetuin-A are protected 

against DEX-induced disruption of insulin signaling. Overall, our findings lend support 

for a novel mechanistic function of fetuin-A in the pathophysiology of glucocorticoid-

mediated insulin resistance. 
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Gene Sequence 

mf-wt3prime1s 
(amplifies WT and KO) 5’-ACT CTT CAT TCT CCT AAG GTG G-3’ 

mf-wt3prime1as 
(amplifies only WT) 5’-TAT GCC TTC TCA CAG CAC CG-3’ 

pGKneo3prime1s 
(amplifies only KO) 5’-TTG AAT GGA AGG ATT GGA GC-3’ 

  
Table 1: Primer sequences used for polymerase chain reaction for fetuin-A knockout 
mouse DNA genotyping. 
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Gene Sequence 

AHSG (forward) 
AHSG (reverse) 

5’-ACG TGG TCC ACA CTG TCA AA-3’ 
5’-CGC AGC TAT CAC AAA CTC CA-3’ 

β-actin (forward) 
β-actin (reverse) 

5’-CCT CTA TGC CAA CAC AGT GC-3’ 
5’-CAT CGT ACT CCT GCT TGC TG-3’ 

  
 
Table 2: Primer sequences used in real-time PCR for fetuin-A and β-actin gene 
expression. 
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Fig. 3: Fetuin-A gene expression in human Hep3B hepatoma cells. Confluent Hep3B 
cells were serum-starved overnight, then treated with dexamethasone (DEX). Cells were 
collected 24 hours after treatment. Total RNA was isolated from Hep3B cells. Real-time 
PCR was then performed, in triplicate, for fetuin-A gene expression. Data are expressed 
as relative gene expression of fetuin-A ± SEM using REST 2005 software. The relative 
gene expression of β-actin was 1.0. 
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Fig. 4: Effect of DEX treatment on fetuin-A secretion in human Hep3B hepatoma cells. 
Confluent Hep3B cells were serum-starved overnight, then treated with dexamethasone 
(DEX). Media was collected 24 hours after treatment. Proteins secreted into the cell 
culture media were separated by SDS-PAGE, and immunoblotted with anti-human 
fetuin-A antibody, and chemiluminescence was detected using LabWorks Image 
Acquisition software. Data from Western blot analysis are expressed as arbitrary 
densitometric units and represent the mean of three independent experiments. A 
representative western blot is shown. ** p < 0.01 vs. 0 μM DEX. 
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Fig. 5: Effect of DEX treatment on fetuin-A secretion in human HepG2 hepatoma cells. 
Confluent HepG2 cells were serum-starved overnight, then treated with dexamethasone 
(DEX). Media was collected 24 hours after treatment. Proteins secreted into the cell 
culture media were separated by SDS-PAGE, and immunoblotted with anti-human 
fetuin-A antibody, and chemiluminescence was detected using LabWorks Image 
Acquisition software. Data from Western blot analysis are expressed as arbitrary 
densitometric units and represent the mean of two independent experiments. A 
representative western blot is shown. Results are not statistically significant between 
treatments. 
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Fig. 6: Blood glucose concentrations in Zucker diabetic fatty rats. Blood samples were 
obtained from 6-week-old adult, male ZDF rats from the lateral saphenous vein. Glucose 
levels were measured with a glucometer. Data are expressed as mean ± SEM (n=6 per 
group) and are not statistically significant. 
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Fig. 7: Plasma insulin concentrations in Zucker diabetic fatty rats. Blood samples were 
obtained from 6-week-old adult, male ZDF rats from the lateral saphenous vein. Plasma 
insulin concentrations were assayed with ELISA. Data are expressed as mean ± SEM 
(n=6 per group). ** p < 0.05. 
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Fig. 8: Plasma corticosterone levels in Zucker diabetic fatty rats. Blood samples were 
obtained from 6-week-old adult, male ZDF rats. Plasma corticosterone levels were 
quantitated through ELISA. Data are expressed as mean ± SEM (n=5 per group). 
* p < 0.05. 
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Fig. 9: Fetuin-A levels in Zucker diabetic fatty rats. Blood samples were obtained from 
6-week-old adult, male ZDF rats. Plasma samples were diluted 1:100 in saline, run on 
SDS-PAGE, immunoblotted, and visualized for fetuin-A as described previously. Data 
are expressed as mean ± SEM (n = 6 per group) and are not statistically significant 
(p=0.01).  
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Fig. 10: Body weights in 4-week-old Wistar rats. Body weights were measured just 
before treatment on each day shown. Data are expressed as mean ± SEM. * p < 0.05 vs. 
same-day Saline. DEX: dexamethasone treatment; RU: RU-486 treatment; DEX+RU: 
dexamethasone and RU-486 treatment; Saline: vehicle treatment. 
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Fig. 11: Blood glucose concentrations in DEX- and/or RU-treated Wistar rats. 4-week-
old, male, Wistar rats were injected with dexamethasone (DEX, 1 mg/kg body weight) or 
vehicle (saline), once daily for 4 days. RU-treated rats were injected RU-486 (RU, 50 
mg/kg body weight) 2h prior to DEX or saline injection, once daily for 4 days. All 
injections were administered intraperitoneally. Blood samples were collected from the 
lateral saphenous vein on day 0 (baseline), and following the commencement of 
treatment, on days 3 and 5. Glucose levels were measured with a glucometer. Data shown 
are mean ± SEM (n=5 or 6 in each group). Means shown are not statistically significant 
between treatments and/or days. 
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Fig. 12: Plasma insulin concentrations in DEX- and/or RU-treated Wistar rats. 4-week-
old, male, Wistar rats were injected with dexamethasone (DEX, 1 mg/kg body weight) or 
vehicle (saline), once daily for 4 days. RU-treated rats were injected RU-486 (RU, 50 
mg/kg body weight) 2h prior to DEX or saline injection, once daily for 4 days. All 
injections were administered intraperitoneally. Blood samples were collected from the 
lateral saphenous vein on day 0 (baseline), and following the commencement of 
treatment, on days 3 and 5. Plasma insulin concentrations were assayed with ELISA. 
Data shown are mean ± SEM (n=5 or 6 in each group). ‡ p < 0.05 vs. Day 0; ** p < 0.01 
vs. same-day Saline; ## p < 0.01 vs. same-day DEX. 
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Fig. 13: HOMA-IR in DEX- and/or RU-treated Wistar rats. 4-week-old, male, Wistar rats 
were injected with dexamethasone (DEX, 1 mg/kg body weight) or vehicle (saline), once 
daily for 4 days. RU-treated rats were injected RU-486 (RU, 50 mg/kg body weight) 2h 
prior to DEX or saline injection, once daily for 4 days. All injections were administered 
intraperitoneally. Blood samples were collected from the lateral saphenous vein on day 0 
(baseline), and following the commencement of treatment, on days 3 and 5. HOMA-IR 
using non-fasted blood samples was calculated as: 
 

HOMA-IR = [Insulin (μU/mL) x Glucose (mmol/L)] / 22.5 
 
Data are expressed as mean ± SEM (n=5 or 6 in each group). * p < 0.05 vs. same-day 
Saline; # p < 0.05, ## p < 0.01 vs. same-day DEX. 
 

 76 
 



 

 

 

 

 

 

 77 
 

 

 

DEX DEX+RU RU
0.125

0.25

0.5

1

2

4

R
el

at
iv

e 
G

en
e

Ex
pr

es
si

on 

 

 

 

 

 

 

Fig. 14: Fetuin-A gene expression in DEX- and/or RU-treated Wistar rats. 4-week-old, 
male, Wistar rats were injected with dexamethasone (DEX, 1 mg/kg body weight) or 
vehicle (saline), once daily for 4 days. Two other groups were injected RU-486 (RU, 50 
mg/kg body weight) 2h prior to DEX or saline injection, once daily for 4 days. All 
injections were administered intraperitoneally. Total RNA was isolated from excised rat 
livers (n=6). Real-time PCR was then performed, in triplicate, for fetuin-A gene 
expression. Data are expressed as relative gene expression of fetuin-A ± SEM using 
REST 2005 software. The relative gene expression of β-actin was 1.0. 
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Fig. 15: Plasma fetuin-A levels in DEX- and/or RU-treated Wistar rats. 4-week-old, 
male, Wistar rats were injected with dexamethasone (DEX, 1 mg/kg body weight) or 
vehicle (saline), once daily for 4 days. RU-treated rats were injected RU-486 (50 mg/kg 
body weight) 2h prior to DEX or saline injection, once daily for 4 days. All injections 
were administered intraperitoneally. Blood samples were collected from the lateral 
saphenous vein on day 0 (baseline), and following the commencement of treatment, on 
days 3 and 5. Data are expressed as mean ± SEM (n=5 or 6 in each group). A 
representative Western blot from Day 5 is shown. ** p < 0.01 vs. Saline. 
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Fig. 16: Insulin receptor tyrosine phosphorylation (IR-pTyr) levels in DEX- or saline-
treated rats. 4-week-old, male, Wistar rats were injected with dexamethasone (DEX, 1 
mg/kg body weight) or vehicle (saline), once daily for 4 days. Liver tissues were 
homogenized, run on SDS-PAGE, and immunoblotted with anti-IR phospho-Tyrosine 
antibody. Chemiluminescence was detected using LabWorks Image Acquisition software. 
GAPDH was visualized as a loading-control. Data are expressed as mean ± SEM (n=4 or 
5 in each group). 
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Fig. 17: Body weight changes in adrenalectomized (ADX) Wistar rats. Adrenal glands 
were surgically removed from 4-week old, male, Wistar rats (ADX, n=11). A sham group 
of 10 rats were subjected to surgical procedures, except that the adrenal glands were not 
excised from these animals. Following a recovery period of 1 week, rats were injected 
either dexamethasone (DEX, 1 mg/kg body weight) or saline once daily for 4 days, as 
described previously. Data are expressed as mean ± SEM (n=5 or 6 in each group).  
** p < 0.01, *** p < 0.001 vs. Sham groups. 
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Fig. 18: Plasma corticosterone concentrations in adrenalectomized (ADX) Wistar rats. 
Adrenal glands were surgically removed from 4-week old, male, Wistar rats (ADX, 
n=11). A sham group of 10 rats were subjected to surgical procedures, except that the 
adrenal glands were not excised from these animals. Blood samples for the corticosterone 
assay were collected at approximately 9:00 am on Day 0. Data are expressed as mean ± 
SEM (n=10 or 11 in each group). *** p < 0.001.  
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Fig. 19: Blood glucose concentrations in adrenalectomized (ADX) Wistar rats. Adrenal 
glands were surgically removed from 4-week old, male, Wistar rats (ADX, n=11). A 
sham group of 10 rats were subjected to surgical procedures, except that the adrenal 
glands were not excised from these animals. Following a recovery period of 1 week, rats 
were injected either dexamethasone (DEX, 1 mg/kg body weight) or saline once daily for 
4 days, as described previously. Glucose levels were measured with a glucometer. Data 
are expressed as mean ± SEM (n=5 or 6 in each group). Means shown are not statistically 
significant between treatments and/or days. 
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Fig. 20: Plasma insulin levels in adrenalectomized (ADX) Wistar rats. Adrenal glands 
were surgically removed from 4-week old, male, Wistar rats (ADX, n=11). A sham group 
of 10 rats were subjected to surgical procedures, except that the adrenal glands were not 
excised from these animals. Following a recovery period of 1 week, rats were injected 
either DEX (1 mg/kg body weight) or saline once daily for 4 days, as described 
previously. Insulin was assayed with ELISA. Data are expressed as mean ± SEM (n=5 or 
6 in each group). ‡ p < 0.05 vs. same-day Saline [ADX]; * p < 0.05, *** p < 0.001 vs. 
Day 0 [respective surgical group].  
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Fig. 21: HOMA-IR in adrenalectomized (ADX) Wistar rats. Adrenal glands were 
surgically removed from 4-week old, male, Wistar rats (ADX, n=11). A sham group of 
10 rats were subjected to surgical procedures, except that the adrenal glands were not 
excised from these animals. Following a recovery period of 1 week, rats were injected 
either dexamethasone (DEX, 1 mg/kg body weight) or saline once daily for 4 days, as 
described previously. HOMA-IR using non-fasted blood samples was calculated as:  
 

HOMA-IR = [Insulin (μU/mL) x Glucose (mmol/L)] / 22.5 
 
Data are expressed as mean ± SEM (n=5 or 6 in each group). ‡ p < 0.05 vs. same-day 
Saline [ADX]; ** p < 0.01, *** p < 0.001 vs. Day 0 [respective surgical group]. 
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Fig. 22: Fetuin-A levels in adrenalectomized (ADX) Wistar rats. Adrenal glands were 
surgically removed from 4-week old, male, Wistar rats (ADX, n=11). A sham group of 
10 rats were subjected to surgical procedures, except that the adrenal glands were not 
excised from these animals. Following a recovery period of 1 week, rats were injected 
with saline once daily for 4 days. Data are expressed as mean ± SEM (n=5 per group).  
* p < 0.05.  
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Fig. 23: Fetuin-A levels in DEX-treated Wistar rats following adrenalectomy (ADX). 
Adrenal glands were surgically removed from 4-week old, male, Wistar rats (ADX, 
n=11). A sham group of 10 rats were subjected to surgical procedures, except that the 
adrenal glands were not excised from these animals. Following a recovery period of 1 
week, rats were injected either dexamethasone (DEX, 1 mg/kg body weight) or saline, for 
4 days, as described previously. Data are expressed as mean ± SEM (n=4 or 5 per group).  
*** p < 0.001.  
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Fig. 24: Fetuin-A levels in DEX-treated adrenalectomized (ADX) Wistar rats. Adrenal 
glands were surgically removed from 4-week old, male, Wistar rats (ADX, n=11). 
Following a recovery period of 1 week, rats were injected either dexamethasone (DEX, 1 
mg/kg body weight) or saline, for 4 days, as described previously. Data are expressed as 
mean ± SEM (n=4 or 5 per group) and are not statistically significant.  
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Fig. 25: Fetuin-A levels in DEX-treated sham-operated Wistar rats. Adrenal glands were 
surgically removed from 4-week old, male, Wistar rats (ADX, n=11). A sham group of 
10 rats were subjected to surgical procedures, except that the adrenal glands were not 
excised from these animals. Following a recovery period of 1 week, rats were injected 
either dexamethasone (DEX, 1 mg/kg body weight) or saline, for 4 days, as described 
previously. Data are expressed as mean ± SEM (n=5 per group). *** p < 0.001.  
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Fig. 26: Phosphorylated fetuin-A (p-Fetuin-A) levels in DEX-treated sham-operated 
Wistar rats. Adrenal glands were surgically removed from 4-week old, male, Wistar rats 
(ADX, n=11). A sham group of 10 rats were subjected to surgical procedures, except that 
the adrenal glands were not excised from these animals. Following a recovery period of 1 
week, rats were injected either dexamethasone (DEX, 1 mg/kg body weight) or saline, for 
4 days, as described previously. Data are expressed as mean ± SEM (n=5 per group). *** 
p < 0.001.  
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Fig. 27: Wild-type and fetuin-A knockout DNA genotyping. Mouse tail DNA from wild-
type and fetuin-A knockout mice were amplified through Polymerase Chain Reaction, 
then loaded onto a 1% agarose gel. Staining and visualization were carried out using 
ethidium bromide and UV light. Wild-type and knockout animals exhibited 2.0 kb and  
0.6 kb reference amplicons, respectively.
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Fig. 28: Insulin tolerance test in wild-type and fetuin-A knockout mice treated with either 
DEX or saline. Wild-type and fetuin-A knockout C57Bl/6 mice were injected either DEX 
(1 mg/kg body weight) or saline, for 4 days, as described previously. Food was removed 
4 hours prior to the insulin tolerance test. An intraperitoneal injection of human insulin 
(0.5 U/kg body weight) was given to each animal, and blood was taken from the tail vein 
at 0, 15, 30, and 60 minute time points for blood glucose analysis. Data are expressed as 
mean ± SEM (n=4 to 7 per group). * p < 0.05 WT DEX vs. KO DEX; ‡ p < 0.05 WT 
DEX vs. WT Saline; § p < 0.05 WT DEX vs. KO Saline. 
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